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A genome-wide association study of blood
cell morphology identifies cellular proteins
implicated in disease aetiology
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Blood cells contain functionally important intracellular structures, such as
granules, critical to immunity and thrombosis. Quantitative variation in these
structures has not been subjected previously to large-scale genetic analysis.
We perform genome-wide association studies of 63 flow-cytometry derived
cellular phenotypes—including cell-type specific measures of granularity,
nucleic acid content and reactivity—in 41,515 participants in the INTERVAL
study. We identify 2172 distinct variant-trait associations, including associa-
tions near genes coding for proteins in organelles implicated in inflammatory
and thrombotic diseases. By integrating with epigenetic data we show that
many intracellular structures are likely to be determined in immature pre-
cursor cells. By integrating with proteomic data we identify the transcription
factor FOG2 as an early regulator of platelet formation and α-granularity.
Finally, we show that colocalisation of our associationswith disease risk signals
can suggest aetiological cell-types—variants in IL2RA and ITGA4 respectively
mirror the known effects of daclizumab inmultiple sclerosis and vedolizumab
in inflammatory bowel disease.

Blood cells play vital roles in human physiology, including in oxygen
transport, in haemostasis, and in host defence. Many of the biological
functions of blood cells, such as thrombotic aggregation and the kill-
ing of pathogens or the killing of virally infected cells, are mediated by
proteins stored in cell granules that are released into the extracellular

space in response to a stimulus. At present, the functional responses of
blood cells to stimuli cannot be measured using high-throughput
instruments. Consequently, genetic association studies of cell function
traits have been limited to small studies (n ≤ 5000) of platelet aggre-
gation phenotypes, which have identified associations in
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approximately thirty loci1. Meanwhile, high-power genome-wide
association studies (GWAS) of blood cell traits have concentrated on
phenotypes in classical complete blood counts (cCBCs)2–4. cCBCs are
standard clinical reports, which include measurements of the counts
(i.e. concentrations) and average volumes of various types of cell in the
peripheral blood. However, cCBCs do not measure the properties of
intracellular structures, which play important roles in many functional
haematological processes. For example, pathologies of leukopoiesis
that result in the absence of specific granules from neutrophils can
cause immune dysfunction5, but are frequently accompanied by a
normal neutrophil count and so cannot be detected by cCBCs.

cCBCs are produced by automated haematology analysers, which
usually contain a built in flow-cytometer, which can measure the
fluorescence and diffraction of laser light incident on individual blood
cells. Variation in structural properties of blood cells—many of func-
tional or clinical relevance—can be detected by flow-cytometry. For
example, the intensity of light side-scattered (SSC) by a neutrophil is a
measure of the cell’s intracellular organelle complexity, including its
granule content. Neutrophil granularity is an important immune phe-
notype. Activated neutrophils are known to exhibit greater SSC than
resting neutrophils6,7. Hypo- and hyper-granulated neutrophils are
observed in inflammation and also in myelodysplasia8–11. Historically,
neutrophil granularity was assessed manually by microscopy of blood
smears. Such estimates of granularity correlate well with optical
measurements made by haematology analyser flow-cytometers9.
Indeed, flow-cytometry measured neutrophil SSC is a predictor of
neutrophil toxic granulation9. More generally, a range of flow-
cytometry measured properties of platelets, neutrophils, lympho-
cytes, and monocytes have been implicated as statistical predictors of
clinical outcomes, including thrombocytopenic purpura12, sepsis13–15,
myelodysplastic syndromes16,17, Sezary disease18 and the need for
mechanical ventilation in COVID-19 patients10,19.

Here, we report the first large-scale GWAS of flow-cytometry
measured non-classical CBC (ncCBC) traits (Fig. 1a–e). We call these
phenotypes ncCBC traits because they were acquired using a haema-
tology analyser, the Sysmex XN-1000, but are not included in standard
cCBC reports (Fig. 1f). The XN-1000 analyser contains a flow-cyt-
ometer, which can detect variation in the intracellular organelle com-
plexity of cells from the intensity of SSC diffracted light. It can also
detect variation in the nucleic acid content and membrane perme-
ability of cells from the fluorescence intensity (SFL) of light emitted by
a cell staining dye and variation in the size of cells from the intensity of
forward scattered (FSC) diffracted light (Fig. 1a–e). The analyser
reports individual level summaries of the cell level distributions of SSC,
SFL and FSC intensity measurements (as averages or distribution
widths over a set of cells of a given type). These phenotypes can cap-
ture variation in biological processes with functional or clinical
relevance7,9,20. By integrating the results of GWAS of ncCBC traits with
the results of multi-omic and disease GWAS, we show how flow-
cytometry phenotypes can be used to identify the secretory origins of
proteins in the blood plasma and used to study the role of blood cells
in mechanisms mediating disease risk variation.

Results
Hundreds of new genetic determinants of blood cell flow-
cytometry traits
We studied 63 ncCBC phenotypes in INTERVAL (Supplementary Data 1
and 2), a cohort of blood donors, which has been described previously
by Moore et al.21. Eleven of the traits explicitly summarise cell-level
measurements of intracellular complexity/granularity (SSC), sixteen of
the traits explicitly summarise cell level measurements of cell nucleic
acid content/membrane lipid content (SFL) and fifteen of the traits
explicitly summarise cell-level measurements of cell morphology/
volume (FSC) (Supplementary Data 2). Ten of the traits are platelet
phenotypes, twenty are red cell phenotypes and 33 are white cell

phenotypes. After performing exploratory analysis—investigating the
distributions of the traits and their co-distributions with various cov-
ariates including, age, sex, menopause and BMI (Fig. 2, Supplementary
Figs. 1–3, Supplementary Data 3)—we developedmodels to regress out
extraneous variation (Methods). We also investigated covariation
between the traits, observing greater correlation on average between
traits specific to red cells or platelets than traits specific to white cells,
principally because the white cell traits measure properties of biolo-
gically heterogeneous subtypes of cells (neutrophils, basophils, eosi-
nophils, lymphocytes and monocytes) (Supplementary Figs. 4–7).

We performed univariable genetic association analyses (Sup-
plementary Data 4) in subsets of a complete genetic dataset com-
prising imputed genotypes for 26.8 million variants in 43,059
European-ancestry participants. Stepwise regression analysis
applied to each trait in turn identified 2172 distinct (unadjusted
conditional P-value < 8.31 × 10−9) variant-trait associations (Supple-
mentary Data 4). To identify distinct association signals we pooled
the conditionally significant variant-trait associations across the
traits and applied a standard linkage disequilibrium (LD, r2 > 0.8)
based greedy clumping algorithm (Methods). This clustered the 2172
variant-trait associations into 849 clumps, 231 of which represented
platelet signals (i.e. contained at least one platelet cell-trait asso-
ciated variant), 211 of which represented red cell signals and 432 of
which represented white cell signals (Fig. 3, Supplementary Fig. 8).
We compared these associations to those identified by a European-
ancestry GWASof cCBCphenotypes with a 14-fold larger sample size3

and a transethnic GWAS of cCBC phenotypes with an 18-fold larger
sample size4. More than half—242 (56%)—of the 432 white cell asso-
ciation signals were novel—i.e. the corresponding clump did not
contain a variant in LD (r2 > 0.8) with a variant reported to be asso-
ciated with a white cell phenotype by Vuckovic et al. or Chen et al.3,4

(Supplementary Fig. 9). Whereas fewer than a quarter—56 (24%) and
45 (21%) respectively—of the 231 platelet and 211 red cell signals were
novel, according to the same criterion. The enrichment of novel
associations in white cell traits may be explained by the fact that
white cells exhibit greater biological complexity than platelets or red
cells, complexity which is captured by ncCBC flow cytometry traits,
but not standard cCBC phenotypes. White cells are nucleated and
contain complicated intracellular organelles such as granules and
vacuoles which differ according to white cell subtype. Both red cells
and platelets are anuclear, but only platelets contain granules, which
are generally smaller than those of white cells.

Identification of granule proteins undiscovered by GWAS of
classical blood phenotypes
To identify possible molecular mediators of the cell-trait association
signals, we annotated each conditionally significant variant with the
genes for which VEP predicted the most severe transcriptional con-
sequence (Methods, Supplementary Data 4). We also performed ana-
lyses to identify colocalisations of the associations with eQTL for the
corresponding cell-types. Of the conditionally significant associations
with a VEP gene annotation that exhibited strong evidence (Bayesian
posterior probability, PP > 80%) for colocalisation with an eQTL, 67%
had a gene annotation consistent with the transcript of the colocaliz-
ing eQTL (Supplementary Data 5). An extensive literature search
highlighted roles in known fundamental cellular functions including
thrombus formation for platelet traits (e.g. VWF, SERPINE2), iron
homoeostasis for red cell traits (e.g. HFE, TFRC) and chemotaxis and
adhesion for myeloid white cell traits (e.g. P2RY2, SSH2) (Fig. 4; Sup-
plementary Data 4).

We identified genes, not previously found by GWAS of granulo-
cyte traits, that code for various white cell granule proteins including
Arylsulfatase B, Lactoperoxidase, RNase 3 and multiple defensins.
These proteins have well understood roles in immunity22, illustrating
the potential for GWAS of ncCBC traits to identify genes critical to
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blood cell function. Specifically, we identified 35 associations with NE-
SSC (neutrophil granularity), 30 associations with EO-SSC (eosinophil
granularity), and twelve associations with MO-SSC (monocyte granu-
larity) that did not correspond to any of the genetic associations with
cCBC traits reported by Vuckovic et al. or Chen et al. (Supplementary
Data 4)3,4. These include associations near genes with well understood

functions inblood cells, including roles in transcriptionand translation
(AFF1, RPL3P2, PTBP1), in exocytosis (which is critical to granule for-
mation and release; AP1M2, SMAP1), as granule cargo (FCN1, HYAL3,
PRG2, RNASE3, ARSB, LPO, DEFA), as lysozyme cargo (CTNS,HEXB), and
in immune response (FPR1, IFI30, KIAA0922, MYO1G, LGMN), confirm-
ing that our approach has uncovered biologically relevant genes,

Neutrophils (NE)

SSC, SFL, FSC, SSC-DW,
SFL-DW, FSC-DW, IG#, IG%SSC, SFL, FSC, SSC-DW,

SFL-DW, FSC-DW

Eosinophils (EO)

Reticulocytes (RET)

SFL, FSC, HFR, MFR,
LFR, RET-He, IRF-FSC

Basophils (BASO)

SFL, FSC, SFL-DW, FSC-DW

Monocytes (MO)

SSC, SFL, FSC, SSC-DW,
SFL-DW, FSC-DW

Lymphocytes (LY)

SSC, SFL, FSC, SSC-DW, SFL-DW,
FSC-DW, RE-LYMP#, RE-LYMP(L)%,
RE-LYMP%

SSC, SFL, FSC, SSC-DW,
SFL-DW, FSC-DW, H-IPF,
IPF#, IPF%, P-LCR

Platelets (PLT)

Delta-He, Delta-HGB, RPI

Compound Traits

Side Fluorescence (SFL)
Index of nucleic acid content

a

b c

d e

f

Side Scatter (SSC)
Index of cell granulation

Forward Scatter (FSC)
Index of cell size

SSC, SFL, FSC, SFL-DW,
FSC-DW, Hyper-He, MacroR,
MicroR, RBC-He, RDW-SD

Red Blood Cells (RBC)

WDF Channel Scattergram WNR Channel Scattergram

RET Channel ScattergramPLT Channel Scattergram
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including genes inmolecular pathwaysmodulating cellular complexity
and granule formation.

We used data from mass spectrometric profiling of neutrophil
granules23 to identify the subcellular localisation of proteins
expressed by the genes identified by the neutrophil trait GWAS in a
wide variety of organelles (Supplementary Data 6). Thirteen clumps
contained neutrophil trait associated variants annotated by VEP
with genes coding for proteins expressed in azurophilic granules
and two clumps contained neutrophil trait associated variants
annotated with genes coding for proteins in specific or secondary
granules. Cellular granules are also prominent in eosinophils,
basophils, and present inmonocytes where they play critical roles in
innate immune responses by releasing antimicrobial proteins. We
identified signals near genes encoding several such proteins,

including HYAL3, PRG2, PRTN3 and RNASE3 (Supplementary
Data 4)22,24–26.

The biogenesis of cellular structures
Many of the intracellular structures generating variation in flow-
cytometry phenotypes have developmental origins in the immature
precursors of peripheral blood cells. Granule formation, for example,
is a cell-type specific process occurring at particular stages of cellular
differentiation; the granules of platelets and the granules of granulo-
cytes begin to form in megakaryoblasts and myeloblasts,
respectively27. Consequently, the absence of a colocalizing mature
blood cell eQTL for a cytometry trait association may reflect the fact
that the associated genetic variant exerts its variance-generating effect
after lineage commitment, but before terminal differentiation. To test

Fig. 1 | Flow-cytometry traits measured by the Sysmex XN-1000 haematology
analyser (adapted from Sysmex XN-1000 Manual104). a Schematic of a granulo-
cyte cell passing through the laser of the internal flow-cytometer of the analyser.
The instrument measures the intensities of incident light scattered sidewise (SSC,
cell complexity/granularity) by the cell and forward (FSC, cell volume) by the cell
and the intensity of the light which is absorbed by the cell and fluoresced at a new
wavelength (SFL, cell nucleic acid content). b–e Cytometry scattergrams from an
arbitrary participant in the INTERVAL study: 2-dimensional projections of the cell
level intensity data (SSC, SFL, FSC) measured in each of the four XN-1000 flow-
cytometry channels active for the INTERVAL study: PLT-F (platelet flow) channel
(b), RET (reticulocyte) channel (c), WDF (white cell differential) channel (d), WNR

(white cell and nucleated red cell) channel (e). Many of the traits correspond to
averages or distribution widths (DWs) of cell level measurements in scatter-
gram regions (indicated approximately by ellipses) occupied by cells of particular
types. This is illustrated for three eosinophil traits (in panel d). Supplementary
Data 2 contains a full description of the measurement procedure for each trait.
fThe 63 cytometry traits classifiedby the typeof cellswhich theymeasure: platelets
(PLT), mature red blood cells (RBC), reticulocytes (RET), neutrophils (NE), eosi-
nophils (EO), basophils (BASO), monocytes (MO) and lymphocytes (LY). The three
compound traits (Delta-HE, Delta-HGB, and RPI) depend onmeasurements of both
mature red cells and reticulocytes. We thank JoannaWestmoreland for the artwork
in (a) and (f).
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Fig. 2 | The distributions of selected ncCBC traits and their covariation with
age, sex and BMI. Summary plots for two exemplar technically adjusted traits
(Methods) using data from participants who contribute to the GWAS of the
respective trait. The upper row and lower row panels correspond respectively to
the platelet side scatter (PLT-SSC, n = 29,675) and monocyte side fluorescence
(MO-SFL, n = 39,586) phenotypes. a, b Probability density histograms stratified by
sex: female (orange) andmale (blue). c, d Covariation between the phenotype and
participant age stratifiedby sex. Parameters of the stratified trait distributionswere

estimated in bins corresponding to years of age. The linearly interpolated coloured
points show estimates of the within strata-means and the underlying coloured
ribbons show the corresponding 95% confidence intervals. The dashed lines show
estimates of the upper and lower quartiles. e, f Covariation between each trait and
bodymass index (BMI). Estimates of sex stratified summaries weremade in bins of
1 kgm−2. The components of the plots are as for (c, d). Analogous plots for all 63
traits are presented in Supplementary Figs. 1–3.
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this hypothesis, we applied FINEMAP 1.3.128 to identify Bayesian pos-
terior credible sets of variants associated with the ncCBC traits and
assessed the enrichment of the variant sets in the nucleosome deple-
ted regions (ATAC-seq) of nine types of progenitor cell (localised in the
bone marrow) and nine types of the mature cell (generally localised in
the peripheral blood)29.

We observed patterns of enrichment in the open chromatin
regions of the progenitor cell-types ancestral to neutrophils, eosino-
phils, monocytes, and lymphocytes (Supplementary Fig. 10a–e) which
suggest the possible developmental stages (Supplementary Fig. 10f) at
which the cell characteristics corresponding to particular traits (SSC,
SFL, FSC) are likely to develop. For instance, neutrophils contain three
classes of cytotoxic granules—azurophilic, specific and gelatinase—
which are formed sequentially at distinct stages of differentiation27. The

relative enrichments of genetic variants associated with NE-SSC (neu-
trophil granularity) in the nucleosome-depleted regions of the hema-
topoietic stem cell (HSC) and the four types of myeloid progenitor cell
(CMP, GMP-A, GMP-B, GMP-C) are consistent with a progressive
increase in the accessibility of enhancers regulating granule formation
during myeloid differentiation and point to an origin of these granules
in lineage-committedmyeloid progenitors. In monocytes, we observed
an enrichment of MO-SFL (monocyte nucleic acid content) associated
variants in the nucleosome-depleted regions of granulocyte-
macrophage progenitor cells (GMP)—the differentiation phase of pro-
liferation and cell division— and an enrichment ofMO-SSC (granularity)
in the nucleosome depleted regions of peripheral blood monocytes,
suggesting that granularity may be regulated in the ultimate stages of
monocyte differentiation before egress from the bone marrow.

Fig. 3 | The distribution and novelty of association signals by cell-type.
a–g Each panel presents statistics for selected ncCBC traits of the given cell-type.
The heatmapon the left of each subplot shows the estimatedphenotypic (left) and
genetic (right) correlation between the cCBC trait indicated to its left and the
ncCBC trait corresponding to each horizontal bar. (Each ncCBC trait has been
grouped with the cCBC trait studied in Vuckovic et al.3,4 with which it has maximal
absolute phenotypic correlation in the study sample.) The bar plot on the right of
each subplot indicates the number of distinct (conditionally significant)

associations identified for eachncCBC trait and the number of distinct associations
with variants that do not fall into a LD clump with a variant reported to be asso-
ciated with a blood trait of the same cell-type by Vuckovic et al. or Chen et al.
(‘Novel’)3,4. The absolute genetic correlations between the ncCBC and cCBC traits
of white cells are lower than those of red cells and platelets. This is reflected in the
variation between cell-types of the proportion of identified associations that are
novel. We thank Joanna Westmoreland for the artwork in (a–g).
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The cellular origins of plasma proteins
We hypothesised that some genetic variants associated with cyto-
metric traits, in particular genetic variants associated with side scatter
traits, which capture the abundance of secretory granules in cells, also
influence the concentration of secretory proteins in the blood plasma.
To explore this, we used the results of Sun et al., a GWAS of plasma
concentrations of 1478 proteins, which identified 1927 associations
(protein quantitative trait loci, pQTL)30. For 943 of these proteins,
there is strong evidence that transcripts are expressed
(log2FPKM> 1.0, i.e. log2 of fragments per kilobase of transcript per
million mapped fragments is greater than 1.0) in at least one of the
blood cell-types surveyed by the ncCBC phenotypes (megakaryocytes
(MKs) and erythroblasts—the respective progenitors of platelets and
red cells—and neutrophils, eosinophils, basophils, monocytes, CD4+

T cells, CD8+ T cells, naive B cells). We performed colocalisation ana-
lysis between the pQTL and our cytometry trait-associated con-
ditionally significant variants and identified 61 and 1021 colocalisations
(PP > 80%)with cis and trans pQTL, respectively (Fig. 4, Supplementary
Data 7). There were 181 proteins with a pQTL that colocalised with
ncCBC trait association signal for just one cell-type suggesting that
blood cells differentially contribute to the plasma proteome (e.g.
VEGFA, which encodes vascular endothelial growth factor A, is asso-
ciatedwith eight different platelet traits, while RNASE6, which encodes
RNase K6, is associated solely with monocyte side fluorescence)
(Supplementary Data 4). Notably, many associations with variants
assigned by VEP (gene of worse consequence, Methods) to genes
encoding granule proteins colocalised with pQTL for the corre-
sponding proteins in blood plasma (Fig. 4). Examples include ARSB
(PP = 99%), LY9 (PP = 98%), MPO (PP = 100%), PRTN3 (PP = 100%) and
RNASE6 (PP = 99%) (Supplementary Data 7).

Evidence that FOG2 is a regulator of platelet α-granularity
Platelet activation is important in thrombus formation, woundhealing,
inflammation and the chemotaxis and activation of myeloid white
cells. Critical to these biological processes are coagulation proteins,
growth factors, proteases, chemokines and other signalling peptides
that diffuse into the blood plasma when α-granules are released by
activated platelets. Our GWAS of PLT-SSC (platelet granularity) iden-
tified an association inZFPM2 (encoding the transcription factor Friend
of GATA-2 or FOG2) (Fig. 5a), colocalizing with trans-pQTL for 24
plasma proteins, of which thirteen are platelet α-granule localised
proteins (Supplementary Data 6). RNA-seq data from nine differ-
entiated nucleated blood cell-types31 showed that transcripts of ZFPM2
are substantially expressed solely in MKs (Fig. 5b). Complementary
data from a study of the entire hematopoietic system showed that
ZFPM2 is specifically expressed in theMK lineage (Fig. 5c)29. A stepwise
multiple regression analysis of the platelet granularity phenotype
(PLT-SSC) on variants in the ZFPM2 locus suggested a single con-
ditionally significant association, and fine-mapping of the locus iden-
tified a single intronic SNP (rs6993770) as the most probable causal
variant (PP = 95%). rs6993770 is located in a region of open chromatin
(ATAC-seq) in MKs, which contains histonemodifications indicative of
a transcriptional enhancer (H3K4 tri-methylation, H3K27 acetylation;
Fig. 5d, e). The variant is located 25 b upstream of a GATAmotif on the
negative strand, and 34 b upstream from the palindromic E-box
binding motif CAGCTG. The juxtaposition of these motifs is char-
acteristic of a hematopoietic co-binding site for GATA-1 and TAL1, two
of the three key MK lineage determining transcription factors32–34.
None of the seven variants in high LD (r2 ≥0.9) with rs6993770 were
located in regions for which epigenetic data supported causality in
MKs (Fig. 5e).

Fig. 4 | Summary of the biological functions of the genes assigned to asso-
ciated variants identified from a survey of the literature. Each panel contains a
list of genes assigned by VEP or by eQTL/pQTL colocalisation to genetic associa-
tions with traits corresponding to the given cell-type, for which a literature search
identified evidence of known function. Each list is stratified into functional cate-
gories relevant to the cell-type. Supplementary Data 4 contains a complete list of

the associated variants, their VEP annotated genes, and relevant references to
literature. The coloured symbolic annotations indicate genes assigned to variants
which colocalise with eQTL (blue square), pQTL (orange circle), or disease GWAS
associations (purple triangle). The gene(s) assigned by eQTL or pQTL colocalisa-
tion occasionally differ from the gene(s) assigned by VEP. We thank Joanna West-
moreland for the artwork.
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There are well-known associations between rs6993770 and the
four platelet cCBC traits: platelet count (PLT), volume (MPV), crit (PCT)
and volume distribution width (PDW)2,35. We identified new associa-
tions with the ncCBC traits IPF#, PLT-SSC, and PLT-FSC (Supplemen-
tary Data 4, Fig. 6a). The estimated effect of rs6993770 on mean

PLT-SSC was not significantly attenuated by a multivariable linear
adjustment for the four cCBC traits, suggesting that the PLT-SSC
association is independent of the association with classical platelet
phenotypes. Consequently, we hypothesised thatZFPM2 plays a role in
α-granule biology. To investigate this, we considered the effect of
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rs6993770 on themean plasma concentrations of 1456 of the proteins
studied by Sun et al., for which there was evidence of expression in
MKs (RNA-seq log2FPKM> 1, Fig. 6b)30. rs6993770-T had a significant
effect on the mean plasma concentration of 215 of these proteins at a
relaxed threshold (unadjusted P-value < 10−3)30. Of the 215 associated
proteins, 44 were localised to α-granules and 171 were not. The
direction of the effect size estimates of Sun et al. imply that rs6993770-
T reduces the mean plasma concentration of 40 (91%) of the 44 α-
granule localised proteins but only 101 (59%) of the 171 proteins not
localised to α-granules (Fig. 6c). This indicates that rs6993770-T sig-
nificantly differentially reduces the plasma concentration of proteins
expressed in MKs according to their platelet α-granule localisation
(Fisher’s exact test unadjusted P-value = 3.17 × 10−5).

To control for the possibility that the differential effect of
rs6993770-T might be explained by differences in expression levels
correlated with protein α-granule localisation, we regressed the
plasmaprotein concentration estimated effect sizes of rs6993770-Ton

a dummy variable indicating α-granule localisation, adjusting for the
abundance of the mRNA transcripts in MKs, using data corresponding
to the 1456 proteins expressed in MKs (log2FPKM> 1). We estimated
the additive allelic effect of rs6993770-T on plasma proteins to be
0.038 phenotypic standard deviations lower on average (two sided t-
test unadjusted P-value = 5.6 × 10−10) in proteins localised to α-granules
compared to other proteins, adjusting for gene expression in MKs
(Supplementary Fig. 11). This analysis suggests that in addition to
reducing PLT-SSC, rs6993770-T preferentially reduces the concentra-
tion of platelet α-granule proteins in plasma over other platelet
expressed proteins, thus implicating the ZFPM2 in platelet granule
regulation.

We studied the role of ZFPM2 in platelet production using an in
vitro model of megakaryopoiesis32 applied to two independent ZFPM2
knockouts (KO) (Methods, Supplementary Fig. 12a). In this model, the
ablation of ZFPM2 resulted in a drastic reduction in megakaryopoiesis
(Supplementary Fig. 12b, c). Because of the dramatically limited

Fig. 5 | The association of rs6993770 with PLT-SSC is mediated by ZFPM2
expression. a A LocusZoom plot for the ZFPM2 locus105. Each dot corresponds to a
variant tested for association. The x-axis represents the physical position on
chromosome 8 in GRCh37 coordinates. The (left-hand) y-axis represents the
−log10(P-value) from a univariable BOLT-LMM test for additive allelic association
between the imputedgenotypesof the variant and PLT-SSC (n = 29,675). The colour
of the dot represents the LD (r2) in the study sample between the corresponding
variant and rs6993770. The blue line represents an estimate of the local recombi-
nation rate (right-hand y-axis). Conditional analysis identified a single association
signal in the 82 kb interval of low recombination containing rs6993770. b The
abundance of ZFPM2 transcripts (log2FPKM) in MKs, erythroblasts, neutrophils,
eosinophils, basophils, monocytes, CD4+ naive T cells, CD8+ T cells, and naive B
cells, in which cell-types ZFPM2 transcription is limited toMKs31. c ZFPM2 transcript
expression is higher in platelets, MKs and their precursor cell-types—MEP (mega-
karyocyte-erythroid progenitor cells), CMP (common myeloid progenitor), MPP
(multipotent progenitor), and HSC (hematopoietic stem cell)—than in other blood
cell and blood cell precursor cell-types. d ATAC-seq applied to multiple blood cell-

types show that rs6993770 lies in an open chromatin region in the platelet pre-
cursor cell-types MK, MEP, CMP, MPP and HSC. e Measurements of epigenetic
activity in MKs across the 82 kb recombination interval containing the association
signal. The x-axis represents the physical position on chromosome 8. The dark
vertical line indicates the position of rs6993770. The nearby light vertical lines
indicate the locations of seven variants in high LD (r2 > 0.9) with rs6993770. The y-
axis of eachpanel corresponds to the sequencing readdepthof anepigenetic assay.
From top to bottom the panels correspond to ATAC-seq (open chromatin),
H3K27ac (a mark of active enhancers) and H3K4me3 (a mark of accessibility to
transcription factors). The blue rectangles at the bottom of the figure indicate
enhancer regions inMKs inferred froma set of six histonemodifications (H3K4me1,
H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) using the IDEAS
chromatin segmentation algorithm106,107. The green rectangle indicates the position
of exon 4 of ZFPM2. Panels c-d are adapted with permission from Ulirsch, J. C. et al.
Interrogation of human hematopoiesis at single-cell and single-variant resolution.
Nat. Genet. 51, 683–693 (2019), Springer Nature29.

Fig. 6 | ZFPM2 is a regulator of platelet α-granularity. a Forest plot showing the
additive allelic effect of rs6993770-T on the means of the inverse rank normalised
distributions of the platelet traits PLT# (platelet count, n = 29,657), PCT (platelet-
crit, n = 28,044), MPV (mean platelet volume, n = 28,050), PDW (platelet distribu-
tion width, n = 28,052), IPF# (immature platelet fraction count, n = 30,587), PLT-
FSC (platelet volume, n = 29,662), and PLT-SSC (platelet granularity, n = 29,675)
measured in the INTERVAL study. Circles correspond to estimates of direct effects,
triangles correspond to estimates of effects adjusted for PLT-SSC and squares
correspond to estimates of effects adjusted for PLT#, PCT, MPV, and PDW. The
horizontal lines correspond to 95% confidence intervals. The effect of rs6993770-T
on PLT-SSC and PLT-FSC does not appear to bemediated substantially through the
four cCBC phenotypes. b A Venn diagram cross classifying the 1456 genes coding
for proteins studied by Sun et al. that are expressed in MKs (mRNA transcript

log2FPKM> 1)30. The classifying categories indicate that the proteinwas implicated
as an α-granule protein coding gene by one of: a literature review (turquoise),
detection by mass spectrometry of significant under expression in the platelets of
grey platelet syndrome patients (which lack α-granules) compared to those of
healthy volunteers (green), identification in the platelet releasate—proteins
expelled from activated platelets (purple). c The estimated per allele effect of
rs6993770-T on the mean concentration of the 1456 plasma proteins. The y-axis
measures the per allele effect size and the x-axis its rank. Bars corresponding to
proteins localised toplateletα-granules are coloured red. Proteinswith ranks in the
tails bounded by the dashed lines exhibit significant evidence for an association
with rs6993770-T at a relaxed critical threshold (unadjusted P-value < 10−3). α-
granule proteins are significantly (embedded two-sided Fisher’s exact test unad-
justed P-value) enriched in the negative compared to the positive tail.
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productionofMKs by the KO lines, it was not possible to test the effect
ofZFPM2KOonSysmexplatelet traits or performfurther biomolecular
analysis. However, our results suggest that expressionofZFPM2plays a
critical role in platelet biology, with important consequences for pla-
telet biogenesis and α-granule regulation.

Interestingly Klarin et al., recently reported an association
between the T allele of rs6993770 and decreased risk of venous
thromboembolism (VTE)36. They postulated that FOG2 mediates a
decrease in the plasma concentration of the principal inhibitor of
plasminogen activator PAI-1, which is encoded by SERPINE137. The
notion that lower levels of plasma PAI-1 cause a reduced risk of VTE is
biologically plausible. However, we have shown that rs6993770 is
pleiotropic, modifying the process of platelet formation and platelet
granule content and the concentrations of many platelet α-granule
derived proteins in the blood plasma (Fig. 6), highlighting the impor-
tance of broader multi-trait and multi-omic integrative analysis, for
aetiological inference and the characterisation of disease risk asso-
ciation signals.

Flow-cytometry phenotypes, disease aetiology and drug targets
We sought to explore more generally how genetic associations with
ncCBC traits can improve or confirm our understanding of the role of
blood cells in disease aetiology. We chose to focus on immune,
inflammatory and cardiovascular diseases, in which blood cells are
known to play a critical role. Firstly, we retrieved publicly available
GWAS summary statistics for 15 diseases38 and assessed the evidence
for colocalisation between genetic associations with ncCBC traits and
disease risks (Supplementary Data 8)39. We found strong evidence
(PP > 80%) for colocalisation between 73 of the variant-ncCBC trait
associations—corresponding to 29 variant clumps—and at least one
disease association (Supplementary Data 8).

Eight variant clumps contained variants associated with lympho-
cyte traits that colocalised with genetic associations for the risk of
multiple sclerosis (MS), coeliac disease, primary biliary cirrhosis, hay
fever/rhinitis or coronary artery disease (Supplementary Data 8). Five
of these eight clumps contained variants with lymphocyte trait asso-
ciations that colocalisedwith associations for riskofMS, recapitulating
the known importance of lymphocytes in the aetiology of MS40. The
colocalizing associations were located in the gene encoding the tran-
scription factor BACH2, in the genes encoding receptors for Inter-
leukin(IL)-2 (IL2RA) and IL-7 (IL7R) and in the gene encoding IL-7 itself
(IL7). IL-2 receptor α-chain (the product of IL2RA) is the target of the
therapeutic antibody Daclizumab, which is known to be clinically
effective in the treatment of MS41,42, but has been withdrawn due to
severe side effects including encephalitis43–46.

Alternative therapeutic approaches to MS are required to ame-
liorate the risk that subsets of patients develop severe side effects on
existing drugs. The IL-7 receptor (the product of IL7R) is one possible
target47,48, and genetic evidence suggests that a higher serum con-
centration of soluble IL-7R increases the risk of multiple sclerosis49. A
non-synonymous coding variant in IL7RA (rs6897932-C) effects alter-
native splicing causing a two-fold increase in the skipping of exon 6
resulting in production of soluble IL-7R50,51. rs6897932-C is in high LD
(r2 = 1) with rs11567705-C (AF = 72.5%) which is associated with
increased reactive lymphocyte count (RE-LYMP#, additive allelic effect
size=0.09 SD, unadjusted P-value = 4.4 × 10−21). This association with
RE-LYMPH# colocalised with increased risk of MS (PP = 95.7%). Thus
our analysis suggests that the effect of soluble IL-7R on MS aetiology
maybemediatedbymodulationof lymphocyte activation asmeasured
by RE-LYMPH#, consistent with the role of IL-7R/IL-7 as an efficacious
target for the treatment of MS50.

Further examples demonstrate the ability of ncCBC GWAS asso-
ciations to indicate which blood cell-types may mediate disease
aetiology. For instance, rs2124440-A is associated with properties of
monocytes (MO-SFL-DW, additive allelic effect size = 0.048 SD,

unadjusted P-value = 3.4 × 10−11; MO-SFL additive allelic effect size =
−0.034 SD, unadjusted P-value = 2.0 × 10−6) and these associations
colocalised with lower expression of ITGA4 in monocytes (CD14, PP =
99.7%) and higher inflammatory bowel disease (IBD) risk (PP = 98.2%).
This finding is interesting because Vedolizumab was originally used to
treat IBD52,53 and was assumed to reduce trafficking of α4β7-positive
gut-specific T-helper lymphocyte by diminishing integrin interaction
with the mucosal addressin cell adhesion molecule 1 (MadCAM-1)54,55.
However, a recent study has suggested that the antibody also reduces
the ability of monocytes to egress into the colonic mucosa as an
alternative mechanism55–57 consistent with the results of our genetic
analyses of monocyte flow-cytometry traits.

Discussion
Over the last decade, GWAS have identified thousands of genetic
associations with risks of common complex diseases. A major moti-
vation for these studies has been to improve our understanding of the
molecular and cellular mechanisms underlying disease aetiology, in
order to develop safe and effective pharmacological treatments.
Unfortunately, only a fraction of the biologicalmechanismsunderlying
the genetic associations with disease risk that have been identified are
presently understood. Sometimes even the mediating cell-types and
tissues are unknown. One approach to understanding a genetic asso-
ciation with disease risk, is to consider the context of colocalizing
genetic associations with other phenotypes that have been published
in the literature or online catalogues, a so-called ‘phenoscan’58,59.
Genetic associations with quantitative traits measuring cell-type spe-
cific biological variation (for example, eQTL identified from studies of
gene expression variation) can suggest mediating tissue types. Con-
sequently, there is a need to catalogue genetic associations with phe-
notypes measuring cell-type specific biological variation at different
levels of complexity, from variation in molecular abundances to var-
iation in the properties of organelles.

We have studied a new class offlow-cytometry phenotypes, which
can capture cell-type specific quantitative variation in the functional
structures of blood cells, such as secretory granules. These pheno-
types can be measured affordably in tens of thousands of study par-
ticipants using clinical haematology analysers. GWAS analyses of these
traits showed that they are heritable, have complex genetic archi-
tectures, and are affected by variation in genes implicated in a variety
of molecular and cellular pathways. The broad biological sensitivity of
flow-cytometry phenotypesmeans that their genetic associations have
a coarser interpretation than those of many other intermediate
quantitative phenotypes, such as molecular abundances (e.g tran-
scriptomics, proteomics or lipidomics). For example, cytometry mea-
sured ‘neutrophil granularity’ depends on the average number of
granules in peripheral bloodneutrophils, and the level of expression of
genes coding for proteins in neutrophil granules (e.g. ELANE, MPO,
PRTN3). rs138303849-C, a variant upstream of PRTN3 (encoding pro-
teinase-3, PR3) is associated with increased NE-SSC (granularity), NE-
SFL (nucleic acid content), NE-FSC (volume), and decreased NE-SSC-
DW (SSC distribution width). The allele, which is known to be asso-
ciated with an increased risk of a form of vasculitis characterised by
autoantibodies against PR360, is an eQTL for PTRN3 in whole blood61.
We recently showed that the risk allele is associatedwith increased PR3
concentration in plasma30. In the present analysis, we observed that
the risk allele and the cis-pQTL for higher plasma PR3 levels all colo-
calise (PP = 99.9%) with the neutrophil ncCBC associations. This sug-
gests that the vasculitis risk allele not only increases PRTN3
transcription and PR3 plasma protein levels, but also changes the
structural and granular properties of neutrophils.

We have shownmore generally how genetic associations with the
new traits can be used to interpret colocalizing associations with dis-
ease risks and provide evidence to support drug targets, through
examples which are corroborated by existing evidence in the
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literature, including the role of lymphocyte activation in IL-7R/IL-7
mediated risk of MS and the role monocytes ITGA4 mediated risk of
inflammatory bowel disease. We have also shown that genetic asso-
ciations with flow-cytometry traits can identify key genes regulating
the formation and retention of intracellular structures. In particular,
our multi-omic analysis of the association in ZFPM2 with PLT-SSC
(platelet granularity), has shown that the transcription factor FOG2 is a
probable regulator of platelet α-granularity, which influences the
concentrations of a multitude of α-granule proteins in the blood
plasma.

Our studyhas some limitations. Firstly, because participants in the
INTERVAL cohort are overwhelmingly of European ancestry, we have
not been able to study genetic variation extraneous to the European
ancestry population. Secondly, because most of the ncCBC traits are
not intended for clinical use, they are subject to greater technical
variability than cCBC traits. Nevertheless, we are confident that we
have been able to remove much of this variation statistically. Genetic
studies, which seek to estimate differences in phenotypic averages
between genotype groups, do not rely on the calibration of pheno-
types against an absolute standard. However, investigators who wish
to perform non-genetic studies of ncCBC traits should be aware of the
potential for between instrument variation. Thirdly, because we have
no information about the medications taken by the participants, we
were unable to exclude the possibility of confounding due to differ-
ential prescribing by genotype. However, we expect that such con-
founding is unlikely, given the general good health of blood donors
and the fact that most common genetic variants have a modest effect
on disease risk and hence prescribing risk. Fourthly, because the
ncCBC phenotypes are novel to genetics, we do not have access to a
replication dataset. However, CBC trait associations identified in
INTERVAL using the same analysis protocol have a high rate of
replicability in other datasets (e.g. UK Biobank). This gives us con-
fidence in our results, although the ultimate validation of any genetic
association must rely on cellular and functional laboratory follow up.
Finally, although flow-cytometry traits are able to capture aspects of
biological variation related to cell function, they lack the clean biolo-
gical interpretation of phenotypes designed to measure particular
cellular mechanisms, such as the response of cells to perturbation by
an agonist. In future, the development of efficient cell-type specific
assaysmay enable large-scale population studies of isolated functional
processes such as activation, degranulation and cell motility likely to
play a role in the aetiologies of cardiovascular and immune disorders.

Methods
INTERVAL study
The INTERVAL study was a randomised trial of approximately 45,000
blood donors aged eighteen years or older who were recruited at 25
NHSBT (National Health Service Blood and Transplant) static donor
centres across England21. The study was approved by the Cambridge
East Research Ethics Committee and we complied with the relevant
ethical regulations. Informed consent was obtained from all partici-
pants during recruitment. Individuals who have suffered recent illness
or infection are ineligible to donate blood. Consequently, the partici-
pants were predominantly healthy at the time of recruitment. The
participants completed a baseline survey which included questions
about their lifestyle and state of health, including their smoking habits,
their alcohol consumption habits, whether they suffered from doctor-
diagnosed anaemia, their use of medication (hormone replacement
therapy, iron supplements) and their menopausal status. At baseline,
participants were randomly allocated to a sex specific trial arm,
according to which men were asked to donate blood every twelve, ten
or eight weeks and women were asked to donate blood every sixteen,
fourteenor twelveweeks. Participants gaveblood samples for research
purposes at baseline and at a follow up visit approximately two years
later. In the intervening period they were asked to donate blood

according to the schedule of their allocated trial arm. The blood
samples given for research were collected from a pouch attached to a
standard blood collection unit. The samples for CBC analysis were
stored in 3ml EDTA tubes which were inverted three times before
being transported in rigid boxes at ambient temperature, via three
NHSBT holding sites (Manchester, Colindale, and Bristol), to UK Bio-
centre, Stockport, Greater Manchester. Here, extended clinical blood
count reports, which includemeasurements of cCBC and ncCBC traits,
were generated using a pair of Sysmex XN-1000 analysers. Respec-
tively, 72% and 98% of samples were processed within 24 h and 48 h of
venipuncture.

Sysmex XN-1000 automated haematology analysis
The Sysmex XN series of haematology analysers can be configured to
use various combinations of seven measurement channels: an impe-
dance channel, a photometric channel and five flow-cytometry chan-
nels. The analysers used for the INTERVAL study were configured to
use the following six channels:

• RBC/PLT (red cell and platelet counts/volumes using Coulter’s
impedance principle)

• HGB (photometric measurement of total blood HGB)
• WNR (white cell and nucleated red cell flow-cytometry)
• WDF (white cell differential flow-cytometry)
• RET (reticulocyte and red cell flow-cytometry)
• PLT-F (platelet flow-cytometry).

The channels used tomeasure each of the 63 traits we studied are
indicated in Supplementary Data 2. These traits include all the con-
tinuously distributed (i.e. without a discrete component) variables
reported by the analysers (when configured as described) that are not
cCBC traits.

The analyser generates an aliquot of blood for eachmeasurement
channel. The flow-cytometry channel aliquots are diluted (1:200 for
RET/PLT-F channels, 1:60 for other channels) and pre-treated with
channel-specific reagents which differentially lyse and perforate cells
by type. The aliquots are then treated with channel specific reagents
containing dyes that bind to nucleic acids in organelles and the
nucleus. The PLT-F flow-cytometry channel uses a reagent containing
an oxazine based dye (Fluorocell PLT), while the other flow-cytometry
channels use reagents containing a polymethine dye (Fluorocell WNR,
Fluorocell WDF and Fluorocell RET). Each flow-cytometry channel
measures three cell-level properties of each particle in the blood ali-
quot: side fluorescence, forward scatter and side scatter. Side fluor-
escence is a measure of cell nucleic acid content, but also depends on
cell membrane lipid content; forward scatter is a measure of cell size;
side scatter is a measure of cell granularity. The cell-level measure-
ments are used by the analyser to classify cells by type (Fig. 1). The
classification algorithms are commercially confidential. Individual-
level traits are calculated by the analyser from summaries of the cell-
type specific cell-level measurements.

The analysers were calibrated using an artificial blood containing
stabilised human and animal cells by a Sysmex certified engineer, upon
installation and subsequently every few months. The same material,
prepared in three concentrations, was used by UK Biocentre staff to
make daily quality control measurements. Sysmex reference analysers
in Kobe, Hamburg and Chicago make routine measurements of the
artificial blood to provide a reference for engineer calibration and for
daily comparison with the local quality control measurements, so that
any malfunction of an analyser between scheduled engineer visits can
be identified.

Selection of phenotype data
For each participant, where possible we used the ncCBC measure-
ments derived fromtheblood sample donated atbaseline. For a subset
of traits, the data from the baseline sample were unavailable for some
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participants and consequently we substituted the data derived from
the analyses of the samples donated at the two year follow up visit. In
particular, the PLT-F flow channel of one of the two analysers was
incorrectly configured during the first 90 days of the study. Data were
therefore missing for the traits measured by this channel during this
period for approximately half the blood samples analysed.

We limited our analysis to samples that were analysed within 36 h
of venipuncture. We excluded data points for which the analyser ‘flag’
variables indicated a sample or measurement abnormality (e.g. due to
platelet clumping).We also excludedmeasurements if theyweremade
on a day for which fewer than tenmeasurements of the corresponding
trait were available from the corresponding analyser, or if they were
madeon adaywhen themedianof themeasurements of the traitmade
by the analyser deviated substantially (more than 8 median absolute
deviations) from the global median of the measurements made the
analyser over the course of the study.

Removal of extraneous trait variation
Haematology analyser data contain both technically and biologically
mediated variation. Where this variation has a non-genetic origin it is a
source of noise, which reduces the power of GWAS analysis. We
adjusted the data from each trait in two stages using generalised
additive models (GAMs) to remove phenotypic variation likely to be
extraneous. We identified variables to include as predictors in the
GAMs at each stage by consulting haematologists and performing
exploratory visual and linear regression analyses. In the first stage, we
adjusted each trait to remove technical variation and variation
explained by the time at which the blood sample was analysed. The
latter variation includes variation due to machine drift, variation
caused by machine calibration and variation due to seasonal changes
in the physiology of donors. In the second stage, we adjusted each trait
for various environmental and physiological factors thought likely to
generate variation in blood traits, but unlikely to be colliders of gen-
otype and phenotype. At each stage, we adjusted the traits differently
according to whether they were directly measured by the analyser or
derived by the analyser from the directly measured traits (Supple-
mentary Data 2). The directly measured traits were adjusted using
regression models and the derived traits were re-calculated accord-
ingly from the measured traits. Before each regression adjustment we
log-transformed the measured traits that are positively supported
(suchas cell counts) and logit-transformed themeasured traits that are
proportions or percentages.

In the first stage, we adjusted each transformed trait for the time
duration between the start of the study and the analysis of the blood
sample, the time duration between venipuncture and the analysis of
theblood sample, thedayof theweek, the number of days between the
start of the year and the day of the measurement, and the instrument
used for the analyse. The adjustments were made by fitting a GAM
(Generalised Additive Model, R package mgcv) to each trait, using
splines to model the dependence of the trait on the covariates jointly.
Themodels were based on the regression Eq. (1), in which a regression
coefficient corresponding to each term in square brackets has been
suppressed for simplicity.

EaðyiÞ= s½tðiÞ �mðiÞ�+ c½tyearðiÞ�+ tp½ðtdayðiÞ,tvenðiÞÞ � ðmðiÞ,IðiÞÞ�
+

X

D2ftues,wed,...sung
½1DðiÞ=D� ð1Þ

Here:
• i is an index for the observation (the blood donor);
• yi represents themeasured trait value and a(yi) the value after its

initial transformation;
• t(i) denotes the number of seconds between the start of the

study and the measurement of the trait value;

• m(i) is a categorical variable with two levels, representing the
haematology analyser used to record the measurement;

• tyear(i) is the number of seconds between midnight on 1st of
January in the year the measurement was made and the time at
which the measurement was made;

• tday(i) is the time of day that the measurement was made, in
seconds after midnight;

• tven(i) is the time duration in seconds between venipuncture and
the midnight immediately preceding the measurement;

• I(i) is a binary variable which indicates whether tven(i) was
imputed (rather than observed), imputation was by the median
values of the observed tven(i) variable;

• D(i) is a categorical variable with seven levels, representing the
day of the week on which the measurement was made, the
baseline category is monday;

• s[] represent a P-spline smoothing spline;
• c[] represents a cyclic smoothing spline;
• tp[] represents a thin plate spline smoothing spline;
• ⊗ indicates a binary operator, which expands additively to

generate main effects and interaction terms.

For each trait, we took the residuals and re-centred them to have
mean aðyÞ, the mean of the unadjusted a-transformed traits. We called
the variables obtained after applying the transformationa−1 to these re-
centred residuals, the technically adjusted traits.

In the second stage, we further adjusted each trait for covariates
measured at baseline and identified by haematologists as likely to
generate variation in blood traits, this time using a GAM based on the
regression Eq. (2), in which a regression coefficient corresponding to
each term in square brackets has been suppressed for simplicity.

EbðyiÞ = s ageðiÞ �menoðiÞ½ �+ tp ðlogðwgtðiÞÞ,logðhgtðiÞÞÞ �menoðiÞ� �

+ ½1wgt:naðiÞ�+ ½1hgt:naðiÞ�+
X

d2K
½1drkðiÞ=d �+

X

a2A
½1alcðiÞ=a�+ s½pckyrsðiÞ�

+
X

m2M
½1smkðiÞ=m�+

X

f2F
½1sfrqðiÞ= f �+ ½1pckyrs:naðiÞ�+

X

r2R
½1armðiÞ= r �

ð2Þ

Here:
• b(yi) is the residual from the first stage regression model corre-

sponding to observation i;
• age(i) is the age of the participant;
• meno(i) is a categorical variable with five levels indicating the

menopausal status of the participant, taking values in {post, pre,
hysterectomy, male, NA};

• wgt(i) is the weight of the participant (missing data were impu-
ted by the population mean);

• hgt(i) is the height of the participant (missing datawere imputed
by the population mean);

• drk(i) is a categorical variable with four levels indicating the
drinking status of the participant,K = {previous, current, NA}, the
baseline category is ‘never’;

• alc(i) is a categorical variable with six levels indicating the alco-
hol consumption rate of the participant, A = {rarely, 1 to
3 months, 1 to 2 weeks, 3 to 5 weeks, most days}, the baseline
category is ‘never’;

• pckyrs(i) is the number of pack-years the participant has smoked
(missing data were imputed by the population mean);

• smk(i) is a categorical variable with four levels indicating the
smoking status of the participant, M = {previous, current, NA},
the baseline category is ‘never’;

• sfrq(i) is a categorical variable with six levels indicating the
smoking frequency of the participant, F = {special occasions,
rarely, occasional, most days, every day}, the baseline category
is ‘never’;

• arm(i) is a categorical variable with six levels indicating the
INTERVAL trial arm to which the participant was assigned (see

Article https://doi.org/10.1038/s41467-023-40679-y

Nature Communications |         (2023) 14:5023 11



‘INTERVAL Study’ above), R = {M10, M12, F12, F14, F16}, the
baseline category is ‘M8’;

• wgt.na(i), hgt.na(i), pckyrs.na(i), evaluate to true if the partici-
pant has missing data respectively for weight, height, or pack
years smoked and otherwise evaluate to false.

Outlier removal and trait transformation
For each trait, we removed data points for which the adjustment was
very large and removed data points for which the adjusted values were
outliers in the adjusted distributions. Specifically, we took the resi-
duals from the second stage GAM adjustment and removed data
points for which the difference between the raw measured value (on
the adjustment scale) and the adjusted valuewasmore than3.5median
absolute deviations from the median of the distribution of such dif-
ferences. We then removed data points lying more than 4.5 median
absolute deviations from the median of the distribution of the resi-
duals. We also performed multivariate outlier removal within groups
of phenotypes corresponding to each cell-type, by computing the sum
of squares of the leading d principal components scores where d is the
number of independent measurements required to compute the
variables in each group and removing any data points for which the
sum of squares fell into the upper 10−7 tail probability of a χd

2 dis-
tribution. Finally, we quantile-inverse-normal transformed the trait
data, stratifying by haematology analyser, sex and menopausal status.
The final numbers of participants that contributed to the GWAS of
each trait are given in Supplementary Data 2.

Presentation of exploratory visual and linear regression
analyses
Although the covariation between the ncCBC traits and biological
variables is likely to be of interest to researchers and clinicians, it is
difficult to interpret the estimates of coefficients of the GAMs used to
adjust the phenotypes. Consequently, we reperformed some of the
visual (Fig. 2, Supplementary Figs. 1–3) and linear regression analyses
(Supplementary Data 3) used to explore the relationships between
ncCBC traits and the variables age, sex, menopausal status and BMI,
using the technically adjusted trait data but restricting to the set of
participants contributing to theGWAS.Weperformed amultiple linear
regression of each trait on sex,menopausal status and age to estimate:

• the mean of each trait in males, pre-menopausal females and
post-menopausal females adjusted for age (estimates corre-
spond to the mean age in the study sample, which is 43.7
years) and

• the effect of age on the mean of the trait while adjusting for sex
and menopause.

We also performed a multiple linear regression of each trait on
sex, menopause status, age and BMI to estimate the effect of BMI on
each trait while adjusting for sex and menopause status.

Genotyping, quality control of genetic data and imputation of
unmeasured genotypes
DNA extraction was performed at LGC Genomics (UK) from buffy coat
using a Kleargene method. Samples were packaged and shipped to
Affymetrix (now Thermo Fisher Scientific; Mountain View, CA, USA) in
96-well barcoded plates, two wells of which were left empty for stan-
dard Affymetrix controls. A sample selection algorithm was used to
ensure that the samples on each plate came from participants with a
representative distribution of recruitment centre, recruitment date,
regional hub and sex. A PicoGreen-based method was used to identify
plates with a high proportion of low DNA concentration samples,
which were replaced prior to genotyping. Genotyping was performed
on the Affymetrix GeneTitan Multi-Channel Instrument according to
theAffymetrix Axiom2.0AssayAutomatedWorkflow.Genotypeswere
called in batches of approximately 50 plates (4800 samples) using the

Axiom GT1 algorithm implemented in the Affymetrix Power Tools
software package.

A full description of the quality control procedures applied to the
INTERVAL genotype data can be read in the Methods section of Astle
et al.2. Data from samples showing evidence of DNA contamination
were excluded. Data from samples that were genetic duplicates, from
samples corresponding to related groups of participants and from
samples from non-European ancestry participants were identified and
removed. Data from samples with discordant self-reported and
genetically determined sex were removed. Genetic duplicates and
relatives were identified using a methods-of-moments estimator for
coefficients of pairwise relatedness. Participants were considered to be
of European ancestry if their scores on the first two principal com-
ponents of genetic variation fell below component-specific thresholds
in a dataset combining the genotyped INTERVAL participants and
genotyped individuals in the major population groups of the 1000
Genomes project. These thresholds were determined by considering
the bivariate distribution of principal components scores of indivi-
duals self-declaring their ethnicity as ‘White’. Non-autosomal variants,
variants with a low call rate, multi-allelic variants and variants showing
significant (unadjusted P-value < 5 × 10−6) deviation from the Hardy-
Weinberg equilibrium were removed. The data were phased using
SHAPEIT3, following which the genotypes of 87,696,910 variants were
imputed from the combined 1000 Genomes Phase 3-UK10K panel
using the PBWT imputation algorithm on the Sanger Imputation Ser-
ver (https://imputation.sanger.ac.uk)62.

Univariable genome-wide association analysis
We used BOLT-LMM version 2.3.1. to perform univariable (i.e. a single
genetic variable) linear mixed model regression of each ncCBC phe-
notype on the imputed alternative allele dose at each of the 29.5 mil-
lion genetic variants which passed quality control filters (MAF > 0.04%,
INFO score > 0.4). We included as covariates, dummy variables indi-
cating the donor clinic at which the blood sample was taken and the
score vectors corresponding to the leading ten principal components
of genetic variation in the study sample. TheGenomicControl inflation
factor λ-values ranged between 1.001 and 1.058 suggesting that the
mixedmodel analysis andprincipal components covariates adequately
adjusted for any confounding by relatedness or large scale population
stratification63.

Conditional analysis
For each trait, we performed stepwise multiple linear regression ana-
lyses to identify a parsimonious subset of genetic variants explaining
the univariable genome-wide significant (Wald test unadjusted
P-value < 8.31 × 10−9) associations64. We partitioned the set of genome-
wide significant variants for each trait into the maximum number of
subsets (‘blocks’) such that no pair of variants in distinct subsets were
separated by fewer than 10Mb. We implemented a version of
Efroymson’s stepwise regression algorithm using the fastLM function
in the R package RcppEigen and applied it to the variants in each block.
We initialised the algorithm by specifying a linear regressionmodelM,
‘the currentmodel’ that included the covariates used in the univariable
GWAS analysis (PC score vectors and clinic), but no genetic variants.
We then performed iterations as follows:
1. For each variant not currently included in M,

• augmentM with the variant to createM* and compareM* toM
by a likelihood ratio test; compute the corresponding P-value.

2. Identify the variant corresponding to the lowest P-value in the set
of model comparisons performed in step 1. If that P-value is lower
than 8.31×10−9 anddoes not have a LD r2 scorehigher than0.9with
any variants already in the model then update M by adding the
variant to the model. If no such variant exists, terminate the
algorithm.

3. For each variant currently included in M,
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• reduceM by removing the variant to createM* and compareM
to M* by a likelihood ratio test; compute the corresponding
P-value.

4. Identify the variant corresponding to the greatest P-value in the
set of model comparisons performed in step 3. If that P-value is
greater 8.31×10−9 then updateM by removing the variant from the
model and return to 3.

5. Return to 1

Finally, for each trait, we ran the algorithm again, but beginning at
step 3 and initialisingM as the union of the sets of variants selected by
the block-wise analyses for the trait. The terminatingmodel of this run
contains the set of ‘conditionally significant variants’ for the trait.

Fine mapping of association signals
We performed statistical fine-mapping by applying FINEMAP 1.3.128 to
each of a set of genomic windows covering the association signals. We
generated the windows for each trait by centreing a 500 kb precursor
window on each conditionally significant variant and merging those
that overlapped. The resultingwindows ranged in size from 500,000b
to 599,652 b. For each application of FINEMAP, we specified the
maximum number of causal variants (–n-causal-snps option) to be the
number of conditionally significant variants in the window. We set the
prior standard deviation on the effect size (–prior-std option) to 0.08.
We computed the linkage disequilibrium (LD) correlation structure of
the variants in eachwindow from the imputed genetic dataset used for
the univariable GWAS analysis. We computed a 95% Bayesian credible
set of variants for each trait-window as the minimal set of variants
jointly covering at least 95% of the posterior probability of association.

Linkage disequilibrium clumping
The stepwise model selection procedure of the conditional analysis
was performed independently for each ncCBC trait. Consequently, a
genetic variant causally associated with multiple ncCBC traits may
generate association signals that are tagged by different conditionally
significant variants for different traits. To identify variants likely to
represent common association signals, we sought to partition the full
set of conditionally significant variants into sets of variants connected
by chains of high LD. We applied the greedy clumping algorithm in
PLINK 1.90b3l, which assigns each variant to a distinct clump and then
iterativelymerges pairs of clumps if thereexists a variant in eachclump
such that the pair of variants is in high LD. We used a threshold of 0.8
on the r2 measure of LD to merge clumps.

Identification of association signals not reported by Vuckovic
et al. or Chen et al.
In order to identify association signals not previously reported in large
cCBC GWAS we declared a clump to represent a ‘novel’ blood cell trait
signal if it did not contain a variant in strong LD (r2 > 0.8) with a con-
ditionally significant variant reportedbyVuckovicet al. orChen et al.3,4.
Following this, we performed an analysis at the cell-type (platelet, red
cell, neutrophil, eosinophil, basophil, monocyte, lymphocyte) level.
Each clump containing a variant associated with a trait of a given cell-
typewas declared to represent a novel association with that cell-type if
it did not contain any variants in strong LD (r2 > 0.8) with a variant
identifiedby the conditional analyses of Vuckovic et al. or Chen et al. to
be associated with cCBC traits of the same cell-type (Table 1).

Gene assignment
We used Variant Effect Predictor (VEP) version 84 to annotate the
conditionally significant variants with the gene symbols of enveloping
or proximal (within 5 kb) transcripts (SupplementaryData 4)65. All gene
transcripts were considered. If a variant was enveloped by or proximal
to the transcript ofmore thanonegene,we reportedonly the genes for
which the variant was predicted to have the maximally severe

transcriptional consequence according to the Ensembl ranking of
transcriptional consequences.We applied the alias2symbol function in
the R package ‘limma’ tomap alias gene names toHGNCgene symbols.
We excluded genes without an HGNC symbol.

Genetic correlation
We estimated the pairwise genetic correlation between each pair of
ncCBC traits and between each pair of ncCBC and cCBC traits in the
European ancestry population by applying LD Score Regression66. We
used the LD scores supplied with the LDSC software, which were pre-
computed from the 1000 Genomes European data at the 1.2 million
common SNPs identified in the CEU population by the HapMap 3
project. We used our own GWAS summary statistics for the ncCBC
traits and those of Vuckovic et al. for the cCBC traits3.

Colocalisation with eQTL
We applied gwas-pw to identify ncCBC genetic association signals that
colocalised with blood cell eQTL39. We performed eQTL mapping, in
windows extending 1MB from each gene boundary, in platelets
(n = 424), CD15+ neutrophils (n = 300) and CD14+ monocytes
(n = 1490), CD4+ T-cells, CD8+ T-cells and CD19+ B-cells using genetic
and transcriptomic data obtained from CEDAR, Cardiogenics, the
Wellcome Trust Centre for Human Genetics (WTCHG), and BLUE-
PRINT. Unmeasured genotypes were imputed using the Haplotype
Reference Consortium release 1.1 reference panel. These data con-
tributed to an eQTL meta-analysis which has been published in Võsa
et al.67. We performed colocalisation analysis between genetic asso-
ciations from 35 cell-type matched ncCBC cytometry traits and the
eQTL. Association signals from H-IPF, P-LCR, PLT-SSC, PLT-SFL, PLT-
FSC, PLT-SSC-DW, PLT-SFL-DW, and PLT-FSC-DW were colocalised
with eQTL of platelets. Association signals from NE-SSC, NE-SFL, NE-
FSC, NE-SSC-DW, NE-SFL-DW, NE-FSC-DW, EO-SSC, EO-SFL, EO-FSC,
EO-SSC-DW, EO-SFL-DW and EO-FSC-DW were colocalised with eQTL
of CD15+ cells. Association signals from MO-SSC, MO-SFL, MO-FSC,
MO-SSC-DW, MO-SFL-DW, and MO-FSC-DW were colocalised with
eQTL fromCD14+ cells. Finally, association signals fromRE-LYMP#, RE-
LYMP(L)%, RE-LYMP%, and LY-SSC, LY-SFL, LY-FSC, LY-SSC-DW, LY-
SFL-DW, and LY-FSC-DW were colocalised with eQTL of CD4+, CD8+,
and CD19+ cells.

A colocalisation analysis was performed between the ncCBC
association signal of each conditionally significant variant and each
eQTL of the corresponding cell-type, providing that the variants were
in strong LD (r² > 0.8). Each analysis was performed using data from
the recombination region of Berisa et al.68 containing the conditionally
significant variant. If the region contained multiple conditionally sig-
nificant variants of thencCBC trait, we regressed thencCBC trait on the
conditionally significant variants that were not in strong LD (r² > 0.8)
with the variant of interest and used the resulting residuals as a phe-
notype for univariable association tests, to obtain ncCBC association
statistics for each variant in the region with the effect of secondary
signals removed. We filtered the results to report only those which are

Table 1 | The cell-type-specific cCBC traits studied by
Vuckovic et al. and Chen et al. classified by cell-type

cCBC trait(s) Cell-type

MPV, PCT, PDW, PLT# Platelets

HCT, HGB, HLSR#, HLSR%, IRF, MCH, MCHC, MCV, RBC# Red cells

NEUT# Neutrophils

EO# Eosinophils

BASO# Basophils

MONO# Monocytes

LYMPH# Lymphocytes
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‘highly likely’ to represent true colocalisation: those with a posterior
probability greater than 80%30 (Supplementary Data 5).

ATAC-Seq enrichment analysis
Following the procedure described by Ulirsch et al., we applied
g-chromVAR to compute the enrichmentof genetic variants associated
with ncCBC traits in the nucleosome depleted regions of the genome
of eighteen blood cell populations representing various stages of
differentiation29. Briefly, regions depleted in at least one cell-type were
approximated using 500b wide windows, each centred at the summit
of one of a set of ATAC-seq read peaks selected by applying a con-
sensus findingmethod to the union of peaks called across the eighteen
cell-types. For each cell-type, the ATAC-seq fragment counts in each
regionwereweightedby the sumof the FINEMAPposterior probability
of variants in the region, restricted to those variants for which the
posterior probability of association was greater than 0.1%. The
genome-wide sum of these weighted counts was compared to its
expectation under a null model which assumed no enrichment and
controlled for GC content and average peak intensity.

Colocalisation with pQTL
We applied gwas-pw to identify ncCBC genetic association signals that
colocalised with the genetic associations of 1478 blood plasma pro-
teins identified by Sun et al.30. We followed the procedure described
for the eQTL colocalisation analysis, except that the regional summary
statistics for genetic association with the plasma protein concentra-
tions were adjusted to remove local secondary signals, following the
procedure previously described to remove secondary associations
from the ncCBC summary statistics (Supplementary Data 7).

Identification of platelet α-granule proteins
Firstly, we conducted a literature review to identify proteins localised
to platelet α-granules bymass spectrometry69–71, electron microscopy,
immunogold labelling, or platelet sub-fractionation72–80; cytoskeletal
proteins were excluded. Proteins identified in the platelet releasate
were included, absent other evidence that they were α-granule
proteins81–83. Secondly, we performed a differential abundance analy-
sis comparing the platelets of patients with grey platelet syndrome
(GPS; n = 5), which lack α-granules, to those of healthy controls (n = 5).
Platelets were isolated, analysed by mass spectrometry, and normal-
ised abundance values (NAVs) were calculated for each protein
detected84. We performed two-sample Student’s t-tests (without
assuming equal variances) to test for a difference in themeanof the log
NAVs of each protein between the two conditions. Proteins for which
the test was significant (unadjusted P-value ≤0.05) and for which the
log-ratios were greater than 2 standard deviations from the median
were considered to be differentially abundant. Differentially abundant
proteins that were less abundant in GPS platelets than controls were
assumed to be localised to the platelet α-granule.

The effect of rs6993770 on the average plasma concentrations
of proteins expressed in platelets
We extracted from the results of Sun et al. the statistics summarising
the univariate associations of rs6993770 with 1456 proteins showing
strong evidence for expression in MKs (RNA-seq log2FPKM> 1)30. The
estimated effect size corresponding to 215 of these proteins was suf-
ficiently large to correspond to an unadjusted P-value < 1 × 10−3. 44 of
thesewere localised toα-granules, of which40hadnegative estimated
T-allelic effect sizes, while 171 were not localised to α-granules, of
which 101 had negative T-allelic effect sizes. We performed a Fisher’s
exact test for the corresponding 2×2 table.

Using a dataset in which each row corresponded to one of 1456
plasma proteins studied by Sun et al. and expressed in MKs
(log2FPKM> 1), we performed a linear regression of the estimated
effect size of rs6993770-T on a dummy variable indicating α-granule

localisationwhile adjusting for the abundanceof themRNA transcripts
for the corresponding genes in MKs.

Colocalisation with disease risk variants
A catalogue of summary statistics from GWAS of 15 complex diseases
was collated following a literature search. The diseases considered
were: allergic disease85, Alzheimer’s disease86, asthma87, coeliac
disease88,89, coronary artery disease90, Crohn’s disease91,92, eczema93,
hayfever or rhinitis85, inflammatory bowel disease91,92, multiple
sclerosis94–96, primary biliary cirrhosis97,98, primary sclerosing
cholangitis99, systemic lupus erythematosus100, type 1 diabetes101 and
ulcerative colitis91. We performed colocalisation to identify variants
associated with ncCBC traits and disease risk, following the procedure
described for eQTL, but without regressing out secondary signals
(Supplementary Data 8).

ZFPM2 knock-out
ZFPM2 knockout cell lineswere obtained fromhuman iPSCs (HPSI1113i-
qolg_3 HipSci cell line) by CRISPR/Cas9 genome editing. The sgRNA (5’
GA GTC GAC AGC AAC TTC CAG 3’) was cloned into the lentiGuide-
Puro (Addgene plasmid # 52963102). The sgRNA and Cas9 plasmids
were co-transfected into a human iPSC line using the Lonza Nucleo-
fector™ and the Human Stem Cell NucleofectorTM Kit 1 (Lonza, VPH-
5012). Nucleofected cells were single cell sorted and knock-out var-
iants were confirmed by Sanger sequencing (Supplementary Fig. 12).

In vitro differentiation of MKs
MKs were differentiated from human iPSCs (HPSI1113i-qolg_3 HipSci
cell line, wild-type and ZFPM2 knockout) using the protocol described
in Moreau et al.32. Briefly, cells were trypsinized and seeded with
100,000 cells per well. The next day, cells were infected with lenti-
viruses encoding the GATA1, FLI1 and TAL1 transcription factors
(Vectalis). The first two days after infection, cells were cultured with
BMP4 (BioTechne) and FGF2 (Wellcome—MRC Cambridge Stem Cell
Institute, Tissue Culture facility) to induce mesoderm. Eighteen days
were allowed for the differentiation and maturation of MKs, during
which flow-cytometry experiments were used to monitor the expres-
sion of CD41a (BD, cat 559777) and CD42b (BD, 555473) asmeasures of
maturation. Three technical replicates were nested within each of
three biological replicates: two knockouts and one wild-type.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For ethical and legal reasons access to INTERVAL data are subject to
controls. Bona fide scientists can seek access to relevant de-identified
individual participant data—including genetic, haematology analyser
and proteomic data—and a copy of the trial’s data dictionary by
applying to the INTERVAL Data Access Committee using the email
address helpdesk@intervalstudy.org.uk. The INTERVAL Data Access
Committee (supplemented, when required, by expertise from addi-
tional external scientists) meets several times a year to review appli-
cations according to the usual academic criteria of scientific validity
and feasibility. Following approval by the INTERVAL Data Access
Committee, a material transfer or research collaboration agreement
will be agreed and signed with the applicants. Applicants might be
requested to provide reimbursement of data management or pre-
paration costs, as the INTERVAL trial is no longer in receipt of funding.
Applicants will be required to provide updates to the INTERVAL Data
Access Committee on their use of the INTERVAL trial data, including
provision of copies of any publications. Applicants will be required to
adhere in publications with the INTERVAL trial’s policy for acknowl-
edgment of the trial’s funders, stakeholders, and scientific or technical
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contributors. The GRCh37 genome reference build is available for
download from https://grch37.ensembl.org/info/data/ftp/index.html.
Genomewide summary statistics may be downloaded by anonymous
ftp from ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_
statistics/sysmex_blood_cell_genetics. The data from Ulirsch et al.29

are available from https://github.com/caleblareau/singlecell_
bloodtraits/, from the Gene Expression Omnibus (GEO) under acces-
sion GSE119453 and from the Sequence Read Archive (SRA) under
accession PRJNA491478. Other MK epigenetic data were generated by
the BLUEPRINT project and are available in the EGA dataset
EGAD00001001871.

Code availability
The R code used for the association analysis is available in the git
repository: https://github.com/ParsaAkbari/UKBB500K-Conditional-
Analysis.
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