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A B S T R A C T

Alzheimer’s Disease (AD) is a neurodegenerative disease that commonly occurs in older people. It is
characterized by both cognitive and functional impairment. However, as AD has an unclear pathological
cause, it can be hard to diagnose with confidence. This is even more so in the early stage of Mild Cognitive
Impairment (MCI). This paper proposes a U-Net based Generative Adversarial Network (GAN) to synthesize
fluorodeoxyglucose - positron emission tomography (FDG-PET) from magnetic resonance imaging - T1 weighted
imaging (MRI-T1WI) for further usage in AD diagnosis including its early-stage MCI. The experiments have
displayed promising results with Structural Similarity Index Measure (SSIM) reaching 0.9714. Furthermore,
three types of classifiers are developed, i.e., one Multi-Layer Perceptron (MLP) based classifier, two Graph
Neural Network (GNN) based classifiers where one is for graph classification and the other is for node
classification. 10-fold cross-validation has been conducted on all trials of experiments for classifier comparison.
The performance of these three types of classifiers has been compared with the different input modalities setting
and data fusion strategies. The results have shown that GNN based node classifier surpasses the other two types
of classifiers, and has achieved the state-of-the-art (SOTA) performance with the best accuracy at 90.18% for
3-class classification, namely AD, MCI and normal control (NC) with the synthesized fluorodeoxyglucose -
positron emission tomography (FDG-PET) features fused at the input level. Moreover, involving synthesized
FDG-PET as part of the input with proper data fusion strategies has also proved to enhance all three types
of classifiers’ performance. This work provides support for the notion that machine learning-derived image

analysis may be a useful approach to improving the diagnosis of AD.
1. Introduction

Dementia is a general term for a loss of memory, language, problem-
solving and other thinking skills that are severe enough to affect daily
life. The commonest causes of dementia include Alzheimer’s disease
(AD), vascular dementia (VaD) and dementia with Lewy bodies (DLB).
Both the prevalence and incidence of dementia increase with advancing
age, but about 5% of cases have onset at age <65 years. The World
Alzheimer Report 2018 estimated that across the world a person will
develop dementia every 3 s (Patterson, 2018). The number of people
suffering from dementia is about 50 million in 2018 and will be more
than treble to 152 million by 2050. AD is the commonest cause of
dementia, accounting for 60%–80% of cases of dementia, and it is one
of the main causes of physical and mental health disorders among older
people worldwide.

∗ Corresponding author.
E-mail addresses: ke.chen2@nottingham.edu.cn (K. Chen), ying.weng@nottingham.edu.cn (Y. Weng), akram.hosseini@nuh.nhs.uk (A.A. Hosseini),

tom.dening@nottingham.ac.uk (T. Dening), moonstone@nimte.ac.cn (G. Zuo), yiming.zhang2@nottingham.edu.cn (Y. Zhang).

People with AD may suffer from memory loss, progressive language
impairment, a gradual decline in the ability to perform daily tasks and
abnormal changes in personality and behavior. These symptoms can
affect the person’s life and severely reduce the life quality both for the
person and their family. Moreover, AD is an irreversible disease and all
current available treatments may only delay its progress. Nonetheless,
the diagnosis of AD, especially in the early stages, is important, so that
individuals and families can be aware and make adjustments to their
lives as needed, but also since more precise diagnosis will be needed to
develop new, potentially disease-modifying treatments.

In general, mild cognitive impairment (MCI) represents the early
stage of AD. Patients diagnosed as MCI are more likely to progress to
AD with a ratio of about 16% developing AD within about 4 years,
compared with non-MCI subjects whose conversion rate is about 1%–
2% in this period (Michaud et al., 2017). However, not all people
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diagnosed with MCI will progress to AD and some will remain stable
or even return to normal cognition, which indicates that MCI can be
further divided into two categories: progressive MCI (pMCI) and stable
MCI (sMCI), according to the future risk of progressing to AD in future
years. Therefore, identifying MCI and its sub-categories (pMCI and
sMCI) should have a significant impact on the early stage of treatment
to mitigate the progress of dementia.

AD, as a neurodegenerative disease whose pathologic cause is un-
clear, is hard to identify with certainty by non-invasive clinical inves-
tigations. Clinical diagnosis usually relies on a combination of history,
mental state examination and cognitive testing. The most commonly
used cognitive instruments for the diagnosis of AD and MCI are the
Mini-Mental State Examination (MMSE) and the Montreal Cognitive
Assessment (MoCA) (Pinto et al., 2019). These cognitive assessment
tools are short questionnaires to test a range of cognitive domains.
However, despite having relatively high sensitivity and specificity for
dementia, they perform less well in the diagnosis of early-stage MCI.
Further, their scores are affected by educational level and language,
and therefore, they are insufficiently objective as a means of diagnosis.

Recently, machine learning technology has shown promising per-
formance on AD incidence prediction with large-scale administrative
health data (Park et al., 2020). A more objective approach to AD diag-
nosis is through biomarkers such as brain imaging (Khojaste-Sarakhsi
et al., 2022; Wang et al., 2022), blood and cerebrospinal fluid ex-
amination. However, due to the unclear pathological cause, there is
no uniform standard for AD diagnosis through biomarkers. Applying
such tests for MCI is even less precise because of the heterogeneity of
the syndrome of MCI. Consequently, with the development of artificial
intelligence (AI) in the field of computer vision, computer-aided AD
diagnosis, including prediction of AD and MCI, using medical images
such as magnetic resonance imaging - T1 weighted imaging (MRI-
T1WI), positron emission tomography (PET) (Sharma et al., 2023) has
become a research hotspot in recent years(Tanveer et al., 2020). Some
recent studies have shown its capability in AD diagnosis with various
modalities of radiography as input including structural MRI (sMRI),
functional MRI (fMRI) and positron emission tomography (PET).

sMRI is the most common modality for the diagnosis of AD due
to its low cost for acquisition, non-invasiveness and accessibility. The
feature extraction methods of sMRI can be roughly divided into three
categories: density maps-based, cortical surface-based, and predefined
regions-based. Multiple-set adaptive ROIs-based method was proposed
with density maps to predict AD and MCI and achieved accuracy
at 92.51% for AD/normal control(NC) classification and 78.99% for
pMCI/sMCI classification (Liu et al., 2015). Not easily visible changes
in temporal and parietal regions of the cortical surface at the early
stage of AD can also be used in classification. In the study of Wee
et al. (2013), the authors took cortical morphological patterns with
the multi-kernel SVM-based method and achieved similar performance
for AD/NC classification and pMCI/sMCI classification as well as two
more classifications, AD/MCI and MCI/NC, with both accuracy above
75%. Besides, the predefined region-based approach exploits prior
knowledge from previous studies in special patterns of AD. In other
words, it focuses on some regions which are likely to be useful for
classification. Many studies show that it is effective to use the pre-
defined region. For instance, in the study of Chincarini et al. (2011),
it achieved 97% accuracy for AD/NC classification. In addition to
the prior feature-based methods, utilizing the whole 3D images as
input also shows its capability in the differential diagnosis. A Content-
Based Image Retrieval (CBIR) system was proposed using a 3D capsule
network for AD diagnosis with sMRI and PET images as input and
achieved an accuracy of 89.1% on AD/MCI/NC classification, 97.6%
on AD/NC classification, 95% on AD/MCI classification and 90.8% on
MCI/NC classification (Kruthika et al., 2019). In the study of Xia et al.
(2020), the authors put forward a hybrid network involving both 3D
Covolutional Neural Network (CNN) and 3D convolutional long short-
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term memory (3D CLSTM) to predict AD using sMRI and achieved
an accuracy of 94.19% on AD/NC classification. A dual attention
multi-instance deep learning method was presented for AD prediction
and MCI conversion and achieved an accuracy of 92.4% for AD/NC
classification, 80.2% for pMCI/sMCI classification (Zhu et al., 2021).
A new method for AD diagnosis was described by estimating brain
age from sMRI image instead of performing classification and achieved
the mean absolute error at 2.428 years (Cheng et al., 2021). In the
study of Park et al. (2023), they proposed a prospective classification
of AD conversion from MCI and achieved an accuracy of 88.1% for
AD conversion prediction. A Monte Carlo Ensemble Neural Network
(MCENN) for AD diagnosis was proposed and achieved an accuracy of
88.7% for AD/MCI/NC classification with random feature sampling set
to 32 (Liu et al., 2023). Combining sMRI features with phenotype fea-
tures, Ho et al. (2022) proposed a forward-to-backward bi-directional
network with integrative imputation to predict patients’ next one-year
biomarkers and clinical status, and achieved an accuracy of 58.47%
in forecasting clinical status. An ensemble framework has also been
proposed by Nguyen et al. (2022) using sMRI to diagnose AD and
achieved an accuracy of 96% for AD/NC classification. Consequently,
using sMRI in automated AD diagnosis shows promising results with
various machine learning based approaches. However, the sMRI data
can only reflect structural pathology while brain functional pathology
cannot be reflected. Therefore, the result might be further improved
when used together with other types of data that reflecting brain func-
tional pathology, which is also a recent hot-spot in machine learning as
multi-modal learning. In this work, we start with sMRI while involving
the synthesized FDG-PET to improve the derived model’s performance.

Apart from sMRI, AI application in other modalities such as fMRI
and PET has also had some encouraging findings. Moreover, studies
involving fMRI and PET even show higher accuracy compared with
sMRI. Recent studies achieved accuracy at around 95% for AD/NC
classification (Li et al., 2020; Parmar et al., 2020a, 2020b). In the
study of Liu et al. (2015), the authors also achieved 91.2% accuracy on
AD/NC classification and 78.9% accuracy on MCI/NC classification us-
ing pure fluorodeoxyglucose-positron emission tomography (FDG-PET)
as input on their proposed model which was a combination of CNN and
bidirectional gated recurrent unit (BGRU). In the study of Pan et al.
(2021), the authors came up with a CNN-based multi-view pyramid
network for AD prediction at the MCI stage using FDG-PET as input and
achieved an accuracy of 93.13% for AD/NC classification and 83.05%
for pMCI/sMCI classification. Tuan et al. (2022) proposed C-Atlas-
based machine learning approaches to diagnose AD with FDG-PET and
achieved an accuracy of 91.83%. Though using functional imaging such
as fMRI and PET shows promising results in AD diagnosis, their high
cost for acquisition as well as limitation of equipment still limits their
usage. Therefore, using sMRI might maximize the generalizability of AI
in AD diagnosis in real practice. In our work, we use the synthesized
FDG-PET from MRI-T1WI as an additional reference for the model
instead of the ground truth one due to its difficulties in acquisition.
In other words, the only medical image used in our proposed method
in the inference stage is sMRI.

Although sMRI, fMRI, PET have all shown promising results on AD
diagnosis with machine learning, sMRI only has shown the anatomical
structures in the brain while the functional or metabolic properties
of brain tissues are not highlighted. In this work, we propose a U-
Net based Generative Adversarial Network (GAN) to synthesize PET
images from sMRI to obtain the expensive and higher AD-sensitive
modality from the cheap and lower AD-sensitive modality as well as
obtain functional or metabolic properties from anatomical structures.
Compared to the other AI-based AD diagnosis applications, we further
use the synthesized FDG-PET images amalgamated with its source sMRI
images as the joint input for the classifier to improve the accuracy of
diagnosis for AD as well as its early-stage MCI.
This paper describes the following work that has been undertaken:



Neural Networks 169 (2024) 442–452K. Chen et al.
Table 1
Demographic analysis of Paired Dataset with MRI-T1WI and FDG-PET as pair and
Extended Dataset with MRI-T1WI only (Where ‘Scans’ for Paired Dataset denotes
the number of image pairs and ‘Scans’ for Extended Dataset denotes the number of
MRI-T1WI).

Paired dataset Extended dataset

Participants 332 760
Scans 1036 3948
Male (%) 62.65% 57.76%
Female (%) 37.35% 42.23%
Age in years, mean (SD) 76.59 ± 6.65 76.47 ± 6.85

• We propose a GAN model to generate synthesis images that can
overcome the limitation of the missing PET images in AD diagno-
sis. The model is trained on the selected paired data of MRI-T1WI
and FDG-PET from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset and achieves an overall performance with
MAE at 0.0141, MSE at 0.0014, ZNCC at 0.9871 and SSIM at
0.9714.

• We investigate the different machine learning models, including
MLP and GNN, for AD classification. The models are trained
on the MRI-T1WI data from the ADNI dataset and the various
experiments are conducted. The best performance is achieved by
GNN based model for node classification with 90.18% accuracy
on NC/MCI/AD classification.

• We carry out additional experiments on identification of normal
controls (NC), stable MCI (sMCI) and progressive MCI (pMCI), and
achieve an accuracy of 82.77%

• Our work shows that the synthesized data can enhance the model
performance for AD diagnosis and also provides support for the
notion that machine learning-derived image analysis can be a
useful approach to improve the diagnosis of AD.

2. Methods

2.1. Datasets

Data used in the preparation of this work are obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). ADNI was launched in 2003 as a public–private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI is to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

In this research, we have downloaded the paired MRI T1 weighted
images (MRI-T1WI) and FDG-PET images for the task to synthesize
FDG-PET from MRI-T1WI. The pairing procedure is based on the meta-
data of the downloaded images and the terms for pairing are the same
subject ID and the interval of the age of obtaining image less than 30
days. The demographic analysis of the dataset with MRI-PET pairs is
shown in Table 1.

Furthermore, we collect more data as an extended dataset contain-
ing MRI-T1WI images only because FDG-PET images can be synthesized
from MRI-T1WI. The extended data are used for training the classifier
since the classifier takes MRI-T1WI and synthesized FDG-PET images.
In other words, the actual input is MRI-T1WI images for the whole
diagnosis system. The demographic analysis of the extended dataset is
shown in Table 1.

2.2. Data preprocessing

The data in the ADNI dataset is collected from different sources,
which implies differences existing in voxel size, orientation, etc. Data
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preprocessing is carried out using FSL (Jenkinson et al., 2012). For both
Fig. 1. MRI-T1WI segmentation. (a) is an MRI slice, (b) is the visualization of the
corresponding segmentation masks where green refers to cerebrospinal fluid (CSF),
yellow refers to grey matter (GM) and brown refers to white matter (WM). (c), (d),
(e) are the visualization of CSF, GM, WM tissues respectively.

MRI-T1WI and FDG-PET images, we first remove non-brain tissues. The
images are then registered to the standard MNI152 space. Moreover,
brain region segmentation is applied to the registered images to obtain
white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) as
shown in Fig. 1.

2.3. Synthesis model

For data synthesis from MRI-T1WI to FDG-PET, we propose a U-
Net (Ronneberger et al., 2015) based Generative Adversarial Network
(GAN) (Goodfellow et al., 2020). The overall architecture of GAN in this
work is shown in Fig. 2 with a generator responsible for synthesizing
data and a discriminator responsible for determining its input as the
real data or the synthesized data. The advantage of using GAN for data
synthesis is that the generator is not only optimized through prede-
fined loss but also through the discriminator. As for the discriminator,
the ability to identify whether an input is synthesized or not is also
promoted following the growth of the generator.

Fig. 3 shows the detailed structure of the generator which is in the
U-Net style with the left side as the contracting path and the right side
as the expanding path. The contracting path consists of the repeated 3D
CNN based down-sampling modules. In each down-sampling module,
a 3D convolutional block, which consists of a 3D convolutional layer
and a rectified linear unit (ReLU), is first performed with a stride of 2 to
extract features and down-sample the input with a ratio of 2. The result
is then added to the result from the following two 3D convolutional
blocks with a stride of 1 to construct the residual connection which
helps with training. The expanding path is the reverse of the contracting
path which consists of repeated up-sampling modules with the same
number as the contracting path. The up-sampling module is similar
to the downsampling module except for replacing the 3D convolution
block with a stride of 2 in an up-sampling layer and a 3D convolution
block with a stride of 1. Moreover, the skipped connection exists
between the contracting path and the expanding path by concatenating
the corresponding feature representations from two paths as shown in
Fig. 3. This skipped connection allows feature fusion between feature
representations with the small receptive field and the large receptive
field, which enhances the generator’s ability to generate more precise
and detailed synthesized FDG-PET images.

As for the discriminator, it aims at identifying whether the FDG-PET
image is the corresponding ground truth image of the source MRI-T1WI
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Fig. 2. General architecture of GAN implementation consists of a generator to generate the FDG-PET from MRI-T1WI and a discriminator to identify if the FDG-PET is synthesized
or real.
Fig. 3. Structure of the 3D U-Net generator consists of a contracting path and an expanding path with skipped connections to refine the prediction.
Fig. 4. Structure of the discriminator consists of several 3D convolutional modules.

image. Therefore, the discriminator takes two channels of input, which
is the paired image set including the source MRI-T1WI image and its
corresponding target FDG-PET image, either the ground truth FDG-PET
445
image or the synthesized one. Fig. 4 shows the detailed structure of the
discriminator. The first four 3D convolutional blocks perform feature
extraction as well as downsampling to the size of 8 ∗ 8 ∗ 8 while the
last 3D convolutional block, which consists of a 3D convolutional layer
with a stride of 1 and a sigmoid function, performs scoring for each
sub-region.

As for updating, the loss of the discriminator is used to help the
generator optimize not only from the predefined loss but also from
the knowledge learned by the discriminator. Since the output of the
discriminator is a 8 ∗ 8 ∗ 8 matrix with each value ranging from 0 to
1 indicating the probability of the sub-region being part of the ground
truth FDG-PET image. Therefore, a matrix 𝑉 with a size of 8 ∗ 8 ∗ 8 and
all values at 1 is designed to represent the desired output of the image
pair of the source MRI-T1WI image and the ground truth FDG-PET
image. Similarly, the same-sized matrix 𝐹 with all values at 0 represents
the desired output of the image pair of the source MRI-T1WI image and
the synthesized FDG-PET image. The loss of the discriminator is hence
defined as below with mean squared error:

𝐿𝑜𝑠𝑠(𝐷) =
𝑀𝑆𝐸(𝐷(𝑔𝑡), 𝑉 ) +𝑀𝑆𝐸(𝐷(𝑝𝑟𝑒𝑑), 𝐹 )

2
(1)

Where 𝐷 denotes the discriminator, 𝑔𝑡 denotes the ground truth FDG-
PET image and 𝑝𝑟𝑒𝑑 denotes the synthesized FDG-PET image. More-
over, the equation for Mean Squared Error (𝑀𝑆𝐸) is as below:

𝑀𝑆𝐸(𝑋, 𝑌 ) =
∑𝜉

𝑖=1(𝑦𝑖 − 𝑥𝑖)2 (2)

𝜉
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Fig. 5. Structure of MLP classifier with each MLP module consisting of 4 hidden layers, where the first hidden layer has 1024 units and halves for each of the following hidden
layers.
Where 𝜉 denotes the number of values 𝑥, 𝑦 in their corresponding
variables 𝑋, 𝑌 .

For the loss of the generator, it consists of two terms including the
reversed loss of discriminator and the pixel-wise loss. The reversed loss
of discriminator aims at enhancing the generator’s ability to confuse the
discriminator while the pixel-wise loss aims at accelerating the training.
In this work, structural similarity index measure (SSIM) loss has been
chosen to be the pixel-wise loss as it considers multiple aspects when
measuring similarity between two images. Therefore, the loss for the
generator is as below:

𝐿𝑜𝑠𝑠(𝐺) =
𝑆𝑆𝐼𝑀(𝑝𝑟𝑒𝑑, 𝑔𝑡) +𝑀𝑆𝐸(𝐷(𝑝𝑟𝑒𝑑), 𝑉 )

2
(3)

Where 𝐺 denotes the Generator and the equation of 𝑆𝑆𝐼𝑀 is as
follows:

𝑆𝑆𝐼𝑀(𝑋, 𝑌 ) =
(2𝜇𝑋𝜇𝑌 + 𝑐1)(2𝜎𝑋𝑌 + 𝑐2)

(𝜇2
𝑋 + 𝜇2

𝑌 + 𝑐1)(𝜎2𝑋 + 𝜎2𝑌 + 𝑐2)
(4)

Where 𝑐1 = (𝑘1𝐿)2, 𝑐2 = (𝑘2𝐿)2 and 𝑐3 = 𝑐2∕2 are used to stabilize
the division with weak denominator and 𝑘1 is set to 0.01, 𝑘2 is set to
0.03. Meanwhile, L denotes the range of voxel values, 𝜇 denotes the
mean value and 𝜎 denotes the standard deviation and 𝜎𝑋𝑌 denotes the
covariance of 𝑋, 𝑌 .

The MSE loss aims to reduce the per voxel error between predicted
images and their corresponding ground truth images. However, the
MSE score has a poor correlation with the perception of human visual
system (HVS). According to HVS, some distortions are not clearly
visible and other distortions are present but do not affect the image
quality, which both cannot be reflected correctly by MSE. SSIM is a
more HVS-correlated criterion that aims to extract structural informa-
tion from an image by evaluating three independent highly structured
parameters, namely, luminance, contrast and structure. In other words,
the SSIM loss focuses on the overall image structural difference, or
equivalently the inter-voxel errors while the MSE loss focuses on the
per-voxel errors. Therefore, using the SSIM loss along with the MSE loss
can help the model generate images more similar to the ground truth
images both from the per-voxel perspective and the overall structural
perspective.

Though the generator and the discriminator are both part of the
U-Net-based GAN, the training is not a universe. Instead, the two
parts take turns to train and optimize. In that way, the generator and
the discriminator are both continuously improved in the adversarial
process.

Furthermore, to evaluate the performance of the synthesized im-
ages, we also use mean average error (MAE) and Zero-Normalized
446
Cross-Correlation (ZNCC) apart from MSE and SSIM mentioned above.
The equations are as follows:

𝑀𝐴𝐸(𝑋, 𝑌 ) = 1
𝜉

𝜉
∑

𝑖=1
|𝑦𝑖 − 𝑥𝑖| (5)

𝑍𝑁𝐶𝐶(𝑋, 𝑌 ) = 1
𝜉

1
𝜎𝑋𝜎𝑌

𝜉
∑

𝑖=1
(𝑥𝑖 − 𝜇𝑋 )(𝑦𝑖 − 𝜇𝑌 ) (6)

2.4. Classifier

Three classifiers are designed in this study for the AD, MCI and NC
classifications. One is a multi-layer perceptron (MLP) based classifier,
and two are geometric neural network (GNN) based classifiers where
one focuses on graph classification and the other focuses on node
classification.

As for the MLP based classifier, it consists of several MLPs with each
corresponding to one specific type of feature vector and returning the
probability for each class. The results from each MLP are then averaged
to produce the final prediction of class probabilities. Fig. 5 illustrates
the structure of the MLP classifier with MRI-T1WI and FDG-PET images
as the joint input. Furthermore, it can be adapted to single modality
input. For instance, the classifier is suitable for the input of MRI-T1WI
images only by eliminating the bottom three MLPs in Fig. 5 ; and
similarly, when eliminating the top three MLPs in Fig. 5, it is suitable
for the input of synthesized FDG-PET images only. The input of the MLP
based classifier is designed for the brain atlases-based features extracted
from different modalities with different brain segments, i.e., GM, WM
and CSF, using AAL3 (Rolls et al., 2020) atlases. As for MRI-T1WI, the
feature extraction is by counting non-zero voxels in each brain sub-
region defined in the selected brain atlases as MRI-T1WI mostly reflects
the degree of structural shrink of the brain in AD diagnosis. However,
for the FDG-PET, feature extraction is by summing the values in each
brain sub-region as the power reflects the degree of neuron activity
which is an important factor in the diagnosis of neurodegenerative
disease such as AD.

As for the two GNN based classifiers, both are inspired by Graph-
SAGE (Hamilton et al., 2017), which is a framework for inductive
representation learning on large graphs extended from Graph Con-
volutional Network (GCN) (Kipf & Welling, 2016). The key idea of
GraphSAGE is to aggregate feature representation from a node’s local
neighborhood. The new feature representation of the node is then
derived from its previous feature representation and the aggregated
feature representation of its neighbors. The equation to generate the
new feature representation 𝑣′𝑖 of a node 𝑖 is given as below, where
𝑣 denotes the original feature representation, 𝐴𝐺𝐺𝑅 denotes the ag-
gregation function, 𝐶𝑂𝑁𝐶𝐴𝑇 denotes the concatenation function, 𝑊
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Fig. 6. Illustration for aggregation where the nodes information are aggregated in their
neighborhood.

Fig. 7. Overall GraphSAGE based GNN architecture where SAGE represents the
GraphSAGE module which is responsible for aggregation and Norm represents the
normalization module.

denotes the weight matrices for linear transformation and 𝜎 denotes the
non-linear activation function.

𝑣′𝑖 = 𝜎(𝑊 ∗ 𝐶𝑂𝑁𝐶𝐴𝑇 (𝑣𝑖, 𝐴𝐺𝐺𝑅(𝑣𝑗 ,∀𝑗 ∈ 𝑁(𝑖)))) (7)

Fig. 6 shows the illustration of the aggregation procedure for the
red node with twice aggregation from bottom to top. Each time a
node’s neighborhood information is aggregated to generate the new
feature representation of that time. Therefore, with twice aggregation,
the receptive field of the red node is expanded to its second-order
neighborhood. The overall architecture of GNN used in this work is
shown in Fig. 7 with two times of aggregation applied in the whole
process.

However, for large and complex graphs, the nodes and edges can
be at large size, high order aggregation with all neighbors aggregated
could result in heavy memory load and long computing time, especially
during the training process which requires all gradients of the weights
retained for backpropagation. Using a randomly sampled fixed-size
neighbor set during the training instead of the full neighbor set is one
way to avoid out-of-memory and reduce computing time. Moreover,
sampling can be seen as a data augmentation procedure for the graph
by generating sub-graphs. With different sub-graphs fed into the model
at each iteration of training, it also makes the trained model more
robust. As for inferencing, the sampling strategies are removed to
ensure the completeness of the data input and reduce bias.

As aforementioned, there are two GNN based classifiers designed in
this research, one is responsible for graph classification, and the other
is responsible for node classification. For GNN based graph classifier,
a set of graphs are generated where each graph is responsible for one
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Fig. 8. A visualization of the constructed brain graph with each node containing the
feature representation of the corresponding brain region and the line representing the
edges in the graph.

specific sample and reflects the brain features on the spatial structure.
The nodes of the graph are the feature representations of brain regions
defined in AAL3 atlases. The edges are undirected and established
for the nodes which are adjacent to each other based on the AAL3
atlases. However, there are some brain regions independent and have
no direct adjacent regions. Therefore, a loose adjacent definition that
allows 5 voxels gap, equivalently 10 mm in the brain, is used to
ensure no independent nodes. A visualization of the constructed graph
within the brain is shown in Fig. 8. Since all graphs share the same
structure and have only a small amount of nodes and limited edges,
sampling strategies are not used during the training process, and the
final classification is based on the pooling results of all nodes’ feature
representations in the last graph convolutional layer.

For GNN based node classifier, only one graph is generated. The
nodes of the graph are the feature representations of samples. And
the edge is established with additional information including the ages
at the image acquisition time and the genotypes of APOE A1 and A2
of the patients of the samples belonging to as well as sex. The edge
establish algorithm is shown in Algorithm1 with an illustration of the
graph construction workflow shown in Fig. 9.

The feature representations of inputs for both GNN based classifiers
are extracted with the same strategy as the MLP based classifier, which
counts the number of voxels for MRI-T1WI and sums the power of
voxels for FDG-PET with different brain segments based on AAL3
atlases.

Furthermore, the loss function used for all classifiers is cross entropy
as the below equation shows:

𝐿𝑜𝑠𝑠(𝐶) = −
𝑐
∑

𝑖=1
𝑝(𝑥𝑖)𝑙𝑜𝑔(𝑞(𝑥𝑖)) (8)

Where 𝑐 denotes the number of classes, 𝑝 denotes the ground truth prob-
ability distribution and 𝑞 denotes the predicted probability distribution.

3. Experimental results and analysis

3.1. Performance of synthesis model

We have trained the U-Net based GAN model on Nvidia V100 32 GB
GPU for 400 epochs with the batch size set to 10. We have conducted
5-fold cross validation on the dataset of MRI-PET pairs with 80% for
training and 20% for testing. During the training, we normalize the
value of the input into the range 0-1 with the formula:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑋) =
𝑋 − 𝑚𝑖𝑛(𝑋) (9)
𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋)
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Table 2
Comparison of works in Hu et al. (2022), Li et al. (2014), Sikka et al. (2018) and Zhang et al. (2022) with our proposed synthesis model for the
prediction of FDG-PET from MRI-T1WI. For ZNCC and SSIM metrics, the higher value indicates the better performance of the prediction, and for MAE
and MSE metrics, the lower value indicates the better performance of the prediction.

Authors Methods MAE MSE ZNCC SSIM

Li et al. (2014) 3D CNN 0.0862 – – 0.5419
Sikka et al. (2018) 3D U-Net 0.0422 – – 0.8211
Hu et al. (2022) Bidirectional Mapping GAN (BMGAN) – – – 0.8900
Zhang et al. (2022) Brain PET GAN (BPGAN) 0.0318 – – 0.7294
Ours GAN 0.0141 0.0014 0.9871 0.9714
Table 3
Experimental results for MLP based classifier with the input of MRI-T1WI only and the joint input of MRI-T1WI and synthesized FDG-PET.

MRI-T1WI Joint input

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

NC 0.9371 0.9400 0.9386
87.21%

0.9393 0.9442 0.9417
88.39%MCI 0.8420 0.8668 0.8542 0.8622 0.8705 0.8663

AD 0.8481 0.8081 0.8276 0.8568 0.8399 0.8483
Fig. 9. Workflow of constructing a graph with each node as a feature representation
of a specific sample with several criteria, namely APOE A1, APOE A2, sex and age
difference.

The four criteria metrics including MAE, MSE, ZNCC and SSIM
are used to evaluate the performance of the synthesized model. While
computing the criteria metrics, the ground truth FDG-PET image and
the synthesized one are also normalized to 0-1 to produce a standard
comparison.

The qualitative results of our proposed synthesis model are shown in
Fig. 10. Table 2 shows the performance of our proposed method with all
four criteria metrics compared to others’ works with criterion reported
in their works. Our method achieves better performance compared with
other works, which indicates that our method produces better synthesis
results. Moreover, our methods achieve a ZNCC score of 0.9871.
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Early works of synthesizing PET from MRI use plain 3D CNN (Li
et al., 2014) and 3D U-NET based model (Sikka et al., 2018) with pixel-
wise loss to extract features and reconstruct PET in 3D view. These 3D
CNN based methods focus on pixel-wise loss while ignoring perceptual
loss which infects their robustness. The latter two works (Hu et al.,
2022; Zhang et al., 2022), which were based on GAN, also had 3D U-
Net like backbones for generators. These two GAN based methods had
better synthesizing performance compared to the previous works due
to their involvements of adversarial loss and perceptual loss. Both of
the works attempted to involve the latent vectors corresponding to the
desired PET scans as part of the input, which increases the diversity.
However, the latent vectors can be randomly generated in Gaussian
space which produces results that are inconsistent over time, therefore
insufficiently precise for use in the medical field. In our work, we only
use MRI-T1WI as input to synthesize PET through the generator trained
with pixel-wise loss, adversarial loss and perceptual loss.

3.2. Performance of classifier

We train the three types of classifiers on the extended dataset and
the 10-fold cross validation experiments are conducted on all three
types of experiments.

As for the MLP based classifier, we train 6 classifiers where each
classifier is responsible for one type of feature extracted from the
modalities of GM, WM and CSF of MRI-T1WI and synthesized FDG-PET.
With an average of GM, WM and CSF prediction scores for MRI-T1WI,
the final prediction score for MRI-T1WI is obtained. Furthermore, the
final prediction score for the joint input of MRI-T1WI and synthesized
FDG-PET is derived in the same way.

The experimental results for the MLP based classifier are shown in
Table 3. With MRI-T1WI as input, the performance of the MLP based
classifier has achieved an overall accuracy of 87.21% and all F1-scores
are over 0.82. With MRI-T1WI and synthesized FDG-PET as the joint
input, the performance of the MLP based classifier has achieved an
overall accuracy of 88.39% and all F1-scores are over 0.84. Moreover,
regarding all criteria metrics including precision, recall and F1, the MLP
based classifier with the joint input setting performs better than the
MRI-T1WI input setting. It proves the hypothesis that the synthesized
FDG-PET can enhance the performance of the classifier for AD diagnosis
including its early-stage MCI.

As for GNN based graph classifier whose inputs are brain graphs of
samples, instead of 6 classifiers, we train the 2 classifiers, where each
classifier is responsible for one modality in MRI-T1WI and synthesized
FDG-PET. Due to the graph structure, if we train 6 classifiers with a
similar strategy as that of MLP based classifier, the feature represen-
tation for each node should have only one value, which contains less
information. Therefore, we decide to train only 2 classifiers as discussed
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Fig. 10. Qualitative results of the synthesis model: images in the first row are slices of MRI, the second and third rows are PET and SYN (synthesized PET) slices corresponding
to the first row.
Table 4
Experimental results for GNN based graph classifier with the input of MRI-T1WI only and the joint input of MRI-T1WI and synthesized FDG-PET.

MRI-T1WI Joint input

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

NC 0.8805 0.9297 0.9044
82.64%

0.8840 0.9380 0.9102
82.23%MCI 0.8403 0.7704 0.8038 0.8405 0.7756 0.8067

AD 0.7518 0.8004 0.7754 0.7662 0.8048 0.7850
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verage edges per node for the different settings of age difference allowance.
Years 1 2 4 6

Edges 53.24 101.54 191.69 272.08

efore. In that case, for each node, the feature representation has a
ength of 3 with feature values corresponding to WM, GM and CSF. The
rediction for the joint input of MRI-T1WI and synthesized FDG-PET is
btained in the same way as that of MLP based classifier.

The experimental results for GNN based graph classifier have been
hown in Table 4. The performance for input as MRI-T1WI has achieved
n overall accuracy of 82.64% and all F1-score over 0.77. The perfor-
ance for the joint input has achieved an overall accuracy of 83.23%

nd all F1-score over 0.78. With the synthesized FDG-PET as additional
nput, the performance is also enhanced, which is similar to that of MLP
ased classifier, and further proves that the synthesized FDG-PET helps
D diagnosis including its early-stage MCI.

As for GNN based node classifier whose inputs are large graphs with
odes containing feature representations of samples, we also train 6
lassifiers with different modalities as input, i.e., GM, WM and CSF of
RI-T1WI and synthesized FDG-PET. The prediction score for the input

f MRI-T1WI only and the joint input of MRI-T1WI and synthesized
DG-PET are derived in the same way as that for MLP based classifier
y simply averaging the scores for their corresponding classifier set.

Furthermore, as shown in Fig. 9, the age difference allowance for
onstructing edge can be varied to adjust the degree of connection
estriction between nodes. With the large age difference allowance, the
onnection restriction should be loose, which results in more edges for
ach node, and vice versa. In the experiments, we set the age difference
llowance to 1, 2, 4 and 6 years. The average edges per node for 4
raphs generated under the age difference allowance settings (1, 2, 4
nd 6 years) are shown in Table 5.

The joint input accuracy for age difference allowance set to 1 year
s slightly lower than using MRI-T1WI as input. However, in other trials
f experiments, using the joint input of MRI-T1WI and synthesized
DG-PET shows better or at least equal accuracy compared with using
RI-T1WI as input. Moreover, the average accuracy on 4 trials of
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s

xperiments also shows that using the joint input of MRI-T1WI and
ynthesized FDG-PET performs better than using the input of MRI-T1WI
nly, which proves our hypothesis again.

The above experiments all involve multimodal data input including
RI-T1WI and synthesized FDG-PET and their subregions of GM, WM

nd CSF. And all experiments share the same data fusion strategies
t the decision level by averaging the prediction score. We also ex-
eriment with a different data fusion strategy at the input level by
oncatenating different modal features into one feature vector.

The results for three types of classifiers with all modal features
used at the input level, including WM, GM and CSF of MRI-T1WI and
ynthesized FDG-PET, are shown in Table 7. The overall performance
rops for both MLP based and GNN based graph classifiers compared
ith that in Table 3 and Table 4 while the performance enhanced for
NN based node classifier compared with that in Table 6.

According to our experimental results, we have found that GNN
ased node classifier performs better than MLP based classifier than
NN based graph classifier among all experiments with different set-

ings. This might be due to the fact that each node in the brain
raph contains less information which somehow affects its resistance
o disturbance. Also, MLP based classifier can be seen as a very special
ode classifier with all nodes in the graph independent, equivalently no
dges. With the additional information like APOE A1, A2 genotypes and
ex introduced to generate edges, GNN based node classifier performs
etter than MLP based classifier as expected.

We also compare our work with other state-of-the-art methods and
urs GNN based node classifier achieves the best performance for 3-
lass classification (AD/MCI/NC). Also, we have trained the binary
lassification models for comparison with other works. It also shows
n Table 8 our work’s robustness with AD/NC and MCI/NC achieves
ccuracy at 98.72% and 95.83% respectively. The accuracy for AD/MCI
s slightly lower at 89.96% compared with (Kruthika et al., 2019). How-
ver, they used MRI and PET as input while only MRI is actually needed
n our work for inference. Therefore, our work still has state-of-the-art
erformance.

To further validate the proposed methods, experiments for predic-
ion AD conversion are performed by re-labeling some MCI subjects into
MCI and pMCI. The MCI subjects who progress to AD are labeled as
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Table 6
Experimental results for GNN based node classifier with the input of MRI-T1WI only and the joint input of MRI-T1WI and synthesized FDG-PET.

MRI-T1WI Joint input

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

1 year
NC 0.9536 0.9556 0.9551

89.31%
0.9466 0.9535 0.9500

89.10%MCI 0.8816 0.8712 0.8764 0.8822 0.8653 0.8737
AD 0.8645 0.8586 0.8525 0.8453 0.8629 0.8540

2 year
NC 0.9490 0.9628 0.9559

88.82%
0.9477 0.9566 0.9521

88.85%MCI 0.8768 0.8639 0.8703 0.8786 0.8624 0.8704
AD 0.8399 0.8454 0.8462 0.8405 0.8553 0.8478

4 year
NC 0.9419 0.9555 0.9487

88.23%
0.9527 0.9586 0.9557

88.73%MCI 0.8725 0.8558 0.8440 0.8729 0.8639 0.8683
AD 0.8333 0.8443 0.8388 0.8391 0.8465 0.8428

6 year
NC 0.9479 0.9586 0.9532

88.63%
0.9468 0.9576 0.9511

88.63%MCI 0.8793 0.8580 0.8685 0.8770 0.8602 0.8685
AD 0.8319 0.8520 0.8418 0.8360 0.8498 0.8428

Average 88.59% 88.82%
Table 7
Experimental results of data fusion at input level for three types of models.

Joint input (input level data fusion)

Precision Recall F1 Accuracy

MLP based classifier
NC 0.9234 0.9349 0.8664

86.47%MCI 0.8626 0.8315 0.8468
AD 0.8072 0.8399 0.8323

Graph classification classifier
NC 0.8815 0.9235 0.9020

83.08%MCI 0.8377 0.7785 0.8070
AD 0.7682 0.8103 0.7887

Node classification classifier

1 year
NC 0.9477 0.9555 0.9516

90.18%MCI 0.8980 0.8742 0.8859
AD 0.8596 0.8860 0.8726

2 year
NC 0.9395 0.9628 0.9510

89.84%MCI 0.9035 0.8609 0.8817
AD 0.8487 0.8860 0.8670

4 year
NC 0.9437 0.9535 0.9486

89.13%MCI 0.8917 0.8543 0.9726
AD 0.8373 0.8805 0.8584

6 year
NC 0.9383 0.9586 0.9483

89.35%MCI 0.8930 0.8589 0.8759
AD 0.8471 0.8750 0.8608
Table 8
Results for additional experiments on the identification of NC, sMCI and pMCI.

Methods Modalities AD/MCI/NC AD/NC AD/MCI MCI/NC

Liu et al. (2018) PET n/a 91.2 n/a 78.9
Xia et al. (2020) MRI n/a 94.19 n/a 79.10
Hosseini-Asl et al. (2016) MRI n/a 91.4 70.1 77.4
Zhang et al. (2019) MRI + PET n/a 98.6 88.2 88.0
Kruthika et al. (2019) MRI + PET 89.10 97.60 95.00 90.80
Ours MRI + Synthesized PET 90.18 98.72 89.96 95.83
pMCI and those who do not progress to AD for more than 3 years are
labeled as sMCI. Based on the re-labeled data, we trained a GNN based
node classifier for identifying NC, sMCI and pMCI with joint input of
MRI-T1WI features and synthesized FDG-PET features. The results are
shown in Table 9 with an overall accuracy of 82.77%. The pMCI class
performs lower among the three classes with an F1-score of 75.54 while
the sMCI class has an F1-score of 91.08 and the NC class of 83.49.
Though the model has shown weakness in identifying pMCI, it still has
shown its feasibility in predicting AD conversion.

4. Discussion

4.1. Advantages and limitation

We propose a U-Net based GAN model which takes advantage of
both U-Net model and GAN model, where the former merges high-
level and low-level features, the latter not only optimizes the generator
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Table 9
Results for additional experiments on the identification of NC, sMCI and pMCI.

Precision Recall F1 Accuracy

NC/sMCI/pMCI
NC 78.66 89.21 83.49

82.77%sMCI 85.43 97.53 91.08
pMCI 85.36 61.57 71.54

from pixel-wise loss but also from the discriminator loss. Our model has
been proven effective owing to the performance improved by machine
learning algorithms with all three types of classifiers for AD diagnosis.
Though the synthesized FDG-PET is with a very high similarity (SSIM
0.9714) to the ground truth (real image) and has proven the promising
improvements on the performance of AD diagnosis, it can only be acted
as an important intermediate step for machine learning models to aid
the diagnosis of AD instead of its immediate clinical utility according to
the rigor required in clinical practice. In other words, the synthesized
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FDG-PET can only be treated as an additional reference in practice
instead of a piece of evidence.

Moreover, the experimental results have demonstrated the advanced
nature of our proposed GNN based node classifier with graphs con-
structed from the image and phenotypic data to achieve an accuracy
of 90.18% for NC/MCI/AD classification. Our model has also shown
a promising result in identifying NC/sMCI/pMCI with an accuracy of
82.77%. However, our proposed GNN based node classifier relies on
the graph construction with patients’ genotypes of APOE A1 and A2,
which requires an additional step to acquire the genetic information.

In addition, the model is trained on data from the ADNI dataset,
which has relatively higher-quality data. However, in actual practice,
many medical centers have lower-quality data from the perspectives
of either data completion or image resolution, which might make the
model result less reliable, especially for those with much lower-quality
data compared to the ADNI dataset.

4.2. Future directions

As for medical image synthesis, apart from the methods proposed
in this work, diffusion model, a recent research hotspot in the field
of natural image synthesis with representative works such as guided
diffusion and stable diffusion, might also be a possible solution. Though
diffusion model usually starts with noised images which might further
introduce bias to the prediction, it is still worth trying due to its
high performance in natural image synthesis. Meanwhile, synthesizing
other modalities might also be a promising way to help improve AD
diagnosis.

Regarding automated computer-aided diagnosis for AD, using more
modalities of medical images, for instance, amyloid-PET and fMRI,
might also have a positive effect on the results. Meanwhile, involving
more phenotypic data might also improve the performance of auto-
mated computer-aided diagnosis for AD. Moreover, techniques to solve
data incompletion, such as setting the default data and synthesizing the
missing data, can also be applied by reason that some data has difficulty
in acquisition in real practice, which might result in the derived model
more robust and generalizable.

Apart from diagnosis, risk prediction for AD is also an important
aspect in preventing progress to AD for patients at the pre-AD stage as
well as for healthy people without any cognitive impairment. Herein,
AI with medical imaging and other phenotypic data is a promising way
to predict AD risk for the former; however, it might be more difficult
to predict AD risk for the latter. Compared to medical imaging, genetic
data might have advantages in AD risk prediction for the latter, which
can be analyzed by algorithms such as fractional-order time-delayed
genetic regulatory networks (Pratap et al., 2022). The derived result
might be further used to help AI models for AD prediction at an earlier
stage.

Moreover, arithmetic optimization algorithms such as prairie dog
optimization algorithm (Ezugwu et al., 2022), dwarf mongoose opti-
mization algorithm (Agushaka et al., 2022), aquila optimizer (Abuali-
gah et al., 2021), Reptile Search Algorithm (Abualigah et al., 2022) and
Ebola Optimization Search Algorithm (Oyelade et al., 2022), can be
used to further optimize the hyper-parameters in the training process.
These types of optimization algorithms can also be applied to the
process of model space search to suggest a more robust model structure
for the task.

5. Conclusion

This paper proposes a new method for synthesizing FDG-PET from
MRI-T1WI in AD diagnosis including its early-stage MCI. With our
proposed U-Net based GAN, we have delivered a state-of-the-art model
with MAE at 0.0141, MSE at 0.0014, ZNCC at 0.9871 and SSIM at
0.9714. Furthermore, we have conducted comparative experiments on
the synthesized FDG-PET images.
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Moreover, we compare the performance of one MLP based classifier
and two GNN based classifiers with different aims, where one is for
graph classification and the other is for node classification. We set
different inputs in the experiments, i.e., the input of MRI-T1WI only
and the joint input of MRI-T1WI and synthesized FDG-PET, to validate
if the synthesized FDG-PET aids the diagnosis of AD including its early-
stage MCI. We also explore the effect of different data fusion strategies
for multimodal input.

The experimental results show that the synthesized data enhances
the models’ performance for all three types of classifiers. The best-
performing classifier is GNN based node classifier with feature-level
data fusion and achieves the best accuracy at 90.18% for 3-class
classification. This work provides support for the notion that machine
learning-derived image analysis may be a useful approach to improving
the diagnosis of AD.
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