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INTRODUCTION

Factor analysis is a statistical technique which has been widely
used, particularly in psychological research. Many methods of estimation of
factor loadings have been proposed. but the majority are of an approximate and
non statistical nature and littie is known of the properties of the estimates.

By contrast, a statisticaily sound technique for the estimation of factor loadings
was first developed by Lawiey (24, =sing the method of maximum Eikeiihdbd;
These estimates of factor loadings are theoretically preferab'e 12 other estimates
which have been proposed, as they are agymptotically efficient axd there is a
corresponding likelihood ratio test for assessing the fit of the factor analysis
model. However, a great amount of computation is involved in solving the
maximum likelihood equations, and the earlier computationat procedires
suggested have been known to bresk down in certain cases (29, so that other
methods for estimating factor ioadings have been used in the majority of

reported studies.

The problem of estimating the minimum number of factors
for which the factor analysis model fits the population under consideration has
never been solved satisfactorily. A sequence of likelihood ratio tests may be
used to provide an estimate of number of factors (3, 36), but little is known of
the properties of this estimate apart from the fact that the probability of
obtaining an overestimate of the number of factors is less than or equal to the

significance level used. A vast amount of computation is involved, as the
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lengthy maximum likelihood estimation procedure has to be repeated several
times. In addition, many rule of thumb procedures for determining the number
of factors have been proposed, some of which have been examined in previous
empirical studies (33, 39).

The object of this paper is to compare by artificial experiment,
the effectiveness of some methods of factor anaiysis and procedures for
estimating the number of factors. A description will be given of an investigation
in which sample correlation matzices. generated from a populatiorn satisfying
the factor analysis model, were siubjected to various methods of factor analysis
and procedures for estimating nimber of factors. The resuits will be emluatéd,
taking into consideration both the accuracy of the estimates and the amount of
computation involved. The quick and effective method which was used for
generating the sample correlatig)n matrices wil. be described.

There was no attempt in this st:dy tc obtain acciurate contidence
limits for estimates of factor loadings as the amount of computation required
would have been prohibitive, and the resuits of limited value, being specific
to the population parameters chosen and the identification conditions imposed
on the sample factor matrices. However, a rough impression will be given of
the variation which can occur in estimates of factor loadings. The effect on
estimates, of increasing the sample size, and of increasing the number of
variables while holding constant the number of factors, will be examined.

A number of empirical studies on various aspects of factor
analysis have been carried out (5, 6, 17, 27, 30, 31, 32, 39, 45, 47) but

methods of factor analysis have not previously been compared by means of

artificial experiments.
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Before proceeding further it will be convenient to describe the

factor analysis model and review the methods of estimation of factor loadings

and of number of factors which will be investigated.

FACTOR ANALYSIS MODEL AND METHODS OF ESTIMATION

2.1

2.2

Notation

A matrix will be denoted by a capital letter and a vector by a
small letter underlined. For example, A (p x m) stands for a matrix
with p rows and m columns and x (p x 1) for a column vector with
p elements. The transpose of a matrix or vector will be indicated
by a prime. The identity matrix of order p will be represented by
I (p) and the null vector with p elements by 0 (p x1). A diagonal
matrix with the ith diagonal element equal to a function f (xi) of

X, i=1,2........ , Will be denoted by D

i £ (x) while Diag (B)

will stand for a diagonal matrix formed from the diagonal elements
of a square matrix B.
Model

Suppose that x (p x 1) is a random vector distributed according
to N(p I), the multivariate normal distribution with
mean vector ¥ (p x1) and covariance matrix I @Pxp)
Let P be the intercorrelation matrix between the variates

X...... X 8o that
i p

P =D pX N
Yor * P

We /....



We postulate that it is possible to construct, artificially, m (m<p)
"factor variables" Z, ..o 2 distributed according to

N (0/(m x 1), I(m}), such that the matrix of partial correlations
between pairs of the '""observed variables" xi ceo Xp” after
eliminating the effect of the m factor variables is the identity
matrix (19, 4j.

i.e. D%T(P% @ﬁéaD%__ = p; @

rs

V'
so that
P = & &<+D @
where ¢ (px mj is the "'factor matrix’ or matrix of

correlations between the observed variables and the factor

variables and D = Diag (P-% ¢
8

The elements ¢ i will be referred to as the '“niquenesses'.
. , .th
It may be shown (10) that {1 -8 v, commonly known as the i
i
"communality' is equal to the square of the multiple correlation
coefficient of the ith observed variable X, with the m factor
variables z, ..... zZ .
i m

The number, m, of factor variables is defined to be the smallest
number of factor variables for which a factor matrix, ¢,
satisfying equation® , can be constructed. The factor matrix, ¢
will not be unique, as an equivalent solution to @ may be obtained by
multiplying & on the right by any orthogonal matrix.
Additional restrictions must be imposed on the factor matrix to

eliminate this indeterminacy.

Let /....



2.3

Let y denote the vector of observed variabies in standardised
form.
i.e. y = D3 (x - u)
VG
The relationship between the observed variables and factor
variables may then be expressed (19) in the form
y =%z +e ©)
where e (p x 1) is distributed accordingto N (0 (px 1, . Dk j

At this point it is important to distinguish between this factvor
analysis model and an aiternative factor analysis mode! which may be
expressed in the form of equation @) but where z is considered to be
a vector of non-random quantities or parameters to be estimated
separately for each observation on ¥, and not as a vector of random
variables following a specified distribution (26, 44, 20;. The second
model will not be used for the present study. but some artificial
experiments based on this model have been carried out by Wold (45).

In the following description of methods of factor analysis, sample
estimates of ¢ and DG obtained by any of the methods to be
investigated, will be denoted by F and Du respectively. The sample
product moment correlation matrix will be denoted by R and the number

of cases in the sample by N.

Methods of factor analysis

2.3.1 Maximum likelihood

Three different approaches to the problem of obtaining
estimates of the elements of the factor matrix, or

"factor loadings'', have yielded equivalent results.
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Lawley (24) used the method of maximum likelihood,

and Rao (36} maximised the canonical correlation
coefficient between observed variables and factor variables
to derive estimates of factor ioadings. Bargmann (4;

and Howe (19} obtained estimates of factor loadings by
maximising the determinant of the matrix of sample
partiai correlations beiween pairs of observed variahies
after eliminating the effect of the factor variabies.
Although apparently differeunt, the equations derived from
these three approaches are equivalent.

Different iterative computationai procedures were
proposed for so.virg these three equivaient sets of
equations. In order to ensure a uwnique so:.ution,
additional identification conditions. name!y that FF* Di/}-'1 F
be diagonai, were included in the sets of maximum likel:hood
and canonical factor equations. The maximum determinant
computing procedure does not yield a unique solution, but
this is no disadvantage, as the factor matrix obtained can be
subjected to an orthogonal transformation resulting in a
matrix which satisfies specified identification conditions, and
thus is unique. Provided that the maximum likelihood
equations have only one solution, the factor matrices yielded
by Lawley's and by Rao's computationai procedures should
be identical. The same matrix should result if the maximum
determinant factor matrix is transformed to satisfy the same

identification conditions.

Howe /. ...



Howe (19) found that the maximum determinant
computational procedure converged more rapidly than Lawley's
method (25). The canonical factor computing procedure was
applied to a correlation matrix consisting of the first
12 variables of the population correlation matrix given in
Table 5. This computational procedure was found to
converge far too slowly for use even on a computer the size
of the I. B. M. 7094, which was used for all computation in
the present study. Furthermore, it was found that inaccuracies
in the communalities obtained were very much greater than the
tolerance limit for differences between communalities on
successive iterations.

The maximum determinant computational procedure
(19, pp. 33-40) was used for the remainder of the study and
was found to be satisfactory.

The solution of the maximum determinant equations (4)
(R-FF'") Dl/u F =F
D = Diag (R-FFY
will maximise the determinant of the partial correlation matrix

R* = Dl//E(R - FF')DI/AI‘ @
This determinant may be evaluated (4) using the relationship
| *| = || [1-FRr~F| |D_| -1
The maximum of unity is attained when R* is the identity
matrix.

The determinant |R*| was evaluated after each complete

iteration of the maximum determinant computational procedure,
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and the direction of the change in factor 'oadings from one
iteration to the next was reversed whenever there was a
decrease in this determinant. It was found that if this was
not done, cases occurred where the determinant continued
decreasing so that the matrix obtained was not the maximum
likelihood factor matrix.

Iteration was continuved unt?? the maximum ditference
between correspondiig uniguenesses, o on SUCCESRIVE
iterations was :ess than . 0001. When the maximum
determinant method was applied to the popuiation corz*eiétion
matrix and this convergence limit was used. a:. resi'is were
accurate to three decima: piaces. In order to avoid
inagcuracy due to reunding error in the caicu.ation of 1/ ,
vai
no estimate of unigseness was permitted to become :ess
than .0004. If. on any iteration, a uniqueness became
less than . 0004 and there was simultaneously a decrease in
the determinant of the partial correlation matrix,
computation was terminated prematurely, and the factor
matrix obtained on the previous iteration was used as the final
solution .

A likelihood ratio statistic for testing the null
hypothesis that m factors are sufficient for equation @
to hold against the alternative that more than m factors

are required, was provided by Lawley (24). This

statistic may be expressed (19) in the form

= - l<:loge IR *

Am
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2.3.2

where R* is defined in equation @), the factor matrix F

being of order (p x m). The multiplier, given by Bart:ett (7}, is

2p+11 _ 2m
6 3

k = N-

This statistic is asymptotically distributed as Chi Square
2
with 3 ((-m)” -p-m) degrees of freedom
Lawley (25) gave the easily computed approx:mat:on for

the likelihood ratio statistic.

Pl
Am 3KI. I
m =52 T

where r*ij is the element in the ith row and jth coi.mn of
the partial correlation matrix R*,

The following decision procedure using a seq.ence of
likelihood ratio tests may be used to obtain an est:mate of the
number of factors (3, 36);-

The likelihood ratio test given in equation ) is applied
for 0, 1, 2.... factors consecutively until the null hypothesis
is not rejected at a specified significance level. The first
value of m for which the null hypothesis is not rejected is
taken as an estimate of the number of factors. This procedure
will tend to underestimate the number of factors, the probability
of an overestimate being obtained being less than or equa! to
the significance level used.

Initial approximation to the maximum likelihood solution .
Weighted principal factors.

When the population correlation matrix satisfies equation Q)

for a specified number of factors m (m <€ p - 1y ., the

square /. ...



10.

square of the population multiple correlation coefficient

(S. M. C. ) between the ith observed variable and the
remaining (p - 1) observed variables is a lower bound to

the population communality of the ith observed variable (103.
If the number of variabies is increased while the number of
factors is held constant the differences between population

S. M.C.s and population communalities are reduced (i4;.

The maximum iikelihood estimate of the S. M. C.,

1‘2, e quraqe =1 - l/ru
i.1...{-1){i+1;...p

where ri"i is the ith diagonal element of R-l, is often =sed
as an approximation for communality (22, 16, 45}. I order
to obtain an initial approximation to the factor matrix with
which to initiate the maximum determinant computing
procedure, the Rao form of the maximum likelihood
equations with communalities replaced by S. M.C.s as

suggested by Harris (16) were used.

Dl//u_(R -D,) D];//l_1= V Dy

F =D1//_ V Dy, ®
u

V (p x m) is a matrix formed from the latent vectors of
unit length corresponding to the ,Zl .

The Jacobi method (12) for obtaining latent roots and
vectors of a matrix was used throughout this study.

The likelihood ratio test statistic for number of factors

may /....



11.

may be expressed as a function of the latent roots Zi’ (36}
but this test is not appropriate here as approximations are
used for the communalities. Joreskog (20), making the

assumption that

2 . ‘
8y = 81 TPl -1 p) @=1.p)

2 )
where /0 1., (i-1)(+1). .. p denotes the

t .

i h population S. M.C. and o) is a constant, obtained 4
test statistic which was similar in form to the likelihood ratio
statistic, but different degrees of freedom were giver for the

asymptotic chi square distribution.

;\(J) = |N-1/.(2p +4m + 7 +'2— Xp 1dg (f.+1-{p-m :log" Zp {i*’l“\
= N Yee am e 7o e o fog 8 i1
p-m

The distribution given for this statistic was the chi square
distribution with % (p - m + 2)(p - m - 1) degrees of freedom.
Joreskog justified the assumption about the reiationship between
population uniquenesses and S. M. C.s on the grounds that this
assumption will hold sufficiently closely for practical purposes
when the ratio of number of factors to number of observed
variables is small. He suggested that a sequence of these
tests may be used to obtain an estimate of the number of
factors if the number of observed variables is greater than 15.
Joreskog obtained estimates of factor loadings using the
factor analysis model where factor scores are treated as

parameters which vary from one individual to another. The

columns /....



2.3.3

2.3.4

12,

coiumns of the Joreskog factor matrix are proportional to

the coiumns of the factor matrix obtained from equation () .
No assumption about the nature of the factor scores was made
in the derivation of the test statistic.

Principal factors using S. M. C. s as approximations to
the communalities

The principal factor method, or Hotelling's method oif

principal compouents (18} applied to the correiation marr:x

with dfagonz. elemernts replaced by communality estimates,

is the most popt.iar method of factor analysis among psycho.ogists
and is generally used when an electronic computer :is avai.able
(15, 21, 48,. In this study, S.M.C.s were used as ‘n'tva:
approximations to the communalities.

The equations are

R - D_Q}: v = VDy
F =V Dl{;g_
where uoo= i
i’i ({=1... mjare the m largest latent roots of (R - D)
V (p x m) is a matrix formed from the latent vectors

of unit length which are associated with the ,Zi,

Thomsor's modification of the principal factor method

Thomsorn (43} suggested iterating on the communaiities obtained
from the principal factor method in order to improve the
estimates. After a factor matrix F has been obtained from
a new estimate of the matrix Du is obtained from

D]‘j = Diag (R- FF")

This /....



13.

This estimate of Du is substituted in () and the process
contini.ed until all differences between the u, on successive
iterations fall beiow a specified limit.

It can easily be shown that this procedure will result in
a matrix F for which the sum of squares of non diagonal
elements of the residual matrix (R - FF') is a mir:mum,

In the populiation, where all partial correlations betweern
variables after eliminating the effect of the factors are
specified to be zero. maximising the determinant of the
partial correlation matrix D 1//'8'(1) -0 ¢y Dl/%/‘_5

is equivalent to minimising the sum of squares of non diagoral
elements of the residual matrix (P - ¢ ¢') - As the
elements of R are consistent estimates of the corresponding
eiements of P, Thomson's solution and the maximum
like:ihood (maximum determinant) solution are asymptotically
equivalent.

There is no statistical test of significance for number
of factors applicable to the principal factor estimates and rules
of thumb are generally used for estimating the number of
factors. Guttmann (13) proved that the number of latent
roots greater than or equal to one of the population correlation
matrix and the number of non negative latent roots of the
population correlation matrix with diagonal elements

replaced by S. M. C. s, are both lower bounds to the number of

factors /. ...



14.

factors, the second being better than the first. Kaiser (21)
uses the number of latent roots greater or equal to one of
the sample correlation matrix as an estimate of the number
of factors.

Saunders (38) takes, at each iteration of Thomson's
method, the number of positive latent roots greater thar the
absolute va'ue of the smallest latent root as a criterics for
the number of factors to be used for the following :teration.

In this investigation, iteration of the principai factor
method was continued until all differences between the
communalities (1 - ui) on successive iterations were less than
.0001. When this procedure was applied to the populatiox
correlation matrix, all factor loadings obtained were correct
to at least three decimal places. Iteration was terminated
before convergence of the communalities within the limit
of . 0001 if any one of the communalities exceeded one.

In this case the factor matrix from the previous iteration was
taken as the final solution.

The latent vectors obtained on each iteration of Thomson's
method were used to reduce the matrix (R - Du) for the next
iteration to near diagonal form, as described by Appel (1).
This decreased the number of iterations required for the

Jacobi method for obtaining latent roots to converge, and

halved computing time.

2.3.5/....
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2.3.5 Centroid method

Before the advent of electonic computers a great many factor
analytic studies were carried out using Thurstone's centroid
method (42} which yields an easily computed approximation
for the principal factor matrix.

In the present investigation the highest correlation of
each variable with the remaining variables was used as an
approximation for its communality. This approximation is

rough biit it has been widely used.

3. GENERATION OF SAMPLE CORRELATION MATRICES FROM A
GIVEN POPULATION
3.1 Procedure
Sampie correlation matrices from a given population could be
obtained by generating samples of scores from a multivariate normal
distribution which has the specified population correlation matrix (22) and
calculating the correlation matrices in the usual manner. A
considerable amount of computation is involved, particularly if the
samples are large, so that it is advisable to find a more economical
procedure for generating the sample correlation matrices.
The sample correlation matrix R (p x p) for a sample of size N

from a population with correlation matrix

P = D]_/@ ZDI/./EE

satisfies /.. ..



16.

satisfies the relationship
R = D1 //8; A Dl//a_ﬁ
where A is distributed accordingto W ( I, N - 1), the
Wishart distribution with population covariance matrix £ and (N - 1)
degrees of freedom (2). The sample covariance matrix is 1/N A.

The population covariance matrix I may be taken to be equal
to the population correlation matrix P without affecting the distribution
of the sample correlation matrix R.
Let Q (p xp) be a matrix such that

I =0 Q'

In practice it is convenient to choose to be a lower triangular

matrix which may be obtained by means of the square root method (11) .

Let C (p x p) be a random symmetric matrix distributed according

to W (I, N-1) so that
N-1
C = T s Vi
jop M
where v; (px 1) is distributed according to N (0, I).
Then

N-1 '
QCgQ =Q('21 y y) e
1=

N-1 %
where \_);‘ is distributed according to N (O, L), o that
QCca’ is distributed as W ( I ,N-1) (2)

Thus the matrix A may be obtained from

A = acC Q' ©)

Let /....



17.

Let T (p xp) be the lower triangular matrix with non negative

diagonal elements which satisfies

C=TT'

The density function of T is (37 p- 33; 35)

II)I N-1-i
-1
£(T) = exp (-3 trace (I "TT") i=1 b
P .
N-1 p(p-1)  N-1 (-
" -P II )
2 2 n 4 |I| 2 ia r.( 2
This reduces to
. (N-1)-1 L2 p j-1 12
; i exp(*2 i) [ . @1 1 1 -
II ; : ; ! e
i=1 M -1 (—N:.l-) ]=1 i=1 ,2_ ;
= 2 2 r 2 4 k(s J

so that the non zero elements of T are independently distributed ard

: . . -b . LN
tij is distributed as N (0, 1) (i <33
tii is distributed as Chi with N - i degrees of freedom.
tij =0 (i>j)

Random matrices C distributed as W (I, N-1) may then be
generated by using @ and @ . An alternative method is given
by Teichnoew (41).

The sample correlation matrices may be computed from
T* = QT

A = T*T*

R =D A
" M

Thisimethod for obtaining a sample correlation matrix directly

without the need for individual scores, reduces the number of random

variables /. ...
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variables to be generatéd from (N x p) random norma: deviates to

p (p - 1) /2 random normal deviates and p random variates from
Chi distributions. In addition there is a considerabie reduction ir

the computation involved in calculating the correlation matrix.

A number of techniques exist for generating pseudo random

into the random normal deviates (34} and the racdom wnivinbe s frotn
Chi distributions (41 required for the matrix T. Fo: tue dv=sir)
study pseudo random numbers % from the rectarguiar dist:ibvon

were obtained (40) from the muitiplicative congrvertiat gene: wtor

a. =

13 35
j+1 5

a. (mod 2 )
]
Pseudo random normal deviates B~ were obtaired @ fram toe

transformations
1

v 2 :
(-2 1oge o) Cos 21 i

Bk
1

3 .
(-2 loge o )¢ Sin 21 %11

Bk
and pseudo random numbers )(i (f) from a chi distribution with

f degrees of freedom (9) were obtained from
f

= (-2 L
x; @)= (-2 =1 log, aj)

[Nl

D=

2
=(-2 Z
xi (2f+1) = ( 2j loge aj + Bk )

Tests on distributions of random matrices

A series of tests was carried out on the random matrices C,
generated from W (I, N - 1) by the method described above.
It is difficult to test directly the goodness of fit of the

distribution of a series of observations on severa! varidtes to a

theoretical /...



19,

theoretical multivariate distribution. Becaise of this, the fit of
the distribution of the elements the matrices C to the Wishart
distribution was tested indirectly. This was accomp’ished by
testing the goodness of fit of the distributions of three different

functions of the elements of C to the theoretical univariate

RE)
[}
=
@)

distributions of these furctions assuming a Wishart distr'bvicr fo
The three functions used were the followirg three kellnoad rat o
statistics for testing different hypotheses about the foxm ef the
population covariance matrix, given a random matxr.x from =

Wishart distribution.

a. Identity Statistic

This is the likelihood ratio test statistic for testing whether C
is a sample matrix from a population with covariarce matrix I,
or, equivalently, whether A is a samp’e matrix from a
population with covariance matrix 2 {8, 2).

T = -k1 (loge lcl - plogeN+p=1/Ntrace C)

p J
= - I - -1 L.t
k1 (2 1zllog(_:tﬁ p logeN+p /NJE;I i&q Gy

where

1 . .
Kk, = [N-/ 2+7—2~]
1 6 (2p X
The exact distribution of ﬁ:lunder the nu1! hypothesis is not

known, but, if N is large, 1’1, is approximately distributed as

chi square with Eﬁ!zﬂl_ degrees of freedom

* 2 o
Prob (§ <& 71 ) = Prob (Iif Bl

where /.. ..
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where

fl = P+l
2

Sphericity Statistic

This is the likelihood ratio statistic for test g wiether I8
a sample matrix from a population with covariancs matrix &7
where d&is a constant, or, equivaiently, whether A s a

sample matrix from a population with covariance matrix <. (2.

_ ¥ 1 e ~ S
Ty = -k, [loge |cl =p.‘ioger£/p trace b;]

where

2
- -+
k.= (N-1) (1--2p b+ 2
2 6p (N-1}

A good approximation to the cumulative d:strib . ilor function

of T is given (2) by the chi square series

* .2 ol
Prob (19 £ 1) = Prob (j(f2 0y
3 2 . 2 x 2 *
+ +2)(p-1)(p-2)(2p +6p + 3p+2; |Prob (X ¢ ST )" Prob (Xf <1 2)
2 9 27 2
288p° k -
2
where
f = PP+1)
2 5 1

Independence Statistic

This is the likelihood ratio statistic for testing whether C is a

sample matrix from a population with a diagona’ covariance matrix (2).



21.

p
T3 = -k3 [log c| -iZ=1 log Cii]
where
k, = N - 2p+11
3 "6

A good approximation to the cumulative distribsition function

of 13 is given (2) by

% "
f3 3
- ' . )
+M (2P2°2p-13}[Prob(x2 LU _ %~ Prob (¥ g
2 fg+4 g f3
288 k
3
where
f = P(-1)
3 2

The null hypothesis about the form of the pop:fation covarisnce
matrix is most stringent for the identity test, less stringerit for ihe
sphericity test and least stringent for the independence test. rovided
that the random matrices C are distributed according to the Wishart
distribution with identity population covariance matrix, all three test
statistics should follow the specified distributions.

Three tests of goodness of fit were applied to each series of values
of a statistic. Firstly, the values of the statistic were grouped into 10
classes with equal expected frequencies, and the fit of observed
frequencies to expected frequencies tested by means of the chi square
goodness of fit test (23).

The second test which was used is sensitive to deviations in the
lower tail of the distribution. Let T(D denote the value of the

C s . . .th ) .
statistic under consideration for the i = random matrix of a series of s

random /. ...
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random matrices. The test statistic is

- 3 v o< 7%
h= -2 iEﬂloge[Pr’ob(; € TV

If the T(i) are independently distributed accoxding to the
hypothesised distribution, the values Prob { * < ?:{'i}';
will have a rectangular distribution and ";1 will be distributed as
Chi Square with 2s degrees of freedom.

The cumulative distribution furictions of the ‘ke’ihood ~af o
statistics were evaluated using the approximations giver above,
Subroutines prepared by S.P. Ghosh for the f. B. M, Statistical
Computer Language were used to evaluste the necessary ch: square

cumulative distribution fuxctions.

The third test statistic

s 5
Mo = - z - { T ¢ T ) ‘L:.]
73 2 i=110ge [ 1 - Prob { <

will also have a Chi Square distribution witkk 2s degrees of ireedom

if the T(l) have the hypothesised distribiition, but will be sensitive to

deviations in the upper tail of the distribution.

Three sets of pseudo random Wishart matrices with different
values of the parameters N and p were generated and tested.
The first set consisted of 100 matrices with N =100 and p = 16,
the second of 100 matrices with N = 15 and p = 4, and the third of
50 matrices with N = 1500 and p =16. Each test of fit was applied
to the set of complete p x p matrices, and to each set of the square
submatrices of orderp -1, p-2...., 3, 2 formed by deieting

rows and columns from the end of the matrix.
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The results of the tests of fit are given in Tables 1. 2 and 3.
These results are generally satisfactory. The few significant
values may be attributed to chance as in most cases they occur for only
one of the tests of fit on one of the likelihood ratio statistics, and are
not corroborated by other results for the same set of matrices. We
may then conclude that the pseudo random Wishart matrix generator
is satisfactory, and that the approximations wsed for the c.m:. a*:ve
distribution functions of the iikelihood ratio statistics are close

enough for practical purposes.



TABLE 1 Goodness of Fit Tests Applied to Identity, Sphericity and Independence Statistics for 100 Random,
Matrices from W (I1,100-1)

Order of Submatrix 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 16

Chi Square Goodness of Fit Test
Distributed as x2 with 9 d.f.

Identity Statistic 7.6] 5.8] 6.4| 7.4]110.0{19.4%12.4|11.8 3.4] 8.4 | 5.2}10.8]112.2} 7.5 |11.0
Sphericity Statistic 6.4] 8.6}14.8; 7.0]10.8| 8.8} 4.8 7.9 7.4114.8 { 5.2 [14.8 8.2111.6 | 6.2
Independence Statistic 4.2 6.0)12.6) 9.2 5.8 9.2} 5.0 4.0 6.8} 6.4 | 6.8|12.2| 7.4 5.6} 8.4

-2 Ilog [Prob 1 gf(i)’ ):I
Distributed as x ¢ with 200 d.f.

identity Statistic 193 | 202 | 204 | 183 [ 175 188 |179 [189 [196 |204 | 212|211 {210 | 201 |201
Sphericity Statistic 193 | 205 | 205 | 185 | 180 193 |185 | 195 l200 {207 | 217|216 | 215 | 206 [207
Independence Statistic 172 | 181 | 194 | 179 | 176 |92 |188 | 202 |200 |207 | 218{216 | 217 | 209 |204
-2% log [1- Prob (1 {T(i) )J

Distributed as x 2 with 200 d.f.

Identity Statistic 194 | 205 | 185 | 188 | 196 | 192 | 201 | 204 |201 |203 | 188187 | 180 | 183 |189
Sphericity Statistic 199 | 210 | 186 | 187 | 196 | 190 |197 ! 200 [198 | 201 | 186|184 | 177 | 178 |184
Independence Statistic 223 | 238 | 206 | 204 | 217 | 206 |210 | 210 210 [210 | 194|190 | 182 | 183 |183

* Significant at 5% level

‘¥¢



TABLE 2 Goodness of Fit Tests Applied to Identity, Sphericity
and Independence Statistics for 100 Random Matrices
from W (I,15-1)

Order of Submatrix 2 3 4

Chi Square Goodness of Fit Test
Distributed as x2 with 9 d.f.

Identity Statistic 11.6 4.2 | 20.8%
Sphericity Statistic 9.4 4.8 6.6
Independence Statistic 12.2 7.6 4.4

-2 % log [ Prob (g 1
Distributed as x2 with 200 d.f.

Identity Statistic 174 209 189
Sphericity Statistic 204 205 195
Independence Statistic 293 215 204

-2 £ log [1— Prob (1 s?(i)ﬂ
Distributed ag X2 with 200 d. f.

Identity Statistic 206 177 183
Sphericity Statistic 198 176 177
fndependence Statistic 193 174 137

* Significant at 5% levei

Gg



TABLE 3

Goodness of Fit Tests Applied to Identity, Sphericity and Independence Statistics for 50 Random

Matrices from W (I,1500-1)

Order of Submatrix 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Chi Square Goodness of Fit Test
Distributed as X2 with 9 d.f.
Identity Statistic 9.2 6.8 5.6 9.6 8.0 5.6 5. 6.0 7. 10.4 7.6 1 13.2 15.6 | 13.6§ 10.4
Sphericity Statistic 14.8 | 10.4 10.4 9.2 6.4 5.2 5. 6.8 4. 8.4 5.6 1 12.8] 17.6% 12.4| 10.0
Independence Statistic 1.2 | 16.8 8.0 4.0 6.4 7.2 5. 3.2 5. 17.6%* 24‘,0I 16.8 | 18.44 16.4] 16.4
-2 Zlog [Prob( T sr(i))]
Distributed as X2 with 100 d.f.
Identity Statistic 81 81 103 99 99 104 98 102 94 90 104 111 109 113 121
Sphericity Statistic 88 74 105 99 99 101 94 97 92 89 104 111 109 115 123
Independence Statistic 95 102 125% | 110 106 114 112 108 102 98 113 122 120 126% | 131%*
-2 £log [ 1- Prob (T s-;(i))]
Distributed as X2 with 100 d.f.
Identity Statistic 102 100 91 101 109 115 109 104 102 107 99 90 87 79 74
Sphericity Statistic 96 96 82 95 104 113 119 104 192 106 98 88 85 77 73
Independence Statistic 96 99 84 109 108 107 94 92 02 94 89 83 30 72 58

* Significant at 5% level
**  Significant at 1% level

'9¢
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4. EXPERIMENTAL PROCEDURE

4.1 Data
Three sets of sample correlation mairices were generated from a
population correlation matrix satisfying the factor ana:y sis mode’ with

four factors. The first set consisted of 20 correiation matrices of order

12 for samples of 100 cases. Four faciors were extraacied froi = .00 of

these sample correation matrices. using each method of fucre: o g

described in Chapter 2 iz tirn., Eachk procedure for esrmarnyg woezz of faotors
was applied. The estimates provided by the d:fferent techn ¢ e-

were then compared with the popuaation parameters a+nd their zo. .
evaluated. The second set consisted of 10 of the samp © corre &io:
matrices from the first set with four variabies added. aod the ih‘rd set
consisted of 10 sample correlatior matrices with samp.€ size of 1509
and 12 variables. The weighted principa! factor and maxim:m ke’ hoad
estimates of factor loadings were obtained for each matrix from the second
and third sets. These estimates were compared with the corresponding
estimates obtained from the first set in order to demonstrate the effec:
on the estimates of increasing the number of variabies whiie ho'ding constant
the number of factors, and the effect of increasing sample size.

The population factor matrix in simpie structure form (42 is given
in Table 4, and the population correlation matrix, computed using
equation @ , is given in Table 5. The first 12 variabies only were used
for the first and third sets of sample matrices while all 16 variables were
used for the second set.

It/ ..
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If any row of the popuiation factor matrix is deleted, there remain
two disjoint submatrices of rank 4 {= m;. This is a suffictent cond t on
for the population commiinaiities to be unique {3;, and is satisfied when
the first 12 variabies only are sed as well as for all 16 variab:es.

The popuiatios communalities were chosen so as to cover & wide
range ir: order to emphasize the difference betwesrn the maximum
like!iheod solution which micimises a functwon of tae non diagor..

eiements of the mastrix Dy, _ iR - FF Dy whére {ne reciproca » o!
[ 1

Vo »
oy b

the uniqg-enesses are used as weights aid Thomeor s somlios whoob
minimises a function of the non diagora’ eements of ihe wows gais
matrix {(R- FF .

The Wishart matrices which were :sed for (oustricting v sumo -
correlation matrices were se’'ected from the matrices obigice d wor ¢
testing the generation procedure as described ir. the praviors chapt=x.

In an attempt to simulate the distribution of the correiation mairix as
closely as possible while using a sma:l sample of correlation matrices,
the Wishart matrices used were selected such that the values of the
cumulative distribution function of the identity statistic for the 12 x 12
submatrix were more or less evenly spaced over the interva! from 0 to 1.
The values of the cumulative distribution functions of the identity.
sphericity and independence statistics for the selected matrices with
sample size of 100 and 12 varizbies., and the matr:ces with sampie size
of 1,500 and 12 variabies, are given in Tables 6 and 7 respective:y.

The sampie correlation matrices of order 12 and with samp:e size

of 100 are given in Appendix A.
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TABLE 4 Population Factor Matrix
Factor
Variable I II III v Communality
1 .0 .80 .51 .0 .9001
2 .0 .70 .0 .60 . 8500
3 .76 0 .0 .48 . 8080
4 .0 0 .84 0 . 7056
5 78 0 0 .0 . 6084
6 .71 0 0 .0 . 5041
7 .0 0 .0 . 64 .4096
8 .40 0 0 .38 . 3044
9 0 .45 | .0 | .0 . 2025
10 0 .0 39 0 .1521
11 0 .0 . 35 0 .1225
}2 0 .32 0 0 - 1_024
13 70 0 .0 0 4900
14 0 70 .0 0 4900
15 0 0 .70 0 4900
16 .0 .0 .0 .70 .4900




TABLE 5 Population Correiation Matrix

1 2 3 4 ) 6 7 8 9 10 11 12 AI 13 14 15
1 1.0 .5600 -0 4284 | .0 -0 -0 .0 . 3600 -1989 | .1785 ,25605 -0 .5600 | .3570
2 1.0 .2880 | .0 .0 .0 . 3840 . 2280 - 3150 -0 0 (2240: 0 -4900 0
3 1.0 .0 058628 | .5396 | .3072 | .4864 | .0 -9 U -0 | .5320 -9 -0
4 i.0 -0 .0 -0 -0 0 - 3276 2940 | .9 E N 0 . 5880
5 1.0 .5538 | .0 03120 | .0 ) -0 .0 2 .9460 1 .0 .0
5 1.0 0 . 2840 at 20 -0 .9 W 4eval o -0
' 1.0 2432 | 0 0 9 0 E ) 0 0
8 1.0 -0 ) 0 ) : .2800 | .0 -0
9 L0 n 0 f1440§ 0 3150 0
10 1.0 1365 0 i 0 0 . 2730
11 1.0 .0 g 0 0 . 2450
12 1.0 : 0 2240 | .0
SRR (S AP SN S S | S S5 SRS S “_,m_,,,f.,,.m_,__(,,,“-rr,,_,mwln, BSUR PR
13 l11.0 0 .0
14 : 1.9 .0
15 | 1.9

0¢
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Measures of accuracy of estimated factor matrices

A reasonable measure of the accuracy of an estimate E) of a
population parameter P , is the square of the difference between the
estimate and the parameter. The expected value of this quantity is
the mean square error which is equal to the variance of the estimator
plus the square of its bias (23j. When the estimator has been applied
to a number of random samples from the same population, the average
value of the squared differences is an estimate of the mean square error
and could be used as a criterion for comparing estimators.

When comparing methods of factor analysis, it :s more convenient
to have a single measure of the accuracy of a matrix of estimates of
factor loadings, than to have a separate measure of accuracy for each
loading. The magnitude of this meas:re shouid not be inf’venced by the
arbitrary restrictions :mposed or the factor matrix to eliminate
indeterminacy due to rotation. (See Section 4. 3}

Two different measures of the accuracy of the estimated factor
matrices were used in the present study. The first measure was

p i 9
L R S

B = (¢ &' - FF")
The magritude of this quantity is not affected by orthogonal rotation
either of the population factor matrix ? , or of the sample factor

matrix F.

The /. ...
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TABLE 6 Values of the cumulative distribution functions
of the likelihood ratio statistics
Set 1 (N=1006 p=12})
Matrix L.R. test
Number Identity Sphericity Independence for 4 factors
1 .05 .03 .04 .11
2 .10 .09 .08 .56
3 .16 .16 15 Lf .24
4 .20 .21 .39 .28
5 .24 .27 .13 .49
6 . 29 .28 . 24 .26
7 .37 .40 .41 .15
8 .40 .38 .47 .71
9 .45 .47 .57 .73
10 .50 .52 .48 .68
11 .09 .45 .33 .18
12 .59 .09 .05 .66
13 .66 . 66 .63 .59
14 .70 .71 . 88 .94
15 .73 .75 .80 .91
16 .81 .83 .78 .76
17 . 85 .79 . 88 .65
18 .89 .90 .96 .87
19 .96 .96 .62 .46
20 .99 .99 .99 .63
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TABLE 7 Vaiues of the cumulative distribution functions
of iikelihood ratio statistics
Set 3 (N=1500 p=12})
Matrix L.R. test
Number Identity Sphericity Independence for 4 factors
1 .04 .03 .00 .00
2 .16 .17 32 .60
3 .25 . 26 . 28 .07
4 .34 .35 .24 .28
5 .46 .47 .57 .75
6 .52 .54 .24 .60
7 .65 .65 .69 .18
8 .76 .77 .65 .75
9 . 84 . 84 .68 . 80
10 .96 .95 . 87 .47
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The second measure used was the minimum possible value of
the sum of squares of differences between elements of the simple
structure populatior factor matrix. and the corresponding eiements of an
oblique rotation of the sample factor matrix.
i.e. c, = trace (¢ -FA) (- Fny'
where A (m + m; is an oblique transformation matrix chosen so as to
minimise c 9° The transformation matrix 4 may be obtained by soiving
the following equations for 4 and the diagonal matrix Dg /33

F¢ - F'F A = &4 D

Diag (A' k) = 1

The computational procedure used for solving these eqi:ationsg is
given in Appendix C.

The use of an oblique transformation :mplies that the resiiting
factor variabies are correlated over the sample, a‘though these factor
variables are uncorrelated over the population. This is justified if
the non zero sample correlations between factors are regarded as due
to random sampling fluctuation.

For both measures of accuracy, a value of zero implies perfect
agreement between the population factor matrix and the sample

factor matrix.

Identification of sample factor loadings

In order to make possible a comparison of the distributions of

individual factor loadings obtained by different methods, all sample

factor /.. ..
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factor matrices were rotated orthogonally to a common form with six
zero elements determining the factors uniquely. The zero sample factor
loadings correspond to the zero pop:iation factor ioadings which are
underlined in Table 4. A triangular matrix may be constructed by
selecting rows 5, 9, 4. and 7. of a factor matrix in this form .

The following procedure was ised to transform the original factor
matrix to the required form.
1, The rows of the origina! factor matrix F* were rearranged in the
order 5, 9, 4. 7,1,2, 3, 6, 8, 10, 11. 1Z to form the marr’x (" (i2 x 4),
and the square matrix (G*G*') was computed.
2) The square root method of triang:'ating 2 matrix (11’ was app.ied
to (G*G*'; to obtain a matrix G(12 x 4; with 6 zero elemenrs
i.e. gij = 0 (=i
3) The rows of G were rearranged to form the factor matrix F with
zero elements in the specified positions.

The mean, standard deviation and range of estimates of each factor
loading were computed for each of the methods of factor analysis.
These values are specific to the identification conditions used.
A different choice of zero elements for the sample factor matrices

would have resulted in different distributions for the estimated factor

loadings.

4, RESULTS/....
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4. RESULTS

4.1 Accuracy of estimated factor matrices

Columns 2 to 6 of Table 8 and Table 9 give the values of the two
measures of accuracy of every est:mated factor matrix based on each sample
correlation matrix in Set 1 (N = 100, p =12, When the population
correlation mstrix was factored, both the maximum iike:ihoed so::tion
and Thomson's so :t 0w were exact ard had zers val.es to thoos €~ mz.
places) for ootr. meas.res of accuracy. The three other methods o7 festor
analysis provided approximare solutions wnen appiired to the pop . ation
correlation matrix. When the samp’e ceorre ation matrices were factored,
no single method consistent.y provided the most cocoirate res. 't for every
sampie. Each metnod vie ded the most accurate estimate of fr.e fa-tor matrix
for at least one of the twenty samp es.  bit the maxim:m ke "rood m=thod
was the most accurate for more samp es than ary of fhe other methods

Using the mean of the twenty values of the first measure of
accuracy for each method as criterion, the methods of factor analysis may be
ranked in the following order:-

1) Maximum likelihood so!ution.

2) Thomson's solution.

3) Principal factor solution with S. M. C.s as approximations for communalities.

4) Weighted principa! factor solutior. (Solution to canonical factor equations
with communalities repiaced by S.M.C.s (18}

5) Centroid solution.

The ranking obtained when using means of the second measure of accuracy as

criterion was similar. except that the positions of the principal factor solution

and /. ...
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TABLE 8 Values of Accuracy Measure 1
Sets1l and 2. N=100 m=4
| 12 /12 Variables 12/ 16 Variables
ethod [Maximum |[Thomsons [Principal [Weighted [Centroid § Maximum Weighted
~JLikelihood { Method F(SMC) |P.F(SMC.) Likelihood | P.F(SM.C.)
Popu
lation . 000 . 000 .162 .187 . 2517 . 000 . 070
1 .466 . 408 . 562 . 602 . 998 .469 . 522
2 . 327 . 404 .401 .419 .553
3 . 617 .561 . 627 . 656 . 917 . 549 .632
4 . 686 . 658 . 695 .729 . 805
5 . 600 . 602 . 657 . 661 1.137
6 .720 .750 .708 . 696 1.047 377 .401
7 . 988 . 997 1.009 1.038 1.304 .824 . 833
8 . 524 . 554 . 605 . 620 . 877
9 .477 LT17 . 648 . 604 . 837 L 377 .434
10 . 826 . 982 . 926 . 933 1.157
11 . 604 .456 .571 Y .730 . 444 . 480
12 .653 .702 .714 . 740 . 992
13 770 .769. . 847 . 848 1.025 .742 .753
14 . 594 .731 .751 .734 . 994
15 .770 .803 . 815 . 836 1.094 . 644 .719
16 .724 . 762 . 802 .789 1.318
17 .816 1.017 . 926 . 871 1.157 . 680 . 686
18 . 869 . 946 1.089 1.107 1.601
19 1.622 . 945 . 869 . 899 1.222 .715 .739
20 . 829 1.008 . 870 .852 . 666
Mean .724 . 739 . 754 .761 1.022 . 582 . 620
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TABLE 9 Vaiues of Accuracy Measure 2
Set 1 N:=3Id) p=12 m=4
nghod Maximurn Thomsen’s | Principa Weighred Centroid
~_| Like'ihood | Method F.(S.M.C.” | P.F.(S.M.C~
Popu-
lation . 000 .000 059 077 ; 123
1 174 153 243 Z9 Sha)
2 . 205 269 261 272 : .3
3 258 193 242 25 f 357
4 . 263 . 240 . 257 275 253
5 .152 . 190 250 225 x 299
6 438 465 403 335 ﬁ K28
7 233 232 278 203 | 426
8 . 262 . 287 . 318 . 329 : 498
9 . 307 473 . 429 400 ’ 502
10 .192 . 248 . 211 205 » 302
11 . 264 . 206 . 258 . 264 . 342
12 . 276 . 297 . 365 . 362 .530
13 . 335 . 331 . 353 . 352 . 395
14 . 242 . 426 444 398 .538
15 . 303 . 345 377 . 377 564
16 . 321 . 369 . 370 . 360 . 707
17 . 300 .610 6520 . 508 . 729
18 . 524 . 646 757 . 729 1.244
19 . 869 .776 698 . 733 747
20 . 388 . 430 417 . 401 . 308
Average . 315 . 362 378 374 i . 547
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and weighted principal factor solution were reversed., The difference 'n either
mean accuracy measuvre between these two so.utions which Use the same irifiai
approximsations for commur.a’ ‘ties. was sma. er than differences between

mean accuracy measuies of any other two solitions.

The diifereaces in accuracy betweer. the maximum " rke:ikood so'ution,
and Thomson's solalion 67 e ftwo 80 Jtions g og S, M, CL§ A 2l 0 o oGS
for communa.ities. are sms . whet 0mpared Wil WNHCCiYany w0 he €5 sauted
factor matrices wnich i8 das to sampiing f uctuation. The differerces petween

the maximum ikeirthood so ution and the two approximate so:utions .

S. M. C.s for communal-ties ‘s far more marked whern the populat:o:n
correiation mair:x i8 fsciored than when sampie correiation mat:-ces are
factored. Tue centro.d so:.tron with highest corre ations as in't i
approximations for cormunalities g noliceat.y ©8s acc,vate thar 1he otoer
solutions. This ig probably dus more to the poor approximatings for
communaiities than to the method of factoring. as it has pbeen found (5 that
differences is approximatiors for communalities have a greater effect on
differences between factor marrices than differences in methods of factoring.

Ir. order to ¢heck the computing procedures for obtaining Thomson's
solution and the maximum 'ikelihood solution, the sum of squares of aon

diagonal elements of the residual matrix (R - FF’) and the determinant of the

partiai correiation matrix Di, R - FF') Dl/ were calculated for each
W N
D] "G
of the five solutions obtasre d from each sampie. As expected. for every

sampie Thomson's so tion yielded the smaiiest sum of squares of residuals

while the maximum like:thood so!ution yie.ded the partia! correlation matrix

with /;o PR
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with the largest determinant. In several samples the partial correlation
matrices for Thomson's sotition and for the centroid solutior were not
positive semidefinite.

The last two columns of Tabie 8 show the values of the first
measure of accuracy of the maximum !:kel:hood soiution and of the
weighted principal factor so :tice for the 10 sample corre.ation matr:ces
which were factored inc'oding alt i3 variables. The far-rtor maroioss
obtained were of order (i6 x 4. bt only the Zirst 12 rows wexre .sed wheo
calculating the sccuracy index i order to mak: possib e a compar:sor with
T

(e

the factor matrices obtaired when oi.y 12 variab es were used,
approximations to the popu ation cermimina ‘ties provided by fhe popilaton

S.M. C. s are :mproved if the number of variab es is increased and ihe ru:mber
of factors is he!d constaunt (i4., As a resu't. the weighted pr ncipa: factor
method when applied to the popu.ation corre.ation matrix. providsd & better
approximation when ai’ 16 variablies were inc ided than when 12 ~ariables

were used. The inclusion of the four extra variables resulted in an
improvement in the accuracy of the weighted principal factor estimates for

each of the 10 samples. and an improvement in accuracy of maximum

likelihood estimates for all samples except the first. The average improvement
in accuracy was slightly greater for the maximum likelihood estimates than for
the weighted principal factor estimates. Therefore, the increase in number

of variables resulted in a greater difference in accuracy between the maximum
likelihood estimates and the weighted principal factor estimates. When 16
variables were used, the maximum iikelihood solution was the more accurate

solution for every one of the ten sampies. whereas when 12 variables were

used /.. ..



4.2

41.

used the weighted principa: facter solution was superior to the maximum
likelihood solution in three out of the ten samples.

The walues of the two measures of accuracy of the maximum
likelihood estimates and we:ghted principat factor estimates obtained frdm
the sample correlation matrices ir: Set 3 yn = 1500, p = 12} are shown in
Table 10. The ircrease ir. samp e 8ize ressited in a mavked ‘ve rrase 7 the
accuracy of both so=tiorng. the mprovement being greater for ihe max x‘m
likelihood solution. The average difference ‘n acciracy hetwses the 1w
solutions s far greater for the sampies of size 1500 thar: for tha samp'es

of size 100.

Estimates of individua: factor .oadings

The maxmum .:1ke':ihood factor matrices for the samp:es in
Set1l (N =100, p= 12, are given ini Append:x 5.

Differerces between factor ioadings obtained by applying d:fferent
methods to the same sampie correiation matrix were fairly smali. The
magnitude of differences between factor ioadings obtained by different methods
is illustrated in Table 11 which shows the different estimates of each factor
loading for a typical sample (No. 8 ir. Set 1.

The largest observed value, smallest observed value, difference
between mean of estimate and popuiation parameter, and standard deviation
are given in Tables 12, 13. 14 and 15 respectively, for each factor ioading.
These estimates of range, bias and standard deviation of estimated factor
loadings are based or. sma! numbers of observations (20 for Set 1. 10 for
Sets 2 and 3, and the effect of random error may be marked. However, a
rough impression may be gained of the distribution of estimated factor

‘oadings /. ...
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TABLE 10 Valiues of Accuracy Measures
Set 3 N = 1500 p=12
Index 1 ndex 2
Maximum Weighted Maximom !, Wergi =d
Likei‘nood | P F. 'S W (. | iike ihood i i ¢ o
1 . 039 194 013 j
2 . 033 21 022 5
3 . 050 . 235 021
4 .031 23¢ 017 [
5 . 042 192 014
0 . 034 227 015 . el
7 . 057 . 233 .019 104
8 .031 . 215 .019 0¢3
9 . 037 . 228 016 R &
10 . 073 . 285 .024 . 095
Averagey .042 . 227 . 018 .094
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TABLE 11 Factor Loadings for Sample 8
N =100, p=12, m=4
Factor 1.
Population jj Maximum ;Thomson | Principal | Weighted 7 Centroid
Loadings Likelihood F(S.M.C)| P.F.(S.M.C.)
1 .00 -.03 -.02 -.03 -.05 -.02
2 100 -13 | -3 .10 ~.10 - 04
3 .76 .82 | .83 .75 .74 .76
4 .00 .17 .18 .16 .17 .11
5 .78 ‘ 75 | .71 .73 .75 .74
6 .71 ; .65 .70 .68 . 68 .73
7 .00 ~ 04 ~.03 -.03 -.01. -.02
8 .40 .43 .43 .45 .46 .46
9 .00 .07 . 05 .04 .05 .01
10 .00 . 06 1 .07 .08 .08 .07
11 .00 i -.04 5' -, 02 -.03 -.02 -. 07
12 .00 1 07 b1 12 11 .19
Factor 2
Population § Maximum | Thomson | Principal | Weighted Centroid
Loadings Likelihood F(S.M.C)| P . F.(S.M.C)
1 . 80 | .90 .91 . 84 . 83 .74
2 .70 .77 .83 7T .76 .81
3 .00 .11 .13 .13 .13 .16
4 .00 .05 .15 .13 .15 .05
5 .00 .00 .00 .00 .00 .00
6 .00 .16 .18 .18 .18 .17
7 .00 -.05 .00 .01 -.03 .16
8 .00 -.03 -.01 -.03 -.03 -.04
9 .45 .01 .47 .01 .52 .98
10 .00 .19 . 24 .24 .23 .23
11 .00 .15 .21 . 20 .18 .18
12 .32 .37 . 38 .39 .41 .33
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TABLE 11 (cont.

Factor Loadings for Sample 8

N =100, p=12, m=4
Factor 3.
Population § Maximum | Thomson| Principal Weighted Centroid
Loadings Likelihood F.(S.M.C)| P.F.(S.M.C,)
1 .51 .32 .24 .26 .24 .37
2 .00 -.10 -.23 -.19 -.19 -.09
3 .00 -1 S Y -.17 -.18 -.05
4 . 84 .93 i .81 .66 .67 .62
5 .00 .00 .00 .00 .00 .00
6 .00 ~.08 -.14 -.13 -.13 -.08
7 .00 =, 09 ~,12 -.16 -.19 -.18
8 .00 -. 01 .00 .00 -.02 .10
9 .00 .00 .00 .00 .00 .00
10 .39 .27 . 28 . 31 .30 .38
11 . 35 .39 . 40 .44 .45 .50
12 .00 .13 .12 .15 .13 .28
Factor 4.
Population | Maximum | Thomson | Principal Weighted Centroid
Loadings ¢ Likelihood F(S.M.CH)|P.F.(S.M.C.)
1 .00 ‘i -, 08 -.17 -.10 -.03 -.27
2 . 60 .43 .38 .33 .34 .18
3 .48 .50 .50 .42 .38 .42
4 .00 .00 .00 .00 .00 .00
5 .00 .00 .00 .00 .00 .00
6 .00 .04 -.05 -.02 -.01 -.05
7 . 64 . 65 .57 .58 .60 .48
8 . 38 . 29 227 .30 .31 .40
9 .00 .00 .00 .00 .00 .00
10 .00 .22 . 20 .22 . 26 .13
11 .00 .04 .08 .11 .12 .17
12 .00 .04 -.01 -.00 .02 -.21




TABLE 12

Largest Estimates of Factor Loadings.,

N = Sample size

Factor 1

p = No. of variables

N=100 p=12 N=100 p =16 N =1500 p=12
Population | Maximum |Thomson |Principal Weighted Centroid || Maximam | We:ghted Maximum | Weighted
Loadings Likelihood FAS.M.C.) {1 P.F.(S.M.C.: Likelihood | P, F.(S. M. C.; |l Likelihood | P.F.{(S.M.C..
1 .00 . 24 . 26 .25 . 25 .22 . 27 . 27 .07 N4
2 .00 .20 .28 .29 .29 .31 . 24 .27 .02 .06
3 .76 .85 .86 .83 .82 .82 .86 . 84 .78 .73
4 .00 .32 .32 .32 .32 .33 . 31 .31 .09 .11
5 .78 1.00 .91 . 84 . 84 .85 .87 .85 .30 .76
6 .71 .81 .81 .79 .80 . 82 .30 .79 .74 .73
7 .00 .18 . 20 .20 .20 .23 .19 .18 .03 .07
8 . 40 .58 .57 .58 .59 . 61 .58 .58 .43 .45
9 .00 .19 . 20 .19 .18 .18 .16 .17 .05 .04
10 .00 .28 .28 .29 .29 . 28 .29 .29 .04 .05
11 .00 .16 .19 .19 .18 .20 .14 .15 .05 .05
12 .00 .11 .11 .12 .11 .19 .10 .10 .04 .03

20 samples

10 sar\qp}gs

10 samples

i



TABLE 12 (cont.)

Largest Estimates of Factor Loadings.

N = Sample size

p = No. of variables

Factor 2
N=100 p=12 N=100 p=16 N=1500 p =12
Population || Maximum | Thomson | Principal Weighted Centroid || Maximum | Weighted Maximum | Weighted
Loadings Likeiihood FSEMC.i)|P.F(S. M.C.} Likeiihcod [P. F.{S. M. C.; || Likelithood | P. F.(S. M. C ;
1 . 80 .97 .95 . 84 .83 .79 .95 .90 .83 .71
2 .70 . 88 .91 .86 .83 .81 .79 .73 .73 .67
3 .00 .24 .25 . 25 .22 .26 .21 .20 .04 . 07
4 .00 .39 .39 .42 .43 .50 .54 .H4 .04 .11
5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
6 .00 .16 .18 .18 .18 .20 .03 . 04 .03 .05
7 .00 .43 .50 .52 .50 .60 .15 .17 .07 .06
8 .00 . 32 .30 . 34 .31 .35 .19 . 20 .07 .05
9 .45 .63 . 68 .64 .64 .69 .60 .62 .50 .53
10 .00 .27 .30 .31 .28 .35 .23 .23 .04 .03
11 .00 . 26 .22 .23 .22 .49 .21 .23 .02 .01
12 .32 .69 .01 .52 .51 .63 .44 . 46 . 36 .40

20 samples

10 samples

10 samples

9%



TABLE 12 (cont.)

Largest Estimates of Factor Loadings.

N = Sample size

p = No. of variables

Factor 3.
N=100 p=12 N=100 p=16 N = 1500 p =12
Population || Maximum | Thomson | Principal Weighted Centroid | Max‘mum | Weighted Maximum |Weighted
Loadings Likelihood F.(S.M.CH| P.F.iS.M.C.3 iikelihond [P, F.(S. M. C.) || Likelihood |P.F.{S M.C.}
1 .51 .83 . 83 . 64 .62 .71 83 .72 .99 .52
2 .00 .19 .18 . 20 .18 .29 .27 .24 .07 .07
3 .00 .13 .12 .10 .09 .14 14 .13 .04 .00
4 . 84 .99 .99 77 .78 .73 86 .75 .86 .69
5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
6 .00 .23 .24 .20 .21 .24 .18 .15 .03 .04
7 .00 .17 .15 .14 .14 .22 .15 .15 .03 . 00
8 .00 . 20 .19 .22 .21 .13 .11 .12 .03 .01
9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
10 .39 .54 .54 .59 61 . 66 . H4 .58 .41 .44
11 . 35 .53 . 62 .56 55 68 .43 .46 .40 .44
12 .00 . 26 .21 .22 24 33 e .05

20 samples

.18 || 03
B o F

10 samples

A%




TABLE 12 (cont.)

Largest Estimates of Factor Loadings.

N = Sample size p = No. of variables

Factor 4.
N=100_ p=1 N=100 p=16 N=1500 p=12
Population jMaximum | Thomson | Principal Weighted Centroid || Maximum | Weighted Maximum |Weighted
Loadings Likelihood F.(S.M.CH)|P.F(S.M.C.) Likelihood | P. F.(S. M. C.) || Likelihood { P. F.(S. M. C.)
1 .00 .31 .39 .34 .36 .44 .24 .25 .04 .14
2 .60 .82 .82 .75 .74 .14 .75 .72 . 66 .58
3 .48 .59 .60 .56 .55 .57 .58 .54 .53 .43
4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
5 .00 .00 .00 .00 .00 00 .00 .00 .00 .00
6 .00 .20 .28 .27 .23 .29 .14 .13 .03 .01
7 .64 .74 .81 .71 .73 .73 71 .70 .68 .63
8 .38 .52 .50 .50 .49 .53 53 .53 .42 .42
9 00 .00 .00 .00 .00 .00 00 .00 .00 .00
10 .00 .23 .33 .38 .33 .33 16 .18 .06 .08
11 00 .25 .24 .22 .23 .22 . 20 .23 .05 .06
12 00 .25 .31 .31 .31 .34 .24 .25 .04 .04
| 20 samples 10 samples 10 samples

g%



TABLE 13 Smallest Estimates of Factor Loadings
Factor 1
N =100 p=12 N=100 p=16 N=1500_ p=12

Population | Maximum | Thomson | Principal Weighted Centroid j| Maximum | Weighted Maximum. | Weighted

Loadings Likelihood F.(S.M.C,) | P.F.(S. M. C.j Likelthood | P, F.{S. M. C.; || Likelihood |P.F.{S.M.C.}
1 .00 -.19 -.18 -.19 -.19 -.23 -.16 -.17 -.03 -.06
2 .00 -.16 -.16 -.16 -.15 -.16 -. 15 -.13 -. N4 .00
3 .76 .07 .56 .56 .56 .52 .60 .58 .73 . 69
4 .00 -.19 -.19 -.14 -.13 -.13 - 17 -.14 -.08 -.06
5 .78 . 68 . 64 . 68 . 69 .70 .70 .70 .76 .72
6 .71 .47 .51 .47 .48 .46 .52 .64 . 67 .67
7 .00 -.11 -.15 -.14 -.13 -.14 -.05 -.05 -.08 -. 04
8 . 40 .27 . 28 .29 .29 .27 29 .29 . 36 .40
9 .00 -.20 -.22 -.22 -.22 -.25 -.15 -.16 -.05 -.06
10 .00 -.29 -.26 -.26 -.27 -.23 -. 29 -. 27 -.08 -. 07
11 .00 -.14 -.16 -.16 -.15 -.19 - 12 -.13 -.05 -. 04
12 .00 -.12 -.10 -.10 -011 -.1% ; 0G -.09 -.03 -. 04

- 20 _samples e f nples 10 samples |

N
<



TABLE 13 (cont.)

Smallest Estimates of Factor Loadings

Factor 2.
N =100 p=12 N=100 p=16 N=1500 p=12

Population || Maximum | Thomson | Principal Weighted Centroid [|Maximum | Weighted Maximum | Weighted

Loadings Likelihood F.(SM.Ch) | P.F.(S.M.C.) Likelihood [P.F.(S.M.C.) || Likelihood |P.F.(S. M. C.}
1 . 80 .53 .50 .50 .51 .43 .52 .49 .75 .65
2 .70 .43 .40 . 36 . 37 .34 . 46 .45 .63 .57
3 .00 -.23 -.22 -.19 -.19 -.23 -.23 -. 21 -.05 -.02
4 .00 -.28 -.29 -.25 -.26 -.22 -.28 -. 26 -.04 .01
5 .00 .00 . 00 .00 .00 .00 .00 .00 .00 .00
6 .00 -.18 -.17 -.17 -.16 -.17 -.17 -.15 -.01 .00
7 .00 -.40 -.38 -.33 -.33 -.28 -.32 -.34 -.05 -.04
8 .00 -. 24 -.26 -. 24 -.22 -.23 -.19 -.18 -.05 -.05
9 . 45 .36 . 36 . 40 .40 .42 . 38 .40 .41 .45
10 .00 -.32 -.28 -. 27 -.29 -.25 -.32 -.29 -.07 -.07
11 .00 -.20 -.26 -.23 -.21 -.28 -.15 -.12 -.05 -.06
12 .32 .12 .08 .12 .13 .12 .18 .18 .27 . 30

20 samples 19 samwoles 10 samples

(S}
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TABLE 13 (cont.)

Smallest Estimates of Factor Loadings

Factor 3
N=100 p =12 N=100 p=16 N=1500 pz=12
Population | Maximum | Thomson |Principal Weighted Centroid |Maximum | Weighted Maximum |Weighted
Loadings Likelihood F.(S.M.C.jIP.F.(SM.C.) Like':hood i P. F.{S. M. C.. || Likelihood |P.F.{S.M.C.}
1 .51 .12 .16 .19 .19 .03 .05 .05 .45 .41
2 .00 -.32 -.23 -.21 -, 20 .50 -. 07 -.50 -, 08 -.05
3 .00 -.33 -.40 -. 37 -.36 .44 .25 -.27 -.03 -. N9
4 .84 .48 .47 .49 .50 .42 .54 .01 . 80 .67
5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
6 .00 -.20 -.22 -.22 -, 22 .27 -.14 -.15 -.06 -.06
7 .00 -. 47 -. 37 -.37 -.41 .39 ~.95 -.54 -.04 -.10
8 .00 -.34 -.40 -.41 -.43 .52 .36 -. 37 -.03 -.086
9 .00 .00 .00 .00 .09 .00 .00 .00 .00 .00
10 .39 .19 .18 .19 .20 .19 .21 .22 .34 .37
11 .35 .19 .22 .25 .24 07 .22 .19 .29 .33
12 .00 -.20 -.19 -.20 .29 .18 - 16 -.18 -.03 -.04
20 samples S in s;zm..ples 10 samples

18



TABLE 13 (cont.)

~ Smallest Estimates of Factor Loadings

Factor 4_
N =100 p = 12 N =100 p=16 N=1500 p=12
'Population Maximum | Thomson | Principal Weighted Centroid | Maximum |Weighted Maximum | Weighted
Loadings Likelihood F.(S.M.C.)| P.F.(S.M.C.) Likelihood |P.F.(S.M.C.) }j Likelihood | P. F.(S. M. C))
1 .00 -.29 -.38 -.32 -.22 -.34 -.15 -.08 -.05 .06
2 .60 .27 .15 .05 .13 -.13 .35 .41 .54 .48
3 .48 .11 .14 .14 .11 .19 .22 .21 .45 .39
4 .00 J .00 .00 .00 .00 .00 .00 .00 .00 .00
5 .00 ' .00 .00 .00 .00 .00 .00 .00 .00 .00
6 .00 -.32 -. 37 -.35 -.34 -.40 -.25 -.23 -.04 -.04
7 .64 .49 . 38 .33 .42 . 26 .37 .42 .61 .59
8 . 38 .01 -.10 -.15 -.10 -.17 .16 .15 .34 .34
9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
10 .00 -.19 -.19 -.22 -.21 -.26 -.16 -.17 -.05 -.04
11 .00 -.26 -. 27 -.25 -.26 -.30 -.14 -.15 -.03 -.02
12 .00 L -.68 - 37 -.44 -.39 -.54 -.23 -.24 -.05 -.07
20 samples 10 samples 10 samples

eS8



TABLE 14.

Differences between means of estimated factor loadings

and corresponding population factor loadings

Factor 1_
N=100 p=12 N=100 p=16 N=1500 p=12
Population [Maximum | Thomson| Principal Weighted Centroid §Maximum ’ Weighted Maximum [ Weighted
Loadings Likelihood F(S.MC)|P. F(S MC.} Likel:hood | P. F.(S. M., C.; | Likelihood { P. F.(S.M.C.}

1 .00 .01 .00 -.01 -.01 -.02 .02 .01 .00 -.03
-2 .00 .01 .01 .03 .04 . 04 .03 .04 .00 -.03
3 .76 .00 -.01 -.03 -.04 -.05 -.01 -.04 -.Nn1 -.05
4 .00 . 04 .05 .05 . N5 N5 .06 .06 .00 .01
5 .78 .02 .01 -.01 -.0i 00 -.02 .01 .00 -.03
6 .1 -.02 -.01 -.02 -.0N2 01 .00 .01 .00 =.01
7 .00 . 04 .03 .05 .06 .05 .03 .04 -.01 .03
8 .40 .01 .01 .03 .03 .04 .02 .03 -.01 .02
9 .00 -.01 -.01 -.01 -.01 -.01 .02 .02 .00 -.01
10 .00 .01 .02 .02 .02 .03 .02 .02 -.01 .00
11 .00 .03 .03 . 04 .04 n3 -.01 .00 -, 01 .00
12 .00 -.01 -.01 -.01 -. 01 .01 na ~.03 0N .00
20 samples i wales 10 samples

€6



TABLE 14 (cont.)

Differences between means of estimated factor

loadings and corresponding population factor loadings

Factor 2
N=100 p=12 N =100 p=16 N=1500 p=12
[Population | Maximum |Thomson | Principal Weighted Centroid || Maximum | Weighted Maximum | Weighted
Loadings Likelihood FiS.M.C.}; P.F.(S M.C.; Likelihood {P.F.(S. M.C.! | Likelihood [P.F.(S.M.C.}

1 . 80 -.03 -.06 -.11 -.12 -.16 -.03 -.07 -.01 -.12
2 .70 -.02 -.05 -.08 -.08 -.11 -.03 -.07 .00 -. 07
3 .00 -.02 -.01 .01 .01 .01 .00 .01 .00 . 04
4 .00 .03 .05 .07 . 07 .08 .03 .04 -.01 .06
5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
6 .00 -.03 -.04 -.04 -.03 N2 ~.04 -. N4 .01 .0
7 .00 ~-.01 -.01 .01 .00 N3 -.02 .02 -.01 .00
8 .00 .02 .03 .04 .03 .04 .02 .02 -, 01 -.01
9 .45 .04 .07 .08 .08 .13 .04 .07 .01 .05
10 .00 .04 .04 .05 .04 .04 03 .04 .00 -.01
11 .00 .03 .03 .03 .03 .04 .04 .05 -.01 -.02
12 .32 .01 .02 .03 .04 .06 -.01 .02 .00 .03

20 samples

iD samypres

.10 samples

¥S



TABLE 14 (cont.) Differences between means of estimated factor
loadings and corresponding population factor loadings
Factor 3.
N = 100 p =12 N = 100 p = 16 N = 1500 p = 12
Population |Maximum | Thomson | Principal Weighted Centroid § Maximum | Weighted Maximum | Weighted
Loadings Likelihood FSMCHIP.F.(SM.C,) Likelihood | P. F.(S. M. C.; || Likelihood | P. F.(S. M. C.}
1 .51 -.05 -.05 -.08 -.08 -.08 -.07 -.11 .01 -.04
2 .00 -.04 -.05 -.04 -.03 -. 04 -,03 -.02 .01 .03
3 .00 -.05 -.07 -.08 -.08 -.08 -.01 -.03 .00 -.04
4 .84 -.04 -. 07 -.18 -. 17 -. 21 -.10 -.15 -, 01 -.16
5 .00 .00 .00 .00 .00 . 06 .00 .00 .00 .00
6 .00 -.01 -.02 -.02 -.01 -.01 -.02 -.03 -. 01 -.01
7 .00 -.01 -.03 -.04 -.05 -, 07 -.05 -.07 .00 -.05
8 .00 -.07 -.08 -.09 -.10 -.13 -. 07 -.08 .00 ~-.02
9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
10 .39 -.02 -.01 .01 .02 .06 -. 02 .00 -.01 .02
11 .35 .01 .02 .05 .05 .08 -.04 -.02 .00 .03
12 .00 -.01 -.02 -.02 -.01 .00 5 .02 .02 .01 .01
20 samples 1 19 samples 10  samples .

"G¢




TABLE 14 (cont.)

Differences between means of estimated factor

loadings and corresponding population factor loadings

Factor 4.
N = 100 p = 12 N_= 100 p = 16 N_=_1500 p = 12
Population | Maximum | Thomson |Principal Weighted Ceuntroid ff Maximum | Weighted Maximum | Weighted
Loadings Likelihood FASM.C.} [P.F.{S M.C.} Likeithood | P, F.(S. M. C.} || Likelihood {P F.(S.M.C.}
1 .00 .01 .04 .06 .09 .08 .01 .05 .00 .10
2 . 60 -.01 -.03 -.09 -.09 -.14 -.03 -.06 -.01 -.08
3 .48 -.03 -.04 -.08 -.09 -.10 -.02 -.05 .01 -.08
4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
5 .00 .00 .00 .00 .00 00 .00 .00 .N0 .00
6 .00 -.01 -.02 -.01 -.02 - 05 -.01 -.02 .00 -.02
7. . 64 -.02 -.02 -.05 -.03 -.06 -.03 -.03 .00 -.03
8 . 38 -.05 -.06 -.06 - 05 -.03 -.04 -.02 .01 .00
9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
10 .00 .00 .03 .04 .04 .05 -.0 -.01 .00 .01
11 .00 .00 .02 .02 .03 .00 -. 01 .00 .01 .03
12 .00 -.08 -.06 -.07 -.07 -.07 ~.02 -.01 .00 -.01

20 samples

' 10 samples

10 samples

B S ————

‘99



TABLE 15

Standard Deviations of Estimates of Factor Loadings

Factor 1.
N =100 p =12 N=100 p=16 N=1500 p=12
Vari- |Populatien [[Maximum | Thomson | Principal Weighted Centroid ! Maximum | Weighted Maximum | Weighted
able !loadings Likelihood J F(S. M.CY )P F.{S M.C.} Likelihood | P.F.(S.M.C.j i Likelihood | P. F.(S. M. C.}
1 .00 .11 .11 .11 .11 .11 .14 .13 .03 .03
2 .00 .11 .12 .12 .12 .12 .13 .13 .02 .02
3 .76 .08 .07 .06 .05 .07 .07 .07 .02 .01
4 .00 .11 (11 .11 il L1l .14 .13 .05 .05
5 .78 .08 .07 .04 04 .04 .06 .05 .01 0%
6 .71 .09 .08 .07 .07 . 0& .08 .05 .03 .02
7 .00 .09 .09 .09 .09 0% .07 .07 .03 .03
8 .40 .09 .09 .09 .09 .10 .10 .10 .02 .02
9 .00 .11 .11 .11 211 13 .11 .11 .03 .03
10 .00 .15 .15 .15 i5 ‘14 .16 .16 .04 .04
11 .00 .10 .10 .10 10 211 .09 .09 .03 .03
12 .00 .08 .08 .08 .08 .0¢ .06 .06 .02 .02

20 samples

19 samples

10 samples

LS



TABLE 15 (cont.)

Standard Deviations of Estimates of Factor Loadings

Factor 2.
N = 100 p=12 N =100 p=16 N=1500 p=12
Vari-[Population | Maximum |Thomson |Principal Weighted Centroid || Maximum } Weighted Maximum | Weighted
able [Loadings Likelihood F{S.MC'!IP.F(S.MC.; Likeiihood | P. F.(S. M. C.; | Likelihood | P, F.{(S.M.C.}

1 . 80 .14 .13 .11 .11 1 .15 .14 .03 .02
2 .70 .12 .14 .13 212 .13 211 210 .03 .03
3 .00 .15 .15 .14 .14 13 .15 .15 .03 .03
4 .00 .20 .20 .18 18 .20 .27 .25 .04 .03
5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
6 .00 .08 .09 . 08 .08 .10 .07 .06 .02 .02
7 .00 .20 .21 . 20 J19 .21 16 17 .04 .04
8 .00 .15 .16 .16 15 .17 i2 .12 .03 .03
9 .45 .07 .09 .07 .07 .07 .08 .08 .03 .02
10 .00 .19 .18 .18 .18 .17 19 .18 .04 .04
11 .00 .13 .15 .14 .14 .17 .12 .13 .02 .02
12 .32 .12 .11 .10 .10 .13 .08 .09 .03 .03

20 samples

10 samples

10 samples

‘86



TABLE 15 (cont.)

Standard Deviations of Estimates of Factor Loadings

Factor 3.
N = 100 p =12 N = 100 p =_16 N = 1500 p = 12
Vari-|Population § Maximum |Thomson | Principal Weighted Centroid || Maximum | Weighted Maximum | Weighted
able |l.oadings Likelihood F(G.M.C.j|P. F.(SSM.C.} Likelithood |P.F.(S.M.C.} | Likelihood | P. F.(S. M. C.}
1 .51 .18 .18 .14 .14 .16 .26 .23 .04 .03
2 .00 .13 .13 .13 .12 A7 .23 .21 . 05 .04
3 .00 .11 .13 .12 112 .16 13 .13 .03 .03
4 .84 .14 .13 .08 .07 .08 .10 .07 .02 .0
5 .00 .00 .00 .00 .00 .00 .00 .00 00 .00
6 .00 .11 .12 .11 211 .14 .N9 .08 .03 .03
7 .00 .14 .12 .12 .13 .16 .19 .19 .02 .03
8 .00 .14 .15 .15 .15 J18 .14 .14 .02 .02
9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
10 .39 .10 .10 .10 .10 .11 .12 .12 .02 .03
11 .35 .09 .10 .09 .09 .12 .07 .0n8 .03 .03
12 .00 .12 .12 .12 .12 .16 12 .12 .02 .03

20 samples

10 samples

10 samples

68




TABLE 15 (cont.)

Standard Deviations of-Estimates of Factor Loadings

Factor 4.
N _= 100 p = 12 N =100 p = 16 N = 1500 p = 12
Vari-Population ||Maximum | Thomson | Principal Weighted Centroid | Maximum |Weighted Maximum | Weighted
able |Loadings Likelihood F(SMC.:!P.F.(S. M.C.i Likelihood |[P.F.(S.M.C.; | Lakelibood | P.F (S. M. C.}
1 .00 .20 .23 .19 .17 .21 .15 .12 .03 .03
2 .60 .16 .18 .17 .15 .19 L11 .10 .04 .03
3 .48 .12 .11 .10 .10 211 .12 J11 .03 .01
4 .90 06 .00 .00 .06 .00 .00 .00 .06 .00
5 .00 00 .00 .00 00 .00 .00 .00 .00 .00
6 .00 15 15 .14 13 .18 12 .12 .03 .02
7 . 64 .08 .10 .08 .07 11 S10 .08 .02 .02
8 .38 14 .14 .15 14 .13 .12 .12 .03 .02
9 .00 00 .00 .00 00 . 00 .00 .00 .00 .00
10 .00 12 .14 .15 14 i7 .09 .09 .04 .04
11 .00 .12 .12 .12 .12 i5 .11 .11 .03 .03
12 .00 .21 .20 .20 20 . 26 .16 .17 .03 .04

20 samples

10 samples

10 samples

09




TABLE 16

Convergence of Communality Estimates to Values greater

than or equal to 1

N = 100

Sample Number 1 215 6 9 |10 112 (13| 17] 19 |20
p =12 Maximum Likelihood | 1 1 1 1 2 211 2| 41124 3
Thomson's Solution 1 1 1 2 2 4 3

p = 16 Maximum Likelihood 1

The number of the variable with communality estimate of 1 is
given in each cell of the table,
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loadings under the identification conditions used.

Differences in distributions of estimates obtained by different
methods are small. The most noticeable differences are in the means
of the estimates. The principal factor, weighted principal factor, and
centroid methods yielded approximations to the factor loadings when
appiied to the population correlation matrix. As a result, the means
of sample factor ioadings obtained by these approximate methods differ
appreciably from the population factpr 'oadings. On the other rarnd,
the maximum !:keizhood method and Thomson's method which gave
exact results for the population correlation matrix, yielded sample
factor loadings with mears which were close to the population factor
loadings.

The differences between standard deviations of estimates
obtained by different methods are siight. For the samples of size 100,
the differences in means between the maximum likelihood estimates and

the approximate estimates are unimportant when compared with the

variances of the estimates. However, for the samples of size 1500, when

the variances are very much smaller, the differences in means of the
maximum likelihood estimates and the approximate weighted principal
factor estimates are relatively large compared to the variances.

Communality estimates

In seven of the 20 samples in Set 1 (N =100, p =12), Thomson's
method tended towards a solution with a communality greater than one
(Heywood case}. Whenever this occurred, the factor matrix obtained
on the iteration preceding the occurrence of the Heywood case was

taken /. ...



63.

taken as the fina! solution. In each of these seven samples as well as in
four additional samplies the maximiim determinant procedure tended
towards a solution with a communality of unity (See Table 16).
Communality estimates of unity occiirred in some of the samples

which yielded the most accurate estimates of the factor matrix.
Although, in the majority of cases the communality estimate of

unity occirred for the first variabie which had the highest popuiation
communality of . 9001, communality estimates of unity were also
obtained for variables 2, 3, 4 and 12 which had popuiation
communalities of . 8500, .8080, .7056, and .1024 respectively.,

In the 10 sampies where the maximm !ikelihood estimates of
communalities were obtained using both 12 and 16 variables,
communality estimates of unity occurred in six cases when 12 variables
were used. When 15 variables were used, only one sampie produced
a communality estimate of unity. This sampie had yielded a
communality estimate of unity for a different variable when the
correlation matrix of order 12 was factored. No communality estimate
of unity occurred for the samples of size 1500.

Maximum !ikelihood commzunality estimates of unity and
Thomson communality estimates greater than unity can therefore
easily occur even when the population factor structure is reasonably
well determined (4 non zero loadings on each factor, 12 variables,

3 factors), the number of cases is fairly large (100; and all
population communalities are well under one. Although a
population communality greater than or equal to unity is not possible,

the /....
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the occurrence of a Heywood case in a sample does not necessarily imply
that the factor analysis model does mnot fit the population from which the
sample is drawn, but may be due to sampling fluctuation in the estimate.
The probability of the occurrence of a communality estimate of unity
is reduced when the number of variables is increased while holding
constant the number of factors or when sample size is increased.

The maximum likelihood soiutior for sampie 1% ir: Set 1 was
very poor. 1jsing the weighted prircipa! factor matrix as initiai
approximation, the maxim:m determ:narnt computing procedure yielded
a communaiity estimate of 1 {10 3 decima. places) for the twelfth
variable which has a populaticn communality of .1024. In addition both
measures of accuracy of the factor matrix indicated a very poor result.
Convergence was slow and a more accurate result would have been
obtained in this particular case if a larger tolerance limit had been used,
since the initial approximation was a more accurate estimate than the
final solution. The analysis was repeated using the population factor
matrix as initial approximation and more accurate estimates of
communality were obtained, an estimate of one occurring for the first
variable (See Table 17). However, it was found that the solution
obtained using the weighted principal factor matrix as initial
approximation provided a partial correlation matrix with a larger
determinant than the solution obtained when the population factor matrix
was used as initial approximation. The first solution was therefore taken

to be the maximum likelihood solution (in spite of its inaccuracy).

Table /. ...



TABLE

17 Converged communalities for sample 19 using two different

initial approximations for the factor matrix. Maximum
determinant computing procedure (Tolerance limit = . 0001)

N = 100 p =12
Initial Variable Log determinant of
Approximation 1 2 3 4 5 6 7 8 9 10 11 12 Partial Corr. Matrix
Weighted
P.F.(S.M.C.} .95 | .90 | .77 .42 | .60 .59 | .46 .43 | .17 .09 .12 {1.00 -. 2479
Pop. Factor
Matrix 1.00 | .85 17 .40 1 .60 | .59 | .51 .44 L .27 } .08 .14 ¢ .37 -. 2529
Population
Commaunalities .90 85 .81 L7t .61 .50 .41 .30 . 20 .15 212 .10

‘G9
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It thus appears that for some samples the determinant of the partial
correlation matrix can have two or more relative maxima.

In accordance with the theoretical results (10, 14}, the
population S. M. C.s were smaller than the population communalities,
and differences between population S. M. C.s and population communalities
were larger when 12 variables were used than when 16 variables were
used. Although population S. M. C.'s are lower bounds for population
communalities (14}. this does not necessarily apply to sample S. M.C.s
and communaiities, particularly when sample size is small.
Corresponding to most samples of size 100, there were several sample
S. M. C. s which were larger than the corresponding maximum likelihood
and Thomson communalities. This occurred iess frequently with samples
of size 1500. Maximum }ikelihood estimates of S. M. C. 's have a positive
bias which increases as the magnitude of the population S. M. C. decreases.
Differences between means of estimates of the S. M. C. s and the expected
values of these estimates (23 p. 341) were calculated and found to be small
(see Table 18). The maximum likelihood estimates of communalities,
which are squared multiple correlations between observed variables and the
factor variables, showed a similar tendency towards positive bias (see Table 19).
Bias in estimates of the smaller communalities was less than the bias in
estimates of the corresponding S. M.C.s. Therefore, for samples of
size 100, the means of estimates of the smaller communalities were less than
the means of the corresponding S. M., C. estimates. (Table 18)

Differences between means of estimates and population communalities,
largest observed values, smallest observed values and standard deviations
of communality estimates are shown in Table 19.

Table /. ...



TABLE 18.

Means of estimates of communality and S. M. C.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Population Communalities .900( .850] .808] .706f .608| .504; .410{ .304| .203| .152{ .123| .102| .49 .49 1 .49 | .49
Population S.M.C.s (p = 12) .618| .607{ .599f .378] .466{ .399} .282| .252} .172] .117| .095] .087
Mean Communality
Thomson (N=100, p=12) .868| .837{ .818) .664| .627; .540| .459| .355] .288] .229| .195]| .186
Mean Communality Max. L.
(N=100, p=12j .901| .872f .826] .709] .647| .518| .448{ .350} .259| .214| .18n| .191
Mean Communality M. L.
(N=100, p=12) excl. Sample 19 .8991 .871} .8291 .724| .350) .514 | .448| .346( .264} .220| .183] .149
Mean S. M. C. (N=100, p=12) .6611 .653]| .658| .428] .531] .462! 371 b3 L2711 2237 .207 | .187
Mean S, M. C. - Expected value +.005}+.007{+.018]-.015{+.0i0| .000{+. D12+ 0131+ 01D {+. Di5(+.014 | .0NOD
Mean Comm. M. L. (N=1500, p=12) | .899; .845| .809| .693] .85¢| 504} .410; .296| .2:4] .1467 .124| .104
Mean S. M. C. {N=1500, p=12} .6187 .605| .598] .376% .467{ .400| .3011 257 .182| .iis| .098 .092
Mean S. M. C. -Expected Value -.002}-.005|-.004}-.006|-.002{-.004| .013}|-.010 |~. 005 !-.008]-.003 |-.002
Population S. M.C.s (p=16} .694 | .671] .642| .493| .496] .420} .315) .268 | .173¢ 125} .100 | .090} .409 | .424| .387} .371
Mean Comm. M. L. (N=100, p=16) .905; .854) .826) .636] .546 ] .539 | .445% .352 | 262 .214| .135| .144| .470 | .584| .464| .500
Mean S. M. C. (N=1500, p=16) L7401 722 .708| .509; .577 | .512} .407| .399) .309 ) .242} .232 | .219| .461 | .554| .449| .459
Mean S. M. C. - Expected Value .003| .006| .015|-.056}-.009f .008 |-.00S| .024 ! ,009iw0013 -.003 -.008{-.033 | .047]-.027|-.004
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TABLE 19.

Difference between mean of estimate and population parameter,

range, and standard deviation, for estimates of communalities

1 2 3 4 5 6 7 8 o 1o |11 [12 J13 |14 |15 |16
Population Communalities 1900] .850]| .808] .706 | .608| .504| .410] .304| .203] .152] .123] .102| .490| .490] 490! .490
N 100 |Mean - Pop. Comm. | .001| .022| .018| .003|.039| .014[ .039] .046{ .057| .061| .058| 089
p=12 Highest Value 1.000{1.000{1.000]1.000 | 996| .685] .671| .550] 411| .360] .343[1.000
20 samples|Lowest Value .734 6371 .645] .307 1 .466} .339| .239 150 i35 054| .051] .057
E Standard Deviation .094] 090} .081] .187 ! .136] .096] .114] .098! .078] _078| .078] .196
*Ej Mear - Pop. Comm. | .005 .004| .018|-.069 037! .035} .035| .048] .059{ 052| .012{ .042f .020{ N94|- 025| 010
AN =100y e hest Vaie 1.000| 913} ses| .77a| 762) ss2l 5oz siol .3s2| sss| 235] 2200 .s8s| il s73| 633
£1° 16 Lowest Value fnsoa 740| .672| 499! as86! 410l 327] .227] 144! o083 n72] 088} 365 419| 359! 351
g 10 samples|o g rd Deviation 060 .056{ .067] 101 099, 090 087| 094] 084l o0sal o0aa| o0ar ~
S N - 1500 |Mean - Pop. Comm  |-.001/-.005| .001|-.013 001} .00%| .000{- A08| 011} 003} 002] 002
oo 12 Highest Value .939| .931| .841| .73% ¢ 53%] 552 .451] .340] .za3| 1ss| 181{ 135
10 samplog| LOWESt Vaiue .845| .797{ .775| 647! .578] 4541 .374| .279} .1e3] _u21| 0s8] .075
Standard Deviation ,033] .046] .022] 030! 018} .037] 027 niei 0231 .0i3| .nz2| .021
LIN=100 |Mean - Pop. Comm. |..032-.013| .010]-.042 | .019! 035 .050| .050| 085 .077] .072| 083
g =12 Highest Value .999| .993| .993| 999 .821| 6771 .776] .562] .a74| 387 .518| .345
é 10 samples| LOWest Value .599| .631| .648| .319 1 .407( .387| .193] .182) .147! o070| .066] .061
Standard Deviation .117] .090| .086| .174 | .103| .096| .127| .098} .095| .080| .096| .078

L9
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68.

Computing times

Examination of Table 20 wlll reveal the relative computing times
taken by different methods of factor analysis on the I.B.NM. 7094 computer.
Average times for the maximum determinant method and Thomson's method
for Set 1, were calculated over the nine samples where neither method was
terminated prematurely due to convergence of communrality estimates to
values greater than or ejuai to one. Computing times tor frege rwe
methods do not inciude time reguired tor oblairing the initiad
approximations.

Although the maximum determinant method required more iterations
than Thomson's method before convergenee within the specified !imit of
. 0001 was attained, each iteration was very much faster so that the overall
computing time was shorter.

Increasing the number of variables from 12 to 16 resulted in a
marked decrease in the average number of iterations required for the
maximum determinant procedure to converge within the limit of . 0001.
Although time per iteration was increased, overall computing time was
reduced. Increasing sample size from 100 to 1500 while retaining 12
variables resulted in a smaller, but still substantial, reduction in
average number of iterations and average computing time.

Procedures for estimating number of factors

Examination of Table 21 will enable a comparison to be made of the
results obtained with the various procedures for estimating number of
factors.

In order to examine the efficacy of a sequence of likelihood ratio

tests /....



TABLE_ 20. Average compufing times
Average Average
Time Number of
(Minutes) Iterations**
Maximum determinant* .83 82
N =100 Thomsor .94 55
p =12 | Principal factor {S.M.C. .04
20 sampies Weighted principal factor {S.M.C.) .04
Centro:d < .01
14
N =190 : e
Maximum %.:ke thond .21 22
p-= i5 .
We:ighted P. F. {S.M.C." .11
10 samples
N =15 .
N=1500 Maximum ikeizhcod .26 41
p = 12
We:ghted P.F. S.M.C.: .04

10 samples

Average times for the maximum determinant method and Thomson's

method for samples of size 100 were calculated over the nine

samples for which neither method converged to communalities

greater than or equal to 1.

ook

"Iteration' refers to the set of computational steps required to

obtain new estimates of all the elements of the factor matrix.




TABLE 21.

Frequency distributions for number of factors estimated

Correct number of factors = 4

—_
No. of Sequence of Sequence of Sequence of No. of roots No. of roots of Saunders'
factors likelihood ratio | likelihood ratio | Joreskog tests | of Correlation | Correlation matrix | procedure
estim ated | tests. tests. matrix » 1 with S. M. C.s in

5% Sig. level 1% Sig. level 5% Sig. level diagonal > 0

Set 1 3 5 11 1

N =100 4 15 9 11 16

p=12 5 4 4 8

20 samples 6 3 6 12

> 7 1 14

Set 2 3 1 1

N =100 4 9 9 10 4

p =16 5 6

10 samples

Set 3_ 4 10 10 10

N =1500 27 10

p=12

10 samples

o
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tests for estimating number of factors, the likelihood ratio test
statistic was calculated for three and for four factors for each of the
samples in Sets 1 and 2. From au examination of approximations

to the likelihood ratio statistic for two factors obtained from the
weighted principal factor solution. it was obvious that the likelihood
ratio statistic for two factors would be very highly significant in

every sample. Similar.y, exam:nation of approximations revealed that
all likelihood ratio test statistics for three factors obtained from samples
of size 1500 would be very highiy significant. For these samples the
tests for four factors only were computed. No likelihood ratio test
stati;}tic for four factors was sigr.ificant at the 5% level for any of the
samples used.

The tendency of the sequence of likelihood ratio tests to give an
underestimate of the number of factors was apparent in the samples of
size 100 when 12 variables were used. There was a marked drop in
this tendency when 16 variables were used. The five samples in Set 1
for which the likelihood ratio test statistic was not significant at the
5% level were all included in the 10 samples which were re-analysed
with the four additional variables. Using 16 variables, the likelihood
ratio statistic for three factors from only one of these samples was non-significant.
The means of the likelihood ratio statistic for three factors, degrees of freedom,
5% significance levels, and the values of the logs of the determinants of the
population partial correlation matrices when three factors were extracted
from 12 and from 16 variables are given in Table 22. Increasing number

of variables from 12 to 16, thereby increasing degrees of freedom for the

chi square /....
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TABLE 22.

Likelihood Ratio Statistic for 3 factors

12 16

Variables | Variables
Mean of likelihood ratio statistic for
3 factors (N =100} 55.8 126.5
Degrees of freedom for
distribution (null hypothesisj 33 75
5% significance level 47.4 96.2
Log of determinant of population partial
correlation matrix(3 factors obtained
by maximum determinant method) -.263 -.782
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chi square distribution, resulted in a marked increase in the distance
between the distribution of the likelihood ratio statistic under the
alternate hypothesis and the chi square distribution of the statistic
under the null hypothesis.

The power of the test for number of factors was also increased when
sample size was increased. The sequence of likelihood ratio tests would
have given a correct estimate of nu.mbér of factors for every sample of
size 1500.

Frequency distributions. means, and variances of the likelihood
ratio statistics for four factors are given in Table 23. Differences between
the observed frequency distributions of the likelihood ratio test statistic
for four factors and the corresponding chi square frequency distributions
were small for all three sets of observations. However, for all three sets
of observations, the variance of the values of the likelihood ratio test statistic
was smaller than the theoretical variance of the corresponding chi square
distribution. This discrepancy was more marked for the samples of size
100 than for the samples of size 1500 and was largest when 16 variables were
used. Because of the small numbers of observations a firm conclusion
cannot be reached.

The probabilities of the test statistics for four factors are given
in the last columns of Tables 6 and 7 for Sets 1 and 3.

Artificial experiments on the likelihood ratio test statistic for
number of factors have been carried out by Henrysson (17) using 12
samples of size 200 from a population with 9 variables and 1 factor, and
Lawley and Swanson (27), using 8 samples of size 50 from a population

with /. ...
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with 7 variables and 2 factors. Henrysson used Lawley's (24) approximation
to the statistic while Law'ey and Swanson used the exact form of the
statistic. The variance of the values of the test statistic obtained in
Henrysson's experiment was smalier than the theoretical variance qf the
corresponding chi square distribution. Opxn the other hand, in Lawley and
Swanson's experiment the variance of the valies of the statistic was
larger than the theoretfcal variance of the corresponding chi square
distribution.

The likelihood rativ sigrificance test is applicabie only to
maximum likelihood estimates of factor loadings. Repiacement of the
maximum likelithood factor matrix by any other factor matrix wiil inflate
the magnitude of the test statistic. This is 1llustrated in Table 24 where
the values of the test statistic for max:mum iikelihood, Thomson and
Centroid estimates is shown. When Thomsor or Centroid estimates were
used, in several samples from Set 1. the determinant of the partial
correlation matrix was negative so that the test statistic did not exist.

Column 3 of Table 24 shows the values of Lawley's approximation
to the likelihood ratio statistic for four factors for samples from Set 1.
This approximation was very close to the true value of the likelihood ratio
statistic as the correct number of factors was taken and the elements of the
partial correlation matrix were smali. The approximation would be poorer
if the number of factors was underestimated and the elements of the partial
correlation matrix were large.

The decision procedure based on a sequence of Joreskog tests gave
poor results when 12 variables were used, particularly for samples of

size /.. ..



TABLE 23. Distribution. of likelihood ratio test statistic for 4 factors

2 . .
Probability (Asympotic x = distribution} No. of Mean of [Mean of x2 Variance Variance of
Samples | Statistic |distribution |of Statistic § X 2 distribution
0< .2 [.2<.4[.4=.6] .62 .81.8«1.0
N =100 |[Observed Frequency 4 7 3 20 24.69 24 30. 84 48
p=12
m = 4 Expected Frequency 5 5 5
N = 1500}Observed Frequency 3 3 0 10 2..97 24 45 12 48
p=12
m =4 Expected Frequency 2 2 2
N =100 |Observed Frequency 3 3 1 16 31645 62 41 84 124
p =16
m =4 Expected Frequency 2 2 2

"SL
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TABLE 24. Likelihood ratio statistic for four factors
N = 100 p = 12
Max. Likelihood Thomson Centroid
Sample No. L. Ratio Lawley L. Ratio L. Ratio
Statistic Approx. Statistic Statistic
1 15,81 15.77 * *
2 24. 39 22,36 54.20 99. 04
3 18.87 18.57 36.20 126. 96
4 i9.95 - 18.41 28. 01 81.74
5 23.21 | 22.90 258. 45 91.26
6 i9.13 18.50 = 38. 65
7 16.86 16. 38 26.76 70.23
8 27.30 25.19 # 104.25
9 27.70 28.17 ¥ 84,82
10 26.73 26.64 37.54 68. 67
11 17.65 18. 23 25.67 64. 80
12 26. 37 23.12 64.01 96. 38
13 25.00 23.44 144.26 63.40
14 35.66 34. 25 560.21 142.75
15 33.90 30. 23 62. 85 89.97
16 28.53 29.46 49.55 *
17 26.08 28.76 * 92.10
18 32.24 31.11 46.38 *
19 22.69 21.38 31.75 *
20 25. 66 23.67 * 152. 04

* Partial correlation matrix not positive semi-definite.
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size 1500. Differences between observed means and variances and the
means and variances of the correspondisg chi square distributions were
large (see Table 25). Results for 16 variables and samples of size 100
were good. The Joreskog test is based on an assumption which holds
approximately for the popalation correlation matrix used in this study,

the closeness of the approximsation being improved as aumber of varialbes
is increased from 12 to 16 whiie the rember of factors is heid consi,an‘t (20).
The effect of the approximateA fit of the model on the distribution of the
test statistic becomes larger as sampie size is increased. Although good
results were obtained for 16 variables and sample size of 100, poorer
results would have been obtained had sample size been increased while
retaining 16 variables.

For the particuiar popuiation matrix chosen for this study, the
number of latent roots greater than or equa: tc unity was egua! to the
number of factors both when 12 variables and when 16 variables were used.
The application of this criterion for the number of factors to sample
correlation matrices tended to yield an overestimate for samples of size
100. This tendency was far more marked when 16 variables were used,
than when 12 variables were used. The correct number of factors was
given for every sample of size 1500.

Latent roots for sample correlation matrices in Set 1 are shown in
Table 26. Population latent roots and the differences between means of
sample latent roots and the population roots are given in Table 27. There
was a tendency for the larger sample latent roots to overestimate and the
smaller sample latent roots to underestimate the corresponding population

latent /. ...
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TABLE 25. Mean and Variance of Joreskog statistic
Mean of | Mean of Variance § Variance
Statistic | 2 of of x2
Distribution | Statistic Distribution

N = 100

p = 12 48.03 35 61. 88 70

m = 4

N = 1500

p = 12 339. 69 35 285. 28 70

m = 4

N = 100

p = 16 83. 39 77 65. 81 154

m = 4




TABLE 26. Latent roots of sample correlation matrices_ (1 in Diagonal)
N =100 p = 12
Root
SampleN_No} 1 2 3 4 5 6 7 8 9 10 11 12
No.
1 2.60312.279] 1.411§ 1.111 |1.025 . 8565 . 685 . 622 .524 . 378 .303 .203
2 2.749 [1.98411.679| 1.283 . 898 . 806 . 704 . 669 .411 . 398 . 285 .134
3 2.804 | 2.060f 1.803} 1.250 . 923 753 . 619 . 517 .420 . 382 . 315 .154
4 2.668 |1.954|1.713} 1.420 | .918 | .831 | .667 | .548 | .439 | .417 | .254 | .172
5 2.959 {2.480}1.296f 1.037 { .958 | .823 | .610 | .539f .500 { .405 | .270 | .125
6 2.651 12,128 1.469] 1.174 . 980 . 861 .753 . 612 . 500 .414 . 294 .164
7 3.162 [ 2.225711.609} 1.199 . 875 . 702 .622 .504 .421 . 275 . 231 175
8 2.748 12.22711.44043 1.172 {1.024 . 826 .746 . 619 . 418 .405 . 230 .153
9 12.755 12.005]1.602§1.218 §{1.069 753 .724 . 669 . 415 . 318 . 268 .174
10 2.623 |1.90311.725] 1.327 . 925 .812 710 535 . 487 . 363 . 294 .198
11 2.928 11.938]1.414{ 1.202 . 941 857 . 722 . 631 . 526 . 429 . 288 .133
12 2.790 12.45511.741 1} 1.149 . 883 .764 . 621 4%8 416 . 280 . 273 .150
13 2.644 12.03311.791 | 1.337 - 797 . 784 .722 . 627 411 . 387 .272 195
14 2.827 12.556 11.49811.193 97T 736 576 . 498 . 395 .352 . 273 .119
15 2.983 12.40511.375]11.034 . 964 824 . 640 .586 470 . 341 . 214 .163
16 2.759 [1.856 }1.458 | 1.387 {1.939 . 806 . 741 . 629 .482 . 422 .234 .145
17 3.148 [2.023 }]1.51211.227 . 906 761 H64 636 .419 . 362 .188 .154
18 2.701 [2.129[1.651 ] 1.210 . 971 .795 .670 . 549 .438 .415 . 261 . 209
19 2.838 [2.208 [1.724]1.113 .863 .791 .682 .538 .466 .37 . 242 .158
20 2.703 [ 2.09711.70311.453 | .911 | .671 |.634 | .568 | .556 | .399 | .203 | .101
Mean 2.802 12.147 11.581 §1.225 .942 .795 .676 . 9583 .456 . 3875 . 260 2159 |
}?opulaﬁon 2.569 2.107 1.542 11.195 . 867 . 864 . 687 . 653 . 554 . 450 . 324 187

‘6L



TABLE 27. Differences between means of latent roots of sample correlation
matrices and corresponding latent roots of the population
correlation matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Population Latent

Roots p =12 2.569(2.107|1.542]1.195| . 867 .864( .687| .653| .5547 .450] .324| .187

Mean - Population

Roots N =100 .233) .040] .039] .030; .075|-.0691{-.011(~.070 }-,098}-.0751- 064 |-.028

Mean - Population

Roots N =1500 -.012[-.006]-.025] .023§ .037[-.018;-.003| .000{-.0031-.001; .001| .001

Population Latent ;

Roots p =16 3.083(2.631[2.02811.640; .374 8052 L7647 7147 6931 55317 .503| .435] .419] .359| .284| .173

: !

Mean - Population i i ;

Roots N =100 .410| .021]-.004|-.107{ .1461 .037; 0L7:~ 092;- 058'- 032}~ 062{-.056}-.095]|-.095}-.081|-.036
i i i
i

6L
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latent roots.

The number of fatent roots greater thar. or equal to zero of the
population correlation matrix with diagonal elements replaced by S. M.C. s
was equal to the number of factors. This criterion for number of factors
greatly overestimated the number of factors when applied to sample
correlation matrices from Set 1.  Whereas, oniy the first four popuiation
latent roots were greater thar zero, the means of the first seven sample
latent roots were greater than zero. {Se« Table 28

Saunders’ procedure for estimating number of factors was not
followed in that, at each iteratior. of Thomsor:'s method, the number of
positive latent roots greater in magnitude than the absolute value of
the smallest negative 'atent root was not taken as the number of factors for
the foliowing iteration. Howewer, the rumber of positive latent roots
greater in magnitude than the absoiute vaite of the smallest negative
latent root after Thomson‘s method has converged for four factors, will
give an indication of the results of Saunders’' procedure. This criterion
gave an overestimate of the number of factors for every sample in Set 1,
and the mean of the fifth sample latent root was greater than the
absolute value of the mean of the smalliest sample latent root. (See Table 28)
Conclusions_

The results of this study demonstrate the superiority of maximum
likelihood estimates of factor loadings over the other estimates considered.

Although considerable computation is involved in the maximum determinant

computing procedure, more computation is required for Thomson's method

which /.. ..



TABLE 28. Means of latent roots of sample correlation matrices with
diagonal elements replaced by S. M. C.s and by Thomson
estimates of communalities

p = 12 N = 100 20 samples
1 2 3 4 15) 5 7 8 9 10 11 12
. i

S.M.C.s in Population 2.04 | 1.57 .87 451 -.02 ;.93 |~-.061-.08 |-.12}-.13}|-.17 | -.25
Dia al ]

ragonal Mean 2.3311. 55, .e8{ 58! .22! 10| 91! 06 1-13|- 18 . 221 .27
Thomson Population 2.20 }1.78 1 1 07 LO1 .00 06 .00 06 D0 . 0N .00 .06
Communalities !
in Diagonal Mean 2.4511.79 !L 1.14 .54 u 224 13 .07 .02 §1-.03}1-.081-.131-.21

18
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which generaily provides slightly iess accurate estimates. There is little
justification for use of Thomson's method in preference to the maximum
determinant method.

The estimates of factor loading obtained using S. M. C.s as
approximations for communalities in conjunction with the principal factor
method or weighted principal factor method are slightly inferior to
maximum likelihood estimates. but far .ess computation is involved.

If sample size is small, differences in accuracy between the maximum
likelihood estimates and the approximations are small compared to the
effect of sampling fluctuation on the estimates. These differences bhecome
larger in relation to the sampling fluctuation as sample size is increased.
When sample size is smal! the gain in accuracy obtained by using the
maximum determinant method instead of an approximate method does not
warrant the additional computing t:me.

A maximum likelihood communality estimate of unity, or a Thomson
communality estimate greater than vnity can occur due to random fluctuation
in the estimates. Therefore the occurrence of a sample communality greater
than or equal to unity does not necessarily imply that the factor analysis
model with the specified number of factors does not fit the population from
which the sample is drawn.

It was found that increasing the ratio of number of variables to number
of factors, or, equivalently the degree of overdetermination of the
population factor structure as determined by the Lederman inequality (28),

and increasing sample size, both have the following effects:-

a) /..
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a) Accuracy of estimates of factor loadings is increased, the increase
being greater for maximum i1kelthood estimates than for the estimates
obtained by approximate methods.

b) The probability of the occurrence of a maximum likelihood
communality estimate of vnity is reduced.

c) The number of iterations required for convergence of the maximum
determinant computing procedure 1s reduced.

No method for estimating the number of factors proved completely
satisfactory, but the decision procedure based on a sequence of likelihood
ratio tests and the criterior of number of latent roots greater than unity
of the sample correlation matrix gave resu'ts which were preferabie to
the results of the other methods cons:dered. The sequence of likelihood
ratio tests has a tendency to underestimate the number of factors. This
tendency is reduced as sample size is increased and as the degree of
overdetermination of the population factor matrix is increased. The
number of latent roots greater t}_lan or equal to unity of the sample correlation
matrix tends to give an overestimate of a lower bound to the number of
factors. As sample size is increased the probability that this criterion
will give an overestimate of the lower bound to the number of factors is
reduced. A disadvantage of the criterion is that the probability of an

overestimate being obtained appears to increase as the degree of over-

determination of the population factor matrix is increased.



10.

11.

12.

13.

14.

15.

REFERENCES

Appel, Kiaus, “Solution of eigenvalue probiems with approximately
known eigenvectors, " Communications A.C. M., 5, 381, (1962).

Anderson, T. W, , An introdiction to muitivariate statistical analysis,
John Wiley and Sons, Inc., New York. {1958}.

Anderson, T.W., and Rubin, H., 'Statistical inference in factor analysis, "
Proc. Third Berkely Symposium, 5 1i1-150, (1956}.

Bargmann, Roif E., A study of independence and deperidence in multivariate
normal analysis, U/niv. North Carolina. Inst. Statist., Mimeograph Series
No. 186, (1957..

Bargmann, Rolf E., Representative ordering and selection of variables,
Virginia Polytechnic Inst., Biacksburg Va.., (1962;.

Bechtoldt, Harold P.. "An empirica! study of the factor analysis stability
hypothesis, " Psychometrika, 26, 405-432. (1961;.

Bartlett, M.S., ''Tests of significance in factor anaiysis,' Brit. Jour.
Psych. (Stat. Sec., 3, 77-85, (1950;.

Bartlett, M.S. ""A note on the muitipiying factors for various
approximations, " J. Roy. Stat. Soc.. B, 16, 296-298, (1954).

Box, G.E.P., and Muller, M. E. ., "A note on the gengration of random
normal deviates,' Annals Math. Stat., 29, 610-611, (1958j).

Dwyer, Paul S., "The contribution of an orthogonal multiple factor
solution to multiple correlation, " Psychometrika, 4, 163-171, (1939).

Dwyer, Paul S., "The sguare root method and its use in correlation
and regression," J. A.S.A., 40, 493-503, {1945).

Greenstadt, John, '"'The determination of the characteristic roots of a matrix
by the Jacobi method, ' Chapt. 7, Mathematical methods for digital computers,
ed. Anthony Ralston, and Herbert, S. Wilf. , Wiley, New York, (1960).

Guttman, Louis; '"Some necessary conditions for common factor analysis, "
Psychometrika, 19, 149-161, {1954).

Guttman, Louis, ''Best possibie systematic estimates of communalities, "
Psychometrika, 21, 273-285, (1956).

Harman, Harry H., Modern factor analysis. Univ. Chicago Press, (1960).




16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Harris, Chester W., ‘'Some Rao-Guttman relationships,' Psychometrika,
27, 247-263, {1962).

Henrysson, Sten, ''The significance of factor Loadings - Lawley's test
examined by artificial samples.' Brit. Jour Psych. {Stat. Sec.},
3, 159-165, {(1950;.

Hotelling. Harold, "Analysis of a compliex of statistical variables into
principal components, " Jour. Ed. Psych., 24, 417-441, 498-520, (1933).

Howe, W. G. Some contributions to factor analvsis. Report No. ORNL-1919,
Oak Ridge National Laboratory, Oak Ridge, Tenn., (1955).

Joreskog, K.G., "On the statigtical treatment of residuais in factor
analysis, "' Psychometrika, 27 355-354. (1962). '

Kaiser, Henry F., "The Appiicatior of =lectronic computers to factor
analysis," Ed. Psych. Meas..  20. i4i-i5i (1980;.

Kaiser, Henry F., and Dickmarn, Kerr. ‘“'Samp.e and popilation score matrices
and sample correiation matrices from an arbitrary population correlation
matrix, ' Psychomeirika, 27, 17¢-182. (1962..

Kendali, Maurice .. ard Str.ast. A.an, The Advanced Theory of
statistics. Volume 2. Chsrles CGritfin and Co., London, {1961}.

Lawley, D.N,, "The estimation of factor 1oadings by the method of
maximum likeiihood." Proc. Roy. Soc. Edin., A, 60, 54-82, (1940).

Lawley, D.N., "The appiication of the maximum iikelihood method to
factor analysis,'" Brit. Jour. Psych. 33, 172-175, {1943}.

Lawley, D.N., "A modified method of estimation in factor analysis and
some large sample results,'" Uppsala symposiim on psychological factor
analysis, Nordisk Psykologi's Mon. Ser. No. 3, Uppsala, p. 35, (1953).

Lawley, D.N., and Swanson, Z. , '"Tests of significance in a factor analysis
of artificial data," Brit. Jour. Stat. Psych., 7, 75-79, (1954).

Lederman, Walter, 'On the rank of the reduced correlational matrix in
multiple factor analysis, " Psychometrika 2, 85-93, (1937).

Lord, Frederick M., A study of speed factors ir tests and academic
grades,'" Psychometrika, 21, 31-50, (1956}.

Maxwell, A.E., A comparative study of some factor analytic techniques.
Unpublished doctoral dissertation, Univ. Edinburgh, {1957).

P

McNemar, Quinn, 'On the sampling error of factor loadings, "
Psychometrika, 6, 141-152, (1941},



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Mosier, Charles 1., '"Influence of chance error on simple structure, "
Psychometrika, 4, 33-44, (i939;.

Mosier, Charles I., 'Determining a simple structure when loadings for
certain tests are knowr:, "' Psychometrika,K 4, 149-162, (1939).

Muller, Mervin E., '"A comparisen of methods for generating normal
deviates on digital computers,' Jour. A.C.M., 6, 376-383, (1959).

Olkin, I., and Roy, S.N., "On multivariate distribution theory, "
Ann. Math, Stat., 25, 329-339. {i954;.

Rao, C.R., "Estimation and tests of significance in factor analysis,"
Psychometrika, 20, 93-111, {1955 .

Roy, S.N., Some aspects of mu rivariate apalysis, Wiley. New York, (1957).

Saunders, D.R.., '"Further imp!ications of Mundy-Castie's correlations
between EEG and Wechsier-Beilevie variables.'" Jour. Nat. Inst.
Pers. Research, 8, 91-101, (1960;.

Sokal, Robert R., "A comparison of five tests for completeness of factor
extraction', Transactions Kansas Acad. Science, 62, 141-152, (1959:.

Taussky, Olga, and Todd, John. ''Generation and testing of pseudo random
numbers,'" Symposium on Monte Carlo Methods., ed. Herbert Meyer,
Wiley, New York, (1956;.

Teichroew, "Computation of an empirical sampling distribution
for the W classification statistic,' Studies in item analysis and
prediction, Chapt. 156, ed. Herbert Solomon, Stanford Univ. Press. (1961).

Thurstone, L.L., Multiple factor analysis, I'niv. Chicago Press, Chicago,
X947j .

Thomson, G.H., 'Hotelling's method modified to give Spearman's g,"
Jour. Ed. Psych., 25, 366-374. (1934}.

Whittle, P. "On principal components and least square methods of factor
analysis, " Skand. Atuar., 35, 223-239. (1952}.

Wold, H., '"Some artificial experiments ir. factor analysis,' Uppsala
Symposium on psychological factor analysis. " Nordisk Psykologi's Mon.
Ser. No. 3, Uppsala, (1953!.

Wrigley, Charles, ''The distinction between common and specific variance
in factor theory," Brit. Jour. Stat. Psych., 10, 81-98, (1957).

Wrigley, Charles, '"The effect upon the communalities of changing the estimate

of the number of factors, Brit, Jour. Stat. Psych., 12, 34-54, (1959).

Wrigley, Charles, and Neuhaus, Jack O., '"The use of an electronic computer

in principal axes factor analysis, ' Jour. Ed. Psych., 46, 31-41, (1955).



APPENDIX A

SAMPLE CORRELATION MATRICES

Set 1. (N=100, p=12)



SAMPLE CORRELATION MATRIX.

1 1.000000 0.599259 0.070566 0.442227 -C.064372 -0.164388 0.026418 0.129250

Go535259 7 TLL000000 T 0278314777 T 01331557 © —0.087676 T -0.223377 7 77 02326067 - 0.133140.
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'S G.642227 0.133155 - . ©0.054313 ~ 7~ 1.000000 -0.018996 -0.126591 0.117062" , 0: -
5 -0.094372 7 -0.087676 ~~ T0.523453 T -0.018996 T 71.000G00 T T 0.4981%1 =0.012959 0.237843
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T 0.026418 0326067 0.305431 C.117062 -0.014959 -0.056849 1.000000 0.223520
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0.549685
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SAMPLE CORRELATION HATRIX.
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"”Oifﬁﬁéisf
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& C.296728
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~1.000000 -
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0.305515 . " D.388577 ... . 0.377642 = 1,000000 = ~
-0.140237 -0.114725 -0.059958 0.001685 o
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 1.000000
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0.008311
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~0.086911
-0.015098
 =0.007365
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04320344

0191607
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1.000000
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- =0.182796

0.034161
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0.443806

~0.133745
0.222569

NO,

 =0.098702

6.

0.008311
0.415455
1.000000

. =0.013653
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0.474146
 0.362336
0.476787
0.053715
-0.076578
-0.068020
-0.004765

(K =100).

0.251928
-0.182796
~-0.013653

1.000000
-0.007363
-0.061273
-0.079916
-0.023813
-0.197304

0.126410

0.196600

0.039018

-0.086911
0.034161
0.602587

- =0.007363

1.000000
0.551377
-0.011850
0.289163
-0.061263

. -0.048921
-0.094097

-0.104313

-0.015098
0.082160
0.4T74146

-0.,061273

0.551377
1.000000
0.066776
0.325513
-0.084624

-0.055017

0.055613
0.021200

-0.007365

0.366695

- 04362336
=0.079916 - - -
-0.011850

0.066776
1.000000

. 04276997

0.050931
-0.185428

-0.015982

0.081992

-0.107656
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0.325513
0276997

©.71.000000 -
= =0.204366 -
-0.083763 -~ -

-0.118352
0.003488

1 0.320344 0.139842 0.191607 0.352584

2  0.443806 = -0.098702 -0.133745 0.222569

3 i:0.053315 LT =0a076578 _=0.068020 -0.004765 "

; & SR 04126410 - 0196600 0039018
' 5 ¥o O 3 - =04048921  =0.094097 = -0.104313 -

6 —0.084624 -0.055017 0.055613 0.021200

7 0.050931 ~0.185428 -0.015982 0.081992

I f4~0.20§366 3 . —0.118352  0.003488

IR T T . ~0.051464

10 . Ts=0.010961 = ,

RO =t 1 1.000000 " 0.015853"

12 0.232671 -0.022914 0.015853 1.000000

D.176983
0476787~
-~ =0.023813




SAMPLE CORRELATION MATRIX.
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1.000000
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. -0.007881
0.401575
0.065413
0.015028
-0.118757
0.122164
0.386154

0.293474

0.213810
0314907
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0.2381678

T =B8.043455
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-03006385

 -0.108949
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" o. é91999:

0.502701
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0.362623

1.000000 -
0.032410
0.154327
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=0.229457

NO. (N = 100).

L2 3 4 5

0.558752 -0.007881 0.401575 0.065413 0.015028 -0.118757
1.000000 0.178247 0.017525 0.030793 -0.058497 ... 0.325291
0.178247 1.000000 0.168282 0.719114 0.654888 -~ . 0.320685.
0.017525 0.168282 1.000000 0.269901 - 0.229930 0002987 ¢
0.030793 0.719114 0.269901 1.000000 0.695845 0.089648
-0.058497 0.654888 0229930 0.695845 1.000000 -0.023734
0.325291 0.320685 0.002987 0.089648  =-0.02373% ,1 000000
0.283004 0646510 0.125611 0.502701 0.375007 .  0.362623
0.231678 -0.043455 0.090633 -0.006385 = - -0.108949 - .. =0.121617 -
0.044750 0.118451 0.412147 0.186344% 0.124665 -~ 0.0299866
0.011492 0.012719 0.368751 0.139178 0.148272 -0.135417
0.076487 -0.141347 ~0.032398 -0.087455 -0.063224 -0.241070

11 12

0.293474 0.213810 0.314907

0.044750 0.011492 _0.076487

. 0.118451 . 04012719 -0.141347

04412147 0.368751 " = -0,032398

0.18634%  0.139178 ~_ ~0.087455

1 0.124665 0.148272 -0.063224

0.029966 -0.135417 -0.241070

00154327  -0.042340  —0.229457

0.105874 - 0.165026

1.000006 - 0.129204

04129204

-0.008954




o 3 4 5 )
12000000 0.634574 ~ 0.004385 0.342231 -0.021709 0.089696  -0.129314 .
0.634574 - 1.000000 . 0.205818 -0.077689 -0.106711 0.088087 0.257928 .
- 04004385 - 0.205818 - 1.000000 0.033063 0.615217 0.581139 0.300878 T =
- 0.3%2231 -0.077689 _  0.033063  1.000000 0.128819  0.047461  =-0.096329 - 0.062276 )
s -0.021709 -0.106711 0.615217 0.:128819 1.000000 0.497488 -0.014958 0.253486
6 0.089696 0.088087 0.581139 0.047461 0.497488 1.000000 -0.031416 0.345551
7 ~-0.129314  0.257928 0.300878 -0.096329 -0.014958 -0.031416  1.000000 _ 0.094627 )
8 -0.068032 0.058827 0.496324 0.062276 . 0.253486  0.345551 0.094627 .. 1.000000
04459981 - -0.362637 - 0.123936 0.030545 - 0.042990  0.156705 ~  0.014624 ~0.041222 :
- 04228711 0.227325  0.145290C © 0.275079 0.084571 -. =-0.035258 £.027640 . 0.139844
0.259406 0.061822 -0.049047 0.363150 -0.048130 -0.003839 0.061296 0.037395
02367365 0.324326 0.098040 0.155255 0.105436 0.169110 -0.047791 -0.003272

04469981 0.228711 0.259406 0.367365
01362637 0.227325  0.061822  0.324326

1;:,—0.049047 . ..0.098040 -
~0.27so79 °0.2$3150 - 0.155255"

0‘53054‘5 :

SG ST 03042990 = - 04084571 ":;;79.048130,/ﬁ);;p.10543bi3,,
6 02156705 -0.035258 -0.003839 0.169110
7 0.014624 0.027640 0.061296 -0.047791
8

=0.041222 0. 139844 _0.037395  -0.003272
’ i1 0041011
“'0,212858

=2 : ‘ T0.126628
12 0.041011 o. 212858 0.126628 1.000000
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0506228
03062749 -

0.506228
~1.000000 .

"*,o 319983
- =0.099089

S 0.093822
6 0,008477
7 -0,066047
-3 0.089322
+33631
04211246
04220998
0.217157

0.062749

.. 0.319983

0.116895
0.085757

0.381574

0 211295

-0.010217
0.115052
0.260079

0. 685468

0.601421
 0.307123
 0.389354

-0.069055

 0.141800
0.103730
0.019948

~ 1000000
.0.167496

0.355124
-0.099089
0.167496
1.000000
0.142245
0.054083
0.026009
=-0.176977

-0.124802 -

0.402142
0.100521
0.081699

0.093822
0.116895
0.685468
0.142245

1.000000

0.639483
0.087740
0.235648
-0.021131
0.132363
0.119264
-0.032010

0.008477

0.085757 -

0.601421
0.054083
0.639483
1.000000
0.030900

- 0.0964837 =

0.107613
0.014970
-0.135078

0.246221 -

-0.066047

0.307123
0.026009

0.030900
1.000000

-0.034762

0.131812
0.127665

0.381574

T -0.176977

0.087740 0.235648

0.070596

~0.042373
-0.058973

~0.043006 -

-0.089322
0.211295
0.389354

0.246221
0.070596
1.000000 .

-0.140114
-0.000711

1 04336317
2 0.349353

0.211246
=-0.010217

«141800

4 04021427

5 «021I31 ~0.132363

6 0.09%837 0.107613

7 -01034762 0.043006

8 -0.042373 -0.058973
£

0.220998
0.115052
"0.103730

04100521 -

- 05119264
10014970
0.131812

-0.140114
0.195143 =

12 0.057806

0.092068

-0.05659

0.217157
0.260079

. 0.019948_
~ 0.081699

-0.032010

-0.135078

0.127665
-0.000711

- 0.057806-

“1.000000




SAMPLE CORRELATION MATRIX.

NO. 10. (N = 100).

f - = = 3 "
1 1.000000 0.408599 -0.0129%1 0.333962
T2 - 0.408539 1.000300 0.061221 -0.2135232
3 -0.012991 T -.0.061227 1.000000 0.017418
& 04333962 .. =0.210232 0.017418 .00C009
5 " 0.045844 -0.126840 0.658563 0.051757
g 0.050900 -0.272285 0.5279565 0.080637
T =0.002507  0.317227  0.254253 -0.031336
T 8 ©0.031782 0.018347 0.34830¢4 0.023745
3 0.341310 0.361109 -0.199499 -0.1441902
10 0.178537 -0.094986 0.126526 0.365593
11 - 0.193258 -0.040772 0.110396 0.337221
12 0.232290 0.232466 -0.137862 -0.245044

1t : 12
0.341310 0.178537 0.193258 0.23223°0
0.361109 -0.094986  -0.043772 - 0.232466
T=0.199899 T0.126925 0.110896 -0.137862
—0.144102 0.365593 0.337221 -0.243044
_ =0.116197 . 0.028619 - €.063770 ~ -0.055030
~-0.107385 = 0.111236 0.102342 -0.042h473
-0.239364 0.161297 0.026927 0.084L63
-0.036295 0.088021 0.143791  -C.019719
T1.0G0000 —-0.116477 = -0.006578 70.244565
-0.116477 -1.000000 - . 0.201489 -0.056076
L =0.006578 0.201489  1.000000 " -0.117700
T 0.244565 0.058076 -0.117700 1.000000

0.046844
-0.126840
0.658968
0.051757
1.000009
0.530471
0.0C8729

0.322297

-C.116197
0.028619
0.06377¢C

-0.089030

0.050900
-0.272285
0.527%965
0.080637
0.530471
1.000000

. 0.032434

- 0.153600
-0.107385
0.111236
0.102342
-0.042643

-0.002507
0.317227
0.254253

-0.031896
0.008729
0.032434
1.000000

0.251828

-0.239364
0.161297
0.026927
0.084669

0.031782

0.018347

0.348304
0.023745
0.322297
0.153600
0.251828
1.000000
-0.036295
0.088021
0.148791
-0.019719




SAMPLE CORRELATICON MATRIX.

NO. 14, (N = 100).

) ) 3 4 5
1 1.000000 0.583850 0.053972 04295420 0.244044 -0.003435  0.153577  0.061003 i
2 0.583850 1.000000 0.429304 -0.091210 0.204399 0.142822 0.443806 -329162 3
S 3 04053972  (0.429304 '1.000000 -0.026783 0.643206 0.524655 0.303910 D.438671 z
-4 0.295420 - =0.091210 _  -0.026783 1.000000 0.088407 . 0.024781 - —0.008314  ~ 0.135428 -~
5 0.244044% 0.204399  0.643206 0.088407 1.000000 0.544825 -0.054915 0.290338
'y -0.003435 0.142822 0.524655 0.024781 0.544825 1.000000 -0.055803 0.257042
R  0.153577 0.443806 0.303910 -0.008914 -0.054915 -0.055803 ~ 1.000000  0.262174
B 0.061003 0.329162 0.438671 0.135428 0.290338 0.257042 0.262174 71.000000 .
9 0.391705 0.311893 0.002375 0.067595 0.136305 0.020062 0.027579 - 0.070846
-X0 0.232243 0.016110  -0.030221 . 0.295749 - -0.082249 -0.054858  0.000729 _ -0.047953 ..
1 0.249870 0.13404% 0.014753 0.259347 0.115958 ~0.136042 0.110707 0.177741
2 0.185341 0.196583 0.053856 0.047369 0.107551 0.004407 0.103615 0.104261

1 0.391705 0.232243 0.249870 0.185341
2 04311893 0.016110  0.134044  0.196583
-3 503002375 . =0.090221 . 0.014753 . 0.053856 .
% . 03067595 =5 0.295749 0.259347 0.047369
5 03136305 . —0.082249  0.115958 _ 0.107551 .
6 0.020062 -0.054858 -0.136042 0.004407
7 04027579 0.000729 0.110707 0.103615
'8 0.070846 -0.047953 0.177741 0.104261
9 1i000000 0.057218 . 0.036141 - 0.159307
B 0.057278& : 704141866 - =0.026125=" :
T 04056141 141866 . 1.000000 -~  0.034437 -
01159307 -0.026126 0.034437 1.000000




SAMPLE CORRELATION MATRIX, NO. 12, (¥ = 100).

B 5 23 4 5 E
1 1.000000 0.538986 -0.135719 0.534935 -0.103496 -0.156658 0.058701 -0.010474
T2 0.538986 1.000000 0.230392 0.007070 -0.074259 -0.064498 . 0.388333
3 T«0.13571% 0.230392 ~ 1.000000 -0.121617 0.634967 0.575198 0.293069 5 =
.S 4 0.534935% - 0.,007070 = -0.121617 1.000000 -0.083425  -0.060713 "~ - 0.024408 ~~'-0.105576
.5 -0.103496 -0.074259 0.634967 -0.083425 1.000000 0.633261 0.022789 0.354156
6 -0.156658 -0.064498 0.575198 -0.060713 0.633261 1.000000 -0.080448 0.343263
7 C.058701  0.388333 0.292069 0.024408 0.022789  -0.080448 1.000000  0.318034
8 -0.010474% 0.309330 0.552992 -0.105576 0.354156 0.343263 0.318034 - . . 1.000000 -
9 0J.461943 0.447229 -0.073804 0.067400 -0.129948 -0.263908 - 0.130457 -~ =0.001080
10 0.344364%  -0.024506 -0.060911 - 0.359368 0.128253  0.002723  0.049058 =~ -0,0321364
11 C.316135 0.034743 0.072762 0.456547 0.118540 0.170712 0.118138 0.023761
12 0.177892 0.032632 - -0.176931 -0.03331¢4 -0.053240 -0.177490 -0.217325 -0.060203
9 11 R
1 0.461943 0.344364 0.316135 0.177892
2 046447229  =0.024506 0.034743 ~ 0.032632
3 ~0,073804 - _=0.060911 0.073762 -0.176931 S ;
L4 -~ 02067400 "~ -°0.359368 04456547 © =0.033314
8 7 i=04129548 05128253 0.118540 - —=0.053240 A o
6 -0.263908 0.002723 0.170712 -0.177490 ) N
7 04130457 0.049058 0.118138 -0.217325
'8  —0.001080 -0.031364 0.023761  -0.060203
9 T 1.000000 .0.006383 0.077961 . 0.071632 .~
. 0.006383 - 1.000000 - "% 04177254+ 7" 0.135703
0077961 04177254 .~ 1.000000 ~~ 0.038512 -
0.071632 0.135703 0.038512  1.000000
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SAMPLE CORRELATION MATRIX,

1.000000
0.500321
0.042289

03422361 .

0.114270
0.111316

. =0.110794

-=0.199574

0.308808

© 01013473
0.186115

04212244

0.308808
0.377823

05127944

-0.116227
0,106118

0.142443

-0.126836

-0.062050
© 1.000000
-0.013256
. -0.087568-- -
 0.221592

0.500321
1.000000
0.339276

0.001339

-0.019686
-0.0006%8
- 0.277867

0.132056

© 04377823
. =0.113435

-0.07149086
0.340289

NO. 13,

0.101349

-0.113435

. 0a221209
04337364

0.195822

T 0.254578

0.098454

__0.2333286

-0.115845"

0.042289
0.339270
1.000000
. 0.023471
0.477846
0.492266
0.370528
0.430638
0.127944
0.221209
0.009309
0.049661

i1

0.186115
-0.071406

0.009809

0.372090
-0.166724
'-0.018411
-0.082669
-0.993385
-0.087568
- 0.182440

-~ - 1.000000_

-0.026377

(N = 100).

T 1.000000

-0.110794

. 0.277867

4
0.422361 0.114270 0.111316
0.001339 -0.019686 -0.000668
0.023471 0.477846 T 04492266
1.000000 0.161066 © 0.135351
0.161066 1.000000 0.608314
0.135351 0.608314 1.000000

-0.026215 -0.014869 0.072636
0.024418 0.197136 0.286892
-0.116227 0.106118 0.142443
0.337364 0.195822  0.254578 -
0.372090 -0.166724 -0.018411

-0.053109 -0.030664 -0.109742

12 - 8 ) -
0.212244
0.340289
0.049661

—0.053109 -
- —0.030664
-0.109742
-0.120773
-0.157549
S 04221592
-0.115845
- =0.026377

0.370528
-0.026215

-0.014869

0.072636
1.000000
0.289442

-0.126836
0.096454
-0.082669

-0.120773

-0.199574
T 0.132056
-0.430638

0.286892
0.289442

1.000000

7 -0.062050

0.233326
-0.093385
-0.157549




-0.040615
0.015966
0.627320
0.012695
1.00C000
0.627555
0.101455
0.487004
0.078618

-0.055010
0.064164
0.035688

-0.082144
-0.031234

0.550595
-0.067840

0.627555

1.000000
0.086513
0.408503
0.032064 -
-0.181233
0.079634
0.053122

0.026799

0.295944
0.348867 -
0.106483

0.101455
0.086513
1.000000
0.247854
0.021013
0.083975
0.162227
-0.008648

NO. 14, (N = 100).
i B 4

1.000000  0.553998 -0.115018 0.600318
- 0.553998 - 1.000000 0.268676 0.127015
T'=-041150187 04268676 1.000000 -0.028653
©. 0.600318 -+  0.127015  -0.028653 1.000000
-0.040615 0.015966 0.627320 0.012695
-0.,082144 ~0.031234 0.550595 -0.067840
04026799  0.295944 0.348867 0.106483
. =0.142253 .  0.,197823 0.604965 -0.025950
0. 442705 7 04395436 0.015393 0.105841
0.359953 0.175726 0.030819 0.271143
0.162183 0.042570 0.079404 0.487019
0.292347 0.224129 -0.094259 0.086154

9 .

0.442705 0.359953 0.162183 0.292347
04395435 0.175726  0.042570 ~ 0.224129
040154 0.079404 ~  -0.094259
. 02105841 ' : 7 0e487019 0.086154 "

-..0.,078618 "~ =0,055010  0.064164  0.035688 .
0.032064 -0.181233 0.079634 0.053122
0.021013 0.083975 0.162227 -0.008648

 =0.095622 1 0.065308 0.091478 -0.111499
S 77715000000 0.155011 -7 . 0.098458 - 0.221064 - -
0415501 000000~ °0.155868 - . =0.227052
o 0,098458 05155868 - 1.000000 - ~0.085046 _
0.221064 -0.227052 -0.085046 1.000000

-0.142253

0.197823
- 0.604965

-0.025950

~ 0.487004

0.408503
0.247854
1.000000
-0.095622
0.065308
0.091478
=0.111499




_SAMPLE CORRELATION MATRIX. NO. 15, (¥ =100).

FiLEE : 3 L DR P i -
. 0.606976 -0.030497 0.438004 -0.015550 0.050841 0.012046  0.000514
7 1.000000 0.358302 0.080885 © 0.153662  0.191330  0.425535 - 04264303
. 0.368302 1.000000 -0.037790 0.557939 0.599772 0.518556 0.498396
L (0e%38004 .. C.050385 -0.037790 1.000000 -0.132775 0.065226 0.077292  -0.091390 - -
-0.015550 0.153662 0.557339 -0.132775 ~ 1.000000  0.508837 0.098163 0.206893
0.052841 0.131330 0.599772 0.065226 0.508837 1.000000 0.262074 0.483130
~ 0.012046 0.425535 0.518556 0.077292 0.098163 0.262074 _ 1.000000 0.218364
LEE 040805914 T 0.264303° 0 (C.498396 -0.0913%0  0.206893 = 0.483130 0.218364 -~ 1.000000
~i 0e4Bll4b "0.289585 -0.062164 0.037766 G.041790 0.001317 -0.113464 0.053500
0..166755 -0.031192 -0.253549 0.239088 -€.150339 -0.153298 -0.012885 . -0.123189
0.282251 0.231068 0.069011 0.356261 -0.081675 0.030713 0.006061 -0.033694
0.4031513 0.361610 0.C43990 0.081827 -G.031475 -0.049813 0.005989 0.195771
9 S| 11 12
1 0.481146 0.166795 0.262251 0.401513
2 ~ 0.289585 -0.031192 0.231068 0.361610 - } e B
3 T =0.062164 T 0.253549 0.069011 0.043990 =~ T S e SR
& " 0.037766 0.239088 G.358261 0.031827 ' - o )
5 . 0.04179C - -0.15033% -0.081675 =0.031475  coomiriom o S anas
A 0.001317 7 -0.153298 0.030713 ~ -0.049813
7 -0.113464 -0.012885 0.006061 0.005989
8 0.053500 -0.123189 -0.033694 0.195771
B .000000 77 T 0.0467537  0.000987 T 0.352133 . e T e AT T .
10 1.000000 0.018173 0.047910 =7 Tl T T T
11 7. " 0.000987 018173  1.000000 0.077713 = _ooosmS o 0 ETTST
12 0.352133 0.047910 ~  0.077713 1.000000



SAMPLE CORRELATION MATRIX. NO. 16. (N = 100),

S 3"» 4 5 _ ()
1 1.000000 0.598489 0.118318 0.507943 0.000215 -0.014313 0.081426 0.175293
2 ,03593489_,,: [.000000 . 0.346692 -0.005636 0.081281 -0l hy 0.436437
3 0.118318° = 02346692 . 0. 1.000000 0.074735 0.593887 Q.20 1 0.433199
ke 0.507943° . =0.,005636 ~  0.074735 1.000000  -0.014539 S PN A 0.028744
5 0.000215 0.081281 0.593887 -0.014539 1.000000 Oe 404260 0.136405 0.238812
b -0.014313 -0.118389 0.244011 -0.028424 0.404240 1.000300 -0.121625 -0.003601
7 0.081426  0.436437 0.433199 0.028744 0.136405 -0.131625 1.000000  0.132568 B
8 0.175293° 7 0.222366 "~ 0.502871 0.176519 0.238812 -0.00 25601 0.132568 - 1.000000
9 0.302973 = .0e4288131 -0.086031 -0.046829 - . 0.015186 0.C10240 -0.089397 - 0046774
L 04215711 _ 0.Ill152 0.285957 - 0354871  0.248504 ~0.0716¢1 0.254559 00195362 = -
04155324 0.072381  -0.002694 0.206823 "~ 0.084996 0. 151670 0.008535 0.109329
0.265959 0.227551 0.048844 0.006148 0.014810 -0.025492 -0.035815 0.032496

0.302973 0.215711 0.155324 0.265959

]
2 0.288131 0.111152 0.072381  0.¢27551
3R 0. TTUT04285957 1 =0.002694 . 0.048844
e 0.045829 SEETL003548TL - Tl 042068237 T 0.00¢148 E
TR T S S 0.,015186 -0 0.248504. . 0.084996 - - 0.014810 .- o
b 0.010248 -0.071661  0.151670  =0.025492
7 -0.089397 0.254559 0.008535 -0.035815
8 0.046774 0.195362  0.109329  0.032496
79 B =0.000587 . 0.214641
16 7 0.014257 =0.028489 -
e = 8 ) =7 0014257 . 1.,000000-:  -0.134143 _
12 0.21%641 -0.028489 "=0e134143 1.000000



0.741886

-0.019921
0.045046

1.000000

04160275

04240051~ ~
0.264913 -

0.234938

0.440870
=-04175370. . .
-0.016859

0.741886
- 1.000000
. 0.408208

.. 0.064621
-0.021737

0.103573
0.556328
0.334737
0.372230
- 0.101089
-0.078713
0.079486

SAMPLE CORRELATION MATRIX. NO.

17

DRt

0.240051
0.408208
1.000000

© 04153921

0.616973
0.530490
0.413038
0.615342
0..150368
$.048312
0.01295%
-0.095258

(N = 100).

0.264913
0.064621
0.153921
1.000000
0.022269

-0.001279

-0.108948

 0.111077
0.085980
0.343632

0.281094

-0.019674

-0.019921
-0.021737

0.616973
0.022269 -
1.000000

0.579172
-0.023592

0.362572 -

0.121494

=0.051971 -
0.091700

-0.011188

0.045046
0.103573

704530490
~=0.001279
0.579172

1.000000
0.154028

704268431
©'=0.023918°

-0.133085

0.155730

-0.125436

0.234938

0.413038

-0.108948
<0.023592

0.154028
1.000000

"0.118991
0.013491

T -0.026685

-0.091587

0.440870

0.556328

0.286532

T 04362572

7 1.000000
- 0.235270

0.204310

. 0.334737.

0.615342°
0.111077°

0.268431
0.286532

0.016418 .

T -0.050373

0.127810

0.175370 -0.016859 0.160275
0372230  0.101089  -0.078713  0.079486
0.150368 . 0.048312. 0.012955 -0.095258
05085980 2343632 - -0.281094 - =0.019674"
03121594 -0+051971  ~ 0.091700 - - -0.011188"
-0.023918 -0.133085 0.155730 ~0.125436
0.118991 0.013491 -0.026685 -0.091587
0.235270 ~ -0.050373 0.127810 B
<000000 - . —0e4062910 . - 0.207643
7 0e049189 7 0.019137-
= == {¥a ) =0.049189 - .1.000000. ... —0.120623 -
S ¥ 0.207643 0.019137  -0.120623  1.000000



SAMPLE CORRELATION MATRIX.

VO~NOVPRWN -

e
N~ O

VO ~ND G Wk

e
N~

1.000000
0.597364
0.054942
0.218529
0.016010
-0.015235
0.267434
0.119220
0.383042
-0.028536
0.243984
0.447437

0.383042
Ce.4b4812
0.017901
-0.037830

0.072570

-0.085593
0.184111
0.235049

0.028851
-0.024526
0.053814

7 1.000000

0.597364
1.000000
0.327628

-0.119809

0.065488
-0.099297
0.512676
0.323097
0.454812
~0.198455
-3.036067
0.249271

10

-0.028536
~0.198455

 =0.150131

.. 0.028851

0.336407

~ 0.008185
0.025794

-0.037590
~0.235808

KO,

-5 1.000000 -

_0.079167
-0.160024

18,

(N =

0.054942
0.327628
1.000000

. —0.046224

0569692
C.360974
0.268622
0.4086539
0.017901
-0.150131
-0.037585
-0.093410

it -

0.243984
-0.036067
-0.037585
0.254060
- 0.116218
0.230187
-0.032852
0.015995

. =-0.024526
T 0079767 -

..1.000000 ™~
0.075006

. —=0.050387 -,

100).

0.218529
-0.119809
-0.046224

1.000000
-0.030612
-0.050658%

0.060701
-0.150040
-0.037830

0.336407

0254060

0.089103

0.016010
0.065488
0.569692
-0.030612
1.000000
0.540601
-0.045337
0.295081

0.072570

0.008185
0.116218
-0.050387

0.447437
0.249271

-0.093410 -

0.089103

-0.137872

0.053397
0.134857

~ 0.053814
-0.160024

_C.075006

1. 000000

-0.015235 0.267434
-0.099297 0.512676
0.360974 0.268622
-0.050659 G.060701
0.540601 -0.045337
1.000000 -0.121148
-0.121148  1.000000
0.169246 0.025400
-0.085593 0.184111
0.025794 -0.037590
0.230187 -0.032852
-0.137872 0.053397

0.119220

©0.323097
0.408699
- =0.190040
0.295081

0.169246
0.025400

1.000000

0.235049
-0.235808
0.015995
0.134857




~ SAMPLE CORRELATION MATRIX. NO. 19, (N = 100)

- 1
1 1.00C0CO... . .0.569367 .. ...-C.175438_._ . ... 0.546348 -0.0C8644 . . -0.137947 . __ 0.020862_ __ -0.062933
. 2 0.5693617 1.80C00¢ . =0 €G.135917. ..0.056975 0.024132 -0.156273 .. 0.515652 - 0.271205
3 -0.175438 C.135917 '~ 1.6CCCCC . =C.177741 0.633129 0.560223 © 0.24768Y . - " 0.567238
4 G.546348 . $.056975 L=0.177741 . . 1.C00GGO -0.038979 -0.122968 -0.188064 . -0.163338 .. ..
5 -0.008644 0.024132 0.633129 -C.C38979 1.000000 0.598412 -0.006813 0.312525
"6 -C. 137947 -0.156273 €.56C223 -C.122968 0.598412 1.000000 -0.073824 0.392675
- 7 . C.020862 ___ .. £.515652 C.247681 . -C.1B88064 -0.006813 -0.073824 __ .1.000000___ _ 0.248286 __ .
: 8 -C.062933 0.271205 €.567238 -0.163338 C.312525 0.392675 0.248286 1.000000 -
9 C.336568 0.263438 -0.027792 C.226649 0.060129 -0.063333 -0.016188 .~ 0.087178
EEEEEE § . 0.22584% ©  3.011331..._ _-0.050622 C.236889 0.054311 C.019362 .. =0.103950 - = :20.013780 - . -
11 C.147539 -C.1CC300 -C.237261 C.130470 C.CCC644 -0.074635 -0.183410 -0.247922
12 C.2771C9 0.049928 -0.155086 C.170261 -0.090325 -0.030307 -0.181645 -0.132823
9 S
1 0.336598 0.225849 0.14753¢ 0.277109
2 0.263438 . 0.011331  -0.l0C30C 0.049928 I e
3 -0.027792 -0.058622 = - -0.237261 -C.155086 ’ ; i g
: , 4 0.226649 0.236889 - C.13C47¢C ~ C.170261 . .
B ... 0.060129 .. 0.054311. ... . 0.00C644 ... -(C.09G325 R Ry Ty
6 -0.063333 0.019362 -0.074635 -0.030307
7 -0.016188 -C.103950 -0.183410 ~C,181645
8 0.087178 . _ . 0.013786__ __ =C.241922 -C.132823 I e
9 1.00C000 ' 0.025925 © 0.002235 0.283804
0.025925 ~-1.000000. =~ £.18C225 - 0.128C17 e : e
0.002239 -7 0.180225: 7 .- "1.00CC0C .~ -C.014945 S ST

12 0.283804 0.128017 -0.014945 1.000000



SAMPLE CORRELATION MATRIX. NO., 20. (N = 100).

A2 , 4 s g g s

1 1.000000  0.472515 -0.244%52 0.385038 0.039124 -0.090868 -0.210234 -0.065602
2 Ve4T2515 . '1.000000 0.19603% -0.055026 ' 0.002902 0.048452 0.412884% 0.359140
3 -0.244452 0.196038 1.0C0009 -0.075005 0.632312 0.644163 0.263860 0.465443
4 0.385038 -0.055026 -0.075005 1.00C000 -0.024754 -0.158344 0.020193 -0.114574
5 0.03912¢4 0.002302 0.638312 -0.024754 1.000000 0.499570 -0.103599 0.208981
6 -0.090868 0.048452 0.644153 -0.158344 0.499570 1.000000 -0.026895 0.296802
R | -0.210234 - 0.412384 0.26336C 0.020193 -0.103599 -0.026895  1.000000  0.237230
8 -0.065602 0.359140 0.455443 -0.114574 0.20£981 T 0.J296802 0.237230 1.000000
9 0.370178 0.346767 -0.104165 0.091575 0.040360 -0.078273 -0.036174 0.140534
10 0.282640 . G.161391 -0.253617 0.333660 -0.183053 -0.233849 °  0.134207  -0.183654 i
11 0.033526 -0.025791 0.156970 0.365319 0.071501 -0.090878 0.081117 -0.020704
12 0202457 0.130204 -0.03C093 -0.068375 0.034833 -¢.010178 -0.087857 -0.006665
9 10 11 12
1 0.370178 0.282640 0.033526 0.202457
2 0.346767  0.161391 -0.025791 0.130204 i B - o - o
3 -0.104165 -0.253617 0.1567270 -0.030093
4 0.091575 0.333560 0.365319 -0.066375 i :
.5 3.040360 -0.183053 0.071501 0.034833 . | - s e oo i e B
6 -0.078273 -0.233849 -0.090875 -0.010178
7 -0.036174 0.134207 0.081117 -0.087857
8 0.140534  -0.1d3654 -0.020704 -0.006665 -
9 1.000000 0.083739 -0.159406 0.133006 y -
10 2.083739 1.000000 0.211123 0.040103 ,
11 -0.159406 0.211123 1.00000C -0.328354 T

12 0.133006 0.040103 -0.328354 1.000000



APPENDIX B.

MAXIMUM DETERMINANT FACTOR MATRICES

Set 1. (N=100, p=12)



MAXIMUM LIKELIHOOD FACTOR MATRIX,
ROTATED TO PORM WITH SPECIFIED ZERO ELEMENTS,

MAXIMUM LIKELIHOOD FACTOR MATRIX,

VONCVSWNI»

1

. ~0.138270

-0.138799
0.762580
~0.072075
0.682499
0.728576
0.028585
0.369283

- ~0.146420

~0.035333
0.004966
-0.024258

2

0.942314

0.718550
0.241809
0.248149
0.
-0.0785%7
0.085989

- 04212577

0.377363
0.235514
0.178995
0.343258

NO, ¢,

ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.

i
—
OVO~NOUVMDWNF-

-
N o~

.MAXIMUM LIKELIHOOD FACTOR MATRIX,

1

0.175763
0.096496
0.764892
0.069904
0.804450
0.6892171
0.011318
0.379600
0.066607
0.120069
0.049488

0.095650

0.7787517
0.783679
-0.05C258
-0.051805
0.
0.011064
0.114615
~0.026094
0.361099
-0.197456
-0.065040
0.337652

ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.

i
—
CVDNCUV & WN -

- gt
N

1

-0.128033
0.746465
0.042543
0.714954
0.798673
0.095974
0.571001

-0.189616

-0.060833

-0.138527
0.017742

2

0.670172
0.789185
0.178833
~0.235467
0.
-0.008083
0.058362
0.233837
0.536808
-0.105927
-0.010780
0.297292

(X = 100),

0.051962 -~ —mmv

3 4
0.260284 -0.,157380
-0.077865 0.487753
" 0.,067405 0.440970
0.762385 0.
-0. Oo
-0.042905 - =0a136995
0.153511 0.575707
0.066170 0.,236685
-0. 0. :
0.540180 ~0.108230
0.276044 ~0.057919
- —=04109545 0.013032
NO, 2, (N = 100),

3 4
0.574232 -0.180258
0.175296 0.394569
0.000146 0.559769
0.755246 -0.

-0. -0.
-0.115626
0.116721 0.627128
~-0.076683 C.407166
-0. -0e
0.493461 -0.185826
0.375126 0.098603
-0.182466 -0.027464 -
No. 3. (N = 100).

3 4
0.626689 -0.287550
0.168494 C.420775
0.013025 0.434058
0.941827 -0.

0. -0,
0.010757 -0.116772
-0.001869 0.532007
-0.105237 0.233586
0. —OC
0.450071 -0.120946
0.320208 -0.180822
0.021718 -0.243525

]

PRI

[PRVE——Y



MAXIMUM LIKELIHOOD FACTOR MATRIX,
ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS,

_0.06525
~0.11618

0.007449
0.803037
. 04595720

-0.0321337
-0.096594

0744701~

-0.077098
o ~0.143748
£ 0.013716

- 0112081 - -

= =0.228746 -

0.0:9059
0.

-0.355430

0.5:0049
0.06130%
0.0C7389
0.3%3946

MAXIMUM LIKELIHOOD FACTOR MATRIX.
ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.

- —0.028901
-.0.089881
0.734628
0.101981
0.721696
0.733659
0.171182

- 0.436671
" =0.090750
0.020309
0.103186

. 0.000981

VOO WMPWN

MAXIMUM LIKELIHOOD FACTOR MATRIX,

0.928601
0.596759

© =0.051535

"0.314532
0.

—0.016758

-0.024978
-0.001940
0.408710
0.270013
0.260318

-—z==0e 12907 Lo =

- 0.280499 -

ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.

0.036290

0.635837
-0.010308

0.946986

04583228
-0,013071
© 04308932
-0.060412
-0.037938
-0.088282
~0.104016

VD OS> WN

 =-0.091780

0.532558

0.764335

- 0.081742 - -

-0.279381
O.

-0.061321 -

0.053708
~0.164206
04591133
-0.017666
-0.171362

0.219703 - --

NO. 4. (N = 100).

3 4
0.559212 02947173
~0,078666 0.801820

S om0, 2TH6935 55 0,401847 -

0.773160 -0,

"0. "Oo

0228144 - - 0,038825 ——————y
-0.118648 - 0.703532
~0.136601 0.288563

- “00 - ':“"‘0. o

0.485179 -0.024193

0.4677178 -0.026069
~0.095556 -0.023170 -~

NO. 5. (N = 100),

3 4
0.369349 -€.005988
-0.129618 0.698206 -
0.018505 0.553225 -
0.717035 -0.

O. ' -Oo
-0.174146 0.080722 -
0.061005 0.71C242
~0.020123 0.440657
- Oo "‘Oo
0.435628 0.007105
0.348025 0.031310

04079018 ~—-- —0.028980 ~—————
S
NO. 6. (N = 100),
3 4
. 0.834926 0.102213 r'fﬁ

0.067219 . 0.570027 : i
-0.043580 - 0.582536- - e

0.478797 0.

0. ' 0.

0.062074 ——-0,188307 ————
"0-117103 00592937 K !
-0.053086 0.513145 !

~ Oe o O. b b

0.193614 -0.155580

0.331535 -0.020182

0.258702 ~ 06097896



MAXIMUM LIKELIHOOD FACTOR MATRIX,

No. 70 (N

ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS,

MAaiMUM LIKELIHOOD FACTOR MATRIX.

1

0.321696
0.848953

0.098776
0.582167

~=0,034730 -

0.201271
0.143381

.7,,’7'7'0.098393 =L

0.077141 .
0.038958
~0.853317

0812174

2

. 0.967778 .
-0.102082 =~

0.246507
0.

~-=04021380

-04245408
0.023727
‘0.402964
0.215990
0.175687
0.386284

3

 0.168323

-0.1460095
-0.104624

0.820953
=-0.

=0.029394:

0.036220

-0.071980 ===
=0 -

0.362921
0.329835
—=0.124045

NO. 8. (N

ROTATED TO FOBM WITH SPECIFIED ZERO ELEMENTS,

MAXIMUM LIKELIHOOD FACTOR MATRIX.

OO~V HWN -

1

 -0.028819
- ~0.134258
- 0.821909

0.173684
0.747361
0.650670

 =0.039900

0.428758
0.073098
0.059054
-0.040146

0.070310 -

2

0.903450
0.773389

0.119272 -~

0.052846

0'

0.164655
-0.049743

-0.026936

0.511335
0.189868
0.147723

04374029

3

0.320422
-0.102351
~0.124081

0.933617

0.
~0.084735
-0.093872
~-0.010691

0.

0.271399

0.390953

0.131909

No. 9. (N

ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS,

CO~NCV S WN

0.105725
0.142264
0.834576,
0.184099
0.821718
0.762718
0.093089
0.331463
0.008616
0.182886
0.115123

-0.072546

0.639331
0.629281
~0.112015
-0.191796
0.

--- 04044596
-=0.149999

-0.003821
0.553197

-0.022188

0.133301

0.123833 -

0.564966
~0.005703
~04005935

0.805862

O.
-0.120658
=0.024456
=0.285960

0.

0.429919

0.192480

‘0.170193

= 100),

4

. 0s144473
.. 0.593863 .°
- 04297893
-0.
“0.
04154374~ ——=—
0.728950
0.453394 |
e ' SRS ek e et |
0.049288
-0.151614
-0.210572

= 100),

4

-0.081711 f‘ }
0.427018 i
0498591
0.

0.
€.038458 - ——-
0.650492
0.286452
0.
0.216109
0.037088
- 04037969

= 100),

4

0.120558
04763757
04355759
0.
0.
=00067464 e
0.605630 |
0.215915 :
Ce E E :
~0.025922
0.020883
©0.253304 -



MAXIMUM LIKELIHOOD FACTOR MATRIX,
ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS,

NSH

— !
NeO VOO VSWN -

1

0.063002

-0.163102

0.846666
0.0436493
0.771779
0.687739
0.078907
0.352307
-0.130515
0.107202
0.115540
-0.076968

2

0.58%240
0.541344
-0.15(192
~0.22¢€069
0.
=0.02(855
-0.161935
-0.064849
0.62:7664
~0.18¢437
-0.07¢387
0.418149

MAXIMUM LIKELIHOOD FACTOR MATRIX,
ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.

—— ‘
N~O OOV DUN-

0.2444175
0.204796
0.644357
0.088649
0.998203
0.546075
-0.055052
0.290578
0.136557
~-0.082017
0.115343
0.107451

2

0.8248962
0.642211
-0.162281
0.111083
0.
-0.1780179
0.140941
-0.038107
0.437825
0.188398
0.213678
0.202497

MAXIMUM LIKELIHOOD FACTOR MATRIX.
ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.

P gt pus ’
N= O VONTWVSWN -

1

-0.122314
-0.070382
0.743562
~0.089455
0.846140
0.757255
~0.015270
0.429535
-0.205488
0.087403
0.139660
-0.081896

2

0.818918
0.808651
0.139548
0.099694
0.
-0.071157
0.233183
0.237133
0.533398
0.127994
0.102619
0.144071

NO, 10,

3

0.586823
~0.102004
-0.067563

0.791491
-0.

0.073895
~0.047280

0.022848
_00

0.421786

0.389553
-0.105185

NO, 11, (N

3

0.213085
-0.213754
-C.076688

0.844155

O.
-0.026880
-0.007751

0.118862

0.

0.343429

C.273244

0.005849

NOo. 12, (N

3

0.502921
-0.093079
-=0.085752

0.879564
‘0.

0.018004

0.024406
~0.102837
-0.

0.404798

0.513976
-0.053648

(N = 100),

0.195304
0.818248
0.334530
"'00
-0.
-0.168668
0.508627
0.141785
—00
0.0812173
0.072305
-0.020909

= 100),

0.071340
0.652266
0.591866
Ce.
O.
0.204720
0.566766
0.476889
O.
-0.014425
0.044249
0.068201

= 100).

=-0.247128
0.344084
0.469075

-0.

-0.
0.059957
0.592349
0.406335

-0.

-0.188696
0.037615

-04311204



ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.

CO~NT VL WN -

MAXIMUM LIKELIHOOD FACTOR MATRIX.

1

0.150223

S ~0.024533

0578434
0.149130
0.802776
0.764831
0.003598
0.266125
0.191614
0.284410

-0.095389

-0.048069

2

-.0.527925
0.739818

- 0.006585

-0.189941
0.

- -0.068444

-0.132039
-0.239853
0.517045
=0.320235
-0.196889
0429430

2

0.676449
0.194717
-0.043484
0.7417212
O
0.035317
-0.058957
-0.109611
0.
0.318464
0.454669
0.823845

NO. 14, (N

ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.,

VO~NOWVMPON -

MAXIMUM LIKELIHOOD FACTOR MATRIX.

1

-0.046218
0.021165
0.738855
0.013155
0.846546
0.759058
0.138080
0.553185
0.060344

-0.059753
0.078864
0.021229

2

0.840569
0.719597
~0.044702
0.214501
O.
~0.025529
0.014404
-0.102877
0.535762
0.233870
-0.060611
0.368239

3

0.458569
~0.C31011
-0.032525

0.3916885
—Oo
-0.072777

0.111772
-C.C16817
-0.

0.278168

0.530122
-0.020279

NO. 15. (N

ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.

CONCWVH WA~

- P
N - O

-0.021529
0.194758
0.76916%

-0.188244
0.704061
0.697024
0.176722
0.496223
0.073938

-0.278140

~0.048665
0.030231

0.811481
0.498744
-0.208892
0.086376
Oo
-0.060713
~0.252895
-0.028677
0.588836
0.109341
0.143684
0.431734

3

0.381414
0.078446
0.130901
0.954679
O.

04211695
0.138363
0.003661
0.

0.185832
0.350780
0.048880

4

~0.028391

0.643228

O.

€.096180 -

0.601833
0.524430
Oe.
C.106493
-0.025777
0.024222

= 100),

-0.059525
0.591290
0.481410

-C.

-0.

~C.045004 oo

0.487017
0.424595
"O‘
0.103087
0.147191

- =0.116826 —

100),

C.24C494
0.727156
0.438056
0.
0.
0.100769
0.692709
0.236359
0.
-0.040573

0.149564

0.191879

© 0.555116- -
0.



MAXIMUM LIKELIHOOD FACTOR MATRIX,
ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS,

N OOV ON -~

1

0.013187
0.108094
0.839820
-0.016860
0.714638
0469160
0.163598
0.426145
-0.031479
0.186214
0.026528
0.051701

2

0.611569
0.576816

- =0e101449 -

-0.103110
0.
0.121515

-0.167162

~-0.020723
0.504366

~0.174040
0.0781388
0.333219

MAXIMUM LIKELIHOOD FACTOR MATRIX.
ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS.

VOOV S WN -

MAXIMUM LIKELIHOOD FACTOR MATRIX.

ROTATED

OO~ O W N -

1

-0.014053
-0.029432
0.691827
0.024863
0.895629
0.618456
-0.030106
0.433922
0.113391
~0.063895
0.074179
-0.014163

1

0.028171
0.075643
0.707116
-0.032755
0.803930

0653994 -

=0.034617
0.398207
0.003256

-0.052322

0.162989
-0.086253

2

0.8754582
0.753992
0.159752
0.1632232
O.
0.004728
0.173634
0.180220
0.5C94¢8
0.150636
=-0.0061757
0.242417

2

0.784109
0.877349
0.196898

-0.087395
0.

-~04124020

0.430060
04315047
0.448661
=0.229554
0.033483

0.400631 -

NOQ 160

TO FORM WITH SPECIFIED ZERO ELEMENTS.

(N = 100).

3 4
0.634095 0.271920
0.062428 0.752043
0.087110 © 04412308 -
0.902373 0.

0. 0.
-0.015187 -0,321805
0.008451 0.676130
0.199697 0.234993

00 0.
0.383116 0.2281782
0.210937 ~0.014148
0.051723 0.048643

NO, 17. (N = 100).

3 4

0.123826 0.156428

-0.058733 0.550142
0.112107 C.58C426
0.986066 -0.
-0. -0.
-0.017676 0.198934
-0.138471 Ce7374398
0.071868 0.409487
-0. -0.
0.325161 0.026025
0.293392 -C.038770
-0.059732 -0.184502
NO. 18, (N = 100),

3 4

0.422255 -0.267134
~0.046736 0269958
-0.051789 0.391659

0.685335 . -0.

00 -0.

0.037078 - =0.149674

0.169547 0.523464
-04285550 0.011603

0. "0¢

0.402157 0.028238

0.347744 -0.260091

0.108047

-04286936 —



MAXIMWM LIKELIHOOD FACTOR MALRIX,
ROTATED TO FORM WITH SPECIFIFD ZERO ELEMENTS.,

VD~V W

1

-0.006827

0.014506

- 0.798864

-0.019610
0.776822
0.740399
0.023327
0.515589
0.0253481
0.057336

-0.107462

~0.116258

2

0.824795
0.615727

=0.075874

0.391923
0.
-0.09i1881
0.084895
0.01:'909
0.414612
0.19:411
0.024062
0.691833

MAXIMUM LIKELIHOOD FACTOR MATRIX,

ROTATED TO FORM WITH SPECIFIED ZERO ELEMENTS

CO~NOCWMH WN—

1

0.052278
0.003949
0.850081
-0.000974
0.750852
04689901
-0.113622
0.317890
-0.045127
=0.294492
0.063205
0.079276

2

0.849150
0.786204

~0.149168
0.032810
0.

- =0.024175 -

-0.026732
0.125000
0.440759
0.1694179

-0.160284
0.258271

,Wrﬂﬁho.logggg,;g_WQ;;a

NO. 19. (N = 100),
3 4
0.423161 0.307713
-0.321881 0.642189
-0.331724
0.518153 -0.
-0 -0.
-0.015026 -06172427 -
-0.469485 0.485117
-0.336497 C.222787
.—0‘ ‘Oo
0.215776 ~0.065045
0.333082 =-0.032464
~0.199044 -0.682715
NO. 20, (N = 100).
3 4
0.453386 -0.246097
-0.102007 0.605649
-0.088065 0.496936
0.786952 -0.
-0. "'0.
-0.195546 0.074133
~0.012056 0.715124
~0.200087 0.394878
-0. =0,
0.404607 0.116078
0.501891 0.248533
-0.124004 —0.140834




APPENDIX C.

Computing procedure for obtaining an oblique transformation

matrix A (m x m) such that the sum of squares_of differenceg between

corresponding elements of the transformed factor matrix (FA ) and the

simple structure factor matrix ® (pxm)} is a minimum.

A transformation matrix A (m x mj is required such that
trace (- FAj (¢e- F A
is a minimum and

Diag (AN 4) = L

Computation is simpiified if the factor matrix F is in principal
axes form (which may be obtained by Thurstone‘s method of derived principal

axes (42) ). Then

where Dl is a diagonal matrix of order m.

The transformation matrix | satisfies the equation

D A + A D = F'o
! B

where D 8 is a diagonal matrix of order m with unknown diagonal elements.
The following computational procedure may be used to obtain A

1. Calculate

Gmzxm) = F' ¢

2. One column of A is calculated at a time. Obtain initial
. . .th .
approximations for the elements of the j column (j=1.... m)

of A from



C2.

(0} gi:
re. = —L (i=1 .. m)
& §i

(0
Find the position k of the largest element i kj of this column vector.

The superscript (nj) denotes the number of the iteration.

. | N
3. Compute the sum of squares of the elements of the jt column of A
(n) M@ 2
] = & (.
i=1 H
4, o41- s(ni | falis within a specified tolerance limit,

iteration is terminated and step 9 1is carried out. If the tolerance limit

is exceeded step 5 1s carried our.

5. Compute
)
@ Akj
/5o
6. If n is greater than or equal to 2 compute

VS N S I s
L) _@-1)

If n isequal to 0 or 1 let

)
MICUR
7. Compute
B(H) — X -+ _gil_
J ) (n;



C3.

h
8. Compute the next approximations to the elements of the jt

column of A
(n+1} 8ij
J\ij = —
n,
¥i * 8

Return to Step 3 and carry out the next iteration.

9. Normalize the vector.
(n;
Ajj = —— i =1....m)j
Vsin,“ )

Unless the m columns of 4 have been obtained, return to step 2

A

and repeat the procedure for the next colimn of &

When the above procediure was applied to factor matrices of order
12 x 4 and a tolerance limit of . 000001 was used, a maximum of six iterations

was required to obtain a column of A .











