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Simple Summary: Hepatoblastoma is a rare childhood liver cancer with poor outcomes for high-risk
patients. Better treatments and better ways of identifying patients who respond poorly to treatment
are needed. This paper uses new methods for identifying chemicals or metabolites produced in
the tumour. By comparing the profiles of these metabolites in tumour tissue versus normal liver
tissue taken from the same patient, we demonstrated that some metabolites differ significantly
in hepatoblastoma. This correlates with gene expression data, suggesting that we identified the
metabolites correctly. We also stained tumour tissues for proteins (enzymes) that regulate transport
of fatty acids into the mitochondria, which are the cell’s powerhouses. Taken together, our results
indicate that tumour cells change the energy sources they use and rewire the cellular systems
accordingly. Further work is required to verify this, but these leads could improve our understanding
of the disease and lead to the development of novel therapies.

Abstract: Hepatoblastoma (HB) is a rare childhood tumour with an evolving molecular landscape.
We present the first comprehensive metabolomic analysis using untargeted and targeted liquid chro-
matography coupled to high-resolution tandem mass spectrometry (LC-MS/MS) of paired tumour
and non-tumour surgical samples in HB patients (n = 8 pairs). This study demonstrates that the
metabolomic landscape of HB is distinct from that of non-tumour (NT) liver tissue, with 35 differ-
entially abundant metabolites mapping onto pathways such as fatty acid transport, glycolysis, the
tricarboxylic acid (TCA) cycle, branched-chain amino acid degradation and glutathione synthesis.
Targeted metabolomics demonstrated reduced short-chain acylcarnitines and a relative accumula-
tion of branched-chain amino acids. Medium- and long-chain acylcarnitines in HB were similar to
those in NT. The metabolomic changes reported are consistent with previously reported transcrip-
tomic data from tumour and non-tumour samples (49 out of 54 targets) as well as metabolomic
data obtained using other techniques. Gene set enrichment analysis (GSEA) from RNAseq data
(n = 32 paired HB and NT samples) demonstrated a downregulation of the carnitine metabolome and
immunohistochemistry showed a reduction in CPT1a (n = 15 pairs), which transports fatty acids into
the mitochondria, suggesting a lack of utilisation of long-chain fatty acids in HB. Thus, our findings
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suggest a reduced metabolic flux in HB which is corroborated at the gene expression and protein
levels. Further work could yield novel insights and new therapeutic targets.

Keywords: hepatoblastoma; liquid chromatography and tandem mass spectrometry; metabolomics;
acylcarnitine; fatty acid oxidation; carnitine palmitoyl transferase (CPT1)

1. Introduction

Paediatric liver cancer is rare with increasing incidence over the past few decades,
from around 1–1.5 per million to over 2 per million [1,2]. The commonest tumour seen
usually in children under 5 years of age is hepatoblastoma (HB). Increased incidence of
HB is associated with prematurity or low birth weight and familial conditions, such as
Beckwith–Weidemann syndrome (BWS) and familial adenomatous polyposis (FAP) [3].
Hepatocellular carcinoma (HCC), much rarer, is usually seen in the teenage population
and is usually associated with underlying cirrhosis, secondary to perinatal hepatitis B
infection or metabolic diseases [4]. Current treatment of paediatric HB is based on clinical
risk stratification as, until recently, most tumours were diagnosed based on radiology
and elevation of the tumour marker Alpha fetoprotein (AFP), with histology only being
analysed following resection. Whilst most patients can be cured with a combination of
chemotherapy and surgery, those with metastatic disease still have poor outcomes.

Histological and biological advances over the recent decades have identified that
these tumours can have mixed overlapping features, and it is sometimes challenging to
distinguish HB from HCC; in recent years, a provisional entity with clinical and histopatho-
logical features of HB and HCC called HCN-NOS (hepatocellular neoplasm, not otherwise
specified) has been coined [5]. The current clinical trial PHITT (Paediatric Hepatic Interna-
tional Tumour Trial), enrolling patients across three large international cooperative groups,
the Children’s Oncology Group (COG), the SIOP Epithelial Liver (SIOPEL) group across
Europe and the Japanese Children’s Cancer Group (JCCG), aims to collect diagnostic and
surgical histological samples to prospectively annotate and validate the biology of these
rare tumours. This trial uses the CHIC (Children’s Hepatic tumour International Collabora-
tion) stratification to identify four distinct risk groups of HB [6]. Whilst the impact of the
clinical risk factors is clear, there is a need to identify prognostic and therapeutic biomarkers
that can help define high-risk disease as well as aid the development or selection of novel
therapies for these patients.

It is well known that therapy response in cancers, including paediatric cancers, is
associated with their biology. Several studies have explored genetic and transcriptomic
profiles in search of the genomic hallmarks of HB pathogenesis. Early genetic studies
revealed that HB cells are often diploid (foetal type) or hyperdiploid, with a limited number
of chromosomal abnormalities. Recurrent chromosomal alterations involve chromosomes
2, 20, 1 and 8 [7]. The most frequent mutated gene is CTNNB1, coding for β-catenin; other
less frequent mutated genes include ARID1, TERT promoter, APC and NFE2L2. There is
growing evidence that prognostication can be improved by combining transcriptomic and
epigenomic data with clinical stratification [8–11]. In 2008, two major molecular subtypes
of HB, called C1/C2, and a 16-gene discriminating signature in tumours were described
and the latter was shown to be an independent prognostic factor [9]. The prognostic impact
of the 16-gene signature has since been validated in a multinational cohort of 174 HB
patients [10]. Molecular risk stratification (MRS) of HB by integrating novel epigenomic
biomarkers (i.e., 14q32-signature and epigenetic Epi-CB/A classification) has also been
described in a cohort of patients, which improves CHIC stratification [11]. Epigenetic
profiling has also revealed multiple epigenetic alterations, including hypomethylation of
ASCL2 that regulates Wnt signalling as well as foetal-liver-like methylation patterns of
IGF2 promoters [12,13].
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Metabolomics is a rapidly growing field of post-genomic biology focusing on system-
wide studies of metabolite levels and transformations in biological samples [14]. We know
that cancer cells have dysregulated metabolism to promote rapid proliferation. The detec-
tion of these abnormal cancer metabolites through metabolomics could potentially lead
to the discovery of tumour biomarkers and novel therapeutic targets. Two publications
from the same group using high-resolution magic-angle-spinning nuclear magnetic reso-
nance (NMR) spectroscopy (HR-MAS) metabolomic analysis of tumour and control liver
pieces defined aberrant pathways in hepatoblastoma [15,16], namely, lipid metabolism,
aerobic glycolysis and glutaminolysis. Interestingly, these studies showed that using tu-
mour and non-tumour matched pairs from the same patient was important for finding
biologically meaningful results, as glutamine and glutamate were increased and alanine
increased in abundance in non-paired samples (which included some paired samples),
whereas glutamine and glutamate were decreased yet alanine still increased in abundance
in paired samples.

To date, there have been no metabolomics studies using the highly sensitive technique
which can detect 100s of metabolites and give firm metabolite identifications and concen-
trations, namely, liquid chromatography with tandem mass spectrometry (LC-MS/MS).
Untargeted metabolomics using LC-MS/MS gives a broader understanding of dysregu-
lated metabolism, as it detects a greater number of related compounds within pathways,
affected only by the extraction technique. This paper uses a simple metabolite extraction
method with untargeted and targeted LC-MS/MS to identify and validate novel targetable
metabolic alterations in HB in paired tumour and non-tumour liver tissue samples taken
from the same patient.

2. Methods
2.1. Samples

Eight tumour and non-tumour matched-pair tissue samples were obtained from pae-
diatric patients with a diagnosis of hepatoblastoma (HB) at the time of surgery and flash-
frozen. For immunohistochemistry (IHC), additional formalin-fixed paraffin-embedded
(FFPE) paired non-tumour and tumour samples from 15 patients with HB were also in-
cluded in the study. All samples were collected in accordance with European and Spanish
law. Informed written consent was obtained from each patient in accordance with European
guidelines for biomedical research. The study conformed to the ethical guidelines of the
1975 Declaration of Helsinki, and it was approved by the Human Ethics Committee of the
Hospital Universitari Germans Trias i Pujol. ISCIII National Biobank Registry, collection
section, ref. C.0000226; samples were obtained as per biobank ethical approvals.

2.2. Untargeted Metabolomics

Liver samples (5 mg) were extracted using a homogeniser for 60 s in 200 µL 8:2 v/v
methanol/water. The mixture was centrifuged at 10,000× g for 10 min and the supernatant
was transferred to HPLC vials for LC-MS and LC-MS/MS analysis. Pooled QC was
prepared post-extraction by transferring 20 µL of supernatant from each sample, vortexing
and aliquoting into a HPLC vial. Methanol/water 8:2 (200 µL) was processed without liver,
in the same way as the samples, as a reagent blank.

The analytical run followed this sequence of injections: a blank injection followed by
5 different mixtures of 268 standards (for identification) and randomised extracted samples
(injected three times each) in a single batch. The column was conditioned with pooled
QC and pooled QC injections were interspaced throughout the run to check the stability,
robustness, repeatability and performance of the analytical system. The analytical method
used was similar to that previously published, with the exception that the injection volume
was 5 µL and the normalised collision energy (NCE) was stepped at 10, 20 and 40 [17,18].

Data processing, including metabolite identification, was performed by Compound
Discoverer 3.3 (Thermo Fisher Scientific, Hemel Hempstead, UK) using a tailored un-
targeted metabolomics workflow (Supplementary Materials). Metabolite identification



Cancers 2023, 15, 5182 4 of 17

was performed by matching accurate masses of the detected peaks with metabolites in
BioCyc (human), the Human Metabolome Database and KEGG; the retention times (RTs)
were obtained with 268 authentic standards (mass list for untargeted liver tumour and
non-tumour.massList) and/or ddMS/MS with mzCloud (HighChem HighRes identity
search with an activation energy tolerance of 10) from a fragmentation database (Thermo
Fisher Scientific, Hemel Hempstead, UK); and identification levels reported are according
to the metabolomics standards initiative [17,19,20]: level 1, match of accurate mass, MS/MS
fragmentation and retention time to authentic standard co-analysed with the samples
under identical experimental conditions; level 2, match of accurate mass and retention time
(two orthogonal data) to the authentic standard or match of accurate mass and MS/MS
spectrum with compound in a library when data were taken under the same acquisition
parameters; level 3, match of predicted retention times or predicted MS/MS spectra or
both due to the lack of standards; level 4, unambiguously assigned molecular formulas
where insufficient evidence exists to propose possible structures. Univariate analysis after
log10 transformation (t-test with Benjamini–Hochberg false-discovery rate correction) was
performed by Compound Discoverer and multivariate analysis (MVA) by Simca P+16
(Umetrics AB, Umea, Sweden), with imported datasets mean-centred and Pareto-scaled for
MVA. The permutation test was performed with 200 permutations.

2.3. Targeted Metabolomics

Frozen liver samples were freeze-dried at −56 ◦C under sealed vacuum conditions
to eliminate the effect of any changes in tissue water content on analyte concentrations.
The dried sample was inspected for any visible blood before being weighed on a four-
decimal-place balance. Acylcarnitines and amino acids were extracted using a modified
version of the method described by Sun et al. [21]. Briefly, following the addition of
500 µL of isopropanol/1 M KH2PO4 buffer 1:1 (v:v) containing 50 µL of internal standard
mixture (spiked into the extraction solvent and prepared as described below), dried liver
samples were homogenised within the extraction solvent using a pestle and vigorously
vortexed for 5 min. Then, following the addition of 500 µL of acetonitrile, samples were
vigorously vortexed for a further 5 min and centrifuged for 20 min at 14,000× g at 4 ◦C. The
supernatant was removed and evaporated under vacuum centrifuge at room temperature.
Dried samples were resuspended in 100 µL of methanol: water 1:1 (v:v) and gently mixed
for 5 min at 4 ◦C. Samples were centrifuged at 14,000× g, and the supernatant was removed
and stored at −80 ◦C until analysis.

A range of acylcarnitine (C2-C16), free carnitine and the 20 naturally abundant amino
acid (AAs) standards (Sigma-Aldrich, Gillingham, UK) were prepared as stock solutions at
1 mg/mL in methanol: water 1:1 (v:v) and diluted to create calibration standards across
an appropriate concentration range for each analyte. Deuterated acylcarnitine internal
standards, NSK-B, and deuterated and 13C branched-chain amino acids (BCAAs) internal
standards, NSK-BCAA (CK isotopes, Newtown Unthank, UK), were prepared as per the
manufacturer’s instructions and spiked into the extraction solvent as described above.
Calibration standards were spiked into a proxy matrix, 7.5% bovine serum albumin (BSA),
in phosphate-buffered saline (PBS) and extracted identically to the liver samples described
above (separate standards for acylcarnitines and amino acids). This proxy matrix has been
successfully used as a surrogate for liver samples previously [21]. Extracted standard
concentrations vs. peak area ratio (of unlabelled standard relative to an isotopically labelled
internal standard) were used to construct calibration curves and for quantification of free
carnitine, acylcarnitines and BCAAs. AAs were quantified using extracted peak areas
vs. concentration calibration curves. The analysis was performed on the same LC-MS
as used for the untargeted work. Two separate injections of the same sample were used
for reversed-phase C18 and HILIC analysis. The injection volume was 5 µL, and samples
were maintained at 4 ◦C during the analysis. Acylcarnitines were separated using an
ACE PFP–C18 column (100 × 2.1 mm, 2 µm pore size; Avantor, Theale, Reading, UK) as
described previously [22]. The ZIC-pHILIC column was used for the separation of BCAAs
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and free carnitine similar to the untargeted analysis but with a longer gradient: starting
with 20% (A), it increased to 95% (A) over 16 min, followed by equilibration to give a 24 min
run time [23]. MS was performed in simultaneous ESI+ and ESI− full-scan modes with
spray voltages of 3.5 (ESI+) and 2.5 kV (ESI−) and capillary voltages of 40 (ESI+) and −30 V
(ESI−). In both modes, the sheath-, auxiliary- and sweep-gas flow 95 rates were 40, 11
and 2 arbitrary units, respectively, and the capillary and heater temperatures were 300 and
400 ◦C, respectively. Automated gain control (AGC) was targeted at 1 × 104. The isolation
width of the precursor ion was set at 0.7 (m/z). Mass resolution was set at 70,000 from m/z
100 to 600. Significant differences in metabolite levels between tumour and non-tumour
samples were judged by a paired two-tailed t-test, with p < 0.05 considered significant.

2.4. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was used to evaluate the correlation of specific
gene lists downloaded from MSigDB with two different sample groups (phenotypes).
Briefly, this method calculates an enrichment score after ranking all genes in the dataset
based on their correlation with a chosen phenotype and identifying the rank positions
of all the members of a defined gene set. To evaluate statistical differences, we used the
signal-to-noise ratio as a statistic to compare specific and random phenotypes. Statistical
significance was defined when FDR q-value < 0.25.

2.5. Gene Expression Data Analysis

Gene expression data from hepatoblastoma (HB) patients and non-tumoral tissue were
obtained from both HTA (High-Throughput Assay) and RNAseq data previously published
(11). Supervised analysis of gene expression data was performed using R software (v4.2.0)
with the limma package, using a linear model with the empirical Bayes method. Heatmaps
for gene expression visualisation were performed using the pheatmap package.

2.6. Immunohistochemistry (IHC)

The tissue sections were deparaffinised with xylene and rehydrated in IMS (denatured
ethanol). Antigen retrieval was performed by incubating the slides in sodium citrate buffer
(pH 6; Sigma-Aldrich, St. Louis, MO, USA) for 40 min in a steamer. The slides were then
blocked first with 20% NGS (normal goat serum; Jackson ImmunoResearch, UK) in PBS for
5 min and later with Peroxide-Blocking Solution (Agilent, Santa Clara, CA, USA) for 5 min.
Subsequently, the primary antibodies, CPT1a (Rabbit mAb; Cell Signaling Technology,
Danvers, MA, USA) and CPT2 (Rabbit; Sigma-Aldrich, St. Louis, MO, USA), diluted in
Antibody diluent (Agilent, Santa Clara, CA, USA) were applied on the positive control
(duodenum) and test slides at 1:20 and 1:50 dilutions, respectively, and incubated for 1 h
at room temperature. Antibody dilutions were previously optimised on duodenum as a
positive control. Slides were then washed with PBS for 5 min and later incubated with
the secondary antibody (Agilent, Santa Clara, CA, USA) for 30 min at room temperature.
Slides were rinsed with PBS and incubated with DAB solution (Agilent, Santa Clara, CA,
USA) for 5 min and rinsed with water. Afterwards, the specimens were counterstained
with Hematoxylin Solution, Mayer’s (Sigma-Aldrich, St. Louis, MO, USA) for 30 s and then
rinsed with water. The slides then underwent the series of IMS solution (from 95% to 100%)
for dehydration and finished in xylene. The slides were mounted onto coverslips with
DPX medium (Sigma-Aldrich, St. Louis, MO, USA) for further analysis. IHC slides were
scanned using NanoZoomer (Hamamatsu Photonics K. K., Japan) at ×40 magnification
and then viewed using the NDP.view2 software 2.9.29. Five to six random cores were
selected per specimen and were saved at ×40 magnification in JPEG format. After image
acquisition, ImageJ (Java 1.8.0_345; Wayne Rasband and contributors, National Institutes
of Health, USA) analysis was performed. The threshold was optimised using the non-
tumour tissues, and the chosen threshold was applied to all the IHC images, without any
adjustment. There were at least three cores for each patient sample. The area fractions
(%) were measured for each core using ImageJ; in the case of any disparity between core
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scores, the average score of protein level (area fraction) was recorded. IHC scoring data
were analysed using Microsoft Excel and GraphPad Prism 9 and differences between non-
tumour and tumour samples for CPT1a and CPT2 expressions were assessed by paired
t-tests. The chi-squared test of independence was performed to look for any associations
between clinicopathological variance and CPT1a and CPT2 expression. A value of p < 0.05
was considered statistically significant.

3. Results
3.1. The Metabolomic Profile of Hepatoblastoma Is Different to That of Non-Tumour Tissue in
Paired Samples

Untargeted metabolomic profiling (Figure 1) shows that the profile of tumour tissue
is different to that of paired non-tumour liver tissue taken from the same patient. The
quality of the untargeted metabolomics data was checked using the QC and found to
be good (89% of peaks had a coefficient of variation <30% in QC injections and QCs
clustered in the centre of the principal component analysis (PCA plot)). There was one
outlier, outside of the Hotelling’s T2 (corresponding to a multivariate generalisation of
the 95% confidence interval); this was HB83_T (Figure 1A). The tumour and non-tumour
samples showed some separation along PC1 with two tumour samples further to the right
of PC1 (HB121_T and HB6_T) (Figure 1A). In supervised orthogonal partial least-squares
discrimination analysis (OPLS-DA), the separation was clearer to see and HB6_T looked
more like the non-tumour samples; the goodness of fit of the data to the model and the
predictive ability of the model were good (R2Y 0.788, Q2 0.481), and the permutation
test validated the OPLS-DA model (Q2 y-axis intercept ≤ 0; Figure S1), so the separation
was reliable (Figure 1B). HB83_T was still an outlier and was excluded from a further
OPLS-DA plot (Figure S2). The metabolites responsible for the difference between groups
were analysed using both multivariate (variable important for the projection (VIP) ≥1) and
univariate (adjusted p-value <0.05) statistics. Metabolites which have differential abundance
between HB and non-tumour tissue are listed in Table 1 and include amino acids, carnitines,
metabolites in lipid anabolism/catabolism, three metabolites in glutathione metabolism,
and TCA cycle metabolites. All were in lower abundance in tumour samples relative to
non-tumour samples. Most metabolites were identified at a high level of confidence with
fragmentation matches to an MS/MS database and retention time matches to a standard.
The pathways that these metabolites are in were looked up in KEGG (https://www.kegg.jp/
kegg/ (accessed on 11 July 2023)) and the Human Metabolome Database (https://hmdb.ca/
(accessed on 16 August 2023)). Metabolomic pathway analysis of the significantly altered
metabolites was performed using MetaboAnalyst 5.0 (www.metaboanalyst.ca (accessed on
17 August 2023)). Based on the limit p < 0.05 (pathway enrichment) and pathway impact
value > 0.10 (pathway topology) [24], alanine, aspartate and glutamate metabolism was
a significant pathway (Table S1). There is no carnitine pathway in KEGG, yet it was clear
from our list of metabolites that the precursor to carnitine (4-trimethylammoniobutanoate),
carnitine and five acylcarnitines were significantly altered in relative abundance in HB.
Carnitine is used to transport fatty acids into and out of mitochondria.

Table 1. Differentially abundant metabolites mapping onto metabolic pathways (* refer to methods
section).

Annotation Pathway
Fold Change

(Tumour)/
(Non-Tumour)

FDR-Corrected
p-Value

VIP
Value

Level of
Identification *

4-Trimethylammoniobutanoate Fatty acid transport into/out of
mitochondria 0.57 6.53 × 10−3 1.3 2

L-Carnitine Fatty acid transport into/out of
mitochondria 0.21 3.66 × 10−5 12.3 2

O-Acetylcarnitine Fatty acid transport into/out of
mitochondria 0.30 6.58 × 10−5 4.8 2

https://www.kegg.jp/kegg/
https://www.kegg.jp/kegg/
https://hmdb.ca/
www.metaboanalyst.ca
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Table 1. Cont.

Annotation Pathway
Fold Change

(Tumour)/
(Non-Tumour)

FDR-Corrected
p-Value

VIP
Value

Level of
Identification *

Propionylcarnitine Fatty acid transport into/out of
mitochondria 0.07 5.97 × 10−6 4.5 2

O-Butanoylcarnitine Fatty acid transport into/out of
mitochondria 0.54 1.48 × 10−3 1.4 2

Isovalerylcarnitine Fatty acid transport into/out of
mitochondria 0.14 6.58 × 10−5 1.1 3

O-Succinylcarnitine Fatty acid transport into/out of
mitochondria 0.07 3.70 × 10−7 1.2 4

9,10-DiHOME Cell signalling/fatty acid
beta-oxidation 0.03 1.58 × 10−7 1.0 4

1-Palmitoylglycerophosphocholine Glycerophospholipid
metabolism 0.34 3.89 × 10−5 1.6 4

sn-Glycero-3-Phosphocholine Glycerophospholipid
metabolism 0.07 3.63 × 10−9 6.2 2

sn-Glycero-3-
phosphoethanolamine

Glycerophospholipid
metabolism 0.04 2.66 × 10−7 1.9 4

sn-Glycerol 3-phosphate Glycerophospholipid
metabolism 0.18 7.38 × 10−6 1.5 2

4-Oxoproline Unknown 0.62 2.10 × 10−3 2.8 4

5-Oxoproline Glutathione metabolism 0.47 4.40 × 10−5 1.7 2

L-Glutathione (reduced) Glutathione metabolism (an
antioxidant) 0.05 3.01 × 10−6 1.8 3

L-Glutamate
Glutathione metabolism;

alanine, aspartate and
glutamate metabolism

0.89 3.39 × 10−2 1.2 2

L-Glutamine Alanine, aspartate and
glutamate metabolism 0.53 8.86 × 10−5 1.1 2

L-Alanine Alanine, aspartate and
glutamate metabolism 0.31 5.22 × 10−5 1.6 2

Creatine Facilitates recycling of ATP;
arginine and proline metabolism 0.29 2.48 × 10−6 11.5 2

D-Glucose Glycolysis 0.47 1.66 × 10−4 2.4 2

Citric acid TCA cycle 0.59 5.94 × 10−3 1.9 2

Succinate TCA cycle 0.68 4.24 × 10−3 2.1 2

(S)-Malate TCA cycle 0.28 2.66 × 10−4 3.0 2

Nicotinamide The main source of NAD +
(which is a major oxidising agent) 0.45 1.39 × 10−4 3.9 2

Betaine One-carbon metabolism 0.36 1.21 × 10−4 11.4 2

Inosine Nucleotide metabolism (purine) 0.67 4.37 × 10−4 1.6 2

Xanthine Nucleotide metabolism (purine) 0.30 7.42 × 10−7 1.6 2

Uridine Nucleotide metabolism
(pyrimidine) 0.46 1.51 × 10−4 1.2 2

L-2-Aminoadipate Lysine degradation 0.60 2.55 × 10−2 1.3 3

Norecasantalic acid Unknown 0.02 9.72 × 10−8 1.2 4

3-Acetamidopropanal Unknown 0.34 9.38 × 10−5 1.3 4

D-Erythrose Carbohydrate 0.25 1.18 × 10−5 1.1 4

Diazoxide A drug 0.04 1.44 × 10−5 3.1 3

Dimethyl maleate Unknown 0.41 9.08 × 10−5 1.0 4

Dimethyl maleate Unknown 0.60 2.55 × 10−2 1.3 4
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Figure 1. Untargeted metabolite profiling in paired tumour and non-tumour tissue samples (n = 8).
(A) PCA score plot showing hepatoblastoma (N) and healthy liver (�) paired samples from paediatric
patients alongside pooled QCs (•). (B) OPLS-DA score plot showing the same samples (R2Y 0.788,
Q2 0.481).

3.2. Targeted Metabolomics Demonstrates a Reduction in Short-Chain Acylcarnitine Levels in
Hepatoblastoma Tissue

Since acylcarnitines and amino acids were strongly represented in the list and their
metabolisms interact, we used targeted metabolomics of acylcarnitines and amino acids
to determine absolute concentrations (µmol per kg of dry tissue mass) in the same tissue
pairs. This analysis confirmed that HB83_T is an outlier (Figure S3), so we excluded the
pair from our statistics. Carnitine and short-chain (C2–C5) acylcarnitines, including, acetyl-
carnitine, propionylcarnitine, isobutrylcarnitine (from valine), 2-methylbutyroylcarnitine
(from isoleucine), total of isovalerylcarnitine (from leucine) and 2-methylbutyroylcarnitine
(from isoleucine), and hydroxybutyrylcarnitine were significantly less abundant in tumour
compared to non-tumour tissue, whilst leucine (p = 0.078), isoleucine (p < 0.06) and valine
(p < 0.06) trended towards being more abundant but did not achieve statistical significance
(Figure 2). On the other hand, medium-chain (C6–C12) and long-chain (C13–C18) acylcar-
nitines were not significantly altered in abundance in cancer cells (Figure S4). The medium-
and long-chain acylcarnitines arise from fatty acid oxidation, whereas the short-chain
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(especially branched) acylcarnitines may come from branched-chain amino acid catabolism.
Succinylcarnitine-methylmalonylcarnitine was below the limit of quantification. Amongst
other amino acids measured, alanine (as seen in the untargeted analysis; glutamine and
glutamate were not significant in targeted metabolomics) and glycine were significantly de-
creased in abundance in tumours, whereas aspartate was significantly increased (Figure 2)
and arginine trended towards an increase in tumour tissues (p < 0.06; Figure S4).
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3.3. Metabolomic Profile in Hepatoblastoma Correlates with Transcriptomic Profile

In order to further investigate the dysregulated metabolic pathways in HB, we con-
ducted a comparative study of gene expression between tumour (T) and non-tumour (NT)
samples from patients with hepatoblastoma using previously published RNAseq and Hu-
man Tissue Array (HTA) data (11). Using RNAseq, we found that 49 out of 54 genes of
interest (90.7%) related to the metabolic findings showed differential expression between
HB and NT (Figure 3). It was noted that 39 out of 49 genes were downregulated in HB
compared to NT (80%), and only 10 out of 49 (20%) were upregulated (p < 0.05). The
results were confirmed using the HTA data, since we observed that 44 out of 53 genes of
interest exhibited dysregulation between HB and NT (83%), and 43/44 (98%) were already
found to be dysregulated using the RNAseq data (Figure 4). Similarly, 35 out of 44 genes
(80%) were downregulated in HB compared to NT, and only 9 out of 44 were upregulated
(20.5%) (p < 0.05). These genes were associated with metabolic pathways, such as fatty acid
transport, glycolysis, the TCA cycle and branched-chain amino acid degradation, among
others. The analysis of metabolic pathways using GSEA (gene set enrichment analysis)
confirmed the dysregulation of these specific pathways (FDR < 0.25) in HB as compared to
NT tissues (Table S2).
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ferences in the expression of CPT1a, CPT2 and SLC25A20 (CACT) in tumours in comparison with
non-tumours. p-values were calculated using unpaired t-tests. **** p < 0.0001.
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Figure 4. Gene expression differences in the key metabolic pathways assessed by Human Transcrip-
tome Array (HTA) heatmap in 32 tumour (T) and 18 non-tumour (NT) samples (data extracted from
Carrillo-Reixach et al. [11]).

Transcriptomics showed downregulation of enzymes involved in the carnitine and
branched-chain amino acid (BCAA) pathways, namely, carnitine palmitoyl transferase 1
(CPT1a), carnitine palmitoyl transferase 2 (CPT2), carnitine acylcarnitine translocase
SLC25A20 (CACT), carnitine acetyltransferase (CrAT) and branched-chain alpha-keto
acid dehydrogenase (BCKDH), and upregulation of fatty acid translocase (CD36), fatty acid
binding protein 4 (FABP4) and branched-chain amino acid transaminase (BCAT) in tumour
compared to non-tumour tissues. Interestingly, the downregulation of genes involved
in the carnitine metabolic pathway in HB was further confirmed by gene set enrichment
analysis (GSEA) (Figure 5).
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Figure 5. Gene set enrichment analysis (GSEA) enrichment plot (normalised enrichment score = −1.56;
p = 0.16; false-detection rate (FDR) q-value = 0.16) using the RNAseq dataset of 32 paired tumour
and non-tumour samples from Carrillo-Reixach et al. [11] and the gene set of the Gene Ontology
Biological Process (GOBP) of the carnitine metabolic process of the Molecular Signatures Database
(MSigDB).
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3.4. CPT1a Is Downregulated in Hepatoblastoma

IHC was successfully conducted for both CPT1a and CPT2 expressions. Corrob-
oratively, IHC showed lower expression of CPT1a in tumour (Figure 6A,B), showing
downregulation of the carnitine cycle at both RNA and protein levels. There was no signifi-
cant change found in tumour tissue compared to non-tumour tissue with regard to CPT2
expression. There was no significant association between the clinical and pathological
features of paediatric patients with hepatoblastoma across gender, age, CHIC classification,
PRETEXT and metastasis status. There was a significant association found between the
change in CPT1a expression and histology types (histology confirmed in 12/15 cases). The
chi-square test results indicated that the HB patients showing epithelial histology (n = 5)
had an increase in CPT1a expression in tumour tissue compared to non-tumour tissue,
while all samples showing mixed histology (n = 7) had a decrease in CPT1a expression in
tumour tissue compared to non-tumour tissue (p < 0.05).

Cancers 2023, 15, x FOR PEER REVIEW 13 of 19 
 

tumour and non-tumour samples from Carrillo-Reixach et al. [11] and the gene set of the Gene On-
tology Biological Process (GOBP) of the carnitine metabolic process of the Molecular Signatures Da-
tabase (MSigDB). 

3.4. CPT1a Is Downregulated in Hepatoblastoma 
IHC was successfully conducted for both CPT1a and CPT2 expressions. Corrobora-

tively, IHC showed lower expression of CPT1a in tumour (Figure 6A,B), showing down-
regulation of the carnitine cycle at both RNA and protein levels. There was no significant 
change found in tumour tissue compared to non-tumour tissue with regard to CPT2 ex-
pression. There was no significant association between the clinical and pathological fea-
tures of paediatric patients with hepatoblastoma across gender, age, CHIC classification, 
PRETEXT and metastasis status. There was a significant association found between the 
change in CPT1a expression and histology types (histology confirmed in 12/15 cases). The 
chi-square test results indicated that the HB patients showing epithelial histology (n = 5) 
had an increase in CPT1a expression in tumour tissue compared to non-tumour tissue, 
while all samples showing mixed histology (n = 7) had a decrease in CPT1a expression in 
tumour tissue compared to non-tumour tissue (p < 0.05). 

 

 
Figure 6. (A) Representative IHC staining of CPT1a and CPT2 in the HB (tumour) and NT (non-
tumour) regions (scale bar: 250 µm for 10× and 50 µm for 40×). (B) Bar graph showing expression 
of CPT1a and CPT2 in hepatoblastoma (T) and paired healthy liver tissue (NT) areas. ** p < 0.01. Five 
random areas from each tissue were quantified (means ± SEMs). 

(A) 

(B) 

Figure 6. (A) Representative IHC staining of CPT1a and CPT2 in the HB (tumour) and NT (non-
tumour) regions (scale bar: 250 µm for 10× and 50 µm for 40×). (B) Bar graph showing expression of
CPT1a and CPT2 in hepatoblastoma (T) and paired healthy liver tissue (NT) areas. ** p < 0.01. Five
random areas from each tissue were quantified (means ± SEMs).

4. Discussion

To our knowledge, this paper is the first to use detailed high-resolution LC-MS/MS
methods to delineate the metabolomic landscape of HB. Untargeted metabolomics using
highly sensitive LC-MS/MS produced a list of 35 metabolites which were significantly
altered in relative abundance between HB and paired healthy liver tissue. Many of these
were inter-related within pathways, including catabolic pathways for glucose, fatty acids
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and branched-chain amino acids (Figure 7), which all have the potential to produce acyl-
carnitines of different lengths when catabolites do not quite reach the TCA cycle. Many of
these metabolites are in pathways that converge in the mitochondria for energy production.
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Figure 7. Metabolic pathways in cells showing how glucose, fatty acids and essential branched-
chain amino acids are utilised for energy production in cells and how acylcarnitines can be formed
from fatty acids and branched-chain amino acids. Metabolites in bold were significantly reduced in
untargeted metabolomics in tumour tissue relative to non-tumour tissue. Enzymes and transporter
proteins and kinases shown are significantly altered in expression (transcriptomics) in HB (red
indicates increase; green indicates decrease): α-ketoisocaproate (KIC), α-keto-β-methylvalerate
(KMV), α-ketoisovalerate (KIV), 4-trimethylammoniobutanoate (4-TMAB), isovaleryl-CoA (C5),
α-methylbutyryl-CoA (isoC5) and isobutyryl-CoA (C4/isoC4).

Collectively, the data in our study show a clear alteration of the fatty acid catabolism
pathway in HB. CPT1a, which catalyses the rate-limiting step of fatty acyl-CoA transport
from the cytosol into the mitochondria for subsequent oxidation [25], was downregulated
in HB. In accordance with this, free carnitine, the primary substrate for CPT1, was also
markedly less abundant in HB, with the cellular content being less than half of the NT
content, suggesting that fatty acid oxidation could be dysregulated in HB. Transcriptomic
analysis did, however, reveal an upregulation of both CD36 and FABP4, which are both
involved in fatty acid transport into the cell; this may suggest that in HB, fatty acids are
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transported into the cell but not oxidised and may instead be diverted into other pathways
(i.e., storage or anabolism). FABP1, which is the main liver isoform, was downregulated.

Free carnitine also performs another important metabolic role within the cell; it serves
as a buffer of acetyl groups when acetyl-CoA is generated in excess of its utilisation by the
TCA cycle [26]. Acetyl-CoA is formed from irreversible pyruvate oxidation, catalysed by
the pyruvate dehydrogenase complex (PDC; Figure 7). To prevent the fall in the limited
intracellular pool of free CoA and to prevent end-product (i.e., acetyl-CoA) inhibition of
PDC, free carnitine accepts the acetyl group, thereby forming acetylcarnitine. The results
of the current study demonstrate a clear reduction in acetylcarnitine content in HB and a
reduction in CACT and CrAT (both key enzymes involved in acetylcarnitine formation)
as well as PDC at the transcriptomic level, with untargeted metabolomics also revealing
lower TCA metabolites in HB. We observed a lower level of glucose in HB in untargeted
metabolomics, which agreed with Tasic et al., who also observed a higher lactate level [16],
suggesting aerobic glycolysis. Taken together, these findings suggest a reduction in flux
through PDC and the subsequent TCA cycle.

All three BCAAs showed a trend to be elevated in tumour liver samples. Interestingly,
this elevation has been observed in several liver disease states, such as non-alcoholic liver
disease and HCC [27]. Moreover, these findings have been observed at both the systemic
and cellular levels. For example, elevated tissue BCAAs have been observed in patients
with HCC previously [28,29], with the latter report also demonstrating a reduction in BCAA
catabolic enzymes, in particular BCKDH, the rate-limiting enzyme that commits BCAA
catabolites to their oxidative fate. In line with those observations, both BCKDH- and BCAA-
derived short-chain acylcarnitines (which are formed downstream of the BCKDH step)
were markedly quantitatively reduced in HB compared to healthy sections of liver in the
present study. These findings point to a suppression of BCAA catabolism in HB, the clinical
significance of which warrants further investigation. Given that reduction in pyruvate
conversion to acetyl-CoA and reduction in fatty acid and BCAA catabolic pathways have
been observed at the targeted and untargeted metabolomic and transcriptomic levels, it
appears that HB can be collectively characterised as a state of reduced fatty acid and
BCAA metabolism, with few molecules entering the TCA cycle. A downregulation of
enzymes in endosomal ω- and peroxisomal and mitochondrial β-fatty acid oxidation,
especially a severe deficiency of enoyl-CoA hydratase/3-hydroxyacylCoA dehydrogenase
(EHHADH), was noted in HBs, and the Randle cycle appears to be at play in HB, where
energy-generating metabolism switches from fatty acid oxidation (normally dominant
in hepatocytes) to aerobic glycolysis (the Warburg effect) [30]. This was exploited by a
diet of EHHADH substrate or product to extend survival by inducing necrosis in mouse
models [30].

Our data largely agreed with Tasic et al.’s untargeted metabolomics of tumour and
non-tumour pairs by HR-MAS, in which amino acids, including BCAA, lactate and fatty
acids, were increased in abundance in tumours, whilst lipids, glutamine, glutamate and
glucose were decreased in abundance [16]. Tasic et al.’s study also largely agreed with their
group’s previous untargeted metabolomics of tumour and non-tumour non-paired samples,
as alanine, phenylalanine, tyrosine, choline and formate were increased in abundance in
both of their studies, whereas certain classes of lipids used as an alternative source of
energy were decreased in abundance [15]. The main difference from our work was that
alanine increased in abundance in HB in their studies, whereas it decreased in abundance
in our study. Our study went further into understanding the HB metabolome, as we
detected more metabolites involved in more pathways. Corroborating the Krepischi group’s
work on NNMT downregulation at the transcriptional and protein levels in HB [15],
our transcriptomics cohort also showed a decrease in NNMT expression in HB, and its
substrate nicotinamide was decreased in abundance in HB, suggesting that production
of this substrate was reduced in favour of more useful metabolites (Figure S5). NNMT
consumes methyl donor groups in liver tissue, where S-adenosylmethionine (SAM) is the
methyl donor (15), and SAM is produced from betaine (a methyl donor) in the methionine
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cycle; therefore, the lower abundances we saw of both betaine and nicotinamide in HB may
be related. When SAM is consumed, there are fewer epigenetic marks; therefore, we surmise
that HB could be an epigenetically driven cancer, as noted by the JCCG previously [12].
In fact, a strong epigenetic footprint has been reported in HB in a study of 32 matched
pairs, where HB was characterised by genome-wide DNA hypomethylation similar to
methylation patterns of foetal tissue [31], confirming the degree of immaturity of tumour
cells in HB. Krepischi’s group hypothesised that NNMT downregulation might reduce HB
lipid content, and we saw lowered glycerol backbones of lipids. Nicotinamide can also be
used to produce NAD+, which is a major oxidising agent and used in catabolism to transfer
energy to the electron transport chain through NAMPT and NMNAT2/3/1 enzymes (this
salvage is the major route of NAD+ production). The fact that less nicotinamide seems to
be produced and consumed may mean that energy production stops short of the TCA cycle
and the electron transport chain, perhaps stopping at glycolysis. Another pathway which
we saw to be affected in our untargeted analysis was the glutathione synthesis pathway,
which was downregulated, with multiple genes lowered in expression and metabolites in
lower abundance in HB (Figure S5). Glutathione is an antioxidant produced mainly by the
liver, important in protecting the cell against oxidative stress, so the cancer cells reduce
antioxidant abundance in order to rapidly proliferate.

Our study goes further than the previous studies by quantifying the main observed
metabolomic changes in targeted analysis and confirming these at protein and gene ex-
pression levels. In particular, we found that carnitine and short-chain acylcarnitines were
reduced in concentration in HB and that the carnitine metabolic pathway was dysregulated
in the tumours (CPT1a, CPT2 and SLC25A20).

The main limitation of our study is that both the tumour and non-tumour samples
used were obtained following neo-adjuvant chemotherapy rather than at diagnosis in line
with most publications on HB biology [8–11]. In our study, we cannot rule out that some of
the findings in the HB metabolome may be related to chemotherapy treatment. Therefore,
the next steps would be to validate the findings in this study in pre-chemotherapy biopsy
specimens and in a larger number of samples. We will also need to elucidate the underlying
mechanisms driving these metabolomic changes and examine the role that the underlying
aberrant pathways play in modulating cell survival in HB. It is possible that this future
work might lead to the development of novel therapies.

5. Conclusions

In summary, we gained new insights into the metabolomic landscape of HB and
detected many differentially abundant metabolites using our sensitive LC-MS/MS method,
including many acylcarnitines, previously unreported in HB. Targeted metabolomics of
acylcarnitines strengthened our untargeted metabolomics findings, which were further
validated at the protein and gene expression levels.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15215182/s1, Word document of Supplementary
Figures S1–S5 and Tables S1 and S2. Figure S1: Permutation test of OPLS-DA model shown in
Figure 1B; Figure S2: (a) OPLS-DA score plot showing hepatoblastoma (N) and healthy liver (�)
paired samples from paediatric patients omitting patient HB83 (R2Y 0.859, Q2 0.392). (b) Permuta-
tion test of the model; Figure S3: Box and whisker plots with Tukey’s whiskers showing HB83_T
is an outlier in targeted metabolomics in the case of multiple metabolites, thereby allowing us to
remove patient HB83 from our analysis; Figure S4: Amino acid and acylcarnitine concentrations in
hepatoblastoma (T) and paired healthy liver tissue (NT). None were significant; Figure S5: Aberrant
metabolic pathways in HB compared to healthy liver, according to untargeted metabolomics and
transcriptomics analyses; Table S1: Summary of metabolic pathway analysis with MetaboAnalyst
(www.metaboanalyst.ca, accessed on 30 August 2023) of the statistically significant metabolites iden-
tified by untargeted metabolomics; Table S2: Table of results from the analysis of metabolic pathways
using GSEA (gene set enrichment analysis) confirmed the dysregulation of these specific pathways
(FDR < 0.25) in HB as compared to NT tissues. Metabolomics data processing workflow. Untargeted
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metabolomics Excel file. Targeted metabolomics Excel files x2 for HILIC and C18. Chromatograms of
untargeted and targeted metabolites in a PowerPoint file.
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