
ABSTRACT

Monitoring body condition score (BCS) is a useful 
management tool to estimate the energy reserves of an 
individual cow or a group of cows. The aim of this 
study was to develop and evaluate the performance of 
a fully-automated 2D imaging system using a machine 
learning algorithm to generate real-time BCS for dairy 
cows. Two separate data sets were used for training 
and testing. The training data set included 34,150 
manual BCS (MAN_BCS) assigned by 5 experienced 
veterinarians during 35 visits in 7 dairy farms. Ordinal 
regression methods and deep learning architecture were 
used when developing the algorithm. Subsequently, the 
testing data set was used to evaluate the developed 
BCS prediction algorithm on 4 of the participating 
farms. An experienced human assessor (HA1) visited 
these farms and performed 8 whole-milking-herd BCS 
sessions. Each farm was visited twice allowing for 30 
d (±2 d) to pass between visits. The MAN_BCS as-
signed by HA1 were considered the ground truth data. 
At the end of the validation study, MAN_BCS were 
merged with the stored automated BCS (AI_BCS) 
resulting in a testing data set of 9,657 single BCS. A 
total of 3,817 cows in the testing data set were scored 
twice 30 d (±2 d) apart and the change in their BCS 
(ΔBCS) was calculated. A subset of cows in one farm 
were scored twice on consecutive days to evaluate the 
within-observer agreement of both the human assessor 
and the system. The manual BCS of 2 more assessors 
(HA2 and HA3) were used to assess the inter-observer 
agreement between humans. Finally, we also collected 
ultrasound measurements of backfat thickness (BFT) 
from 111 randomly selected cows with available MAN_
BCS and AI_BCS. Using the testing data set, intra- 
and inter-observer agreement for single BCS and ΔBCS 
were estimated by calculating the simple percentage 

agreement (PA) at 3 error levels, and the weighted 
kappa (κw) for the exact agreement. A Bland-Altman 
plot was constructed to visualize the systematic and 
proportional bias. The association between MAN_BCS 
and AI_BCS and the BFT was assessed with Passing-
Bablock regressions. The system had an almost perfect 
repeatability with a κw of 0.99. The agreement between 
MAN_BCS and AI_BCS was substantial, with an over-
all κw = 0.69. The overall PA at the exact, ± 0.25 and 
± 0.50 -unit of BCS error range between MAN_BCS 
and AI_BCS was 44.4, 84.6 and 94.8%, respectively, 
greater than the PA obtained between HA1 vs. HA3. 
The Bland-Altman plot revealed a minimal systematic 
bias of −0.09 with a proportional bias at the extreme 
scores. Furthermore, despite the low κw of 0.20, the 
overall PA at the exact and ± 0.25 -unit of BCS error 
range between MAN_BCS and AI_BCS regarding the 
ΔBCS was 45.7 and 88.2%, respectively. A strong linear 
relationship was observed between BFT and AI_BCS 
(ρ = 0.75), although weaker than that between BFT 
and MAN_BCS (ρ = 0.91). The system was able to 
predict single BCS and ΔBCS with satisfactory ac-
curacy, comparable to that obtained between trained 
human scorers.
Keywords: artificial intelligence, cattle, convolutional 
neural network, body condition score

INTRODUCTION

Dairy cows, like all mammals, rely on mobilization of 
stored adipose tissue reserves to support milk produc-
tion and nurture their offspring (Bauman and Currie, 
1980). Dry matter intake increases gradually after calv-
ing but in high yielding cows it is insufficient to meet 
their energy requirements of early lactation (Grummer 
et al., 2004). Hence, most dairy cows are in a negative 
energy balance during the postpartum period (Drack-
ley, 1999; Herdt, 2000), with negative impacts to overall 
health and productivity (Butler, 2005; Esposito et al., 
2014). Dairy cows were found to mobilize significant 
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amounts of fat and protein during the first 5 weeks 
after calving (Komaragiri and Erdman, 1997).

Body condition scoring is considered a valuable tool 
to monitor the energy reserves of a dairy cow or a group 
of cows. Changes in body condition over time reflect 
the amount of dietary energy consumption relative to 
energy requirements under the current level of milk pro-
duction (Roche et al., 2009). Body condition score can 
predict the total amount of fat in a dairy cow (Wright 
and Russel, 1984). A one-unit increase in BCS has been 
associated with an average increase in bodyweight by 
ca. 50 kg (Otto et al., 1991).

Several methods have been developed for the esti-
mation of BCS using different scales based on either 
a tactile or visual assessment. A comparison of these 
systems has been provided by Roche et al. (2004). The 
visual assessment method using the 5 -point scale (1 - 5) 
with increments of 0.25 -unit developed by Ferguson et 
al. (1994), by modifying the system developed by Ed-
monson et al. (1989), is currently the most commonly 
referred system for Holstein cattle globally. Cows with 
a BCS 1 are considered emaciated and cows with a 
BCS 5 are extremely obese. This method requires the 
observation of a cow from the side and the rear, and the 
assessment (including tactile assessment) of fat deposi-
tion in several anatomic features in the pelvis, tailhead 
and the lumbar area. It can be performed quickly by 
a trained person. Inter-observer percentage agreement 
following this method was 58% at the exact score and 
91% within the 0.25 -point level of error (Ferguson et 
al., 1994).

It has been well documented that BCS at calving, 
the nadir BCS after calving, and the loss during the 
postpartum period have significant implications to 
overall health, fertility and milk production (Roche et 
al., 2009, 2013). A target range between 3.00 – 3.25 at 
calving is recommended to optimize health and pro-
duction outcomes (Roche et al., 2009). However, the 
changes in body condition during critical periods in the 
production cycle of a cow are even more important than 
single BCS at specific stages of lactation. Cows that 
gained body condition after calving had a significantly 
shorter calving to first ovulation interval and more 
pregnancies per artificial inseminations compared with 
those that maintained or lost body condition (Barletta 
et al., 2017). Low BCS has also been associated with 
an increased risk of developing lameness (Randal et al., 
2015).

Although the importance of BCS monitoring in 
dairy herd management has been emphasized for many 
decades, it is rarely performed consistently in most 
herds unless for research purposes (Hady et al., 1994). 
When performed, either by nutritionists, veterinarians 
or farmers, a representative small sample of cows per 

group are usually scored and rarely are any records 
kept (Caraviello et al., 2006). Its assessment is labor-
intensive and time-consuming, especially in large herds, 
requiring a trained person to perform it.

Over the last 20 years, many systems using computer 
vision technology have been developed attempting to 
automate BCS to overcome the obstacles of manual 
estimations. Initial attempts included the placement of 
a 2D camera to capture images (Coffey, 2003; Ferguson 
et al., 2006; Bewley et al., 2008). The main drawback of 
these systems was that they were not fully automated. 
Thermal sensing cameras have also been evaluated 
with promising results (Halachmi et al., 2008, 2013). 
Advancements in technology and applicability of com-
puterized 3D imaging systems has led to an increased 
development of systems with improved automatization 
in image processing (Weber et al., 2014; Fischer et al., 
2015; Kuzuhara et al., 2015). The use of deep learning 
techniques is a breakthrough in automated livestock 
monitoring systems. These applications ensure a real-
time and fully automated generation of BCS (Rodríguez 
Alvarez et al., 2018; Alvarez et al., 2019; Yukun et al., 
2019). Although machine learning algorithms to-date 
rely on 3D computer vision it was recently reported 
that well calibrated 2D algorithms could achieve com-
parable accuracies (O’Mahony et al., 2022).

CattleEye Ltd. (Belfast, UK) has developed a fully 
automated imaging system capturing 2D footage with 
an overhead view of cows as they walk through a 
race, that generates real-time locomotion scores using 
convolutional neural networks (CNN); this system is 
now commercially available (Anagnostopoulos et al., 
2023). Our aim here was to develop a machine learning 
algorithm capable of automatically generating BCS us-
ing the same inexpensive equipment. Additionally, we 
tested the performance of this system for single BCS 
estimation and changes in BCS over time, using the 
manual scores of an experienced human assessor as the 
ground truth data.

MATERIALS AND METHODS

Ethics statement

The study was approved by the University of Liver-
pool Veterinary Research Ethics Committee (Reference 
VREC1079).

System setup

All farms that participated in this study were 
equipped with a 2D surveillance camera placed above 
the exit passage way of the milking parlor at a height 
of 4 m above the ground. A top-down footage of each 
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cow was captured, stored in the cloud and processed by 
CattleEye Ltd. (Belfast, UK).

Data sets

A first set of data was collected from July 2022 to 
January 2023 by 5 human assessors (HAs) in 7 farms, 
and these were used to train the algorithm. A second 
data set was collected for testing our model from Feb-
ruary 2023 to March 2023 by the same HA, in 4 of the 
participating farms.

Training data set

Five HAs, namely HA1 (NS), HA2 (GO), HA3 (JN), 
HA4 (AA) and HA5 (BG), performed a total of 34 
whole-milking-herd BCS sessions in 7 commercial dairy 
farms (designated as A-G) selected for convenience, 
located in England and Wales. Farms were milking ap-
proximately 1,000, 2,300, 800, 2,100, 760, 800 and 600 
Holstein cows, respectively. Cows were milked 3 times 
per day in rotary parlors apart from cows in Farm E 
that were milked in a rapid-exit herringbone parlor. The 
total number of cows scored per farm and by assessor at 
each visit are presented in Table 1. One additional visit 
was scheduled in Farm A only to score and record cows 
with extreme BCS (≤2.50 or ≥4.00).

All HAs were qualified veterinarians with experience 
in dairy cattle research. A total of 34,150 manual scores 
(MAN_BCS) of human assessors with correct cow 
identification were recorded using the 1 to 5 -point 
scale with 0.25 increments developed by Ferguson et 
al. (1994). On all farms, MAN_BCS were collected in 
the milking parlor during the mid-day milking, except 
for Farm E, where HAs scored the cows standing at 
the feed bunk immediately after milking, by walking 
behind the cows inside the barns.

Algorithm development

Our algorithm was developed using the training data 
set comprising various farms, which allowed us to build 
robust image data sets for predicting a cow's BCS. To 
address the issue of imbalanced classes, we employed 
a stratified sampling technique to ensure a sufficient 
representation of all score categories in each data set 
to reduce bias toward any dominant scores. The train-
ing data set was split using a farm and score-based 
stratified sample, with 80% of the unique IDs on each 
farm forming a training data set and 20% forming the 
algorithm validation data set. The training set, which 
constituted the most significant portion of the data 
set, was used for training the deep learning model. The 

validation set was utilized for early stopping to improve 
training efficiency and prevent model degradation.

For each farm, we utilized a top-down camera po-
sitioned in a strategic area on-site to capture footage 
of the herd exiting the milking parlor providing a 
complete view of the animal. As part of the study, we 
gathered footage during one milking from the various 
farms when the HAs were on-site to provide scores for 
each animal. These videos were then processed by a 
pre-trained cow detection and pose estimation pipeline 
to track and identify the key points on each animal as it 
passed under the camera. Once the pipeline had deter-
mined the initial detections, we removed any examples 
where the average key point confidence was below 90%, 
ensuring the consistency and quality of our image data 
sets. All final detections were then cropped and resized 
to a fixed resolution (256 × 256).

Due to the nature of this study, we opted to utilize 
an ordinal regression method when developing the al-
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Table 1. Data set used for training of the algorithm, showing the 
number of cows per farm assigned a manual body condition score by 
five human assessors (HA) during 35 visits in eight dairy farms with 
a milking herd size ranging from approximately 600 to 2,300 Holstein 
cows

Farm  Scorer n of visit n of cows

A  HA4 1 984
  HA4 2 1,035
  HA4 3 1,005
  HA1 4 885
  HA1 5 974
  HA1 6 945
  HA1 7 228
B  HA4 1 2,182
  HA4 2 1,913
  HA1 3 1,999
  HA1 4 1,965
C  HA4 1 749
  HA4 2 814
  HA5 3 704
  HA2 4 752
  HA1 5 761
  HA1 6 793
  HA1 7 739
  HA1 8 734
D  HA4 1 1,935
  HA1 2 1,942
  HA1 3 1,954
E  HA3 1 364
  HA4 2 652
  HA5 3 355
  HA1 4 542
  HA1 5 480
F  HA3 1 746
  HA4 2 800
  HA5 3 778
  HA1 4 764
  HA1 5 711
  HA1 6 629
  HA1 7 744
G  HA2 1 593
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gorithm. Since the MAN_BCS possess a natural order 
(i.e., ranking), we can retain the ordinal nature of the 
scores by applying this method instead of a traditional 
regression or classification approach. We used a state-
of-the-art deep learning architecture, EfficientNetV2 
(Tan and Le, 2021), to form the algorithm's backbone. 
Once an image is passed through this algorithm, global 
average pooling is used to summarize the features pro-
duced by the EfficientNetV2 model. These summarized 
features are passed into one final dense layer to produce 
a prediction. We utilized the RMSprop algorithm to 
optimize the algorithm at a learning rate of 1e-4. Dur-
ing training, we performed rigorous data augmentation 
techniques such as RandAugment (Cubuk et al., 2020) 
and GridMask (Chen et al., 2020) to mitigate potential 
algorithm biases further. RandAugment applies a com-
bination of image transformations to provide random 
variations of the original training images. GridMask 
simulates structured occlusions of the cow during train-
ing in the form of a grid-like mask. By applying both 
methods during training, we were able to increase the 
variety of the training images, which in turn reduces 
overfitting and improves the algorithm's ability to gen-
eralize. Ordinal Cross-Entropy Loss was used for train-
ing the algorithm, which frames the ordinal regression 
problem as a set of binary classification subproblems 
(Cao et al., 2020). During training, the cross-entropy 
loss for each binary subproblem is determined and ag-
gregated to form the overall loss.

Testing data set

For herd demographics and body condition of indi-
vidual cows to vary, a significant length of time was 
allowed between scoring sessions used for training and 
scoring sessions used for testing. Specifically, the time 
interval allowed between the last training scoring ses-
sion and the first session used for testing was 4 mo for 
Farm G and 2 mo for the other farms, except for the 
training session only involving cows with extreme BCS 
in Farm A, which was 35 d apart from the first session 
used for testing.

We tested AI_BCS using the MAN_BCS of HA1 as 
the ground truth data. HA1 is a qualified veterinarian 
with 4 years of experience in body condition scoring on 
several research projects. The HA1 performed 2 whole-
herd BCS sessions on each farm 30 d apart, which we 
considered an adequate period of time to allow change 
in condition. We anticipated that cows in their early 
and late lactation stages would likely lose and gain a 
detectable amount of body condition, respectively.

The HA1 visually evaluated the BCS of each cow in 
the milking parlor during milking, standing about 2 m 
behind the rear of the cow, at the same height with the 

cows in Farms A, B and D and at 2 m higher in Farm 
G, using the 5 -point scale method (Ferguson et al., 
1994). Recording was performed using a portable tab-
let with touch screen (Toughbook FZ-G2, Panasonic) 
by manually entering the freeze brand number of each 
cow, located at the rear thigh area on either side of the 
tail, and the BCS into an Excel spreadsheet. Records 
from cows scored at both sessions within each farm, 
were used to assess the agreement between MAN_BCS 
and AI_BCS in detecting monthly changes in BCS 
(ΔBCS). The HA1 did not have access to the Cattle-
Eye data and vice-versa. At the end of the study, we 
merged records of MAN_BCS and AI_BCS according 
to cow identification number so that statistical analyses 
could be performed.

To calculate the intra-observer reliability, HA1 vis-
ited Farm D 24 h after a whole-herd BCS scoring ses-
sion to score a subset of the same cows. Automated 
BCS recordings from the same days were also stored 
to assess the precision of the automated system at the 
same farm.

The inter-observer agreement of HA1 with 2 human 
assessors, namely HA2 and HA3 was assessed by per-
forming 2 more sessions in Farm B. HA2 is a veterinar-
ian with many years of experience in collecting BCS 
data for research. HA3 is also a veterinarian with 15 
years of research experience working with dairy cows, 
but not with collecting BCS data in particular. Both 
HA2 and HA3 teach body condition scoring to under-
graduate veterinary students.

The backfat thickness (BFT) of 111 randomly se-
lected cows in Farm B was measured using a portable 
real-time B-mode ultrasonographic equipment (Dr-
aminski 4Vet mini, Draminski S.A.) with a 5.0 MHz 
linear transducer at a field view depth of 50 mm. Cows 
were minimally restrained with headlocks at the feed 
bunk immediately after milking. After brushing the 
examination site, 50% aqueous solution of isopropyl 
alcohol and then ultrasound gel were applied to ob-
tain acoustic contact between the probe surface and 
the skin, without clipping any haircoat. The probe was 
placed at the sacral area vertically to an imaginary 
line connecting the tuber ischia (pin bone) and tuber 
sacrale (hook bone) at the site corresponding to the 
front of the 1st coccygeal vertebra, as described by 
Schröder and Staufenbiel (2006). After applying the 
slightest possible pressure, the obtained images were 
stored for subsequent analysis using ImageJ, a freeware 
digital image processing program provided by the Na-
tional Institutes of Health (Schneider et al., 2012). The 
BFT measurements always included the thickness of 
the skin. HA1 manually recorded the BCS of each cow 
before measuring BFT to avoid any biased estimations.

Siachos et al.: AUTOMATED BODY CONDITION SCORING
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Statistical analysis

Data were analyzed with IBM SPSS v.28. Records 
with missing IDs were excluded and histograms were 
created to assess any typing errors in BCS. Records 
with a BCS not corresponding to the 1 – 5 -point scale 
with increments of 0.25 -unit were excluded.

The within-observer agreement for both the MAN_
BCS and the AI_BCS, as well as the inter-observer 
agreement between HAs and between MAN_BCS and 
AI_BCS, per farm and overall, were measured by cal-
culating the percentage agreement (PA) at 3 levels of 
error (0.00, within ± 0.25 and within ± 0.50 -unit dif-
ference of BCS), and the weighted Cohen’s kappa (κw) 
coefficient, an estimate of categorical agreement ex-
ceeding agreement by chance, using quadratic weights 
for the exact agreement. The same metrics were also 
used to assess the agreement between MAN_BCS and 
AI_BCS regarding the ΔBCS for cows that were scored 
in both sessions.

The commonly used benchmark of accepted reli-
ability for PA in most studies of 80% (McHugh, 2012) 
was also used in our study at the ± 0.25 error range. 
Interpretation of κw was performed according to Landis 
and Koch (1977) recommendations as follows: slight 
(0.00 to 0.20), fair (0.21 to 0.40), moderate (0.41 to 
0.60), substantial (0.61 to 0.80) and almost perfect 
(0.81 to 1.00) agreement. A κw of ≥0.60 is suggested as 
a threshold of accepted inter-observer agreement (Gib-
bons et al., 2012; Schlageter-Tello et al., 2014).

Moreover, a Bland-Altman plot (Bland and Alt-
man, 1986) of the differences between MAN_BCS and 
AI_BCS against the mean scores of both methods was 
constructed using all single scores to examine for any 
systematic or proportional bias in the automatically 
generated BCS.

Finally, the relationship of the MAN_BCS and 
AI_BCS with the BFT measurements of 111 cows was 
characterized using Passing-Bablock regressions, a non-
parametric analysis allowing for comparison of different 
methods with measurement errors which is not sensi-
tive to data distribution (Passing and Bablock, 1983).

RESULTS

A total of 9,657 paired MAN_BCS and AI_BCS 
records were available for testing and 3,817 cows were 
scored twice 30 d (±2 d) apart. The overall and within 
farm distribution of BCS as well as their monthly 
changes, as recorded by HA1 and the system, are 
presented in Tables 2 and 3. The overall mean, stan-
dard deviation and minimum – maximum of the single 
MAN_BCS and AI_BCS were 3.23, 0.42, 1.75–4.50 and 
3.32, 0.29, 2.25 – 4.25, respectively. Additionally, the 

overall mean, standard deviation and minimum – maxi-
mum ΔBCS obtained by HA1 and the system were 
−0.04, 0.24, −1.25 – 1.25 and 0.02, 0.15, −1.00 – 0.75, 
respectively.

The within-observer agreement of MAN_BCS pro-
duced a PA at the 0.00, ± 0.25 and ± 0.50 error range 
of 68.1, 96.1 and 99.8%, respectively and a κw of 0.94 
(95% CI: 0.92 – 0.95). The within-observer agreement 
of AI_BCS produced a PA at the 0.00, ± 0.25 and ± 
0.50 error range of 96.2, 100 and 100%, respectively and 
a κw of 0.99 (95% CI: 0.99 – 0.99) (Table 4).

Inter-observer agreement between manual and 
automated BCS

The correct classification rates of single AI_BCS 
within the MAN_BCS classes: i) ≤ 2.50, ii) 2.75 – 3.25, 
iii) 3.50 – 3.75 and iv) ≥ 4.00, were 9.5% (with 24.3 
and 51.6% being scored as 2.75 and 3.00, respectively), 
82.6% (with 15.2% being scored as 3.50), 77.2% (with 
19.6% being scored as 3.25) and 22.6% (with 58.3% 
being scored as 3.75), respectively.

The overall PA at the 0.00, within 0.25 and within 
0.50 -unit of BCS error range between MAN_BCS and 
AI_BCS was 44.4, 84.6 and 94.8%, respectively. The 
PA at the ± 0.25 error range were between 80.1 and 
89.4% across farms, always above the benchmark of 
accepted reliability. The overall κw was 0.69 (95% CI: 
0.68 – 0.70), ranging from 0.67 (95% CI: 0.65 – 0.69) 
to 0.75 (95% CI: 0.73 – 0.77) across farms, representing 
substantial agreement (Table 5).

Regarding ΔBCS (Table 6), the overall PA at the 
0.00, ± 0.25 and ± 0.50 error range between the 2 
methods was 45.7, 88.2 and 97.2%, respectively. The 
PA at the ± 0.25 level ranged from 88.0 to 91.6% across 
farms and always above the benchmark of accepted 
reliability. Overall κw was 0.20 (95% CI: 0.17 – 0.23), 
ranging from 0.09 (95% CI: 0.01 – 0.18) to 0.20 (95% 
CI: 0.15 – 0.25) across farms, representing only slight 
agreement.

The Bland-Altman plot (Figure 1) showed a minimal 
systemic bias of the system assigning on average a high-
er BCS than HA1 by 0.09. The lower and upper 95% 
limits of agreement between the 2 methods were −0.63 
and 0.45, respectively. A simple linear regression of the 
differences between the 2 methods against their mean 
values produced an R2 = 0.253 (P < 0.001) revealing 
a proportional bias, as well. Differences between HA1 
and the system increased as BCS increased.

The inter-observer agreement between human asses-
sors is presented in Table 7. The PA between HA1 vs. 
HA2 and HA1 vs. HA3 at the 0.00, ± 0.25 and ± 0.50 
-unit of BCS error range was 53.4, 95.8 and 99.4%, and 
29.7, 75.3 and 91.7%, respectively. The κw was 0.82 
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Table 2. Data set used for testing, showing the distribution of single body condition scores estimated manually 
by a human assessor (MAN_BCS) and with an automated system (AI_ BCS) during eight whole-herd sessions 
in four dairy farms

Method  Farm Session n1 Mean SD

Percentiles

Min–Max225th 50th 75th

MAN_BCS  A 1 768 3.25 0.42 3.00 3.25 3.50 2.00–4.50
AI_BCS  3.31 0.29 3.00 3.25 3.50 2.25–4.25
MAN_BCS  2 824 3.27 0.40 3.00 3.25 3.50 2.00–4.50
AI_BCS  3.33 0.29 3.25 3.25 3.50 2.25–4.25
MAN_BCS  B 1 1,779 3.20 0.42 3.00 3.25 3.50 2.00–4.25
AI_BCS  3.32 0.31 3.25 3.25 3.50 2.25–4.00
MAN_BCS  2 1,699 3.16 0.46 3.00 3.25 3.50 2.00–4.25
AI_BCS  3.33 0.29 3.25 3.25 3.50 2.50–4.00
MAN_BCS  D 1 1,774 3.29 0.40 3.00 3.25 3.50 1.75–4.50
AI_BCS  3.35 0.30 3.00 3.25 3.50 2.50–4.25
MAN_BCS  2 1,637 3.17 0.46 3.00 3.25 3.50 2.00–4.25
AI_BCS  3.34 0.31 3.00 3.25 3.50 2.50–4.25
MAN_BCS  G 1 569 3.35 0.35 3.00 3.25 3.50 2.25–4.50
AI_BCS  3.22 0.21 3.00 3.25 3.25 2.75–4.25
MAN_BCS  2 607 3.31 0.35 3.00 3.25 3.50 2.00–4.50
AI_BCS  3.26 0.23 3.00 3.25 3.50 2.50–4.25
MAN_BCS  Total  9,657 3.23 0.42 3.00 3.25 3.50 1.75–4.50
AI_BCS   3.32 0.29 3.00 3.25 3.50 2.25–4.25
1Number of single body condition scores.
2Minimum – Maximum.

Table 3. Distribution of monthly changes in body condition score (ΔBCS) estimated manually by a human 
assessor (MAN_BCS) and by an automated system (AI_BCS) during 8 whole-herd sessions in four dairy farms

Method

 

Farm n1 Mean SD

Percentiles

Min–Max2 25th 50th 75th

MAN_BCS  A 592 0.07 0.21 0.00 0.00 0.25 −1.25–1.25
AI_BCS    0.06 0.14 0.00 0.00 0.25 −0.25–0.75
MAN_BCS  B 1,368 −0.03 0.24 0.00 0.00 0.00 −1.00–0.75
AI_BCS    0.02 0.16 0.00 0.00 0.00 −0.50–0.50
MAN_BCS  D 1,349 −0.12 0.24 −0.25 0.00 0.00 −1.25–0.75
AI_BCS    −0.01 0.15 0.00 0.00 0.00 −1.00–0.50
MAN_BCS  G 508 −0.25 0.20 −0.25 0.00 0.00 −0.75–1.00
AI_BCS    0.04 0.14 0.00 0.00 0.00 −0.25–0.50
MAN_BCS  Total 3,817 −0.04 0.24 −0.25 0.00 0.00 −1.25–1.25
AI_BCS    0.02 0.15 0.00 0.00 0.00 −1.00–0.75
1Number of cows scored twice 30 d apart.
2Minimum – Maximum.

Table 4. Intra-observer agreement of manual BCS estimations (MAN_BCS) and automatically generated 
BCS (AI_BCS) assessed with percentage agreement (PA) at three levels of error (0.00; within 0.25 and within 
0.50 -unit) and quadratically weighted kappa coefficients (κw) for the exact agreement, performed 24 h apart 
in the same farm

 n1 Error PA (%) κw S.E.2 P-value 95% CI3

MAN_BCS 486 0.00 68.3 0.94 0.070 <0.001 0.92–0.95
  0.25 96.1     
  0.50 99.8     
AI_BCS 2,062 0.00 96.2 0.99 0.001 <0.001 0.99–0.99
  0.25 100     
  0.50 100     
1number of cows scored twice 24 h apart.
2standard error of κw
3confidence interval of κw
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(95% CI: 0.80 – 00.84) and 0.77 (95% CI: 0.73 – 0.80), 
representing almost perfect and substantial agreement, 
respectively.

The Passing-Bablock regression (Figure 2) revealed 
a strong linear relationship of both MAN_BCS and 
AI_BCS with the BFT measurements, producing 
Spearman’s rank correlation coefficients of ρ = 0.91 
and 0.75 (P < 0.001), respectively.

DISCUSSION

The aim of this study was to develop and evaluate the 
performance of a low-cost, fully automated 2D surveil-
lance system for BCS monitoring of Holstein cattle on 
commercial dairy farms in the UK. First, we assessed 
the precision of the system, which was almost perfect 
in terms of assigning exactly the same BCS to individ-
ual cows within successive days. While the categorical 
agreement with the human assessor for the exact score 
was substantial, with almost 85% of the scores being 
within the 0.25 -unit error range of single manual BCS, 
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Table 5. Categorical agreement assessed with percentage agreement (PA) at three levels of error (0.00; within 
0.25 and within 0.50 -unit) and quadratically weighted kappa coefficients (κw) for the exact agreement, between 
manual estimations of BCS by a human assessor and automatically generated BCS from eight whole-herd 
sessions performed in four dairy farms

Farm n1 Error PA (%) κw S.E.2 P-value 95% CI3

A 1,592 0.00 53.1 0.75 0.010 <0.001 0.73–0.77
  0.25 89.4     
  0.50 96.2     
B 3,478 0.00 41.8 0.67 0.008 <0.001 0.65–0.69
  0.25 80.1     
  0.50 93.1     
D 3,411 0.00 44.1 0.71 0.007 <0.001 0.70–0.73
  0.25 85.3     
  0.50 94.6     
G 1,176 0.00 41.2 0.64 0.014 <0.001 0.61–0.67
  0.25 86.9     
  0.50 98.4     
Total 9,657 0.00 44.4 0.69 0.005 <0.001 0.68–0.70
  0.25 84.6     
  0.50 94.8     
1number of single body condition scores.
2standard error of κw
3confidence interval of κw

Table 6. Categorical agreement assessed with percentage agreement (PA) at three levels of error (0.00; within 
0.25 and within 0.50 -unit) and quadratically weighted kappa coefficients (κw) for the exact agreement, between 
manual estimations of BCS by a human assessor and automatically generated BCS in detecting monthly 
changes in body condition score of 3,817 cows in four dairy farms

Farm n1 Error PA (%) κw S.E.2 P-value 95% CI3

A 592 0.00 50.2 0.17 0.038 <0.001 0.10–0.25
  0.25 91.6     
  0.50 97.8     
B 1,368 0.00 43.0 0.16 0.025 <0.001 0.11–0.21
  0.25 88.0     
  0.50 97.2     
D 1,349 0.00 46.5 0.20 0.024 <0.001 0.15–0.25
  0.25 86.2     
  0.50 96.2     
G 508 0.00 45.5 0.09 0.043 0.017 0.01–0.18
  0.25 90.1     
  0.50 98.8     
Total 3,817 0.00 45.7 0.20 0.015 <0.001 0.17–0.23
  0.25 88.2     
  0.50 97.2     
1number of cows scored twice 30 d apart.
2standard error of κw
3confidence interval of κw
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the system was less accurate in identifying cows with 
very low (≤2.50) or very high (>4.00) BCS. A poor κw 
was produced regarding the monthly changes in BCS, 
although 88% of them were within the 0.25 error range 
of the manual ΔBCS. We also observed a strong linear 
association of the ultrasound measurements of back-
fat thickness with the automatically generated BCS, 
weaker though than that with the manual BCS.

In this study we calculated the PA at 3 different 
levels of error and the quadratic κw at the exact score 
as appropriate measures of within- and inter-observer 
categorical agreement. Weights for kappa coefficient 
are preferred over unweighted Cohen’s kappa when dis-
agreement is more “serious” as codes are further apart, 
which is the case for ordinal variables with multiple 
codes. The quadratic weights are commonly used and 

under specific conditions they are equivalent to the 
intraclass correlation coefficient (Schuster, 2004).

Pearson correlation coefficient (r), which is often 
reported in relevant studies, measures a linear relation-
ship between continuous variables and is not a suitable 
metric for the agreement of measures in ordinal scale 
(Bland and Altman, 1986; Lin, 1989). Nevertheless, 
and only for comparison purposes with previous stud-
ies, we calculated the Pearson correlation coefficient for 
the overall single BCS (data not shown) and found it to 
be r = 0.76 (P < 0.001).

The day-to-day repeatability of the system in as-
signing the same BCS in individual cows was almost 
perfect and exceeded that of HA1, which was already 
high relatively to previous studies with human asses-
sors. Reportedly, κw coefficients for the within-observer 
agreement at the exact score ranged from 0.22 to 0.75 
among bovine veterinarians and from 0.86 to 0.98 be-
tween instructors (Kristensen et al., 2006), from 0.62 
to 0.80 between experienced dairy scientists (Vasseur 
et al., 2013) and from 0.52 to 0.72 between trained 
assessors (Song et al., 2019).

The system showed a substantial overall agreement 
with MAN_BCS for the exact score, with 85% of all 
scores being within the 0.25 -unit error range, and with 
a negligible systematic bias. The performance varied 
across farms, but κw and PA were always within the 
substantial agreement range and over the benchmark of 
accepted reliability at the 0.25 error level, respectively. 
The system was significantly less accurate to correctly 
classify cows assigned a MAN_BCS ≤2.50 and >4.00. 
This was also evident from the proportional bias ob-
served in the Bland-Altman plot. These extreme scores 
were, as expected, the least represented in our data 
set. The decreased accuracy at very low or very high 
BCS is a common challenge for automated systems. 
However, one of the main advantages of deep-learning 
application compared with conventional approaches is 
that it typically gives the system the capacity to learn 
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Figure 1. A Bland-Altman plot of the differences between the 
manual BCS (MAN_BCS) and the automatically generated BCS (AI_
BCS) against the mean values of both methods. Straight horizontal 
line represents the mean of differences, showing a systematic error of 
−0.09. Dash horizontal lines represent the 95% limits of agreement 
(±1.96 × standard deviation) at −0.63 and 0.45. Regression line rep-
resents a proportional bias (R2 = 0.253, P < 0.001).

Table 7. Categorical inter-observer agreement assessed with percentage agreement (PA) at three levels of 
error (0.00; within 0.25 and within 0.50 -unit) and quadratically weighted kappa coefficients (κw) for the exact 
agreement, between single BCS estimations by human assessors (HA) performed in different sessions in the 
same farm

 n1 Error PA (%) κw S.E.2 P-value 95% CI3

HA1 vs. HA2 1,577 0.00 53.4 0.82 0.010 <0.001 0.80–0.84
  0.25 95.8     
  0.50 99.4     
HA1 vs. HA3 573 0.00 29.7 0.77 0.018 <0.001 0.73–0.80
  0.25 75.3     
  0.50 91.7     
1number of cows.
2standard error of κw
3confidence interval of κw
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from experience and improve without necessarily being 
programmed to (Sarker, 2021). Therefore, we consider 
that increasing the algorithm’s training with more data 
focusing on extreme BCS, would progressively improve 
the accuracy of the system.

The inter-observer agreement between HA1 vs. HA2 
was within the almost perfect range and better than that 
between AI_BCS and MAN_BCS. Both assessors were 
very experienced in collecting BCS data for research. 
This level of agreement is greater than what is typically 
observed in practice. The agreement between HA1 vs. 
HA3 was within the substantial range regarding the 
κw and close to that between HA1 vs. HA2. However, 

the PA at the exact score and the ± 0.25 error level 
was lower than that observed between AI_BCS and 
MAN_BCS. The inter-observer agreement at the exact 
score in the literature varied, and was reportedly κw = 
0.17 – 0.78 among bovine veterinarians (Kristensen et 
al., 2006), κw = 0.67 between trainers and a mean κw = 
0.42 between trainer and trainees (Vasseur et al., 2013), 
and κw = 0.76 – 0.89 between a veterinarian and 2 ani-
mal health technicians following review and training on 
BCS methodology before scoring (Morin et al., 2017). 
Hence, the agreement obtained between AI_BCS and 
MAN_BCS here was similar to that achieved between 
trained and experienced human observers in previous 
studies.

The inter-observer agreement between human asses-
sors in detecting changes in BCS has been investigated 
only by Morin et al. (2017) with 3 observers scoring 57 
cows in the first 3 weeks after calving and again in 6 to 
8 weeks after calving. The range of ΔBCS recorded was 
−0.75 to 1.00 point. The produced agreement among 
3 observers was moderate, with a mean quadratic κw 
of 0.49, which was higher than the agreement observed 
in our study. The low coefficient in our study could be 
partly explained by the limited capacity of the system 
to correctly classify cow at BCS ≤2.50. However, the 
PA at the 0.00, and ± 0.25 error level in our study 
were both higher than the 33.3 and 83.6%, respectively, 
reported again by Morin et al. (2017). Percentage 
agreement is a direct measure, while κw is an estimate 
of agreement exceeding chance that is influenced by the 
observer’s accuracy, the number of codes, the preva-
lence of each code and the observer’s bias (McHugh, 
2012). This could be the case accounting for the ob-
served discrepancy that while PA in our study between 
manual and automated ΔBCS was higher than those 
in Morin et al. (2017), the κw was significantly lower. 
The codes for ΔBCS that the HA1 assigned were more 
than those of the system and of those in Morin et al. 
(2017). The prevalence within each code was also dif-
ferent than Morin et al. (2017), as a larger number of 
cows were scored at various stages of lactation. We are 
not aware of other studies evaluating the accuracy of 
an automated system in detecting ΔBCS. Based on the 
obtained PA in the current study, we can reasonably 
support that the system was adequately accurate in 
detecting ΔBCS and within the agreement levels ex-
pected between human observers.

The BFT measurement using ultrasonography is 
considered a more objective estimation of a cow’s sub-
cutaneous fat reserves than manual BCS estimations 
(Schröder and Staufenbiel, 2006) presenting excellent 
precision and high correlation with actual carcass 
backfat thickness (Brethour, 1992). The correlation 
observed between MAN_BCS and BFT measurements 

Siachos et al.: AUTOMATED BODY CONDITION SCORING

Figure 2. Passing-Bablock regressions of ultrasound backfat thick-
ness measurements in 111 Holstein cows against: (A) manual BCS 
(MAN_BCS), with a Spearman’s rank correlation coefficient ρ = 0.905 
(95% CI: 0.86 – 0.93, P < 0.001), and (B) automatically generated 
BCS (AI_BCS), with a Spearman’s rank correlation coefficient ρ = 
0.751 (95% CI: 0.66 – 0.82, P < 0.001).



Journal of Dairy Science Vol. TBC No. TBC, TBC

was strong and within the range of coefficients (0.82 – 
0.98) reported in previous studies (Hussein et al., 2013; 
Strieder-Barboza et al., 2015; Siachos et al., 2021). We-
ber et al. (2014) developed a 3D optical system which 
managed to estimate weekly BFT measurements with a 
notably high correlation coefficient of 0.96. In our study, 
the AI_BCS produced a strong linear relationship with 
BFT, weaker though than that of the MAN_BCS, but 
failed to correctly classify most thin cows with BFT 
<10 mm, which received a MAN_BCS of 2.75 or less.

Automated systems are capable of identifying in-
dividual cows and record and store large data sets 
frequently and effortlessly. On the other hand, a whole-
herd BCS session in large dairy herds is challenging 
both physically and mentally for a human scorer. It 
is worth mentioning that HA1 was never able to score 
the entire milking herd in any session and recorded 
4.7 to 19.9% fewer cows across sessions compared with 
the system. The main reasons for that were unclear 
IDs, fast movement of the rotaries, typing errors when 
scoring and mental fatigue after many hours of repeat-
edly scoring. The milking time in the farms we visited 
ranged from 3.5 to 6.5 h. An automated system is by 
definition not prone to such errors.

Comparative description of similar systems’ 
performance

Over the last 2 decades, a growing body of publica-
tions have reported the development of systems with 
image processing for BCS estimation in dairy cows 
using 2D and 3D digital or thermal cameras, at dif-
ferent levels of automation (fully or semi-automated). 
These systems focus on a wide range of anatomical 
features, use different types of models to estimate BCS 
and have been validated with variable numbers of cows 
showing variable performance in terms of intra- and 
inter-observer reliability. Unfortunately, there is a lack 
of uniformity in the reported metrics of agreement, ac-
curacy and precision among studies.

One of the first systematic attempts to automati-
cally generate BCS using 2-dimensional imaging was 
described by Coffey (2003), by projecting laser light 
and extracting data manually from fitted curves of 
the cow’s contour around the tailhead using a digital 
camera. An r = 0.62 with the average manual BCS of 3 
human assessors was achieved, in cows within a narrow, 
though, range of BCS (2.25 – 3.25).

To-date, all developed and evaluated systems using 
a 2D camera had either low- or medium- level of auto-
mation, meaning that the anatomical features on the 
acquired images had to be labeled and/or the input 
of the images had to be selected manually. In terms 
of performance, Ferguson et al. (2006) used a mixed 

regression model with an R2 = 0.68 – 0.80, Bewley et 
al. (2008) reported an accuracy of 92.8% at the ± 0.25 
error range using also a mixed regression model, Azzaro 
et al. (2011) reported an error rate of 0.31 in predicting 
the actual BCS using polynomial kernel principal com-
ponent analysis, and Bercovich et al. (2013) reported 
an R2 = 0.77 of a partial least square regression model 
and Fourier descriptors of cows’ signature with an accu-
racy of 58% at the ± 0.25 error interval. Although the 
system developed by Bewley et al. (2008) achieved a 
markedly high level of accuracy, the level of automation 
was low. Digital images were captured automatically, 
but the image processing was carried out manually.

Halachmi et al. (2013) used thermal imaging and 
reported an r = 0.94 between the thermal sensed and 
the manual BCS by measuring the deviation of the 
cow’s contour against a fitted parabola. Both accuracy 
and level of automation were significantly ameliorated 
compared with their previous work, where the correla-
tion between the predicted BCS by the thermal camera 
and the manual BCS produced a Spearman’s ρ = 0.315 
(Halachmi et al., 2008).

The majority of recently published studies assessed 
the feasibility of 3D imaging for automatically gener-
ated BCS. Level of automation and performance were 
highly variable. Fischer et al. (2015) used principal 
components analysis and achieved a high correlation 
(r = 0.89 – 0.96) and a mean absolute error of 0.28. 
However, it must be noted that data sets selected for 
calibration and validation were small and selected to 
cover a wide range of BCS, which may not comply 
with the usual BCS distribution seen in dairy herds. 
Similarly, Kuzuhara et al. (2015) achieved good cor-
relations between predicted and manual BCS with an 
R2 = 0.74 and a root mean square error = 0.18, using 
principal components analysis with the inclusion of 
geodesic lines connecting specific anatomical features. 
Both image capturing and measurement of the length 
of the geodesic lines were, although, performed manu-
ally. Spoliansky et al. (2016) utilized automated image 
processing and reported an r = 0.72 between predicted 
and manual BCS and 74% accuracy at the ± 0.25 er-
ror range, using polynomial regression models with an 
R2 = 0.75 and a mean absolute error of 0.26. Song 
et al. (2019) obtained an overall sensitivity of 0.72 in 
correctly scoring cows at the ± 0.50 error range and a 
mean absolute error of 0.15 -unit of BCS using a poly-
nomial regression model. However, the whole system’s 
setup had to be moved manually behind the cow and 
image capturing and image processing were performed 
manually, as well. Martins et al. (2020) developed a re-
gression model with an R2 = 0.61 – 0.63 and root mean 
square error of 0.16 – 0.17, by manually capturing and 
processing a lateral and a dorsal 3D image from each 
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cow. Finally, Liu et al. (2020) achieved an accuracy of 
76% at the ± 0.25 error range by developing a fully 
automated system using ensemble learning model on 
3D images.

The following studies dealt with the validation of 
systems relying again on 3D images, using machine 
learning algorithms to generate BCS. All these systems 
have the advantage of being fully automated, allowing 
for real-time acquisition of BCS estimations. Rodríguez 
Alvarez et al. (2018) reported an accuracy of 78% at the 
± 0.25 error range using CNN, which was improved up 
to 81.5% after using transfer learning and techniques of 
ensemble modeling (Alvarez et al., 2019). Yukun et al. 
(2019) assessed a DenseNet CNN model that acquired 
data from manual BCS and BFT measurements and 
achieved accuracies of 45 and 77% at the 0.00 and ± 
0.25 error range, respectively. O’Mahony et al. (2022) 
reported poor agreement with manual scores, with ac-
curacies at the ± 0.25 error interval ranging from 22 
to 39% and Krippendorf’s α coefficients ranging from 
−0.08 to 0.03 for the exact agreement with manual 
scores, again with the use of deep learning CNN. A 2D 
neural network yielded even lower accuracies. Zhao et 
al. (2023) reported an accuracy of 45 and 91.2% at the 
exact score and at the ± 0.25 error range in depth im-
ages using a model based on an EfficientNet network. 
However, extreme scores of ≤2.25 and ≥4.0 were classi-
fied by the authors as being 2.25 and 3.75, respectively. 
Furthermore, Shi et al. (2023) developed a point cloud 
3D feature extraction network with attention guiding, 
which was accurate by 49 and 80% at the exact score 
and the ± 0.25 error range, a performance very similar 
to ours. Finally, Nagy et al. (2023) evaluated a 3D cam-
era using deep learning CNN and achieved an accuracy 
of approximately 60% at the 0.25 error level and an 
unweighted kappa of approximately 0.30 for the exact 
agreement at 12 BCS classes. When they re-evaluated 
the agreement at 3 BCS classes designated as being 
above, within or below the recommended BCS range 
per stage of lactation, the unweighted kappa increased 
at levels between 0.60 and 0.80, indicative of substan-
tial agreement.

To the best of our knowledge, 3 published studies 
have evaluated the performance of commercially avail-
able fully automated BCS recording systems for dairy 
cows (Hansen et al., 2018; Mullins et al., 2019; O’ Leary 
et al., 2020). All 3 systems were equipped with 3D cam-
eras. Hansen et al. (2018) validated a fully automated 
system based on a 3D rolling ball algorithm allowing 
for simultaneous BCS, lameness and bodyweight moni-
toring, with accuracies of 66.4% at the ± 0.25 and 80% 
at the ± 0.34 error range and a mean error of 0.21. 
Validation was performed using 119 cows. Moreover, 
Mullins et al. (2019) reported an r = 0.76 – 0.78 and 

displayed a Bland-Altman plot showing a systematic 
bias of 0.12. Visual assessment of the plot reveals a 
clear proportional bias. Authors stated that the system 
was accurate within the 3.00 – 3.75 range of BCS. A re-
finement on daily BCS data gathering by fitting a loess 
function was proposed by Albornoz et al. (2022) to 
ameliorate the system’s precision. Finally, O’ Leary et 
al. (2020) reported an r = 0.72 and a Lin’s concordance 
correlation coefficient of 0.67, respectively. A systematic 
bias of 0.11 was also produced in a Bland-Altman plot, 
but they did not assess the presence of a proportional 
error. Neither of the last 2 studies included any metric 
of categorical agreement to compare with our findings.

CONCLUSIONS

We demonstrated that a fully automated system 
using a machine learning algorithm to generate real-
time BCS from 2D footage can predict single BCS and 
changes in BCS with an adequate accuracy, comparable 
to that obtained between trained human scorers. Lower 
accuracy at the low scores was observed but can be 
improved with more training data at the extremes.
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