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1. Introduction

A hot and dense state of strongly interacting quarks and gluons, the so-called quark-gluon
plasma (QGP), is created in nucleus-nucleus collisions at high-energies. The evidence for this
state was first obtained at the BNL RHIC [1–4]. Experiments at the CERN LHC, performed with
nucleus-nucleus collisions at much higher energies, confirmed the RHIC results with much larger
event samples and kinematic ranges. An important feature of theQGP is its collective, hydrodynamic
expansion. The initial spatial geometry of the overlap region of the colliding nuclear densities results
in anisotropic pressure gradients that, in turn, are reflected in the azimuthal anisotropic distribution
of emitted particles. This anisotropy is used to perform detailed studies of the QGP formed at
the LHC [5–17]. Fluctuations in the position of nucleons in the incident nuclei have a significant
influence on the QGP expansion [6, 10, 18–20]. The study of the event-by-event fluctuations can
give insight into the early stage dynamics of the collisions [21–23].

The elliptic flow harmonic v2 is the leading term of a Fourier series expansion of the azimuthal
angle distributions in the event plane frame (defined by the beam direction and the direction of
maximum emitted particle density) [24, 25]. The cumulant method, introduced in Refs. [26, 27], is
based on multiparticle correlations in the laboratory frame. Cumulants obtained by correlating four
ormore particles are able to suppress short-range correlations arising from jets and resonance decays.
The v2 value can be determined bymeasuring correlations among the emitted particles. This involves
relating the v2 values to cumulants c2{2k}, where 2k is the cumulant order. A direct correlation
exists between vn{2k} and cn{2k} values, where n is the order of the Fourier harmonic. For
example, v2{2}, v2{4}, and v2{6} are referred to as the 2-, 4-, and 6-particle cumulant based values
for the v2, respectively. In this analysis, the v2{2k} values are determined using the Q-cumulant
method in which one calculates multi-particle cumulants in terms of moments of Q-vectors [28].
Fluctuation behavior can be studied based on the v2{2k} (k = 1,2,3...) values [27]. For Gaussian
fluctuations, the v2{2k} values with k > 1 are all expected to have the same value [29]. However,
the measured higher-order v2{2k} (k = 2,3,4) show a fine splitting [30, 31] that is a consequence of
the non-Gaussian behavior of the fluctuations [32]. In Ref. [33] it is noted that the main signature of
non-Gaussian fluctuations is a nonzero skewness of the v2 distribution. This suggests, as described
in Ref. [33], a hydrodynamic probe defined by the ratio (v2{6} − v2{8})/(v2{4} − v2{6}). The basic
premise of a hydrodynamic probe is that the observed azimuthal correlations of the bulk medium
can be directly related to the initial-state geometry.

This analysis has been performed with measurement of the ten-particle cumulant based v2{10}
values for lead-lead (PbPb) collisions at √sNN = 5.02 TeV, collected by the CMS experiment at
the LHC, with an integrated luminosity of 0.58 nb−1 [34]. This enables us to develop a new
hydrodynamic probe using the v2{10} value and the corresponding values for lower-order cumulant
based v2{2k}. The new hydrodynamic probe is defined as the ratio (v2{8}−v2{10})/(v2{6}−v2{8}).
These two hydrodynamic probes should be independent of centrality if higher-order moments of the
v2 distribution are negligible. The centrality is expressed as a percentile of the total inelastic hadronic
cross section. The events with 0% centrality have the largest overlap of the two colliding nuclei.
The experimental evidence for a significant centrality dependence, presented in this contribution,
indicates that higher-order moments are not negligible.

The powers in the expansion of the elliptic flow generating function into a Taylor series
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correspond to the higher-order central moments of the v2 distribution. The skewness (s) is the 3rd

central moment and describes the asymmetry of the v2 distribution. The kurtosis (κ) is the 4th central
moment and describes peakedness of the center and heaviness of the tail of the distribution. The
superskewness (p) is the 5th central moment and gives a measure of the relative importance of the
tails as compared to the central part of the distribution. In this analysis, a second hydrodynamic probe
is introduced that uses the v2{10} value. It is shown that both the original and the new probe require
the inclusion of higher-order central moments to describe their observed centrality dependence.
The kurtosis is needed for the original probe, and both the kurtosis and the superskewness for
the second. Precise measurements of the fluctuation-driven moments of the v2 distribution place
stringent constraints on hydrodynamic predictions of the QGP evolution.

2. The CMS detector and data used

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron
calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters (HF), made
of steel and quartz-fibres, extend the pseudorapidity coverage provided by the barrel and endcap
detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke
outside the solenoid. Events of interest are selected using a two-tiered trigger system. The first
level (L1), composed of custom hardware processors, uses information from the calorimeters and
muon detectors to select events at a rate of around 100 kHz [35]. The second level, known as
the high-level trigger (HLT), consists of a farm of processors running a version of the full event
reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz
before data storage [36]. Amore detailed description of the CMS detector, together with a definition
of the coordinate system used and the relevant kinematic variables, can be found in Ref. [37].

The data analyzed in this contribution, before applying the selection described below, consist
of 4.27 109 minimum bias lead-lead (PbPb) collisions at √sNN = 5.02 TeV, collected in 2018 with
an integrated luminosity of 0.58 nb−1 [38]. The minimum bias events are triggered by requiring
signals above readout thresholds of 3 GeV in each of the two HF calorimeters [36]. The events
are required to have at least one reconstructed primary vertex (based on two or more tracks) within
a distance (|zvtx |) of 15 cm from the nominal interaction point along the beam axis. The primary
vertex is selected as the one with the highest track multiplicity in the event.

More technical details about tracks selection and their efficiency coorections can be found
in Ref. [34]. In this analysis, the systematic uncertainties are determined by varying the vertex
selection, the track selection, the centrality determination, and the efficiency correction. The
detailed description about these sources of the systematic uncertainties can be found in Ref. [34].

3. Analysis procedure

An improved version of the cumulant method, the Q-cumulant method, introduced in Ref. [28],

is based on the flow vector Qn =

M∑
j=1

einφ j . Here, n is the flow harmonic order, M denotes the
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event multiplicity, i.e., the number of analyzed tracks in the given event, and φ j is the laboratory
azimuthal angle of the track indexed with j. The relations between the flow vector Qn and 2m-
particle azimuthal correlators 〈2m〉 as well as its weighted mean 〈〈2m〉〉 are defined in Ref. [28].
The 2m represents the cumulant order. The double brackets 〈〈...〉〉 denote a weighted average over
all events within a given centrality class. From the recursion relationship for the cn{2k} values
given in Ref. [39], the cn{10} value is determined as

cn{10} = 〈〈10〉〉 − 25〈〈2〉〉〈〈8〉〉 − 100〈〈4〉〉〈〈6〉〉 + 400〈〈6〉〉〈〈2〉〉2 + 900〈〈2〉〉〈〈4〉〉2

− 3600〈〈4〉〉〈〈2〉〉3 + 2880〈〈2〉〉5.
(1)

From a general formula that relates the vn{2k} and the cn{2k} values, given in Ref. [34], the
formula for the vn{10} is given as

vn{10} = 10

√
1

456
cn{10}. (2)

4. Hydrodynamic probes

The cumulant expansion formulation is given through the formalism of generating functions.
The Fourier–Laplace transform of the symmetry plane elliptic harmonic vector v2 = vxex + vyex is
〈el·v2〉, where the brackets indicate the average of eventswithin a centrality class. Here, l = lxex+lyey
is a vector variable with ex denoting the unit vector in the symmetry plane perpendicular to the
beam axis, while ey is the unit vector perpendicular to the symmetry plane. The symmetry plane is
defined in terms of the beam direction and the impact parameter vector b. The vector b connects
imagined centers of the colliding nuclei in the perpendicular to the beam axis. The experimentally
accessible event plane is, on average, in the same direction as the symmetry plane, but fluctuates
around it because of resolution effects due to finite particlemultiplicities. In Ref. [33], the generating
function of the cumulants is defined as ln〈el·v2〉. If one expands this generating function up to the
4th power in (lx, ly) one gets the expression in terms of central moments of the (vx, vy) distribution,
that includes the variance (σ), s, and κ [40]. By extending this expansion up to the 5th power in
(lx, ly), in Ref. [34] is obtained the expression that contains additional terms that include p central
moments of the (vx, vy) distribution:

ln〈el·v2〉 ≈ lx v̄2 +
1
2!
(l2
xσ

2
x + l2

yσ
2
y ) +

1
3!
(l3
x s30 + 3lx l2

y s12) +
1
4!
(l4
xκ40 + 6l2

x l2
y κ22 + l4

y κ04)

+
1
5!
(l5
xp50 + 10l3

x l2
y p32 + 5lx l4

y p14).

(3)

The higher-order central moments are defined as in Refs. [34, 40].
By following the procedure for expanding the generating function of the v2{2k}, as described in

Ref. [33], one can express them in terms of the central moments. In difference to the derivation per-
fomed in [33], the current analysis additionally covers the 4th and 5th moments. The corresponding
formulas for the v2{2k} can be found in [34].
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If one neglects the 5th-order moments p, as well as the terms with the multiplier (σ2
y − σ

2
x ),

then the first hydrodynamic probe given in Ref. [33] can be expressed as

v2{6} − v2{8}
v2{4} − v2{6}

≈
1

11
−

4κ40
11[2v̄2s30 + 3(κ40 + κ22)]

. (4)

Neglecting the kurtosis κ moment would reduce the right-hand side of Eq. (4) to a constant value
of 1/11. To check the approximation given by Eq. (4) experimentally, one would need to express its
right-hand side through the measurable quantities v2{2k} [34].

h1 =
v2{6} − v2{8}
v2{4} − v2{6}

≈ hTaylor
1 =

1
11
−

1
11

v2{4}2 − 12v2{6}2 + 11v2{8}2

v2{4}2 − v2{6}2
. (5)

In the above relation, h1 denotes the hydrodynamic probe and hTaylor
1 denotes the corresponding

Taylor expansion of this probe expressed trough the v2{2k} values.
By employing the v2{10} harmonic, the hydrodynamic probe h2, expressed in terms of the

moments in the expansion of the v2 generating function, is given by

v2{8} − v2{10}
v2{6} − v2{8}

≈

≈
3
19
+

88p50

95[4s30v̄
2
2 − 2v̄2(κ40 − 3κ22) − (13p50 + 10p32 − 3p14) − 2(σ2

y − σ
2
x )(5s30 − 6s12)]

.
(6)

Similarly to the h1, the new hydrodynamic probe, h2, can be Taylor expanded and expressed in
terms of the measured v2{2k} values as

h2 =
v2{8} − v2{10}
v2{6} − v2{8}

≈ hTaylor
2 =

3
19
−

1
19

3v2{6}2 − 22v2{8}2 + 19v2{10}2

v2{6}2 − v2{8}2
. (7)

5. The standardized and corrected moments

The standardized skewness, γexp
1 , and kurtosis, γexp

2 , expressed in terms of the v2{2k} values,
are given by Eq. (15) in Ref. [40]. The standardized superskewness, γ3, is defined as

γ3 ≡
p50

σ5
x

. (8)

In order to express the standardized superskewness through the measured v2{2k} values with
k = 1, ...,5, one can use the expansion of the fifth power of the v2{2k} value. The expression for
the experimentally measured superskewness is then given as

γ
exp
3 = 6

√
2

3v2{6}5 − 22v2{8}5 + 19v2{10}5

(v2{2}2 − v2{4}2)5/2
. (9)

The standardized moments, γexp
i (i = 1,2,3), have contributions from higher-order moments

of the v2 distribution that are not negligible (more details in Ref. [34]). As it has been shown in
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Ref. [34], the “corrected" (“cleaned") moments, which are free of contributions from higher-order
moments, can be also expressed through measurable v2{2k} values. As an example, the corrected
skewness can be expressed as

γ
exp
1,corr = −23/2 187v2{8}3 − 16v2{6}3 − 171v2{10}3

(v2{2}2 − 40v2{6}2 + 495v2{8}2 − 456v2{10}2)3/2
. (10)

The same correction procedure, as described inRef. [34], can also be applied to the standardized
kurtosis and the standardized superskewness. The corrected form of these moments are then
determined as

γ
exp
2,corr = −

3
2

v2{4}4 + 24v2{6}4 − 253v2{8}4 + 228v2{10}4

(v2{2}2 − 40v2{6}2 + 495v2{8}2 − 456v2{10}2)2
, and (11)

γ
exp
3,corr = 6

√
2

3v2{6}5 − 22v2{8}5 + 19v2{10}5

(v2{2}2 − 40v2{6}2 + 495v2{8}2 − 456v2{10}2)5/2
. (12)

6. Results

It was previously shown in Ref. [33] that the presence of non-Gaussian fluctuations in the
initial-state energy density leads to a fine splitting between the higher-order v2{2k} values. The
v2{2k} (k = 1, ...,5) values are presented in Fig. 1 as functions of centrality in PbPb collisions at
√

sNN = 5.02 TeV. The results are obtained from charged particles detected within |η | < 2.4, and
with 0.5 < pT < 3.0 GeVc. The systematic uncertainties are about 2 orders of magnitude greater
than the statistical ones. A clear splitting between the v2{2} and higher-orders cumulant based
v2{2k} (k = 2, ...,5) values is visible, with v2{2}2 ≈ v2{2k}2 + 2σ2

v for k > 1 and where σ2
v is

the v2 variance related to flow fluctuations [33]. From Fig. 1 it is clear that the flow fluctuations
become larger going to more peripheral collisions.

The measured v2{2k} (k = 1, ...,5) values are used to calculate the hydrodynamic probes given
by the left-hand sides of Eqs. (5) and (7). Figure 2 displays these distributions with closed symbols,
while with open symbols are shown the right-hand sides of Eqs. (5) and (7). The last are also
constructed using the measured v2{2k} (k = 1, ...,5) values.

As a consequence of the low multiplicities involved in the calculation of the v2{2k}, statistical
uncertainties quickly increase as peripheral collisions are approached. For very central collisions,
because of the small v2{2k} magnitudes, the relative statistical uncertainties are larger and thus
statistical uncertainties of the hydrodynamic probes are increased. The magnitudes of the statis-
tical uncertainties of the h2 distribution are larger with respect to those corresponding to the h1
distribution because higher-order cumulants are involved. The distributions themselves show a
weak centrality dependence. With an exception of the first analyzed bin, they have their lowest
magnitudes around 10–20% centrality range, and the magnitude show a trend of a slow increase
going to peripheral collisions. Based on an event-by-event measurement of the v2 distribution, it
was reported in Ref. [30] that the h1 has a value of 0.143 ± 0.008 (stat) ±0.014 (syst) for 20–25%
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Preliminary CMS )-1PbPb 5.02 TeV (0.58 nb
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{4}2v
{6}2v
{8}2v
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Figure 1: The v2{2k} (k = 1, ...,5) values as functions of centrality in PbPb collisions at √sNN = 5.02 TeV.
The measurement is performed with charged particles within the acceptance region. The vertical sizes of
the open boxes denote the systematic uncertainties. Statistical uncertainties are negligible compared to the
marker size. The centrality value is the center of the interval without uncertainty. The figure is taken from
Ref. [34].
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H
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0.05

0.1
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|<2.4η|

Preliminary CMS )-1PbPb 5.02 TeV (0.58 nb

1h
Taylor
1h

2h
Taylor
2h

Figure 2: The h1 (closed blue circles) and the h2 (closed red squares) hydrodynamic probes as functions of
centrality in PbPb collisions at√sNN = 5.02 TeV. The distributions depicted with the open circles and squares
represent the corresponding Taylor expansions given by hTaylor

1 and hTaylor
2 , respectively. The horizontal blue

(red) line represents a constant value of 1/11 (3/19). The measurement is performed with charged particles
within the acceptance region. The bars (the vertical sizes of the open boxes) denote the statistical (systematic)
uncertainties. The centrality value is the center of the interval without uncertainty. The figure is taken from
Ref. [34].

central events, and increases to 0.185 ± 0.005 (stat) ±0.012 (syst) as the centrality increases to
55–60%. Using the Q-cumulant method, Ref. [31] compares the measured v2{6} − v2{8} and
1
11 (v2{4} − v2{6}) distributions. One should take into account the differences in the acceptances
between the current and these previous analyses. [30, 31]. Although with larger uncertainties,
these results are qualitatively similar to the results from the current analysis. There is a very good
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agreement between the distributions obtained by the expressions given on left-hand and right-hand
sides of Eq. (5) and Eq. (7) in Fig. 2. This indicates the importance of including higher-order terms
in the Taylor expansion of the v2 generating function.

Figure 3 displays the distributions of the measured skewness γexp
1 , kurtosis γexp

2 , and the
superskewness γexp

3 as functions of centrality. The distributions of the corrected skewness γexp
1,corr

(upper), kurtosis γexp
2,corr (middle), and superskewness γexp

3,corr (lower) are presented with the open
blue circles. The systematic uncertainties are generally larger than the statistical ones.

Centrality (%)
0 10 20 30 40 50 60

1ex
p

γ

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

0
<3.0 GeV/c

T
0.5<p

|<2.4η|

Preliminary CMS )-1PbPb 5.02 TeV (0.58 nb

Centrality (%)
0 10 20 30 40 50 60

2ex
p

γ

0.1−

0

0.1

0.2

0.3

Centrality (%)
0 10 20 30 40 50 60

3ex
p

γ

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

 , i=1,2,3 (standardized)
i

expγ

 , i=1,2,3 (cleaned)
i, corr

expγ

Figure 3: The magnitudes of the measured (closed circles) skewness γexp
1 (upper), kurtosis γexp

2 (middle),
and the superskewness γexp

3 (lower) as functions of centrality in PbPb collisions at √sNN = 5.02 TeV. The
magnitudes of the “corrected” skewness γexp

1,corr (upper), kurtosis γ
exp
2,corr (middle), and superskewness γexp

3,corr
(lower) are presented with the open circles. The measurement is performed with charged particles within the
acceptance region. The bars (the vertical sizes of the open boxes) denote statistical (systematic) uncertainties.
The centrality value is the center of the interval without uncertainty. The figure is taken from Ref. [34].
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The γexp
1 is negative over the entire analyzed centrality range. This is a consequence of the

v2,x distribution having a long tail on the low v2,x side (as shown in Fig.1 of Ref. [33]). The
v2,y distribution is symmetric and thus its skewness is equal to zero. The γexp

1 has been predicted
to become more negative as the centrality percentile increases [33]. This measurement confirms
the prediction. The γexp

2 values are positive over nearly the entire analyzed centrality range. The
exception is cross out for the centrality range of 10–20%. The sign of γexp

2 is driven by the mean
eccentricity ε0, and is negative for ε0 < 0.28 and positive for ε0 > 0.29 [40]. Our results are
qualitatively in an agreement with this prediction. If the v2 values were a pure linear response
to the initial-state eccentricity ε2, the corresponding kurtosis will be equal to the kurtosis of the
initial ε2 fluctuations. Although a fully linear response is not expected, calculations predict that
the non-Gaussianities (skewness and kurtosis), although significantly reduced by the hydrodynamic
evolution, are still influenced by the early stage hydrodynamics [33]. Except for collisions with
centralities less than 25%, where it is either positive or vanishes, the γexp

3 moment is negative with
its absolute magnitude increasing towards more peripheral collisions. This is the first measurement
of this moment of the v2 distribution. Without the superskewness it would be impossible to describe
the centrality dependence observed for the new hydrodynamic probe h2.

In addition to the experimental results for the standardized skewness, kurtosis, and superskew-
ness, the corresponding cleaned, i.e. the corrected moments are also presented. Except for the
superskewness, the corrected skewness and kurtosis have larger slopes with respect to the stan-
dardized ones. The corrected moments give additional constraints on models of the initial-state
geometry.

7. Summary

The cumulants of the elliptic flow distribution v2{2k} (1 ≤ k ≤ 5) are determined as functions
of centrality in lead-lead (PbPb) collisions at √sNN = 5.02 TeV, with an integrated luminosity
of 0.58 nb−1. For the first time, the v2{10} value is determined. A fine splitting is observed
between the cumulants, with v2{4} & v2{6} & v2{8} & v2{10}. This splitting is attributed to a
non-Gaussian behavior in the event-by-event fluctuations of the v2 distribution leading to nonzero
values of the skewness, kurtosis, and the superskewness of this distribution. The splitting becomes
finer as the k value increases, and the difference between the adjacent v2{2k} decrease by about
an order of magnitude. The standardized magnitude of the v2 moments are presented, together
with their corrected values, where contributions from higher-order moments (up to the 5th moment)
are removed. The hydrodynamic probes are measured as a function of centrality, with values
slowly increasing going to more peripheral collisions. This contrasts with an earlier hydrodynamic
expectation that had taken the skewness of the initial-state geometry as the main source of non-
Gaussian fluctuations. In this case, the probes are not expected to depend on centrality. The
observed centrality dependences can be understood in terms of the evolving shape of the interaction
regionwith centrality. This is shown by performing a Taylor expansion of the v2 cumulant generating
function up to the 4th (5th) moment, as expressed in terms of the measured v2{2k}, for the first
(second) hydrodynamic probe. Theoreticians can tune hydrodynamics models such to reconstruct
our measured moments. Thus, these results place further constraints on the initial-state geometry
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which could be useful in future hydrodynamic calculations of the medium expansion in high-energy
nucleus-nucleus collisions.
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