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Abstract—This paper introduces a reinforcement learning-
based framework designed to tackle dynamic pricing challenges
in e-commerce. Prior research has predominantly concentrated
on algorithm selection to enhance performance in dense data
scenarios. However, many of these models fail to robustly address
sparse data structures, such as low-traffic products, leading to
the ’cold-start’ problem [4]. Through numerical analysis, our
framework offers innovative insights derived from the design
of the reward function and integrates product clustering with
pre-trained learning to mitigate this issue. As a result of this
optimization, the performance of predictive models on sparse
data is expected to see substantial improvement.

Index Terms—Dynamic Pricing, Reinforcement Learning,
Clustering, K-means, Sarsa, Markov decision process, Price
elasticity of demand

I. INTRODUCTION

The utilization of dynamic pricing strategies in online
environments has been the subject of extensive research. This
includes conventional strategies that overtly modify listed
prices and innovative pricing strategies that subtly adjust prices
behind the scenes. These include Bundle Pricing, Auctions,
First Come-First Served, Price Discrimination, and Cashback
mechanisms [5]. While these strategies may be governed by
a dominant internal algorithm that drives changes, e-retailers
aims to find optimal policy trajectories that can trigger price
changes.

For e-retailers, profit maximization is a primary objective,
often achieved by securing a sale price significantly higher
than the cost price. However, price determination also ne-
cessitates consideration of competition among homogeneous
products and customer satisfaction. Consequently, e-retailers
establish fair prices to balance profitability and customer
satisfaction, often called a ’collusion’ price.

In practical terms, e-retailers encounter several hurdles
when determining appropriate prices for newly introduced
products, which typically lack substantial data accumulation:

1) Identifying a benchmark price to serve as the initial
price.

2) Predicting the precise reactions of competitors and cus-
tomers to the set price.

3) Establishing prices for all times of the year, recognizing
that different periods may necessitate distinct pricing
strategies.

Newly introduced products, which can be viewed as sparse
data structures, may suffer from low profitability or extreme
customer dissatisfaction if priced inappropriately. To address
these pricing decisions for new products, we propose a method
that integrates clustering, transfer learning, and reinforcement
learning [3].

II. FUNDAMENTAL MODELS

A. Clustering

In e-commerce, newly introduced products often grapple
with a lack of historical transaction records and customer
feedback. This absence of data can impede the process of price
optimization, necessitating an effective strategy to circumvent
this issue. One such approach is to minimize exploration
by identifying clusters of similar products that can serve as
benchmarks for reinforcement learning training.

Clustering is a powerful machine-learning technique that
groups similar instances based on features or conditions[1].
K-means has been widely adopted among various clustering
methods due to its simplicity and efficiency. The K-means
algorithm partitions a given dataset into ’K’ clusters, where
each data point belongs to the set with the nearest mean. This



method is particularly effective when a clear distinction or
separation exists between different data groups[2].

In the context of our study, we employ the K-means
algorithm to group similar products based on their features.
These clusters then serve as benchmarks for training our
reinforcement learning model. This approach allows us to
effectively address the challenges associated with sparse data
structures and optimize pricing strategies for newly introduced
products.

In this study, we focus on the ’Quilt Sets’ category on
Amazon.com, chosen for its homogeneity in product features.
The methodologies applied here can be extended to other
categories and platforms in future research. The data features
considered include:

• Brand: The brand of the product.
• ASIN: The unique identifier for products on Amazon.
• Size: Variations include Twin, Queen, and King.
• Material: Available in 100% Cotton and 100% Microfiber.
• Colour: Available in Solid and Print.
• Quantity: Available in sets of 2, 3, or 4.
• Weight: Represents the shipping weight of the product.
Additionally, we sampled data from the top 100 sellers

and one newly introduced product in Nov. 2022. During
feature engineering, we transformed the features into a one-
hot encoding format and employed normalization to scale the
range. We then applied the K-means clustering method, setting
K=5, to divide the 98 samples into five groups. We examined
the new product group (refer to Table I).

TABLE I
GROUPING OF NEWLY LAUNCHED PRODUCTS

Brand ASIN Price
Great Bay Home B07PGQ3JYB $54.99

Travan B07TSHZKL1 $49.99
Mooreeke B09VS9QSDD $67.98

Lush Decor B0006465C8 $51.09
Wongs Bedding B07VBJ5P7Z $39.99
Great Bay Home B0778VZ7FP $49.99
Wongs Bedding B07WPHBNWS $39.99
Levtex Home B087LTGHHF $89.99

DJV B09721M4VC $39.99
Belista B09FNXM18F $19.99

Woolrich B01IROZDTW $84.99
Smuge B0995KVPR3 $16.99
Tigona B0B5MWBRRQ $44.99

Cozy Line Home Fashions B07GSKRF89 $88.99
Janzaa B08DK8JCYZ $39.99

Uozzi Bedding B07QXRHSNS $39.99
Newlake B078MH49YC $73.89
Ycosy BOBB5W21J6 $43.99

Lush Decor B01MTMKFJ2 $42.67

B. Reinforcement Learning

In the realm of reinforcement learning, our study incor-
porates the Sarsa learning algorithm, which falls under the
temporal difference methods within the reinforcement learning
domain. The fundamental premise of Sarsa is to learn from the
actual policy, as depicted by the following update rule[9]:

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]
(1)

Here, α ∈ [0, 1] denotes the learning rate, signifying the
pace of learning, while γ ∈ [0, 1] represents the discount
factor, indicating the relative significance of the current reward
versus future rewards.

In this study, we adopt the framework of a Markov Decision
Process (MDP) to model dynamic pricing in e-commerce.
This approach, widely recognized for its efficacy in decision-
making problems [6], enables us to methodically delineate the
key components of the reinforcement learning process: the
state, action, and reward.

The state component encapsulates the system’s current
status, providing the necessary context for decision-making.
The action component represents the decisions or moves made
by the agent (in this case, the e-retailer) within the system.
The reward component quantifies the outcome or result of
an action, serving as a feedback mechanism that guides the
learning process [7].

By structuring our problem as an MDP, we can leverage the
powerful mathematical tools and algorithms associated with
reinforcement learning. This approach facilitates the explo-
ration of optimal pricing strategies in a systematic, data-driven
manner, potentially leading to more effective and profitable
decisions in e-commerce. The components are defined as
follows:

1) State Set: We construct a state set S for a period of 30
days, represented as S = s1, s2, · · · , st, · · · , s30. Each
state st in this set corresponds to the system’s state on
day t.

2) Action Set: The agent’s action corresponds to the
product’s retail price set. To simplify the process, we
select a price from the same cluster for each day.
Thus, the action set A for all days is defined as
A = a1, a2, · · · , at, · · · , a30, where each action at

is within the price range of this cluster, i.e., at ∈
range(mincluster,maxcluster).

3) Reward Set: The reward set R for the 30-day period
is defined as R = r1, r2, · · · , rt, · · · , r30, where each
reward rt corresponds to the reward received on day t.

To further refine our model, we incorporate the concept of
price elasticity of demand from microeconomic theory. The
formula for price elasticity is given by:

ξ =
(qt − q0)/q0

(at − a0)/a0
(2)

Here, ξ represents the product’s price elasticity, assumed to
be a fixed value. qt and q0 represent the sales volume at time t
and the initial sales volume (based on the mean volume of this
cluster), respectively. Similarly, at and a0 represent the sales
price at time t and the initial sales price (based on the mean
price of this cluster), respectively. This formula allows us to
model the relationship between price changes and changes in



Algorithm 1 Sarsa: An on-policy TD control algorithm
Initialize Q(s, a),∀s ∈ S, a ∈ A(s) arbitrarily

1: for each episode do
2: Initialize s
3: Choose a from s using policy derived from Q (i.e.,

ϵ-greedy)
4: for each step of episode do
5: Take action a, observe r, st+1

6: Choose at+1 from st+1 using policy derived from
Q (i.e., ϵ-greedy)

7: Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−
Q(st, at)]

8: s← st+1, a← at+1

sales volume, providing a more nuanced understanding of the
dynamics at play. From this formula, we derive the following:

qt =
(at − a0)× q0 × ξ

a0
+ q0 (3)

Then, the reward at time t can be expressed as follows,
where c represents the fixed cost:

rt = (at−c)×qt = (at−c)×( (a
t − a0)× q0 × ξ

a0
+q0) (4)

The pseudocode for the Sarsa learning algorithm is pre-
sented in Algorithm 1.

C. Transfer Learning

Transfer learning has emerged as a powerful technique
in machine learning and artificial intelligence, providing a
strategic solution to the pervasive problem of insufficient
training data. In such contexts, transfer learning serves as a
bridge, connecting disparate but related domains and enabling
knowledge transfer. This is especially evident in reinforce-
ment learning, where transfer learning has been employed
to expedite the learning process and enhance performance
in tasks characterized by sparse rewards [8]. For instance,
a model trained to navigate one type of video game can
transfer its learned knowledge to a different but related match,
reducing the required training. This exemplifies the power
of transfer learning in creating efficient learning pathways
between related domains, even in the face of data limitations.

III. COMPUTATIONAL MODELING

A. Hyperparameters Setting

Within our computational simulation, we conduct extensive
manipulations of the price elasticity variable (ξ) across two
distinct values, 0.5 and 0.8, while operating within the en-
compassing framework of sales volume clusters. The primary
objective of this experimentation is to meticulously evaluate
the adaptability of our methodology across a broad spectrum
of environments. By undertaking these adjustments, we aim
to obtain a comprehensive understanding of the impact that
variations in elasticity have on the outcomes.

To facilitate our analysis, we meticulously configure the
decision-making algorithm employed in our system, namely
Sarsa, with specific parameter values. The learning rate (α) is
meticulously set at 0.1, the discount factor (γ) at 0.9, and the
exploration rate (ϵ) at 0.1. Additionally, within the designated
product cluster, we meticulously establish the average price
at $53 while setting the cost (c) at $30. These specific
values enable us to carefully examine and interpret the results
obtained through our computational simulation.

B. Outcome and Analysis

The figures provided alongside this research article offer
valuable insights into the reinforcement learning process. No-
tably, the x-axis represents the number of episodes, denoting
the progression of the learning process. Conversely, the y-
axis reflects the cumulative Q value, which indicates the
overall reward accumulated over 30 days. The attainment of
convergence in the cumulative Q value implies that the system
has successfully explored and identified a near-optimal pricing
strategy.

Upon meticulous analysis of the obtained results, a promi-
nent and evident pattern emerges, highlighting substantial
variations in performance across different elasticity conditions.
This observation underscores the profound impact of diverse
elasticity of demand values and initial pricing strategies on the
outcomes of the learning process. A comprehensive depiction
and thorough analysis of this influential aspect can be found
in Figures 1 and 2.

Regarding the reward component, it is crucial to note that
initializing the pricing strategy at the mean value of the
cluster prices ($53) yields significantly superior outcomes
compared to alternative approaches for price learning. This
observation accentuates the criticality of establishing a well-
calibrated starting point within the reinforcement learning
process, particularly within the dynamic pricing domain.

Regarding the stability aspect, Figures 1 and 2 provide
valuable insights. Our transfer learning method demonstrates
more substantial stability than other stochastic pricing strate-
gies. It consistently explores within a reasonably confined
space, resulting in returns that exhibit minimal fluctuations.
Additionally, the convergence speed is relatively rapid, further
solidifying the efficacy and stability of our approach.

C. Future Work

In future research endeavours, a promising avenue for
exploration entails the seamless integration of the aforemen-
tioned technique with other state-of-the-art deep reinforcement
learning methods. This integration can significantly bolster the
robustness and efficacy of the algorithm under investigation.
Notably, prominent examples of these methods include DQN,
DDPG, SAC, and PPO, each of which has demonstrated its
ability to enhance the algorithm’s performance.

Furthermore, to ensure the validity and generalizability of
our conclusions, we aim to collect datasets from diverse cat-
egories. This comprehensive dataset collection process allows



Fig. 1. Sales Reward by ξ = 0.5

Fig. 2. Sales Reward by ξ = 0.8

us to rigorously test and validate the efficacy of our findings
across various domains.

By synergistically combining these cutting-edge ap-
proaches, researchers can harness the cumulative benefits and
leverage the advancements in deep reinforcement learning.
This integration and collaboration propel the algorithm’s per-
formance and expand its capabilities, resulting in more robust
and effective outcomes.

IV. CONCLUSIONS

In this study, we address the issue of sparse data struc-
tures in dynamic e-commerce pricing by employing k-means
clustering, transfer learning and reinforcement learning. Our
findings demonstrate that transferring a price point similar to
a new product from an existing cluster can significantly expe-
dite the system’s learning process. This approach effectively
reduces the number of exploratory steps required in practice,
enabling the system to establish an optimal pricing action more
swiftly.

This methodology offers a novel solution to the challenge of
sparse data in dynamic pricing, particularly for new products.
By leveraging the similarities within a cluster, we can provide
a more informed starting point for the reinforcement learning
process. This not only accelerates the learning phase but also
enhances the overall efficiency of the pricing strategy. The
implications of this approach extend beyond e-commerce,

potentially benefiting any industry or sector that relies on
dynamic pricing in the face of sparse data.
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