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structure, in particular exploring them in the case when they need not be locally
convex.

2. Preliminaries

In this section, we first collect some basic notions and facts on ordered vector
spaces that will be used in the paper. For details, we refer to [3, 7, 10,26,30].

Throughout the paper, (E,�) or (E,C) will denote a real ordered vector space
with zero element θ and the positive cone C = {x ∈ E : x � θ}, so that for x, y ∈ E
we have x � y if and only if y − x ∈ C. Here, the cone C is an arbitrary non-
empty convex subset of E satisfying λC ⊆ C whenever λ ≥ 0 (i.e., the relation �
is not, in general, supposed to be antisymmetric and the cone need not satisfy that
C ∩ (−C) = ∅). The cone C is said to be generating if E = C − C holds.

An interval in (E,C) is every set of the form [x, y] = {z ∈ E : x � z � y} =
(x + C) ∩ (y − C). A set A ⊆ E is order-bounded if it is contained in an interval.
We will use the following notation:

[A] = (A+ C) ∩ (A− C) =
∪

{[a, b] : a � b, a, b ∈ A},

S(A) =
∪

{[−u, u] : u ∈ A ∩ C}.

The set A is called order-convex if A = [A], o-convex if it is convex and order-convex,
and solid if A = S(A). It is absolutely order-convex, resp. positively order-convex,
if [−x, x] ⊆ A whenever x ∈ A ∩ C, resp. [0, x] ⊆ A whenever x ∈ A ∩ C.

A linear mapping f from an ordered vector space (E,C) to another one (F,K)
is said to be positive if f(C) ⊆ K.

An ordered vector space (E,C) is called a Riesz space if the order � is antisym-
metric and for each two elements x, y ∈ E there exists sup{x, y} in E (the supremum
is defined in a standard way). In a Riesz space the relation [θ, u] + [θ, v] = [θ, u+ v]
holds for all u, v ∈ C. The following notation is commonly used: |x| = sup{x,−x},
and |x+ y| � |x|+ |y| holds for all x, y ∈ E. A subspace F of a Riesz space (E,C)
is a Riesz space itself if for each x ∈ F , also sup{x, θ} ∈ F . A solid subspace of a
Riesz space is said to be its l-ideal.

In a Riesz space (E,C), a set A ⊆ E is solid if and only if, for all x, y ∈ E, y ∈ A
and |x| � |y| implies that x ∈ A. The solid kernel skA = {x ∈ E : [−|x|, |x|] ⊆ A}
of a set A ⊆ E is the largest solid subset contained in A.

Now we introduce the basic objects of our investigation.
By a topological vector group (TVG, for short), following [24] and [14], we will

understand a vector space E endowed with a topology T such that operations
(x, y) 7→ x + y (from E × E to E) and, for each λ ∈ R, x 7→ λx (from E to E)
are T -continuous. We note that the difference between TVG and a topological
vector space (TVS) is that in a TVS the mapping (λ, x) 7→ λx is continuous (as a
function in two variables). In a TVG this mapping is also continuous, but when the
scalar field is taken with the discrete topology. A locally convex group (LCG) is a
TVG having a zero neighborhood basis formed by absolutely convex subsets. It is
known that a TVG (resp. LCG) is a TVS (resp. LCS) if and only if it has a zero
neighborhood basis formed by absorbing subsets.
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If (E,C) is an ordered vector space, and (E, T ) a TVG, then the triple (E,C, T )
is called an ordered topological vector group (OTVG, for short). In a similar way an
ordered locally convex group (OLCG), ordered topological vector space (OTVS) and
ordered locally convex space (OLCS) are defined.

3. Open decomposition property of OTVGs

The open decomposition property for OLCSs was introduced and studied in [9]
and [29]. Here, we will introduce and study this property for OTVGs in more
details.

Definition 3.1. An OTVG (E,C, T ) is said to have an open decomposition prop-
erty if U ∩ C − U ∩ C is a T -neighborhood of zero for each T -neighborhood of
zero U .

Note that in the case of an OTVS, an additional condition is imposed that E =
C − C. However, for a discrete OTVG, if C is a proper subspace of E, then
E 6= C − C. By [4], an ordered Banach space E with a closed cone C has an open
decomposition property if and only if E = C − C.

A subspace A of an ordered vector space (E,C) is said to be positively generated
if A ⊆ A∩C−A∩C. The following lemma gives a characterization of OTVGs with
the open decomposition property in terms of positively generated subsets.

Lemma 3.2. For each OTVG (E,C, T ) the following conditions are equivalent:

(a) (E,C, T ) has the open decomposition property;
(b) (E,C, T ) has a zero neighborhood basis formed by positively generated sub-

sets.

Proof. For each T -neighborhood of zero V there is a symmetric T -neighborhood of
zero U such that V ⊇ U+U = U−U ⊇ U∩C−U∩C. Since U∩C ⊆ U∩C−U∩C,
i.e. U ∩C −U ∩C ⊆ (U ∩C −U ∩C)∩C − (U ∩C −U ∩C)∩C and so the group
(E,C, T ) has the 0-neighborhood basis formed by positively generated subsets. This
proves that (a) implies (b).

Conversely, if V is a T -neighborhood of zero, then there is a positively generated
T -neighborhood of zero U such that V ⊇ U , and then V ∩ C ⊇ U ∩ C, and hence
V ∩ C − V ∩ C ⊇ U ∩ C − U ∩ C ⊇ U . Hence, the group (E,C, T ) has the open
decomposition property. □

Recall (see, e.g., [2]) that a sequence U = (Un)
∞
n=1 of balanced and absorbing

subsets of a vector space is called a string if Un+1 + Un+1 ⊆ Un holds for each
n ∈ N. A string U in a TVS (E, T ) is called T -topological if each Un is a T -
neighborhood of zero. Note that if U is an absolutely convex neighborhood of zero
then it generates an associated T -topological string U = ( 1

2n−1U)n∈N.

Proposition 3.3. Let (E,C, T ) be an OTVG such that the cone C is generating.
Then the following conditions are equivalent:

(a) (E,C, T ) has the open decomposition property.
(b) For each T -topological string V, the string V ∩ C − V ∩ C is T -topological.
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Proof. It is obvious that (a) implies (b), since if V = (Vn)n∈N is a T -topological
string, then Vn∩C−Vn∩C is a T -neighborhood of zero, for each n ∈ N, because of
the open decomposition property of (E,C, T ). Conversely, if V is a T -neighborhood
of zero, then there exists a T -topological string V = (Vn)n∈N with V1 = V . But
then, using (b), we get that V ∩C−V ∩C = (Vn∩C−Vn∩C)n∈N is a T -topological
string. In particular, V1 ∩ C − V1 ∩ C = V ∩ C − V ∩ C is a T -neighborhood of
zero. □

In each OTVG (E,C, T ), the collection of all T -topological strings generates a
topological vector space (E, T ). It is easy to see that T is the finest linear topology
coarser than the given topology T .

Proposition 3.4. Let E = C − C. If an OTVG (E,C, T ) has the open decompo-
sition property, then so does (E,C, T ).

Proof. Let V = (Vn)n∈N be a T -topological string. This means that Vn, n ∈ N are
T -neighborhoods of zero. By the previous proposition, V ∩ C − V ∩ C = (Vn ∩
C − Vn ∩ C)n∈N is a T -topological string. This means that (E,C, T ) has the open
decomposition property. □
Corollary 3.5. If E = C −C then (E,C, tf ) has the open decomposition property,
where tf is the finest linear topology on E.

Remark 3.6. Similarly as in Proposition 3.4, it can be proved that open decom-
position property is preserved when passing:

(1) from an OTVS (E,C, T ) to the associated OLCS (E, T ◦), where the topol-
ogy T ◦ has as the zero neighborhood basis the collection of all absolutely
convex T -neighborhoods of zero;

(2) from an OLCG (E,C, T ) to the associated OLCS (E,C, loc T ), where the
topology loc T has as the zero neighborhood basis the collection of all ab-
sorbing absolutely convex T -neighborhoods of zero.

In particular, if E = C−C then (E,C, tc) is an OLCS with the open decomposition
property, where tc is the finest locally convex topology on E.

The converses of these assertions do not hold. It is illustrated in one case by the
following example.

Example 3.7. (Inspired from [23]) Consider the cone C = {(x, y) : x > 0, y >
0} ∪ {(0, 0)} in R2 and let (R2, C, T ) be the OLCG having as zero neighborhood
basis the collection of sets of the form Iε = {(x, 0) : |x| ≤ ε} for ε > 0. Obviously,
R2 = C − C and loc T = tc, hence (R2, C, loc T ) has the open decomposition
property. However, (E,C, T ) does not posses this property since Iε∩C−Iε∩C = {0}
for each ε > 0. As the OLCG (R2, C, T ) is not discrete, it does not have the open
decomposition property.

If U is a zero neighborhood basis of an OTVG (E,C, T ) whose elements are
symmetric sets U , i.e., U = −U (such basis always exists, see, e.g., [23]), then
from [24] we know that the elements of U have the following properties:

(1) 0 ∈ U for each U ∈ U .
(2) For each U ∈ U and each λ 6= 0 there exists V ∈ U such that V ⊆ λU .
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(3) For each U ∈ U there exists V ∈ U such that V + V ⊆ U .

The converse is also true: each filter basis U having properties (1), (2) and (3)
generates a unique topological vector group on (E,C).

Proposition 3.8. If (E,C, T ) is an OTVG with the zero neighborhood basis U then
U ∩C−U ∩C = {U ∩C−U ∩C : U ∈ U} is also a zero neighborhood basis of some
OTVG.

Proof. Let us prove that U ∩C −U ∩C is a filter basis with properties (1), (2) and
(3). If U ∩C−U ∩C and V ∩C−V ∩C belong to U ∩C−U ∩C for some U, V ∈ U ,
then there exists W ∈ U such that W ⊆ U ∩ V . Further, W ∩ C ⊆ U ∩ C and
W ∩C ⊆ V ∩C, hence W ∩C−W ∩C ⊆ (U ∩C−U ∩C)∩ (V ∩C−V ∩C). Since
0 ∈ U for each U ∈ U , then 0 ∈ U ∩C−U ∩C. If V ∩C−V ∩C ∈ U ∩C−U ∩C for
some V ∈ U then, for each λ 6= 0, there exists U ∈ U satisfying V ⊆ λU . It follows
that V ∩ C − V ∩ C ⊆ λU ∩ C − λU ∩ C = λ(U ∩ C − U ∩ C) (the last equality
follows easily since the sets U and U ∩ C − U ∩ C are symmetric and C is a cone).

It remains to prove the property (3). If V ∩C − V ∩C belongs to U ∩C −U ∩C
for some V ∈ U then there exists U ∈ U with U + U ⊆ V . It further means that

(U ∩C −U ∩C)+ (U ∩C −U ∩C) ⊆ (U +U)∩C − (U +U)∩C ⊆ V ∩C −V ∩C,

and the proposition is proved. □
The topology with the zero neighborhood basis described in the previous propo-

sition is denoted by TD. It has the open decomposition property by Proposition 3.2
since its basis is formed by positively generated subsets. Also, T ≤ TD. Indeed, if
V is a T -neighborhood of zero, then there exists a symmetric T -neighborhood of
zero U such that V ⊇ U +U = U −U ⊇ U ∩C −U ∩C. Thus, an OTVG (E,C, T )
has the open decomposition property if and only if T = TD.

The topology TD can be characterized using the notion of positive linear mapping
(see Section 2).

Proposition 3.9. Let (E,C, T ) and (F,K,P) be OTVGs. If a mapping f from
(E,C, T ) to (F,K,P) is positive and continuous then it is continuous from (E, TD)
to (F,PD).

Proof. If U is a symmetric P-neighborhood of zero, then f−1(U ∩ K − U ∩ K) ⊇
f−1(U) ∩ C − f−1(U) ∩ C. Indeed, let x = y − z where y, z ∈ f−1(U) ∩ C. Then
f(x) = f(y − z) = f(y) − f(z) ∈ U ∩ f(C) − U ∩ f(C) ⊆ U ∩ K − U ∩ K, i.e.,
x ∈ f−1(U ∩K − U ∩K). This proves the proposition. □
Corollary 3.10. If an OTVG (E,C, T ) has the open decomposition property, then
a linear mapping f : E → F is continuous from (E, T ) into (F,P) if and only if it
is continuous from (E, T ) into (F,PD).

Note that the converse of the previous corollary does not hold. It is enough to
take in a vector space E the trivial cone C = {0} and the indiscrete topology T and
in a vector space F some topology with the open decomposition property which is
not indiscrete.

The topology TD is best characterized by the following corollary of Proposi-
tion 3.9.
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Corollary 3.11. The topology TD is the weakest among all topologies with the open
decomposition property which are finer than T , i.e.,

TD = inf{Tα : Tα ≥ T and Tα has the open decomposition property}.

Remark 3.12. For an arbitrary TVG (E, T ) there is a cone C such that (E,C, T )
has the open decomposition property (it is enough to take C = E). A discrete TVG
has the open decomposition property for each positive cone. However, an indiscrete
TVG has this property if and only if E = C − C.

If {Cα}α∈I is a family of cones in a vector space E then C =
∩

α∈I Cα is also a
cone in E. It is easy to see that, in this case, if (E,Cα, T ) are OTVGs and (E,C, T )
has the open decomposition property then each (E,Cα, T ) has the same property.
The following example shows that the converse is not true.

Example 3.13. Let (E,C, T ) be the OTVG considered in Example 3.7 which has
the open decomposition property, is not discrete and for which C ∩ (−C) = {0}.
Since U ∩C − U ∩C = U ∩ (−C)− U ∩ (−C) for each symmetric T -neighborhood
of zero, it follows that the cones C and −C induce the same topology TD. Hence,
(E,C, T ) has the open decomposition property if and only if (E,−C, T ) has this
property. However, the OTVG (E, {0}, T ) does not have this property because it
is not discrete.

In a similar way it can be shown that the open decomposition property is inherited
from (E,C, T ) to (E,C, T ), but not conversely.

In what follows we consider some further inheritance properties connected with
the open decomposition property. We start with the following example.

Example 3.14. Let (E,C, T ) be the OTVG considered in Example 3.7. Then
(R, {0}, loc T ) is an OTVG and (R, {0}) is closed and finite codimensional subspace
of (R2, C), where {0} = C ∩ R. The OTVG (R, {0}, loc T ) does not have the open
decomposition property because (loc T )D is the discrete topology on R. This means
that the open decomposition property is, in general, not inherited by projective
limits.

However, it can be proved that if a subspace contains the positive cone as a subset,
then such subspace inherits the open decomposition property from the original
space.

It is known ( [30]) that the open decomposition property is inherited by inductive
limits in the category of OLCSs. Similarly, for OTVSs we have

Proposition 3.15. Let (E,C) be an ordered vector space, (Eα, Cα, Tα) be OTVSs
with the open decomposition property and let fα : Eα → E be positive linear map-
pings. If E is the linear hull of

∪
α∈I fα(Eα), then the inductive topology T on E

has the open decomposition property.

Proof. Let V = (Vn)n∈N be a T -topological string in E. According to Proposition
3.3, it is enough to prove that V ∩C −V ∩C is a T -topological string. By the way
neighborhoods of zero are constructed in inductive limits (see, e.g., [2]), f−1

α (V) =
(f−1

α (Vn))n∈N is a Tα-topological string for each α ∈ I. This further means that
f−1
α (V)∩Cα− f−1

α (V)∩Cα = (f−1
α (Vn)∩Cα− f−1

α (Vn)∩Cα)n∈N is a Tα-topological
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string, for each α ∈ I. It follows from the obvious inclusion f−1
α (Vn)∩Cα−f−1

α (Vn)∩
Cα ⊆ f−1

α (Vn ∩ C − Vn ∩ C) that V ∩ C − V ∩ C is a T -topological string. □

In particular, the open decomposition property is inherited by quotients.
It was proved in [30] that the associated topologies with the open decomposition

property of the direct sum and product topologies, in the category of OLCSs, satisfy
the following relations: (⊕

α

Tα
)

D

=
⊕
α

(Tα)D,(3.1) (∏
α

Tα
)

D

=
∏
α

(Tα)D.(3.2)

By [30, Theorem 3.19] it is (
∏

α Vα) ∩ C − (
∏

α Vα) ∩ C =
∏

α(Vα ∩ C − Vα ∩ C),
and hence the proof of the relation (3.2) is the same in the category of OTVSs. For
the direct sums we have

Proposition 3.16. If {(Eα, Cα, Tα) : α ∈ I} is a family of OTVSs, and
(E,C,

⊕
α Tα), (C =

⊕
αCα), their direct sum (in the sense of [2]), then the relation

(3.1) holds.

Proof. According to [2, §4, p. 20], the topologies
⊕

α(Tα)D and (
⊕

α Tα)D are
generated by the strings (Vn)n∈N and (Un ∩ C − Un ∩ C)n∈N, respectively, where
Vn =

∑∞
k=1

{∪
α

(
Uα
2n−1k ∩Cα − Uα

2n−1k ∩Cα

)}
and Un =

∑∞
k=1

{∪
α U

α
2n−1k

}
. It has

to be proved that Vn = Un ∩ C − Un ∩ C for each n. If x ∈ Vn then x =
∑m

i=1 x
αi
i ,

xαi
i ∈ Uαi

2n−1 ∩ Cαi − Uαi

2n−1 ∩ Cαi , i.e., x =
∑m

i=1(u
αi
i − vαi

i ) =
∑m

i=1 u
αi
i −

∑m
i=1 v

αi
i .

This means that x ∈ Un ∩ C − Un ∩ C because uαi
i , vαi

i ∈ Uαi

2n−1 ∩ Cαi and so∑m
i=1 u

αi
i ,

∑m
i=1 v

αi
i ∈ Un ∩ C.

Conversely, if x ∈ Un ∩ C − Un ∩ C then x = u − v, where u =
∑m

i=1 u
αi
i and

v =
∑m

i=1 v
αi
i , u, v ∈ Un ∩C, hence x =

∑m
i=1(u

αi
i − vαi

i ) ∈ Vn. It is clear that from
u, v ∈ C it follows that uαi

i , vαi
i ∈ Cαi . □

4. Order-convex OTVGs

OTVSs and OLCSs that have order-convex subsets as elements of a zero neigh-
borhood basis were studied in [4, 15, 18, 26, 29, 30]. Particularly well-known are the
results on OLCSs called locally o-convex spaces (having zero neighborhood basis
formed by absolutely convex and order-convex subsets (see Section 2)) [15].

In this section, we will study OTVGs and OLCGs that have order-convex subsets
as elements of a zero neighborhood basis. We will also show some results obtained
while studying OTVSs and OLCSs not present in the cited works.

Definition 4.1. An OTVG (E,C, T ) is order-convex, if it has a zero neighborhood
basis formed by order-convex subsets.

Since, as already mentioned, every TVG has a zero neighborhood basis formed
by symmetric subsets, the following result follows.

Lemma 4.2. An OTVG (E,C, T ) is order-convex if and only if it has a zero neigh-
borhood basis formed by symmetric order-convex subsets.
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Corollary 4.3. If an OLCG (E,C, T ) is order-convex, then it has a zero neighbor-
hood basis formed by absolutely convex, order-convex subsets.

Since a symmetric order-convex subset is absolutely order-convex, and a symmet-
ric absolutely order-convex subset is positively order-convex (for terminology, see
Section 2), then it is clear that order-convex OTVG has a zero neighborhood basis
formed by symmetric absolutely order-convex subsets, resp. by symmetric positively
order-convex subsets.

For bounded order-convex subsets of OTVGs the following is valid similarly as
for bounded subsets of OTVSs.

Lemma 4.4. If (E,C, T ) is an order-convex OTVG, then the order-convex hull [A]
of any T -bounded subset A is a T -bounded subset.

If (E,C, T ) is an order-convex OTVS, then clearly any interval [x, y] is T -
bounded, because [x, y] is the order-convex hull of the set {x, y}. However in an
order-convex OTVG (E,C, T ) this is not necessarily so, as not every T -neighborhood
of zero is necessarily absorbing. The following proposition shows when it is true.

Proposition 4.5. An order-convex OTVG (E,C, T ) is an OTVS if and only if
[x, x] is a T -bounded subset for any x ∈ E.

Proof. If (E,C, T ) is an order-convex OTVS, then [x, x] is a T -bounded subset,
because [x, x] is the order-convex hull of the set {x}. Conversely, let e ∈ E and let
V be a T -neighborhood of zero. We shall prove that V is an absorbing subset of
E. Since e ∈ [e, e], then there exists λ ≥ 0 such that e ∈ [e, e] ⊆ λV , and it follows
that the zero-neighborhood V is absorbing. □

For order-convex OTVGs the following statement is true, similarly as for order-
convex OTVSs.

Proposition 4.6. If (E,C, T ) is an order-convex OTVG that is Hausdorff, then
the cone C is antisymmetric, that is C ∩ (−C) = {0}.
Proof. Since the OTVG (E,C, T ) has a zero neighborhood basis formed by order-
convex subsets, then for any T -neighborhood of zero U = [U ] it follows that {0} ⊆
U , hence [{0}] ⊆ U = [U ], that is [0, 0] = C ∩ (−C) ⊂

∩
U = {0}. □

The converse of the previous assertion is not true. For instance an indiscrete
OTVG is order-convex for any cone C ⊆ E, yet it is not Hausdorff. The space itself
E is an order-convex set for any cone C, because (E + C) ∩ (E − C) = E.

As OTVG (E,E, T ) has the open-decomposition property, so OTVG (E, {0}, T )
is order-convex, because for any T -neighborhood of zero U , U = (U + {0}) ∩ (U −
{0}) = [U ]. If (E,C, T ) is an arbitrary OTVG, then to a zero neighborhood basis
U formed by symmetric subsets the following basis can be associated: [U ] = {[U ] :
U ∈ U}; in this case it can be proven that it determines a unique OTVG on E that
is order-convex, in a similar way as for U ∩ C − U ∩ C. Because of the inclusion
U ⊆ [U ] for any U ∈ U , clearly one obtains the topology TF ≤ T . Taking the last
inequality into account, it is natural to pose the question of when the topology TF
is indiscrete, and when it is Hausdorff.

Proposition 4.7. For any OTVG (E,C, T ) the following statements are equivalent:
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(1) C = E
(2) TF is an indiscrete topology.

Proof. For any T -neighborhood of zero V we have:

(V + C) ∩ (V − C) = (V + E) ∩ (V − E) = E .

According to Proposition 4.8 (shown below) it follows that TF is an indiscrete topol-

ogy, that means that (1) implies (2). If we prove that C
T

= C
TF for any OTVG

(E,C, T ) then it is clear that (2) implies (1). Obviously C
T ⊆ C

TF . It is also true
that

C
TF =

∩
(C + [U ]) =

∩
(C + (U + C) ∩ (U − C)) ⊆

∩
(C + U + C)

⊆
∩

(C + U) = C
T
.

□

In the cited papers (e.g. [15]) it is proven using seminorms, that an OLCS
(E,C, T ) is order-convex if and only if the OLCS (E,C, T ) is order-convex. We
shall prove the same for OTVGs in an elementary way:

Proposition 4.8. For any OTVG (E,C, T ) it holds TF = TF , where TF has for

zero neighborhood basis the sets of the form (U + C) ∩ (U − C) for any U ∈ U .

Proof. Since (U + C) ∩ (U − C) ⊇ (U + C) ∩ (U − C) if follows that TF ≥ TF .
Conversely, if V ∈ U , then there exists U ∈ U such that V ⊇ U + U , that is,
V +C ⊇ U +U +C ⊇ U +C and V −C ⊇ U +U −C ⊇ U −C (C ⊆ U +C for any
U ∈ U). It means that (V +C)∩ (V −C) ⊇ (U +C)∩ (U −C), that is TF ≤ TF . □

Corollary 4.9. An OTVG (E,C, T ) (this also means ULCG or OTVS) is order-
convex if and only if the OTVG (E,C, T ) is order-convex.

The following proposition shows when the topology TF is Hausdorff.

Proposition 4.10. For any OTVG (E,C, T ) the following statements are equiva-
lent:

(1) The cone C is antisymmetric, that is C
T ∩ (−C

T
) = {0}.

(2) Topology TF is Hausdorff.

Proof. If x ∈ {0}TF , it means that x ∈ (U+C)∩(U−C) for any T -neighborhood of

zero U , that is (x−U)∩C 6= ∅ and (x−U)∩(−C) 6= ∅, therefore x ∈ C
T ∩(−C

T
) =

C
TF ∩ (−C

TF ) = {0}. It follows that x = 0, that is the topology TF is Hausdorff,
and so (1) implies (2). The converse follows from Propositions 4.6. and 4.8. □

The following theorem answers when a discrete OTVG is order-convex.

Proposition 4.11. For any discrete OTVG (E,C, T ) the following statements are
equivalent:

(1) OTVG (E,C, T ) is order-convex.
(2) The cone C is antisymmetric.
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Proof. Since T is discrete, ({0} + C) ∩ ({0} − C) = C ∩ (−C) ⊂ {0}. Hence,
C∩(−C) = {0}, that is the cone C is antisymmetric, so (1) implies (2). Conversely,
if the cone C is antisymmetric, then clearly [{0}] = {0}, that is T = TF , and the
given discrete OTVG (E,C, T ) is then order-convex, so (2) implies (1). □
Example 4.12. Let (E,C, T ) be the OLCG where E=R2, C={(x, y) : x ≥ 0, y ≥ 0}
and topology T has for a zero neighborhood basis the sets of the form Iε = {(x, 0) :
|x| ≤ ε}, ε > 0. Then (E,C, T ) is order-convex. Indeed, (Iε + C) ∩ (Iε − C) =
{(x, y) : x ≥ −ε, y ≥ 0} ∩ {(x, y) : x ≤ ε, y ≤ 0} = Iε. Hence, (E,C, T ) has for zero
neighborhood basis absolutely convex order-convex subsets.

In Section 6 we will show that for an OLCG (E,C, T ) which is order-convex, the
associated OLCS (E,C, loc T ) need not be order-convex (Example 6.2).

In what follows we prove a proposition that further characterizes topology TF .

Proposition 4.13. If f is a continuous positive linear map from an OTVG (E,C, T )
to another one (F,K,P), then it is continuous when treated as mapping from the
OTVG (E,C, TF ) into OTVG (F,K,PF ).

Proof. If U is a P-neighborhood of zero, then f−1([U ]) = f−1[(U +K)∩ (U −K)] =
f−1(U+K)∩f−1(U−K) ⊇ (f−1(U)+C)∩(f−1(U)−C), because if x ∈ f−1(U)+C,
then f(x) ∈ U+f(C) ⊆ U+K. This means that f is a continuous map from OTVG
(E,C, TF ) to OTVG (F,K,PF ) . □
Corollary 4.14. If an OTVG (F,K,P) is order-convex, then a positive linear
map from OTVG (E,C, T ) to OTVG (F,K,P) is continuous if and only if it is
continuous from OTVG (E,C, TF ) to OTVG (F,K,PF ).

Corollary 4.15. The topology TF is the strongest among topologies Tα weaker than
T and for which the OTVG (E,C, Tα) is order-convex for any α, that is TF =
supα{Tα : α ∈ I, Tα ≤ T and OTVG (E,C, Tα) is order-convex}.

In subsequent propositions we give some properties of order-convex OTVSs. A
string U = (Un)n∈N in an OTVS (E,C, T ) is order-convex if all elements Un are
order-convex. The following proposition shows that the set of order-convex topo-
logical strings in an OTVS is nonempty.

Proposition 4.16. If U = (Un)n∈N is a T -topological string in an OTVS (E,C, T ),
then [U ] = ([Un])n∈N is a TF -topological (so also T -topological) string in the OTVS
(E,C, TF ) .

Proof. The sets [Un]n∈N are absorbing and balanced TF -neighborhoods of zero. We
shall prove that [Un+1] + [Un+1] ⊆ [Un] for any n ∈ N. Let x = u + v, where
u, v ∈ [Un+1]; then there exist a, b, c, d ∈ Un+1 with a ≤ b, c ≤ d such that u ∈ [a, b]
and v ∈ [c, d]. It follows that x ∈ [a+c, b+d], a+c ≤ b+d, a+c ∈ Un+1+Un+1 ⊆ Un

and b+ d ∈ Un+1 + Un+1 ⊆ Un, therefore x ∈ [Un]. □
Proposition 4.17. If (E,C, T ) is an OTVS, then there exists a set of order-convex
strings in E with the following properties:

(i) For any two strings U and V from this set, there exists another string W
from the same set such that W ⊆ U ∩ V.
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(ii) Members of the strings from this set form a zero TF -neighborhood basis.

Proof. On the basis of Proposition 4.16, there exists in the OTVS (E,C, T ) a
nonempty set of order-convex T -topological strings. According to [2, §1, p. 6],
if U = (Un)n∈N and V = (Vn)n∈N are two strings from the given set, then there ex-
ists a T -topological string W = (Wn)n∈N that is contained in U ∩V = (Un∩Vn)n∈N.
This means that also [Wn] ⊆ Vn ∩ Un for any n ∈ N because U and V are order-
convex strings, that is [W] = ([Wn])n∈N is the required order-convex string in U ∩V .
The part (ii) is clear, because if U is a TF -neighborhood of zero, then there exists
a T -neighborhood of zero V , such that U ⊇ [V ]. But according to Proposition 4.16
the neighborhood V generates an order-convex string [V] = ([Vn])n∈N, V1 = V and
U ⊇ [V1]. □

The following proposition is the converse of the previous one (it follows directly
from [2, §1, p. 7]).

Proposition 4.18. If a set of order-convex strings in an OTVS (E,C, T ) satisfies
part (i) of Proposition 4.17 then this set of strings generates a linear order-convex
topology. The zero neighborhood basis of this topology is formed by elements of
strings of the given set.

Since the finest linear topology tf on any vector space E is Hausdorff, then
according to Proposition 4.6 the OTVS (E,C, tf ) is not necessarily order-convex.
Indeed, it is enough to consider a non antisymmetric cone. According to Propo-

sitions 4.18 and 4.13, it follows that tfF is the finest linear order-convex topology.

From Proposition 4.10 it is Hausdorff if and only if C
tfF is an antisymmetric cone.

The following proposition characterizes the finest linear order-convex topology.

Proposition 4.19. For any OTVS (E,C, T ) that is order-convex, the following
statements are equivalent:

(1) T is the finest linear order-convex topology.
(2) Any positive linear map from the OTVS (E,C, T ) to an arbitrary OTVS

(F,K,P) that is order-convex, is continuous.

Proof. If V is a balanced order-convex P-neighborhood of zero, then it generates a
P-topological string V = (Vn)n∈N, V1 = V . Since T is the finest linear order-convex
topology on (E,C), then f−1(V) = (f−1(Vn))n∈N is a T -topological string, because
it is obviously order-convex. This implies that f is a continuous map because
f−1(V ) = f−1(Vn) ⊇ f−1(V2), so (1) implies (2). Conversely, if f is a continuous
linear positive map from an order-convex OTVS (E,C, T ) to an arbitrary order-

convex OTVS (F,K,P), then it follows that T = tfF , if we consider (E,C, tfF )
instead of (F,K,P) and instead of f we consider the identity map in E. □

In the next propositions we will investigate hereditary properties of order-convex
OTVGs and OTVSs. It is clear that the OTVG (E,C, T ) is order-convex if and
only if OLCS (E,C, T ) is order-convex. For OTVGs the following proposition can
be easily proved.

Proposition 4.20. If (E,C, T ) is an order-convex OTVG, and H ⊆ E, then the
OTVG (H,C ∩H, T |H) is order-convex.
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It is an open question whether (TF |H) = (T |H)F holds true, which would be
a more general result than Proposition 4.20. From Corollary 4.15, it follows that
(TF |H) ≤ (T |H)F .

The category of order-convex OTVSs is invariant with respect to the projective
limits, because a finite number of intersections of order-convex subsets is order-
convex itself. In the case of an inductive limit this is not true in general. It is
proved in [26] that the quotient space of an order-convex OTVS is not necessarily
order-convex. In [26], it is also shown that an arbitrary product and direct sum of
order-convex OLCSs is an order-convex OLCSs. More general results for OLCSs
are proved in [30, Theorems 5.20 and 5.21]:

∏
α TαF =

∏
α(Tα)F and

⊕
α TαF =

(
⊕

α Tα)F .
We will show that the last statement is also true for OTVSs (the proof for the

products is the same as in [30]). The proof for the direct sum must be different,
because in the general case the inductive limit and direct sum in the TVS category
differ from those in the category of LCSs (see [2] for details).

Proposition 4.21. If {(Eα, Cα, Tα) : α∈I} is a family of OTVSs and (E,C,
⊕

α Tα)
their direct sum in the TVP category (see [2, §4, p. 21]) then

⊕
α TαF = (

⊕
α Tα)F .

Proof. Following [2, §4, p. 20], the topologies
⊕

α TαF and (
⊕

α Tα)F are generated
by the strings (Un)n∈N and ([Vn])n∈N, where Vn =

∑∞
k=1

{
∪αU

α
2n−1k

}
and Un =∑∞

k=1

{
∪α

[
Uα
2n−1k

]}
. We will prove that [Vn] = Un, for any n ∈ N. If x ∈ [Vn], then

there exist a, b ∈ Vn, a ≤ b, such that a =
∑m

i=1 x
αi

2n−1 , b =
∑m

i=1 y
αi

2n−1 and also∑m
i=1 x

αi

2n−1 ≤ x ≤
∑m

i=1 y
αi

2n−1 . Then it follows that
∏

αi
(a) ≤

∏
αi
(x) ≤

∏
αi
(b),

that is xαi

2n−1 ≤
∏

αi
(x) ≤ yαi

2n−1 . Since xαi

2n−1 , y
αi

2n−1 ∈ Uαi

2n−1 and x =
∑m

i=1

∏
αi
(x),

then x ∈ Un because
∏

αi
(x) = xαi ∈

[
Uαi

2n−1

]
.

Conversely, if x ∈ Un, then x =
∑m

i=1 x
αi

2n−1 , where xαi

2n−1 ∈
[
Uαi

2n−1

]
. This means

that for any αi there exist vαi

2n−1 , u
αi

2n−1 ∈ Uαi

2n−1 and vαi

2n−1 ≤ uαi

2n−1 ; then it follows
that a =

∑m
i=1 v

αi

2n−1 ≤ x ≤
∑m

i=1 u
αi

2n−1 = b. Clearly a ≤ b, a, b ∈ Vn, and it follows
that x ∈ [Vn]. □

A discrete LCG V(E,E∗) is order-convex if and only if, the positive cone C is
antisymmetric (Proposition 4.11). V(E,E∗) is the finest LCG and VF (E,E∗) is the

finest order-convex LCG. Since C
V(E,E∗)

= C, then according to Proposition 4.10,
if OLCG (E,C,V(E,E∗)) is not order-convex, then the topology VF (E,E∗) is not
Hausdorff. It follows that OLCG (E,C,V(E,E∗)) is Hausdorff if and only if it is
discrete. The finest order-convex LCG on (E,C) has the following subspace for a
basis in the neighborhood of zero: [{0}] = C ∩ (−C).

The following proposition characterizes the finest order-convex LCG.

Proposition 4.22. For any order-convex OLCG (E,C, T ) the following statements
are equivalent:

(1) T is the finest order-convex LCG.
(2) Any positive linear map from OLCG (E,C, T ) to an arbitrary OLCG (F,K,P)

that is order-convex is continuous.

Proof. If V is a balanced, convex and order-convex P-neighborhood of zero, then it
is clear that f−1(V ) = f−1((V +K)∩ (V −K)) ⊇ (f−1(V ) +C)∩ (f−1(V )−C) ⊇
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C ∩ (−C), that is f−1(V ) is a T = VF (E,E∗)-neighborhood of zero. Therefore, (1)
implies (2). The converse is obtained considering that (F,K,P) = (E,C,VF (E,E∗))
and taking f to be the identity map on E. □

5. Solid OTVGs

Definition 5.1. An OTVG (E,C, T ) is solid, if it has a zero neighborhood basis
formed by solid subsets.

Since a solid subset is balanced, then it is clear that a solid OTVG (E,C, T )
has a zero neighborhood basis formed by balanced subsets, therefore of solid and
symmetric subsets.

Example 5.2. By [14, Remark, p. 533], there exists a Hausdorff TVG-topology
T on R, strictly weaker than the standard Euclidean topology t. As shown in
[23, Example B, p. 43], there is no T -neighborhood of zero which is balanced and
different from R.

Indeed, if U 6= R were a balanced T -neighborhood of zero, then it would be of the
form U = (−λ, λ) or U = [−λ, λ] for some λ > 0. If V is an arbitrary t-neighborhood
of zero, then for some ε > 0 it would be V ⊇ [−ε, ε] = ε

λ [−λ, λ] ⊇ ε
λU , where ε

λU
is a T -neighborhood of zero, so V would also be a T -neighborhood of zero, which
would imply that t ≤ T , which is a contradiction.

It follows that the OTVG (E,C, T ) is not solid for any of possible cones, otherwise
it would have a zero neighborhood basis formed by balanced subsets.

If U is a zero neighborhood basis of a topology T formed by symmetric subsets,
then S(U) = {S(U) : U ∈ U} (see Section 2) is a zero neighborhood basis of
the topology TS of a solid OTVG. Since the sets A and S(A) are incomparable in
general, it follows that the topologies T and TS are incomparable. The following
proposition is proved similarly as the one for OLCS in [30].

Proposition 5.3. If (E,C, T ) is an OTVG, then the following statements are true:

(i) TF ≤ TS ≤ TD;
(ii) OTVG (E,C, TS) is order-convex with the open decomposition property;
(iii) TS = (TD)F = (TF )D.

Corollary 5.4. (i) If an OTVG (E,C, TS) is order-convex with the open de-
composition property then it is solid.

(ii) A discrete OTVG is solid with respect to some cone if and only if it is
order-convex, that is if and only if the cone is antisymmetric.

(iii) An indiscrete OTVG is solid with respect to some cone C if and only if it
has the open decomposition property, that is if and only if E = C − C.

(iv) If f is a positive continuous linear map from OTVG (E,C, T ) to OTVG
(F,K,P), then f is continuous from OTVG (E,C, TS) to OTVG (F,K,PS).

(v) An OTVG (E,C, T ) is solid if and only if the OTVG (E,−C, T ) is solid.

The following proposition shows that the set of solid strings (i.e., strings whose
terms are solid sets) in an OTVG (E,C, T ) is nonempty.
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Proposition 5.5. Let E = C − C. If U = (Un)n∈N is a T -topological string in
OTVS (E,C, T ), then S(U) = (S(Un))n∈N is a TS-topological string in the OTVS
(E,C, TS).

Proof. Since S(Un) =
∪
{[−x, x] : x ∈ Un ∪ C}, that is a solid subset of E, then it

is clearly balanced. Since, for each c ∈ C, S({c}) = [−c, c], S(Un) is an absorbing
subset in E, because E = C − C. If x = a + b, where a, b ∈ S(Un+1), then there
exist u, v ∈ Un+1 ∩ C such that a ∈ [−u, u] and b ∈ [−v, v], that is, a + b ∈
[−u, u] + [−v, v] ⊆ [−(u + v), u + v]. Since u + v ∈ Un+1 + Un+1 ⊆ Un, it follows
that x = a+ b ∈ S(Un). Therefore S(Un+1) + S(Un+1) ⊆ S(Un). □

Corollary 5.6. If (E,C, T ) is an OTVS then there exists a set of solid strings in
E with the following properties:

(i) For any two strings U and V in this set, there exists a string W such that
W ⊆ U ∩ V.

(ii) Elements of strings of this set form a zero neighborhood basis for the topology
TS.

Corollary 5.7. If F is a set of strings in an OTVS (E,C, T ) that generates topology
T , then S(F) is a set of strings in E, that generates topology TS.

According to Proposition 5.3(iii), the topology TS can be expressed by the topolo-
gies TD and TF ; hence, the following proposition is a direct consequence of Propo-
sitions 3.16 and 4.21.

Proposition 5.8. If {(Eα, Cα, Tα) : α ∈ I} is a family of OTVSs, (E,C1,
∏

α Tα)
is their product, and (E,C2,

⊕
α Tα) their direct sum, then

∏
α TαS = (

∏
α Tα)S and⊕

α TαS = (
⊕

α Tα)S.

In [30], [26] and [18] the authors studied the so-called order-bounded locally con-
vex topology on an arbitrary vector space (E,C), denoted as Tb. It has for zero
neighborhood basis the set of all absolutely convex subsets of E that absorb order-
bounded subsets (such subsets are called order-bornivorous).

Topology Tb is not necessarily Hausdorff for an arbitrary cone C. In particular
if we take C = E, then Tb is an indiscrete locally convex topology, so it is not
Hausdorff. Then order-bounded subsets are in fact all subsets of E, therefore also
the space E itself. It is obvious, because for any cone C ⊆ E: [x, y] = (x + C) ∩
(y − C).

In [30, p. 75], it was shown that locally convex order-bounded topology Tb is the
finest locally solid topology on (E,C), if E = C − C and if for any two elements
u, v ∈ C, [θ, u] + [θ, v] = [θ, u + v] holds (note that the last condition is satisfied,
e.g., in Riesz spaces – see the next section).

For linear order-bounded topology (here denoted as T b) we will show the following
proposition.

Proposition 5.9. If (E,C) is an ordered vector space such that the cone C is
generating and that for u, v ∈ C, [θ, u] + [θ, v] = [θ, u + v], then T b is the finest
linear solid topology on (E,C).
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Proof. First we will show that the topology T b is solid, namely if V is a T b-
neighborhood of zero, we will show that there exists a solid T b-neighborhood of
zero U such that V ⊇ U . It is clear that the neighborhood V generates a T b-
topological string V = (Vn)n∈N, V = V1 (not necessarily unique). We shall now
define a sequence of subsets U = (Un)n∈N in the following way:

Un =
∪

{[−x, x] : x ∈ Vn+1 and [θ, x] ⊆ Vn+1} .

All subsets Un are clearly solid, being unions of solid subsets. To prove that U =
(Un)n∈N is a solid string, one has to prove that Un are absorbing subsets, and that
Un+1 + Un+1 ⊆ Un.

In order to prove that Un are absorbing we will prove that Un ∩ C = {x ∈ C :
[θ, x] ⊆ Vn+1}. Indeed, if a ∈ Un ∩ C, then a ∈ Un and a ∈ C, that is there exists
x ∈ C such that [θ, x] ⊆ Vn+1 and a ∈ [−x, x]. Since a ∈ C, then a ∈ [−x, x]∩C, or
[θ, a] ⊆ [θ, x] ⊆ Vn+1, that is, a ∈ {x ∈ C : [θ, x] ⊆ Vn+1}. The converse statement
is obvious because [θ, x] ⊆ [−x, x] for any x ∈ C.

Since Un are solid subsets, they are absorbing if and only if they absorb positive
elements. Therefore, if some c ∈ C is not an element of the set kUn for any natural
number k, then 1

kc /∈ {x ∈ C : [θ, x] ⊂ Vn+1}, that is, [θ, c] ⊈ kVn+1, and the latter

is contrary to the hypothesis that V = (Vn)n∈N is a T b-topological string.
We will now show that Un+1 + Un+1 ⊆ Un for any n ∈ N. If a = u + v ∈

Un+1 + Un+1, then there exist x, y ∈ Vn+2, [θ, x] ⊆ Vn+2, [θ, y] ⊆ Vn+2 and u ∈
[−x, x], v ∈ [−y, y]. Also, a = u+v ∈ [−(x+y), x+y], x+y ∈ Vn+2+Vn+2 ⊆ Vn+1

and [θ, x+ y] ⊆ Vn+2 + Vn+2 ⊆ Vn+1. This means that a ∈ Un+1.
Now we will prove that Un ⊆ Vn for any n ∈ N. Indeed, if u ∈ Un, then there

exists x ∈ Vn+1, [θ, x] ⊆ Vn+1 and u ∈ [−x, x], then it follows that u+x
2 ∈ [θ, x]

and x−u
2 ∈ [θ, x], that is u+x

2 ∈ Vn+1 and x−u
2 ∈ Vn+1. Now, u = x+u

2 − x−u
2 ∈

Vn+1 − Vn+1 = Vn+1 + Vn+1 ⊆ Vn. Therefore, the sequence U = (Un)n∈N is a solid
string, which means that it is also T b-topological and V = V1 ⊇ U1 = U .

We conclude that T b is a linear topology with a zero neighborhood basis formed
by solid subsets. Since order-bounded subsets are bounded for any linear solid
topology, and that T b is the finest linear topology for which order-bounded subsets
are topologically bounded, then T b is the finest linear solid topology. □

Corollary 5.10. If (E,C) is an ordered vector space as in the previous proposition,

then tfF = T b (tf is the finest topology on E).

In the following propositions we will state some properties of linear order-bounded
topology T b without particular assumptions for the cone C.

Proposition 5.11. If T b is a linear order-bounded topology on ordered vector space
(E,C), then (T b)◦ = Tb ((T b)◦ is a locally convex topology on (E,C), which has a
zero neighborhood basis formed by absolutely convex T b-neighborhoods of zero).

Proof. If U is a (T b)◦-neighborhood of zero, then there exists an absolutely con-
vex T b-neighborhood of zero V , such that U ⊇ V and V absorbs order-bounded
subsets. From the definition of topology Tb, it follows that V is a Tb-neighborhood
of zero, which means that U is also a Tb-neighborhood of zero, i.e., (Tb)◦ ≤ Tb.
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Conversely if W is an absolutely convex Tb-neighborhood of zero, then the natu-
ral string

(
1

2n−1W
)
n∈N is order-bornivorous, that is T b-topological. Therefore, W

is a Tb-neighborhood of zero, and since it is absolutely convex, it is also a (T b)◦-
neighborhood of zero. We conclude that Tb ≤ (T b)0. □

In [30, p. 68], a necessary and sufficient condition is given for an absolutely convex
subset V to be order-bornivorous in the ordered vector space (E,C). The sequence
{xn} ⊆ E is an ordered Mackey null sequence if there exist a real decreasing sequence
{εn} tending to 0 and an order-bounded subset A ⊆ E such that xn ∈ εnA, for any
n ∈ N. The following proposition gives a characterization of order-bornivorous
strings in an ordered vector space (E,C).

Proposition 5.12. A string V = (Vn)n∈N in the ordered vector space (E,C) is
order-bornivorous if, and only if, every Vn absorbs order-Mackey null sequences.

Proof. The necessity of condition is evident, because for any ordered Mackey null
sequence {xk} there exists a real sequence {εk} and an order-bounded subset A, such
that xk ∈ εkA for any k ∈ N. Since any Vn absorbs A, there exists λ > 0 such that
xk ∈ εkλVn ⊆ λ′Vn, where λεk ≤ λ′. On the other hand, if there exists an order-
bounded subset A and a member Vn0 of the string V such that A ⊈ k2Vn0 , then there

exists a sequence xk ∈ A such that the ordered Mackey null sequence
{
1
kxk

}
is not

absorbed by Vn0 , what contradicts the hypothesis on the string V = (Vn)n∈N. □
A linear map f from an ordered vector space (E,C) to a TVS (F,P) is order-

bounded, if it maps order-bounded subsets of the space (E,C) into P-bounded
subsets of TVS (F,P), [30, p. 69]. The following proposition and its corollary
characterize linear order-bounded topology T b on the ordered vector space (E,C).

Proposition 5.13. Let (E,C, T ) be an OTVS and T b a linear order-bounded topol-
ogy on (E,C). Then the following statements are equivalent:

(a) T ≥ T b;
(b) Any string V = (Vn)n∈N whose members absorb ordered Mackey null se-

quences is T -topological;
(c) Any order-bounded linear map from (E,C, T ) to an arbitrary TVS (F,P) is

continuous.

Proof. (a) implies (b) because if V = (Vn)n∈N is a string with above mentioned
property, then according to Proposition 5.12 it is order-bornivorous, therefore a
T b-topological string, hence, T -topological, because T ≥ T b.

(b) implies (c): if U is a balanced P-neighborhood of zero, then it generates a
P-topological string (Un)n∈N, such that f−1((Un)n∈N) = (f−1(Un))n∈N is an order-
bornivorous string in (E,C). According to Proposition 5.12, the members f−1(Un)
absorb ordered Mackey null sequences, so because of (b) the string (f−1(Un))n∈N is
T -topological. It means that f−1(U) = f−1(U1) is a T -neighborhood of zero, that
is f is a T -P continuous map.

(c) implies (a): The identity map from (E, T ) to (E, T b) is obviously order-
bounded and because of (c) it is continuous, therefore T ≥ T b. □
Corollary 5.14. If (E,C, T ) is an OTVS, then the following statements are equiv-
alent:
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(a) T = T b;
(b) Any string V = (Vn)n∈N whose members absorb ordered Mackey null

sequences in (E,C) is T -topological and any order-bounded subset is T -
bounded;

(c) Any order-bounded linear map from (E,C, T ) to an arbitrary TVS (F,P) is
continuous and any order-bounded subset of (E,C) is T -bounded.

Corollary 5.15. Linear order-bounded topology T b is the finest linear topology on
(E,C) for which ordered Mackey null sequences are topological null sequences.

In any OTVS (E,C, T ) the following two propositions hold true.

Proposition 5.16. For any linear topology T on an ordered vector space (E,C),
TF ≤ T b holds.

Proof. First we shall prove that T b is the finest linear topology on (E,C) for which
order-bounded subsets are topologically bounded, that is, T b-bounded. If T ′ is such
a topology and V one of its neighborhoods of zero, then the generated string V =
(Vn)n∈N is obviously order-bornivorous, and this means that V is a T b-topological
string. It follows that V = V1 is a T b-neighborhood of zero and T ′ ≤ T b. According
to Lemma 4.4, order-bounded subsets are TF -bounded so that TF ≤ T b. □
Proposition 5.17. If f is a positive linear mapping from an ordered vector space
(E,C) into another one (F,K), then f is continuous from (E,C, T b) to (F,K,Pb).

Proposition 5.18. For any ordered vector space (E,C) the following conditions
are equivalent:

(a) The cone C is generating;
(b) The space (E,C, T b) has the open decomposition property.

Proof. (b) implies (a), because, for each T b-neighborhood of zero U , U ∩C−U ∩C
is also a T b-neighborhood of zero, i.e., for each x ∈ E, there exists λ > 0 such that
x ∈ λ(U ∩ C − U ∩ C) = λU ∩ C − λU ∩ C, i.e., x ∈ C − C.

Let us prove that (a) implies (b). Suppose that for each T b-topological string
V = (Vn)n∈N, the string V ∩C−V ∩C is T b-topological. It is enough to prove that,
for each n ∈ N, Vn ∩ C − Vn ∩ C absorbs order-bounded subsets. If this is not the
case, then there exist x ∈ C and n0 ∈ N such that [−x, x] ⊈ k2(Vn0 ∩ C − Vn0 ∩ C)
for any k ∈ N. Since E = C −C, it follows that xk = ak − bk, where ak, bk ∈ C and
1
kak − 1

k bk /∈ k(Vn0 ∩ C) − k(Vn0 ∩ C), which is impossible since { 1
kak} and { 1

k bk}
are positive order-Mackey zero-sequences which are, by Proposition 5.12 absorbed
by each Vn ∩ C. □

We note that the corresponding result in locally convex case was proved in [30],
but using duality theory.

Corollary 5.19. If (E,C) is an ordered vector space such that E = C − C, then
the linear order-bounded topology T b is solid if and only if it is order-convex.

6. Some results on Riesz TVGs and Riesz TVSs

Among ordered vector spaces, Riesz spaces (see the definition in Section 1) have
much richer structure. Here we introduce and study some properties of Riesz TVGs.
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Definition 6.1. A Riesz space is called a Riesz TVG (RTVG, for short) if it is
endowed with a topology of vector group having a zero neighborhood basis formed
by solid subsets. Similarly, a Riesz locally convex group (RLCG) is defined.

If (E,C) is a Riesz space and (E, T ) is a TVG, then (E,C, T ) is an RTVG if and
only if any of the following conditions is satisfied:

(1) The mapping (x, y) 7→ sup{x, y} is uniformly continuous on E × E.
(2) The mapping x 7→ sup{x, θ} is uniformly continuous on E.
(3) (E,C, T ) is an order-convex OTVG with the open decomposition property.
(4) (E,C, T ) is an order-convex OTVG and the mapping x 7→ sup{x, θ} is

continuous at θ.
(5) If {xα : α ∈ D} and {yα : α ∈ D} are nets in E, |xα| � |yα| for each α ∈ D

and {yα} T -converges to zero, than {xα} T -converges to zero.

It was proved in [30, p. 137] that if (E,C, T ) is an RTVS then (E,C) is an
Archimedean ordered vector space (i.e., nx � y for some y ∈ E and all n ∈ N
implies that x � θ). The following example shows that this may not be true for
RTVGs.

Example 6.2. Let (E,C) be a Riesz space which is not Archimedean (see [30,
p. 120]), and let (E,C, d) be an RTVG (d – the discrete topology). By Corollary
3.11 and Proposition 4.11, (E,C, d) is an order-convex UTVG with the open decom-
position property, hence, by Proposition 5.3 it is solid, i.e., (E,C, d) is an RTVG
since (E,C) is a Riesz space. According to [30, Proposition 11.2], on the given Riesz
space (E,C) there is no vector topology T such that (E,C, T ) is an RTVS.

It follows also that if (E,C, T ) is an RLCG, then the associated OLCS (E,C, loc T )
need not be an RLCS (in other words (loc T )S 6= loc T ). Also, linear order-bounded
topology T b need not be order-convex.

Lemma 6.3. A subset U of E is a T -neighborhood of zero in RTVS (E,C, T ) if
and only if skU is a T -neighborhood of zero.

Proof. The condition is trivially sufficient since skU ⊆ U . Conversely, if U is a
T -neighborhood of zero, then there exists a solid neighborhood of zero V , such that
U ⊇ V . By the definition of the solid kernel, it follows that U ⊇ skU ⊇ V , i.e.,
skU is a T -neighborhood of zero. □

Corollary 6.4. In an RTVS (E,C, T ), for each T -topological string U there exists
a solid T -topological string V such that U ⊇ V.

The next proposition is concerned with the extension of a topological string from
an l-ideal to a topological string in the whole space.

Proposition 6.5. Let (E,C, T ) be an RTVS and let F be its l-ideal (with the
induced topology). If V = (Vn)n∈N is a solid topological string in (F,C ∩ F, T |F ),
then there exists a solid T -topological string U = (Un)n∈N in E such that U ∩F = V.

Proof. Define, for each n ∈ N, subsets Un of E by

Un = {x ∈ E : y ∈ Vn whenever y ∈ F and θ � y � |x|}.
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In order to prove that the sequence U = (Un)n∈N is a T -topological string satisfying
U ∩ F = V we have to show that, for each n ∈ N: 1◦ Un is a solid subset of E;
2◦ Un+1 + Un+1 ⊆ Un; 3

◦ Un ∩ F = Vn; 4
◦ Un is a T -neighborhood of zero.

1◦ Let b ∈ Un and |a| � |b|. By the definition of the set Un, if y ∈ F and
θ � y � |a|, this means that θ � y � |a| � |b|, i.e., y ∈ Vn because b ∈ Un.

2◦ Let x = a+b, where a, b ∈ Un+1. If y ∈ F and θ � y � |x| then θ � y � |a+b| �
|a| + |b| and, since [θ, |a| + |b|] = [θ, |a|] + [θ, |b|] holds, it follows that y = y1 + y2
where y1 ∈ [θ, |a|] and y2 ∈ [θ, |b|]. Hence, y = y1 + y2 ∈ Vn+1 + Vn+1 ⊆ Vn, i.e.,
x = a+ b ∈ Un.

3◦ Let a ∈ Vn and let y ∈ F such that θ � y � |a|. Then |y| � |a|, hence, y ∈ Vn

since Vn is a solid subset of F . Conversely, if a ∈ Un ∩ F , then clearly a ∈ Vn by
the definition of the set Un and since Un and Vn are solid sets.

4◦ Suppose, to the contrary, that Un is not a T -neighborhood of zero. Then
for each solid T -neighborhood of zero U there exists xU ∈ F with xU /∈ Un. This
means that for each U there exists yU ∈ F with θ � yU � |xU | and yU /∈ Vn.
Since the net {xU ,U ,⊇} tends to zero in the space (E,C, T ), by the property (5)
given after Definition 6.1, the net {yU ,U ,⊇} tends to zero in (E,C, T ), hence also
in (F,C ∩ F, T |F ). But this is impossible since yU /∈ Vn. Thus, U = (Un)n∈N is a
T -topological string. □

Following [2], a string in an OTVG (E,C, T ) will be called:

• bornivorous if all of its terms are bornivorous (i.e., absorb T -bounded sets);
• order-bornivorous if all of its terms are order-bornivorous (i.e., absorb order-
bounded sets);

• T -closed if all of its terms are T -closed.
• locally topological if each of its terms intersect every T -bounded subset of
E by a neighborhood of zero in the induced topology.

The following proposition produce similar information as in Proposition 6.5, but
for different kinds of strings.

Proposition 6.6. (i) Let (E,C, T ) be an RTVS and F its l-ideal endowed by the
induced topology. If V = (Vn)n∈N is a bornivorous solid string in (F,C ∩ F, T |F ),
then there exists a bornivorous solid string U = (Un)n∈N in E such that U ∩F = V.

(ii) If the string V is T |F -closed, then U is T -closed.
(iii) If the string V is locally topological, then U is locally topological

Proof. (i) Define the sets Un ⊆ E in the same way as in the proof of Proposition 6.5.
It has to be proved that each Un is a bornivorous subset in the space (E,C, T ).
Suppose the contrary – then there exists a solid bounded set A ⊆ E such that
A ⊈ kUn0 for some n0 and each k ∈ N. Hence, there is a sequence (xk)k∈N in

A such that 1
kak /∈ Un0 for each k. By the definition of subset Un, there exists a

sequence (bk) in F such that θ � bk � | 1kak| and bk /∈ Vn0 . Hence, θ � kbk � |ak|,
implying that the sequence (kbk) is contained in A∩F , because A is a solid set and
F is a subspace. Since A ∩ F is a bounded subset of F , there exists λ > 0 such
that (kbk) is contained in λVn0 , hence in kVn0 for k ∈ N large enough. But this is
impossible because bk /∈ Vn0 for each k ∈ N. This contradiction finishes the first
part of proof.



1250 Z. KADELBURG, N. FABIANO, N. MIRKOV, AND S. RADENOVIĆ

(ii) Let us prove now that Un = Un for each n ∈ N. If x ∈ Un then there exists
a net {xτ : τ ∈ D} in Un T -converging to x. Let y ∈ F and θ � y � |x|. Then
θ � inf{y, |xτ |} � |xτ | ∈ Un and inf{y, |xτ |} ∈ F . By the definition of Un, it
follows that inf{y, |xτ |} ∈ Vn. Using condition (2) formulated after Definition 6.1,
we conclude that inf{y, |xτ |} T -converges to inf{y, |x|} = y ∈ Vn = Vn. This means
that x ∈ Un and the proof is over.

(iii) Suppose, to the contrary, that for each solid T -neighborhood of zero U of the
space (E,C, T ) there exists a solid T -bounded subset A such that A∩U ⊈ A∩Un0

for some n0 ∈ N. This means that there exists a net {xU : U ∈ U} in A ∩ U with
xU /∈ A ∩ Un0 , hence, for each U , xU /∈ Un0 . Thus, by the definition of subset Un0 ,
there exists a net {yU : U ∈ U} such that yU ∈ F with θ � yU � |xU | and yU /∈ Vn0 .
Since U is a solid subset, then yU ∈ A ∩ U ∩ F , and the sequence {yU : U ∈ U} is
a bounded subset in the induced topology of F . On the other hand, the string V
is bornivorous, hence, there exists λ > 1 such that 1

λyU ∈ Vn0 , for each U . Since
1
λyU ∈ F , θ � 1

λyU � yU � |xU | and 1
λyU ∈ Vn0 and so xU ∈ Un0 , contrary to the

supposition. □
The previous results will be used to obtain hereditary properties of some special

classes of RTVSs. First, we give characterization of these classes, not given in [16,17]
(which are, to the best of our knowledge, the only papers in which such classes of
RTVSs were investigated without using convexity conditions).

Definition 6.7. An RTVS (E,C, T ) is bornological (barreled, quasi-barreled, lo-
cally topological) if (E, T ) is bornological (barreled, quasi-barreled, locally topolog-
ical) in the category of TVSs, i.e. (see [2]) if any bornivorous (T -closed, bornivorous
T -closed, locally topological) string in it is T -topological.

Proposition 6.8. For an RTVS (E,C, T ) the following conditions are equivalent:

(a) (E,C, T ) is a bornological RTVS.
(b) Each positive and bounded linear mapping from E into an arbitrary RTVS

(F,K,P) is continuous;
(c) Each positive and bounded linear mapping from E into an arbitrary Fréchet

RTVS (F,K,P) is continuous;
(d) Each solid bornivorous string in (E,C, T ) is T -topological.

Proof. The only nontrivial part is that (d) implies (a). Let V = (Vn)N be a borniv-
orous string in (E,C, T ). Since each Vn absorbs solid bounded subsets of E, then
skVn 6= ∅ and skVn is a bornivorous subset of E. It is easy to show that (sk Vn)n∈N
is a string in (E,C, T ). Now (d) implies that (sk Vn)n∈N is T -topological, and so is
V, which completes the proof. □

Similarly, the following propositions can be proved.

Proposition 6.9. For an RTVS (E,C, T ) the following conditions are equivalent:

(a) (E,C, T ) is a quasi-barelled RTVS.
(b) Each solid and closed bornivorous string in (E,C, T ) is T -topological.

Proposition 6.10. For an RTVS (E,C, T ) the following conditions are equivalent:

(a) (E,C, T ) is a locally topological RTVS.
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(b) Each positive and locally continuous linear mapping from E into an arbitrary
RTVS (F,K,P) is continuous;

(c) Each positive and locally continuous linear mapping from E into an arbitrary
Fréchet RTVS (F,K,P) is continuous;

(d) Each solid locally topological string in (E,C, T ) is T -topological.

Here, a mapping is called locally continuous if its restriction to each bounded subset
is continuous.

Combining Propositions 6.6–6.10 we obtain the following result.

Proposition 6.11. Every l-ideal of a bornological (resp. quasi-barreled, locally topo-
logical) RTVS is bornological (resp. quasi-barreled, locally topological) in the induced
topology.

Remark 6.12. The previous result was, in another way, in the cases of bornological
and quasi-barreled RTVSs, obtained by Keim [17]. The respective result in the
category of RLCSs was proved earlier by Kawai in [13].

These results differ from the known situation in the category of topological vector
spaces (or locally convex spaces) where, in order that a subspace of a bornological
(resp. quasi-barreled) TVS (or LCS) be bornological (resp. quasi-barreled) one needs
additional condition, e.g., that the subspace is of finite codimension (see [1] for the
TVS case and [27,28] for the LCS case). The respective result for locally topological
TVSs is unknown.

The conclusion similar to the given in Proposition 6.11 for barreled RTVSs does
not hold. Namely, if V = (Vn)n∈N is a T -closed string in an OTVS (E,C, T ), then
the sequence (sk Vn)n∈N need not be a string. Indeed, if this were the case, then
the finest linear topology tf on the ordered vector space (E,C) from Example 6.2
would be solid, which is not the case.

In the category of OTVSs, in a way more natural than the bornological and
quasi-barreled spaces are the classes introduced in the following way.

Definition 6.13. An RTVS (E,C, T ) is said to be order-bornological (resp. order-
quasi-barreled) if each order-bornivorous string (resp. order-bornivorous and T -
closed string) in it is T -topological. Here, a string is called order-bornivorous if all
of it terms absorb all order-bounded subsets of E.

A characterization of order-quasi-barreled RTVSs is given in the following propo-
sition.

Proposition 6.14. An RTVS (E,C, T ) is order-quasi-barreled if and only if each
solid, T -closed and order-bornivorous string in it is T -topological.

Proof. The condition is obviously necessary. In order to prove sufficiency, let V =
(Vn)n∈N be a T -closed and order-bornivorous string. Since (E,C, T ) is an RTVS, it
follows that the set sk Vn is also order-bornivorous for each n ∈ N, i.e., (skVn)n∈N is
a solid, T -closed and order-bornivorous string, hence it is T -topological. By Lemma
6.3, the same is true for V. Thus, (E,C, T ) is order-quasi-barreled. □

Both mentioned classes of RTVSs are stable with respect to quotients by arbitrary
l-ideals, but not with respect to passing to l-ideals. In order to obtain a positive
result in this direction, we introduce the following notions.
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An RTVS (E,C, T ) is said to be σ-order-complete if each majorated increasing
sequence in it has a supremum. Its l-ideal F is said to be σ-normal if the supremum
of each sequence in F with the mentioned property belongs to F .

Proposition 6.15. If (F,C ∩ F, T |F ) is a σ-normal ideal in a σ-order-complete
RTVS (E,C, T ) which is order-bornological (resp. order-quasi-barreled) then (F,C∩
F, T |F ) is order-bornological (resp. order-quasi-barreled) itself.

Proof. We present the proof in the order-quasi-barreled case; the proof in order-
bornological case is similar.

Having the previous proposition in mind, it suffices to prove that each solid,
T |F -closed and order-bornivorous string V = (Vn)n∈N in F can be extended to a
string of the same kind in the given space (E,C, T ). Let U = (Un)n∈N be the string
constructed as in Proposition 6.5. Taking into account Proposition 6.6, it is enough
to prove that each Un is an order-bornivorous subset of E, moreover, it is enough to
prove that it abosrbs all positive elements in E. Suppose that this is not the case;
then there exists n0 such that for some c ∈ C and each k ∈ N, 1

kc /∈ Un0 holds. By
the definition of the set Un, for each positive integer k there exists yk ∈ F such that
θ � yk � 1

kc and yk /∈ Vn0 . Since the space (E,C, T ) is σ-ordered-complete, then
the set {kyk : k ∈ N} has the supremum y ∈ E which actually belongs to F since
it is a σ-normal l-ideal. This means that {kyk : k ∈ N} ⊆ [0, y] ⊆ F , but it is not
absorbed by Vn0 , which is not possible. □

7. Conclusion

The theory of topological vector, in particular locally convex, spaces has become
a part of general language of functional analysis and its applications. Theory of
ordered topological vector spaces, as a part of it, is very important, as it can be
applied in various analytical problems where order between elements of a space plays
significant role. In these structures, linear operations (addition and multiplication
by scalars) are supposed to be continuous (the latter as a function in two variables).

It was rather long time ago when an idea appeared to consider the structure where
multiplication by scalars is treated as continuous mapping just as a function of one
variable (x 7→ λx), for each fixed scalar λ, which is equivalent with considering
the scalar field taken with discrete topology. Although some interesting results
were obtained, there was no further detailed investigation of such structures, called
topological vector groups.

We have tried in this article to fill the mentioned gap, by deriving several prop-
erties of ordered topological vector groups, in particular Riesz topological vector
groups as one of the most interesting examples. Several results have been obtained,
some of them similar to the ones in ordered topological vector spaces, but some that
are significantly different. Various examples illustrate these differences.

Obviously, these investigations are just a beginning and there are several other
parts of the theory of (ordered) topological vector spaces for which the respective
results for (ordered) topological vector groups need to be investigated and obtained
in, possibly, modified versions. Some of them are the following:
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• Define countably barreled, countably quasi-barreled and (DF) RTVSs (anal-
ogously to respective classes of TVSs from [2]) and investigate their proper-
ties.

• Investigate which part of duality theory of (ordered) LCSs can be transfered
to (ordered) LCGs.

• Explore the structure obtained when bornological vector spaces of [6] are
endowed with partial order.

• Try to apply Burkholder’s theorem on the convergence of martingales within
solid locally convex groups (see [5]).

• Consider the details of relationship between the design concepts and topol-
ogy within OTVG (see [8]).

Some other results were obtained, e.g., in the papers [11,12,19–22,25].
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