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Improving Image Contrastive Clustering through
Self-Learning Pairwise Constraints

Yecheng Guo, Liang Bai, Xian Yang, Jiye Liang Senior Member, IEEE

Abstract—In this paper, a new unsupervised contrastive clus-
tering model is introduced, namely, Image Contrastive Clustering
with Self-Learning Pairwise Constraints (ICC-SPC). This model
is designed to integrate pairwise constraints into the contrastive
clustering process, enhancing the latent representation learning
and improving clustering results for image data. The incor-
poration of pairwise constraints helps reduce the impact of
false negatives and false positives in contrastive learning, while
maintaining robust cluster discrimination. However, obtaining
prior pairwise constraints from unlabeled data directly is quite
challenging in unsupervised scenarios. To address this issue,
ICC-SPC designs a pairwise learning module. This module
autonomously learns pairwise constraints among data samples by
leveraging consensus information between latent representation
and pseudo labels, which are generated by the clustering algo-
rithm. Consequently, there is no requirement for labeled images,
offering a practical resolution to the challenge posed by the lack
of sufficient supervised information in unsupervised clustering
tasks. ICC-SPC’s effectiveness is validated through evaluations
on multiple benchmark datasets. This contribution is significant,
as we present a novel framework for unsupervised clustering
by integrating contrastive learning with self-learning pairwise
constraints.

Index Terms—Contrastive clustering, Self-learning pairwise
constraints, Latent representation learning, Unsupervised clus-
tering

I. INTRODUCTION

CLUSTERING is an essential area of study within ma-
chine learning and data mining, which seeks to categorize

unlabeled images into distinct groups such that images within
the same group share high similarity, while objects in separate
groups display dissimilarity. Various clustering algorithms [1],
[2], [3], [4] have been proposed, many of which have been
successfully applied in real-world applications. One primary
challenge in clustering involves determining an effective sim-
ilarity measure between objects. With the rise in data dimen-
sionality, “the curse of dimensionality” [5] poses challenges,
hindering the efficiency of many clustering algorithms when
handling high-dimensional images [6].

To tackle this challenge, some clustering algorithms have
been developed that simultaneously learn representations and
clustering assignments. These algorithms can be classified
into two groups: those that are not based on neural networks
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and those that utilize deep learning techniques. The former
includes spectral clustering [7], subspace clustering [8], [9],
and NMF clustering [2], which use traditional feature ex-
traction methods to obtain low-dimensional representations.
However, deep neural networks can learn better representations
for complex datasets in certain contexts than traditional em-
bedding methods[10]. Therefore, deep neural network based
clustering algorithms, known as deep clustering, have been
designed, such as DEC [11], DAC [12] and JULE [13]. These
algorithms improve existing deep neural networks to obtain
latent representations of images that are more suitable for
clustering tasks.

Over the past few years, contrastive learning has emerged
as a successful strategy for deep neural networks to learn
unsupervised data representation [14], [15]. To simultaneously
learn data representations and clustering results, the integration
of contrastive learning and clustering algorithms, known as
contrastive clustering, has become increasingly popular [16],
[17], [10]. While contrastive learning treats the argumentations
of an object as its positive samples and selects other objects
as its negative samples, its performance is limited by the fact
that the cluster structure is rarely considered. This makes the
quality of the acquired latent representation sensitive to the
selection of negatives, with false negatives often being selected
for objects that belong to the same cluster, as observed in many
cases [14], [15]. As a result, objects in the same clusters might
not have comparable latent representations.

To tackle the aforementioned issue, contrastive clustering
algorithms incorporate clustering assumptions into the training
process of contrastive neural networks. The objective is to
guarantee that similar data in the original space have com-
parable latent representations. However, while clustering as-
sumptions can mitigate the impact of selecting false negatives,
it also introduces a significant degree of false consistency
uncertainty. In some contrastive clustering algorithms [17],
[18], [19], an object’s neighbors are regarded as its positives.
However, since the data representation in the original feature
space is often raw and unprocessed, an object and its neighbors
may belong to different clusters, leading to the use of false
positives. Therefore, it is evident that although integrating the
clustering hypothesis can improve data representation consis-
tency, cluster discrimination remains inadequate in contrastive
clustering.

To improve the consistency of data representation and the
discrimination of cluster structure in contrastive clustering,
supplementary tags or pairwise constraints can be used to drive
the training process. Pairwise constraints are a type of wide-
used supervised information in semi-supervised clustering
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Fig. 1: The illustration of the effectiveness of incorporating
pairwise constraints in contrastive clustering. The blue boxes
indicate the anchor samples, whereas the red boxes illustrate
the error samples (false negatives and positives). After adding
pairwise constraints, samples of the same class can be better
discriminated, which can alleviate the problems of false neg-
atives and false positives.

[20], [21], [22]. These constraints can be expressed as pairwise
similarities, dissimilarities, or partial orderings between data
points. If some pairwise constraints are obtained, we can use
them to reduce the effect of false positives and negatives
in contrastive clustering. As shown in Fig. 1, incorporating
pairwise constraints can help distinguish between samples
from the same and different categories, which can alleviate the
effects of false positives and negatives. By pulling samples in
the same clusters closer together, the clustering performance
can be further improved. Unfortunately, obtaining prior knowl-
edge about pairwise constraints for an unlabeled dataset can
be challenging for users.

Hence, in this paper, we introduce a novel approach, named
Image Contrastive Clustering with Self-learning Pairwise
Constraints (ICC-SPC), which integrates a pairwise con-
straints learning module into the contrastive learning-based
clustering framework. This approach is fully unsupervised,
eliminating the need for labeled data, and thus reducing
the cost and effort associated with acquiring such data. Our
framework includes a pairwise constraints learning module,
which comprises two parts: the first part learns pairwise
constraints using consensus information among pseudo labels,
latent representations, and their augmented samples, while the
second part ensures that samples that are likely to belong to
the same group have similar latent representations and pseudo
labels using the learned pairwise constraints. Our approach
leverages pairwise constraints to facilitate model training and
alleviate challenges such as the presence of false negative
samples in contrastive learning and the lack of adequate
constraints on pseudo labels. The primary contributions of
this paper include:

• A pairwise constraints learning module is developed, de-
signed to learn pairwise constraints among data samples
effectively. This innovation mitigates the inherent limita-
tions of contrastive clustering by reducing the influence
of both false negatives and false positives. The quality
of the latent representations obtained is enhanced, while
preserving robust cluster discrimination.

• The proposed pairwise constraints learning module can
be integrated into any existing contrastive clustering
model to enhance its performance by learning pairwise
constraints among data samples.

• Our method is fully unsupervised and eliminates the need
for labeled data, making it a viable and efficient solution
for handling false negative samples in clustering.

• We have conducted extensive experiments on multiple
benchmark datasets to demonstrate the efficacy of our
proposed ICC-SPC method.

II. RELATED WORK

A. Image Contrastive Learning

Image Contrastive learning has recently made significant
contributions in characterizing unlabeled data, as exemplified
in [23]. The primary concept behind contrastive learning is to
transform the input data into a latent space where the similarity
of positive sample pairs is maximized, while the similarity
of negative sample pairs is minimized [24]. As an example,
SimCLR [14] introduces a straightforward contrastive learning
framework for visual representation. It treats samples within
a batch as negative samples and does not require any memory
banks. Meanwhile, MOCO [15] utilizes a moving-averaged
encoder and a queue. However, the false negatives problem
can negatively affect the performance of contrastive learning
in these methods.

To address this issue, several approaches have been pro-
posed. FNC [25] presents an unsupervised method for iden-
tifying false negative samples, enhancing contrastive learning
performance by removing such samples from the contrastive
loss. IFND [26] proposes a novel self-supervised contrastive
learning framework that leverages k-means to obtain pseudo
labels and incrementally detects and eliminates false negative
samples. SMoG [27] introduces the momentum grouping
scheme, which synchronously conducts feature grouping with
representation learning and reduces the false negatives of
instance contrastive methods. PGCL [28] captures the core
semantic structure inherent in graph data by grouping se-
mantically analogous graphs together. This approach ensures
consistency in clustering across varying augmentations of
the same graph. The method proposed in [29] introduces a
denoising supervision mechanism that emphasizes structured
learning through supervised means. Furthermore, the approach
outlined in [30] advocates for preserving mutual information
between the representations and inputs, a strategy that effec-
tively minimizes the semantic information loss associated with
false negative samples.

In this paper, we address false positive and negative samples
in contrastive learning by imposing constraints on sample
pairs. Instead of relying solely on pseudo-labels to acquire
class information and learn pairwise constraints, our method
utilizes a combination of a pseudo-labeling matrix, latent
representation similarity matrix, and pairwise constraints for
augmented views during the training of the pairwise con-
straints network. This comprehensive approach yields superior
pairwise constraints.
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B. Image Contrastive Clustering

Image contrastive clustering is a technique that simul-
taneously learns data representations and clustering results,
resulting in impressive clustering performance. Here, we first
introduce instance-level contrastive clustering models. One
such model is SCAN [19], which employs a two-stage learn-
ing strategy. The first stage leverages contrastive learning
to extract features, whereas the second stage pulls in the
semantic features of anchor points and nearest neighbors to
perform clustering. Another model is IDFD [31], which uses
instance discrimination to learn data similarities and feature
decorrelation to eliminate superfluous correlations between
features. Various end-to-end contrastive clustering methods
have also been developed. MICE [32] integrates the discrim-
inative representations acquired through contrastive learning
with the semantic structures captured by a latent mixture
model to create a unified probabilistic clustering framework. In
SCL [33], negative samples are limited by semantic memory,
allowing for the further distinction of samples from different
clusters.

Lately, there has been growing attention on incorporating
cluster-level contrastive learning to enhance the efficacy of
contrastive clustering. One such approach is CC [10], which
involves two levels of contrastive learning: instance-level
and cluster-level, with the goal of enhancing the similarity
of positive samples and reducing the similarity of negative
samples for contrastive clustering. Another method is DRC
[16], which explores the connection between contrastive learn-
ing and mutual information, and provides an approach for
translating any maximized mutual information into minimal
contrastive learning loss. GCC [17] introduces a clustering
assumption that there should be similarity in representation
and clustering assignments between an image and its ran-
domly augmented nearest neighbors. TCL [34] uses the CC
method for clustering, but it enhances both instance-level and
cluster-level contrastive learning by utilizing a confidence-
based criterion to select pseudo labels. TCC [35] broadens
the scope of contrastive learning to encompass a cluster-
level mechanism, where each data point in the same cluster
contributes to a comprehensive representation conveying the
contextual information of every data group.

However, the performance of all these contrastive learning-
based clustering methods is limited by their ability to tackle
the problem of false negative samples in contrastive learning.

C. Pairwise Constraints in Clustering

Semi-supervised clustering commonly integrates pairwise
constraints to assimilate supervised data. For instance, NLPPC
[20] leverages relationships between labels as constraints,
enhancing label propagation optimization. AIPC [21] inno-
vatively employs pairwise data points and neighboring con-
straints, known as constraint neighborhood projections, adept
at resolving conflicts. The study in [36] presents a joint
PCP model tailored for constrained spectral clustering, which
simultaneously refines both propagation and affinity matrices.
Meanwhile, [37] proposes a method that unifies diverse con-
straint sources to identify well-structured clusters. Extending

the spectral clustering’s objective function, Self-CSC [22] en-
compasses both pairwise and label self-constrained elements.

In contrast, our paper introduces a novel and fully unsuper-
vised approach to alleviate the issue of false negative samples
in contrastive learning-based clustering. Unlike existing ap-
proaches that rely on labeled data, our method offers an effec-
tive and efficient solution that does not require any supervised
information. This represents a significant contribution to the
field of clustering, as it offers a way to handle false negative
samples without incurring the cost and effort of acquiring
labeled data.

III. METHOD

This section provides a detailed introduction to our devel-
oped method, which is versatile and can be employed with
various contrastive clustering techniques. As illustrated in Fig.
2, our ICC-SPC model is comprised of the contrastive cluster-
ing module and the pairwise constraints learning module. We
will begin by introducing the contrastive clustering module,
covering its underlying concepts and how it works. Then, we
will introduce our pairwise constraints learning module, which
allows us to learn and utilize pairwise constraints among data
samples to enhance the clustering outcomes. We will provide a
thorough explanation of how the pairwise constraints learning
module works and how it can be integrated with the contrastive
clustering module to achieve better clustering performance.

A. Preliminary

1) Definition of Notations: The subsequent notations are
employed in this paper. Let I = {i1, ..., iM} represent a
set of the original images, X = {x1, ...,xM} and X̂ =
{x̂1, ..., x̂M} represent two random augmentations of the
original images, where xi (or x̂i) indicates the ith row of
X (or X̂) and M is sample size. Z = {z1, ...,zM} and Ẑ =
{ẑ1, ..., ẑM} are the corresponding latent representations of X
and X̂ , where Z and Ẑ are both matrices with dimensions
RM×D, D indicates the dimension of latent representations. zi
(or ẑi) ∈ RD represents the ith row of Z (or Ẑ). We define
Y = {y1, ...,yM} and Ŷ = {ŷ1, ..., ŷM} as the pseudo labels
of X and X̂ respectively, where Y (or Ŷ ) is RM×K with K
being the number of clusters. yi(or ŷi) ∈ RK represent the ith
row of Y (or Ŷ ), indicating the cluster assignment of the i-th
sample. yi(or ŷi) ∈ RM represent the ith column of Y (or Ŷ ),
indicating the probabilities of each of the M samples falling
into cluster i.

In contrastive clustering, X and X̂ need to be converted
into an initial representation H and Ĥ by the neural network
f(·). Furthermore, two neural networks gz(.) and gy(.) are
utilized to convert H (or Ĥ) into Z (or Ẑ) and Y (or
Ŷ ), respectively. Before introducing our model in detail, we
summarize the essential notations utilized throughout this
paper in Table I.

2) Contrastive Clustering Module: This subsection pro-
vides an introduction to contrastive clustering, laying the foun-
dation for our proposed model [10] [17]. The core idea behind
contrastive learning is to acquire representations that group
similar or positive samples together while separating dissimilar
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Fig. 2: The illustration of our ICC-SPC model. The first part of ICC-SPC is the contrastive clustering module, including the
instance-level contrastive loss Lins and the cluster-level contrastive loss Lcls. The second part of ICC-SPC is the pairwise
constraints learning module, using L1, L2, and L3 together to train the network gcon(·) for obtaining pairwise constraints. The
pairwise constraints are utilized to ensure that samples likely to belong to the same group have similar latent representations
and pseudo labels, as indicated by the auxiliary losses Lz and Ly . The gdis(·) network is to determine samples with high-
confidence pseudo labels.

TABLE I: Symbol and Description

Symbol Description
I Set of original images.
X The first augmented view of the original images I .
X̂ The second augmented view of the original images I .
H (Ĥ) The initial representation of X (X̂) generated by f(.).
Z (Ẑ) The latent representation of X (X̂) generated by gz(.).
zi(ẑi) The ith row of Z (Ẑ).
Y (Ŷ ) The pseudo label of X (X̂) generated by gy(.).
yi(ŷi) The ith row of Y (Ŷ ).
yi(ŷi) The ith column of Y (Ŷ ).
yi The discretized form of yi.
C (Ĉ) The pairwise constraints of X (X̂).
cij(ĉij) The element in the ith row and jth column of C(Ĉ).
C The variant of C only containing high-confidence constraints.
cij The element in the ith row and jth column of C.
Ψ (Ψ̂) The similarity matrix calculated from Y Y T (Ŷ Ŷ T ).
Φ (Φ̂) The similarity matrix calculated from ZZT (ẐẐT ).
θ The confidence levels of pseudo labels.
θi The ith element of θ.
M The sample size.
D The dimension of latent representation.
K The number of classes.
δ1,δ2 Hyperparameters used in the pairwise constraints learning.
f(·) The neural network.
gz(·) The instance-level contrastive head.
gy(·) The cluster-level contrastive head.
gcon(·) The pairwise constraints learning network.
gdis(·) The discriminator to assist the genreation of θ.
τz The instance-level temperature parameter.
τy The cluster-level temperature parameter.

or negative samples from each other. This is achieved through
both instance-level and cluster-level contrastive learning.

Instance-level contrastive learning aims to optimize a simi-
larity metric between sample pairs. It encourages representa-
tions of similar samples to be more similar to each other than

dissimilar samples. The objective is to decrease the distance
between positive instances and increase the distance between
negative instances. Conversely, cluster-level contrastive learn-
ing adopts a cluster-level projection head to learn the cluster
assignments. It aims to group similar examples into clusters
and subsequently learn representations that capture the similar-
ities and differences between the clusters. Together, instance-
level and cluster-level contrastive learning help to capture
both within-class and between-class variations, enabling better
representation learning for clustering tasks. The training objec-
tives for contrastive clustering can be summarized as follows:

L = Lins + Lcls, (1)

where Lins refers to the instance-level contrastive loss and
Lcls refers to the cluster-level contrastive loss.

To demonstrate the general applicability of our approach,
we will evaluate it on two representative contrastive clustering
methods, CC [10] and GCC [17], in our experiments. These
methods differ slightly in their contrastive losses L, mainly
due to their different strategies for producing the second
argumentation X̂ . In CC, both X̂ and X are produced by
random transformation of the original images. In GCC, X is
made by random transformation of the original images and
each xi in X̂ is a randomly selected neighbor of xi. Next,
we will provide detailed descriptions of Lins and Lcls in CC
and GCC.

For instance-level contrastive learning, the latent represen-
tations are used to compute the instance-level loss:

Lins = − 1

M
log

M∑
i=1

∑
zj∈Pi

e(s(zi,zj)/τz)∑
zj∈Pi∪Ni

e(s(zi,zj)/τz)
, (2)

where s(·) is the similarity measure, can be cosine similarity
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or dot product, τz is the temperature parameter at the instance
level, Pi and Ni are two sets including all the positive
and negative examples of image zi, respectively. In CC,
Pi = {ẑi} and Ni includes other M random augmented
samples. However, in GCC, the positive instances refer to
the neighbors of zi and the negative samples are defined as
the non-neighbors of zi, i.e., Pi = {zj |zj ∈ knn(zi)} and
Ni = {zj |zj ̸∈ knn(zi)}, where knn(zi) is a set including
the first k nearest neighbors of zi.

To implement cluster-level contrastive learning, we adopt
pseudo labels and define the cluster-level contrastive loss as
follows:

Lcls = − 1

K

K∑
i=1

log
e(s(y

i,ŷi)/τy)∑K
j=1 e

(s(yi,ŷj)/τy)
+ Lau, (3)

Where τy is the cluster-level temperature parameter. Addi-
tionally, Lau is an auxiliary loss to prevent the model from
assigning most instances to the same cluster. Its definition can
be seen in [10], [17].

B. Pairwise Constraints Learning Module

Compared to conventional contrastive clustering models,
our framework includes a pairwise constraints learning mod-
ule that learns pairwise constraints among data samples.
As illustrated in Fig. 3, we assert that pairwise constraints
should adhere to two foundational principles. Firstly, con-
sistency between the pairwise constraints and the similarity
matrices of pseudo-labels and latent representations should
exist. Secondly, the pairwise constraints derived from various
augmentation views should be consistent.

ℒ�

ℒ�

ℒ�

Fig. 3: Illustration of the pairwise constraints learning module
within our framework, highlighting the adherence to two
core principles: consistency between pairwise constraints and
similarity matrices of pseudo-labels and latent representations,
and consistency of pairwise constraints across various augmen-
tation views.

This module comprises two parts. The first part utilizes
consensus information among pseudo labels, latent repre-
sentations, and their augmented samples to learn pairwise
constraints. During the training phase, only the parameters
of the network gcon(·) are modified, while the other network
parameters remain fixed. The second part of our approach
leverages the learned pairwise constraints to guarantee that
samples which are likely to belong to the same group have
comparable latent representations and pseudo labels. These
pairwise constraints are applied at both the instance and class
levels to facilitate model training and alleviate challenges
such as the presence of false negative samples in contrastive
learning and the lack of adequate constraints on pseudo labels.
In the following parts, we delve into the details of this module.

1) Learning pairwise constraints of samples:
The first phase of our pairwise constraints learning module

is focused on training a pairwise constraints network and
extracting pairwise constraints. Let Φ represent the pair-
wise similarity matrix derived from latent representations,
with each element in the ith row and jth column given by
ϕij = s(zi, zj). Moreover, we define Ψ = Y Y T , which is
the similarity matrix calculated using pseudo labels Y . The
dimensions of these matrices are RM×M . For the similarity
measure, we choose cosine similarity in the subsequent text,
that is:

s(zi, zj) =
zi · zj

∥zi∥∥zj∥
. (4)

In this module, the gcon(·) network is specifically designed
to learn pairwise constraints in a self-supervised manner. The
network’s final layer incorporates a Sigmoid layer to ensure
the output is bounded between 0 and 1. The output of gcon(·),
represented as C = gcon(Φ) and Ĉ = gcon(Φ̂), serves as
the pairwise constraints. It should be noted that only the
parameters of gcon(·) are updated during training, while the
parameters of f(·), gz(·), and gy(·), which are used in the
conventional contrastive clustering model, are fixed. We define
three loss functions to train gcon(·). The first loss aims to
ensure that C captures the information contained in the pseudo
labels, which is defined as:

L1 =
1

M2

M∑
i=1

M∑
j=1

(cij − ψij)
2, (5)

where cij and ψij denote the elements in the ith row and jth
column of C and Ψ, respectively.

In addition to the aforementioned loss function, we intro-
duce a second loss that enforces consistency between pairwise
constraints derived from two augmented views, represented as:

L2 =
1

M2

M∑
i=1

M∑
j=1

(cij − ĉij)
2, (6)

where ĉij denote the elements in the ith row and jth column
of Ĉ.

In conjunction with the previous two losses, we define a
third loss to ensure that C reflects the similarities observed in
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the latent space represented by Z, as defined by:

L3 =
1

M2

M∑
i=1

M∑
j=1

(1− cij) log(1 + max{ϕij , 0}). (7)

According to ROUL [38], the intent behind this loss is to
ensure that when two samples show high similarity in the
cosine similarity matrix of their latent representations, the
corresponding value in C should also be high. This loss is
crafted to ensure that higher values in Φ match up with larger
values in C. However, due to the inherent inaccuracies in Φ,
values that are negative or slightly above zero in Φ do not
significantly correspond to a rise in C. The complete loss
function utilized to train gcon(·) is defined as follows:

Lgcon = L1 + L2 + L3. (8)

2) Enhancing contrastive clustering using learned pairwise
constraints:

In the second phase of our pairwise constraints learning
module, pairwise constraints are used to encourage samples
of the same class to have similar latent representations and
pseudo labels. Specifically, after obtaining the pairwise con-
straints from the first part of our pairwise constraints learning
module, we can use these constraints to identify samples of
the same category. That is, samples with pairwise constraints
larger than a given threshold δ1 should be considered as
samples of the same category. We define the following matrix
C ∈ RM×M , which is a parse version of C and the entry in
the ith row and jth column is determined by:

cij =

{
cij cij ≥ δ1

0 cij < δ1
(9)

To enforce samples from potentially the same group, as
indicated by C, having similar latent representations from
augmented views, we define the following loss:

Lz =
1

M2

M∑
i=1

M∑
j=1

cije
−s(zi,ẑj). (10)

Additionally, we introduce a similar loss to constrain the
pseudo labels as follows:

Ly =
1

M2

M∑
i=1

M∑
j=1

θicije
−s(yi,ŷj), (11)

where θi is an indicator that represents the level of confidence
in the pseudo label assigned to sample i. The introduction of
θi is intended to address the potential bias in the pseudo labels,
which are not ground-truth labels and may contain misleading
information. By determining the contributions of individual
pseudo labels based on their level of confidence, our approach
can mitigate the impact of such biases and improve the overall
accuracy and reliability of the clustering results.

High-confidence pseudo label selection (HCPL): To au-
tomatically learn θi, we proposed a high-confidence pseudo
label selection approach. We design a discriminator gdis(·) to
generate θi for each sample xi. The inputs to gdis(·) are the
concatenation of latent representations and pseudo labels. The

output of gdis(·) is to determine whether the input pair comes
from the same sample. The positive examples are created by
concatenating the latent representations zi of xi and the one-
hot codes of the pseudo label yi. Instead of directly using yi,
we first discretize it into yi, where the element of yi is set to
1 if the corresponding element of yi is within a small margin
of 1, typically less than 0.01, and 0 otherwise. In contrast, the
negative examples combine the latent representations of xi and
the other K-1 one-hot codes. These instances are input into the
discriminator gdis(·) during training. When zi and yi belong to
the same sample xi, the aim is to maximize the output from
the discriminator gdis(·), and conversely, minimize it when
they do not belong to the same sample.

With the other parts of the model frozen, the discriminator
gdis(·) trained using the following loss:

Ldis =
1

MK

M∑
i=1

(log gdis(zi ⊕ yi) +

K−1∑
j=1

log(1− gdis(zi ⊕ yj))),

(12)
where yj is a one-hot vector where ones appear at different
locations from yi representing negative samples, and ⊕ is
the vector concatenation operator. The output of gdis(·) is
then transformed into the discrete value θi to indicate the
confidence level of pseudo labels:

θi = I(gdis(zi ⊕ yi) > δ2), (13)

where the indicator I equals 1 if the condition is satisfied and
0 otherwise. The reason for introducing a discriminator is that
directly using the value of pseudo labels to indicate label confi-
dence may lead to the exclusion of some challenging samples.
These hard samples have a significant impact on the model
performance, and we aim to improve contrastive learning by
identifying reliable hard samples. The discriminator is helpful
in this regard since it can identify trustworthy hard samples,
even when their pseudo labels values are not very high.

C. Model Training Process

The model undergoes training through the following two
phases. During the first phase, which is the pre-training phase,
the contrastive clustering module’s networks f(·), gz(·), and
gy(·) are trained using the loss functions Lins and Lcls. In
the second phase, the pairwise constraints generation network
gcon(·) is first trained independently using the loss function
Lgcon while keeping f(·), gz(·), and gy(·) fixed. Next, the
network gdis(·), which returns the confidence levels of pseudo
labels, is trained using the loss function Ldis while fixing the
other networks. Finally, the entire contrastive clustering model
with pairwise constraints is trained, where the networks f(·),
gz(·), and gy(·) are updated using the following loss function:

L = Lins + Lcls + Lz + Ly. (14)

The details are shown in Algorithm 1.

IV. EXPERIMENTS

This section presents the experimental results that illustrate
the effectiveness of our proposed method. To illustrate the
adaptability of our model, we evaluated its performance by
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Algorithm 1 The Algorithm of ICC-SPC.
Input: Data samples I; the number of pre-training epochs

E1; the number of training epochs E2; sample size
M ; temperature hyperparameters τz and τy; number
of classes K; thresholds δ1, δ2; networks f(·), gz(·),
gy(·), gdis(·), and gcon(·).

// Phase 1: pre-training the contrastive
clustering module

1 for epoch = 1 to E1 do
2 Compute the augmented views of latent representations

and pseudo labels;
3 Compute instance-level contrastive loss as defined in

Eq.(2);
4 Compute cluster-level contrastive loss as defined in Eq.(3);
5 Update parameters of f(·), gz(·), gy(·) using the loss func-

tions Lins and Lcls;
6 end
// Phase 2: Training the pairwise

constraints learning module
7 for epoch = E1 to E2 do

// Learning pairwise constraints
8 Train gcon(·) using the loss defined in Eq. (8), while the

parameters of f(·),gz(·),gy(·) are frozen;
9 Generate pairwise constraints using gcon(·);

// Utilizing pairwise constraints to
enhance contrastive learning.

10 Train gdis(·) using the loss defined in Eq.(12), while fixing
parameters of other networks in the model;

11 Use gdis(·) to get the confidence level of pseudo labels
through Eq. (13);

12 Compute the losses defined in Eq. (10) and Eq. (11)
for constraining latent representations and pseudo labels,
respectively.

13 Train f(·), gz(·), and gy(·) using the loss defined in Eq.
(14).

14 end

integrating the proposed self-learning pairwise constraints into
two widely used contrastive clustering methods, namely CC
and GCC.

A. Dataset

We performed experiments on five popular benchmark
datasets: CIFAR-10 [39], CIFAR-100 [39], STL-10 [40],
ImageNet-10 [12], and ImageNet-Dogs [12]. CIFAR-10 com-
prises of 60,000 32x32 colour images of 10 distinct categories,
while CIFAR-100 comprises the same number of images but
grouped into 20 broad classes and 100 sub-classes. For the
sake of fairness in our experiment, we selected the 20 broad
classes as our labeling scheme. STL-10 is an image classifi-
cation dataset that also includes unlabeled data. ImageNet-10
and ImageNet-Dogs are subsets of the large-scale ImageNet
dataset [41], containing 13,000 and 19,500 images, respec-
tively. ImageNet-10 consists of 10 classes, while ImageNet-
Dogs comprises 15 classes of dog breeds. We selected these
datasets due to their diversity in size, complexity, and number

of classes, which enabled us to comprehensively assess the
efficacy of our proposed method.

To ensure a fair comparison, we employed the identical
dataset settings as those used in the original versions of CC
and GCC, respectively. This involved using the same training-
test data splits, preprocessing steps, and hyperparameters. An
overview of each dataset is presented in Table II. The models
named ICC-SPC and IGCC-SPC indicate that our proposed
self-learning pairwise constraints have been integrated into CC
and GCC, respectively.

TABLE II: List of datasets used in our experiments.

Dataset Image size(ICC-SPC) Image size(IGCC-SPC) #Samples #Classes

CIFAR-10 224×224 32×32 60000 10

CIFAR-100 224×224 32×32 60000 20

STL-10 224×224 96×96 113000 10

ImageNet-10 224×224 96×96 13000 10

ImageNet-Dogs 224×224 96×96 19500 15

B. Baseline Methods

The baseline methods can be divided into three categories
as follows:

• Conventional clustering models: Traditional clustering
methods are techniques to partition objects or samples
within a dataset into different groups or clusters. Repre-
sentative methods include K-means [42], Agglomerative
clustering(AC) [3], Spectral clustering (SC) [43], and
Nonnegative Matrix Factorization (NMF) based cluster-
ing [2].

• Deep clustering models: Deep clustering methods are a
category of techniques that combine deep learning with
traditional clustering approaches. They leverage neural
network models to learn data representations and apply
these representations to clustering tasks. Representative
methods include VAE [44], JULE [13], DAC [12], PICA
[45] and DCCM [46].

• Contrastive clustering models: Contrastive clustering is
a machine learning technique that combines elements of
contrastive learning and clustering. Representative meth-
ods include DRC [16], NNCC [47], MICE [32], CC [10]
and GCC [17].

C. Experimental Settings

Experimental setup. We implemented all experiments us-
ing PyTorch [48]. Our code is available at the following URL1.
To ensure a fair comparison, we followed the data augmenta-
tion techniques proposed in [10] and [17]. We utilized the
Adam optimizer with an initial learning rate of 0.0003 to
optimize the MLP gcon(·) and the discriminator gdis(·). The
middle hidden layer of gcon(·) has a dimension of 4096. gdis(·)
has an output dimension of 1. The fully connected neural
network gz(·) is set to have a row space dimensionality of
128 to retain more information on images. Meanwhile, the

1https://github.com/gyc126/ICC-SPC
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output dimension of gy(·) is equal to the number of clusters.
The training process consists of a total of E2 = 1000 epochs.

In ICC-SPC, we utilized ResNet-34 [49] as the backbone
for our experiments. The batch size was set to 256, and the
temperature parameter τz was fixed at 0.5 for all experiments.
For all datasets, we used a cluster-level temperature parameter
τy of 1.0. The Adam optimizer with an initial learning rate of
0.0003 was utilized to simultaneously optimize gz(·) and gy(·).
The overall model was trained after pre-training E1 = 200
epochs. In IGCC-SPC, ResNet-18 [49] is used as the backbone
for the experiments. The batch size used for training is 256 on
CIFAR-10 and CIFAR-100, and 96 on STL-10 and ImageNet-
10/Dogs. The temperature parameter τz is set to 0.1 for all
datasets, and the cluster-level temperature parameter τy is fixed
to 1.0. The optimizer used is SGD with an initial learning rate
of 0.4, a weight decay of 0.0001, and a momentum coefficient
of 0.9. The learning rate is decayed using a cosine scheduler
with a decay rate of 0.1. The overall model is trained after
pre-training E1 = 80 epochs. We will discuss the settings
of hyperparameters δ1 and δ2 in the sensitivity analysis,
which will be presented later in this section. Additionally,
the experiments are conducted on Nvidia A100. Training on
CIFAR-10 takes approximately 25 hours, while ICC-SPC,
GCC, and IGCC-SPC require 40 hours, 16 hours, and 27
hours, respectively.

Evaluation Metrics. To quantitatively evaluate the effec-
tiveness of our proposed ICC-SPC and IGCC-SPC methods,
we adopted three commonly used evaluation metrics for
clustering, namely Accuracy (ACC) [11], Normalized Mutual
Information (NMI) [50], and Adjusted Rand Index (ARI)
[51]. ACC is a widely recognized evaluation metric in deep
clustering. It measures the percentage of correctly assigned
data points to their true clusters. NMI is a popular metric
for measuring the quality of clusters obtained through deep
clustering. It assesses the degree of agreement between the true
cluster assignments and the predicted ones while accounting
for chance. ARI is another widely used metric in deep cluster-
ing. It quantifies the similarity between the true and predicted
cluster assignments, correcting for chance agreement. ARI
values range from -1 to 1. The three metrics provide a
comprehensive assessment of the clustering performance in
terms of both accuracy and structure. A greater value of the
metrics implies superior clustering performance.

D. Analysis of Clustering Performance

1) Baseline Comparison: Table III presents the evaluation
results of several representative deep clustering methods, with
results of other methods taken directly from their correspond-
ing papers and publicly available code, and “-” denoting miss-
ing results. Our proposed deep clustering method outperforms
conventional clustering methods across all five image datasets
due to its ability to leverage the capabilities of deep neural
networks in learning highly representative feature embeddings.
These embeddings capture the intrinsic characteristics of the
images, leading to enhanced clustering performance. Our
contrastive clustering-based model outperforms other deep
clustering methods on the same five datasets, which can be

attributed to the efficacy of contrastive learning in producing
high-quality latent representations of the data.

To show the effectiveness of our model, we compared
it with other contrastive clustering models. Our comparison
revealed that models with the inclusion of our self-learning
pairwise constraints, ICC-SPC and IGCC-SPC, showed bet-
ter performance than their original versions, CC and GCC,
in most datasets. Additionally, IGCC-SPC showed the best
performance in four out of five datasets, further validating
the effectiveness of our approach. We observed that for the
STL-10 dataset, ICC-SPC did not improve the performance
of CC. This could be due to the fact that the STL-10
dataset only uses a small fraction of the whole dataset for
testing, where cluster-level contrastive learning may not play
an essential role, and pseudo labels are not generated to
facilitate pairwise constraints learning. Overall, our proposed
method outperforms conventional clustering techniques and
other deep contrastive clustering models. Our self-learning
pairwise constraints improve clustering accuracy, making it
state-of-the-art in this area.

2) Clustering performance with self-labeling boost: Re-
cently, TCL [34] adopted a confidence-based criterion to
choose pseudo labels, enhancing instance-level and cluster-
level contrastive learning. Specifically, in TCL, once the con-
trastive clustering model training is completed, a confidence-
based boosting strategy is applied to fine-tune the model. This
involves selecting confident samples by setting a threshold on
the pseudo label obtained from the cluster-level contrastive
head. The cross-entropy loss is used to fine-tune the model by
aligning the pseudo labels of substantial data augmentation
with the weak data augmentation of confident samples, a
process known as self-labeling. Here, we aim to compare our
model with this self-labeling boosted baseline model. For a
fair comparison, we also fine-tune the IGCC-SPC model by
adding the same number of epochs of the self-labeling strategy
according to SCAN [19]. The comparison results are shown
in Table IV, where IGCC-SPC* indicates that our IGCC-SPC
model has been further fine-tuned exclusively using the self-
labeling boosting strategy from TCL. We find that our IGCC-
SPC* model generally shows better performance than TCL
in 4 out of 5 datasets. As discussed earlier, the suboptimal
performance of our model on the STL-10 dataset can be
attributed to the fact that it only utilizes a small fraction of the
entire dataset for testing. In this case, cluster-level contrastive
learning may not be as crucial, and pseudo labels are not
generated to aid in the learning of pairwise constraints.

E. Impact on Sample Selection in Contrastive Learning

1) Evaluation of Learned Pairwise Constraints: To illus-
trate the performance of learning pairwise constraints, we
first represent the ground-truth pairwise relationships between
samples using the one-hot encoding of the ground-truth labels
denoted by L. The matrix L̃ = LLT is then calculated,
where each element l̃ij in the resulting matrix shows the
ground-truth pairwise relationship between sample i and j.
To compare the ground-truth pairwise relationships with the
learned pairwise constraints from the self-learning approach,
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TABLE III: Clustering performance of comparative methods on five benchmark datasets.

Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs
Methods NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI
K-means 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020

AC 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021
SC 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013

NMF 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016
VAE 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079
JULE 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028
DAC 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111
PICA 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201

DCCM 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182
DRC 0.621 0.727 0.547 0.356 0.367 0.208 0.644 0.747 0.569 0.830 0.884 0.798 0.384 0.389 0.230

NNCC 0.737 0.819 - 0.421 0.438 - 0.616 0.725 - 0.683 0.751 - 0.372 0.401 -
MICE 0.737 0.835 0.698 0.436 0.440 0.280 0.635 0.752 0.575 - - - 0.423 0.438 0.286

CC 0.705 0.790 0.637 0.431 0.429 0.266 0.719 0.817 0.726 0.859 0.893 0.822 0.445 0.429 0.274
GCC 0.764 0.856 0.728 0.472 0.472 0.305 0.684 0.788 0.631 0.842 0.901 0.822 0.490 0.526 0.362

ICC-SPC 0.732 0.832 0.697 0.433 0.457 0.299 0.705 0.806 0.645 0.843 0.908 0.825 0.498 0.490 0.363
IGCC-SPC 0.784 0.870 0.752 0.493 0.474 0.322 0.695 0.777 0.641 0.892 0.952 0.898 0.608 0.641 0.504

TABLE IV: Comparison with the boosting baseline model.

Dataset Methods NMI ACC ARI

CIFAR-10 TCL 0.819 0.887 0.780

IGCC-SPC∗ 0.850 0.915 0.833

CIFAR-100 TCL 0.529 0.531 0.357

IGCC-SPC∗ 0.534 0.507 0.359

STL-10 TCL 0.799 0.868 0.757

IGCC-SPC∗ 0.725 0.796 0.675

ImageNet-10 TCL 0.875 0.895 0.837

IGCC-SPC∗ 0.871 0.911 0.846

ImageNet-Dogs TCL 0.623 0.623 0.516

IGCC-SPC∗ 0.624 0.683 0.514

a matrix C̃ is created by setting the non-zero elements of
the learned pairwise constraints (denoted by C) to 1. The
element c̃ij in C̃ represents the pairwise constraints between
the ith and jth samples. To evaluate the performance of the
learned pairwise constraints, we calculate the proportion of
correctly identified pairwise relationships between samples
in the matrix C̃. This provides a measure of how well the
learned pairwise constraints capture the ground-truth pairwise
relationships. The proportion is calculated as:

Pr =

∑M
i=1

∑M
j=1 c̃ij l̃ij∑M

i=1

∑M
j=1 c̃ij

, (15)

where M is the sample size. From Fig. 4, we can see
that the performance of learning pairwise constraints remains
consistently high for both ICC-SPC and IGCC-SPC models
during the training process.

2) Analysis of False Positive and Negative Sample Rates: In
this subsection, we further quantify our ability to accurately
select positive and negative samples in contrastive learning.
Same as above, we also use the ground-truth labels in the
dataset for assistance in measurement. We calculate whether
the positive and negative images selected for each target

Fig. 4: The performance of learning pairwise constraints dur-
ing training in Cifar-10 on ICC-SPC and IGCC-SPC methods.

sample have the same label as the target. False positive
samples are those selected positive samples whose labels are
different from our target sample; false negative samples are
those selected negative samples whose labels are the same as
our target sample. The error rate for each target sample in
the contrastive learning process is computed by determining
the proportion of combined false positive and false negative
samples. This error rate summed across all target samples is
denoted as Pe:

Pe =

M∑
i=1

FPi + FNi

PNi
, (16)

where FPi and FNi are the counts of false positive and
false negative samples for the ith image, respectively. PNi

represents all candidate positive and negative samples of the
ith image. A smaller Pe value indicates better ability of sample
selection in the contrastive learning process. Fig. 5 shows the
changes of Pe during the training process for both GCC and
IGCC-SPC methods. Notably, the GCC method displays a
persistently elevated Pe with minor fluctuations throughout
its training. Conversely, the IGCC-SPC method starts with
a smaller Pe value, which further decreases as training pro-
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gresses. This observation demonstrates the superiority of our
proposed method in selecting positive and negative samples.

Fig. 5: Evolution of Pe throughout training for both GCC and
IGCC-SPC methods.

F. Ablation Studies

In this subsection, we perform a series of ablation studies
to demonstrate the effectiveness of the pairwise constraints
learning module. As Table III indicates, the introduction of
pairwise constraints leads to IGCC-SPC exhibiting the best
performance. We conduct these ablation studies on IGCC-SPC
using three datasets for illustrative purposes.

1) Impact of Pairwise Constraints on Clustering: Pairwise
constraints play a crucial role as supervisory information for
contrastive clustering. As demonstrated in Table V, the intro-
duction of pairwise constraints in the contrastive clustering
method leads to significantly improved cluster performance
compared to the method without pairwise constraints. This
improvement further highlights the effectiveness of these con-
straints in enhancing the performance of contrastive clustering.

TABLE V: Effectiveness of introducing self-learning pairwise
constraints on clustering performance.

Dataset Pairwise Constaints NMI ACC ARI

CIFAR-10 0.764 0.856 0.728

✓ 0.784 0.870 0.752

CIFAR-100 0.472 0.472 0.305

✓ 0.493 0.474 0.322

ImageNet-dogs 0.490 0.526 0.362

✓ 0.608 0.641 0.504

2) Performance Across Different Loss Functions: We em-
ploy the loss function Lgcon to learn the network gcon(·),
which is specifically designed to learn pairwise constraints in
a self-supervised manner. The compulsory loss in Lgcon is L1,
which ensures that pairwise constraints capture the information
contained in the pseudo labels. In addition, Lgcon includes
other loss functions to enforce consistency between pairwise
constraints derived from two augmented views and ensure
that pairwise constraints reflect the similarities observed in
the latent space. To evaluate the significance of incorporating
these additional losses, we conduct ablation experiments as

presented in Table VI. The results show that the model
trained with the complete loss Lgcon outperforms the model
trained with only L1. This finding highlights the importance
of incorporating all losses in learning pairwise constraints
through self-supervision.

TABLE VI: Results of using different loss.

Dataset Loss NMI ACC ARI

CIFAR-10 L1 0.780 0.867 0.745

Lgcon 0.784 0.870 0.752

CIFAR-100 L1 0.478 0.465 0.309

Lgcon 0.493 0.474 0.322

ImageNet-Dogs L1 0.590 0.623 0.483

Lgcon 0.608 0.641 0.504

3) Contribution of the HCPL Model to Learning: The
results presented in Table VII highlight the effectiveness of
incorporating HCPL into the learning of pairwise constraints.
Our approach effectively addresses potential biases in the
pseudo labels by determining their contributions based on their
level of confidence. As a result, the clustering performance is
improved, which suggests that confidence sample selection can
be beneficial in utilizing pairwise constraints to enhance the
overall clustering performance.

TABLE VII: Effectiveness of HCPL model for pairwise con-
straints learning.

Dataset HCPL NMI ACC ARI

CIFAR-10 0.780 0.868 0.748

✓ 0.784 0.870 0.752

CIFAR-100 0.481 0.469 0.317

✓ 0.493 0.474 0.322

ImageNet-Dogs 0.605 0.635 0.497

✓ 0.608 0.641 0.504

G. Sensitivity Analysis

Similar to the ablation study section, we perform sensitivity
analyses on IGCC-SPC to investigate its sensitivity to hyper-
parameters.

1) Sensitivity analysis of the threshold δ1: In our approach,
the threshold value δ1 is used in the process of obtaining
C as defined in Eq. 9. By setting a threshold value, we
determine whether the elements in the matrix C should be
set to 0. To examine the impact of the hyperparameter δ1, we
carry out experiments on CIFAR-10 and CIFAR-100 datasets.
We assessed the effectiveness of our approach using different
values of δ1 and the results are presented in Fig. 6a) and b). To
overcome the problem of difficulty in obtaining a value due to
the sensitivity of the δ1, we have implemented an automatic
threshold selection mechanism in our ICC-SPC (or IGCC-
SPC) method. Specifically, when we begin using pairwise
supervised contrastive learning, if, at that point, the number
of samples identified as belonging to the same class using a
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threshold exceeds three times (or one time) the total number
of samples in the dataset, we designate that threshold as our
selected threshold range. Following the automatic threshold
selection method, the obtained threshold is 0.8. We analyze
values around 0.8, including {0.65, 0.7, 0.75, 0.8, 0.85, 1}. The
optimal thresholds for achieving the best performance vary
between the two datasets. We observe that a threshold value of
0.8 yields near-optimal performance on the CIFAR-10 dataset,
as the ACC, ARI, and NMI values are maximized. On the
other hand, for the CIFAR-100 dataset, a threshold value of
0.65 results in performance close to the best.

(a) CIFAR-10 (b) CIFAR-100

(c) CIFAR-10 (d) CIFAR-100

Fig. 6: The impact of δ1 and δ2 on the performance of our
proposed method.

2) Sensitivity analysis of the threshold δ2: In the HCPL
model, we utilize the output score of the discriminator to
determine whether a sample is a high-confidence sample or
not, using a threshold value δ2. To investigate the effect of
this hyperparameter on the model’s performance, we conduct
a sensitivity analysis by varying the value of δ2 and evaluating
its effect on CIFAR-10 and CIFAR-100 datasets, as illustrated
in Fig. 6c) and d). Based on the results, we select 0.1 to
conduct experiments in the above subsections. The sensitivity
analysis reveals that varying the value of δ2 does not have
a significant impact on the performance of the IGCC-SPC
model. This implies that the model is not sensitive to the
choice of the threshold δ2, and the performance is relatively
stable across different values of δ2.

H. Comparison with Alternative Constraints

Finally, to demonstrate the superiority of the pairwise con-
straint C proposed in this paper, we compare it with two other

contraints, Ψ and Φ. As depicted in Fig. 7, the resulting values
of Pr for the Cifar-10 dataset using both ICC-SPC and IGCC-
SPC methods with the three different constraints are shown.
Our proposed pairwise constraints C consistently yields higher
Pr than Ψ and Φ, thus substantiating the superiority of C.

(a) ICC-SPC (b) IGCC-SPC

Fig. 7: Comparison of different pairwise constraints.

V. CONCLUSION

In this paper, we introduced a novel unsupervised con-
trastive clustering method that integrates a pairwise constraints
learning module into the contrastive learning-based clustering
framework. Our proposed approach enhances the quality of the
learned latent representations by reducing the impact of false
negatives and false positives while maintaining high cluster
discrimination. Moreover, this fully unsupervised approach
eliminates the need for labeled data, providing a practical
solution to the challenge of insufficient supervised information
in unsupervised clustering.To demonstrate the general appli-
cability of our proposed pairwise constraints learning module,
we integrated it into two widely-used contrastive clustering
methods, CC and GCC, and evaluated its performance. The
extensive experiments on various benchmark datasets demon-
strated that our approach outperforms existing unsupervised
clustering algorithms.

Our pairwise constraints approach has shown promising
results with image data. Moving forward, we aim to adapt
this method for diverse data types, notably text. In adapting
to textual data, we will leverage its inherent properties and
incorporate semantic relationships in our pairwise constraint
calculations.
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