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Abstract—This paper presents the Shuffled Conic Power Flow
(PF) equations which enable a novel voltage angle substitution
within a second-order cone (SOC) PF model. Computational
experiments compare the performance of the novel voltage angle
substitution against a conventional approximation used to model
voltage angles within a state-of-the-art SOC PF model. Solving
the PF problem for four radial distribution networks and the
optimal power flow (OPF) problem for four demand scenarios
in one of these networks, we show the following. First, voltage
angles were improved in around 95% of cases when solving
the PF problem and around 96% of cases when solving the
OPF problem. Second, there is a particular improvement in
voltage angles when voltage magnitudes divert from 1 p.u., and
when there is demand growth. The results are also compared to
benchmark software, Matpower.

Index Terms—Optimal Power flow (OPF), Power flow (PF),
Second-order cone programming (SOCP), Voltage angles.

I. INTRODUCTION

The optimal power flow (OPF) problem plays a key role in
the design and operation of electric power systems. However,
as the power flow equations (a key constraint within the
OPF problem) are nonconvex, a range of relaxations and
approximations have been proposed [1]. Within these formu-
lations, second-order cone (SOC) power flow (PF) models
have been given an increasing attention due to their compu-
tational efficiency and accuracy. However, early studies [1]–
[3] propose SOC PF models where voltage angles are not
explicitly modelled. In particular, [2] proposed a model for
radial networks which eliminates voltage angles (though they
can be recovered, as explained in [4]). Studies [1], [3] present
models for radial and mesh networks which also eliminate
voltage angles, with [1] proposing angle recovery algorithms.

More recent SOC PF models have turned towards directly
accounting for all power flow variables including voltage
angles. This allows for a representation of the complete voltage
drop phasor (e.g. [5], [6]), provides the ability to directly
use the SOC PF model on mesh networks, without requiring
recovery algorithms (e.g. [7]), and gives the opportunity to
directly obtain voltage phase solutions (e.g. [8]). Voltage
angles can also be important for active reconfiguration on
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real-world distribution networks [9], [10]. SOC PF models
in [11], [12] directly account for voltage angles, where they
are incorporated using a range of methods including linear
approximations and McCormick envelopes. In the SOC PF of
[13], the load flow problem is solved using an iterative proce-
dure. The SOC PF model of [8], replaces the nonconvex terms
in the voltage angle equation by their convex hulls. Finally,
the SOC PF models [5]–[7], [14]–[16] use a conventional
approximation to incorporate voltage angles.

However, aforementioned works propose SOC PF mod-
els which either require algorithms to be solved, introduce
additional constraints, or use a conventional approximation
to incorporate voltage angles. In this study, we provide a
novel substitution to account for voltage angles within an
SOC PF model, and show that compared to a conventional
approximation used within the SOC PF model of [15], voltage
angles are improved in around 95% and 96% of cases when
solving the PF and OPF problems, respectively. Furthermore,
the voltage angle improvement is greatest in cases where
voltage magnitudes divert from 1 p.u. and when active demand
increases (which is important, since electricity demand is
expected to almost double by 2050 [17]). Given the works
above, the contributions of this paper are listed below.

1) This paper presents the Shuffled Conic Power Flow equa-
tions which enable a novel voltage angle substitution within an
SOC PF model. The Shuffled Conic PF equations are a conic
quadratic format of the “Shuffled PF equations”, which we
derive by shuffling the variables of the AC PF equations. Note
that, even though named hereby, the Shuffled PF equations
have been derived by various methods to form SOC PF models
in [5]–[7], [14]–[16], which use a conventional approximation
to model voltage angles (shown in Section II-A).

2) Numerical results show the accuracy of the proposed
method, comparing the performance of the novel voltage angle
substitution within the Shuffled Conic PF equations against
a conventional approximation used to model voltage angles
within the state-of-the-art SOC PF of [15]. This is shown
solving the PF problem for four radial distribution networks
and the OPF problem for four demand scenarios on one of
these networks. Results are also compared to Matpower [18].

In this paper, Section II presents the methodology, Section
III the numerical results, and Section IV the conclusions.
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Fig. 1. Model used for the lines of the network [2].
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Fig. 2. Diagram of proposed methodology in Section II.

II. METHODOLOGY

Let zij = rij + ȷxij be the complex impedance of line
(i, j) ∈ E, where E consists of lines (i, j) and (j, i) such
that i, j ∈ N , and N represents the set of buses (Fig. 1).
Then gij − ȷbij := 1/zij is the line admittance, where gij :=
rij/(r

2
ij + x2

ij) and bij := xij/(r
2
ij + x2

ij), |Vi| and θi are
the voltage magnitude and angle at bus i, respectively, and
θij = θi − θj . The real and reactive power flows are:

Pij = gij(|Vi|2 − |Vi||Vj |cos θij) + bij |Vi||Vj |sin θij (1a)

Qij = bij(|Vi|2 − |Vi||Vj |cos θij)− gij |Vi||Vj |sin θij (1b)

The remainder of this section presents the proposed ap-
proach, which is summarized in Fig. 2.

A. The Shuffled Power Flow Equations

This section presents the Shuffled PF equations which we
derive by shuffling the variables in (1), and therefore are
sufficient to represent the AC PF equations (1) (shown in
Appendix A). The Shuffled PF Equations, still nonlinear, have
also been derived by various methods such as using the voltage
drop equation in [7], [14], by extending a branch flow model
in [5], [6], [15], [16], while in [5], [6] it is explained that
they are sufficient to represent the voltage drop phasor. The
Shuffled PF equations are:

rijPij +xijQij =
|Vi|2 − |Vj |2

2
+(r2ij +x2

ij)
P 2
ij +Q2

ij

2|Vi|2
(2a)

xij Pij − rij Qij = |Vi| |Vj | sin θij (2b)

In the next section, we present a novel substitution while
linearizing equations (2b), which does not use the conventional
approximation |Vi||Vj |≈ 1 p.u. like the papers above.

B. The Shuffled Conic PF Equations

This section presents the Shuffled Conic PF equations which
are a conic quadratic format of Equations (2), and enable a
novel voltage angle substitution within an SOC PF model. To
formulate them, we first linearize (2b) as follows.

Using Taylor series expansion we set sin θij = θij , ∀θi ∈ R
(a widely used assumption). Therefore, (2b) becomes,

xij Pij − rij Qij = |Vj | (|Vi| θi)− |Vi| (|Vj | θj) (2b′)

We introduce a novel voltage angle substitution using a new
variable, θVi , which is defined as follows,

θVi = |Vi| θi (3)

Therefore, (2b′) becomes,
xij Pij − rij Qij = |Vj |θVi − |Vi|θVj (4)

At Equation (4) we set |Vi|= |Vj |≈ 1p.u., and (2b) becomes,

xij Pij − rij Qij = θVi − θVj (5)

We then convexify (2a) as in [1]-Part I, [3]. Therefore we set,

Isqij =
P 2
ij +Q2

ij

|V sq
i |

, where |V sq
i |= |Vi|2 (6)

and (2a) becomes,
rij Pij + xij Qij =

|V sq
i |−|V sq

j |
2

+
r2ij + x2

ij

2
Isqij (7)

Relaxing equation (6) as in [3], the Shuffled Conic PF
Equations are (5), (7), and Isqij ≥ (P 2

ij +Q2
ij)/|V

sq
i |.

C. The Power Flow and Optimal Power Flow Problems

We test the Shuffled Conic PF Equations on two problems:
1) The Power Flow problem: To solve the power flow

problem, we formulate an optimization problem as in [2] in
model (5), (7), (8)-(11) below. The relaxation gap of (9),
which represents the total current squared, is minimized by
(8). Constraints (10) form the power balance equations, where
over-satisfaction of the real and reactive demand, Pdi and
Qdi, respectively is set as in [3], in order for the equality to
hold in (9) at optimal solutions (this is shown in the proof of
Proposition 1 at Appendix B which is based on [1], [3]), and
(11) set the voltage magnitudes and angles at the slack bus,
whose values can be altered without loss of generality.

min
∑

(i,j)∈E Isqij (8)

subject to (5), (7), and

Isqij ≥ (P 2
ij +Q2

ij)/|V
sq
i |, ∀(i, j) ∈ E (9)∑

j:(i,j)∈E Pij ≤ −Pdi,
∑

j:(i,j)∈E Qij ≤ −Qdi, i = 2, ...N
(10)

|V sq
s |= 1, θVs = 0, s : slack bus (11)

Model (5), (7), (8)-(11) forms the Shuffled Conic PF model
which is a second-order cone programming (SOCP) problem
and can be solved by commercial solvers, since (9) can be
written as the following second-order cone [3]:

Isqij + |V sq
i |≥

∥∥∥∥[2Pij 2Qij (Isqij − |V sq
i |)

]T∥∥∥∥
2

(12)

Proposition 1. At any optimal solution of the model (5), (7),
(8)-(11), constraint (9) holds as an equality.

Proof. See Appendix B.

2) The Optimal Power Flow problem: Extending the model
above, the OPF problem is shown below.

min
∑

i∈N βi Pgi (13)

subject to (5), (7), (9), (11), and∑
j:(i,j)∈E Pij ≤ Pgi − Pdi,

∑
j:(i,j)∈E Qij ≤ Qgi −Qdi,

∀i ∈ N (14)
Isqij ≤ Isqij , ∀(i, j) ∈ E (15)



V sq
i ≤ V sq

i ≤ V sq
i , ∀i ∈ N (16)

Pgi ≤ Pgi ≤ Pgi, Qgi ≤ Qgi ≤ Qgi, ∀i ∈ N (17)

where βi the term of the generator cost function at bus i
in [$/MWh], Pgi/Qgi are the variables for the real/reactive
generation at node i, and / indicate the lower/upper limits
of variables. The Shuffled Conic OPF model (5), (7), (9),
(11), (13)-(17) is an SOCP problem, which can be solved by
commercial solvers, since (9) can be written as the SOC (12).
Objective function (13) minimizes the cost of generators; this
implicitly minimizes the Isq term because losses within the
branches need to be met by the generation. Constraints (14)
are power balance constraints, and (15)-(17) impose technical
limits. At the optimal solution, (9) holds as an equality
similarly to Proposition 1, as shown in Appendix B.

III. NUMERICAL RESULTS

This section compares the performance of the Shuffled
Conic PF equations and the SOC PF equations of [15]1.
Section III-A shows results solving the PF problem and
Section III-B solving the OPF problem. PF and OPF models
are coded in GAMS 38.1.0 using MOSEK on a desktop with
an Intel Core i5-6600 CPU at 3.30 GHz and 32 GB of RAM.
The results are benchmarked against Matpower [18].

A. Power Flow Problem Results

This section, shows results solving the PF problem for four
small to medium scale radial distribution networks with 15,
33, 69 and 85 buses [18]–[21] (also used in [2]), which we
assume are single-phase or three-phase balanced. Results are
shown in Fig. 3 and Table I, where voltage angle absolute
errors (AE) in Fig. 3 and AE in Table I-(A, B) are calculated
according to the results obtained by Matpower [18].

On the left y-axes of Fig. 3-(A), we observe that using the
Shuffled Conic PF equations, voltage angle AE are signifi-
cantly improved when voltage magnitudes divert from 1 p.u.,

1Even though [15] calculates voltage angle difference between buses, we
show voltage angles per bus to enable direct comparison with our results.

TABLE I
PF PROBLEM RESULTS

(A) Voltage Angle Mean Absolute Errors (compared to Matpower [18])
|N |=15 |N |=33 |N |=69 |N |=85

Shuffled Conic PF 1.56% 5.98% 1.20% 1.28%
SOC PF of [15] 5.97% 10.16% 3.83% 10.42%

Improvement 73.87% 41.14% 68.67% 87.72%

(B) Voltage Angle Max. Absolute Errors (compared to Matpower [18])
|N |=15 |N |=33 |N |=69 |N |=85

Shuffled Conic PF 2.94% 27.11% 2.43% 2.58%
SOC PF of [15] 8.33% 31.38% 10.78% 15.12%

Improvement 64.71% 13.61% 77.46% 82.94%

(C) EXECUTION TIME (seconds)
|N |=15 |N |=33 |N |=69 |N |=85

Shuffled Conic PF 0.1060 0.1044 0.1170 0.1295
SOC PF of [15] 0.0915 0.0873 0.0926 0.1012
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Fig. 3. PF Problem Results using four networks with |N | = 15, 33, 69, 85.

compared to using the SOC PF of [15]; this is particularly
visible for the case where |N |=85. This is also shown in
Fig. 3-(B), which shows the difference between the voltage
angle AE of Fig. 3-(A). Additionally, Fig. 3-(B) shows that
voltage angles are reduced in around 95% of cases, in almost
half of the cases they are reduced by at least 5%, and in
around 21% of cases by at least 10%. The right y-axes of
Fig. 3-(A), show the accuracy of the proposed method in the
calculation of voltage magnitudes, delivering near identical
results to Matpower [18]. The method in [15] provides similar
results to the Shuffled Conic PF, which is attributed to the fact
that it also uses equations (7) and (9).

In Tables I-(A, B), it is shown that in all case studies, using
the substitution in (3), voltage angle mean and maximum AE
are reduced. In particular, mean AE are improved between
41.14% (for |N |=33) and 87.72% (for |N |=85), and maximum
AE between 13.61% (for |N |=33) and 82.94% (for |N |=85).
In terms of execution times, both models show a similar
performance (Table I-(C)).

The improved accuracy of the proposed model in the voltage
angle calculation compared to the method in [15] is attributed
to the fact that in the proposed substitution only one voltage
magnitude is set equal to 1 in Eq. (2b), instead of the product
|Vi||Vj |≈1 as in [15]. This result indicates that the substitution
could be most effective in future networks with increased
loading which results in greater changes in voltage magnitude.



TABLE II
OPF PROBLEM RESULTS

(A) COST [$/hour] (Objective Function, Eq. (13))
Base Demand +5% +10% +20%

Shuffled Conic PF 44.34 46.69 49.06 53.82
SOC PF of [15] 44.34 46.69 49.06 53.82

Matpower 44.34 46.69 49.06 53.82

(B) EXECUTION TIME (seconds)
Base Demand +5% +10% +20%

Shuffled Conic PF 0.1148 0.1076 0.1236 0.1208
SOC PF of [15] 0.0976 0.0975 0.0885 0.0982

B. Optimal Power Flow Problem Results

In this section, we solve the OPF problem for the the
network |N |=33. Extracting generator and feeder data from
[22], we assume that there are generators at buses 18, 22,
25, and 33. Voltage limits are set to 1p.u.±6%. Branch flow
limits are not imposed for this network in Matpower [18],
therefore constraints (15) are omitted from the OPF models of
this section. Given our conclusion from Section III-A, and that
electricity demand is expected to increase [17], we perform
computational experiments for four active demand scenarios.
In the first scenario, demand is the same as in Section III-A
called, Base demand scenario, and in the other three, demand
is increased by 5%, 10% and 20%. Results are shown in Fig.
4 and Table II, where voltage angle AE and mean/maximum
voltage angle AE are compared to Matpower [18].

In Figs. 4-(A, B), it is shown that voltage angle AE are
reduced, using the Shuffled Conic PF equations compared to
the SOC PF equations of [15]; with a particular improvement
when voltage magnitudes divert from 1 p.u. (as shown in
Section III-A). In Fig. 4-(C), it is shown that both mean and
maximum voltage angle AE using the Shuffled Conic PF are
below the mean/maximum voltage angle AE using the SOC
PF of [15]. In Fig. 4-(D), it is shown that, on average, using the
Shuffled Conic PF equations within an OPF problem, voltage
angle maximum and mean AE are improved around 50% and
70% in all active demand scenarios, compared to using the
SOC PF equations of [15].

In Fig. 4-(E), it is also shown that using the proposed
voltage angle substitution, voltage angle AE are reduced as
demand grows. Furthermore, we calculated that using the
Shuffled Conic PF equations to solve the OPF problem,
voltage angle AE are reduced in around 96% of cases, in
around 65% of cases they are reduced by at least 3%, and
in around 17% of cases by least 5%. Finally, Table II shows
that both models provide highly accurate objective functions
compared to Matpower [18], and both models show a similar
performance in terms of execution times.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented the Shuffled Conic Power Flow equa-
tions, which enable a novel voltage angle substitution within
a second-order cone power flow model and compared the
performance of this substitution against a state-of-the-art SOC
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Fig. 4. OPF Problem Results using a network with |N | = 33.

PF model which uses a conventional approximation to in-
corporate voltage angles. We showed that using the novel
substitution, within a PF and an OPF problem, voltage angles
were improved in around 95% and 96% of cases respectively.
Also, the Shuffled Conic PF equations provided more accurate
results for voltage angles in cases where voltage magnitudes
diverted from 1 p.u. and with the increase of active demand.
The latter is important, since electricity demand is expected
to increase in the future. Future research may investigate the
linearization of the Shuffled PF equations, and the applicability
of this method to unbalanced and mesh power networks.

APPENDIX A

Proposition 2. Equations (1) can be written as the Shuffled
PF Equations.

Proof. First, re-arranging Equations (1) with respect to
|Vi|2−|Vi| |Vj | cos θij and |Vi||Vj |sin θij , we obtain:



xijPij − rijQij = |Vi||Vj |sin θij (18)
rijPij + xijQij = |Vi|2 − |Vi||Vj |cos θij (19)

We next show that (19) can be written as (2a). First, we
multiply and divide with 2 |Vi|2 the right-hand side of (19) and
then add and subtract |Vi|2|Vj |2/2|Vi|2: rij Pij + xij Qij =

2 (|Vi|2)2

2 |Vi|2
− 2 |Vi|2|Vi| |Vj | cos θij

2 |Vi|2
+

|Vi|2|Vj |2 − |Vi|2|Vj |2

2 |Vi|2
.

Then, since sin2 θij + cos2 θij = 1, rij Pij + xij Qij =

(|Vi|2)2 + (|Vi|2)2

2 |Vi|2
− 2 |Vi|2|Vi| |Vj | cos θij

2 |Vi|2

+
(|Vi|2|Vj |2) (sin2 θij + cos2 θij)− |Vi|2|Vj |2

2 |Vi|2
, or equivalently

|Vi|2 − |Vj |2

2
+

(|Vi||Vj | sin θij)2 + (|Vi|2 − |Vi||Vj |cos θij)2

2|Vi|2
.

Given (18)-(19), we obtain rijPij + xijQij =

|Vi|2 − |Vj |2

2
+

(xijPij − rijQij)
2 + (rijPij + xijQij)

2

2|Vi|2
, or

rijPij + xijQij =
|Vi|2 − |Vj |2

2
+ (r2ij + x2

ij)
P 2
ij +Q2

ij

2|Vi|2
(20)

which is Equation (2a). The proof of Equation (2b) is similar
and is omitted for brevity. This completes the proof.

APPENDIX B

Proof of Proposition 1. We will show that there cannot be an
optimal solution with Isqij > (P 2

ij + Q2
ij)/|V

sq
i |. Assuming

the contrary, let X∗ := (P ∗, Q∗, |V sq|∗, θV
∗
, Isq∗) be

an optimal solution such that ∃ a line (k, l) ∈ E: Isqkl
∗
>

(P ∗
kl

2 +Q∗
kl

2)/|V sq
k |∗. For ε > 0, consider a point Ψ ̸= X∗:

|V sq|Ψ = |V sq|∗, θV Ψ
= θV

∗, PΨ
kl = P ∗

kl − εrkl/2,
PΨ
−kl = P ∗

−kl, Q
Ψ
kl = Q∗

kl − εxkl/2, QΨ
−kl = Q∗

−kl,
Isqkl

Ψ
= Isqkl

∗ − ε, Isq−kl
Ψ
= Isq−kl

∗

where a negative index means ∀(i, j) ∈ E : (i, j) ̸= (k, l).
We next show that Ψ is a feasible solution, and has a lower

objective value than X∗. It can be easily shown that point Ψ
satisfies constraints (5), (7) ∀(i, j) ∈ E (including (k, l)), and
(9), (10) ∀(i, j) ∈ E, apart from (k, l). For (k, l), constraint
(9) becomes:
(Isqkl

∗ − ε) ≥ {(P ∗
kl − εrkl/2)

2 +(Q∗
kl − εxkl/2)

2}/|V sq
k |∗, or

Isqkl
∗|V sq

k |∗ − P ∗
kl

2 −Q∗
kl

2 ≥
ε(|V sq

k |∗−P ∗
klrkl −Q∗

klxkl + εr2kl/4 + εx2
kl/4)

and since Isqkl
∗|V sq

k |∗ − P ∗
kl

2 − Q∗
kl

2 > 0 by assumption,
there always exists a sufficiently small ε > 0 which satisfies
constraints (9) for line (k, l). Finally, constraints (10) are also
satisfied for line (k, l) since εrkl/2 > 0 and εxkl/2 > 0,
which are subtracted from the left-hand side of the constraints.
However, the objective value of Ψ (which is

∑
(i,j)∈E Isqij

∗−ε)
is smaller than the objective of X (which is

∑
(i,j)∈E Isqij

∗),
which contradicts the assumption of the optimality of X .

We note that for the Shuffled Conic OPF model, constraint
(9) can be proven to hold as an equality at the optimal solution

in a similar way. In particular, X∗ can be extended to include
Pg∗ and Qg∗, and Ψ can be extended to include QgΨk =
Qg∗k − ϵxkl/2, QgΨ−k = Qg∗−k, PgΨk = Pg∗k − ϵrkl/2, and
PgΨ−k = Pg∗−k.
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