Book of abstracts

IX International School and Conference on Photonics

PHOTONICA2023

with joint events:

Understanding interaction light - biological surfaces: possibility for new electronic materials and devices

&

Biological and bioinspired structures for multispectral surveillance

&

Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications

&

Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents

August 28 - September 01, 2023, Belgrade, Serbia

Editors

Jelena Potočnik, Maja Popović, Dušan Božanić Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade

ABSTRACTS OF TUTORIAL, KEYNOTE, INVITED LECTURES, PROGRESS REPORTS AND CONTRIBUTED PAPERS

of

IX International School and Conference on Photonics

PHOTONICA2023

August 28 - September 01, 2023, Belgrade, Serbia

Editors

Jelena Potočnik, Maja Popović, Dušan Božanić

Publisher

Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade Mike Petrovića Alasa 12-14 11351 Vinča, Belgrade, Serbia

Printed by

Serbian Academy of Sciences and Arts

Number of copies 200

ISBN 978-86-7306-165-8 ISBN 978-86-7306-168-9 (Online)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, http://creativecommons.org/licenses/by-nc-nd/4.0/

PHOTONICA2023 – IX International School and Conference on Photonics (www.photonica.ac.rs) is organized by Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade (www.vin.bg.ac.rs), Serbian Academy of Sciences and Arts (www.sanu.ac.rs), and Optical Society of Serbia (www.ods.org.rs).

Other institutions that helped the organization of this event are: Institute of Physics Belgrade, University of Belgrade (www.ipb.ac.rs), Faculty of Physics, University of Belgrade (www.eff.bg.ac.rs), School of Electrical Engineering, University of Belgrade (www.etf.bg.ac.rs), Institute of Chemistry, Technology and Metallurgy, University of Belgrade (www.ihtm.bg.ac.rs), Faculty of Technical Sciences, University of Novi Sad (www.pmf.ni.ac.rs), Faculty of Sciences and Mathematics, University of Belgrade (www.bio.bg.ac.rs) and Faculty of Sciences and Mathematics, University of Kragujevac (www.pmf.kg.ac.rs).

PHOTONICA2023 is organized under auspices and with support of the Ministry of Science, Technological Development and Innovation, Republic of Serbia (www.nitra.gov.rs). PHOTONICA2023 is supported and recognized by Optica (Formerly OSA) - The Optical Society (www.optica.org).

Committees

Scientific Committee

- Aleksandar Krmpot, Serbia
- Aleksandra Maluckov, Serbia
- Bojan Resan, Switzerland
- Boris Malomed, Israel
- Branislav Jelenković, Serbia
- Carsten Ronning, Germany
- Concita Sibilia, Italy
- Darko Zibar, Denmark
- Dmitry Budker, Germany
- Dragan Inđin, United Kingdom
- Edik Rafailov, United Kingdom
- Francesco Cataliotti, Italy
- Giannis Zacharakis, Greece
- Goran Isić, Serbia
- Goran Mašanović, United Kingdom
- Ivana Vasić, Serbia
- Jasna Crnjanski, Serbia
- Jelena Radovanović, Serbia
- Jelena Stašić, Serbia
- Jerker Widengren, Sweden
- Jovan Bajić, Serbia
- Ljupčo Hadžievski, Serbia
- Luca Antonelli, United Kingdom
- Marco Canepari, France
- Marko Krstić, Serbia
- Marko Spasenović, Serbia
- Milan Kovačević, Serbia
- Milena Milošević, Serbia
- Milivoj Belić, Qatar
- Mirjana Novaković, Serbia
- Nikola Stojanović, Germany
- Nikola Vuković, Serbia
- Nikos Pleros, Greece
- Pavle Andus, Serbia
- Petra Beličev, Serbia
- Sergei Turitsyn, United Kingdom
- Vladan Pavlović, Serbia
- Vladan Vuletić, United States of America
- Vladana Vukojević, Sweden
- Zoran Grujić, Serbia

Organizing Committee

- Dušan Božanić, Vinča Institute of Nuclear Sciences, Belgrade (Chair)
- Jelena Pajović, Faculty of Physics, University of Belgrade (Deputy Chair)
- Radovan Dojčilović, Vinča Institute of Nuclear Sciences, Belgrade (Deputy Chair)
- Maja Popović, Vinča Institute of Nuclear Sciences, Belgrade (Deputy Chair)
- Jelena Potočnik, Vinča Institute of Nuclear Sciences, Belgrade
- Goran Gligorić, Vinča Institute of Nuclear Sciences, Belgrade
- Danijela Danilović, Vinča Institute of Nuclear Sciences, Belgrade
- Kolja Bugarski, Vinča Institute of Nuclear Sciences, Belgrade
- Milica Nedić, Vinča Institute of Nuclear Sciences, Belgrade
- Miljana Piljević, Institute of Physics Belgrade
- Đorđe Trpkov, Vinča Institute of Nuclear Sciences, Belgrade
- Dragana Tošić, Vinča Institute of Nuclear Sciences, Belgrade
- Anamarija Abu el Rub, Vinča Institute of Nuclear Sciences, Belgrade
- Vanja Ralić, Vinča Institute of Nuclear Sciences, Belgrade

Technical Organizer

Lufthansa City Center

Panacomp Wonderland Travel

http://www.panacomp.net/

Tel: +381 21 466 075 Tel: +381 21 466 076

Tel: +381 21 466 077

Dear Colleagues, friends of photonics,

We are honored by your participation at our PHOTONICA 2023 and your contribution to the tradition of this event. It is our pleasure to host you in Belgrade and in Serbia. Welcome to the world of photonics.

The International School and Conference on Photonics, PHOTONICA, is a biennial event held in Belgrade since 2007. The first meeting in the series was called ISCOM (International School and Conference on Optics and Optical Materials), but it was later renamed to PHOTONICA to reflect more clearly the aims of the event as a forum for education of young scientists, exchanging new knowledge and ideas, and fostering collaboration between scientists working within emerging areas of photonic science and technology. A particular educational feature of the program is to enable students and young researchers to benefit from the event, by providing introductory lectures preceding most recent results in many topics covered by the regular talks. In other words, tutorial and keynote speakers will give lectures specifically designed for students and scientists starting in this field. Apart from the oral presentations PHOTONICA hosts vibrant poster sessions. A significant number of best posters will be selected and the authors will have opportunity to present their work through short oral presentations – contributed talks.

The wish of the organizers is to provide a platform for discussing new developments and concepts within various disciplines of photonics, by bringing together researchers from academia, government and industrial laboratories for scientific interaction, the showcasing of new results in the relevant fields and debate on future trends.

PHOTONICA 2023 will host three joint events: PhoBioS COST Action "Understanding interaction light - biological surfaces: possibility for new electronic materials and devices", NATO Science for Peace and Security Program (grant G5618) workshop "Biological and bioinspired structures for multispectral surveillance", workshop on "Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications" and BioPhysFUN workshop "Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents". Following the official program, the participants will also have plenty of opportunities to mix and network outside of the lecture theatre with planned free time and social events.

This book contains 130 abstracts of all presentations at the IX International School and Conference on Photonics, PHOTONICA2023. Authors from all around the world, from all the continents, will present their work at this event. There will be 4 tutorial and 7 keynote lectures to the benefits of students and early stage researches. The most recent results in various research fields of photonics will be presented through 16 invited lectures and 8 progress reports of early-stage researchers. Within the poster sessions and a number of contributed talks, authors will present 95 presentations on their new results in a cozy atmosphere of the building of Serbian Academy of Science and Arts.

Belgrade, August 2023 Editors

Conference Topics

- 1. Quantum optics and ultracold systems
- 2. Nonlinear optics
- 3. Optical materials
- 4. Biophotonics
- 5. Devices and components
- 6. Optical communications

- 7. Laser spectroscopy and metrology
- 8. Ultrafast optical phenomena
- 9. Laser material interaction
- 10. Optical metamaterials and plasmonics
- 11. Machine learning in photonics
- 12. Other topics in photonics

Joint Events

PhoBioS COST Action - Understanding interaction light - biological surfaces: possibility for new electronic materials and devices

NATO Science for Peace and Security Program - Biological and bioinspired structures for multispectral surveillance

Workshop - Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications

BioPhysFUN workshop - Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents

Table of Contents

Tutorial Lectures

T.1	Measurements beyond the Heisenberg uncertainty bound	~
T.2	E.S. Polzik The intelligent microscope at the nanoscale: multimodal microscopy from	2
1.2	fluorescence to label-free	
	A. Diaspro	3
T.3	Nanoplasmonics: Fundamentals & Applications	
	S.I. Bozhevolnyi	4
T.4	VUV Circularly-Polarized Light as a symmetry-breaking driving force:	
	implications for the origin of life's homochirality L. Nahon	5
	L. Nunon	J
Keynot	te Lectures	
K.1	Recent trends in superfluid atomic gases: ferromagnetic, liquid and	
	supersolid states	_
K.2	A. Recati Nonlinear optics in atomically thin materials	7
K. 2	G. Soavi	8
K.3	Three-dimensional imaging flow cytometry	C
12.0	A. Bassi	9
K.4	From French fries to Foie Gras, turning around a synchrotron	
	F. Jamme, J. Pajovic, F. Wien and M. Réfrégiers	10
K.5	Einstein-Podolsky-Rosen experiment with two Bose-Einstein condensates	
17. (P. Colciaghi, Y. Li, P. Treutlein and T. Zibold	11
K.6	Development of table-top ultrafast soft-X spectroscopy for material science	
	C. Vozzi	12
K.7	Ultrafast chirality: the road to efficient chiral measurements	12
121,	O. Smirnova	13
Invited	Lectures	
I.1	Optical control of topological and correlated electronic states	
	M. Hafezi	15
I.2	Scanning quantum microscopy	
1.2	F. Setzpfandt	16
I.3	A single ion meets a single Rydberg atom <i>R. Löw</i>	17
I.4	Photonic Landau levels	1 /
1.7	M. Rechtsman	18
I.5	Shape-changing microstructures for multifunctional microfluidics	
	S. Nocentini, S. Donato, D. Martella, C. Credi, C. Parmeggiani and D.S.	
	Wiersma	19
I.6	Deeper and faster: new tools for nonlinear bioimaging	_
	L. Bonacina	20

1. /	of liquid samples C. Credi	21
I.8	Rapid and sensitive cancer detection with fluorescence lifetime imaging microscopy	21
	W. Su, M. Ji, J. Ma, R. Guo and L. Mi	22
I.9	Photonic integrated circuits based on linearly coupled waveguide arrays <i>J. Petrovic</i>	23
I.10	Excursion of a biophysicist to the quantum world A. Dér	24
I.11	Light-enhanced transdermal drug delivery R. Boukherroub	25
I.12	Luminescent thermometry using lanthanide and transition metal-activated phosphors Ž. <i>Antić</i>	26
I.13	Black box certification of resources for photonic quantum technologies S. Neves, L. dos Santos Martins, V. Yacoub, P. Lefevbre, I. Šupić, D.	27
I.14	Markham and E. Diamanti Femtosecond laser direct writing of fiber optic microstructure devices X. Shu	27 28
I.15	Microscopic theory of transport and optics in superlattices and applications to metabolomics and novel device functionalities	20
I.16	M.F. Pereira, A. Apostolakis, H. Zafar, V. Vaks and V. Anfertev Blue and red diode pumped low-cost ultrafast lasers for biomedical	29
	applications B. Resan	30
Progress	Reports	
P.1	Broadband photonic quantum memory in atomic ensembles K. Shinbrough, B.D. Hunt, S. Park, K. Oolman, T. Loveridge, J.G. Eden and V.O. Lorenz	32
P.2	Measuring the dipolar interaction shift of the BEC critical temperature <i>M. Krstajic</i>	33
P.3	Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn _{1-x} Fe _y O _(1-x+1.5y)	
	· · · · · · · · · · · · · · · · · · ·	
P.4	V. Rajic, S. Markovic, M. Popovic, M. Novakovic, Lj. Veselinovic, I. Stojkovic Simatovic, S.D. Skapin, S. Stojadinovic and V. Rac Synchrotron radiation photoemission spectroscopy study of the valence	34
P.4	V. Rajic, S. Markovic, M. Popovic, M. Novakovic, Lj. Veselinovic, I. Stojkovic Simatovic, S.D. Skapin, S. Stojadinovic and V. Rac Synchrotron radiation photoemission spectroscopy study of the valence band electronic structure of Ag-Ag ₂ S Janus nanoparticles for the development of nanomotors propelled by NIR light D. Danilović, D.K. Božanić, J. Pajović, G.A. Garcia, L. Nahon, T. Marić	
P.4 P.5	V. Rajic, S. Markovic, M. Popovic, M. Novakovic, Lj. Veselinovic, I. Stojkovic Simatovic, S.D. Skapin, S. Stojadinovic and V. Rac Synchrotron radiation photoemission spectroscopy study of the valence band electronic structure of Ag-Ag ₂ S Janus nanoparticles for the development of nanomotors propelled by NIR light D. Danilović, D.K. Božanić, J. Pajović, G.A. Garcia, L. Nahon, T. Marić and V. Djoković Photosensitizer potential of doped and undoped nanostructured TiO ₂ M. Matijević, L. Korićanac, Đ. Nakarada, J. Žakula, M. Stepić, M.	35
	V. Rajic, S. Markovic, M. Popovic, M. Novakovic, Lj. Veselinovic, I. Stojkovic Simatovic, S.D. Skapin, S. Stojadinovic and V. Rac Synchrotron radiation photoemission spectroscopy study of the valence band electronic structure of Ag-Ag ₂ S Janus nanoparticles for the development of nanomotors propelled by NIR light D. Danilović, D.K. Božanić, J. Pajović, G.A. Garcia, L. Nahon, T. Marić and V. Djoković Photosensitizer potential of doped and undoped nanostructured TiO ₂	

P.7	Influence of thin oxide layer to photoacoustic signal of nano-mechanical structures	
n o	K.Lj. Đorđević, S.P. Galović, M.A. Dragaš, D.K. Markushev and D.D. Markushev	38
P.8	Modeling microwave ablation for tumor treatment using open-source software components N. Boskovic, M. Radmilovic-Radjenovic and B. Radjenovic	39
Contrib	uted Papers	
1. Quan	tum optics and ultracold systems	
QO.1	Exploiting the quantumness of coherent states: toward macroscopic quantum light	
QO.2	C. Hermann Avigliano Anomalous diffusion and mixed dynamics in a classical Bose-Hubbard chain	42
QO.3	D. Markovic and M. Cubrovic Correlated photon pairs by Four Wave Mixing in alkali vapor for imaging	43
	application M.M. Ćurčić, D. Arsenović and B. Jelenković	44
QO.4	Transport of cold bosonic atoms in optical lattices I. Vasić and J. Vučičević	45
QO.5	Experimental and theoretical study of the phase response of M_x magnetometer to modulating transversal magnetic field	4.6
QO.6	M.M. Ćurčić, A. Milenković, A. Bunjac, T. Scholtes and Z. Grujić Spontaneous emission of three-level ladder-type atom coupled to one-dimensional rectangular waveguide	46
QO.7	Lj. Stevanović and M. Perić Quantized vortices in dipolar BECs when crossing the superfluid-	47
Q0.7	supersolid phase transition M. Sindik, A. Recati, S.M. Roccuzzo, L. Santos and S. Stringari	48
2. Nonl	inear optics	
NO.1	Absorption coefficients and refractive index changes in a strongly prolate	
	and strongly oblate ellipsoidal quantum dot V. Pavlovic and Lj. Stevanovic	50
NO.2	Impact of nonlinearity on the zero-mode lasing in optical lattices	51
NO.3	M. Nedić, G. Gligorić, J. Petrovic and A. Maluckov The modulation instability triggered band relaxation in photonic Chern insulator	31
NO 4	A. Mančić, M. Nedić, D. Leykam and A. Maluckov	52
NO.4	Coupled vortex generator in active multi-core fibers <i>P.P. Beličev, G. Gligorić and A. Maluckov</i>	53
NO.5	Electric-field induced SHG (EFISHG) in graphene?	5 A
NO.6	J. Woeste, N. Stojanovic and M. Gensch Rogue wave clusters of the nonlinear Schrödinger equation composed of Akhmediev breathers and Kuznetsov-Ma solitons	54
	S.N. Nikolić, S. Alwashahi, N.B. Aleksić and M.R. Belić	55

NO.7	Counterpropagating rogue waves <i>M.S. Petrovic, N.B. Aleksic, A.I. Strinic and M.R. Belic</i>	56
NO.8	Solutions to nematic liquid crystals systems with cubic-quintic and septic nonlinearities using the Jacobi elliptic function expansion method	
	N. Petrović	57
3. Optical	al materials	
OM.1	Centrosymmetric, non-symmorpic, non-magnetic, spin-orbit coupled layers without Dirac cones: a tight-binding example	59
OM.2	V. Damljanović Helical and square-spiral copper nanostructures: The effect of thickness and deposition conditions on the structural and optical properties	
OM.3	J. Potočnik, N. Božinović, M. Popović, M. Nenadović and M. Novaković Luminescent lanthanide molecular materials for photonics applications	60
OM.4	D. Mara Interference effect in surface modified ZnS nanoparticles/Poly (methylmethacrylate) nanocomposites	61
	N. Romcevic, B. Hadzic, M. Curcic, V. Radojevic, N. Paunovic and M. Romcevic	62
OM.5	Metal ion-implanted TiN thin films: Induced effects on structural and optical properties M. Popović, M. Novaković, D. Pjević, D. Vaňa, D. Jugović and P. Noga	63
OM.6	Real-time fabrication of microstructures on the modified chitosan B. Murić, S. Savić-Šević, A. Kovačević, D. Pantelić and B. Jelenković	64
OM.7	Optimization of UV LED design using evolutionary algorithms L. Leguay, H. Maczko, A. Schliwa and S. Birner	65
OM.8	Yellow fluorescent, water soluble N-doped graphene quantum dots: synthesis, photoluminescence and functionalization with L-Phenylalanine Dj. Trpkov, D. Sredojević, D. Tošić, J. Pajović, D.K. Božanić and V.	
OM.9	Djoković Large thermally irreversible photoinduced shift of selective light reflection in hydrazone-containing cholesteric polymer systems M. Cigl, A. Boychuk, V. Shibaev, V. Hamplová, V. Novotná and A.	60
OM.10	Bobrovsky Strain-induced modulation of electronic and optical properties in hBN/group III monochalcogenide heterostructures A. Solajic and J. Pesic	67
OM.11	Anthocyanin-functionalized biopolymer films as pH-sensitive indicators D. Tosic, R. Dojcilovic, D. Bozanic, Dj. Trpkov and V. Djokovic	69
4. Bioph	notonics	
B.1	Design of femtosecond microstructured Poly Lactic Acid temporal cellular scaffolds coated with hydroxyapatite by PLD method for bone tissue regeneration	
	L. Angelova, A. Daskalova, R. Mincheva, E. Filipov, A. Dikovska, M.H. Fernandes and I. Buchvarov	71
B.2	Non-linear excitation fluorescence imaging through two-photon laser polymerized microlenses	, ,

	G. Chirico, M. Marini, R. Martínez Vázquez, R. Osellame, A. Nardini, C. Conci, E. Jacchetti,,M.T. Raimondi	72
B.3	SERS-based immunosensor for sensitive detection of cancer protein	12
D .5	biomarkers in serum	
	M. Kahraman, A.M. Saridağ and I.D. Karagoz	73
B.4	Fabrication of flexible diatomite-based SERS active platforms	75
ד.ם	A.M. Saridağ and M. Kahraman	74
B.5	Development of two-dimensional superresolution fluorescence	/ ¬
D .5	microscope with structured illumination	
	A. Denčevski, A.J. Krmpot and M.D. Rabasović	75
B.6	Smart optical assay based on novel bioorthogonal SERS nanoprobes for	13
D .0	the β-amyloid peptide quantification	
	C. Dallari, C. Credi and F.S. Pavone	76
B.7	Bioactive compounds of <i>Carlina acanthifolia</i> roots obtained by fractional	70
D . /	extraction and their 3D fluorescence spectra	
	N. Petkova, I. Ivanov, E. Saralieva, D. Georgieva, K. Nikolova, T. Eftimov,	
	G. Gentscheva and L. Vladimirova–Mihaleva	77
B.8	Carbon quantum dots/silver based metal organic framework composites in	
	light enhanced wound healing	
	I. Popović, A. Valenta Šobot, J. Filipović Tričković, L. Korićanac, J.	
	Žakula, V. Ralić,,M.D. Nešić	78
B.9	Anti-cancer and imaging potential of fluorescent black carrot Carbon Dot	
	nanoparticles	
	M.D. Nešić, J. Filipović Tričković, A. Valenta Šobot, J. Žakula, L.	
	Korićanac, I. Popović,,M. Petković	79
B.10	In search of conditions for Gd-TiO ₂ activation by light irradiation in	
	photodynamic treatment of pancreatic cancer cells	
	A. Abu el Rub, M.D. Nešić, J. Žakula, V. Ralić, M. Petković, I. Popović,	
	M. Matijević, M. Radoičić and M. Stepić	80
B.11	Quantum sensing and imaging with entangled photons	0.4
5.46	B. Jelenković	81
B.12	Optical skin biopsy through multispectral approach and prototype device	
	Ts. Genova, V. Mircheva, Al. Zhelyazkova, A. Markovski and P.	0.2
D 12	Troyanova	82
B.13	Novel approach for colon cancer detection through fluorescence	
	spectroscopy To Canona Al Zhohazkova P. Vladiminov and N. Pankov	83
B.14	Ts. Genova, Al. Zhelyazkova, B. Vladimirov and N. Pankov In vivo multiphoton imaging of a filamentous fungus Phycomyces	03
D.14	blakesleeanus: the effect of small ambient temperature increase on	
	mitochondrial morphology and lipid droplets density	
	T. Pajic, S. Kozakijevic, A.J. Krmpot, M. Zivic, N.V. Todorovic and M.D.	
	Rabasovic	84
B.15	Synthesis of europium-doped fluorapatite as a promising luminescent	0.
2110	biomaterial	
	V. Stanic, M. Omerasevic, D. Mutavdzic, A. Mrakovic, Dj. Veljovic, M.	
	Marinovic Cincovic and D. Jovanovic	85
B.16	FEM analysis of natural photonic structures of insects in the IR band	
	B. Salatic, D. Pavlovic and D. Pantelic	86
B.17	Dynamics of optomechanical array revealed by holography	
	H. Skenderović, A.M Dezfouli, D. Abramović, M. Rakić, and N. Demoli	87

B.18	Functionalization of biological/bioinspired structures for multispectral surveillance	
B.19	D. Pavlović, B. Salatić, H. Skenderović, M. Rakić and D. Pantelić A compact, holographic imaging sensor for biophotonic structures	88
	D. Pantelic, D. Pavlovic, D. Grujic, B. Salatic, P. Atanasijevic and P. Mihailovic	89
B.20	Cutting edge technique for determination of spatial resolution limits of nonlinear laser scanning microscopy	
	M. Bukumira, J. Jelić, A. Denčevski, M.D. Rabasović, N. Vujičić, A. Senkić, A. Supina and A. Krmpot	90
B.21	Optical fiber curing of a dental composite: a holographic, thermographic, and Raman study	
B.22	E. Novta, T. Lainović, D. Grujić, S. Savić-Šević, E. Toth, Ž. Cvejić, L. Blažić and D. Pantelić Exploring the nano-scale world using a custom-made Fluorescence	91
D.22	Correlation Spectroscopy (FCS) instrument J.Z. Jelić, M.D. Rabasović, S. Nikolić, V. Vukojević and A.J. Krmpot	92
B.23	Calcium imaging of cerebellar granular neurons in culture acutely treated with cerebrospinal fluid of patients with neurodegenerative diseases) <u>2</u>
D 24	A. Laudanović, A. Antić, A. Palibrk, P. Andjus, Z. Stević, D. Lutz and M. Milošević	93
B.24	Mid-Infrared quantum scanning microscopy with visible light J.R. León-Torres, J. Fuenzalida, M. Gilaberte, S. Töpfer, V. Gili and M. Gräfe	94
B.25	Fluorescent products upon heme degradation as potential biomarkers: Understanding their formation via Hemoglobin oxidation <i>M.D. Radmilović</i> , <i>I.T. Drvenica</i> , <i>M.D. Rabasović</i> , <i>V.Lj. Ilić and A.J.</i>	,
	Krmpot	95
5. Devi	ces and components	
DC.1	High-power diffraction-limited laser systems with variable output characteristics oscillating in visible spectral range on atomic copper self-terminating transitions for advanced material microprocessing	
DC.2	I. Kostadinov, K. Temelkov, S. Slaveeva and G. Yankov Interband cascade lasers: advantages of bulk AlGaAsSb claddings B. Petrović, A. Bader, F. Hartmann, R. Weih, F. Jabeen and S. Höfling	97 98
DC.3	Dependence of transport parameters on interface composition diffusion and doping segregation in longitudinal optical phonon, bound to continuum and hybrid THz quantum cascade laser designs	90
DC.4	N. Stanojević, A. Demić, N. Vuković, D. Indjin and J. Radovanović Investigation of intersubband transitions in wide bandgap oxide quantum well structures for optoelectronic device applications	99
DC 5	A. Atić, N. Vuković and J. Radovanović	100
DC.5	Multiport splitters based on waveguide arrays K. Bugarski, P. Vildoso, M. Stojanovic, A. Maluckov, G.Z. Mashanovich,	101
DC.6	R.A. Vicencio and J. Petrovic Optical interconnects and filters based on waveguide arrays	101
	J. Krsic, M. Stojanovic, K. Bugarski, N. Stojanovic, A. Maluckov, P. Veerman and J. Petrovic	102

DC.7	Photo-electronic security device based on photonics integrated circuits C. Cid-Lara and R.A. Vicencio The influence of injection begins are performed as of propries salar calls.	103
DC.8	The influence of injection barriers on performance of organic solar cells studied by drift-diffusion model with transport layers <i>T. Pavlicevic, J. Gojanovic and S. Zivanovic</i>	104
DC.9	Characterization and performance evaluation of a dual loop Sagnac interferometer as sensing system for intrusion location detection <i>M. Vasiljević Toskić, J.S. Bajić, L. Manojlović and B. Batinić</i>	105
6. Optic	eal communications	
OC.1	Free-space OAM wave transmission: a short dipole modeling study	107
OC.2	A.Ž. Ilić, J.Z. Trajković, S.V. Savić and M.M. Ilić OAM mode quality comparisons for discrete EM radiating sources J.Z. Trajković, A.Ž. Ilić, S.V. Savić, N. Maletić, E. Grass and M.M. Ilić	107 108
7. Laser	spectroscopy and metrology	
LS.1	An upgrade of the primary length standard of Republic of Serbia Z.D. Grujić, M.G. Nikolić, S. Zelenika and M.D. Rabasović	110
LS.2	Combined spectroscopic approach for the characterization of pigments used in prehistoric pottery from the region of Western Bulgaria V. Tankova, V. Atanassova, V. Mihailov and A. Pirovska	111
LS.3	Fluorescence spectroscopy and sucrose presence in onion genotypes after long-term storage L. Vladimirova-Mihaleva, M. Mihalev, V. Slavova, G. Pevicharova, S.	
LS.4	Genova and V. Boteva Measurement of the heading error of a free alignment precession magnetometer	112
	Z.D. Grujić, M. Ćurčić, A. Milenkovic, J. Hinkel and T. Scholtes	113
8. Ultrai	fast optical phenomena	
UO.1	Femtosecond laser spectroscopy for exploration of space Y. Ha, O. Gueckstock, G. Kourfakas, J. Petrovic, M. Rabasovic, A. Krmpot, T. Seifert,,M. Gensch	115
9. Laser	- material interaction	
LM.1	Preparing the bioactive surface of Ti/Zr/Ti system by femtosecond laser pre-patterning of substrate	
LM.2	N. Božinović, V. Rajić, K. Savva, J. Potočnik, E. Stratakis and S. Petrović Selective ablation and laser induced periodical surface structures (LIPSS) produced on (Ni/Ti) nano layer thin film with ultrafast laser pulses	117
LM.3	S. Petrović, B. Gaković, C. Šiogka, D. Milovanović and G. Tsibidis Experimental demonstration of vectorial spin-orbital Hall effect of light	118
LM.4	A. Porfirev, S. Khonina, A. Ustinov, N. Ivliev and I. Golub Structured laser beams: generation and applications	119
LM.5	D. Porfirev, A. Porfirev, S. Khonina and S. Karpeev Carbon dots nanoparticles as an effective gate for PDT	120

	M. Algarra, M.D. Nešić, J. Soto, M. Stepić, A. Urrutia, J.J. Imas, T. Dučić and M. Petković	121
LM.6	All PM, 14 W, 2.8 GHz intra-burst repetition rate Yb-doped fiber laser	
	E. Hasar and P. Elahi	122
LM.7	The analysis of the influence of optical absorbance on photothermally	
	induced surface temperature variations in a thin sample of high optical	
	transparence M. Noria, M. Popovia, S. Calovia, V. Milatia and Li, Vostia	123
LM.8	M. Nesic, M. Popovic, S. Galovic, V. Miletic and Lj. Kostic Interaction of ns laser with 316L-NiB stainless steel obtained by powder	123
LIVI.O	metallurgy – morphological effects and LIBS analysis	
	J. Stasic, M. Trtica, M. Kuzmanovic, J. Savovic, J. Ruzic, M. Simic, X.	
	Chen and D. Bozic	124
LM.9	ns-Laser – titanium interaction: hydrogen ambience	
	M. Trtica and J. Stasic	125
10. Opti	cal metamaterials and plasmonics	
-	•	
OMP.1	1	
	real parts of refractive index	
	M. Obradov, Z. Jakšić, I. Mladenović, M. Rašljić Rafajilović and D. Vasiljević Radović	127
OMP.2	Electron energy loss spectroscopy of multilayered structures: Theoretical	14/
OWII .2	aspects and the role of graphene-insulator distance	
	I. Radović, A. Kalinić, L. Karbunar and Z.L. Mišković	128
OMP.3	Plasmon-phonon hybridization in drift-current biased supported graphene	
	I. Radović, A. Kalinić, L. Karbunar and Z.L. Mišković	129
OMP.4	Terahertz transmission through metal-insulator-metal cavity arrays	
	infiltrated by liquid crystals	
	G. Isić, D.C. Zografopoulos and B. Vasić	130
OMP.5	Ellipsometric Study of Interactions of Erufosine with Solid-supported by	
	Metasurfaces Lipid Films	
	D. Georgieva, M. Tanovska, V. Vassilev, R. Tzoneva, M. Berger, M.	131
OMP.6	Rahmani, D. Neshev and L. Vladimirova-Mihaleva Rosette based metamaterial for circularly polarized terahertz waves	131
O. IIVIO	manipulation	
	D.B. Stojanovic, U. Ralevic, Y. Demirhan, G. Aygun and L. Ozyuzer	132
11. Mac	hine learning in photonics	
MLP.1	Remote temperature sensing using upconverting phosphor and artificial	
1,1221,11	neural networks	
	M.S. Rabasovic, M.G. Nikolic and D. Sevic	134
MLP.2	Reverse sigmoid-like nonlinearity in Fabry-Perot injection-locked lasers	
	P. Atanasijević, M. Banović, J. Crnjanski, M. Krstić, P. Mihailović, S.	
	Petričević and D. Gvozdić	135
MLP.3	Low-cost raspberry Pi based imaging system for analysis of Fiber	
	Specklegram Sensors	126
	L. Brestovacki, M. Golubovic, J. Bajic, A. Joža and V. Rajs	136

12. Other topics in photonics

OP.1	Revealing non-equilibrium dynamics by holography: The case of Briggs-Rauscher reaction	
	M. Pagnacco, M. Simovic Pavlovic, A. Radulovic, B. Bokic, D. Vasiljevic and B. Kolaric	138
OP.2	Using Laser-Induced Fluorescence technique for interdisciplinary natural sciences school experiment	
	L. Zaharieva, M. Stoyanova, V. Dimova, V. Deneva, Ts. Genova, A. Markovski, L. Antonov and C. Andreeva	139
OP.3	One dimensional SP lattices based on photonic molecules	
OP.4	D. Román-Cortés, G. Cáceres-Aravena, B. Real and R.A. Vicencio Wave-packets induced by the radiation of an atom coupled to the continuum in photonic lattices	140
	B. Real, D. Guzmán-Silva and R.A. Vicencio	141
OP.5	Multi-orbital lattices based on photonic molecules	
	R.A. Vicencio	142
OP.6	Pushing the boundaries of metasurface engineering: Hierarchical supercells and experimental validation	
	T. Contino and M. Tamagnone	143
OP.7	Unraveling the phononic mysteries: BIC revealed in hBN resonators through phonon polaritons	
	H. Gupta, J. Edgar, F. De Angelis, A. Toma and M. Tamagnone	144
OP.8	Refractive index change caused by biomolecular adsorption and structural transformations of adsorbed molecules in ultrasensitive plasmonic biosensors	
	I. Jokić, O. Jakšić, M. Frantlović, Z. Jakšić and K. Radulović	145
OP.9	Characterization and testing of fiber optic curvature sensor as an optical mode converter for deformation measurement	143
	S. Babić, J.S. Bajić, M. Vasiljević Toskić, A. Joža and V. Rajs	146
OP.10	Application of polymer optical fiber sensor for urine parameter measurements: a preliminary study	
	P. Sokołowski, K. Cierpiak, P. Wityk, A. Drabik-Kruczkowska and M.	
	Szczerska	147
Index		148

PHOTONICA2023 Progress Reports

Photosensitizer potential of doped and undoped nanostructured TiO₂

M. Matijević¹, L. Korićanac², Đ. Nakarada³, J. Žakula², M. Stepić¹, M. Radoičić², M. Mojović³, M. Petković¹ and M.D. Nešić¹

COHERENCE, Department of Atomic Physics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

²VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

³Faculty of Physical Chemistry, University of Belgrade, Serbia e-mail: milica.m@vin.bg.ac.rs

Treating cancer remains a major challenge, despite the development of many therapies and advances in general knowledge about the disease. The treatments commonly used are invasive and non-selective, leading to severe side effects and unsatisfactory long-term outcomes. Nevertheless, external stimuli activating therapeutic agents in the affected area can be more beneficial than these aggressive therapies. Photodynamic therapy (PDT) is a minimally invasive, selective treatment that uses photosensitizer (PS) to damage cancer cells. The PS is activated by light, triggering a series of processes that produce reactive oxygen species (ROS), ultimately leading to cancer cell death. Numerous types of nanomaterial possess the capability to act as PS, one of which is TiO₂ [1]. Although nanostructured TiO₂ is biocompatible in the absence of light, its valence band electrons can be stimulated only by ultraviolet (UV) light irradiation. Since the penetration of UV light into tissue is limited, for application in PDT, nanostructured TiO₂ can be doped with heteroatoms like N or C to allow visible light responsiveness [2,3].

This work evaluated the PS properties of unmodified nanostructured TiO₂ (spherical nanoparticles TiO₂ NPs and prolate nanospheroids, TiO₂ PNSs) and doped TiO₂ (N- and C-TiO₂ NPs). After the synthesis, the size of TiO₂ was confirmed to be in the nanoscale range (5-104 nm) by transmission electron microscopy [3,4]. The doped TiO₂ was found to absorb visible light, as demonstrated by UV-Vis spectroscopy and bandgap calculations. Additionally, hydroxyl radicals were detected in water suspensions of TiO₂ PNSs by electron paramagnetic resonance (EPR) spectroscopy, both with and without UV light illumination [4]. However, this radical was observed only with blue light stimulation of the water suspensions of N- and C-TiO₂ NPs [3].

Cell experiments further revealed the internalization process of nanostructured TiO₂ within cells, their cytotoxicity profiles, and the different death modalities triggered by their uptake. After confocal microscopy indicated the successful internalization of the investigated TiO₂, viability tests on different cell lines confirmed their good biocompatibility without light [3,4]. The PDT's efficacy using nanostructured TiO₂ and appropriate light stimuli was evaluated on various cancer cell lines. The most significant viability reduction (60 %) was observed in the HeLa cell line with the combined treatment of C-TiO₂ NPs-blue light. In addition to EPR results, blue light-induced C-TiO₂ NPs-catalyzed generation of ROS was confirmed intracellularly, implying that oxidative stress was the leading cause of HeLa cell death. Fluorescent labeling allowed distinguishing morphological changes inside the cells after the C-TiO₂ NPs, blue light, and the combined C-TiO₂ NPs-blue light treatment. Blue light exposure led to the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing. In contrast, the combined therapy with C-TiO₂ NPs-blue light resulted in controlled cell death, such as autophagy. Since programmed cell death is the desired cancer cell death mechanism, the combined treatment presented here can provide a better outcome of local anticancer therapy.

REFERENCES

- [1] Z. Haijun et al., J. Biomed. Nanotechnol. 10, 1450 (2014).
- [2] Z. Li et al., Nano. Res. Lett. 6, 356 (2011).
- [3] M. Matijević et al., Photochem. & Photobio. Sci. 20, 1087 (2021).
- [4] M. Matijević et al., J. Nanopart. Res. 22, 175 (2020).