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ABSTRACT

The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big

challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific

method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence

of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or

discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit

depths from transit light curves in the presence of stellar spots. The primary focus of the paper is to present in detail a diverse

arsenal of methods for doing so. The methods and results we present were obtained in the context of the 1st Machine Learning

Challenge organized for the European Space Agency’s upcoming Ariel mission. We first present the problem, the simulated

Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally,

we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful

solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing śdeep neural networks and

ensemble methodsś or amount to obtaining meaningful statistics from the light curves, constructing linear models on which

yields comparably good predictive performance.

Key words: machine learning ś data methods ś exoplanets ś transit photometry ś light curves ś stellar spots

1 INTRODUCTION

In the coming decade, exoplanet atmospheric spectroscopy will un-

dergo a revolution with a number of upcoming space and ground-

based instruments providing unprecedented amounts of high-quality

data. Most notable are of course the Extremely Large Telescopes

(e.g. Gilmozzi & Spyromilio 2007; Nelson & Sanders 2008; Johns

et al. 2012) on the ground and the James Webb Space Telescope

(Gardner et al. 2006) and the Ariel space telescope (Tinetti et al.

★ E-mail: n.nikolaou@ucl.ac.uk

2016a). One of the outstanding challenges to high-precision spec-

trophotometry of exoplanets is the presence of stellar noise. Here

we will address in particular the presence of occulted star spots

in the spectro-photometric light curves of the Ariel space mission.

The chromatic dependence of spots and faculae can adversely affect

the measured exoplanetary transmission spectrum (through a bias-

ing of the derived transit depth) as well as affect other light curve

parameters, such as limb-darkening and the mid-transit times. This

is discussed in detail in (e.g. Sing et al. 2015; Nikolov et al. 2013;

Rabus et al. 2009; McCullough et al. 2014; Rackham et al. 2018,

2019; Zellem et al. 2017; Iyer & Line 2020, and references therein).

There exists a large body of literature on modelling star spot signa-
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tures in photometric and radial velocity data (e.g. Boisse et al. 2012;

Dumusque et al. 2011, 2014; Lanza et al. 2011; Aigrain et al. 2012;

Herrero et al. 2016; Zhao & Tinney 2020; Gilbertson et al. 2020;

Lisogorskyi et al. 2020). Recently, Rosich et al. (2020) proposed a

correction of the chromatic effects using Bayesian inverse modelling

of long duration spectro-photometric time-series data with promis-

ing results. Carter et al. (2008) and Morris et al. (2018) propose

detecting star spots on transit light curves using methods based on

Fisher information and the ratio of the ingress duration to total transit

duration, respectively. To our knowledge, there exists no method de-

signed to directly correct light curves of transits with crossing stellar

spots.

In this publication, we explore the use of machine learning tech-

niques to detect and correct for spot crossings in simulated data of

the Ariel space mission. In particular, we report on the top five results

of the 1st Ariel Mission Machine Learning Challenge (henceforth:

the Challenge), which was concerned with the task of correcting

transiting exoplanet light curves for the presence of stellar spots.

The primary goal of the Challenge was thus to investigate if machine

learning approaches are in principle suited to correcting star spot

crossings in spectro-photometric light curves across a large range of

stellar and planetary parameters as well as observational signal to

noise regimes.

To date, the use of machine learning approaches in exoplanets

is still nascent but a burgeoning interest has seen the successful

application of machine learning śand deep learning, in particularś to

a variety of exoplanetary problems. These include (but are not limited

to) the detection of exoplanet transits in survey data (e.g. Shallue

& Vanderburg 2018; Pearson et al. 2018; Osborn et al. 2020), the

predictive modelling of planetary parameters (Lam & Kipping 2018;

Alibert & Venturini 2019), instrument de-trending (e.g. Waldmann

2012; Morello et al. 2014; Gibson et al. 2012; Morvan et al. 2020) and

the modelling and retrieval of atmospheric spectra (e.g. Waldmann

2016; Márquez-Neila et al. 2018; Zingales & Waldmann 2018; Cobb

et al. 2019; Nixon & Madhusudhan 2020; Himes et al. 2020).

As with many problems in the field of exoplanetary science, the

issue of star spot crossings is characterised by a combination of

challenges: (i) a large amount of data to process1, (ii) low signal to

noise ratio, (iii) an underlying pattern which is non-linear and whose

parametric form is a-priori unknown, (iv) the available information

comes in multiple forms (time dependent and independent), and

finally (v) a high degree of degeneracy. These issues are commonly

addressed by machine learning approaches.

This takes us to the second objective of the Challenge: promoting

the interaction between the astrophysics and the machine learning

communities. To this end, the Challenge targeted both audiences by

being officially organized in the context of the ECML-PKDD 2019

conference2 and also having a strong presence in the joint EPSC-DPS

20193 conference via a dedicated session. The Challenge ran from

April to August 2019. In total, 123 teams participated and it attracted

the interest of researchers from both communities śas evidenced from

the top-5 ranked teams and the solutions they submitted. As such,

1 As Ariel is an upcoming space mission, the data in our case are obtained

via simulations.
2 ECML-PKDD, the European Conference on Machine Learning and Princi-

ples and Practice of Knowledge Discovery in Databases, is one of the leading

academic conferences on machine learning and knowledge discovery, held in

Europe every year.
3 The European Planetary Science Congress (EPSC) and the American As-

tronomical Society’s Division of Planetary Science (DPS) held a Joint Meet-

ing at 2019.

we consider the secondary objective of the Challenge has been met

successfully. Building up on this success, a 2nd Ariel Data Challenge

was organized in the context of ECML-PKDD 2021 and a 3rd one is

currently under preparation.

But what of the main goal of the Challenge, i.e. automating the

extraction of useful parameters from transiting exoplanet light curves

in the presence of stellar spots? A large number of solutions outper-

formed our baselines and approached average precisions of 10 ppm

in photometric ŕux for correctly predicting the relative transit depth

per each wavelength from the noisy light curves. This was the case,

despite exploring a generally high stellar spot coverage scenario (high

activity stars), as discussed in Section 3.2. Again, building up on this

success, the 2nd Ariel Machine Learning Challenge (2021) produced

solutions that surpassed this performance (see Figure 3), on a dataset

generated under a more realistic noise model covering full instrument

systematics simulated under the ArielRad Mugnai et al. (2020) and

ExoSim Sarkar et al. (2021) packages.

The solutions of the top-5 ranking teams that participated in the

Challenge are presented in detail in this paper. Most solutions amount

to constructing highly non-linear (w.r.t. the raw data) models with

minimal pre-processing using deep neural networks and/or ensemble

learning methods4. As we will see however, there exist comparably

good śin terms of the precision of the obtained predictionsś ap-

proaches that involve obtaining meaningful (i.e. informed by physics)

statistics from the light curves and then training models that are linear

w.r.t. them.

Just like the Challenge itself, this paper also intends to serve a

dual purpose. Its primary goal is to describe the research problem

of obtaining good predictions of the relative transit depth per each

wavelength from simulated Ariel-like light curves distorted by pho-

ton noise and stellar spot noise, along with the solutions provided

by the Challenge’s winners and their implications. More specifically,

the objective is to cover in detail a broad and diverse set of methods

to attack the problem. Its secondary aim is to promote interaction

between exoplanetary scientists and machine learning researchers.

As such it is written in a language accessible to both audiences and

śwe hopeś it contains useful information for exoplanetary scientists

wishing to organise their own machine learning challenge or to refine

their knowledge of machine learning methods and use them in their

own work.

2 EXOPLANET BACKGROUND

Due to the interdisciplinary nature of this article, we here provide

a very brief high-level introduction to transmission spectroscopy of

exoplanets. Readers familiar with the field can safely skip this section,

for a more in-depth review to exoplanetary spectroscopy we refer the

reader to the relevant literature (e.g. Madhusudhan 2019; Tinetti et al.

2012; Sharp & Burrows 2007).

When a planet orbits its host-star in our line of sight, we will

observe a regular dimming of the stellar ŕux when the planet passes

between us and the host-star. This is referred to as a transit event.

Similarly, when the planet is eclipsed by the host star, we will observe

a small dip due to the loss of the planet’s thermal or reŕected light.

In Figure 1a, we show a schematic view of a transit and the resulting

dip in the stellar ŕux time-series, also known as a ‘light curve’. The

depth of this light curve, 𝐷, is typically of the order of 1% for a

4 Ensemble methods are machine learning algorithms that construct powerful

predictive models by combining multiple weaker predictors (Polikar 2006).
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Jupiter sized planet and a Sun like star. To first order, this dip can

be described by the ratio of the planet to stellar radius, 𝐷 = 𝑅𝑝/𝑅∗
(also referred to as ‘relative radius’). For an in depth explanation of

the transit geometry, see Seager & Mallén-Ornelas (e.g. 2003).

When a planet harbours an atmosphere, some of the stellar light

will ‘shine through’ the planet’s gaseous envelope (Figure 1b). De-

pending on the atmospheric composition some light will be absorbed

and/or scattered at specific wavelengths of light by the atmospheric

gases, clouds and aerosols. This leads to a wavelength dependent

‘loss’ of stellar ŕux observed, which is equivalent to a perceived

increase in planetary radius from an observational viewpoint. An

accuracy of ca. 1 in 104 in ŕux measurements is typically required

for a Jupiter size planet to observe this effect. Figure 1c is a simu-

lation of the resulting transmission spectrum of a hot-Jupiter planet

as observed by the Ariel Space Mission. The transmission spectrum

includes absorption signatures of H2O, CH4, CO as well as Rayleigh

scattering and collision induced absorption by hydrogen and helium

(Changeat et al. 2020, fig. 1).

3 THE CHALLENGE

3.1 Data Generation

For the purposes of the Challenge, we used the Ariel target-list pro-

duced by Edwards et al. (2019) to generate simulated light curves

for all the 2097 planets in the list. For every planet we produced 55

light curves, one for each wavelength channel corresponding to Ariel

Tier 2 resolution (between 0.5 and 8.0 𝜇m). In addition, all the light

curves covered observations of 5 hours, centred around the transit,

with a time step of one minute. In reality, wavelength binning and

time resolution will differ across targets of Tiers 1, 2 & 3 of Ariel

Edwards et al. (2019). But here we opted to treat all targets as Tier 2

to make the dataset accessible to all the participants without the need

of renormalisation (which would require knowledge on the transit

modelling).

The simulated light curves were computed as follows:

(i) As a first step we calculated the limb-darkening coefficients

(using the quadratic law) for every host star in the target list and

for every wavelength channel. We used the EXOTETHYS package

(Morello et al. 2020) and the stellar parameters for temperature and

gravity provided in the target list, assuming zero metallicity for all

the stars (the effect of metallicity is not strong). Also, we did not use

the Ariel throughput as in this study we were only interested in the

narrow wavelength channels, and any intra-channel variations due to

the Ariel throughput are minimal.

(ii) We then calculated the planet-to-star radius ratio, 𝑅p/𝑅∗, for

every planet in the target list and for every wavelength channel.

This calculation was made using the TauRex atmospheric retrieval

framework for exoplanets Waldmann et al. (2015) and the planet

parameters for temperature, mass and radius (all provided in the

target list), assuming the presence of water vapour and methane in

the atmosphere with abundances that varied uniformly at random

from planet to planet between 0.001% and 0.1%. The values for

the abundances were an arbitrary choice, as the scope of using a

spectrum was only to include some variability, of any kind, in the

𝑅p/𝑅∗ parameter from one wavelength channel to another.

(iii) The next step was to define the spot model parameters for

every host star in the target list. These parameters were:

• Spot coverage: This parameter corresponds to the percentage

of the stellar surface that is covered by spots. We set this parameter

to 10% for every host star in the target list. In reality this parameter

decreases with stellar temperature and initially we incorporated

this in the model. However, it became clear that in the more realistic

case, the number of spots that inŕuence the light curves is very

small, leading to almost noise-free data. For this reason, we chose

to use the fixed value of 10% in order to have a stronger spot

effect on our data. This choice resulted in a simulated dataset with

many more spot-crossing events than in a real dataset, suitable for

the purposes of the challenge. We further justify this choice and

discuss its implications in Subsection 3.2.

• Spot temperature: This parameter corresponds to the effective

temperature of the spots, which is naturally lower that the effective

temperature of the star. We calculated this parameter for every host

star in the target list as a function of its temperature (𝑇∗, provided

in the target list), as described in Sarkar (2017), adjusted from

Andersen & Korhonen (2015):

𝑇spot = 𝑇∗ − (0.0001343 × 𝑇2
∗ − 0.6849 × 𝑇∗ + 1180.0) (1)

• Spot contrast: This corresponds to the contrast between the

brightness of the stellar surface and the brightness of the spots. We

calculated this parameter for every host star in the target list and for

every wavelength channel by integrating the respective PHOENIX

stellar models (Husser et al. 2013) within each wavelength channel

and dividing them.

(iv) Following the definition of the spot model parameters we

created a set of spots for every host star in the target list. The spots

were generated one by one, until the 10% surface coverage was

reached, and it was given three parameters:

• Latitude - uniformly at random generated number between

-85 and 85 degrees5

• Longitude - uniformly at random generated number between

0 and 360 degrees

• Angular diameter - randomly generated using a log-normal

distribution, as described in Sarkar (2017), based on Bogdan et al.

(1988):

𝑑𝑁

𝑑𝐴
= 𝑀𝐴 exp

[
−
(ln 𝐴 − ln⟨𝐴⟩)2

2 ln𝜎𝐴

]
(2)

where 𝑁 is the number of spots, 𝐴 is the area of the spots,

𝑀𝐴 is the maximum of the distribution (adjusted to result in 10%

of total coverage), ⟨𝐴⟩ = 0.62 × 10−6𝐴1/2⊙ is the mean of the

distribution, and 𝜎𝐴 = 3.8 × 10−6𝐴1/2⊙ is the standard deviation

of the distribution.

(v) With the set of spots generated for each star in the target list,

we used the KSint package (Montalto et al. 2014) to generate the

spot-distorted light curves for every planet in the target list and for

every wavelength channel. The input parameters for each light curve

were: the set of spots, (number, position and dimensions of all the

spots), the spot contrast parameter, the limb-darkening coefficients,

the planet-to-star radius ratio, the stellar density (calculated from the

stellar mass and radius provided in the target list), and the planet

orbital parameters (period and inclination, provided in the target list)

5 We did not constrain the latitude further, in order to produce all possible

scenarios: cases with spot-crossing events, cases with unocculted spots only,

and cases with both occulted and unocculted spots. This variety was created

by the combined effect of the uniform latitude distribution, the distribution

of sizes and the limit on the total area covered by the spots. A more restricted

latitude would cause spot-crossing events in most cases, therefore the solutions

would tend to ignore the effects of unocculted spots.
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Figure 1. Left: Schematic of an exoplanet transit. The planet passes in-front of the star, obscuring some of the star’s light. This leads to a characteristic dip in

stellar ŕux observed as a function of orbital phase. Middle: Schematic view of transmission spectroscopy whereby some of the stellar light ‘shines through’

the gaseous envelope of a planet. Right: A simulated transmission spectrum of the Ariel mission. Blue are the observed data points and green is a theoretical

atmospheric model. Figures courtesy of C. Changeat and adapted from Changeat et al. (2020).

and a viewing angle to make sure that the transit happens at the

middle of the observation.

(vi) The final step was to add Gaussian noise to the light curve.

No additional instrument systematics were assumed, as we aimed

for the challenge to focus on correcting for the noise resulted from

the stellar spots. The standard deviation of the Gaussian noise added

was calculated from the overall noise on the transit depth estimation

provided in the target list. This noise value depends on the stellar

magnitude, the stellar temperature, the wavelength channel and the

characteristics of the Ariel instrument. It is beyond the scope of this

work to describe exactly how this level of noise is estimated. We

refer the interested reader to Edwards et al. (2019) for a detailed

description.

This process resulted in generating data for 2097 simulated ob-

servations, consisting of 55 light curves each (one per wavelength).

We repeated the process 10 times with different instances of the spot

set (step 4). This resulted in 20970 simulated observations consist-

ing of 55 light curves each, distorted by stellar spots. Finally, for

each instance of the spot set, 10 different instances of additive Gaus-

sian photon noise were introduced (step 5). This resulted in 209700

simulated observations consisting of 55 light curves each, distorted

by both stellar spot and photon noise. These 209700 simulated ob-

servations formed the final dataset of the Challenge. The different

instances of the spot set were included to mimic multi-epoch ob-

servations, were the spot pattern is expected to change, while the

different instances of additive Gaussian photon noise were included

to mimic continuous observation were the spot pattern is not expected

to change. Note that the two sources of noise (spots and Gaussian)

are treated as independent. Most of the generated light curves only

contained a single transit event, however a small number of them in-

cluded planets with small enough orbital periods to allow for multiple

transits6.

Naturally, these details were unknown to the participants and nei-

ther were they used in the baseline solution. The aim of the Challenge

was to infer the relative radii, either by explicitly modelling and sub-

tracting, or by learning to ignore the photon and/or the stellar noise

(or both).

6 In case the light curve contained multiple transits, one of them was centered.

3.2 On the choice of the 10% spot coverage

It should be noted here that population studies of exoplanetary at-

mospheres tend to focus on low-activity stars (for which a 10% spot

coverage is high). This is because no robust methodologies for re-

moving noise from stellar spots exists at the moment. However, here

we chose to simulate a 10% spot coverage as an example of a łhard

case” to be addressed by the methodologies presented.

As we shall see, the results produced by these methods are en-

couraging in terms of being able to deal with relatively active stars.

However, we should also note that the true stellar activity distribu-

tions, intensities, and morphologies are likely to be more complex

than those simulated in this work.

Although the Challenge was organised in the context of Ariel,

the methods presented here can be useful tools to analyze data from

future missions as well, one of the outcomes of this work is that there

is no longer need to preclude younger or more active stars from future

studies. This, in turn, can allow for population studies of exoplanets

based on a larger and more representative sample.

Finally, we also need to note that even with a 10% spot coverage on

the star (uniformly distributed), a very large fraction of the simulated

transits did not suffer from spot-crossing events.

3.3 Dataset Description & Problem Statement

Each datapoint (a.k.a. an observation or an example in machine

learning terminology) consists of a set of 55 noisy light curves

(one per wavelength, corresponding to Ariel Tier 2 target reso-

lution). Each light curve is a time series of 300 timesteps cor-

responding to 5 hours of observation by Ariel. We shall denote

with 𝑥𝑖 𝑗
(𝑡 ) the relative ŕux at timestep 𝑡 ∈ [1, 2, . . . , 300] of the

light curve at wavelength 𝑗 ∈ [1, 2, . . . , 55] of the 𝑖-th exam-

ple. By x𝑖 𝑗 = [𝑥𝑖 𝑗
(1) , 𝑥𝑖 𝑗

(2) , . . . , 𝑥𝑖 𝑗
(300) ]⊤ we denote the en-

tire light curve at wavelength 𝑗 of the 𝑖-th example. Finally, with

X𝑖 = [x𝑖1, x𝑖2, . . . , x𝑖55] we denote all 55 light curves of the 𝑖-th

example.

Along with the light curves, 6 additional stellar and planetary pa-

rameters (all knowable in advance) were provided: the orbital period,

stellar temperature, stellar surface gravity, stellar radius, stellar mass

& stellar 𝐾 magnitude. We shall denote these as 𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖6, re-

spectively, for the 𝑖-th example. Finally, with z𝑖 = [𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖6]
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(a) 0.7𝜇m (b) 5.6𝜇m

(c) 0.7𝜇m (d) 5.6𝜇m

(e) 0.7𝜇m (f) 5.6𝜇m

Figure 2. Examples of simulations including both stellar spots & faculae for two of the 55 wavelength channels, 0.7 𝜇m and 5.6 𝜇m. (a) & (b), stellar surface

simulations of a spotty star. Grey line shows the planet transit trajectory. The stellar surface limb brightness varies with wavelength. (c) & (d) Normalised

observed ŕux as the planet transits across the star without stellar photon noise. Blue shows the perfect transit across a spotless star; red shows the transit across

a spotty star. (e) & (f) same as (c) & (d) but with stellar photon noise added.

we shall refer to all the additional parameters of the 𝑖-th example

collectively7.

The noisy light curves and the 6 additional stellar and planetary

parameters all constitute the quantities known in advance that we

can use to alleviate the problem of stellar spots. In machine learning

terminology they are the features (independent variables) in our

prediction task.

The goal is to construct a model that uses these to predict a set of

55 real values, the relative radii [𝑅𝑝/𝑅∗]𝑖 𝑗 (one per wavelength 𝑗 ,

for any given datapoint 𝑖). In machine learning terminology this is a

multi-target regression task. The relative radii to be predicted are the

targets (dependent variables) of the multi-target regression problem.

For convenience, we shall henceforth denote the relative radius at

wavelength 𝑗 of the 𝑖-th example, [𝑅𝑝/𝑅∗]𝑖 𝑗 , with 𝑦𝑖 𝑗 . Finally, with

7 The values of the extra parameters provided were the same as those used

to produce the simulations and no associated uncertainties were used.

y𝑖 = [𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖55] we shall refer to all the relative radii of the

𝑖-th example collectively. Note the planet to host star relative radius

𝑅𝑝/𝑅∗ is directly connected to the transit depth of the light curve,

as the latter is equal to
( 𝑅𝑝

𝑅∗

)2
.

The value of the 55 targets is known only for the training ex-

amples (the statistical sample). The goal of the learning task is ś

ideallyś to construct a model 𝑓 (X, z) = ŷ such that E[𝐿 (y, ŷ)] is

minimized, where 𝐿 (y, ŷ) denotes some measure of difference be-

tween the predictions ŷ and their corresponding true values y and

E denotes expectation over the joint distribution of X, z, y, i.e. śin

statistical terminologyś the underlying population from which the

sample is drawn.

Once models are trained, they are evaluated on a separate test set.

The predictive performance of a model on a previously unseen test

set (drawn from the same distribution as the training set), serves

as a proxy for its performance in the population, the latter being

intractable. The features of the test set examples {(X𝑖 , z𝑖) |𝑖 ∈ 𝑇𝑒𝑠𝑡}
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6 N. Nikolaou et al.

were provided to the participants and they had to upload their model’s

predictions {ŷi |𝑖 ∈ 𝑇𝑒𝑠𝑡} on them. The ground truth {y𝑖 |𝑖 ∈ 𝑇𝑒𝑠𝑡} for

the test set examples was unknown to the participants in the duration

of the Challenge. It was only used to produce a ranking score for their

submitted solution, which we describe in the the next subsection.

3.4 Evaluation

All datapoints generated for a uniformly random set of 1677 out of the

2097 of the total planets (i.e. about 80% of the generated datapoints)

were used as training data. All datapoints generated for the remaining

420 planets were used to form the test set (i.e. were only used for

evaluation). That is, the training and test sets not only contained no

datapoint in common, but they also contained no datapoint from the

same planet in common.

After producing a model (i.e. a solution to the problem), the partic-

ipants could upload the predictions of the model on the Challenge’s

website. Subsequently, this would assign a score on the model based

on the quality of the predictions. The participants were ranked on a

leaderboard on the basis of their best solution and the progress of

each participant’s solutions in time was tracked to inform them of the

impact of each change they made on the resulting model’s predictive

performance. The leaderboard ranking determined the winners of the

Challenge that would receive prizes (top 2 participants) and the top-5

participants whose solutions we will present in Section 4.

The score assigned to each solution was a weighted average of the

absolute error per target (i.e. on the relative radii) across all test set

examples 𝑖 and all wavelengths 𝑗 :

𝑆𝑐𝑜𝑟𝑒 = 104 −

∑
𝑖∈𝑇𝑒𝑠𝑡

∑55
𝑗=1

𝑤𝑖 𝑗2𝑦𝑖 𝑗 | �̂�𝑖 𝑗 − 𝑦𝑖 𝑗 |

∑
𝑖∈𝑇𝑒𝑠𝑡

∑55
𝑗=1

𝑤𝑖 𝑗

106, (3)

where 𝑦𝑖 𝑗 is the true relative radius and �̂�𝑖 𝑗 the predicted relative

radius of the 𝑗-th wavelength of the 𝑖-th test set example and the

corresponding weight 𝑤𝑖 𝑗 is given by:

𝑤𝑖 𝑗 =
1

𝜎𝑖 𝑗
2𝛿𝐹𝑖 𝑗

2
, (4)

with 𝜎𝑖 𝑗
2 being the variance of the relative stellar ŕux caused by

the observing instrument at the 𝑗-th wavelength of the 𝑖-th example

and 𝛿𝐹𝑖 𝑗
2 the variation of the relative stellar ŕux caused by stellar

spots in the 𝑗-th wavelength of the 𝑖-th example. The value of 𝜎𝑖 𝑗
is an estimation based on an Ariel-like instrument, given its current

design, while 𝛿𝐹𝑖 𝑗
is calculated based on stellar ŕux 𝐹𝑠𝑡𝑎𝑟

𝑖 𝑗
and the

spot ŕux 𝐹
𝑠𝑝𝑜𝑡
𝑖 𝑗

in the 𝑗-th wavelength of the 𝑖-th example:

𝛿𝐹𝑖 𝑗
= 0.1

(
1 −

𝐹
𝑠𝑝𝑜𝑡
𝑖 𝑗

𝐹𝑠𝑡𝑎𝑟
𝑖 𝑗

)
. (5)

As we see, both sources of noise (photon & stellar spot) are

wavelength-dependent and target-dependent (they depend on the star,

therefore are different for each datapoint).

The higher the score, the better the solution’s ranking. The max-

imum achievable score is 10000 (if �̂�𝑖 𝑗 = 𝑦𝑖 𝑗 ,∀𝑖, 𝑗). The score is

not lower-bounded (i.e. can be negative), but even naive ‘reasonable’

models (e.g. predicting the average target value for all test datapoints)

would not produce scores below 4000.

The weights 𝑤𝑖 𝑗 of each target were unknown to the partici-

pants8. A sensible strategy would thus be to try to predict all of

them reasonably well. In other words, to train a model to minimize

an unweighted loss 𝐿 (y𝑖 , ŷ𝑖) like the Mean Squared Error (MSE),

𝐿 (y𝑖 , ŷ𝑖) = (ŷ𝑖 − y𝑖)
2, the Mean Absolute Error (MAE), 𝐿 (y𝑖 , ŷ𝑖) =

|ŷ𝑖 − y𝑖 |, or their relative error counterparts: 𝐿 (y𝑖 , ŷ𝑖) =
(

ŷ𝑖−y𝑖
ŷ𝑖

)2
or

𝐿 (y𝑖 , ŷ𝑖) =
|ŷ𝑖−y𝑖 |

ŷ𝑖
, respectively. Indeed, this is the approach taken

by the top-5 participants and in training the baseline model.

3.4.1 Comparison with Current Practice

To assess the usefulness of the proposed machine learning-based

solutions, in this paper we have included a comparison with the stan-

dard (non-machine-learning-based) approach for obtaining estimates

of 𝑅𝑝/𝑅𝑠 in the literature. In particular, we obtain least-squares fits

of transit models using the PyLightCurve package (Tsiaras et al.

2016) on the entire test set, treating the stellar and transit parameters

(orbital inclination, period, semi-major axis, stellar surface temper-

ature, gravity) as known, with the aim of estimating 𝑅𝑝/𝑅𝑠. Limb-

darkening coefficients are computed using the EXOTETHYS pack-

age (Morello et al. 2020) from the stellar gravity and temperature

while assuming zero metallicity. This way, we are using all infor-

mation available to the competition’s participants -and only that- on

the test set examples. Of course, such a model would be optimal in

the absence of spots, but in this case the estimates of 𝑅𝑝/𝑅𝑠 will be

biased because of the presence of spots.

As we will see in Table 1 the transit model fitting solution using

PyLightCurve, achieves a score of 9467 under the competition’s

score metric of Eq.(3)), which corresponds to a Mean Absolute Error

on the estimated (𝑅𝑝/𝑅𝑠) of 0.00664 ± 0.00006 on the test set.

Factoring for the weights of Eq.(4), the average weighted MAE is

0.000533. Note that all top-5 solutions described in Section 4 attain

a score higher than 9467 (i.e. better). The baseline solution of the

competition given in Section 3.7, however, does not. Interestingly,

all of the solutions that outperform our baseline also outperform the

transit model least square fit solution.

3.5 Rules, Logistics & Organization

To allow for the broadest possible participation, the set of rules of the

Challenge was the minimal possible. There was no restriction on the

models, algorithms or data preprocessing techniques, neither on the

programming languages, environments or tools used for their imple-

mentation. The participants were also free to use data augmentation

techniques, pretrained models or any prior domain knowledge not

included in the provided dataset. Finally, they were free to choose

their own way of splitting the training data between training and

validation sets.

The participants were limited to 1 submission every 24 hours.

This was a measure taken to limit traffic on our website and śmost

cruciallyś to prevent the extend to which the solutions would be

overfitting to the test set. Indeed, although the test set contains previ-

ously unseen examples by the model and the participants could not

have access to the ground truth itself, the presence of a leaderboard

is effectively causing some information leakage from the test set.

Simply put, just adapting the strategies to the ranking score signal,

8 For transparency of the evaluation process, the 𝑤𝑖 𝑗 coefficients of the test

set examples, along with the ground truth (target values 𝑦𝑖 𝑗 ) became available

after the end of the Challenge.
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Correcting Transiting Exoplanet Light Curves for Stellar Spots 7

participants could increase their scores by effectively overfitting on

the particular test set. Limiting the number of daily submissions al-

leviated this effect. In retrospect, an even stronger strategy to prevent

this would have been to only use part of the test set to produce the

leaderboard ranking score during the Challenge and only use the

full test set to produce the final ranking after the Challenge closes.

In future machine learning challenges we will adopt this evaluation

scheme. For now we should keep in mind that small differences in the

ranking scores of solutions presented in Section 4 are not necessarily

indicative of true generalization (i.e. ability to predict well on new

examples).

The participants were allowed to form teams, provided they par-

ticipated in only one entry. The remaining rules handled how prizes

would be split among teams, how ties would be handled and ensuring

that any winning entry would have to beat the baseline model.

3.6 Description of Solutions

To facilitate comparisons among the solutions discussed in the paper

and to demonstrate the typical steps of training and evaluating models

using machine learning methodology, we split the description of the

solutions into 3 parts: (i) preprocessing, (ii) model / architecture, (iii)

training / optimization.

The ‘preprocessing’ part will describe any transformation of the

raw data (either in terms of features or of observations) before giv-

ing it as input to a learning algorithm. The ‘model’ part is concerned

with the general class of models (i.e. their parametric form) which the

learning algorithm is exploring (e.g. deep neural networks of a given

architecture9, random forests of 10 trees of maximal depth 5, linear

models of the form 𝑦 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑐). Finally, the ‘training’ part is

concerned with the specifics of the optimization of the parameters

of the model (i.e. the weights of the neural network, the derivation of

the decision trees or the inference of the linear coefficients 𝑎, 𝑏, 𝑐 in

the examples below). It covers the hyperparameters used in the learn-

ing/optimization algorithm, along with the loss function it minimizes

and the final evaluation method.

Wherever necessary, we will clarify the purposes behind mod-

elling choices or training methodologies in all solutions described.

However, a detailed treatment of models like deep neural networks

(DNNs) is beyond the scope of this paper. We direct the interested

reader to Goodfellow et al. (2016) and Chollet (2017).

3.7 Baseline Solution

As a baseline machine learning solution, we trained a fully connected

DNN10 on a sample of 5000 training examples selected uniformly

at random. The neural network uses all 55 noisy light curves, X𝑖 to

predict the 55 relative radii directly. It does not make use of any of

the additional stellar & planetary parameters z𝑖 .

3.7.1 Preprocessing

The noisy light curves have undergone the following preprocessing

steps:

9 By the term łarchitecture" we collectively refer to the number, type and

connectivity of the neurons comprising a neural network.
10 Fully connected DNNs are the earliest and most popular type of DNN ar-

chitecture. They are also known as multi-layer perceptrons (MLPs) or ‘dense’

neural networks.

i) Each light curve was smoothed using a moving median of win-

dow 3 (i.e. each value replaced by the median of itself and its two

adjacent values). This was done to remove ŕux values that are obvious

outliers.

ii) In any light curve, any value (relative ŕux) that was above 1

was clipped to 1. This was done because the maximal relative ŕux

during transit is 1.

iii) All values were normalized for the transit depths to lie roughly

within the range [0, 1]. Doing so allows for faster and more stable

training of models like DNNs. The normalization was carried out per

wavelength and was performed as follows:

First, we computed the average transit depths per wavelength from

the target values �̄� 𝑗 on a sample of 10000 random training examples.

For every wavelength 𝑗 , we then applied the transformation:

𝑥
(𝑡 )
𝑖 𝑗
← (𝑥

(𝑡 )
𝑖 𝑗
− (1 − 2�̄�2

𝑗 ))/2�̄�
2
𝑗 .

This was done to have the maximal relative ŕux values at exactly 1

and the transit depths around 0, leveraging the fact that the transit

depths of the light curves are the squares of the relative radii (targets).

3.7.2 Model/Architecture

We used a fully connected DNN with 5 2D-hidden layers, all of which

consisted of 1024 units × 55 channels, the j-th channel receiving as

input the light curve x𝑖 𝑗 for each example. After these, we added a

ŕattening layer followed by a linear layer of 55 outputs, the j-th output

corresponding to the predicted relative radius �̂�𝑖 𝑗 of each example.

All other activation functions were rectified linear units (ReLUs).

3.7.3 Training/Optimization

No batch normalization, regularization or dropout was applied in

the training of the baseline model. The 5000 observations used were

split into 4020 training and 980 validation examples (i.e. approxi-

matelly 80% training & 20% validation split) in such a way that the

two sets contained no planets in common. The model was trained by

minimizing the average MSE across all wavelengths using the Adam

optimizer (Kingma & Ba 2014) with a learning rate of 10−4 decaying

with a rate of 0.01 and a batch size of 128. All remaining hyperpa-

rameters were set to default Keras(Chollet et al. 2015) values. The

model was trained for a maximum number of 5 epochs without early

stopping.

4 TOP-5 SOLUTIONS

By the end of the Challenge, 13 out of the 123 participating teams had

beaten the score attained by the baseline solution we just presented.

In this section, we will present the top-5 ranked solutions. Their

relative ranking in the final leaderboard and scores they achieved

under Eq.(3), along with the weighted mean absolute error in terms

of relative radius are shown in Table 1. The table includes the re-

sults of the non-ML-based standard practice of fitting least-squares

transit models on the test set light curves using PylightCurve, as-

suming the stellar & planetary parameters as known. As we see,

although this method outperforms the competition’s baseline, it is

outperformed by all solutions that score above the baseline, includ-

ing -of course- the top-5 solutions presented here. The results suggest

that machine learning approaches can indeed outperform the current

standard practice in the field, if implemented correctly.

For reference, Table 1 and Figure 3, which shows the progress
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8 N. Nikolaou et al.

made towards the Ariel mission’s desired precision in recovering the

relative radius from light curves contaminated with stellar spots, also

include the results of the 2nd Ariel Machine Learning Challenge.

Note that results across the two Challenges are not directly compa-

rable, as the data were generated under different assumptions: in the

2019 Challenge (the focus of this work) instrument systematics were

ignored, whereas in the 2021 Challenge, full instrument systematics

were taken into account during the dataset simulation (Mugnai et al.

2020; Sarkar et al. 2021), resulting in a more challenging modelling

problem. As we see the solutions achieve a weighted MAE of the

order of 10−5ś10−4, despite exploring a high stellar spot coverage

scenario (high activity stars), as discussed in Section 3.2. The analy-

sis of top solutions of the 2021 Challenge will be the focus of future

work.

4.1 SpaceMeerkat’s solution

SpaceMeerkat is comprised of James M. Dawson, an Astrophysics

PhD student at Cardiff University. SpaceMeerkat’s solution is a 1D

convolutional neural network, designed to retain architectural sim-

plicity, while exploiting the power of GPU accelerated machine learn-

ing. The largest gain in the model’s predictive power came from the

extensive testing of different prepossessing operations.

4.1.1 Preprocessing

The data was split into 80% training and 20% test sets. In order to

remove outlier ŕux values in the raw light curves, an initial smoothing

was conducted on each time series x𝑖 𝑗 . The mean ŕux value in

each non-overlapping bin of width 5 was calculated in-place along

each time series leaving each observation Xi as a smoothed multi-

channel array of dimensions 60× 55. A normalisation operation was

performed on the training set prior to its use for training machine

learning models. For each of the 55 wavelengths, the medians across

all datapoints of the lowest 1% of ŕux values in each light curve

for a given wavelength were calculated. These 55 percentile medians

(henceforth ‘median offsets’) are therefore equal to

𝜅 𝑗 = med{P1% (x
(𝑡 ′ )
𝑖 𝑗
)}, (6)

where P1% (x
(𝑡 ′ )
𝑖 𝑗
) denotes the 1st percentile of the set of all ŕux val-

ues 𝑥
(𝑡 ′ )
𝑖 𝑗

, 𝑡′ ∈ {1, 2, . . . , 60} for a given datapoint 𝑖 and wavelength 𝑗 ,

and 𝑚𝑒𝑑{·} denotes median across all datapoints 𝑖. The light curves

were then divided by 1 minus the median offsets and the resulting

ŕux values were thus

𝑥
(𝑡 ′ )
𝑖 𝑗
← 𝑥

(𝑡 ′ )
𝑖 𝑗
/(1 − 𝜅 𝑗 ).

This normalisation allowed the data to lie roughly within the range

[0, 1] but with leniency for allowing the existence of extremely shal-

low or deep transits. Any remaining ŕux values above the normalisa-

tion range were clipped to 1. This was done to encourage the model

to focus on the lower ŕux valued regions where most of the transit-

depth information lies. The preprocessing of light curves makes use

of Astropy11, a community-developed Python package for Astron-

omy (Astropy Collaboration et al. 2013, 2018).

11 http://www.astropy.org

4.1.2 Model/Architecture

The model used in this solution is a convolutional neural network

(CNN) (LeCun et al. 1995)12. The data is presented to the CNN as

a 1D vector and 1D convolutions & pooling operations are applied

in order to maintain a principled simplicity to the final solution. The

architecture of the CNN is shown in Table 2. The model was built

using PyTorch 0.4.1(Paszke et al. 2019), an open source machine

learning framework for Python users. The output of layer ‘Lc5’ in

Table 2 is concatenated with the additional stellar & planetary param-

eters: the orbital period, stellar surface gravity, stellar radius, stellar

mass & stellar 𝐾 magnitude, i.e. [𝑧𝑖1, 𝑧𝑖3, . . . , 𝑧𝑖6] for each example,

to form the 1D linear input for layer ‘Lc6’. The additional parameters

did not undergo any normalisation and were presented to the network

in their raw form.

4.1.3 Training/Optimization

The CNN was trained for 75 epochs (i.e. was presented with the en-

tire training set 75 times), on a single NVIDIA TITAN Xp GPU. The

model was trained using batches of 256 examples. Rather than pre-

senting the CNN with examples of dimensions 60× 55 (as generated

by the preprocessing step), each example was ŕattened into a single

vector of length 3300. Initial investigation showed that 1D convo-

lutions over the ŕattened inputs produced significantly better results

than 2D convolutions over the 2D preprocessed inputs. The model

was trained by minimizing the MSE loss (see §3.4) using the standard

Adam optimiser and an initial learning rate of 1 × 10−3 decaying by

10% the existing rate, every epoch. No early stopping was used, as

we observed no increase of the validation error during training to

indicate the presence of overfitting. No additional form of regular-

ization (e.g. batch normalisation, dropout, or explicit regularisation)

was used in the training procedure. All remaining hyperparameters

were set to default PyTorch values. The code for this solution is

publicly available on GitHub13.

4.2 Major Tom’s solution

Major Tom took second place on the ARIEL ML challenge score-

board. The team composed of machine learning researchers from the

Data Science Research and Analytics (DSAR) group at the Univer-

sity of Tuebingen (Germany). The goal of the team’s solution is to

provide an easy to use ML tool, with minimal data preprocessing

effort and a fast inference step. The result is a fully-integrated deep

learning solution whose final code is publicly available online14.

4.2.1 Preprocessing

The main motivation behind this solution was to create a robust sta-

tistical model that can handle outliers and noisy data. Therefore, we

12 CNNs are designed to excel in tasks in which translational invariance is

important, i.e. we are looking for particular patterns anywhere in the input

data. As such, they are especially popular in image-based tasks. However,

they are very successful even outside this setting, as they effectively reduce

the number of trainable parameters of a neural network (compared to a feed-

forward DNN of the same depth). This means they are more computationally

efficient to train and more resistant to overfitting.
13 Solution by SpaceMeerkat (Ranked 1st): https://github.com/

SpaceMeerkat/ARIEL-ML-Challenge
14 Solution by Major Tom (Ranked 2nd): https://github.com/unnir/

Ariel-Space-Mission-Machine-Learning-Challenge
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Top-5 Solutions of 1st Ariel Machine Learning Competition (2019)

Team Rank Score Weighted MAE Difference w.r.t. 1st place (%)

SpaceMeerkat 1 9813 0.000187

Major Tom 2 9812 0.000188 +1%

BV Labs 3 9808 0.000192 +3%

IWF-KNOW 4 9805 0.000195 +4%

TU Dortmund University 5 9795 0.000205 +10%

PyLightCurve Least Squares 14 9467 0.000533 +185%

2019 Baseline 15 8726 0.001274 +581%

Top-5 Solutions of 2nd Ariel Machine Learning Competition (2021) - For Reference

Team Rank Score Weighted MAE Difference w.r.t. 1st place (%)

ML Analytics 1 9931 0.000069

TU Dortmund University 2 9920 0.000080 +16%

Deep Blue AI 3 9911 0.000089 +29%

Aalen University 4 9901 0.000099 +43%

Major Tom 5 9899 0.000101 +46%

2021 Baseline 27 9617 0.000383 +455%

Table 1. Final leaderboard showing rank, score under Eq.(3) and mean weighted absolute error in terms of relative radius achieved by each of the top-5 entries

and the baseline on the test data for the 1st Ariel Machine Learning Challenge (2019). We have included the results of the standard practice of fitting least-squares

transit models on the test set light curves using PylightCurve, assuming the stellar & planetary parameters as known. Results of the 2nd Ariel Machine

Learning Challenge (2021) are also shown for reference.

Figure 3. Progress made towards the Ariel Mission’s desired precision in terms of transit depth (10 ppm) by the 1st & 2nd Ariel Machine Learning Challenges.

The winning solution of the 2021 Challenge (red) has a 61% lower weighted MAE compared to the winning solution of the 2019 Challenge (teal). The solutions

of both challenges achieve a weighted MAE of the order of 10−5ś10−4, despite exploring a high stellar spot coverage scenario (high activity stars). Note that

results across the two Challenges are not directly comparable; in the 2019 Challenge (the focus of this work) instrument systematics were ignored, whereas in

the 2021 Challenge, full instrument systematics were taken into account during the dataset simulation, resulting in a more challenging modelling problem.
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10 N. Nikolaou et al.

Name Layer/Operation Dimensions Filter

Input None (256,1,1,3300) None

Conv1 1D convolution (256,32,1,3300) (1,3)

ReLU ReLU None None

AP1 1D average pool (256,32,1,1650) (1,2)

Conv2 1D convolution (256,64,1,1650) (1,3)

ReLU ReLU None None

AP1 1D average pool (256,64,1,825) (1,2)

Conv3 1D convolution (256,128,1,825) (1,3)

ReLU ReLU None None

AP1 1D average pool (256,128,1,275) (1,2)

Lc1 Linear (256,1,1, 35200) None

ReLU ReLU None None

Lc2 Linear (256,1,1, 2048) None

ReLU ReLU None None

Lc3 Linear (256,1,1, 1024) None

ReLU ReLU None None

Lc4 Linear (256,1,1, 512) None

ReLU ReLU None None

Lc5 Linear (256,1,1, 256) None

ReLU ReLU None None

Lc6 Linear (256,1,1, 60) None

Output None (256,1,1,55) None

Table 2. The CNN architecture used in the solution by the SpaceMeerkat

team (Ranked 1st). The table follows the standard PyTorch format. The 1st

column lists the name of each layer/operation, the 2nd column its type, the

3rd the dimensions of its output tensors (hence inputs to the next layer). These

follow the convention (batch size, number of channels, height, width). The

filter column shows the dimensions (height, width) of kernels used to perform

the convolution and pooling operations. Layer ‘Lc6’ is notable as this is where

the additional planetary parameters z are introduced into the network.

deliberately do not apply any heavy preprocessing to the data beyond

the rescaling of the features and the targets. Since all measurements

in time series x𝑖 𝑗 are mostly distributed around 1 (see, for example

Figure 5), we used the following rescaling of the data, in order to

emphasise the differences between measurements:

𝑥
(𝑡 )
𝑖 𝑗
← (𝑥

(𝑡 )
𝑖 𝑗
− 1) × 1000.

We apply a similar transformation technique to the target variable 𝑦:

𝑦 𝑗 ← 𝑦 𝑗 × 1000.

4.2.2 Model/Architecture

We used a multiple-input and multiple-output DNN model with fully-

connected (FC), Batch Normalization (BN) (Ioffe & Szegedy 2015),

and Dropout (Srivastava et al. 2014) layers15. The final architecture

is presented in Figure 4. It consists of two separate branches. The

first branch uses as input the light curves X𝑖 , and the second, the

additional stellar & planetary parameters z𝑖 . After several non-linear

transformations, the outputs of the two branches are concatenated

into one and higher level non-linear features combining information

from both are extracted. The output layer has 55 neurons, the 𝑗-th

neuron mapping to the (rescaled) predicted relative radius 𝑦𝑖 𝑗 of a

given example. We utilized exponential linear unit (ELU) activations

in all but the last two layers, where ReLUs and linear activation

functions are used, respectively.

15 Both batch normalization and dropout are commonly used techniques to

prevent overfitting in neural networks.

4.2.3 Training/Inference

We train the DNN using the NAdam optimization algorithm (Dozat

2016) and a cyclic learning rate as described in Smith (2017). The

number of epochs was set to 1000, and the batch size to 3048. We

selected the MSE as the loss function. We train the proposed model

using 10-fold Cross-Validation with early stopping based on the val-

idation loss with the patience equals to 20. The neural network was

implemented using the Keras/Tensorŕow deep learning framework

(Abadi et al. (2015)). The entire training step took ≈ 30 hours using

a single NVIDIA P100 GPU.

For the inference step, we used an ensemble consisting of all 10

models produced in the cross-validation steps; the final prediction is

the average of all estimates from the 10 models.

4.3 BVLabs’ solution

The team BVLabs took third place in the challenge. It is comprised

of researchers and data scientists from the Jožef Stefan Institute and

Bias Variance Labs. The team’s solution relied on denoising the input

data, the use of tree ensembles and fully-connected neural networks.

4.3.1 Preprocessing

For each star-planet pair, we have 10 stellar spot noise instances and

for each stellar spot noise instance we have 10 Gaussian noise in-

stances. The data for each star-planet pair can therefore be represented

as a tensor with dimensions (10, 10, 55, 300). For a fixed stellar spot

noise instance, we computed the element-wise mean ŕux matrix over

the 10 Gaussian noise instances which decreases the noise in the data.

This can be seen as aggregating multiple measurements of the same

target to decrease the variance of the observation. We are left with

tensors with dimensions (10, 55, 300). Next, we compute element-

wise medians over the 10 stellar spot noise instances, leaving us with

tensors with dimensions (55, 300). An example of the result of this

denoising process is presented in Figure 5a.

The maximum ŕux (without noise) is always 1, whereas the min-

imal ŕux gives information about the planet radius. To further com-

pensate for the noise, we do not use the minimal ŕux directly. Instead,

we calculate two values: the minimum of the average of 3 consecutive

ŕux values, and the median of the 10 lowest ŕux values. An example

of the extracted values is shown in Figure 5b.

We also estimated the amount of energy that stars emit at operating

wavelengths of the ARIEL spacecraft. Tinetti et al. (2016b) list the

5 operating ranges of ARIEL. We divided each range into 11 bins of

equal length, to get the estimates of the 55 wavelengths. To calculate

the energy at a given wavelength, we used Planck’s law

𝐵(𝜆, 𝑇) ∝
1

𝜆5

1

exp
(

ℎ𝑐
𝜆𝑘𝐵𝑇

)
− 1

,

where 𝜆 is the wave-length, ℎ is the Planck’s constant, 𝑘𝐵 is the

Bolzmann’s constant and 𝑐 is the speed of light. The star temperature

𝑇 was one of the 6 stellar and planetary parameters (see Section 3.1).

In total we used 171 (3 · 55+ 6) features: 3 features for each of the 55

channels (the 2 extracted from the ŕux values and the energy emitted)

and the 6 stellar and planetary parameters.

4.3.2 Model & Training

Our best performing model was a heterogeneous ensemble consisting

of three models. The first model was a random forest of 500 trees
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DropOut
Layer
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Output 
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Layer 

Branch 2
Output 
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Layer .

.

Input 1
Light curves

Input 2
Additional planetary &

stellar parameters 
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Layer 
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BN
Layer
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Figure 4. The deep learning model architecture proposed by the Major Tom team (Ranked 2nd). The model has two separate inputs: one for the measurements X𝑖 ,

the second for the additional stellar & planetary parameters z𝑖 . The two branches are subsequently concatenated and higher level non-linear features combining

information from both are extracted.

0.0 0.2 0.4 0.6 0.8 1.0

0.98

0.99

1.00

1.01
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0.992

0.994
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1.000

1.002

min of 3 consecutive

median of 10 lowest

(a) (b)

Figure 5. Preprocessing of the light curves by the BV Labs Team (Ranked 3rd). Image (a) shows the light curve before (blue) and after (red) noise instance

aggregation. Image (b) shows the features extracted from the denoised data. Both images show the data for star-planet pair 113, channel 25.

(Breiman 2001), as implemented in scikit learn(Pedregosa et al.

2011). The second model was an extreme gradient boosting (Fried-

man 2000) ensemble of 150 trees, as implemented in the xgboost li-

brary(Chen & Guestrin 2016). For both methods the parameters were

optimized with cross-validation, and a separate model was learned

for each channel. The third model was a multi-target (one model

for all 55 channels) fully connected neural network with one hidden

layer of 100 neurons. We used batch normalization, dropout (with a

rate of 0.2) and ReLU activations. The network was optimized with

the Adam optimizer for 1000 epochs, with a constant learning rate

10−3. As the loss function, average MSE across all targets was used.

The network was implemented in PyTorch.

The weights of these 3 models in the final heterogeneous ensemble

were optimized manually, with the best results obtained with a weight

0.15 assigned to the random forest, 0.25 to XGBoost and 0.6 to the

neural network. The code is available online16.

4.4 IWF-KNOW’s solution

IWF-KNOW took the fourth place on the ARIEL ML challenge

scoreboard, and comprised of researchers and data scientists from

16 Solution by BV Labs (Ranked 3rd): https://github.com/bvl-ariel/

bvl-ariel.

the Space Research Institute (Austria), Know-Center (Austria) and

the University of Passau (Germany). In contrast to the other top

scorers who relied on deep learning approaches, their solution is

based on a set of linear regressors, each of which is fast to train and

easy to interpret (see Figure 6). The corresponding scripts can be

found on Zenodo17.

4.4.1 Preprocessing

We re-indexed the examples X𝑖 , each of size 300 × 55, in a new

matrix X𝑝,𝑘,𝑙 , where 𝑝 ∈ {1, 2, . . . , 2097} indexes the planet, 𝑘 ∈

{1, 2, . . . , 10} the stellar spot instance, and 𝑙 ∈ {1, 2, . . . , 10} the

photon noise instance. To reduce the photon noise, we averaged

the examples X𝑝,𝑘,𝑙 over the photon noise instances 𝑙 belonging

to the same planet 𝑝 and stellar spot noise instance 𝑘 , yielding the

noise-reduced example matrix X̃𝑝,𝑘 =
1
10

∑10
𝑙=1

X𝑝,𝑘,𝑙 . X̃𝑝,𝑘 was of

size 300× 55 and comprised of the light curves for each wavelength.

Subsequently, we calculated the differences between the maxima and

minima of each light curve in X̃𝑝,𝑘 . The maxima were assumed to be

1 as the light curves were already normalized, and the minima were

estimated as the 1𝑠𝑡 , 5𝑡ℎ, and 10𝑡ℎ percentiles. This yielded estimates

17 Solution by KNOW-IWF (Ranked 4rd) available under the

DOI 10.5281/zenodo.3981141: https://doi.org/10.5281/zenodo.

3981141.
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12 N. Nikolaou et al.

Figure 6. Regression pipeline of IWF-KNOW (ranked 4th). The light curves on the left are two examples in X̃𝑝,𝑘 . The minima of the light curves were estimated

using the 1𝑠𝑡 , 5𝑡ℎ , and 10𝑡ℎ percentiles. Subsequently, the minima were used to calculate the dips of the light curves Δ𝐹𝑝,𝑘, 𝑗,𝑟 . The square root of all light

curve dips Δ𝐹𝑝,𝑘, 𝑗,𝑟 belonging to the same planet 𝑝 (i.e. including all wavelengths 𝑗 and all stellar spot instances 𝑘), and additionally the stellar and planetary

parameters 𝑧𝑝,1, . . . , 𝑧𝑝,6, were then gathered in the feature vector f∗𝑝 . The feature vector was z-score normalized (not shown in the graphic). Eventually, linear

regressions were used to calculate the relative planet radius for each wavelength 𝑗.

Δ𝐹𝑝,𝑘, 𝑗,𝑟 of the dip of the relative light curve caused by a transit

of planet 𝑝 for stellar spot noise instance 𝑘 , wavelength 𝑗 , and 𝑟 ∈

{1%, 5%, 10%} corresponding to the 1𝑠𝑡 , 5𝑡ℎ, and 10𝑡ℎ percentiles.

As the true dip Δ𝐹𝑝, 𝑗 of the relative light curve is approximately

equal to the quadratic relative planet radius
( 𝑅𝑝, 𝑗

𝑅∗, 𝑗

)2
, we took the

square root of Δ𝐹𝑝,𝑘, 𝑗,𝑟 to obtain estimates of the relative planet

radii:

𝑅𝑝, 𝑗

𝑅∗, 𝑗
≈

√︃
Δ𝐹𝑝,𝑘, 𝑗,𝑟

We then built a feature vector f𝑝 comprised of the estimated rela-

tive planet radii belonging to planet 𝑝:

f𝑝 =

[√︃
Δ𝐹𝑝,1,1,1%, . . . ,

√︃
Δ𝐹𝑝,𝑘, 𝑗,𝑟 , . . . ,

√︃
Δ𝐹𝑝,10,55,10%

]

The feature vectors f𝑝 were augmented by the stellar and plane-

tary parameters provided. For that, we averaged the 6 stellar and

planetary parameters 𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖6 over all photon noise and

stellar spot noise instances belonging to the same planet yielding

z𝑝 = [𝑧𝑝,1, 𝑧𝑝,2, . . . , 𝑧𝑝,6]. The averaged stellar and planetary pa-

rameters z𝑝 were then appended to the feature vectors f𝑝 yield-

ing the augmented feature vectors f∗𝑝 . The length of f∗𝑝 was 1656,

which resulted from 55 wavelengths, 3 percentile-based dip estima-

tions, 10 spot noise instances, and 6 stellar and planetary features

(55 × 3 × 10 + 6). Strictly speaking, the averaging was not neces-

sary as the stellar and planetary parameters were the same for all

instances of a planet (i.e. no noise was added to the stellar and

planetary parameters). Finally, the extended feature vectors f∗𝑝 were

z-score normalized18, separately for the training and test set, thus

avoiding information leakage from the test set into the training set.

18 This type of normalization, also known as ‘standardization’ is performed

by subtracting for each feature of a given example the mean value of that

feature across all examples and dividing by its standard deviation.

We also re-indexed the scalar targets 𝑦𝑖, 𝑗 in the training set as

𝑦𝑝,𝑘,𝑙, 𝑗 . Subsequently, we aggregated targets by averaging over all

stellar spot noise instances 𝑘 and photon noise instances 𝑙 belonging

to the same planet 𝑝, yielding the targets 𝑦𝑝, 𝑗 . However, averaging

was again not strictly necessary as all photon noise and stellar spot

noise instances of a planet had the same relative radius in the provided

dataset.

4.4.2 Model & Training

We set up a multiple linear regression model per wavelength 𝑗 ,

resulting in 55 regression models:

𝑦𝑝, 𝑗 = 𝛽0, 𝑗 + f∗T𝑝 𝜷 𝑗 + 𝝐 𝑗

with 𝜷 𝑗 being the parameter vector of the model for wavelength 𝑗 ,

𝛽0, 𝑗 the intercept term, and 𝝐 𝑗 the error term.

The parameters 𝛽0, 𝑗 and 𝜷 𝑗 of the regression model were deter-

mined using least-squares estimation, which requires the estimation

of the covariance matrix of f∗𝑝 . Because of the relatively large size of

f∗𝑝 , we estimated the covariance matrix with the shrinkage method

from Ledoit & Wolf (2004), which computes the shrinkage coeffi-

cient explicitly. The parameters were found using all examples from

the training set. Following this, we used the regression models to pre-

dict all relative radii of the planets 𝑝 in the test set with wavelength

𝑗 :

�̂�𝑝, 𝑗 = 𝛽0, 𝑗 + f∗T𝑝 𝜷 𝑗

The predicted relative radii �̂�𝑝, 𝑗 were re-indexed to the original

indices �̂�𝑖, 𝑗 by copying �̂�𝑝, 𝑗 to all corresponding stellar spot noise

instances and photon noise instances.

The only hyperparameters in our model were the percentiles used

for estimating the minima of the light curve dips. We found these

parameters by trial and error and refrained from fine tuning them

further.
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4.5 TU Dortmund University

The team from TU Dortmund University, consisting of researchers

working on applying machine learning algorithms in astro-particle

physics, landed the 5th place on the leaderboard, going under the

alias ‘Basel321’ during the Challenge. Their implementation is pub-

licly available19. It embraces three central ideas: i) the preprocessing

simplifies the input time series, yet retains much of their information

in auxiliary features; ii) the baseline architecture is largely retained,

but consists of 2 input branches: one using as input these auxilliary

features and the other using as inputs the stellar and planetary param-

eters; and iii) a bagging ensemble is created, in which each member

is trained on data that have undergone slightly altered preprocessing.

4.5.1 Preprocessing

Figure 7 shows how the input data are simplified by the use of z-

scaled piecewise aggregate approximations (PAA) Keogh & Pazzani

(2000), of which the lost information is retained in the auxiliary

features 𝜇, 𝜎 and 𝜖 . These features describe each time series on a

global level, while the PAA output captures the local shape. Namely,

the PAA output is simply the average ŕux value in each of 𝑛paa equal-

sized segments. The z-scaled PAA representation facilitates learning

due to the decreased number of dimensions and due to the uniform

scale in each dimension. These properties are particularly relevant

in dense neural networks like the baseline solution, which can suffer

from a large number of model parameters if the input dimension is

large.

4.5.2 Model architecture and training

A fully connected DNN is trained on the extracted features and the

planetary and stellar parameters. The architecture used, shown in

Figure 8, is similar to the baseline, but it includes one branch for the

auxiliary features and one for the planetary and stellar parameters.

Figure 8 also lists the associated hyperparameters.

Multiple instances of the above architecture, were then combined

in a bagging ensemble. To increase the diversity, each ensemble

member shifted its input by a different number 𝑛 ∈ [0, 𝑛paa) of time

steps. This alteration is performed already before the preprocessing,

so that each ensemble member uses different PAA segments. The final

prediction was the median among all ensemble members’ predictions.

4.5.3 Observations

Regarding the feature representation extracted in the preprocessing

step, we observed the following: i) a linear regression on the z-

scaled PAA representation is already able to outperform the baseline

solution; ii) it is critical to maintain the information lost during this

type of preprocessing ś this is achieved by the auxiliary features; and

iii) the use of shifting segments has remedied the fact that one set of

PAA segments may not be optimal for all observations.

5 WHAT THE WINNING MODELS TEACH US

We should stress again that the final score differences among the top-5

ranked solutions, as shown on Table 1, are statistically negligible and

19 Solution by TU Dortmund University (Ranked 5th): https://

bitbucket.org/zagazao/ecml-discovery-challenge

should thus be regarded as equivalent in terms of predictive power

in our simulated data. Having clarified this, these solutions provide

us with some interesting insights with regards to the problem.

First of all, we observe that all 5 solutions make use of the addi-

tional stellar and planetary parameters (orbital period, stellar tem-

perature, stellar surface gravity, stellar radius, stellar mass & stellar

𝐾 magnitude). This shows that these features indeed contain relevant

information for uncovering the transit depths in light curves contam-

inated by the presence of stellar spots. Moreover, this information is

not redundant given the noisy light curves20.

Another interesting observation is that most solutions involve the

use of highly non-linear nonparametric or overparameterized21 mod-

els w.r.t. the original features, like DNNs and/or ensembles of learn-

ers. More specifically, 4 out of 5 teams use deep learning approaches

(SpaceMeerkat, Major Tom, BV Labs & TU Dortmund University)

and 3 out of 5 (Major Tom, BV Labs & TU Dortmund University

teams) use ensemble learning methods. The Major Tom team does

not apply any preprocessing of the data provided beyond feature nor-

malization, leaving all feature extraction to be implicitly performed

by the DNN, using appropriate regularization techniques (batch nor-

malization & dropout) to prevent overfitting.

In contrast to this, the IWF-KNOW team relied on the extraction

of non-linear features from the original inputs informed by domain

knowledge. They then trained simple linear models in this new feature

space.

The above are indicative of the non-linear nature of the problem.

They also showcase the ŕexibility of machine learning and computa-

tional statistics methods in building models that capture this nonlin-

earity. One can extract informative features given domain knowledge

to capture it and then use simple and explainable models like linear

regression trained on them. Alternatively, one can simply use pow-

erful overparameterized models, like DNNs and ensemble methods

to implicitly learn transformations of the original feature space that

are useful for the purposes of predicting the transit depth.

Extracting a small number of meaningful features informed by do-

main knowledge (IWF-KNOW & BVLabs) or appropriately summa-

rizing the light curve information using signal processing techniques

(SpaceMeerkat & TU Dortmund University) allows for simpler mod-

els to be trained in the lower-dimensional extracted feature space.

This allows for faster training and can also ultimately reduce overfit-

ting.

A more detailed look into how the 5 solutions control for over-

fitting also reveals they follow quite different approaches. Space-

Meerkat uses a CNN rather than a fully connected DNN to reduce

the number of effective learnable parameters. Major Tom uses a fully

connected DNN but controls for its complexity via batch normaliza-

tion, dropout and the use of an ensemble of trained DNNs, rather

than a single model. BV Labs also make extensive use of ensembling

20 It should be noted here, that the participants were given the ’exact’ stellar

and planetary parameters used to simulate the data. In reality, these are known

with an associated degree of uncertainty which has not been taken into account

here. We would therefore expect a degradation in terms of the performance of

the algorithms to some degree, unless retrained on data accounting for these

uncertainties.
21 The term ‘nonparametric’ applies to models that are not restricted to a

predetermined number of parameters. They can therefore adjust their com-

plexity to the data at hand. Ensemble models can fall in this class. The term

‘overparameterized’ refers to parametric models having a number of learn-

able parameters that exceeds the number of datapoints. DNNs can fall in this

class. Through appropriate use of regularization methods it is possible to

avoid overfitting even when fitting models of such high complexity.
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+ µ, σ
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+ ǭ

Figure 7. The TU Dortmund University team (Ranked 5th) simplifies the raw data with piecewise aggregate approximations (PAA) of z-scaled time series. The

information lost during these transformations is retained in auxiliary features. Namely, the z-scaling produces time series with zero mean and unit variance,

but the original means 𝜇 ∈ R and variances 𝜎 ∈ R of each channel and observation are kept. The PAA consists of only one average value in each equi-sized

segment, but the overall reconstruction errors 𝜖 ∈ R are maintained.

z-scaled PAA
+ µ, σ, ǭ

output

Dense2D(n hidden = 256,
activation = ’relu’)

Dense1D(n hidden = 128,
activation = ’relu’)

Dense1D(n hidden = 55,
activation = ’linear’)

stellar parameters

flatten

concat

meta parameters

loss: MAE

optimizer: Adam

learning rate: 10-3

n parameters: < 106

npaa: 20

ensemble size: 45

Figure 8. The first three layers of model used by the TU Dortmund University team (Ranked 5th) derive abstract features from each time series that is represented

by a PAA. The auxiliary features 𝜇, 𝜎 and 𝜖 and the stellar parameters are also fed into the network. The last four layers combine these different kinds of inputs.

A randomized parameter search has been employed to tune the number of layers and their size.

and their neural network learner also uses batch normalization and

dropout. The fact that they operate on a much lower dimensional

feature space (only 171 features per datapoint) also aids in reduc-

ing overfitting. IWF-KNOW use linear regression models, which are

characterized with high bias (i.e. more prone to underfitting than

overfitting). They also operate on a lower-dimensional space (1656

features per datapoint) and apply shrinkage. Last but not least, TU

Dortmund University makes use of an ensemble which is interest-

ingly built on data having undergone slightly different preprocessing.

Training on perturbed inputs results in making them more robust to

overfitting.

Two of the top-5 teams (BV Labs & IWF-KNOW) made use of

the fact that the training data contained multiple datapoints corre-

sponding to the same planet under (10 different photon noise and

10 different stellar spot noise instances). They treated the two noise

sources as independent and averaged these out or took the median

to obtain less noisy light curves. This was a sensible thing to do and

such a scenario would indeed occur if multiple observations of the

same target were to be obtained.

Finally, ignoring outlier ŕux values via smoothing/downsampling

the light curves (SpaceMeerkat), clipping values above 1 (Space-

Meerkat & BVLabs) or by extracting summary statistics from the

light curve and using them as features (SpaceMeerkat, BVLabs,

IWF-KNOW & TU Dortmund University) proved a useful strategy in

building more robust models.

6 CONCLUSIONS

Correcting transit light curves for the effects of stellar spots is a

challenging problem, progress in which can have a high impact on

exoplanetary science and exoplanet atmosphere characterization in

particular.

The primary goal of the Ariel Mission’s 1st Machine Learning

Challenge was to investigate the existence of fully automated solu-

tions to this task that predict the transit depth with a precision of the

order of 10−5ś10−4 with the use of machine learning and compu-

tational statistics methodologies. The secondary goal was to bridge

the machine learning and exoplanetary science communities. As we

saw, both of these goals were met with success.

The aim of this work is to serve as a starting point for further

interaction between the two communities. We described the data

generation, the problem outline and the organizational aspects of the

Challenge. We intend this to serve as a reference for the organisation

of future challenges in data analysis for exoplanetary science. In the

interests of communicating the modelling outcomes of the Challenge,

we also presented, analyzed and compared the top-5 ranked solutions

submitted by the participants.

As evidenced by the top-5 entries, the Challenge indeed attracted

the interest of both exoplanetary scientists and machine learning ex-

perts. The participants cover an impressive breadth of academic back-

grounds and the submitted solutions an equally impressive range of

approaches, from linear regression to convolutional neural networks.

The solutions obtained demonstrate that it is indeed feasible to

fully automate the process of efficiently correcting light curves for

the effect of stellar spots to the desired precision. One key insight

obtained is that additional stellar and planetary parameters (orbital

period, stellar temperature, stellar surface gravity, stellar radius, stel-

lar mass & stellar𝐾 magnitude) can greatly improve the derivation of

correct transit depths in the face of stellar spots. Moreover, although

the scenarios examined where characterized by high spot coverage

(10%), the results suggest that it is possible to successfully correct

even such łhard cases". This, in turn, suggests that younger or more

active stars need not be excluded from atmospheric population stud-

ies due to data analysis limitations. Planets orbiting such stars can

thus be targeted by future space missions.

Good solutions can be obtained by a wide range of modelling

methodologies. They include simple, easily interpretable models,

like linear regression, built on features derived from clever feature

engineering, informed by exoplanet science theory. Other solutions

amount to training complex machine learning models using deep

learning or ensemble learning, which automate the extraction of
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useful features from minimally preprocessed śeven rawś data. In the

latter case, especially for DNN models it is crucial to take measures to

prevent overfitting. These can include dimensionality reduction, en-

sembling, use of convolutional filters, batch normalization, dropout,

training using perturbed data and combinations thereof.

The next steps of this work include refinement of the proposed

solutions to handle more realistic simulated data, possibly involving

both stellar spots and faculae (areas of the host star characterized by

increased temperature). Upon successful performance on these, the

provided solutions can then be used in the analysis pipeline of Ariel

data or adapted to other instruments.
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