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ABSTRACT

Steady three-dimensional flows in lid-driven cavities are investigated numerically using a high-order spectral-element solver for the incom-
pressible Navier–Stokes equations. The focus is placed on critical points in the flow field, critical limit cycles, their heteroclinic connections,
and on the existence, shape, and dependence on the Reynolds number of Kolmogorov–Arnold–Moser (KAM) tori. In finite-length cuboidal
cavities at small Reynolds numbers, a thin layer of chaotic streamlines covers all walls. As the Reynolds number is increased, the chaotic layer
widens and the complementary KAM tori shrink, eventually undergoing resonances, until they vanish. Accurate data for the location of closed
streamlines and of KAM tori are provided, both of which reach very close to the moving lid. For steady periodic Taylor–Görtler vortices in
spanwise infinitely extended cavities with a square cross section, chaotic streamlines occupy a large part of the flow domain immediately after
the onset of Taylor–Görtler vortices. As the Reynolds number increases, the remaining KAM tori vanish from the Taylor–Görtler vortices,
while KAM tori grow in the central region further away from the solid walls.

The streamline topology of the steady flow in three-dimensional
lid-driven cavities is thoroughly investigated. Regions of chaotic
and regular streamlines are identified by accurate numerical sim-
ulations. The dependence of the Kolmogorov–Arnoldi–Moser
(KAM) tori on the Reynolds number, geometric parameters, and
the boundary conditions (finite length or periodic cavity) is eluci-
dated. Geometrical indicators of the flow topology are introduced
and determined in order to quantitatively characterize the regular
(periodic and quasiperiodic) streamlines of the flow.

I. INTRODUCTION

Streamlines in incompressible closed flows are either chaotic
or regular. Regular streamlines, i.e., closed or quasiperiodic stream-
lines, coexist with chaotic streamlines in the same flow (Aref, 1986)
such that fluid elements from regular regions never enter chaotic
regions and vice versa. Since the spreading of passive scalars is
much more efficient in chaotic regions than in regular regions of

the flow, the streamline topology is of key importance for mixing
processes (Ottino, 1989). Furthermore, closed streamlines embed-
ded in regular regions may serve as templates for coherent structures
of advected finite-size particles (Romanò et al., 2019).

Streamline topologies in closed systems have been investigated
mainly for incompressible two-dimensional time-dependent flows
for which a theoretical framework in terms of Hamiltonian dynam-
ics is well established. In this analogy, the stream function of the
two-dimensional flow is identified as the Hamiltonian of a cor-
responding dynamical system with one degree of freedom, and
the Cartesian coordinates take the role of the generalized posi-
tion and momentum. On the other hand, a canonical Hamiltonian
theory for steady three-dimensional incompressible flows is not
yet fully developed (Wiggins, 2010), even though important ele-
ments are available. For instance, the existence of invariant curves
and tori in three-dimensional volume-preserving flows has been
proven by Cheng and Sun (1989a; 1989b). Moreover, the KAM
theorem (Arnol’d, 1978), which describes the response of non-
resonant invariant tori to small perturbations of the system, has been
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generalized to three-dimensional systems by Cheng and Sun (1990),
Mezić and Wiggins (1994), and Broer et al. (2009). An impor-
tant element of a full Hamiltonian description of three-dimensional
volume-preserving flows was provided by Bajer (1994) who showed
that a three-dimensional steady incompressible Navier–Stokes flow
is locally equivalent to a Hamiltonian system with 1.5 degrees of
freedom. In this local theory, the phase space is identical with the
configuration space, while the velocity vector u(x) represents the
flux in the phase space. This analogy, however, breaks down near
stagnation points of the flow, which play an important role in the
chaotic dynamics. This breakdown prevents an extension of the local
Hamiltonian framework to a general three-dimensional theory.

Regardless of this difficulty, it is well known that regular and
chaotic trajectories/streamlines can coexist in three-dimensional
steady Navier–Stokes flows, and the local analogy with Hamiltonian
systems implies that the regular motion arises in the form of Kol-
mogorov–Arnold–Moser tori or spheroids (Aref et al., 2017). The
importance and significance of this coexistence in steady laminar
flows has been elaborated by Aref (1983; 1984), Aref and Balachan-
dar (1986), and Aref (1990; 2002). The kinematic template of the
flow is also important for chaotic mixing, i.e., the mixing of a
fluid with itself, the mathematical foundations of which have been
reviewed by Aref et al. (2017).

Due to the incomplete theoretical framework and the
high numerical resolution required to reliably compute three-
dimensional streamlines for the necessary long periods of time, only
a few genuinely three-dimensional fluid systems have been thor-
oughly investigated in the literature. Examples are flows for which
closed-form solutions or approximations of Navier–Stokes flows are
available (Arter, 1983; Broomhead and Ryrie, 1988; Kroujiline and
Stone, 1999; and Muldoon and Kuhlmann, 2013). Other investi-
gations were concerned with streamline chaos in spatially three-
dimensional Stokes flows and weakly inertial flows (Anderson
et al., 1999; Shankar, 1998; Cartwright et al., 1996; and Pouransari
et al., 2010). Tackling steady nonlinear incompressible Navier–Stokes
flows at moderate Reynolds numbers has become more feasible only
recently (see, e.g., Fountain et al., 2000; Ishii et al., 2012; Mukin
and Kuhlmann, 2013; Romanò and Kuhlmann, 2018; and Contreras
et al., 2019).

The incompressible flow of a Newtonian fluid in a lid-driven
cavity is very well suited for fundamental investigations of the
streamline topology of laminar vortices (Chien et al., 1986; Leong
and Ottino, 1989; and Franjione et al., 1989). In the classical setup,
a single lid moves tangentially to itself and parallel to the edge of a
cuboid. Several variants of the system exist, depending on the num-
ber of moving walls, the directions in which they move (Povitsky,
2017), and on the velocity protocols. The lid-driven cavity problem
has been introduced by Burggraf (1966). Since the investigations of
Koseff (1984) it has become a paradigm for the study of closed vortex
flows. While the problem is a popular numerical benchmark (Ghia
et al., 1982; Botella and Peyret, 1998; Albensoeder and Kuhlmann,
2005; Bruneau and Saad, 2006; and Romanò and Kuhlmann, 2017b),
it has also been used to model a number of industrial applications,
such as coating (Gaskell et al., 1996), condensation drying (Alleborn
et al., 1999), and noise reduction (Crighton, 1991). Despite its sim-
ple geometry, the lid-driven cavity exhibits a rich variety of fluid
dynamics phenomena, which are related to fundamental problems.

One fundamental problem, the Taylor scraper problem (Taylor,
1960; 1962), is concerned with the local flow near the edge made
by a moving and a stationary wall. Yet another example in a two-
dimensional cavity flow is the infinite sequence of viscous eddies
in the corner between two stationary walls, which has been dis-
covered and investigated by Moffatt (1964). The corresponding
extension to trihedral corners has been extensively studied in recent
years (see, e.g., Gomilko et al., 2003; Scott, 2013; and Davis and
Smith, 2014). The lid-driven cavity has also been recently employed
to test the extension of the Prandtl–Batchelor theorem (Prandtl,
1904; Batchelor, 1956) to quasiperiodic flows (Arbabi and Mezić,
2019). Finally, the two-dimensional steady flow in lid-driven cavi-
ties may not be unique (Albensoeder et al., 2001a) and may become
unstable due to centrifugal, elliptic, quadripolar, or other instabil-
ity mechanisms (Ramanan and Homsy, 1994; Albensoeder et al.,
2001b; Auteri et al., 2002; and Albensoeder and Kuhlmann, 2002;
2003). Reviews on lid-driven cavities have been given by Shankar
and Deshpande (2000) and Kuhlmann and Romanò (2019). While
Shankar and Deshpande (2000) treated flow structures and stream-
line patterns, also including other geometries such as cylindrical cav-
ities, Kuhlmann and Romanò (2019) paid more attention to recent
developments concerning three-dimensional flow instabilities and
nonlinear supercritical dynamics.

Chaotic mixing of a laminar two-dimensional cavity flow was
experimentally investigated by Chien et al. (1986). They considered
a cavity in which the tangential motion of two facing lids was pre-
scribed according to a certain time-dependent protocol such that
Re = O(1). However, neither the conditions under which global
chaos arises could be predicted nor could a good overall mixing be
achieved. Mixing in time-dependent two-dimensional cavity flows
was further elaborated by Leong and Ottino (1989). In rectangu-
lar cavity flows and other systems mixing was discussed by Ottino
et al. (1988) emphasizing the horseshoe concept of Smale in which
repeated folding and stretching leads to a chaotic dynamics. The
book of Ottino (1989) gives a fundamental introduction to the field.
The studies of periodically-driven two-dimensional cavities at small
Reynolds numbers have been extended by Anderson et al. (2000)
who included flow inertia by considering Reynolds numbers up
to Re = O(50). With flow inertia, the presence of KAM tori can
enhance the global mixing inside the cavity. Recent investigations
focused on Reynolds number protocols designed to optimize the
mixing of the fluid and also of a particulate phase immersed in the
fluid (Hwang et al., 2005; Xu and Gilchrist, 2010; and Pai et al.,
2013). Owing to inertia and shear migration of the particles, the pro-
tocols for an optimum mixing of the fluid may differ significantly
from those required for an efficient mixing of the particles.

Concerning the general streamline topology, Biemond et al.
(2008) have shown that two-dimensional open flows with stagnation
points on the boundary or separatrices, which represent transport
barriers, become immediately chaotic as the flow is perturbed by
the onset of time-dependence. Steady three-dimensional perturba-
tions may follow the same route to chaos (Arter, 1983; Chernikov
and Schmidt, 1992; and Romanò et al., 2017). The first report on
the Lagrangian flow structure in a steady rectangular lid-driven cav-
ity flow is due to Ishii and Iwatsu (1989) who detected KAM tori
by the use of Poincaré sections. Their results are also referred to
by Shankar and Deshpande (2000). Thereafter, several parameter
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variations were considered. Ishii and Adachi (2006) computed the
flow topology with the emphasis on KAM tori as a function of
the Reynolds number ranging from 100 to 850 in a cavity with a
square cross section and a spanwise extent of 6.55 times the cavity
height. In more recent numerical studies, Ishii and Adachi (2011)
and Ishii et al. (2012) focused on resonance phenomena by which
higher-order KAM tori are created upon an increase of the Reynolds
number. The evolution of the streamline topology of the steady peri-
odic cellular flow in a two-sided lid-driven cavity was considered
by Romanò et al. (2017). As the two-dimensional basic flow bifur-
cates to the three-dimensional cellular flow, all streamlines become
chaotic immediately. Only for higher Reynolds numbers, KAM tori
appear, which vanish again at higher Reynolds numbers. It should be
noted that the flow topology was also considered in cylindrical cavi-
ties, either driven by lid translation (Znaien et al., 2012) or rotation
(Fountain et al., 2000).

The topology of a steady three-dimensional flow is not only
important for mixing of fluids with itself, but also for the trans-
port of suspended particles. While small density-matched particles
far from boundaries perfectly follow the flow, they may accumulate
in or near KAM tori either as inertial coherent structures due to
particle inertia (Haller, 2015) or as finite-size Lagrangian coherent
structures due to particle size (Hofmann and Kuhlmann, 2011). For
the three-dimensional cellular flow in a two-sided lid-driven cav-
ity, the existence of these latter structures has been demonstrated
by Romanò et al. (2019). Since these finite-size coherent structures
(FSCSs) depend on the KAM tori of the flow, their precise char-
acterization is of crucial importance. Similar particulate structures
have also been observed in related systems (Mukin and Kuhlmann,
2013; Romanò et al., 2017; Romanò and Kuhlmann, 2017b, 2019;
and Barmak et al., 2019).

In the present work, we analyze the streamline structure in cav-
ity flows driven by a single lid with a constant velocity. We build
on the work of Ishii and Adachi (2006; 2011) and Ishii et al. (2012)
to more precisely characterize the topology of the KAM tori in this
system. A precise knowledge of regular vs chaotic regions of the
flow helps understand the motion of nearly advected particles in
cavities and should lead to an improved understanding of previ-
ous results such as those of Tsorng et al. (2006; 2008). Furthermore,
we extend the analysis to periodic Taylor–Görtler vortices arising
above the critical Reynolds number in a cavity with a square cross
section, which is infinitely extended in a spanwise direction. The
problem is formulated in Sec. II. Section III treats the numerical
methods employed to compute the flow and its streamlines. Results
for flows in finite-length cavities and for spanwise periodic flows are
presented in Secs. IV and V, respectively. We close with a summary
and discussion in Sec. VI.

II. PROBLEM FORMULATION

We consider the flow in a rectangular cuboid filled with an
incompressible Newtonian fluid of the density ρ and the kinematic
viscosity ν as shown in Fig. 1. The origin of a Cartesian coordi-
nate system aligned with the edges of the cuboid is placed in one
of the bottom corners. The geometry is defined by the depth D in
the x-direction, the height H in the y-direction, and the length L in
the z-direction. The flow is driven by the motion of the wall at y = H

FIG. 1. Geometry and coordinates of the rectangular cuboidal cavity.
Non-dimensional quantities are given in parentheses.

in the positive x-direction, tangentially to itself and with a constant
velocity U.

Scaling length, velocity, time, and pressure by D, U, D/U,
and ρU2, respectively, the governing Navier–Stokes and continuity
equations read

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2

u, (1a)

∇ · u = 0, (1b)

where x = (x, y, z), t, u = (u, v, w), and p denote the position vec-
tor, time, velocity vector field, and pressure field, respectively. The
Reynolds number and the cross-sectional (0) and spanwise (3)

aspect ratios, respectively, are defined as

Re =
UD

ν
, 0 =

H

D
, 3 =

L

D
. (2)

Two different boundary conditions in the z direction are con-
sidered. For a finite-length cavity with 3 < ∞, the mathemati-
cal problem (1) is closed by no-slip and no-penetration boundary
conditions on all walls,

u(x = 0, 1) = 0, (3a)

u(y = 0) = 0, u(y = 0) = ex, (3b)

u(z = 0, 3) = 0, (3c)

where ex is the unit vector in the x direction. Another set of bound-
ary conditions results if (3c) is replaced by periodic conditions in the
z-direction,

u(z = λ) = u(z = 0), (3d)

where λ is the spatial period. This set of boundary conditions applies
to a cavity with an infinite span 3 → ∞ when the flow is periodic
in z.
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We are interested in the streamline topology of the steady
three-dimensional flow for these two types of boundary condi-
tions, including fixed points, limit cycles, and regular vs chaotic
streamlines. By investigating the influence of the spanwise length
3 on the flow topology, we aim at refining, extending, and quan-
tifying the results obtained for this system by Ishii and Adachi
(2006; 2010; 2011) and Ishii et al. (2012). In the case of periodic
boundary conditions with the period λ (3 → ∞), we consider the
steady three-dimensional flow slightly above the onset of periodic
Taylor–Görtler vortices, which arise beyond the critical Reynolds
number Rec = 783.9, fixing the wavelength to the critical value
λc = 0.406 78 of the linear stability problem (Albensoeder et al.,
2001b). Several Reynolds numbers for each set of boundary condi-
tions and per each spanwise aspect ratio are investigated to shed light
on the structure of the topological chaos and the way it is invading
the system when the Reynolds number is increased.

III. NUMERICAL METHODS

A. Fluid flow

The flow field is calculated using a spectral-element method,
which employs high-order Lagrange polynomials on Gauss–
Legendre–Lobatto nodes defined in the PN function space for the
velocity and on Gauss–Legendre nodes defined in PN−2 for the pres-
sure, where N denotes the polynomial order. The Navier–Stokes
solver is implemented in the open-source code NEK5000 (Fischer
et al., 2008). The grid of elements is quadratically refined toward
all no-slip walls, while it is uniform in the case of a periodic direc-
tion. The high-order stiffly stable scheme of Karniadakis et al. (1991)
is adopted using third-order backward differentiation formulae for
the linear operator and third-order explicit integration schemes for
the non-linear terms. Polynomials of the seventh order are used
in each direction, together with an over-integration method, which
employs 123 Gaussian nodes per element in order to eliminate alias-
ing errors during computation of the integrals in the Galerkin weak
formulation. The discontinuity in u at the cavity edges between
stationary and moving walls is treated using a fifth-order polyno-
mial expansion for the elements, which are located at the singular
edges. A detailed study of the effect of this type of discontinuity

on the numerical accuracy of spectral methods was provided by
Botella and Peyret (1998) for the two-dimensional lid-driven cav-
ity flow and by Albensoeder and Kuhlmann (2005) for the three-
dimensional lid-driven cavity flow. Here, we limit ourselves to verify
our code by comparison of the results we obtained with those given
in Albensoeder and Kuhlmann (2005).

For all flow parameters investigated, the flow converges to a
steady state. The simulations were terminated once the convergence
criterion

max
x,i

|ui(x, t) − ui(x, t − 1t)|

1t
≤ 10−7 (4)

was satisfied. To make sure that non-solenoidal numerical errors
have a negligible impact on the computation of the Lagrangian
topology, each time step of the projection method is iterated until
the residual of the continuity equation has become less than 10−12.
The minimization of divergence errors is important because such
errors destroy the KAM structure of the flow and can lead to
spurious attractors, which cannot exist in a true incompressible flow.

Correct implementation and grid convergence of the solver
have been tested by comparing our simulation results for steady
cubic and periodic three-dimensional lid-driven cavity flows with
the benchmark data provided by Albensoeder and Kuhlmann (2005)
for 0 = 1, λ = 1, and Re = 1000 [by imposing the period λ = 1,
three pairs of Taylor–Görtler vortices develop (Albensoeder and
Kuhlmann, 2005)]. Results for both cases have been verified by
comparing velocity profiles on the mirror-symmetry plane of the
flow on which w ≡ 0. Figure 2 demonstrates a very good agreement
between our simulations and the reference results, which can be
achieved using ten elements per direction, corresponding to approx-
imately 5 × 105 degrees of freedom. The flow fields employed for
all topological analyses have been obtained for the finest resolu-
tion, distributing 20 high-order elements per unit length (full lines
in Fig. 2).

B. Streamlines

The Lagrangian topological features of the flow are analyzed
computing streamlines of the three-dimensional flow, which is
steady according to criterion (4). Denoting with X(t) the location

FIG. 2. Velocity profiles u(0.5, y) and v(x, 0.5)
in the symmetry plane z = const. in whichw = 0.
Shown are results for Re = 1000 for (a) a cubic
cavity with 0 = 3 = 1 and (b) an infinitely
extended cavity (3 → ∞) with the period
λ = 1. Simulation results from NEK5000 are
shown as dashed (103 elements) and full lines
(203 elements) in comparison with the benchmark
data of Albensoeder and Kuhlmann (2005) (dots).
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of an infinitesimal fluid element, the advection equation,

dX

dt
= u [X(t)] , (5)

is solved to compute the trajectory of a fluid element, coinciding
with a streamline in a steady flow, where X0 = X(t = 0) is its initial
position.

The Runge–Kutta Dormand–Prince method (Dormand and
Prince, 1980) is employed for the time discretization of (5). In this
method, both the standard fourth- and fifth-order Runge–Kutta
schemes are used. At each time step, the numerical integration error
is estimated by comparison of the results obtained from the two
schemes of a different order, i.e., ‖u

4th − u
5th‖∞. If required, the

time step 1t is reduced to satisfy the absolute and relative toler-
ances for the numerical error, both set to 10−7. In addition to the
approximation of the solution of (5) introduced by the time dis-
cretization, a further approximation results from interpolating in (5)
the velocity field u, which is computed beforehand on the Eulerian
grid, and is now evaluated at the location of the fluid element X(t).
For a first overview on the streamline topology, a linear interpo-
lation is adopted. However, the regular periodic and quasiperiodic
trajectories presented are computed more accurately using the spec-
tral interpolant consistent with the spatial discretization employed
in NEK5000.

IV. FINITE-LENGTH CAVITIES

Flows in finite-length cavities are investigated for a cubic cavity
(0, 3) = (1, 1), a shallow cavity (0, 3) = (0.4, 1), and a long cavity
(0, 3) = (1, 2). For all three cases, the flow topology is elaborated
for Re = 100, 200, 300, and 400.

A. Flow structure, symmetries, fixed points, and

global transport

The structure of the two-dimensional flow in the (x, y)-plane
is well known. The moving wall drives a main global vortex (pri-
mary flow). It separates from and re-attaches to the stationary walls,
which make the two rigid bottom corners. The resulting two smaller
separated vortices are often called secondary eddies. At a higher
Reynolds number, a third separated vortex may arise on the station-
ary wall at x = 0 upstream of the moving wall and near the singular
corner (x, y) = (0, 0). Apart from these main structures, an infinite
sequence of viscous corner eddies (Moffatt, 1964) exists in the rigid
corners made by the wall at y = 0 and the upstream and downstream
stationary walls at x = (0, 1) at any Reynolds number.

Even in the limit of vanishingly small Reynolds numbers,
the flow in a cavity of finite length is weakly three-dimensional
(Young et al., 2004), an effect caused by the corners and edges
made by the cavity end walls. As the Reynolds number and the
strength of the primary flow increase, the presence of the no-
slip end walls at z = (0, 3) induces another type of secondary
flow via the Bödewadt (1940) mechanism. This secondary flow is
caused by inertia, involves a significant spanwise velocity compo-
nent w, and appears in the form of mirror-symmetrically placed
ring-like vortices near the end walls (see, e.g., Sheu and Tsai,
2002). The mirror symmetry of the flow [u, v, w](x, y, z − 3/2) =

[u, v, −w](x, y, −(z − 3/2)) is preserved for all Reynolds numbers
considered. Since w(z = 3/2) = 0, the mirror-symmetry plane z =

3/2 defines a transport barrier to the fluid.
To visualize the structure of the end-wall-induced secondary

vortex, Fig. 3 shows isosurfaces of |w| = 0.1 in one half of the cav-
ity for Re = 300. Dark- and light-gray isosurfaces indicate motion
toward (w = −0.1) and away from the end wall (w = 0.1), respec-
tively. Results are shown for all three geometries. In addition, in
order to illustrate global circulation in the cavity, a streamline initi-
ated at (x, y, z) = (1/2, 0/2, 0.001) is integrated until the streamline
returns near its initialization point (dot). The (x, y)- and (y, z)-
projections of this streamline are reported in the middle and right
panels of Fig. 3. The flow is qualitatively similar for all three aspect
ratios.

We first discuss the streamline structure in the midplane for
3 = 1. The Bödewadt mechanism drives a secondary flow, which is
directed radially inward toward the axis of the main vortex flow near
the end walls. Due to continuity, the fluid escapes from both end
walls along the axis of the primary circulation and the two oppos-
ing streams meet at the midplane, creating a free stagnation point
s2. This type of stagnation point flow is related to the similarity solu-
tion of the Navier–Stokes equations provided by Wang (1985; 1987).
Here, however, the swirl provided by the primary vortex makes
the stagnation point s2 a spiraling-out saddle focus. An example of
the streamlines in the midplane z = 3/2 is shown in Fig. 4(a) for
Re = 300 and (0, 3) = (1, 1). Due to the global structure of the
end-wall-induced flow, similar, but spiraling-in, saddle foci s1 are
expected on each end wall. However, since all velocity components
must vanish on z = (0, 3), all points on the end walls are stagnation
points and the resulting spiraling-in saddle focus on the end wall is
degenerate in this sense (Bödewadt, 1940). For a detailed analysis
of the flow near a critical point on a stationary boundary, we refer
to Brøns et al. (2001), who carried out a local Taylor expansion to
characterize the flow near degenerate critical points where ∇u = 0.

The elliptic points of the two secondary corner vortices present
in a corresponding two-dimensional cavity also become saddle foci
s4 and s8 in the midplane of the three-dimensional finite-length cav-
ity. If |∂w/∂z| is large, such saddle foci may even vanish. Due to
these end-wall-induced changes of the flow, the corner vortices are
no longer separated but open to globally exchange fluid. If existent,
we find the saddle focus s4 near the corner (x, y, z) = (1, 0, 3/2) to
be displaced away from the bottom wall as Re increases, while the
saddle s8 focus near (x, y, z) = (0, 0, 3/2) to be displaced toward the
bottom wall (not shown), as compared to the position of the elliptic
point in a two-dimensional flow. For the case shown in Fig. 4, the
saddle focus s4 in the bottom-right corner can be clearly identified.
However, the free saddle focus s8 expected in the bottom-left corner
is not present. It does exist, however, for Re = 10, but increasing
Re to 100, it merges with the hyperbolic half-node s6 on the bottom
wall. After merging, s6 has become a degenerate stable half-node,
hence degenerate sink in the (x, y) subspace. The hyperbolic separa-
tion points s3,5,6,7 in the two-dimensional cavity flow preserve their
qualitative structure in the midplane of the three-dimensional flow
[Fig. 4(a)], but their locations depend on Re.

From the transport in the midplane, the two-dimensional
unstable manifold of s2 is heteroclinically connected with the
two-dimensional stable manifolds of s4 and s6. The two-dimensional
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FIG. 3. Secondary flow for Re = 300 (left side) characterized by isosurfaces of w = 0.1 (light gray) and w = −0.1 (dark gray) and (x, y)- and (y, z)-projections, middle and
right panels, respectively, of a streamline initialized at (x, y, z) = (1/2,0/2, 0.001) and integrated until a streamline returns near its initialization point (dot). The geometrical
parameters of the cavity flows are (0,3) = (0.4, 1) (a), (1, 1) (b), and (1, 2) (c) Shown is one half of the symmetric cavity.
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FIG. 4. (a) Streamlines on the midplane
z = 3/2 for Re = 300 and (0,3) = (1, 1)
(thin lines). The spiraling-out and spiraling-in
saddle foci s2 and s4, respectively, and the
critical points on the wall s3,5,6,7 are indicated
by dots. (b) Spiraling-in limit cycle W1 and
spiraling-out saddle focus s4 on the midplane
z = 3/2 for Re = 100 and (0,3) = (0.4, 1).
The solid bold lines and the arrows are guides to
the eyes to highlight the flow direction and are not
computed streamlines.

stable manifolds of s4 and s6 are bounded in the midplane by the
one-dimensional stable manifolds of s5 and s7, which are also hete-
roclinically connected with s2. Hence, the two-dimensional unstable
manifold of s2 in the midplane z = 3/2 [Fig. 4(a)] is made of the
union of the two-dimensional stable manifolds of the spiraling-in
saddle focus s4 and the degenerate half-node s6. Wall streamlines,
critical points, and separation lines have been analyzed by Sheu and
Tsai (2002).

The fluid transport to and from the midplane for 3 = 1 is
sketched in Fig. 5. The transport is mainly organized along the stable
and unstable one-dimensional manifolds of the saddle focus in the
midplane (s2) and those on the end walls (s1), respectively, which
are not heteroclinically connected. Fluid originating from the vicin-
ity of the half-saddle foci s1 on the end walls is transported in the z
direction along the unstable manifold of s1 toward s2 in a spiraling
fashion (white arrow from z = 3 to z = 3/2). From there, it moves
radially away from s2, being separated into two streams (shown in
light gray). One is approaching the half-node s6, while the other
one is approaching the saddle focus s4. Near the edges (x, y) = (0, 0)

and (1, 0), each of the two streams symmetrically splits into two and
leaves the midplane in positive and negative z directions to reach the
two end walls (white arrows from z = 3/2 to z = 3), near which
they are again interwoven near the two-dimensional stable mani-
fold of s1 (shown in dark gray). The broken heteroclinic connection
between s1 and s2 and the three-dimensional splitting and merg-
ing near the midplane and the end walls, respectively, provides the
basic mechanism for the chaotic mixing in the three-dimensional
cavity. The splitting, folding, and merging correspond to the typical
mechanism of a baker map (Tél and Gruiz, 2006).

The evolution of the character of the stationary points and
their connectedness with Re can be intricate. For instance, for
Re < 4, the two saddle foci s1 and s2 are heteroclinically con-
nected. However, for Re & 10, we find that the heteroclinic
connection is broken. Even though the one-dimensional unsta-
ble manifold of s1 approaches the stationary point s2, it clearly
does not end on s2 for Re ≥ 100. Moreover, the saddle focus
s4 undergoes several changes [Fig. 4(a)]: In the cubic cavity,
(0, 3) = (1, 1), it is absent for moderate Reynolds numbers and

FIG. 5. (a) Sketch of the main transport path
for 3 = 1 and z ∈ [3/2, 3]: Stream splitting in
the midplane (light gray) and streammerging near
each end wall (dark gray). The transport between
the two planes due to the secondary flow is indi-
cated symbolically by the white arrows inside the
cavity. Fixed points are shown by dots and labels.
The arrow at y = 0 indicates the wall motion. The
bold square indicates one of the two end walls,
whereas the thick dashed light gray square rep-
resents the midplane. (b) Streamline originating
from s4 (dark gray dot) and integrated forward in
time (dark gray line) and streamline originating
from s2 (light gray dot) and integrated backward in
time (light gray line) for Re = 300 and (0,3) =

(1, 1).
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only appears for Re ≥ 300. The existence of s4 at moderate
Reynolds is thus understood as a result of the increased iner-
tia of the flow, which produces a sufficiently large vorticity
ωz in the midplane near the corner. For the geometry (0, 3)

= (0.4, 1), we find the saddle focus s4 even changes from spiraling-
in to spiraling-out when Re is increased. This is demonstrated in
Fig. 4(b). Here, the spiraling-out saddle focus is created at the
expense of a limit cycle W1, which is spiraling-in from both sides
over the midplane. At higher Reynolds numbers, W1 vanishes and
s4 turns into a spiraling-in saddle focus. These topological features
are consistent with the results of Chiang and Sheu (1997).

A different streamline topology is found when considering a
long cavity with 3 = 2 and Re ≥ 300. As the spanwise aspect ratio 3

increases, the flow near the midplane approaches a two-dimensional
flow and the spiraling streamlines at z = 3/2 become very dense.
As shown in Fig. 6(a), we find that the outward spiraling stream-
lines (gray) approach a saddle limit cycle V1 on z = 3/2 [gray
in Fig. 6(b)]. This limit cycle is radially approached from outside
by spiraling-in streamlines (not shown) originating from a second
saddle limit cycle V2 in the midplane [gray in Fig. 6(c)]. The comple-
mentary part of the unstable manifold of V2 splits into streamlines,
which spiral outward, either into the spiraling-in saddle focus s4

or into a spiraling-in saddle focus s10, found only for 3 = 2 [see
Figs. 6(a) and 6(b)]. The stable manifolds of s4 and s10 are sepa-
rated by the stable one-dimensional manifold of s5 on the bottom
wall (not shown). A spiraling-out free saddle focus, s8, emerges for
3 = 2 near the bottom-left corner. This saddle focus spirals out, and
its unstable manifold extends tightly along the cavity walls, including
the moving lid, and joins in a spiraling fashion with part of the unsta-
ble manifold of V2 to become the stable manifold of s4 [see Fig. 6(c)].
The unstable manifold of the separation point s6 (not shown) on the
bottom wall separates the unstable manifold of s8 and the unstable
manifold of V2. Hence, all the streamlines originating from s8 and

V2 spiral into s4 or s10 from where the fluid is released to the bulk.
The splitting and merging of manifolds are similar to what happens
near the midplane and the end walls described for 3 = 1 [Fig. 5(a)]
and contribute to the streamline chaos.

While Moffatt eddies can clearly be resolved for the two-
dimensional cavity flow, we did not find any indication of Moffatt
eddies in the midplane of the three-dimensional flow for 3 = 1. The
absence of viscous corner eddies for the cubical cavity (0 = 3 = 1)
is consistent with their absence in the Stokes eigenmodes spectrally
computed by Leriche and Labrosse (2011). On the other hand, the
flow for 3 = 2 exhibits a novel saddle focus s10 in the midplane
located close to the corner made by the bottom and the downstream
wall. This critical point is a precursor of the Moffatt eddies, which
emerge in the midplane upon an increase of the spanwise aspect
ratio.

Similar as Ishii and Adachi (2010) for 3 = 6.55 and consistent
with the spiraling-out of s8, we find that w changes its sign near the
midplane and the upstream corner. The isosurfaces for w = 0.0001
(dark gray) and w = −0.0001 (light gray) are shown in Fig. 7 for
Re = 300 (a) and Re = 400 (b). Figure 8 depicts the projection onto
the (x, z)-plane of the unstable manifold of s8 and s4 [Figs. 8(a) and
8(c)] and the stable manifold of s10 [Fig. 8(b)]. Their unstable man-
ifolds extend to the end walls very close and almost parallel to the
corresponding cavity edge.

Finally, considering the lid-driven cavity is ever since a numer-
ical benchmark for computational fluid dynamics, quantitative
numerical data are of high interest for code verification and bench-
marking of three-dimensional flows. For that purpose, we provide in
Table I numerical data for the locations of the two saddle foci s2 and
s4 in the midplane as a function of Re, 0, and 3. Furthermore, the
corresponding eigenvalues and eigenvectors of the velocity-gradient
tensor ∇u evaluated at the locations of s2,4 are provided in Tables I
and II, respectively.

FIG. 6. Streamline pattern in the symmetry plane at z = 3/2 for Re = 400, 0 = 1, and 3 = 2. The two saddle limit cycles V1 (gray) and V2 (black) are shown as thick
lines. (a) Streamline (gray) originating from s2 and spiraling out toward the limit cycle V1 (not shown) and streamline (black) originating from V2 (black) and spiraling out
toward the saddle focus s4. (b) Limit cycle V1 (gray) and streamline (black) originating from V2 and spiraling out toward the saddle focus s10. Near the bottom-right corner, a
closeup of the streamline is depicted. (c) Limit cycle V2 (gray) and streamline (black) originating from s8 and spiraling out toward the saddle focus s4.
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FIG. 7. Isosurface of w = 0.0001 (dark
gray) and w = −0.0001 (light gray) indi-
cating the flow direction away from the
midplane near the upstream corner for
Re = 300 (a) and Re = 400 (b). The
white dot denotes the saddle focus s8.

B. KAM tori and chaotic sea

1. General behavior

When the Reynolds number is small, and a heteroclinic con-
nection between s1 and s2 exists, most streamlines are regular. The
regular region arises as a pair of sets of Kolmogorov–Arnold–Moser
(KAM) tori, which are mirror-symmetric with respect to the mid-
plane z = 3/2. The emergence of these regular regions in the
form of invariant tori is described by the KAM theorem and is a
direct consequence of the local Hamiltonian nature of the three-
dimensional steady flow. Merely, a thin layer of chaotic streamlines
is found to exist around the heteroclinic connection between s1 and
s2; hence, the curvilinear axis of the outermost KAM torus is well
approximated by the one-dimensional stable manifold of s2 and
the one-dimensional unstable manifold of s1. This slender tube of
chaotic streamlines extends to thin layers, covering the midplane
and all solid walls. The origin of this chaotic skin is related to
partitioning of the fluid in the midplane, whenever Re 6= 0, which
is organized by the singular points in the midplane near s4 and
s6. Moreover, the local flow near the trihedral corners, for which
Scott (2013) found non-periodic streamlines of the least rapidly

decaying Stokes-flow modes as the apex of the corner is approached,
contributes, too.

As the Reynolds number increases beyond Re & 4, the hetero-
clinic connection between s1 and s2 is broken. The broken connec-
tion tends to thicken the chaotic layer. Moreover, the splitting of
the outward spiraling motion in the midplane into two streams, one
near each bottom edge, in each cavity half continues to contribute
to the chaos. In particular, the one-dimensional unstable manifold
of s4 does play an important role since highly strained fluid from the
singular edges at the midplane arrives near s4 from where it is ejected
in the third (z) dimension (cf. Fig. 5). For even larger Reynolds
numbers, the chaotic layer grows further, the KAM tori shrink, and
the flow topology becomes more complex due to resonance phe-
nomena within the KAM tori, which are occupied by quasiperiodic,
i.e., non-resonant streamlines. At a resonance, a streamline wind-
ing on a KAM torus reconnects with itself. As a consequence of the
Hamiltonian nature of the three-dimensional steady flow and the
Poincaré–Birkhoff theorem, the torus breaks down into elliptic and
hyperbolic closed streamlines (see, e.g., Schuster, 2005). The elliptic
closed streamlines are embedded in newly created KAM tori, which
are surrounded by a chaotic layer organized around the hyperbolic

FIG. 8. Projection of a streamline onto the plane (x, z) showing the global connection of the free spiraling-in saddle focus s8 (a), the spiraling-out saddle focus s10 (b), and
the spiraling-in saddle focus s4 (c). The midplane is on the right side.
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TABLE I. Locations of the saddle foci s2,4 on z= 3/2 and corresponding eigenvalues of the velocity-gradient tensor.

3 0 Re xs2 = (xs2 , ys2) λ
s2
1,2 λ

s2
3 xs4 λ

s4
1,2 λ

s4
3

1 0.4 100 (0.6892, 0.2633) 0.058 ± 1.641i −0.116 (0.9843, 0.0153) 0.003 ± 0.025i −0.006
200 (0.7280, 0.2521) 0.104 ± 2.089i −0.208 (0.9850, 0.0207) −0.005 ± 0.047i 0.094
300 (0.7346, 0.2383) 0.111 ± 2.021i −0.222 (0.9836, 0.0264) −0.011 ± 0.079i 0.022
400 (0.7292, 0.2254) 0.093 ± 1.847i −0.186 (0.9820, 0.0320) −0.026 ± 0.119i 0.052

1 1 100 (0.6167, 0.7588) 0.122 ± 1.381i −0.244
200 (0.6453, 0.6997) 0.109 ± 0.982i −0.218
300 (0.6348, 0.6293) 0.082 ± 0.772i −0.164 (0.9478, 0.1577) −0.027 ± 0.067i 0.054
400 (0.6221, 0.5751) 0.066 ± 0.663i −0.132 (0.9283, 0.1520) −0.037 ± 0.142i 0.074

2 1 100 (0.6140, 0.7396) 0.026 ± 1.474i −0.052 (0.9528, 0.0736) −0.002 ± 0.014i 0.004
200 (0.6022, 0.6525) 0.025 ± 1.094i −0.050 (0.9317, 0.1202) −0.009 ± 0.053i 0.018
300 (0.5712, 0.5862) 0.028 ± 0.947i −0.056 (0.9145, 0.1243) −0.008 ± 0.113i 0.016
400 (0.5508, 0.5564) 0.032 ± 0.814i −0.064 (0.9058, 0.1214) −0.009 ± 0.164i 0.018

closed streamlines. To characterize the flow structures, we investi-
gate the evolution of the KAM tori as a function of the Reynolds
number. KAM tori are reconstructed for Re = 100, 200, 300, and
400 in the shallow (0 = 0.4, 3 = 1), the cubic (0 = 3 = 1), and
the slender cavity (0 = 1, 3 = 2).

2. Computing KAM tori

To characterize regular and chaotic regions in the flow, 100
fluid elements were evenly distributed at t = 0 along the line
(x, y) = (xs2 , ys2) within one half of the cavity z ∈ [0, 3/2]. Stream-
lines were obtained integrating the advection equation from t = 0

TABLE II. Normalized eigenvectors of the velocity-gradient tensor at the two saddle foci s2,4 on z=3/2.

3 0 Re v
s2
1,2 v

s2
3

1 0.4 100 (0.948, −0.008 ± 0.318i, 0.000)T (0.000, 0.000, 1.000)T

200 (0.899, −0.010 ± 0.437i, 0.000)T (0.000, 0.000, 1.000)T

300 (0.876, −0.007 ± 0.481i, 0.000)T (0.000, 0.000, 1.000)T

400 (0.871, −0.018 ± 0.491i, 0.000)T (0.000, 0.000, 1.000)T

1 1 100 (0.803, 0.069 ± 0.591i, 0.000)T (0.000, 0.000, 1.000)T

200 (0.721, 0.202 ± 0.662i, 0.000)T (0.000, 0.000, 1.000)T

300 (0.237 ∓ 0.657i, 0.716, 0.000)T (0.000, 0.000, 1.000)T

400 (0.216 ∓ 0.655i, 0.724, 0.000)T (0.000, 0.000, 1.000)T

2 1 100 (0.775, 0.106 ± 0.623i, 0.000)T (0.000, 0.000, 1.000)T

200 (0.719, 0.180 ± 0.671i, 0.000)T (0.000, 0.000, 1.000)T

300 (0.122 ∓ 0.694i, 0.709, 0.000)T (0.000, 0.000, 1.000)T

400 (0.086 ∓ 0.683i, 0.725, 0.000)T (0.000, 0.000, 1.000)T

3 0 Re v
s4
1,2 v

s4
3

1 0.4 100 (0.727, 0.499 ∓ 0.472i, 0.000)T (0.000, 0.000, 1.000)T

200 (0.415 ± 0.497i, 0.762, 0.000)T (0.000, 0.000, 1.000)T

300 (0.354 ± 0.473i, 0.806, 0.000)T (0.000, 0.000, 1.000)T

400 (0.354 ± 0.443i, 0.824, 0.000)T (0.000, 0.000, 1.000)T

1 1 100
200
300 (0.297 ± 0.378i, 0.876, 0.000)T (0.000, 0.000, 1.000)T

400 (0.319 ± 0.448i, 0.835, 0.000)T (0.000, 0.000, 1.000)T

2 1 100 (0.341 ± 0.481i, 0.807, 0.000)T (0.000, 0.000, 1.000)T

200 (0.317 ± 0.460i, 0.829, 0.000)T (0.000, 0.000, 1.000)T

300 (0.330 ± 0.497i, 0.802, 0.000)T (0.000, 0.000, 1.000)T

400 (0.347 ± 0.523i, 0.778, 0.000)T (0.000, 0.000, 1.000)T
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to t = 200 using a linear interpolation of u between grid points. In
case the Poincaré section of the streamline on the plane x = 1/2
showed an erratic behavior, the streamline was assigned to the
chaotic sea [light-gray dots in subfigures (a) of Figs. 9–19]. The

FIG. 9. (a) Poincaré section on x = 1/2 for Re = 100, 0 = 1, and 3 = 1.
Gray dots, black dots, crosses, and diamonds indicate chaotic, regular, and
closed streamlines, respectively. (b) Three-dimensional reconstruction of the
transport barrier SA (dark gray), 6- and 7-periodic closed streamlines, L6 and L7,
respectively, and the outermost surface of the main KAM torus T1 (light gray).

existence of KAM tori was probed by dedicated initial conditions in
those regions on the Poincaré plane x = 1/2 not visited by chaotic
streamlines. Once a regular streamline was found, the same stream-
line is re-computed using the more accurate spectral interpolation.
Moreover, for computing the regular regions, the relative and abso-
lute tolerances of the Dormand–Prince method are both reduced to
10−9. The periodic streamlines that result when the cross-sectional
area of the KAM tori tends to zero are then identified, for each set
of KAM tori, by computing the associated elliptic fixed points on
the Poincaré plane x = 1/2 by means of the Newton–Raphson iter-
ation, with an absolute tolerance of 10−3. The coordinates of the
elliptic fixed points of the Poincaré map on x = 1/2 defining the
closed streamlines are listed in Tables III–V. Also given are the
periods τ of the closed streamlines and their minimum distance 1

from the walls. The wall closest to the regular regions is always the
moving wall at y = 0. The minimum distances from the walls are
also given for the largest quasiperiodic orbits identified per each

TABLE III. Characterization of periodic streamlines L, transport barriers S and of

quasiperiodic streamlines on the largest reconstructible KAM tori T by their minimum

distance 1 from the moving wall for (0, 3)= (1, 1). In addition, the locations on the

plane x= 1/2 (fixed point) of the closed streamlines Lj are provided, as well as their

periods τ . Only one single arbitrary fixed point is given for each closed streamline.

3 0 Re
KAM/

streamline τ 1

Fixed point
(y, z)

1 1 100 T1 0.0134
L1 6.782 0.0513 (0.449, 0.234)
T6 0.0098
L6 51.359 0.0105 (0.392, 0.398)
T7 0.0041
L7 78.290 0.0043 (0.722, 0.303)
SA 0.0061
SB 0.0019
SC 0.0011

200 T1 0.0231
L1 7.575 0.0469 (0.372, 0.210)
T4 0.0151
L4 35.650 0.0162 (0.346, 0.383)
T7 0.0192
L7 55.953 0.0208 (0.297, 0.304)
T12 0.0079
L12 107.875 0.0081 (0.157, 0.365)

300 T1 0.0341
L1 8.180 0.0442 (0.306, 0.188)
T5 0.0291
L5 41.299 0.0294 (0.305, 0.239)
T7 0.0328
L7 57.395 0.0337 (0.285, 0.220)
T20 0.0268
L20 165.207 0.0273 (0.269, 0.179)
SA 0.0322
SB 0.0303

400
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TABLE IV. Characterization of periodic streamlines L, transport barriers S and of

quasiperiodic streamlines on the largest reconstructible KAM tori T by their minimum

distance1 from the moving wall for (0,3)= (0.4, 1). In addition, the locations on the

plane x= 3/4 (fixed point) of the closed streamlines Lj are provided, as well as their

periods τ . Only one single arbitrary fixed point is given for each closed streamline.

3 0 Re
KAM/

streamline τ 1

Fixed point
(y, z)

1 0.4 100 T1 0.0121
L1 5.065 0.0388 (0.141, 0.157)
T12 0.0120
L12 67.144 0.0122 (0.141, 0.288)
T15 0.0060
L15 91.029 0.0064 (0.146, 0.349)
T19 0.0021
L19 126.744 0.0023 (0.143, 0.408)
T20 0.0021
L20 137.181 0.0020 (0.148, 0.420)
T22 0.0011
L22 160.634 0.0013 (0.132, 0.439)
T25 0.0009
L25 205.852 0.0009 (0.169, 0.453)
SA 0.0059

200 T1 0.0221
L1 4.069 0.0389 (0.124, 0.146)
T6 0.0198
L6 32.005 0.0211 (0.370, 0.210)
T7 0.0126
L7 38.351 0.0139 (0.125, 0.283)
T8 0.0068
L8 44.566 0.0088 (0.131, 0.324)
T13 0.0158
L13 69.688 0.0161 (0.137, 0.253)
SA 0.0182
SB 0.0148
SC 0.0119

300 T1 0.0271
L1 5.228 0.0432 (0.115, 0.132)
T5 0.0188
L5 25.416 0.0190 (0.111, 0.235)
T9 0.0248
L9 46.176 0.0251 (0.110, 0.190)
T14 0.0239
L14 71.811 0.0241 (0.110, 0.200)
T25 0.0177
L25 127.632 0.0179 (0.107, 0.227)

400 T1 0.0432
L1 4.890 0.0441 (0.116, 0.111)
T3 0.0361
L3 14.672 0.0383 (0.099, 0.121)
T4 0.0201
L4 19.701 0.0239 (0.137, 0.076)
T7 0.0299
L7 34.279 0.0302 (0.091, 0.143)
T16 0.0348

TABLE IV. Continued.

3 0 Re
KAM/

streamline τ 1

Fixed point
(y, z)

L16 78.234 0.0350 (0.105, 0.131)
T13 0.0338
L13 63.596 0.0340 (0.101, 0.132)
SA 0.0358

set of KAM tori. The cross sections of the regular regions visual-
ized in this manner are presented in subfigures (b) of Figs. 9–19.
The closed streamlines and the largest reconstructible KAM tori are
denoted Lj and Tj, respectively, where the subscript j indicates their
periodicity.

Tables III–V and IX (further below for infinitely extended cav-
ities) provide quantitative data for the location of the Lagrangian
topology and can be employed for benchmarking. Moreover, the
characterization of the minimum distance from the walls of the
KAM tori and the corresponding elliptic streamlines is a key geo-
metric parameter for the motion of nearly neutrally buoyant parti-
cles with finite size. The finite size of a particle becomes important
for its motion near the boundaries, where the steric effect intro-
duces a dissipation mechanism in the particle dynamics (Hofmann
and Kuhlmann, 2011; Romanò and Kuhlmann, 2016; 2017a). If the
particle radius is comparable to 1 (see Romanò et al., 2019 for a
detailed discussion), the particles can be transferred from chaotic

TABLE V. Characterization of periodic streamlines L, transport barriers S and of

quasiperiodic streamlines on the largest reconstructible KAM tori T by their minimum

distance 1 from the moving wall for (0, 3)= (1, 2). In addition, the locations on the

plane x= 1/2 (fixed point) of the closed streamlines Lj are provided, as well as their

periods τ j. Only one single arbitrary fixed point is given for each closed streamline.

3 0 Re
KAM/

streamline τ 1

Fixed point
(y, z)

2 1 100 T1 0.0252
L1 6.799 0.0488 (0.423, 0.284)
T7 0.0159
L7 52.657 0.0182 (0.346, 0.468)
T8 0.0110
L8 64.262 0.0114 (0.313, 0.538)
T9 0.0081
L9 75.904 0.0083 (0.287, 0.587)
T36 0.0077
L36 303.417 0.0078 (0.209, 0.541)
SA 0.0139

200 T1 0.0311
L1 7.098 0.0459 (0.366, 0.238)

300 T1 0.0313
L1 7.393 0.0430 (0.319, 0.194)

400 T1M 0.0022
L1M 13.106 0.0118 (0.097, 0.896)
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to regular regions of the flow and get trapped in or near the KAM
tori. This way, small particles with the radius a ∈ [≈ 1/2, 1] can
be attracted to periodic or quasiperiodic orbits. For instance, for
Re = 100, 0 = 3 = 1 spherical particles with a ∈ [0.002, 0.004] ×

D can lead to finite-size coherent structures of period 7.
Once a quasiperiodic streamline on the largest identifiable

KAM torus has been computed, the three-dimensional KAM torus
Tj is reconstructed. To that end, N points ln (the number of points
N ∈ [100, 200] depending on the slenderness of the KAM torus to
reconstruct) are distributed along the associated closed streamline
Lj, and N Poincaré planes are defined by the planes orthogonal to
Lj in the points ln. Poincaré sections of the quasiperiodic streamline
demarcating Tj are then computed on each of these Poincaré planes
perpendicular to Lj. The contour of the KAM torus on each Poincaré
plane is then obtained by a cubic spline interpolation. Finally, all N
contours are interpolated by cubic Hermitian splines to define the
contiguous KAM torus targeted.

C. Evolution of KAM tori for increasing Reynolds

number

1. Cubic cavity with (0, 3)= (1, 1)

For the cubic cavity with Re ≤ 4, chaotic streamlines occupy
only a minor part of the flow domain. The chaotic region extends
along the heteroclinic connection between s1 and s2 and along all
cavity walls. In the regular region, we only find a single central closed
streamline L1 (not shown). For Re > 4, the connection between
s1 and s2 breaks, and no resonance phenomena are observed for
Re ≤ 10.

At Re = 100, the chaotic and regular regions occupy approx-
imately one half of the domain each (Fig. 9). A massive set of
nested KAM tori is found around the central closed streamline
L1 [diamond in Fig. 9(a)]. As described in Sec. IV B 1, at a res-
onance, a KAM torus breaks up, giving way to an elliptic closed
streamline and a complementary hyperbolic closed streamline. Such
resonances must have occurred between Re = 10 and Re = 100.
The elliptic closed streamlines generated through these resonances
show up as fixed points with periods 7 (L7, 7:1 resonance) and 6
(L6, 6:1 resonance) in the Poincaré section on x = 1/2 shown in
Fig. 9(a). Again, each resonance and torus breakdown is a conse-
quence of the Poincaré–Birkhoff theorem, and a chaotic layer forms
around the newly created torus surrounding the resonant elliptic
streamline.

The two layers of chaotic streamlines that develop about the
closed hyperbolic streamlines are clearly recognized in Fig. 9(a). The
chaotic layer about the 7:1 resonance is separated from the exte-
rior chaotic sea by a layer of regular streamlines contained between
the regular KAM surfaces SB and SC. To make sure that the tori SA,
SB, and SC are transport barriers for the flow (Oteski et al., 2014),
we considered their turnover and winding periods. A quasiperi-
odic streamline on any of these tori integrated for at least 12 times
the ratio between the longest and the shorted characteristic period.
Since the streamlines remained on a torus, they represent transport
barriers. This same criterion is also used for the other outermost
regular surfaces. Another, much thinner, layer of regular stream-
lines between the 7:1 and the 6:1 resonance exists of which one
KAM surface SA is shown in the figure. These regular layers are

made from nested toroidal surfaces and provide transport barriers
to chaotic streamlines. The KAM torus SB (and also SC) appears as a
single closed curve in Fig. 9(a) because the Poincaré section taken at
x = 0.5 does not cut through the torus hole. This is quantified con-
sidering that the centerline of the torus is approximately given by
the stable manifold of s2, departing from x = 0.6167 (Table I).

Figure 9(b) shows the three-dimensional reconstruction of
the largest detectable KAM torus T1 (light gray, the largest torus
that does not contain any separated chaotic region) as well as SA

(dark gray) and the closed streamlines L6 and L7. Similar three-
dimensional views are provided in Figs. 10(b) and 11(b) for higher
Reynolds numbers.

Upon an increase of the Reynolds number to Re = 200, the
main KAM torus T1 has shrunk considerably, and the transport
barriers provided by SA and SB,C have vanished (Fig. 10). From the
Poincaré section at x = 0.5 for Re = 200 shown in Fig. 10(a), we find
a 7:1 resonance, now located in the chaotic sea. The correspond-
ing set of slender KAM tori denoted T7 winds seven times about
T1. Further away from the central regular region, we find a regular
structure T4 with period four, which itself is surrounded by another
set of KAM tori T12 with period 12. We expect that two succes-
sive resonances have taken place at intermediate Reynolds numbers
100 < Re1 < Re2 < 200 such that at a first resonance, T4 is created
at Re1 ∈ (100, 200), followed by a second resonance within T4, lead-
ing to the KAM tori T12 at Re2 ∈ (Re1, 200]. This explains the KAM
torus T4 winding four times about T1 and being surrounded by T12,
which appears in the Poincaré section as threefold regular islands
about T4.

Further increasing the Reynolds number to Re = 300 (Fig. 11),
the volume occupied by regular streamlines has become even
smaller. However, the structure with a main regular region T1

around which regular islands are arranged is preserved. We find a
5:1 resonance with KAM tori T5 outside of the main KAM torus
T1. A secondary 4:1 resonance arises around T5, leading to T20 and
forming regular islands in the Poincaré plane. The corresponding
closed streamline L20 closes after winding 20 times about the main
KAM torus T1. Similar to what was observed at Re = 100, a 7:1 res-
onance occurs for Re = 300 inside the main system of KAM tori,
giving rise to the KAM tori T7 and creating a thin chaotic layer sealed
from the chaotic sea by KAM tori between SA and SB [cf. zoom in
Fig. 11(a)].

For Re = 400 (not shown), regular regions are not observed
anymore for the cubic cavity. This is consistent with the results of
Ishii et al. (2012) who did not find any regular regions for Re > 335
in cubic cavities.

2. Shallow cavity with (0, 3)= (0.4, 1)

The flow topology for a shallow cavity with (0, 3) = (0.4, 1)
for Re = 100, 200, 300, and 400 evolves in a similar way as for the
cubic cavity with (0, 3) = (1, 1). Poincaré sections and at x = 3/4
three-dimensional views of KAM tori are shown in Figs. 12–15. A
series of transport barriers and resonance phenomena is observed
for (0, 3) = (0.4, 1), as well.

For Re = 100, more and higher resonances are found in the
shallow cavity as compared to the cubic cavity. Apart from T1, we
could identify the higher-order KAM sets T12, T15, T19, T20, T22, and
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FIG. 10. (a) Poincaré section on x = 1/2 for Re = 200, 0 = 1, and 3 = 1.
Gray dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the outermost surface
of the 7-periodic KAM torus (light gray), 4-periodic closed streamline L4, and the
outermost surface of the main KAM torus T1 (dark gray).

T25. The order grows with the distance from the closed streamline L1.
The innermost resonance T12 is separated from the other high-order
KAM structures by a thin set of period-one KAM tubes of which SA

is indicated in Fig. 12(a).

FIG. 11. (a) Poincaré section on x = 1/2 for Re = 300, 0 = 1, and 3 = 1.
Gray dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the transport barrier
SA (light gray), the outermost surface of the 7-periodic KAM torus T7 (black), and
the outermost surface of the main KAM torus T1 (dark gray).

For Re = 200, the KAM tori generated from high-order res-
onances have disappeared (Fig. 13). However, transport barriers
sealing chaotic layers still exist. Four mutually sealed chaotic regions
are identified in each half of the cavity: the chaotic layer between the
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FIG. 12. (a) Poincaré section on x = 3/4 for Re = 100, 0 = 0.4, and 3 = 1.
Gray dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the transport barrier
SA (dark gray), 12- and 15-periodic closed streamlines L12 and L15, respectively,
and the outermost surface of the main KAM torus T1 (light gray).

core structure T1 and the transport barrier SA, the one between SA

and SB, the chaotic layer between SB and SC, and the outer chaotic
sea between SC and the cavity walls [Fig. 13(a)].

Upon a further increase of the Reynolds number (Fig. 14 for
Re = 300), regular-flow barriers could no longer be identified. How-
ever, as explained by Ishii et al. (2012), several primary resonances
can be found for Re = 300 [Fig. 14(a)] and for Re = 400 [Fig. 15(a)].
Some of these also exhibit secondary resonances. For Re = 300, e.g.,
T25 winds five times about T5. Moreover, for Re = 400, the 3:1 res-
onance, which arises very close to L1, is surrounded by a transport
barrier (SA in Fig. 15).

3. Long cavity with (0, 3)= (1, 2)

Poincaré sections at x = 1/2 and three-dimensional views of
the main topological elements for (0, 3) = (1, 2) and Re = 100,
200, 300, and 400 are shown in Figs. 16–19. For the lowest Reynolds
number, Re = 100 (Fig. 16), the flow topology is similar to the one
for Re = 200 in the shallow cavity. For Re = 200 and 300 (Figs. 17
and 18), however, KAM tori with high periods are absent, and

FIG. 13. (a) Poincaré section on x = 3/4 for Re = 200, 0 = 0.4, and 3 = 1.
Gray dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the transport barrier
SA (dark gray), the outermost surface of the 6- and 7-periodic KAM tori T6 and T7,
respectively, and the outermost surface of the main KAM torus T1 (light gray).

the KAM torus T1 remains the only regular region in the flow.
Upon increasing Re, T1 shrinks without any further resonance, and
the closed streamline L1, located at z ≈ 0.2 for Re = 300, moves
closer to the end wall at z = 0. Similar scenarios without further
resonances have been reported for a two-sided lid-driven cavity
(Romanò et al., 2017) and a partially filled rotating drum (Romanò
et al., 2017).

As the Reynolds number is increased to Re = 400 (Fig. 19), T1

has vanished completely. However, a new set of period-one KAM
tori (and its mirror-symmetric counterpart) is born very close to the
midplane z = 1 and, therefore, denoted T1M. The new set of KAM
tori is related to a change of the streamline topology in the midplane
shown in Fig. 6.

The two-dimensional unstable manifolds of V1 and a stable
two-dimensional manifold of V2 approach each other closely in the
bulk and closely embrace the separated flow region defined by the
KAM tori shown in Fig. 19(a). As V2 is not connected with the bot-
tom wall, also, the KAM tori T1M are not in contact with the bottom
wall. Since the streamlines on the midplane spiral very densely, the
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FIG. 14. (a) Poincaré section on x = 3/4 for Re = 300, 0 = 0.4, and 3 = 1.
Gray dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the outermost surface
of the 9-periodic KAM torus T9 (dark gray), the 5-periodic closed streamline L5,
and the outermost surface of the main KAM torus T1 (light gray).

streamlines on the two-dimensional manifolds of V1 and V2 leaving
the midplane advance very slowly, as does the winding on the KAM
tori T1M. Related to this is the very small component of the velocity
w near the midplane (see Fig. 7).

Associated with the flow reversal near the midplane and the
upstream corner, the inflow motion near s6 [cf. Fig. 4(a)] has
changed into an outflow motion (see Fig. 6), and the fluid that is
transported to the midplane near the upstream corner must escape
along the upstream wall and along the moving lid to arrive at
the downstream corner (see Fig. 8) where it is fed back to the
midplane-departing stream. The change of the direction of w near
the upstream corner in which the corner eddy is located leads to the
creation of the free spiraling-in saddle focus s8, indicated by a dot in
Fig. 7.

Similar separated KAM tori have been found by Ishii and
Adachi (2010) for the same Reynolds number and 0 = 1, but
for 3 = 6.55. On increasing the Reynolds number for (0, 3)

= (1, 6.55), Ishii and Adachi (2006) even found multiple separated
regions in the plane x = 0.5 with KAM tori very close to the bottom

FIG. 15. (a) Poincaré section on x = 3/4 for Re = 400, 0 = 0.4, and 3 = 1.
Gray dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the transport barrier
SA, the outermost surface of the 3- and 4-periodic KAM tori T3 and T4, respectively,
and the 7-periodic closed streamline L7.

of the cavity and which do not always extend up to the midplane.
The creation of the separated region (or regions) near the symmetry
plane at z = 3/2 is a fundamental topological change. However, it
does not hamper the chaotic mixing process described in Sec. IV A
(Fig. 5). Merely, the separated region is by-passed by the fluid
passing s2 and being transported to near s1 on the end walls. The
spontaneous separation resembles the phenomenon of vortex break-
down in cylinders with a rotating bottom and a flat free (symmetry)
surface, where the separation bubble extends up to the free sur-
face (symmetry plane) (Spohn et al., 1993). The vortex breakdown
in contact with the symmetry plane typically arises in the region
in which the flow departs from the symmetry plane (Jacono et al.,
2009). In the present cavity flow, this is the region near the walls.

V. INFINITELY EXTENDED CAVITIES

The flow topology in cuboidal cavities is significantly affected
by the no-slip end walls at z = 0, 3. Therefore, it is of interest
to inquire the cavity flow in which the end-wall effects do not
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FIG. 16. (a) Poincaré section on x = 1/2 for Re = 100, 0 = 1, and 3 = 2.
Gray dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the main KAM torus
T1 (dark gray) and of the outermost surface of the 7-periodic KAM torus T7 (light
gray).

play a role. To this end, we consider an infinitely extended cav-
ity (3 → ∞). The basic flow u0(x, y) is steady and independent of
the z coordinate and corresponds to the classical two-dimensional
cavity flow. At a critical Reynolds number Rec, the translational
symmetry is spontaneously broken, and a three-dimensional pertur-
bation flow uTG bifurcates from the basic flow owing to a centrifugal

FIG. 17. (a) Poincaré section on x = 1/2 for Re = 200, 0 = 1, and 3 = 2.
Grey dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the KAM torus T1.

instability within the aspect ratio range 0 ∈ [0.888, 1.163] with the
total flow being u = u0 + uTG. According to Albensoeder et al.
(2001b), the bifurcation is supercritical, and the finite-amplitude
three-dimensional flow uTG arises as Taylor–Görtler vortices on the
walls in the curved boundary layer of the basic flow if the critical
Reynolds number is exceeded. Here, we consider the supercritical
three-dimensional flow for 0 = 1. The Taylor–Görtler vortices uTG

are steady and three-dimensional. Figure 20(a) shows one period in
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FIG. 18. (a) Poincaré section on x = 1/2 for Re = 300, 0 = 1, and 3 = 2.
Gray dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the KAM torus T1.

z of the critical mode u
(c)
TG in the plane y = 0.5, which is superim-

posed on the basic flow. One period λ in z comprises two counter-
rotating Taylor–Görtler vortices (two cells). Note the symmetry
planes (left–right symmetry of the flow pattern). The Taylor vor-
tices are clearly seen above the sidewall upstream of the moving wall
[the bottom of Fig. 20(a)]. On the sidewall downstream from the
moving wall [top of Fig. 20(a)], the sense of rotation of the vortices

FIG. 19. (a) Poincaré section on x = 1/2 for Re = 400, 0 = 1, and 3 = 2.
Gray dots, black dots, and diamonds indicate chaotic, regular, and closed stream-
lines, respectively. (b) Three-dimensional reconstruction of the KAM torus T1M
located near the mirror-symmetry plane.

has changed. This can also be inferred from the iso-surfaces of the
spanwise velocity w = wTG of the periodic flow at Re = 900, which
are shown in Fig. 20(b) over three periods. From Fig. 20(b), one can
recognize that the vortices extend from the bottom of the cavity over
the upstream sidewall to the moving lid.

For Re > Rec, the wavelength of the Taylor–Görtler vortices
is not uniquely determined and can range in a certain band of
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FIG. 20. (a) Structure of one pair of Tay-

lor–Görtler vortices (u
(c)

TG , two cells) at the crit-
ical onset for 0 = 1 and Re = Rec = 783.9
shown in the plane y = 0.5 (reproduced from
Albensoeder et al., 2001b). The lid moves from
the bottom to the top parallel to the plane shown.
(b) Isosurfaces of the velocity component w of
the total flow over three periods at Re = 900.
Since w0 = 0, the isosurfaces shown are identi-
cal to the isosurfaces wTG of the finite-amplitude
Taylor–Görtler vortices.

wave numbers. As the wavelength at the critical point λ = λc

(0 = 1) = 2π/kc(0 = 1) = 0.406 78 is well in the range for which
periodic Taylor–Görtler vortices exist (Albensoeder and Kuhlmann,
2006), we keep the spanwise period λ = λc constant. Since the
time-dependent flow sets in only for Re > 900 (Albensoeder and
Kuhlmann, 2006), periodic boundary conditions are used to com-
pute steady flows for Reynolds numbers ranging from Re = 800
≈ 1.02 × Rec (sightly supercritical) over Re = 850 to Re = 900
≈ 1.15 × Rec.

A. Symmetries and fixed points

Each individual Taylor–Görtler vortex is bounded by symme-
try planes at constant values of z, a width λ/2 apart [cf. Figs. 20
and 21(a)]. Let us define the origin of the coordinate system such
that these mirror-symmetry planes (cell boundaries) are located at
zn = (2n − 1)λ/4, n ∈ Z. Then, the Taylor–Görtler flow (as well as
the full three-dimensional flow) satisfies

uTG(z − zn) = uTG(zn − z), (6a)

vTG(z − zn) = vTG(zn − z), (6b)

wTG(z − zn) = −wTG(zn − z). (6c)

These symmetry planes are preserved for higher Reynolds num-
bers until the onset of time-dependence. Therefore, we only need
to consider a single representative Taylor–Görtler cell confined to
z ∈ [z0, z1] = [−λ/4, λ/4]. Due to its sinusoidal dependence on z,
the critical normal mode u

(c)
TG at the onset of a three-dimensional

flow exhibits the additional symmetry with respect to the vortex

center plane at z = 0 (not the full flow u),

u(c)
TG(z) = −u(c)

TG(z), (7a)

v(c)
TG(z) = −v(c)

TG(z), (7b)

w(c)
TG(z) = w(c)

TG(z). (7c)

In the total flow field u, similar as for the cuboidal cavity
flow, there exist two saddle foci s1 (spiraling-in at z = −λ/4) and
s2 (spiraling-out at z = λ/4) on the two symmetry planes bound-
ing the Taylor–Görtler cell under consideration. However, in the
present case of a periodic cellular flow, both saddle foci are non-
degenerate. Different from the cuboidal cavity flow, there also exist
two non-degenerate saddle limit cycles on each plane z = ±λ/4
(W1,3 on z = −λ/4 and W2,4 on z = λ/4). These two saddle limit
cycles arise due to the fine structure of the Taylor–Görtler cell in the
(x, y) plane. The Taylor–Görtler vortices uTG scale with the thickness
of the curved boundary layers on the solid walls and thus have a very
small width of λ/2 in the spanwise direction z and also a correspond-
ing small height [e.g., in the x direction in Fig. 20(a)]. Therefore, they
are not space filling, and each toroidal Taylor–Görtler vortex drives
a similar, but much weaker, counter-rotating vortex on its radially
inward side. The weak counter-rotating inner vortices can be seen in
Fig. 20(a) just above the bottom pair of Taylor–Görtler vortices. We
call these weak counter-rotating vortices secondary Taylor–Görtler
vortices. The boundary between the primary and the secondary vor-
tices manifests itself by the saddle limit cycles W3 and W4 on the cell
boundaries of the total flow u [Fig. 21(b)]. Similarly, the counter-
rotating secondary Taylor–Görtler vortices induce counter-rotating
tertiary Taylor–Görtler vortices on their inner sides, co-rotating
with the primary Taylor–Görtler vortices [not visible on the velocity
scale in Fig. 20(a)], which lead to the saddle-limit cycles W1 and W2.
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FIG. 21. Isosurfaces of the spanwise velocity for
w = 0.01 (light gray) and w = −0.01 (dark gray)
shown within half a wavelength z ∈ [−λ/4, λ/4]
for Re = 900, 0 = 1, and λ = λc = 0.406 78.
A typical streamline initialized in the primary Tay-
lor–Görtler vortex (dot) is depicted in dark gray.
(b) Projections of the free saddle focus s1 (cir-
cle) and saddle limit cycles W1 (solid line) and
W3 (dashed–dotted line) on the mirror-symme-
try plane z = −λ/4 and those on z = +λ/4 [s2
(square), W2 (dotted line), W4 (dashed line)] for
0 = 1, λ = λc = 0.406 78, and Re = 800.

At the critical point Re = Rec, the projections onto the (x, y) plane
of the saddle foci and the saddle limit on z = +λ/4 are identical to
those on z = −λ/4 due to the anti-symmetry (7) of the critical mode
u

(c)
TG (a single Fourier mode). For Re > Rec, however, the nonlin-

ear interaction generates higher harmonics (see, e.g., Davey, 1962).
These higher harmonics break the antisymmetry (7) with respect to
z = 0 of uTG. As a result, the saddle limit cycles of the full flow u on
the cell boundaries differ. Accurate locations of the non-degenerate
limit cycles of u are shown in Fig. 21(b) for Re = 800.

The heteroclinic connection between the two saddle foci and
the four saddle limit cycles is delicate (Table VI). The connectedness
is topologically important because two-dimensional heteroclinic
manifolds represent transport barriers to the three-dimensional
flow. We find the saddle limit cycles s1 and s2 being heteroclini-
cally connected for Re = 800 and 850 and becoming disconnected
for Re = 900. On the other hand, the saddle limit cycles W1–W2 and
W3–W4 are always disconnected, except for Re = Rec, but the con-
nection is only very slightly perturbed for Re = 850 and Re = 900.
To indicate the evident quantitative difference between a broken
connection that extends deeply into the periodic cell (for Re = 800)
and a localized broken connection that emerges in the strict proxim-
ity of the attracting/repelling critical object (for Re = 850 and Re =

900), we shall use, in the following, the terminologies slightly bro-
ken heteroclinic connection and slightly disconnected critical objects.
We use the term slightly broken for a broken heteroclinic connection
for which the unstable (stable) manifold still approaches the stable

(unstable) critical object to a distance less than 0.01 upon the first
approach. The slightly broken connections and the intersection of
the respective two-dimensional manifolds are a source of chaotic
advection in the system. A sketch of the intact and slightly broken
heteroclinic connections is reported in Fig. 22.

The streamline topology in the mirror-symmetry planes for
Re = 900 is presented in Fig. 23(a) for z = −λ/4 and in Fig. 23(b)
for z = λ/4. Streamlines are only shown for the regions outside
the outermost limit cycles W3 and W4 because the spiraling-in and
the spiraling-out motions inside W3 and W4, respectively, result in
very dense streamlines that are difficult to distinguish at the scale of
the figures. The streamline topologies on the symmetry planes are
very similar to the one on the symmetry plane in the cubic cavity
[Fig. 4(a)]: In both cases, we find a free saddle focus near the down-
stream corner of the cavity and a set of half-saddle points for both
corners. For the Taylor–Görtler flow shown, the saddle focus s8 is
detached from the bottom wall [gray dot in Fig. 23(b)]. This was
also found for Re ≈ 1 in cuboidal cavity flows (not shown). Details
of the streamline structure near the bottom corners are depicted
in Figs. 4(c) and 4(d) for z = −λ/4 and z = λ/4, respectively. The
major distinction from cuboidal cavities is the presence of the saddle
limit cycles W1,2,3,4 in the periodic flow.

The properties of the spiraling-in (s1) and the spiraling-out (s2)

saddle foci are given in Tables VII and VIII, in which the location
of the two fixed points and the eigenvalues and eigenvectors of the
velocity-gradient tensors evaluated at s1 and s2 are specified.

TABLE VI. Relation between saddle foci and saddle limit cycles in a periodic Taylor–Görtler flow for λ = 0.406 78.

Re Rec 800 850 900

s1 → s2 Connected Connected Connected Disconnected
W1 → W2 Connected Disconnected Slightly disconnected Slightly disconnected
W3 → W4 Connected Disconnected Slightly disconnected Slightly disconnected
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FIG. 22. Transport within a Taylor–Görtler cell between z = −λ/4 and z = λ/4. Although the sketch shows heteroclinic connections, the critical objects on the symmetry
planes are numerically slightly disconnected between s1 and s2,W1 andW2, andW3 andW4. The motion of fluid elements outside the slightly broken heteroclinic connection
betweenW3 andW4 is sketched in (c).

FIG. 23. Streamlines on the mirror-symmetry
planes z = −λc/4 (a) and z = λc/4 (b) for
Re = 900 and (0, λ) = (1, λc) (thin lines). The
arrows on top indicate the direction of the lid
motion. Dots represent the critical points with
the gray dot symbolizing two close-by critical
points, better seen in (d). The flow direction
and stable/unstable manifolds are indicated by
bold arrows. Zooms (c) and (d) into the bot-
tom-right and bottom-left corners show stream-
lines and critical points for z = −λc/4 and z =

λc/4, respectively.

TABLE VII. Location of the saddle foci s1,2 on z=±λc/4 and corresponding eigenvalues of the velocity-gradient tensor.

Re xs1 λ
s1
1,2 λ

s1
3 xs2 λ

s2
1,2 λ

s2
3

800 (0.5350, 0.5699) −0.003 ± 1.017i 0.006 (0.5386, 0.5737) 0.0006 ± 1.017i −0.0012
850 (0.5350, 0.5634) −0.004 ± 0.971i 0.008 (0.5411, 0.5702) 0.0022 ± 0.971i −0.0044
900 (0.5357, 0.5596) −0.005 ± 0.937i 0.010 (0.5426, 0.5673) 0.0033 ± 0.937i −0.0066
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TABLEVIII. Normalized eigenvectors of the velocity-gradient tensor at the two saddle

foci s1,2 on z=±λc/4.

Re v
s1
1,2 v

s1
3

800 (0.082 ± 0.699i, 0.711, 0.000)T (0.000, 0.000, 1.000)T

850 (0.083 ± 0.698i, 0.711, 0.000)T (0.000, 0.000, 1.000)T

900 (0.084 ± 0.696i, 0.713, 0.000)T (0.000, 0.000, 1.000)T

Re v
s2
1,2 v

s2
3

800 (0.095 ∓ 0.691i, 0.716, 0.000)T (0.000, 0.000, 1.000)T

850 (0.103 ∓ 0.684i, 0.722, 0.000)T (0.000, 0.000, 1.000)T

900 (0.106 ∓ 0.680i, 0.726, 0.000)T (0.000, 0.000, 1.000)T

B. KAM tori and chaotic sea

As the steady two-dimensional flow bifurcates to a steady
three-dimensional flow, chaotic streamlines emerge. At the mar-
gin of stability, at Re = Rec, the critical mode u

(c)
TG exists with an

infinitesimally small amplitude. Due to the additional symmetry
(7) of the critical mode, heteroclinic connections exist at Re = Rec

between the two saddle foci s1,2 and between the saddle limit cycles
W1,2 as well as between W3,4. For Re > Rec, we find most of these
connections to be slightly broken (Table VI).

For slightly supercritical driving at Re = 800, the main (outer)
Taylor–Görtler vortex is dominated by chaotic streamlines. Only
small regular islands are found with KAM systems T5 and T6 wind-
ing about the main torus T1A (Fig. 24). On the other hand, the flow
in the secondary and tertiary (inner) Görtler vortices is found to be
partly regular with large sets of KAM tori T1B and T1C, respectively.
Up to numerical accuracy, the connection between s1 and s2 is pre-
served at Re = 800. However, W1 and W2, as well as W3 and W4

are clearly disconnected. This enables the chaotic sea from the main
outer Görtler vortex to penetrate the inner cells along the cell bound-
aries. The gray lines in Fig. 24(a) near the connection between s1 and
s2 (not indicated) must not be mistaken as regular streamlines. This
set of densely packed Poincaré returns on the (x = 1/2)-plane look-
ing like lines is produced by chaotic streamlines, which rapidly wind
about the heteroclinic connection between s1 and s2 and progress
only slowly in the z direction due to the weakness of the tertiary
Taylor–Görtler vortex. The presence of higher harmonics in z in the
flow field is clearly visible by the asymmetrical placement of the reg-
ular regions [black dots in Fig. 24(a)]. A three-dimensional view of
the main KAM tori is provided in Fig. 24(b).

Upon an increase of the Reynolds number to Re = 850, the
small KAM tori in the primary (outer) Taylor–Görtler vortex van-
ish completely (Fig. 25). On the other hand, W1 and W2, as well
as W3 and W4 are only slightly disconnected, and the middle and
inner Taylor–Görtler vortices become almost regular (T1B and T1C).
Therefore, the system T1B and T1C of KAM tori almost seals the
outer region from the small inner chaotic sea of the convection
cell. The small inner region of chaotic streamlines in the center of
the Taylor–Görtler vortex cell exists around the heteroclinic con-
nection between s1 and s2. This behavior shows that the size of
the KAM tori must not necessarily shrink on an increase of the
driving force (Re). Finally, for Re = 900 (Fig. 26), the connection
between the two sets of saddle limit cycles is slightly broken, as
well as the connection between the two saddle foci. The inner set
of KAM tori T1C has shrunk again, while T1B remains nearly λ/2-
filling. Three-dimensional views of the largest reconstructible KAM
tori T1B and T1C are shown in Figs. 25(b) and 26(b) for Re = 850 and
900, respectively.

At Re & Rec, the saddle foci s1 and s2 together with the saddle
limit cycles W1 and W2 make a non-degenerate heteroclinic loop.
This loop is topologically similar to a recirculation bubble arising

FIG. 24. (a) Poincaré section of fluid element
trajectories for Re = 800, 0 = 1, and λ = λc.
Gray dots denote chaotic regions, whereas black
dots, pluses, and circles refer to regular KAM
tori. (b) Three-dimensional reconstruction of the
outermost surface of the KAM tori T1A, T1B, and
T1C.
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FIG. 25. (a) Poincaré section of fluid element trajectories for Re = 850, 0 = 1,
andλ = λc. Gray dots denote chaotic regions, whereas black dots refer to regular
KAM tori. (b) Three-dimensional reconstruction of the outermost surface of the
KAM tori T1B and T1C.

FIG. 26. (a) Poincaré section of fluid element trajectories for Re = 900, 0 = 1,
andλ = λc. Gray dots denote chaotic regions, whereas black dots refer to regular
KAM tori. (b) Three-dimensional reconstruction of the outermost surface of the
KAM tori T1B and T1C.

from axisymmetric vortex breakdown (see Escudier, 1984 or Fig. 5 of
Sotiropoulos et al., 2001) or from a perturbed Hill vortex (Kroujiline
and Stone, 1999). Owing to the presence of the spiraling-in sad-
dle focus s1 with the Shilnikov saddle value σ = −ρ + γ > 0 [with
ρ = <(λ1,2) and γ = λ3, see Table VII], the behavior near this loop
is complex. This is confirmed by our numerically computed stream-
lines. Different from the flow in an axisymmetric breakdown bubble
(Sotiropoulos et al., 2001), however, the present separated flow near
the connection of s1 and s2 is intrinsically three-dimensional for
Re > Rec and thus can support chaotic streamlines.

The region most susceptible to chaos is the main (outer) Tay-
lor–Görtler vortex. This correlates with the three-dimensional part
of the flow, which is the strongest in this region. However, the
large region occupied by chaotic streamlines already at Re = 800,
which is only slightly supercritical, presents a scenario quite dif-
ferent from cuboidal cavities, where the chaos gradually invades
the regular region with increasing Re. The results show that the
regular regions in the main Taylor–Görtler vortex shrink rapidly
with Re. The small subvolume occupied by KAM tori in the main
Taylor–Görtler vortex could be either due to a rapid monotonic
destruction of large regular KAM tori, which might exist slightly
above critical, or due to a global chaos existing immediately above
the onset of a three-dimensional flow from which only small KAM
tori can grow as Re is increased. Unfortunately, these different sce-
narios cannot be probed due to the long simulation times required
for Re − Rec → 0. A similar scenario, with an abrupt onset of chaos,
was found in the steady three-dimensional periodic cellular flow in

TABLE IX. Characterization of the periodic streamlines L and largest KAM tori T

for (0, λ)= (1, λc). Identification of one of the elliptic fixed points of the closed

streamlines L on the Poincaré plane x= 1/2 for different Reynolds numbers. Addi-

tional characterizations are the minimum distance of L and T from the boundaries,

1, and the period of a fluid element along the closed streamlines τ . Only one single

arbitrary fixed point is given for each closed streamline.

Re KAM/streamline τ 1 Fixed point (y, z)

800 T1C 0.3122
L1C 6.197 0.3401 (0.483, 0.291)
T1B 0.1518
L1B 6.260 0.1974 (0.330, 0.278)
T1A 0.0233
L1A 13.074 0.0249 (0.131, 0.254)
T5 0.0179
L5 40.758 0.0191 (0.119, 0.254)
T6 0.0098
L6 25.742 0.0119 (0.103, 0.213)

850 T1C 0.3031
L1C 6.501 0.3398 (0.474, 0.268)
T1B 0.1618
L1B 6.572 0.2013 (0.326, 0.254)

900 T1C 0.3119
L1C 6.730 0.3438 (0.656, 0.266)
T1B 0.1667
L1B 6.805 0.2061 (0.323, 0.256)
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a two-sided lid-driven cavity (Romanò et al., 2017). In both sys-
tems, the two-sided cavity and the present one-sided-driven cavity,
the flow structure at Re = Rec is characterized by several hyperbolic
points or limit cycles, which can give rise to global chaos, in par-
ticular, if existing heteroclinic connections break immediately after
the onset of a three-dimensional flow. On the other hand, the region
of the secondary and tertiary Taylor–Görtler vortices remains reg-
ular to a large extent. This is due to the absence of hyperbolic lines
in the bulk and to the fact that slightly broken connections produce
a layer of chaos that remains localized near the intersection, in the
Poincaré plane, of two-dimensional manifolds emerging from the
critical objects at the extrema of each slightly broken heteroclinic
connection.

Finally, the quantitative data given in Table IX offer benchmark
data for further studies and provide necessary topological informa-
tion required to characterize finite-size coherent structures in case
nearly neutrally-buoyant finite-size particles are suspended in the
periodic cavity flow. From the values of 1 reported in Table IX,
only the flow for Re = 800 is of interest for FSCSs since it exhibits
periodic and quasiperiodic streamlines passing the moving wall
closely. The flows for Re = 850 and 900 are candidates support-
ing inertial coherent structures, but the minimum values of 1 are
no longer small compared to the length scale of the system, a
requirement for FSCSs (Romanò et al., 2019).

VI. DISCUSSION AND CONCLUSION

The streamline topology in lid-driven cavities has been com-
puted numerically for different finite-length cuboidal cavities and
for Taylor–Görtler vortices in a periodic cavity with a square cross
section. Due to the three-dimensional flow induced either by the
finite cavity length or by a symmetry breaking instability, regions of
chaotic and regular streamlines arise. Since the existence, location,
character, and connection of the stationary points and limit cycles
of the flow change with the Reynolds number so do the regions of
regular and chaotic streamlines.

Two sources of chaotic advection are observed for finite-length
and infinitely extended lid-driven cavities. In both systems, we find
broken heteroclinic connections between critical points or between
saddle limit cycles, which promote chaos by intersection in the
Poincaré plane of their corresponding stable and unstable man-
ifolds. The second source of chaotic advection is the resonance
phenomenon, by which the resonant KAM torus breaks down, cre-
ating a pair of elliptic and hyperbolic streamlines. The newly born
KAM torus about the elliptic streamline is embedded in a layer of
chaos organized among the hyperbolic streamline. In the case of
finite-length cavities, the three-dimensionality caused by the no-
slip end walls induces a gradual growth of the chaotic subvolume.
At very low Reynolds numbers, the chaotic sea develops from the
solid corners and edges of the cavity and is enhanced when the het-
eroclinic connection between s1 and s2 breaks at larger Reynolds
numbers. The subvolume occupied by chaotic streamlines is also
increased as several resonance phenomena, i.e., breakdowns of KAM
tori, arise upon a further increase of Re. A monotonic increase of the
chaotic subvolume in finite-length cavities is thus observed upon an
increase of Re. This scenario has been discussed in previous studies
by Ishii and Adachi (2006; 2010; 2011) and Ishii et al. (2012). Their

investigations were extended here, by using higher accuracy, quan-
tifying the critical points, and by paying attention to the connection
(transport barriers) and disconnection between the critical topolog-
ical objects of the flow as a function of the Reynolds number, which
affect the chaotic and regular regions of the flow.

In infinitely extended cavities, on the other hand, periodic Tay-
lor–Görtler vortices develop as a result of symmetry breaking at a
critical Reynolds number Rec and chaos sets in at Re = Rec either
very rapidly or even abruptly. Increasing the Reynolds number
from Re = 800 destroys the regular regions in the primary Tay-
lor–Görtler vortex, and the saddle limit cycles W1–W2 and W3–W4

are always disconnected for Re ≥ 800. For Re ≥ 850, in particu-
lar, the broken connection between W3 and W4 allows for a weak
exchange of fluid across the previous transport barriers, and a more
extended region of chaotic streamlines is established near the axis
of the Taylor–Görtler vortices. Such approximate heteroclinic con-
nection generates, de facto, a region of the flow where outward
transport from the secondary to the primary Taylor–Görtler vortices
is remarkably reduced. Inside this region, another slightly broken
heteroclinic connection between W1 and W2 takes place, giving rise
to a slow radial advection boundary embedded in the first one.
Finally, at Re = 900, the two saddle foci s1 and s2 characterizing the
main vortex center are found to be disconnected. Two slightly bro-
ken heteroclinic loops are, therefore, established within which two
counter-rotating KAM tori are found to exist. Hence, another major
difference between finite-length and infinitely extended cavities is
that the chaotic subvolume is not monotonically increasing in the
latter. The almost sealed volumes associated with the approximate
heteroclinic loops are topologically equivalent to recirculation bub-
bles. Their route to chaos has well been examined by Sotiropoulos
et al. (2001), who pointed out their structural instability with respect
to flow perturbations.

The KAM tori in cavities of finite length are all found to pass
very close to the moving lid. This property of the flow is favoring
Lagrangian finite-size coherent structures of particles in dilute sus-
pensions via the mechanism described by Hofmann and Kuhlmann
(2011) and Romanò et al. (2019). Accordingly, particles can be dis-
placed from the chaotic sea to regular regions of the flow near
the moving lid. In order for this mechanism to be effective, the
particle size would have to be small and of the same order of
magnitude as the distance of the KAM structures from the mov-
ing wall. For this reason, the distances 1 of the closed streamlines
and of the largest reconstructible KAM tori have been reported in
Tables III–V. For periodic Taylor–Görtler vortices, on the other
hand, the KAM tori are located relatively far from the bounding
cavity walls, except possibly for very slightly supercritical driving.
Therefore, Lagrangian coherent particle structures are not expected
to arise in steady periodic lid-driven Taylor–Görtler vortices (see
Table IX).

Regular regions near the center of finite-length cavities are
found for 3 = 2 (see Re = 400, T1M) and were also found by Ishii
and Adachi (2006) for 3 = 6.55 and Re = 500 < Rec (3 → ∞).
These regular regions are due to the change of sign of the spanwise
velocity component w and to the progressive takeover of the two-
dimensional flow in the midplane for 3 → ∞ and Re < Rec. It is
interesting to note that Ishii and Adachi (2006) also found KAM
tori near the symmetry plane for 3 = 6.55 and Re = 850. For the
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same parameters, Albensoeder et al. (2001b) experimentally found
Taylor–Görtler vortices only near the symmetry plane. Therefore,
it would be interesting to investigate the implications for the flow
topology of the competition between weak Taylor–Görtler vortices
due to a bulk flow instability and a weak end-wall-driven flow in
finite-length cavities. However, even for a subcritical flow with Re
≤ Rec, e.g., for Re = 400, the creation/annihilation of KAM tori
upon a quasi-continuous variation of the aspect ratio 3 is another
open question. We also note that stagnation points can arise in the
bulk and contribute to chaotic advection (Contreras et al., 2017;
Romanò et al., 2017). But such stagnation points have not been
found in the present study.

A further perspective of this study concerns finite-size coherent
particle structures in one-sided lid-driven cavities. This type of par-
ticle accumulation phenomenon, already reported in a recent study
(Kuhlmann et al., 2016; Wu et al., 2017a; 2017b), deserves further
investigation in order to relate the particle motion to the Lagrangian
flow topology considered herein.

The improvement of computational resources has recently
made possible a numerically accurate characterization of the
Lagrangian topology for spatially three-dimensional flows. We,
therefore, expect that succeeding studies of three-dimensional cav-
ity flows will shed further light on the evolution of streamline
chaos in three-dimensional incompressible flows and to the role of
symmetry-breaking instabilities.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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