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Abstract—This paper evaluates a wide range of audio-based
deep learning frameworks applied to the breathing, cough, and
speech sounds for detecting COVID-19. In general, the audio
recording inputs are transformed into low-level spectrogram
features, then they are fed into pre-trained deep learning models
to extract high-level embedding features. Next, the dimension
of these high-level embedding features are reduced before fine-
tuning using Light Gradient Boosting Machine (LightGBM) as a
back-end classification. Our experiments on the Second DiCOVA
Challenge achieved the highest Area Under the Curve (AUC), F1
score, sensitivity score, and specificity score of 89.03%, 64.41%,
63.33%, and 95.13%, respectively. Based on these scores, our
method outperforms the state-of-the-art systems, and improves
the challenge baseline by 4.33%, 6.00% and 8.33% in terms of
AUC, F1 score and sensitivity score, respectively.

Index Terms—low-level spectrogram feature, high-level embed-
ding feature, pre-trained model, convolutional neural network.

I. INTRODUCTION

The COVID-19 pandemic is now continuing to spread
around the world, with more than 300 million confirmed cases,
and causing more than five million deaths across almost 200
countries [1]. Although many countries are in relentless efforts
of launching their vaccination programs, the number of global
daily new cases is still increasing as COVID-19 restrictions
are being eased in many countries and people can travel
worldwide. To deal with the rapid spread of infection across
populations, many countries have to conduct massive daily
tests for their citizens to control the virus spreads. Partic-
ularly, the molecular testing approaches, namely the reverse
transcription polymerase chain reaction test (RT-PCR) [2] and
the rapid antigen test (RAT) [3], are now widely applied as
primary testing methodologies in most countries. However,
these methodologies present various limitations as their pro-
cedure of sample collection violates physical distancing in
many countries that the ordering online lateral test at home is
limited. Additionally, analysing and receiving results require
high-cost, chemical equipment, and involving labour-intensive
tasks. As a result, there is an urgent need for non-invasive,
scalable, and cost-effective tool to detect infected individuals
in a decentralized manner. As COVID-19 disease is related

to primary symptoms such as fever, sore throat, cough, chest
pain, etc. Therefore, many researchers and practitioners are
motivated to use acoustic-related signals such as breathing,
cough, speech from human respiratory system to early detect
COVID-19 and non-COVID-19 individuals [4]. Indeed, calls
for development of diagnostic tools were announced in the
Interspeech 2021 as a special session titled ‘Diagnostics of
COVID-19 using Acoustics (DiCOVA) Challenge’ as well as
in ICASSP 2022 as a calling paper, referred to as the First
DiCOVA and the Second DiCOVA Challenges, respectively.

In this paper, we aim to explore all types of human
respiratory sounds: breathing, cough, speech, provided by
the recent Second DiCOVA Challenge, and then propose a
robust framework for detecting COVID-19. Our contributions
include: (1) to conduct extensive experiments and pinpoint
the most effective approach related to the extraction of well-
represented features for each type of breathing, cough, speech
sound input; (2) to evaluate how oversampling on positive
samples and dimension reduction on represented features
affect the system performance; and (3) to demonstrate that
our proposed framework is reliable and robust for detecting
COVID-19 which outperforms the state-of-the-art systems and
is potential for a real-life application.

II. DATASET AND TASKS DEFINED

In this paper, we evaluate the dataset derived from the
Second DiCOVA Challenge [5]. This dataset provides au-
dio recordings of three different sound categories: breathing,
cough, speech which were collected from both COVID-19 pos-
itive and negative patients in the age group of 15 to 45 years
old. For each sound category, there are a total of 1436 acoustic
samples which are then divided into the Development set (965
subjects) and the Test set (471 subjects) for training and testing
processes, respectively. It is of note that Development set
in each categories has recordings of 172 individuals positive
to COVID-19, while there is a higher number of recordings
from 793 individual negative to COVID-19, presenting an
imbalanced dataset. To compare our proposed systems with
the state-of-the-art, we follow the Second DiCOVA Challenge.
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Fig. 1. The high-level architecture of the proposed frameworks

Particularly, we aim to detect COVID-19 positive subjects
by exploring only breathing sound, only cough sound, only
speech sound, and using all sound categories, which match
the Track-1, Track-2, Track-3, and Track-4, respectively in the
Second DiCOVA Challenge. Regarding the evaluation metrics,
we also obey the Second DiCOVA Challenge which uses An
Area Under the Curve (AUC) and the specificity (SPEC.) &
sensitivity (SEN.). As SPEC. has to be equal or larger than
95.13% which is an essential requirement of the challenge,
a decision threshold from 0 to 1 with a step size of 0.0001
is evaluated to obtain SEN. when SPEC. value is satisfied.
As a result, we report AUC and SEN. in this paper (i.e. The
SPEC. is always equal or greater than 95.13% to meet the
challenge’s requirement as presented in the leaderboard of the
challenge [6]).

III. THE PROPOSED FRAMEWORK

To explore DiCOVA dataset, we firstly present a high-level
architecture of proposed framework as shown in Figure 1.
Generally, an entire framework proposed is separated into
three main steps: Low-level spectrogram feature extraction,
high-level embedding feature extraction, and back-end classi-
fication.

A. The low-level spectrogram feature extraction

At the first step shown in the upper stream in Figure 1, the
raw audio recordings are re-sampled to 16.000 Hz, duplicated
to make sure that all audio recordings have an equal duration
of 10 seconds. These audio recordings are then transformed
into spectrograms where both temporal and spectral features
are presented.

B. The high-level embedding feature extraction

The low-level spectrogram features are then fed into pre-
trained deep learning models to extract embeddings (e.g.
vectors), referred to as high-level features. The pre-trained
deep learning models used for extracting high-level em-
bedding features come from two different approaches: (I)
pre-trained models directly trained on DiCOVA dataset and
(II) pre-trained models trained with the large-scale AudioSet
dataset [7].

TABLE I
CONFIGURATION OF LENET BASED ARCHITECTURE

Lenet architecture layers Output
Input layer (spectrogram patch of 128×154×1)

BN - Conv [3×3] @ 32 - ReLU - BN - AP [2×2] - Dr (20%) 64×77×32
BN - Conv [3×3] @ 64 - ReLU - BN - AP [2×2] - Dr (25%) 32×38×64
BN - Conv [3×3] @ 128 - ReLU - BN - AP [2×2] - Dr (30%) 16×19×128

BN - Conv [3×3] @ 256 - ReLU - BN - GAP - Dr (35%) 256
FC - ReLU - Dr (40%) 1024
FC - ReLU - Dr (40%) 1024

FC - Softmax C=2

(I) In the first approach, we construct deep learning
models and directly train these models on DiCOVA dataset
mentioned in Section II with Cross-entropy loss and Adam
method [8] for optimization. After the training process, we
reuse these models to extract the feature map at the global
pooling layer, which is considered as the high-level embed-
ding features mentioned. As the performance of high-level
embedding features depends on the low-level spectrograms
and the model architectures in this approach, we therefore
base on our previous work [9]–[13] to evaluate: three types
of spectrograms such as log-Mel [14], Gammatonegram [15],
and Scalogram [16] that are proven effective in representing
respiratory-related sounds; and a wide range of benchmark
deep learning models from low footprint models such as Lenet
based network [17] to high-complex architectures such as
Xception [18], InceptionV3 [19], etc.

To identify which spectrogram features are well-represented
for breathing, cough, or speech audio inputs, we evaluate three
proposed spectrograms using a Lenet based network architec-
ture as shown in Table I. To make sure that the spectrograms
that are fed into the Lenet based model have the same size,
we use the same setting parameters with window size = 2048,
hop size = 1024, and filter number = 128; to generate the same
spectrogram of 128×154. Regarding the Lenet based architec-
ture as shown in Table I, it includes the convolutional layer
(Conv [kernel size]), batch normalization (BN) [20], rectified
linear units (ReLU) [21], average pooling (AP), global average
pooling (GAP), dropout [22] (Dr(percentage)), fully connected
(FC) and Softmax layer. Since certain low-level spectrograms
are suitable for various types of audio inputs (i.e. breathing,
cough, or speech), we therefore evaluate these spectrograms
with different benchmark neural network architectures of
VGG16 [23], VGG19 [23], MobileNetv1 [24], ResNet50 [25],
Xception [18], InceptionV3 [19], and DenseNet121 [26] to
achieve the best framework configuration (i.e. which low-level
spectrogram and training network architecture). As evaluated
network architectures are reused from the Keras library [27],
the final fully connected layer of these networks is modified
from 1000 (i.e. the number of classes of image object in
ImageNet datset) to 2 which matches the number of classes
in DiCOVA dataset. It is worth noting that we only reuse the
network architectures from the Keras library instead of using
available weights trained with ImageNet dataset, all trainable
parameters of these networks are initialized with mean and
variance set to 0 and 0.1, respectively.

(II) In the second approach, we leverage three avail-
able pre-trained models trained with the large-scale AudioSet
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TABLE II
COMPARISON OF LOW-LEVEL SPECTROGRAMS (AUC/SEN.)

Spec Cough Speech Breathing All
GAM 70.11/10.00 73.41/21.67 73.29/15.00 77.38/25.00

log-MEL 71.39/16.66 73.15/18.33 74.31/18.33 80.11/33.33
Scalogram 63.71/8.33 68.68/10.00 78.20/20.00 69.83/18.33

dataset in advance: PANN [28], OpenL3 [29], TRILL [30]. We
evaluate whether these up-stream pre-trained models are bene-
ficial for the down-stream task of detecting COVID-19 positive
in DiCOVA dataset. While PANN [28] and OpenL3 [29] lever-
age VGGish architecture and cross-entropy loss to train the
large-scale Audioset dataset, TRILL [30] is based on Resnet
and tripless loss. Additionally, while PANN [28] was trained
using input signal with 10-second duration, both TRILL [30]
and OpenL3 [29] analyse short time duration of 1 second. As
using different network architectures, loss functions, as well as
analysing different audio durations, these proposed pre-trained
models may differently perform on three types of audio inputs
(i.e. breathing, cough, and speech) from DiCOVA dataset.

Regarding the high-level embedding features extracted from
these pre-trained models, while OpenL3 [29] and PANN [28]
extract the feature map at the global pooling layer, TRILL [30]
extracts the feature map at the final layer which proves
effective for different down-stream tasks mentioned in [30].
Notably, since PANN pre-trained model works on 10-second
input duration from AudioSet dataset that matches the input
duration of our proposed system in Figure 1, only one embed-
ding feature (e.g. one vector) is extracted from each 10-second
audio recordings of the input. Meanwhile, as OpenL3 and
TRILL pre-trained models were trained with 1-second audio
segment of AudioSet dataset, therefore, multiple embeddings
are obtained when we feed one 10-second DiCOVA audio sam-
ple into these two pre-trained models. Therefore, an average
of these multiple embeddings across the time dimension is
computed to obtain one embedding feature which represents
for each 10-second duration audio input. Additionally, only
low-level log-Mel spectrogram is used in this approach as
these three pre-trained models explore this type of spectrogram
for training on the large-scale AudioSet dataset.

As we present two different approaches of using pre-trained
models for extracting high-level embedding features, we now
refer to two main frameworks as: (I) three low-level spec-
trograms (log-Mel, Gammatonegram, Scalogram), pre-trained
models directly trained on DiCOVA dataset, LightGBM back-
end classification; and (II) low-level log-Mel spectrogram,
pre-trained models trained on the large-scale AudioSet, and
LightGBM back-end classification.

C. The back-end classification

In this paper, we use Light Gradient Boosting Machine
(LightGBM) [31] as the final back-end classification model
to fine-tune high-level embedding features. The LightGBM
is implemented by using an available toolkit [31] and the
parameters are set as: learning rate = 0.02, objective = ‘bi-
nary’, metric = ‘auc’, subsample = 0.68, colsample bytree =
0.28, early stopping rounds = 1000, num iterations = 10000,

TABLE III
COMPARISON OF PRE-TRAINED DEEP LEARNING NETWORK

ARCHITECTURES DIRECTLY TRAINED ON DICOVA DATASET (AUC/SEN.)
Input Cough Speech Breathing All

VGG16 70.05/10.00 75.64/10.00 71.75/16.66 78.17/30.00
VGG19 63.07/5.00 67.81/8.33 70.28/15.00 68.24/6.67

MobileNetv1 58.92/5.00 66.86/16.67 67.76/13.33 70.73/25.00
ResNet50 66.67/10.00 70.07/21.67 69.39/18.33 77.35/23.33
Xception 71.21/31.66 70.91/28.33 72.75/28.33 80.81/43.33

InceptionV3 61.97/8.33 74.39/30.00 67.56/18.33 78.83/30.00
DenseNet121 68.12/23.33 75.55/20.00 72.63/18.33 80.10/31.66

subsample freq = 1. As the Track-4 in the Second DiCOVA
Challenge suggests to use all audio input data (i.e. breathing,
cough, speech), high-level embedding features extracted from
different types of audio inputs are concatenated before feeding
into the back-end LightGBM for classification.

IV. EXPERIMENTS AND RESULTS

A. Performance comparison of frameworks (I): three low-level
spectrograms, pre-trained models directly trained on DiCOVA
dataset, and LightGBM back-end classification

We firstly evaluate how low-level spectrograms affect the
performance in frameworks (I). As the results are shown in
Table II, log-Mel performs better than Gammatonegram and
Scalogram with the highest scores of 71.39/16.66 in cough
while still witness the second highest scores of 73.15/18.33
and 74.31/18.33 in speech and breathing, respectively. As
a result, we only use log-Mel spectrogram for evaluating
network architectures.

As Table III shows, it can seen that Xception outperforms
the other network architectures. However, the high-complex
Xception model only slightly improve, compared to the low
footprint Lenet based architecture. Notably, when high-level
embedding features extracted from breathing, cough, and
speech inputs by Xception model are concatenated to de-
tect COVID-19 (i.e. The Track-4 in the Second DiCOVA
Challenge), it helps to improve significantly the performance,
recording a score of 80.81/43.33 compared with 71.21/31.66,
70.91/28.33, 72.75/28.33 for only cough, speech, and breath-
ing, respectively.

B. Performance comparison of frameworks (II): low-level log-
Mel spectrogram, pre-trained models trained on AudioSet
dataset, and LightGBM back-end classification

As Table IV shows, it can be seen that different pre-
trained models works well on different types of sound input.
Particularly, the best scores of 79.82/48.33 are associated with
TRILL for cough sound input. PANN achieves the best scores
of 84.05/55.00 for breathing. Meanwhile, speech sound input
presents the best scores of 86.65/61.67 with OpenL3. Notably,
using pre-trained models with AudioSet dataset outperforms
the frameworks (I) analysed in Section IV-A in terms of
detecting COVID-19 with only breathing, cough, or speech.

Comparing the performance of various models among au-
dio inputs, breathing and speech show potential to detect
COVID-19 rather than cough. However, when we concate-
nate high-level embedding features extracted from breathing,
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Fig. 2. Influence of over-sampling on positive samples and dimensionality reduction using high-level features within Track-4 DiCOVA Challenge

TABLE IV
COMPARISON OF PRE-TRAINED MODELS TRAINED ON AUDIOSET

DATASET (AUC/SEN.)
Pre-trained model Cough Speech Breathing All

PANN 70.49/26.66 79.33/33.33 84.05/55.00 84.77/55.00
TRILL 79.82/48.33 80.50/46.67 76.97/33.33 85.83/51.67
OpenL3 78.42/38.33 86.65/61.67 82.40/50.00 86.14/65.00

cough, and speech for Track-4 of the challenge, the per-
formance from TRILL shows a significant improvement to
85.83/51.67. Meanwhile, OpenL3 demonstrates the highest
scores of 86.14/65.00 compared to the others in this track.

C. Influence of over-sampling on positive samples and dimen-
sionality reduction of high-level features

As the proposed frameworks with a concatenation of high-
level features prove effective to detect COVID-19 in Track-4
of the Second DiCOVA Challenge, we further conduct ex-
periments to evaluate how over-sampling on positive samples
and reducing dimension over high-level features affect the
performance. In these experiments, we concatenate (1) three
TRILL based high-level features, (2) three PANN based high-
level features, (3) three OpenL3 based high-level feature, (4)
three Xception based high-level features, and (5) (TRILL(c)-
PANN(b)-OpenL3(s)) high-level features for cough, breathing,
and speech, respectively. We conduct the combination among
high-level features (TRILL(c)-PANN(b)-OpenL3(s)) as each
feature shows effective for each audio data input as shown in
Table IV.

To identify less significant dimensions of high-level fea-
tures, we firstly compute an average of each dimension from
all features associated with positive and negative COVID-19
independently. Then, two vectors representing for two groups
of COVID-19 positive and negative features are obtained.
Based on the absolute difference of these two vectors from
each dimension (i.e. the lower absolute difference is related to
the less significant dimension), the dimension of the feature set
has been reduced from 10% to 90%. Note that the dimension
of high-level features is reduced before concatenating. To over-
sample the positive cases, we apply SVM-SMOTE [32] on the
high-level embedding features, then increase the the positive
samples from double to five times.

As Figure 2 shows, oversampling on positive samples re-
duces the AUC scores. This method only helps to improve
SEN. scores with PANN (double of positive samples) and
Xception (five times of positive samples). Meanwhile, when

we reduce the dimension of high-level embedding features
from 20 to 40%, it almost helps to improve both AUC and
SEN. scores. As a result, we can achieve the best scores:
80.32/48.33 with TRILL (at the reducing dimension of 20%)
for cough input only, 84.05/55.00 with PANN for breath-
ing input only (no reduction), 86.65/61.67 with OpenL3 for
speech only (no reduction), and 89.03/63.33 with (TRILL(c)-
PANN(b)-OpenL3(s)) (at the dimensionality reduction of 40%)
for all audio inputs.

D. Performance comparison among different back-end classi-
fiers

We further compare the LightGBM with other ma-
chine learning models implemented by using Scikit-Learn
toolkit [33] on of Support Vector Machine (SVM with C=1.0,
Kernel=‘RBF’), Random Forest (RF with Max Depth of Tree
= 20, Number of Trees = 100), Multi-layer perceptron (MLP
with 4096 nodes, Adam optimization, Max iter = 200, Learn-
ing rate = 0.001, Entropy Loss), and Linear Regression (LR
with C=1.0). Noting that we keep TRILL based embedding (at
the dimensionality reduction of 20%) for cough, PANN and
OpenL3 based embeddings (with no reduction) for breathing
and speech, respectively. Similarly, we continue to apply the
best concatenation of (TRILL(c)-PANN(b)-OpenL3(s)) (at the
dimensionality reduction of 40%) for all audio inputs. As a
result, the comparison in Table VI again shows that LightGBM
model still achieves the best scores and outperforms other
models.

E. Performance comparison across the top-10 systems sub-
mitted for the Second DiCOVA Challenge

As performance comparison to the state-of-the-art sys-
tems [6] is shown in Table V, we can achieve the top-6 in
Track-1 with breathing input only and the top-3 in Track-2
with cough input only. Notably, our proposed systems out-
perform the state-of-the-art, achieve the top-1 in both Track-
3 and Track-4 with speech input only and all audio inputs,
respectively.

To evaluate the best score of the LightGBM with the best-
selected embedding features for cough, speech, breathing and
all types of audio inputs, we conducted ten times of running
the experiments on a different randomly chosen Test set. Next,
we calculate and achieve an average confidence interval (CI)
of [0.7628, 0.8352] in cough, [0.8369, 0.8981] in speech,
[0.8133, 0.8785] in breathing, and [0.8580, 0.9153] in all audio
inputs. All of them matches with the mentioned AUC scores
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TABLE V
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART SYSTEMS ON TEST SET

Cough Speech Breathing All
System AUC SEN. Precision F1 score AUC SEN. Precision F1 score AUC SEN. Precision F1 score AUC SEN. Precision F1 score

1st system 81.97 36.67 52.38 43.14 85.21 45.00 57.45 50.47 87.18 48.33 59.18 53.21 88.44 58.33 63.64 60.87
2nd system 81.21 48.33 59.18 53.21 84.73 38.33 53.49 44.66 86.72 40.00 54.55 46.16 87.26 63.33 65.52 64.41
3rd system 80.12 35.00 51.22 41.58 84.55 51.67 60.78 55.86 86.41 45.00 57.45 50.47 86.87 58.33 63.64 60.87
4th system 79.06 35.00 51.22 41.58 84.26 43.33 56.52 49.05 85.77 41.67 55.56 47.62 85.79 33.33 50.00 40.00
5th system 77.85 46.67 58.33 51.85 84.04 48.33 59.18 53.21 84.50 31.67 48.72 38.39 85.37 60.00 64.29 62.07
6th system 77.60 33.33 50.00 40.00 82.98 43.33 56.52 49.05 82.16 41.67 55.56 47.62 84.70 55.00 62.26 58.41
7th system 76.98 25.00 42.86 31.58 82.83 38.33 53.49 44.66 82.05 41.67 55.56 47.62 84.26 38.33 53.49 44.66
8th system 76.36 30.00 47.37 36.74 81.95 48.33 59.18 53.21 80.84 40.00 54.55 46.16 83.78 46.67 58.33 51.85
9th system 75.95 28.33 45.95 35.05 81.86 31.67 48.72 38.39 80.55 30.00 47.37 36.74 80.51 40.00 54.55 46.16
10th system 75.71 35.00 51.22 41.58 80.92 45.00 57.45 50.47 80.35 36.67 52.38 43.14 74.15 35.00 51.22 41.58

Baseline system 74.89 36.67 52.38 43.14 84.26 43.33 56.52 49.05 84.50 31.67 48.72 38.39 84.70 55.00 62.26 58.41
Our system 80.32 48.33 59.18 53.21 86.65 61.67 64.91 63.25 84.05 55.00 62.26 58.41 89.03 63.33 65.52 64.41

TABLE VI
PERFORMANCE COMPARISON ACROSS DIFFERENT BACK-END

CLASSIFICATION MODELS ON TEST SET (AUC/SEN.)
Model Cough Speech Breathing All

LR 76.22/35.00 80.90/40.00 78.61/43.33 77.29/43.33
SVM 78.40/41.66 85.93/53.33 82.25/51.66 85.73/55.00
RF 78.78/43.33 81.06/48.33 79.06/38.33 85.34/51.66

MLP 74.80/41.66 81.53/56.66 80.89/41.66 83.75/46.67
LightGBM 80.32/48.33 86.65/61.67 84.05/55.00 89.03/63.33

of 80.32, 86.65, 84.05, and 89.03 for cough, speech, breathing,
and all, respectively.

V. CONCLUSION

This paper has presented an exploration on how to ex-
tract effectively well-represented features for breathing, cough,
speech sound input via pre-trained models. By conducting
extensive experiments, we achieve a robust framework for
detecting COVID-19 compared with the state-of-the-art sys-
tems. This is demonstrated by the rank of our performance
with top-1 in both Track-3 and Track-4, top-3 in Track-2 and
finally top-6 in Track-1 in the Second DiCOVA Challenge. Our
best AUC score of 89.03%, F1 score of 64.41%, sensitivity
score of 66.33% from the Track-4 demonstrate the potential
of detecting COVID-19 through the respiratory-related sounds.
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