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Abstract

Using an analytic model, we derive the eigenfrequencies for thermal Rossby waves that are trapped radially and
latitudinally in an isentropically stratified atmosphere. We ignore the star’s curvature and work in an equatorial
f-plane geometry. The propagation of inertial waves is found to be sensitive to the relative direction of the
wavevector to the zonal direction. Prograde propagating thermal Rossby waves are naturally trapped in the radial
direction for frequencies above a critical threshold, which depends on the angle of propagation. Below the
threshold frequency, there exists a continuous spectrum of prograde and retrograde inertial waves that are
untrapped in an isentropic atmosphere but can be trapped by gradients in the specific entropy density. Finally, we
discuss the implications of these waves on recent observations of inertial oscillations in the Sun, as well as in
numerical simulations.

Unified Astronomy Thesaurus concepts: Solar convective zone (1998); Stellar convective zones (301); Stellar
oscillations (1617); Solar oscillations (1515); Stellar rotation (1629); Internal waves (819); Hydrodynamics (1963);
Asteroseismology (73); Helioseismology (709); Polytropes (1281)

1. Introduction

A primary motivation for studying inertial oscillations of
stars is their implication in understanding the stellar interior
structure. In particular, observations of such oscillations may
provide a strong constraint on superadiabaticity and other
thermodynamic variables within the star’s convection zone
(e.g., Gilman 1987). Recent observations in the Sun of Rossby
waves and other inertial oscillations (e.g., Löptien et al. 2018;
Hanasoge & Mandal 2019; Proxauf et al. 2020; Gizon et al.
2021; Hathaway & Upton 2021; Hanson et al. 2022) have
aroused interest in using these waves as seismic probes of the
solar interior and in the potential role that they play in the Sun’s
magnetic cycle (e.g., Dikpati & McIntosh 2020). Through
exploitation of the Sun’s acoustic oscillations (p-modes),
helioseismology has successfully mapped the Sunʼs differential
rotation and its thermal structure throughout the convection
zone (see Christensen-Dalsgaard 2002). However, some
quantities, such as the turbulent viscosity and radial entropy
gradient in the convection zone, are essentially invisible to the
p-mode oscillations. Further, the p-modes, as measured from
the ecliptic, do not sample high latitudes well; therefore, flows
and thermal structures in the polar caps are poorly constrained.
All of these missing pieces are important elements in theories
of stellar dynamics and the dynamo. Thus, there remains a
prominent gap in our understanding of the solar interior. The
observation of these new class of oscillations, which are likely
to have sensitivity to many of these parameters, could bridge
that gap.

Thermal Rossby waves (e.g., Roberts 1968; Busse 1970;
Hindman & Jain 2022) are a specific type of gravito-inertial
wave that corresponds to convective modes that have been
partially or completely stabilized by rotation. While they have

yet to be detected in the Sun observationally, they are
ubiquitous in laboratory experiments of convection in a
rotating fluid (e.g., Mason 1975; Busse & Hood 1982; Smith
et al. 2014; Lonner et al. 2022). Further, thermal Rossby waves
are seen in numerical simulations of stellar convection and are
a crucial ingredient in the maintenance of a star’s differential
rotation (e.g., Miesch et al. 2000; Brun et al. 2011; Hindman
et al. 2020). These waves appear at convective onset and persist
even when the fluid becomes turbulent. In a Boussinesq fluid,
the waves fill the spatial domain; but, in a gravitationally
stratified fluid, numerical simulations have shown that the
waves can be trapped in radius, being concentrated near the
surface or near the bottom of the convection zone, depending
on the stratification (Jones et al. 2009; Hindman et al. 2020;
Hindman & Jain 2023). This strong variation in the location of
the wave cavity is a clear indication that these waves are
extremely sensitive to the stratification and in particular, the
radial entropy gradient. Thus, if detected, such waves would
serve as an excellent seismic probe.
While there is a rich literature on Rossby waves in stratified

astrophysical disks (e.g., Li et al. 2000; Lin 2012), to date only
a few studies have explored how thermal Rossby waves
propagate through a stratified star (Glatzmaier & Gilman 1981;
Gilman 1987; Hindman & Jain 2022, 2023). Further, for
simplicity, all of these have ignored propagation and reflection
in the latitudinal direction. Studying the radial and latitudinal
wave cavity of low-mass stars with a near-surface convection
zone will be our main aim here. The present paper considers the
propagation of thermal Rossby waves and their kin in all three
directions (zonal, latitudinal, and radial) within an adiabatically
stratified background atmosphere. Section 2 describes a model
to this effect, and in Section 3 we derive the resulting
governing equation and discuss the nature of the solutions. In
Section 4, we consider the eigenmodes of a semi-infinite
polytropic atmosphere, and in Section 5 we consider finite
domains. Finally, we summarize and present our conclusions in
Section 6.
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2. The Model

Although most stars are nearly spherical, we consider a local
Cartesian coordinate system by defining a tangent plane at the
star’s equator and assuming that the rotation vector is uniform
over the whole tangent plane. This f-plane approximation
simplifies the study of waves that have short horizontal
wavelengths. Therefore, we place the origin at the stellar
surface with the unit vectors x̂, ŷ , and ẑ pointing in the
longitudinal, latitudinal, and radial directions, respectively. We
adopt uniform rotation to avoid singularities in the equations
resulting from critical layers where the local rotation rate equals
a wave’s phase speed (e.g., Gilman 1987; Gizon et al. 2021).

We investigate the linearized fluid equations in the absence
of a background flow. We consider a steady-state background,
denoted with subscript 0, with perturbations about that
background indicated with subscript 1. The background
atmosphere is assumed to be a plane-parallel atmosphere that
is gravitationally stratified with a constant gravitational
acceleration = -g gẑ . Thus, the background pressure and
density vary as a function of z and are denoted by P0(z) and
ρ0(z), respectively. These quantities are related by hydrostatic
balance and the ideal gas law. The linearized equation of
motion that governs a rotating, inviscid fluid on an f-plane is
given by
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with γ as the ratio of specific heats.

3. The Governing Wave Equation

Since the background atmosphere is steady and invariant in
the x̂ and ŷ directions, we seek horizontal plane-wave solutions
of the form

= w+ -f x y z t f z e e, , , , 4i k x k y i tx y( ) ˜ ( ) ( )( )

where f is any perturbed fluid variable. Furthermore, kx and ky
are the wavenumbers in the x and y directions and ω is the

temporal frequency. Without loss of generality, we only

consider positive longitudinal wavenumbers, kx> 0. The waves

propagate in the prograde direction if the frequency is positive,

ω> 0, and in the retrograde direction for negative frequen-

cies, ω< 0.
Using the above plane wave along with Equations (1)–(3),

we obtain the following governing equation for δP
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In this equation, kh is the total horizontal wavenumber, i.e.,
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The governing wave Equation (5) can be written as a
Helmholtz equation through the substitution d r= YP z0 ( ),
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is the square of the acoustic cutoff frequency, ωac.
Equation (9) provides a local dispersion relation for both

acoustic waves and gravito-inertial waves. In the low-
frequency limit, Equation (9) reduces to a local dispersion
relation for just gravito-inertial waves:
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The two terms in the parentheses provide a negative
contribution and lead to vertical evanescence (i.e., <k 0z

2 ).
Conversely, the terms inside the square brackets can be
positive, thereby leading to vertical propagation ( >k 0z

2 ). The
first two terms in the brackets arise from the Coriolis force. As
discussed in Hindman & Jain (2022), the first of these terms is
positive for prograde waves and can produce propagating
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thermal Rossby waves. The second is a newly identified term
that also leads to vertical propagation and is responsible for the
axisymmetric inertial waves in a sphere previously studied by
Guenther & Gilman (1985). As we will see in subsequent
sections, this term can in fact lead to vertical detrapping for
waves of very low frequency. Finally, the third term in the
square brackets is the buoyancy term responsible for internal
gravity waves.

3.1. Neutrally Stable Atmosphere

Previous studies of latitudinal propagation in a compressible
atmosphere have been carried out by Thuburn et al. (2002) and
Kasahara (2003); but these efforts considered a stably stratified
isothermal atmosphere and investigated the modifications to
acoustic-gravity waves by the Coriolis force. Further, since the
atmosphere was isothermal, waves cannot be naturally trapped
by the stratification. Thus, it is important to explore the radial
and latitudinal propagation in an atmosphere where the density
scale height varies with height. Hindman & Jain (2022)
demonstrated that inertial waves in a neutrally stable convec-
tion zone can be trapped in the radial direction. In that paper we
considered waves that did not propagate latitudinally. Here we
demonstrate that radial trapping is still possible when
latitudinal propagation is allowed, but there is also a continuous
spectrum of extremely low-frequency inertial waves that are
free to propagate to any depth.

We now consider an isentropic atmosphere such that N2
= 0,

i.e., the buoyancy forces disappear, and the Coriolis force is the
only restoring force for the low-frequency waves. Such a
neutrally stable atmosphere is polytropic and possesses a single
height at which the pressure, density, and temperature all
vanish. We place the origin z= 0 at this singular point and let
the atmosphere exist within the region below, for z< 0. In an
isentropic polytrope the atmospheric profiles have the follow-
ing power-law forms:
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where A0 is an arbitrary scale factor and the dimensionless

parameter α is the polytropic index given by a g= - -1 1( ) .

3.2. Propagation Diagram and Eigenmodes

For an isentropic stratification, where N2
= 0, the low-

frequency form of the local dispersion relation Equation (11)
reduces to
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Near the upper boundary of the atmosphere (z→ 0), the second

term in the parentheses (arising from the acoustic cutoff

frequency) is large and leads to reflection and vertical

evanescence. Deep within the atmosphere (z→−∞), the

dispersion relation reduces to
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Here, χ indicates the direction of horizontal propagation, with

χ= 0 corresponding to pure prograde propagation and χ= π/2
indicating pure northward propagation ( c=k k cosx h and

c=k k siny h ). From Equation (18), we can easily determine

that the inertial waves can be either vertically evanescent

( <k 0z
2 ) or vertically propagating ( >k 0z

2 ) depending on the

frequency and the horizontal direction of propagation. A wave

cavity exists when the waves become evanescent, which

requires ϖ2
< 1 or equivalently,
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These waves are naturally trapped by the density stratification

and form a discrete spectrum of inertial eigenmodes that in the

limit of ky = 0 become the thermal Rossby waves of Hindman

& Jain (2022) and the fast branch of thermal Rossby waves as

discussed by Hindman & Jain (2023). For frequencies lower

than the critical value given in Equation (20), the waves remain

vertically propagating to all depths, and a downward

propagating inertial wave is never reflected back upwards in

a semi-infinite domain: no cavity exists. This family of solution

corresponds to a continuous spectrum of untrapped inertial

eigenmodes.
This behavior is fully revealed in Figure 1, which provides a

propagation diagram as a function of height within an
isentropic atmosphere. The lightly shaded region indicates
those frequencies that correspond to vertically propagating
waves. The green horizontal lines indicate the critical value
(and its negative) provided by Equation (20). The frequencies
above the upper bound correspond to trapped inertial waves,
while frequencies between the two bounds constitute the
untrapped modes. As one can see, the trapped waves propagate
between two turning points and therefore form a discrete
spectrum of normal modes. Conversely, the untrapped inertial
waves are screened from the origin by an upper turning point
but lack a lower turning point. The trapped waves all possess
positive frequencies and are hence prograde propagating,
whereas the untrapped continuum modes can be prograde
thermal Rossby waves or retrograde inertial waves.

3.3. Vertical Wave Equation for an Isentropic Stratification

For the polytropic atmosphere, the Helmholtz equation with
kz
2 given by Equation (17) can be transformed into the well-
known Whittaker equation by making a change of variable

3
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where μ≡ (α+ 1)/2 is a constant. The parameter κ is the

eigenvalue of the second-order ordinary differential

Equation (21), and it depends on the frequency and direction

of propagation of the wave, i.e.,
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Notice that for all of the trapped prograde waves (refer to

Figure 2), we have ϖ2
< 1; hence, for these trapped waves, the

parameter κ and the dimensionless depth ζ have real values.

Conversely, the low-frequency waves without a lower turning

point have ϖ2
> 1, and both κ and the dimensionless depth ζ

are purely imaginary.
Whittaker’s Equation (21) has two solutions, the Whittaker

functionsMκμ(ζ) andWκμ(ζ) (see Abramowitz & Stegun 1968).
These can be expressed with Kummer’s confluent hypergeo-
metric functions M and U as follows:
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4. Semi-infinite Domain

In this section we consider an atmosphere of semi-infinite
extent in radius. The atmosphere has a physical upper surface
(at z= 0) but is infinitely deep (z→−∞). Such an atmosphere
is valid to use if the waves are naturally trapped and are
confined over a region of finite radius. However, here we
primarily explore the eigenmodes for such an atmosphere

because their mathematics provides illumination for the
behavior of waves in finite domains.

4.1. Naturally Trapped Modes in Radius

The radially trapped modes are acquired by demanding that
the solutions vanish and remain regular at the two singular
points of Whittaker’s Equation (21), ζ= 0 and ζ→∞ ,

d r

z a z

= Y
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P z z

C e M n, 2, , 24n

0

1 2

2

( ) ( )
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where Cn is an arbitrary constant and the parameter η must be a

nonnegative integer, η= n ä [0, 1, 2, 3,...], in order to avoid

Figure 1. Propagation diagram for a neutrally stable polytropic atmosphere in a semi-infinite domain. The positive (negative) frequencies indicate waves propagating

in prograde (retrograde) direction in the rotating frame. The lightly shaded region indicates the frequencies of waves that are radially propagating ( >k 0z
2 ) at the

indicated height in the atmosphere. The purple curves denote those frequencies and radii for which a radial turning point occurs (i.e., =k 0z
2 ). Thus, at a given

frequency, an inertial wave cavity exists in the shaded region between two turning points. Such a cavity for thermal Rossby waves is formed purely by the
stratification. We have indicated the eigenfrequencies for such modes for a semi-infinite atmosphere using the blue horizontal dotted lines. The green horizontal lines
denote the critical frequencies—see Equation (19)—that separate the low-frequency waves that lack a lower turning point from the higher frequency waves that have
two turning points (an upper and a lower turning point).

Figure 2. Illustration of two types of eigenfunction. The two curves show the
normalized Lagrangian pressure fluctuation as a function of dimensionless
height for a naturally trapped (red curve) and an untrapped thermal Rossby
wave (blue curve). The trapped mode corresponds to a radial order of n = 3
and has two turning points in radius: an upper turning point that lies very near
the upper surface and a lower turning point near khz ≈ = −5. The wave cavity
exists between these two turning points, and the eigenfunction decays
exponentially with depth below the lower turning point. The untrapped wave
has only a single turning point. It corresponds to a continuum mode that is
launched from infinite depth, travels upwards, reflects off the upper turning
point near the origin, and then travels back downwards. This specific
continuum mode is prograde with a frequency ω/Ω = 0.5. Both eigenfunctions
are computed for an angle of propagation of χ = 45°.

4

The Astrophysical Journal, 958:48 (9pp), 2023 November 20 Jain & Hindman



divergence of the eigenfunction in the limit z→−∞. There-

fore, the eigenvalue κ takes on discrete values that depend on

the radial order n and the polytropic index α,

k
a

= + +n 1
2
. 25n ( )

Since the frequency depends on the eigenvalue through

Equation (22), the discretization of the eigenvalue leads to

discretization of the corresponding frequencies. These eigen-

frequencies depend on the direction of propagation χ, the radial

order n, the rotation rate Ω, and the polytropic index α,
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The blue dotted horizontal lines in Figure 1 indicate these
discrete eigenfrequencies. There is a countable infinity of such
modes with an accumulation point at the critical frequency, i.e.,
w c W2 sin∣ ∣ as n→∞ .

The expression for the eigenfrequency, ωn, in Equation (26)
clearly shows that the eigenfrequencies are unaffected by the
magnitude of the horizontal wavenumber, kh, even though they
do depend on the direction of propagation χ. This is a
consequence of the self-similarity of a polytropic atmosphere
(for details, see Hindman & Jain 2022). For purely northward
or southward propagation, i.e., χ=±π/2, the eigenfrequencies
become independent of the radial order n and on the
stratification α taking on the value ωn= 2Ω. We only illustrate
positive values of χ because the eigenfrequencies are
symmetric in χ, i.e., ωn(−χ)= ωn(χ).

The lower turning point can be calculated directly from
Equation (17) by solving for the two heights in the atmosphere
where =k 0z

2 . The deepest of these two solutions corresponds
to the lower turning point,

k k a a
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2 4
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. 27h
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2
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Note that the lower turning point for all radial orders deepens as

the propagation angle increases from zero. Hence, the cavity is

most shallow for purely zonal propagation (ϖ2
= 0) and

becomes infinitely deep for purely latitudinal propagation

(ϖ2
= 1). Below the lower turning point, the eigenfunction

becomes evanescent and decays exponentially with depth. This

behavior is illustrated in Figure 2. The red curve illustrates the

eigenfunction for an n= 3 mode with a lower turning point

near khz=−5.

4.2. Untrapped Modes in Radius

Waves with frequencies that lie with the band

w c< W2 sin 28∣ ∣ ∣ ∣ ( )

do not possess a lower turning point. Hence, these waves

continue to propagate deep in the atmosphere. This behavior

leads to a continuous spectrum of wave modes that are regular

at the origin, z= 0, and oscillatory in the limit z→−∞. The

regularity condition at the origin is the only boundary condition

that we can physically enforce. This leads to eigenfunctions of

the form
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The dimensionless depth ζ and the eigenvalue κ are both

imaginary, and κ is no longer discrete:
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The eigenfunction given by Equation (29) is a standing wave
that is comprised of a wave launched from infinite depth that
travels upwards, reflects off the acoustic cutoff frequency near
the origin, and then travels downwards back to infinite depth.
Such an eigenfunction is illustrated in Figure 2, where the blue
curve shows a continuum mode that lacks a lower turning
point. The wave remains oscillatory in the limit z→−∞.
For special integer values of the polytropic index, α= 2L,

where L is any nonnegative integer, solutions for the untrapped
continuum modes can be written in terms of real functions with
real parameters and arguments using the regular Coulomb wave
function FL (see Abramowitz & Stegun 1968):

d w= aP C z F q, , 32L
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5. Finite Domain

5.1. Radial Trapping

In a solar-like star, the convection zone is approximately
200Mm deep with the stably stratified radiative zone lying
underneath. Within the transition between the two layers, the
buoyancy frequency jumps dramatically, and this large change
should make the bottom of the convection zone an efficient
reflector of gravito-inertial waves. Therefore, an appropriate
model of inertial waves in a star’s convection zone is to apply a
regularity condition at the origin (as we did in Section 4) and a
reflective lower boundary condition at a finite depth of D. For
this later condition we adopt δP(z=−D)= 0 for D= 200Mm.
The global dispersion relation satisfying these boundary
conditions is

m k a v+ - + - =M k D1 2 , 2, 2 1 0. 35h
2( ) ( )

We note that the imposition of a lower boundary condition at
a finite depth converts the continuous spectrum of untrapped
waves into a discrete spectrum. In Figure 3, the dimensionless
frequency ω/Ω is plotted as a function of khR for four different
angles of propagation. Note that khR corresponds to the
harmonic degree of spherical harmonics in a spherical
geometry. In each panel, the uppermost curve with the highest
positive frequencies corresponds to modes that lack nodes in
radius (i.e., radial order n= 0). The second highest indicates
modes with one radial node (n= 1). Sequentially lower curves
have one additional node and have an accumulation point at
zero frequency for an infinite number of nodes. All of these
modes have positive frequencies and are prograde propagating.
The curve with the largest negative frequency also lacks radial
nodes (n= 0) but corresponds to retrograde-propagating
inertial waves. Each subsequent curve with smaller negative

5

The Astrophysical Journal, 958:48 (9pp), 2023 November 20 Jain & Hindman



frequencies has an additional node with an accumulation point
at zero frequency as well. The horizontal green lines indicate
the frequency bounds that separate the modes that are naturally
trapped by the stratification (w c> W2 sin∣ ∣) from those that
would have been untrapped but are now trapped by the lower
boundary of the finite domain.

5.2. Latitudinal Trapping

Since we have derived the inertial waves within an equatorial
f-plane model instead of spherical geometry, we have implicitly
assumed that the waves are confined near the equator and have
short horizontal wavelengths, i.e., khR? 1 where R is the star’s
photospheric radius. The first of these assumptions allows us to
ignore the curvature terms in the fluid equations that arise from
the spherical geometry. The second can be justified by
examining the results of numerical simulations and eigenmode
calculations in spherical geometry (i.e., Jones et al. 2009;
Hindman et al. 2020; Bekki et al. 2022a), which clearly
indicate that thermal Rossby waves are indeed confined or
trapped near the equator.

The traditional way to capture latitudinal trapping in plane-
parallel geometry is to adopt an equatorial β-plane approx-
imation, where all atmospheric and geometric terms in the fluid
equations are linearized with respect to the latitudinal
coordinate (i.e., one assumes y/R= 1). We will not do so
here to avoid the resulting complication of solving the wave
equations in a truly 2D atmosphere. Instead, we will retain our
f-plane geometry but make the simple assumption that the
waves are confined within a latitudinal band that extends north
and south of the equator by a fixed distance L/2. To enforce
reflection at y=± L/2, we impose Neumann boundary
conditions on the Lagrangian pressure fluctuation,

d¶
¶

=
=

P

y
0, 36

y L 2

( )

which is equivalent to an impenetrable boundary condition

(v= 0). Such boundary conditions are quite similar to those

employed in the study of Rossby waves in astrophysical disks

(Lin 2012).
To simplify comparison with waves in a spherical geometry,

we will assume that the longitudinal direction is periodic,

which quantizes the longitudinal wavenumber, kx=m/R, with
m being the azimuthal order of the concomitant spherical

harmonic. Thus, our spatial domain is shaped like a millstone,

with an outer annular radius of R, an inner radius of R−D, and

a cylindrical height of L (see Figure 4). In numerical

simulations, the latitudinal extent of thermal Rossby wave

eigenfunction varies as a function of horizontal wavenumber

(i.e., Hindman et al. 2020). But, in general, the waves often fill

the region outside the cylinder that is tangent to the base of the

convection zone at the equator. Hence, we choose the width of

the latitudinal band L to be the length of the chord that is

tangent to the bottom of the star’s convection zone (see

Figure 3. Dimensionless eigenfrequencies as a function of harmonic degree kh Re for a neutrally stable polytropic atmosphere with a finite depth of D = 200 Mm. The
green solid line is the same as in Figure 1. For waves with latitudinal propagation (χ > 0), the uppermost and lowermost curves are for n = 0 modes lacking radial
nodes in their pressure eigenfunctions. Each subsequent radial overtone (n = 1, n = 2, and so forth) lies slightly closer to zero frequency. Thus, there is a retrograde
and prograde branch for each radial overtone. The solid cone of blue color is artificial and arises because the curves become so close together that they cannot be
resolved in the image. The leftmost panel, which corresponds to pure zonal propagation, lacks the retrograde lower curves altogether.

Figure 4. Sketch showing the finite domain considered in Section 5.2. The
outer surface of the Sun and the bottom of the convection zone are indicated in
the meridional plane as orange circles. The waves are confined within the
convection zone of depth D and within a latitudinal band of length L, which is
the length of the chord that is tangent to the bottom of the Sun’s convection
zone. The domain is periodic in the azimuthal direction with a circumference
length of 2π Re. A meridional slice through the domain is shown as the
gray box.
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Figure 4),

= - -L R R D2 . 372 2( ) ( )

Using R= 700Mm and D= 200Mm, one obtains

L≈ 980 Mm.
The latitudinal boundary conditions discretize the latitudinal

wavenumber,

lp
l= =k

L
, 0, 1, 2, 3,... , 38y [ ] ( )

leading to eigenfunctions of the form

d l
z h a z

= -
´ - +z w- -

P x y z t C y L

e e M e

, , , cos 2

, 2, . 39imx R i t2

( ) [ ( )]

( ) ( )

The quantum number λ can be any nonnegative integer, with
the value of λ indicating the number of latitudinal nodes that
appear in the eigenfunction. Modes with λ= 0 correspond to ky
= 0, and we have explored these modes previously in Hindman
& Jain (2022). We recognize that our choice of L results in
large latitudinal wavelengths for low-latitudinal orders (small
λ); hence, they break the short wavelength approximation. Our
goal, however, is not to derive accurate quantitative frequencies
but to instead generate a general qualitative understanding of
the wave behavior. Hence, we carry on nonetheless.

The eigenfrequencies for this “millstone” model can be
generated by solving Equation (39) numerically for the discrete
values of kx and ky that we just discussed. Figure 5 presents the
results. The eigenfrequencies are plotted as a function of
azimuthal order m for the five lowest latitudinal orders. For
clarity of presentation, only the radial fundamental modes,
lacking radial nodes (n= 0), are illustrated. The solid curves
show the prograde-propagating thermal Rossby waves, and the
dashed lines correspond to the retrograde-propagating inertial
waves. The color of the curve indicates the latitudinal order. The
reader should note that for the λ= 0 mode, which propagates

purely zonally (ky = 0), the retrograde solution is missing
because it becomes a zero-frequency geostrophic mode (Hind-
man & Jain 2022). The dotted curves show the frequency for
which the lower turning point passes through the bottom
boundary on the convection zone. Every frequency, for the
appropriate value of λ, which lies above the dotted curve,
corresponds to a mode with two turning points in the radial
domain; hence, such a mode has a cavity that only partially fills
the domain. Those frequencies that lie below the dotted line
correspond to modes with only one turning point in the radial
domain and that are trapped through reflection off the lower
boundary. Initially, the mode frequency increases as the
azimuthal order increases until the lower turning point crosses
into the domain. At larger azimuthal orders, the turning point
continues to move upwards, and the depth of the wave cavity
shrinks commensurately. In response, the mode frequency
asymptotes to a constant value that is independent of the lower
boundary condition. For the prograde thermal Rossby waves, the
asymptotic value can be obtained from the dispersion relation
that applies for the semi-infinite domain, Equation (26):

w
a
a

=
W

+ +¥ n
lim

2

2 2
. 40

m
n ( )

For the retrograde inertial waves, the asymptotic value is zero

because the angle of propagation χ approaches zero as the

azimuthal order becomes large, with the result that the retrograde

wave cavity shrinks to zero frequency (see Figure 1).

6. Conclusion

We have carried out a linear wave analysis for a
compressible and stratified atmosphere representing a stellar
convection zone rotating at a constant rate. The rotation axis is
assumed to be perpendicular to the direction of stratification.
By adopting an f-plane approximation, we derive and solve
dispersion relations for waves propagating through a neutrally
stable polytropic atmosphere in all three spatial directions:
zonal, latitudinal, and radial.
The density stratification enables radial trapping of prograde-

propagating waves with frequencies above a threshold
frequency—see Equation (28). Low-frequency waves with
frequencies below the threshold (both prograde and retrograde)
cannot be trapped by an isentropic density stratification.
However, the waves can reflect off of strong gradients in the
buoyancy frequency (as occurs at the base of the convection
zone) and thereby become radially trapped. If we consider the
bottom of the convection zone to be perfectly reflective, we
obtain the eigenfrequencies illustrated in Figure 3. If we further
place impenetrable latitudinal boundaries, as we did for our
millstone-shaped domain (see Figure 4), we obtain the
eigenfrequencies shown in Figure 5. As expected, the
eigenfrequencies generally increase as the horizontal wave-
number increases and decrease as the radial wavenumber (or
radial order) increases. In particular, we point to the shape of
the dispersion curves that appear in Figure 5 as these suggest
that all of the latitudinal overtones should have frequencies that
initially rise as the azimuthal order increases and eventually
asymptote to a common value.
While observations have yet to directly detect thermal

Rossby waves, numerical simulations have long evinced such
waves. For many years now thermal Rossby waves—in their
unstable, nonlinear form—have appeared as “banana cells” or
“Busse columns.” More recently, stable, long-wavelength

Figure 5. Eigenfrequencies of modes trapped latitudinally and radially in the
millstone domain are illustrated in Figure 4. The frequencies are plotted as a
function of the azimuthal order. Each distinct color corresponds to a different
latitudinal order λ, as indicated in the legend. The solid curves show the
prograde-propagating thermal Rossby waves, whereas the dashed curves are for
the retrograde inertial waves. The dotted curves indicate the frequency where
the lower turning point passes through the bottom boundary. Wave frequencies
above the appropriate dotted curve have two turning points in the radial domain
and have a wave cavity that is screened from the lower boundary condition.
Frequencies below the dotted curve possess only an upper turning point in the
domain and are reflected off the lower boundary.
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thermal Rossby waves have been identified as well (Bekki et al.
2022a, 2022b ). However, only the radial fundamental has been
reported. The first latitudinal overtone was actually the first
thermal Rossby wave to be discussed in the literature. In a
linear stability analysis, Roberts (1968) calculated the λ= 1
thermal Rossby wave and demonstrated that this sort of wave
represents the convective modes in a rotating system at
convective onset. However, this antisymmetric mode turns
out to be less unstable than the sectoral mode with λ= 0 and,
hence, the nonlinear convective cells that appear in numerical
simulations of thermal convection in a spherical shell usually
possess rough symmetry across the equator. Our calculation
here may suggest the form of previously undetected tesseral
modes that, due to being stable and hence low amplitude, have
been skulking around in numerical simulations for many years.
If observationally detected, these modes can serve as seismic
probes for specific entropy density.
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Appendix
Nomenclature

There is often confusion concerning the names that are
applied to the different types of gravito-inertial waves,
particularly thermal Rossby waves. Beyond the fact that
thermal Rossby waves have been called by a myriad of names
(e.g., low-frequency prograde waves, columnar convective
modes, overstable convective modes), part of the confusion
arises because all of these waves are in some sense related to
each other and can transition from one type of wave to another
as various parameters vanish or become large. Thermal Rossby
waves are distinct from classical Rossby waves only through
geometry. The restoring force is essentially the same, arising
from the conservation of potential vorticity (or equivalently
angular momentum). Classical Rossby waves concern vortical
motions that are largely horizontal, either because the fluid
layer is thin (such as the Earth’s atmosphere) or the
stratification is extremely stable, thus discouraging vertical
motions. The conservation principle therefore operates on 2D
spherical surfaces, and this leads to retrograde propagation.
Thermal Rossby waves usually reside in thick atmospheres
where fluid elements are free to move vertically without
inhibition. In fact, in an unstable stratification like that found in
a convection zone, such motions are reinforced. Without
vertical constraint, the vortex columns align instead with the
rotation axis, and prograde-propagating waves are produced by
conservation of potential vorticity in this rotationally aligned
geometry.

Even if we restrict our attention to only zonally propagating
waves in the axially constrained geometry, there are two
distinct wave modes (see Hindman & Jain 2022, 2023). In a
stable stratification, with only weak rotation influence, the two
gravito-inertial wave solutions consist of the retrograde and
prograde branches of the internal gravity waves. However, in
an atmosphere of neutral stability, the two solutions correspond
to pure inertial waves. The prograde branch now transitions to

thermal Rossby waves, and the retrograde branch has moved to
zero frequency, becoming a stationary geostrophic mode.
Finally, in a weakly unstable stratification, both branches
become prograde. The branch with the faster zonal phase speed
is easily identified as thermal Rossby waves, while the slow
branch has been inconsistently named. Busse (1986) called this
branch the thermal mode, while Hindman & Jain (2023) called
them the slow thermal Rossby wave branch.
Here we also consider propagation latitudinally, and this

complicates the naming scheme further. As we stated
previously, for zonal propagation in an isentropic atmosphere,
the two solution branches are prograde thermal Rossby waves
and zero-frequency geostrophic modes. When the waves are
allowed to propagate obliquely to the equator, the prograde
branch remains a prograde inertial wave that is firmly a thermal
Rossby wave. The zero-frequency branch becomes retrograde,
and we choose to call it a retrograde inertial wave for lack of
better choice.
Oblique propagation through a nonadiabatic stratification

leads to an even further loss of clarity. The local dispersion
relation reveals why:
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There are three types of restoring forces that lead to

propagation. Stratification coupled with zonal propagation

leads to the first term in the square brackets. This term is

positive only for waves with a prograde phase speed. This term

provides a compressional β-effect and leads to thermal Rossby

waves. The second term is always positive and leads to inertial

waves that propagate latitudinally. The third term arises from

buoyancy and leads to internal gravity waves. Generally,

however, more than one of these terms will be in operation, and

the wave is a three-way hybrid of internal gravity waves and

the two types of inertial waves. An obvious naming scheme

becomes apparent only when one, or possibly two, of the terms

dominate.
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