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Abstract14

This contribution proposes a framework to identify optimal borehole configurations for the design15

of shallow foundation systems under undrained soil conditions. To this end, the minimization of16

a performance measure defined in terms of the bearing capacity standard deviations is consid-17

ered. The random failure mechanism method is adopted for random bearing capacity evaluation,18

thereby enabling explicit treatment of soil spatial variability with tractable numerical efforts. A19

sampling-based optimization scheme is implemented to account for the non-smooth nature of the20

resulting objective function. The proposed framework provides non-trivial sensitivity information21

of the chosen performance measure as a byproduct of the solution process. Further, the method22

allows assessing the effect of increasing the number of soil soundings into the standard deviations23

of bearing capacity estimates. Three cases involving different foundation layouts are studied to24

illustrate the capabilities of the approach. Numerical results suggest that the herein proposed25

framework can be potentially adopted as a supportive tool to determine optimal soil sounding26

strategies for the design of a practical class of civil engineering systems.27

Keywords: Random failure mechanism method, Optimal borehole placement, Soil spatial28

variability, Spatial averaging, Transitional Markov chain Monte Carlo29

1. Introduction30

Site investigation programs play an instrumental role in the design of geotechnical engineering31

systems [1–4]. In this regard, soil sounding techniques such as cone penetration tests (CPTs) [5]32
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represent the prevalent approach to determine relevant geotechnical properties in a plethora of33

applications [6–11]. Despite the high-quality information that soil soundings can usually provide,34

soils undergo considerable changes over time and space due to the complex geological processes35

involved in their natural formation (see, e.g., [12–16]). Therefore, the consideration of the spatial36

variability of soil properties is of the utmost importance to obtain meaningful results when devising37

borehole placement strategies for site investigation.38

Some of the available methodologies to determine optimal soil sampling schemes aim to max-39

imize their robustness in terms of soil strength parameter identification [17–20]. While these ap-40

proaches have proved effective in characterizing soil properties from a general perspective, an alter-41

native class of methods focus on specialized soil sampling strategies tailored to specific geotechnical42

applications. In this regard, the consideration of the target system behavior constitutes an essential43

component in the formulation of such methods. Specifically, ad hoc approaches have been proposed44

for, e.g., slope stability assessment [21–26], foundation settlement prediction [27], and foundation45

bearing capacity analysis under plane-strain conditions [28]. Nonetheless, optimal borehole place-46

ment for the design of multiple shallow foundations considering the three-dimensional variability47

of soil properties has received relatively little attention.48

Boreholes must be allocated within a given site to reduce the variability of bearing capacity49

estimates for the design of shallow foundation systems supported by spatially variable soil. In gen-50

eral, random bearing capacity evaluation has relied on coupling well-established methodologies51

for the analysis of foundation systems, such as the finite element method, with the use of random52

fields for characterizing the relevant properties of the supporting soil; see, indicatively, [13, 29–53

34]. Within this context, the information provided by CPTs can be explicitly incorporated by54

using, for instance, conditional random fields [35–37]. Despite the flexibility and generality of such55

strategies, one of their main drawbacks relates to the considerable computational overhead arising56

in their application, especially in three-dimensional cases [38]. To address this issue, the random57

failure mechanism method (RFMM) [39, 40] encompasses several attractive features pertaining to58

its practical implementation. By resorting to the kinematic method of limit analysis [41, 42] and59

the spatial averaging technique [43], random bearing capacities can be evaluated in a numerically60

tractable fashion while explicitly and rigorously accounting for the three-dimensional variability of61

soil properties. Even though the RFMM allows considering the effect of soil soundings on random62

bearing capacities [44–46], the practical implementation of the method has been mostly limited63
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to cases involving a single borehole. Thus, it is believed that there is still room for further devel-64

opments in this area, particularly in the development of effective methods for identifying optimal65

borehole configurations in cases involving multiple foundations and multiple soil soundings.66

This contribution presents an approach for optimal borehole placement in the context of rect-67

angular shallow foundation design considering spatially variable and undrained soil conditions. In68

this regard, the optimal borehole placement problem is stated as the minimization of a performance69

measure defined in terms of the second-order statistics of the bearing capacities [46]. To evaluate70

the performance of different soil sounding configurations, the RFMM is adopted. A stochastic71

search technique based on an equivalent sampling problem [47, 48] is implemented to account72

for the non-smooth nature of the corresponding optimization problem. The proposed framework73

can be construed as an extension of the developments presented in [45, 46] and, moreover, as an74

alternative area of application of advanced simulation techniques [47]. Furthermore, the resulting75

approach entails the following features. First, it allows considering multiple foundations, multi-76

ple soil soundings, and the three-dimensional variability of soil properties. Second, instead of a77

single final solution, a set of nearly-optimal borehole configurations are generated. This, in turn,78

provides valuable insight about the problem at hand and improved flexibility for decision-making79

processes. Third, the method can be implemented to assess the tradeoff between the number of80

soil soundings and the reduction of the variability of foundation bearing capacities. Finally, the81

sensitivity of final configurations with respect to, e.g., the spatial correlation of undrained shear82

strength can be evaluated by virtue of the proposed approach. These types of analysis can be83

particularly valuable in the rather common cases where limited prior knowledge about the spatial84

correlation of soil properties is available. Numerical results suggest that the method presented85

in this contribution can identify borehole configurations that effectively reduce the variability of86

bearing capacity estimates. Overall, the herein proposed framework can be potentially adopted as87

a supportive tool to design site investigation programs and, in this manner, aid decision makers88

to enhance the safety and reliability of shallow foundation systems.89

The organization of the paper is as follows. Section 2 states the optimal borehole placement90

problem and the performance measures under consideration. A brief description of the RFMM is91

provided in Section 3, while Section 4 summarizes the main characteristics of the adopted stochas-92

tic optimization scheme. Some practical implementation aspects are discussed in Section 5. Three93

cases involving different foundation systems are studied in Section 6 to illustrate the applicabil-94
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ity of the proposed approach. The paper closes with some final remarks and potential research95

directions.96

2. Problem description97

2.1. Probabilistic site characterization98

Consider a soil under undrained conditions. In this case, the soil resistance is characterized99

in terms of the undrained shear strength, cu, which can be represented in terms of a three-100

dimensional random field to account for its spatial variability [13]. In particular, a stationary101

log-normal random field with mean value µcu , standard deviation σcu , and Gaussian correlation102

structure is assumed in this contribution. Then, the covariance between two arbitrary points103

pi = [xi, yi, zi] and pj = [xj, yj, zj] is given by104

C(pi,pj) = σ2cu exp

−
(xi − xj
θx/
√
π

)2
+
(
yi − yj
θy/
√
π

)2
+
(
zi − zj
θz/
√
π

)2 (1)

where θx, θy and θz are the scales of fluctuation (SOF) along the x, y and z axes, respectively,105

where the z axis points in the direction of gravity. In passing, it is noted that some authors have en-106

couraged the use of alternative covariance functions, such as the Whittle-Mattérn model (see, e.g.,107

[49]). Nevertheless, previously reported results [46] suggest that optimal borehole configurations108

may not be strongly sensitive to the adopted covariance structure.109

Assume that nF rectangular footings with known location and geometry are to be supported110

by the soil under consideration. Then, the bearing capacity of the kth foundation, denoted by ζk,111

k = 1, . . . , nF , depends on the undrained shear strength of the soil and, therefore, is a random112

variable with mean value µζk and standard deviation σζk . It is noted that the joint distribution113

of ζk, k = 1, . . . , nF , is generally unknown and it depends on the random field characteristics and114

the usually involved relationship between bearing capacities and undrained shear strength.115

2.2. Optimal borehole placement for foundation design116

To provide information for the design of the system of nF foundations, consider that a total of117

nB soil soundings must be placed at the corresponding site. It is assumed that no soil soundings118

have been previously allocated at the site of interest, i.e., the locations of the nB boreholes must119

be determined simultaneously. In this setting, the position of the mth borehole in the x − y120

plane is denoted by bm = [xBm, y
B
m], m = 1, . . . , nB, and the entire array is fully determined by121
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b = [b1, . . . ,bnB ]
T ∈ Rnb with nb = 2nB. Then, the optimal borehole placement problem relates122

to identifying the positions of the nB boreholes such that they yield the best possible information123

for the evaluation of the foundation bearing capacities. This task can be stated in a mathematical124

programming framework as125

min
b
f(b)

s.t. bLi ¬ bi ¬ bUi , i = 1, . . . , nb
(2)

where b ∈ Rnb is the vector of decision (design) variables, f(b) is a suitable objective function,126

and bLi and b
U
i are the lower and upper limits for the ith decision variable. The side constraints127

characterize the available region to place the boreholes. In addition, the objective function mea-128

sures the performance of a given soil sounding arrangement in terms of the variability of bearing129

capacity estimates [46].130

2.3. Performance measures131

Since the variability levels of different bearing capacities are affected to different extents by132

any given soil sounding array, the choice of the objective function f(b) is not straightforward for133

systems of multiple foundations. In this regard, and following some of the ideas discussed in [46],134

two different performance measures defined in terms of the standard deviations of the different135

bearing capacities are adopted in this contribution.136

2.3.1. Average normalized standard deviation137

The first performance measure is referred to as average normalized standard deviation, and it138

is defined as [46]139

σ̄avg(b) =
1
nF

nF∑
k=1

σζk(b)
σ0ζk

(3)

where σ0ζk and σζk(b) denote the standard deviation of the kth bearing capacity when no boreholes140

are included into the analysis (base scenario) and when the borehole configuration b is considered,141

respectively. The ratio σζk(b)/σ
0
ζk
, k = 1, . . . , nF , quantifies the variability level of the kth bearing142

capacity as a fraction of the unconditioned standard deviation. Thus, σ̄avg(b) can be related to143

the expected level of information gain. In general, σ̄avg ≈ 1 indicates negligible improvement,144

while σ̄avg < 1 indicates an average reduction in the variability of the bearing capacities. By145

adopting this performance measure, the optimal borehole configuration yields the best average146
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improvement for all foundations, although it may privilege local information gain. That is, some147

bearing capacities may significantly reduce their variability while others may remain unaffected.148

2.3.2. Maximum normalized standard deviation149

The second performance measure is called maximum normalized standard deviation, and it is150

given by [46]151

σ̄max(b) = max
k=1,...,nF

(
σζk(b)
σ0ζk

)
(4)

where all terms have been previously defined. In this case, performance is quantified in terms of152

the maximum normalized variability level across all bearing capacities. Hence, this measure can153

be associated with the minimum level of information gain achieved by the soil sounding array.154

The corresponding optimal configurations usually tend to reduce all bearing capacity standard155

deviations to a similar extent, although significant local improvements can be disregarded by156

choosing this objective function. Furthermore, if the optimal configuration verifies σ̄max ≈ 1, then157

it can be argued that the current number of available soil soundings is unable to reduce the158

variability level of all bearing capacities in a simultaneous manner.159

3. Random bearing capacity assessment160

Following the previous presentation, it is noted that the performance of a given soil sounding161

configuration is measured in terms of the standard deviations of the foundation bearing capacities.162

As already pointed out, the evaluation of such standard deviations is not straightforward when163

three-dimensional random fields are adopted to characterize geotechnical properties [50]. To ad-164

dress this task, an efficient approach called random failure mechanism method (RFMM) is adopted165

[39]. The distinctive feature of the RFMM is that it enables random bearing capacity evaluation166

considering the three-dimensional variability of soil properties in a numerically tractable fashion.167

A brief description of the approach is presented in this section.168

3.1. Failure mechanisms and spatial averaging169

The kinematic method of limit analysis plays an instrumental role in the formulation of the170

RFMM [39], where suitable failure mechanisms are employed to evaluate the capacity of the system171

of interest (see, e.g., [40, 51]). For simplicity, only rough-based foundations are considered in this172

contribution, and the Prandtl-type mechanism introduced in [52] is adopted for bearing capacity173

assessment. Figure 1 shows this failure mechanism type, which involves nR = 30 dissipation174
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regions (surfaces and volumes). The ith dissipation region of the kth foundation, denoted by175

Rk,i, is associated with a constant (averaged) undrained soil strength c̄u,Rk,i , i = 1, . . . , nR, k =176

1, . . . , nF . For a given value of c̄u,Rk = [c̄u,Rk,1 , . . . , c̄u,Rk,nR ], the failure mechanism geometry that177

minimizes the corresponding ultimate load yields the actual bearing capacity of the foundation178

(see Appendix A). In this manner, the bearing capacities ζk, k = 1, . . . , nF , can be computed179

in terms of the averaged undrained shear strengths, i.e., c̄u,R = [c̄u,R1 , . . . , c̄u,RnF ]
T ∈ RnT with180

nT = nFnR.181

To account for the spatial variability of cu, which is represented as a stationary lognormal182

random field (see Section 2.1), the vector c̄u,R is assumed to follow a lognormal distribution183

with a certain correlation structure [39, 40, 43, 51]. Specifically, and employing concepts from184

Vanmarcke’s spatial averaging [43], the vector c̄u,R has mean value µcu and covariance matrix185

ΣΣΣRR ∈ RnT×nT . The latter is determined in terms of the chosen covariance function and the186

geometry of the failure mechanisms associated with cu = µcu [53]. Then, Monte Carlo simulation187

can be employed to estimate the unconditioned standard deviations of the bearing capacities, i.e.,188

σ0ζk , k = 1, . . . , nF . The only restriction of the approach is that the distance between the different189

foundations must be sufficiently large to ensure that the failure mechanisms are not interfering190

with each other [46]. This implies that, in practice, mechanical interaction between foundations191

cannot be fully considered within this formulation.192

3.2. Consideration of boreholes193

In the RFMM, the information provided by soil soundings can be incorporated as probabilistic194

conditions on the random field [44]. Each borehole is represented as a straight vertical line, while195

the undrained shear strengths at the boreholes are taken as nB correlated lognormal random196

variables contained in c̄u,B = [c̄u,B1 , . . . , c̄u,BnB ] with mean value µcu , standard deviation γσcu , and197

covariance matrix ΣΣΣBB(b) ∈ RnB×nB . In this formulation, γ is a small positive constant introduced198

to reflect measurement accuracy. Specifically, the value γ = 0.01 is adopted [44–46]. Hence, the199

vector c̄u = [c̄u,R, c̄u,B]T ∈ Rnc comprises nc = nT + nB correlated lognormal random variables200

with mean value µcu and covariance matrix given by201

ΣΣΣ(b) =

 ΣΣΣRR ΣΣΣBR(b)T

ΣΣΣBR(b) ΣΣΣBB(b)

 (5)

7



where ΣΣΣBR(b) ∈ RnB×nT is the cross-covariance matrix between c̄u,B and c̄u,R. The matrices202

ΣΣΣBR(b) and ΣΣΣBB(b) are also computed using spatial averaging [43, 46]. Once Σ(b) is obtained,203

Monte Carlo simulation is carried out to estimate the standard deviations σζk(b), k = 1, . . . , nF .204

Figure 1: Sketch of the failure mechanism type under consideration (rough-based foundation).

3.3. Basic procedure205

For clarity and completeness, the basic steps of the sampling procedure to estimate the standard206

deviations of the nF bearing capacities, conditioned on a given array of boreholes b, are provided207

in the following. A thorough description of this method, including a detailed algorithm to obtain208

realizations of c̄u, can be found in [46].209

1. Compute the covariance matrix ΣΣΣ(b) in Eq. (5) using spatial averaging [43].210

2. Perform direct Monte Carlo simulation. For ℓ = 1, . . . , NS:211

(a) Generate a realization c̄(ℓ)u of c̄u. This is carried out using, e.g., the Cholesky decompo-212

sition method [13] in a suitable underlying Gaussian space [46].213

(b) Evaluate the corresponding realizations of the bearing capacities, ζ(ℓ)k = ζk(c̄
(ℓ)
u ), k =214

1, . . . , nF , according to Appendix A.215
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3. Estimate the standard deviations of the foundation bearing capacities as216

σζk(b) ≈ σ̂ζk(b) =

 1
NS − 1

NS∑
ℓ=1

ζ(ℓ)k − 1NS
NS∑
κ=1

ζ
(κ)
k

2

1/2

, k = 1, . . . , NF (6)

Then, the standard deviation estimates can be used to obtain an estimate of the objective func-217

tion f(b). In this manner, computationally intensive procedures for bearing capacity assessment218

are circumvented while fully accounting for the three-dimensional variability of the undrained219

shear strength.220

4. Stochastic optimization approach221

The objective function f(b) in Eq. (2) is evaluated in terms of Monte Carlo estimates and,222

therefore, it presents an inherent variability that must be properly considered during the solution223

process [54]. Moreover, the performance measures defined in Section 2.3 may lead to multiple local224

optima or multiple discontinuous, nearly-optimal regions [46]. To account for these issues, the use225

of stochastic search techniques proves a particularly useful and robust solution approach [55]. In226

particular, a stochastic optimization strategy based on an equivalent sampling problem [47, 48, 56]227

is implemented in this contribution.228

4.1. Equivalent sampling problem229

According to the simulated annealing concept [57], minimizing f(b) is equivalent to finding230

the maximum of exp(−f(b)/T ), T > 0. Then, consider the auxiliary non-normalized distribution231

[47, 58, 59]232

p(b;T ) ∝ UB(b) exp
(
−f(b)
T

)
(7)

where T > 0 is the so-called temperature parameter and UB(b) is a uniform distribution over233

the set B = {b ∈ Rnb : bLi ¬ bi ¬ bUi , i = 1, . . . , nb}. The artificial treatment of b as random234

variables is merely a tool for the formulation of the method. In this setting, the parameter T plays235

a key role in determining the shape of the auxiliary distribution. Higher values of T lead to flatter236

distributions and, when T → ∞, the auxiliary distribution becomes uniform over the search237

space, i.e., limT→∞ p(b;T ) = UB(b). Conversely, reducing the value of T renders distributions238

that are more concentrated around designs that yield lower values of f(b). In the limit case,239

the probability mass is densely concentrated in a vicinity of the optimal solution set B∗f , i.e.,240
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the set of designs that minimize the objective function. That is, limT→0 p(b;T ) = UB∗f (b). Thus,241

the solution of the Eq. (2) can be stated as the equivalent problem of sampling from the target242

distribution p∗(b) = limT→0 p(b;T ). Furthermore, this formulation can be also interpreted as a243

Bayesian model updating problem in which UB(b) plays the role of the prior distribution and244

exp (−f(b)/T ), T → 0, of the (non-normalized) likelihood function [47].245

4.2. Stochastic simulation method246

To obtain samples (designs) distributed according to p∗(b), a sequential sampling strategy is247

adopted [58–60]. Consider the sequence of non-normalized intermediate distributions248

p0(b) = UB(b) (T0 →∞)

pj(b) ∝ UB(b) exp
(
−f(b)
Tj

)
, j = 1, . . . , J

(8)

where ∞ = T0 > T1 > · · · > TJ → 0 is a sequence of monotonically decreasing temperatures.249

These distributions are increasingly concentrated near the optimal solution set B∗f . In this regard,250

the idea is to achieve a gradual transition from a uniform distribution over the search space (j = 0)251

to a distribution with a sufficiently low temperature (TJ → 0). A sequential generation of samples252

is performed to this end, whereby the initial samples are uniformly distributed over B and the253

final designs densely populate a vicinity of B∗f [47].254

To carry out the sampling process, the transitional Markov chain Monte Carlo (TMCMC)255

method [60] is adopted. In the initial stage (j = 0), a set of designs {b(n)0 , n = 1, . . . , N} uniformly256

distributed over B are generated using direct Monte Carlo simulation. Thereafter, the samples257

{b(n)j , n = 1, . . . , N} at stage j = 1, 2, . . . , J are obtained using the Metropolis-Hastings (M-H)258

algorithm [61, 62]. Several independent chains with stationary distribution pj(b) are generated at259

stage j, whose initial states are drawn from the samples at stage j − 1 using importance sam-260

pling and resampling concepts. With the aim to achieve a smooth transition between consecutive261

distributions, the temperature parameter Tj is adaptively defined to satisfy the condition [47, 58]262

N∑
n=1

exp
[
−2(T−1j − T−1j−1)f(b

(n)
j−1)

]
=
1
νN

(
N∑
n=1

exp
[
−(T−1j − T−1j−1)f(b

(n)
j−1)

])2
(9)

where ν ∈ (0, 1) is the so-called effective sample size parameter [58]. If the current c.o.v. estimate263

of the objective function is sufficiently small or a maximum number of stages is completed, the264
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sampling process is stopped [47]. Then, the final designs can be regarded as nearly optimal solu-265

tions. That is, a number of nearly equivalent borehole arrays are obtained rather than a unique266

final configuration of soil soundings, which can provide improved flexibility for decision-making267

purposes. Nevertheless, if a single solution is required, the design with the smallest objective func-268

tion value can be chosen. In addition, the sets of samples generated during the different stages269

provide valuable insight about the sensitivity of the objective function with respect to the decision270

variables [47, 56].271

5. Implementation aspects272

5.1. Evaluation of the objective function273

The proposed framework relies on the sequential generation of designs to populate a vicinity274

of the optimal solution set. In this regard, three relevant aspects in the estimation of the objective275

function f(b) are considered. The first pertains to the computation of the covariance matrix276

ΣΣΣ(b) in Eq. (5), which is one of the most numerically demanding tasks of the RFMM [39]. Since277

the submatrix ΣΣΣRR does not depend on the borehole positions, it can be computed offline, i.e.,278

before the optimization process is carried out. Hence, only the submatrices ΣΣΣBR(b) and ΣΣΣBB(b)279

are updated for each soil sounding configuration, which allows significant computational savings.280

The second aspect corresponds to select an appropriate value of NS (see Section 3.3) to achieve a281

suitable tradeoff between computational cost and quality of the objective function estimates. Even282

though the optimal value of NS is problem-dependent, the choice NS > 200 has yielded satisfactory283

results for the examples addressed in this contribution. In passing, it is noted that bearing capacity284

evaluation is significantly less demanding than computing ΣΣΣ(b). Finally, the customary technique285

of using common random numbers [55] is implemented. That is, the same stream of pseudorandom286

numbers is used to estimate f(b) at different values of b. In this manner, the negative impact of287

the variability of the objective function estimates on the optimization process can be effectively288

reduced.289

5.2. Adaptive surrogate model290

Following some of the ideas discussed in [48, 63], an adaptive surrogate model for the objective291

function is implemented. The standard deviations are approximated using kriging interpolants292

[64, 65] as σζk(b) ≈ σkrζk(b), k = 1, . . . , nF . In this framework, underlying Gaussian processes293

defined in terms of available data points are employed to approximate the target functions [64].294
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Some of the advantages of kriging are that (i) a regular grid of support points is not needed,295

(ii) the prediction at the support points are exact, and (iii) an estimate of the prediction c.o.v. is296

available. Furthermore, due to the annealing properties of the optimization technique, the effective297

support of the current distribution is usually contained in those of preceding distributions [56].298

Hence, support points retrieved throughout the different stages of the method can be employed299

to approximate the objective function by means of kriging surrogates.300

Based of the previous features, a local and adaptive surrogate model strategy is formulated as301

follows. First, a database of support points is initialized using, e.g., Latin Hypercube sampling over302

the initial search space B. Then, kriging metamodels based on Nsp support points are employed to303

approximate the standard deviations. In the initial stage, which corresponds to direct Monte Carlo304

simulation, the Nsp database points that are closer to the evaluated design b are considered as305

support points. For the next stages, which involve the M-H algorithm, the support points are kept306

constant for each chain and they correspond to the Nsp points closer to the starting (seed) sample.307

This is done to circumvent potential discontinuities of the objective function surrogate associated308

with slightly different sets of support points for consecutive chain states [63]. The predictions for309

a given borehole configuration b are only accepted if:310

1. The design b lies within the nb-dimensional convex hull of the Nsp support points.311

2. The kriging predictions have a corresponding c.o.v. below a user-defined threshold ϵ.312

3. Every kriging prediction is larger than its corresponding Q-quantile in the database.313

The three previous criteria aim to control the quality of the surrogate model [56, 63]. If any of314

these conditions is not met, the kriging prediction is rejected. Then, the standard deviations are315

directly evaluated using the RFMM, and the point b is added to the database. Hence, additional316

support points that lie closer to the optimal solution set are incorporated as new designs near such317

set are generated. In general, this strategy can significantly improve the numerical efficiency of the318

approach without compromising the quality of the optimization results [48]. However, alternative319

surrogate strategies can also be considered within the proposed framework.320

5.3. Parallelization strategies321

The TMCMC method presents advantageous features for practical implementation in high-322

performance computing environments [63]. In this regard, the initial stage corresponds to direct323

Monte Carlo simulation and, therefore, it can be fully scheduled in parallel. Thereafter, each stage324
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produces a set of Markov chains that are independent between each other. Hence, the simulation325

of each chain can be carried out independently by a single computer worker and, in this manner, it326

becomes possible to generate the entire set of Markov chains in parallel using a pool of computer327

workers. Based on the preceding discussion, it is seen that the entire optimization process can be328

performed using parallelization techniques, which may help to improve the overall computational329

efficiency of the proposed framework [56].330

Surrogate model techniques and parallelization strategies can be jointly implemented, for which331

a balance must be achieved between the adaptability of the database of support points and the332

effectiveness of the parallelization process. To this end, the samples at each stage can be generated333

in batches [48]. That is, a total of Npar samples are simultaneously generated, and then the334

database of support points is updated with the corresponding designs that were evaluated using335

the RFMM. The value of Npar should be relatively small to update the database on a regular336

basis, but large enough to ensure the effectiveness of the parallelization process. This procedure is337

repeated until the required sample size N is reached. In addition, since the computational cost of338

estimating f(b) depends on whether the corresponding kriging prediction is accepted or rejected,339

dynamic scheduling schemes can be beneficial to distribute the function evaluations on a first-340

come-first-serve basis [63]. Overall, the previously described implementation allows exploiting the341

parallelization properties of the TMCMC method while retaining the adaptability of the surrogate342

model strategy.343

6. Application examples344

Three different examples are studied in this section. Specifically, the identification of optimal345

soil sounding locations for the three foundation arrays shown in Fig. 2 is considered to evaluate the346

capabilities of the proposed framework. These include a single rectangular foundation (see Fig. 2-347

a), a symmetrical system of four identical squared footings (see Fig. 2-b), and a non-symmetrical348

array of four foundations with different sizes (see Fig. 2-c). The figure also indicates the feasible349

region to allocate the available boreholes for each foundation system.350

In all examples, the number of available soil soundings, nB, ranges from one to five. The351

undrained shear strength of the soil is characterized by means of a lognormal random field with352

mean value µcu = 100 kPa and standard deviation σcu = 0.5µcu . In all cases under consideration,353

different values for the horizontal fluctuation scale are considered such that θh ∈ [1, 20] m, whereas354
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the vertical fluctuation scale is taken as θv = 1 m unless otherwise stated. Regarding the numerical355

implementation of the RFMM (see Section 3), a total of NS = 500 realizations are considered for356

the evaluation of the objective function. In the context of the adopted search technique (see357

Sections 4 and 5), and based on some of the ideas discussed in [47, 48], the number of designs358

per stage is defined as N = 300nB, the parameter value ν = 0.5 is adopted, the initial kriging359

database comprises the initial set of designs, a total of Nsp = 10nB support points are considered360

for the implementation of the metamodel, the surrogate acceptance criteria consider Q = 0.05 and361

ϵ = 0.10, and batches of Npar = 100 designs are evaluated in parallel during each stage. It is noted362

that validation calculations have indicated that this selection of parameter values is adequate for363

the examples studied in this contribution.364

Figure 2: Foundation layouts and feasible regions considered in the different examples. (a) Example 1. (b) Example
2. (c) Example 3.

6.1. Example 1365

This example aims to demonstrate the main features of the proposed approach in a relatively366

simple foundation system, namely, a single rectangular footing of width equal to 1 m and length367

equal to 10 m. In this case, the two performance measures defined in Section 2.3 are equivalent.368

Hence, the objective function in Eq. (2) becomes f(b) = σ̄ζ(b) = σζ(b)/σ0ζ , where σζ(b) is the369

bearing capacity standard deviation corresponding to the borehole configuration b, σ0ζ is the base370

or unconditioned standard deviation of the bearing capacity, and σ̄ζ(b) is the normalized standard371

deviation of the bearing capacity.372

First, a single available soil sounding is considered with horizontal fluctuation scale θh = 5 m,373

which leads to a ratio between horizontal fluctuation scale and foundation length equal to 0.5. The374

set of decision (design) variables is then expressed as b = [xb, yb]T, where xb and yb are, respectively,375
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the x and y coordinates of the borehole. For reference purposes, Fig. 3 presents the contours of the376

normalized standard deviation of the bearing capacity in terms of the borehole coordinates. These377

contours have been obtained by generating a set of estimates of f(b) corresponding to alternative378

soil sounding locations distributed over the entire search space. The resulting curves, which are379

fairly rugged due to the inherent variability of Monte Carlo estimates, have been smoothed to380

enhance the representation of the objective function behavior. From the figure, it seems that381

f(b) is minimized for boreholes located near the foundation center, i.e., b = [0, 0]. This outcome,382

which can be regarded as rather intuitive, agrees quite well with previously reported findings (see,383

indicatively, [44, 46]). In addition, the contours around this region are mainly aligned with the384

y axis, that is, the function f(b) seems to be more sensitive to the x coordinate of the borehole385

than to its y coordinate near the foundation center.386

Figure 3: Contours of the normalized standard deviation, σ̄ζ(b), in terms of the borehole coordinates. Example 1.

Following the presentation in Section 4, a stochastic search strategy is implemented to deter-387

mine a set of nearly-optimal locations for the available soil sounding. For illustration purposes,388

a total of nine sampling stages (J = 8) are considered. As previously pointed out, the method389

sequentially generates samples that are increasingly concentrated near the optimal solution set. In390

this regard, Fig. 4 shows the borehole locations obtained during four representative stages of the391

optimization process, namely, j = 0 (initial stage), j = 3 (intermediate stage), j = 6 (intermedi-392

ate stage), and j = 8 (final stage). The initial boreholes are uniformly distributed over the search393

space and, thereafter, the effective support of the subsequent samples is consistently reduced. At394

the end of the procedure (see Fig. 4-d), the borehole positions densely populate a vicinity of the395
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foundation center which, according to Fig. 3, can be regarded as the optimal borehole position.396

That is, the proposed framework is able to identify the optimal borehole placement region in terms397

of a set of nearly-optimal soil sounding locations.398

To gain additional insight into the optimization process, Fig. 5 shows the minimum and maxi-399

mum values of the normalized standard deviation obtained during the different sampling stages. In400

accordance with the theoretical foundations of the search technique, it is noted that the effective401

support of σ̄ζ(b) tends to decrease as the number of stages increases. At the beginning of the402

procedure the normalized standard deviation values roughly lie between 0.6 and 1.0, whereas the403

final observed extrema are almost coincident. In fact, the last stage yields σ̄ζ(b) ≈ 0.6. That is,404

the base (unconditioned) standard deviation of the foundation bearing capacity can be reduced405

in approximately 40% by placing a borehole near the region identified in Fig. 4-d. Furthermore,406

if a single solution is needed, the configuration that yields the smallest performance measure407

across all stages can be considered. In this case, the sample-based optimal borehole location is408

b̂∗ = [0.03, 0.34]T with σ̄ζ(b̂∗) = 0.59.409

One of the advantages of the proposed framework pertains to its ability to obtain non-trivial410

sensitivity information of the performance measure as a byproduct of the solution process. To411

illustrate this feature, consider the borehole locations obtained during stage j = 6 (see Fig. 4-c),412

which are associated with normalized standard deviations ranging from 0.59 to 0.60 (see Fig. 5).413

Since the support of these locations along the x direction is much narrower than along the y414

direction, the function σ̄ζ(b) seems to be much more sensitive to the x coordinate of the soil415

sounding than to its y coordinate near the foundation center. This outcome, which seems rather416

intuitive in this case and agrees with the behavior observed in Fig. 3, provides valuable insight for417

decision making. For example, more attention should be given to placing the soil sounding along418

the major axis of the foundation, whereas deviations of the borehole along the y axis are expected419

to have a limited impact on σ̄ζ(b) for this case.420

The incorporation of soil soundings affects, in general, the probability distribution of the system421

bearing capacities. In this regard, Fig. 6 presents the normalized histograms of the bearing capacity422

for the unconditioned setting and for a single borehole placed at b̂∗ = [0.03, 0.34]T. It is seen that423

placing the soil sounding at this position, which corresponds to the previously identified sample-424

based optimum, has a visible effect on the shape of the bearing capacity distribution. Specifically,425

the coefficient of variation is reduced from 0.28 to 0.16. Moreover, the corresponding expected426
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Figure 4: Borehole locations obtained at representative stages of the optimization process for θh = 5 m. (a) Stage
j = 0 (initial stage). (b) Stage j = 3. (c) Stage j = 6. (d) Stage j = 8 (final stage). Example 1.

Figure 5: Maximum and minimum values of σ̄ζ(b) obtained during the different stages of the optimization process
for θh = 5 m. Example 1.

values are equal to 5.14 × 103 kN for the base condition case and to 5.28 × 103 kN when the427

borehole is taken into account. Considering the presentation in Section 3, it can thus be argued428

that placing the soil sounding at this location affects the standard deviation of the bearing capacity,429

σζ , to a greater extent than the corresponding mean value, µζ , for the case under consideration.430

Lastly, the results shown in Fig. 6 are obtained by the RFMM during the solution of Eq. (2) and,431

therefore, do not involve explicit assumptions for the distribution of the bearing capacity. That is,432

the proposed framework can provide additional information about the distribution of the system433

bearing capacities as a byproduct of the solution process.434

The proposed framework can be employed to identify optimal configurations when multiple435

boreholes can be placed at the site of interest. In this regard, and assuming θh = 5 m, the reference436

borehole locations obtained for nB = 1, 2 and 3 available soil soundings are presented in Fig. 7. In437

all cases, the configurations seem to be symmetrical with respect to the foundation center. More-438

over, the configurations identified for one and two boreholes agree with those reported in earlier439
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Figure 6: Histograms of the bearing capacity corresponding to the base condition and to the placement of a soil
sounding at b̂∗ = [0.03, 0.34]T m for θh = 5 m. Example 1.

studies [44, 45]. For reference purposes, the sample-based optimum of the normalized standard440

deviation corresponding to the three cases shown in Fig. 7 are reported in Table 1. These results441

indicate that increasing the number of boreholes tends to reduce the bearing capacity standard442

deviation, as expected. In this regard, placing a single borehole yields an optimal performance443

measure of 0.59, and placing two boreholes leads to σ̄ζ(b̂∗) = 0.15. Thus, including a second444

borehole reduces the standard deviation of the bearing capacity in approximately 75%. Neverthe-445

less, the results presented in the table suggest that incorporating a third soil sounding provides a446

negligible improvement of the optimal performance measure for the case under consideration.447

Table 1: Sample-based optimum of the normalized standard deviation, σ̄ζ(b̂∗), corresponding to different numbers
of boreholes, nB , and θh = 5 m. Example 1.

nB σ̄ζ(b̂∗)

1 0.59
2 0.15
3 0.12

An assessment of the effect of the number of boreholes on the bearing capacity standard448

deviation can be performed by means of the proposed framework. Figure 8 shows, for different449

horizontal fluctuation scales, the optimal value of the normalized standard deviation in terms of450

the number of available soil soundings. Specifically, the values θh = 1 m, 3 m, 5 m, and 20 m451

are considered. The figure indicates that, as expected, incorporating more soil soundings tends to452

reduce the bearing capacity standard deviation. However, points of diminishing returns can be453

identified in some cases. For instance, the results corresponding to θh = 20 m show that, from a454
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Figure 7: Target borehole locations obtained by the proposed framework. (a) One borehole. (b) Two boreholes. (c)
Three boreholes. Example 1.

practical viewpoint, placing more than a single borehole will not yield further reductions in the455

bearing capacity standard deviation. Conversely, for θh = 1 m it seems that considering more than456

nB = 5 available soil soundings may lead to even smaller values for σ̄ζ . Finally, greater reductions of457

the bearing capacity standard deviation are observed for longer fluctuation scales. In other words,458

soil sounding arrangements tends to decrease the variability of the bearing capacity estimates459

more effectively for soils with a stronger spatial correlation of its undrained shear strength. This460

insight, which seems reasonable from an engineering viewpoint, highlights the usefulness of the461

herein proposed framework to obtain non-trivial information for optimal soil sounding placement462

in the context of shallow foundation system design.463

Figure 8: Optimal value of the normalized standard deviation in terms of the number of soil soundings for different
values of the horizontal fluctuation scale, θh. Example 1.

6.2. Example 2464

The second example under consideration addresses optimal soil sounding placement for the465

system of four square footings with size equal to 1 m shown in Fig. 2-b. Note that this system,466
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which is more complex than the one studied in Section 6.1, still allows identifying optimal borehole467

locations based on engineering judgment for some scenarios due to the regularity and symmetry468

of its configuration. Further, the two performance measures defined in Section 2.3 are adopted to469

identify optimal soil sounding locations.470

First, the average normalized standard deviation defined in Eq. (3) is considered as the ob-471

jective function of Eq. (2). For illustration purposes, the horizontal fluctuation scale is taken as472

θh = 5 m. Then, the optimal borehole placement problem is solved for nB = 1, 2, 3 and 4 avail-473

able soil soundings. The corresponding target borehole locations obtained for the different values474

of nB are represented in Fig. 9 in terms of the configurations obtained at the final stage of the475

optimization technique. When a single soil sounding is considered (see Fig. 9-a), the available476

soil sounding must be located near any footing center to minimize σ̄avg(b). This finding agrees477

with previously reported results (see, e.g., [44]), which highlights the effectiveness of the proposed478

framework. Furthermore, Figs. 9-b, 9-c, and 9-d suggest that the optimal borehole locations lie479

near the centroids of the different footings when multiple soil soundings are available. Since placing480

a single borehole under the centroid of an isolated square footing yields the greatest reduction of481

its bearing capacity standard deviation [44], these results suggest that the choice of σ̄avg(b) as482

performance measure leads to borehole locations that prioritize local variability reduction for the483

scenario under consideration.484

Following the presentation in Section 2, the choice of the maximum normalized standard de-485

viation as performance measure aims to identify borehole configurations that ensure a minimum486

level of information gain for all footings. To illustrate this feature, the proposed framework is im-487

plemented to identify borehole arrays that minimize σ̄max(b) for the foundation system of Fig. 2-b.488

Specifically, the horizontal fluctuation scale is taken as θh = 5 m, and nB = 1, 2, 3 and 4 available489

soil soundings are considered. Figure 10 shows the corresponding final designs obtained by the490

adopted search technique. In general, these configurations are quite different from those observed491

in Fig. 9. When a single soil sounding is available, its optimal location seems to lie near the center492

of the foundation system (see Fig. 10-a), which agrees with the findings reported in [44]. Further-493

more, the borehole locations identified for nB = 2 and nB = 3 in Figs. 10-b and 10-c, respectively,494

lie along some of the symmetry axes of the foundation array. Finally, the results presented in495

Fig. 10-d indicate that the configurations that minimize σ̄max(b) for nB = 4 are quite similar to496

those obtained when σ̄avg(b) is adopted as performance measure. That is, when the same number497
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Figure 9: Final borehole locations obtained for σ̄avg(b) and θh = 5 m. (a) nB = 1. (b) nB = 2. (c) nB = 3. (d)
nB = 4. Example 2.

of boreholes and footings is considered, the two performance measures presented in Section 2 lead498

to soil soundings placed relatively near the centers of the different footings in this case.499

Figure 10: Final borehole locations obtained for σ̄max(b) and θh = 5 m. (a) nB = 1. (b) nB = 2. (c) nB = 3. (d)
nB = 4. Example 2.
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The final configurations presented in Figs. 9 and 10 are obtained from the solution of Eq. (2),500

which presents several challenging characteristics for the case under consideration. Due to the501

symmetry of the foundation system, multiple borehole configurations can lead to very similar502

objective function values. For instance, when a single soil sounding is available, the corresponding503

borehole can be placed under the center of any foundation to achieve practically the same values504

for σ̄avg(b) and σ̄max(b). Moreover, for a given configuration of boreholes with nB > 1, any505

permutation of their locations will yield the same standard deviations of the different bearing506

capacities. Hence, the optimal borehole placement problem involves, in general, multiple solutions507

that minimize the performance measure under consideration. Furthermore, as already pointed508

out, the estimation of Eqs. (3) and (4) relies on stochastic simulation, which introduces additional509

challenges to the solution of Eq. (2). Despite the previous issues, validation calculations in the510

context of this example indicate that the proposed framework is able to identify optimal borehole511

configurations in a robust manner. Finally, it is noted that the borehole configurations presented in512

Figs. 9 and 10 can be viewed as candidate solutions according to different preferences of the analyst.513

While the results in Fig. 9 prioritize local usage of information, those in Fig. 10 yield a global514

reduction of the bearing capacity variability. In this regard, alternative performance measures can515

be directly implemented within the proposed framework as long as they are defined in terms of516

the second-order statistical moments of the different bearing capacities [46]. This highlights the517

flexibility of the proposed approach to aid the design of site investigation programs under diverse518

preferences of the decision maker.519

One of the advantageous features of the proposed framework pertains to its ability to obtain520

nontrivial sensitivity information of the problem functions as a byproduct of the solution process.521

To illustrate this aspect, consider nB = 3 available soil soundings and a horizontal fluctuation522

scale of θh = 20 m. Further, the average normalized standard deviation, σ̄avg(b), is adopted to523

identify optimal borehole locations. Then, Fig. 11 presents the minimum and maximum objective524

function values obtained during the different stages of the solution process. The results show that525

the effective support of σ̄avg(b) tends to decrease as the number of stages increases. At the final526

stage, the objective function values range from 0.106 to 0.107. Moreover, previous stages also527

yield a relatively narrow effective support for σ̄avg(b). Specifically, the objective function values528

obtained at stage j = 5 range from 0.106 to 0.110 and, therefore, the corresponding borehole529

configurations can be regarded as equivalent from a practical viewpoint.530
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To gain further insight into the previous results, Fig. 12 presents the soil sounding arrays531

obtained during three representative stages of the solution process, namely, j = 0 (initial stage),532

j = 5 (intermediate stage), and j = 10 (final stage). The final borehole configurations constitute533

a set of nearly optimal solutions and, therefore, characterize target locations for the available soil534

soundings. Nevertheless, the locations obtained at stage j = 5 (see Fig. 12-b) are equivalent from an535

objective function viewpoint (see Fig. 11) to the final set of designs shown in Fig. 12-c. Therefore,536

it can be argued that relatively small deviations of the different boreholes with respect to their537

identified target locations are not expected to have a significant impact on σ̄avg(b). These results538

seem reasonable given the relatively strong spatial correlation of the undrained shear strength539

for the case under consideration. Hence, nontrivial information about the interaction between the540

bearing capacity standard deviations and the borehole locations can be obtained by the proposed541

framework for this example.542

Figure 11: Maximum and minimum values of σ̄avg(b) obtained during the solution process for nB = 3 and θh = 20 m.
Example 2.

Figure 12: Borehole configurations generated during representative stages of the solution process for nB = 3,
θh = 20 m, and σ̄avg(b). (a) j = 0 (initial stage). (b) j = 5 (intermediate stage). (c) j = 10 (final stage).
Example 2.
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6.3. Example 3543

To assess the capabilities of the proposed framework in a more general scenario, the arrange-544

ment of four foundations presented in Fig. 2-c is considered in the third example. The system is545

composed of one central foundation of 1 m width and 6 m length, two square footings of size equal546

to 1 m located on one side, and one foundation of 1 m width and 8 m length on the other side. Since547

the foundations are asymmetrically placed and have different sizes, it is arguably not straightfor-548

ward to determine target locations for available boreholes based solely on engineering judgment.549

In this context, the use of supportive analysis tools, such as the herein proposed framework, can550

be rather helpful.551

Assuming a total of nB = 3 soil soundings and a horizontal fluctuation scale of θh = 5 m, the552

two performance measures defined in Eqs. (3) and (4) are employed to identify target borehole553

locations. The corresponding optimal configurations associated with both objective functions are554

shown in Fig. 13. According to these results, it it seen that σ̄avg(b) (see Fig. 13-a) leads to soil555

soundings placed near the centers of the three smallest footings, while no soil soundings are placed556

under the rightmost foundation. Alternatively, choosing σ̄max(b) as objective function yields a557

fairly different optimal configuration, as shown in Fig. 13-b. Notably, one soil sounding is placed558

between the two squared footings, while the remaining boreholes are located near the remaining559

foundations. To obtain further insight, Table 2 reports the normalized standard deviations of the560

foundation bearing capacities corresponding to such optimal configurations. The results presented561

in the table agree with some of the ideas discussed in [46]. On the one hand, the choice of σ̄avg(b)562

as performance measure tends to privilege local gain of information at the expense of not reducing563

the standard deviation of the rightmost foundation. On the other hand, σ̄max(b) tends to ensure564

global gain of information, although the individual reductions in some of the standard deviations565

may be smaller than those achieved with the use of σ̄avg(b). It is noted that the soil sounding566

locations shown in Fig. 13 are not straightforward to determine a priori, which highlights the567

applicability of the proposed framework.568

According to the discussion in Section 4, the optimization technique adopted for the solution569

of Eq. (2) involves the evaluation of the objective function at a number of designs during each570

stage. This requires the repeated estimation of the bearing capacity standard deviations by means571

of the RFMM, which can in turn lead to considerable computational efforts. To address this issue,572

an adaptive metamodel strategy based on kriging interpolants is implemented to approximate the573
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Figure 13: Target borehole locations obtained for nB = 3, θh = 5 m, and different performance measures. (a)
σ̄avg(b). (b) σ̄max(b). Example 3.

Table 2: Normalized standard deviations of the foundation bearing capacities corresponding the borehole configu-
rations in Fig. 13. Example 3.

Foundation Configuration in Fig. 13-a Configuration in Fig. 13-b

Leftmost-lower 0.10 0.58
Leftmost-upper 0.09 0.58
Center 0.38 0.56
Rightmost 1.00 0.58

standard deviations (see Section 5.2). For illustration purposes, Fig. 14 shows the acceptance rate574

of the kriging predictions obtained during the different stages of the solution process to determine575

the optimal configuration in Fig. 13-b. Since the initial set of designs (stage j = 0) is directly576

evaluated using the RFMM to initialize the database of support points, the adaptive metamodel577

strategy is employed only from stage j = 1 until the final stage (j = 11). The figure indicates that578

the acceptance rate is fairly high. In fact, the average acceptance rate from stage j = 1 to stage579

j = 11 is equal to 94%. Furthermore, taking into account that the initial set of designs (stage580

j = 0) and those incorporated to the database of support points in stages j = 1, 2, . . . , 11 are581

evaluated using the RFMM, the number of direct evaluations of the objective function represents582

approximately 14% of the total number of designs generated throughout the entire optimization583

process. In general, a similar behavior is observed for the different cases studied in this contribution,584

with average acceptance rates of at least 80%. This highlights the effectiveness of the adopted585

metamodel strategy to reduce the overall computational costs of the solution procedure. Certainly,586

alternative surrogate strategies can be also considered to enhance the numerical efficiency of the587

herein proposed framework.588

As previously pointed out, geotechnical engineering practice commonly faces lack of statistical589
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Figure 14: Metamodel acceptance rate during the different stages of the solution process. Example 3.

information about mechanical soil properties. In this context, the herein proposed framework can590

be employed to assess the sensitivity of final designs with respect to, e.g., the fluctuation scales591

of the undrained shear strength. To illustrate this feature, and considering nB = 3 and θh = 5 m,592

optimal borehole locations are identified in terms of σ̄avg(b) for different values of the vertical593

fluctuation scale, namely, θv = 0.5 m, 1.0 m, and 2.0 m. Such configurations are presented in594

Fig. 15. It can be seen that the results obtained for θv = 0.5 m and θv = 1.0 m are very similar595

between each other, i.e., the boreholes lie near the centers of the leftmost and central foundations596

in both cases. Instead, different results are observed for θv = 2 m, where Fig. 15-c indicates that597

the average normalized standard deviation can be minimized by placing the soil soundings near598

the centers of the leftmost and rightmost foundations. In this regard, it is noted that independent599

runs of the search technique also identify target configurations that are similar to, e.g., the one600

presented in Fig. 15-a. However, such borehole arrangements yield objective function values that601

are very similar to the one obtained with the configuration in Fig. 15-c. Thus, it can be stated602

that, from a practical viewpoint, θv = 2.0 m yields multiple optima in terms of the obtained target603

locations. On the contrary, this issue is not observed for shorter vertical fluctuation scales, namely,604

θv = 0.5 m and θv = 1.0 m. In these cases, independent optimization runs consistently identified605

target locations that are very similar to those in Fig. 15-a and 15-b. This suggests that the vertical606

fluctuation scale, θv, can have an impact on optimal borehole configurations due to its effect on the607

overall spatial correlation of the undrained shear strength. Such effect is expected to depend on the608

particular characteristics of the system under consideration, including the horizontal fluctuation609

scale, foundation sizes, and distances between footings. Lastly, it is noted that similar analyses610

can be performed, for instance, in terms of alternative parameters involved in the characterization611
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of mechanical soil properties.612

Figure 15: Target borehole locations, in terms of σ̄avg(b), obtained for nB = 3 soil soundings and different vertical
fluctuation scales. (a) θv = 0.5 m. (b) θv = 1.0 m. (c) θv = 2.0 m. Example 3.

One relevant aspect of site investigation programs pertains to the choice of an appropriate613

number of soil soundings. As discussed in Section 6.1, the herein proposed framework can be614

employed to explore the tradeoff between the available number of boreholes and the corresponding615

optimal values of the chosen performance measure. Figure 16 presents the optimal value of σ̄max(b),616

in terms of the number of soil soundings, for different horizontal fluctuation scales. In general, the617

optimal values obtained for shorter fluctuation scales and relatively few soil soundings are close618

to one. This can be regarded as an indication that such a number of boreholes cannot yield a619

global reduction of the bearing capacity standard deviations. Hence, more soil soundings must620

be incorporated or, alternatively, the aim of the site investigation program design may need to621

be changed. Further, the figure indicates that, for longer fluctuation scales, less boreholes are622

required to achieve a certain reduction of the adopted performance measure. Indicatively, for623

θh = 10 m including nB = 2 soil soundings yields an optimal value of σ̄maxζ (b
∗) ≈ 0.39, whereas624

the consideration of nB = 5 boreholes in the case θh = 5 m leads to σ̄maxζ (b
∗) ≈ 0.48. In other625

words, a greater relative reduction of the bearing capacities can obtained with less boreholes626

when longer fluctuation scales are considered. Moreover, for relatively short fluctuation scales (say,627

θh ¬ 2.0 m) it seems that the bearing capacity standard deviations cannot be significantly reduced628

for the values of nB under consideration. For instance, in the case θh = 2 m, the optimal objective629

function values for nB = 1 and nB = 5 are 0.99 and 0.87, respectively. This represents a relative630

improvement of roughly 12% which, for instance, may not be sufficient to justify the increased631

investment associated with the implementation of four additional soil soundings. A similar type632

of analysis can be conducted in terms of, e.g., the average normalized standard deviation, σ̄avg(b).633
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Figure 16: Optimal value of the maximum normalized standard deviation in terms of the number of soil soundings
for different values of the horizontal fluctuation scale, θh. Example 3.

Overall, the results presented in this example illustrate the ability of the method to obtain634

non-trivial insight for decision making considering general foundation layouts such as the one pre-635

sented in Fig. 2-c. In this regard, the approach proposed in this contribution furnishes analysis636

tools to assess not only the effect of the number of sensors on optimal bearing capacity standard637

deviations, but also the sensitivity of final designs with respect to the probabilistic characteriza-638

tion of mechanical soil properties. The latter feature is particularly valuable when limited prior639

knowledge about the statistical properties of the supporting soil is available, which is a rather640

common situation in geotechnical engineering practice. Thus, it can be argued that the herein641

proposed framework shows potentiality to be implemented as a supportive tool for the design of642

site investigation programs.643

7. Conclusions644

This contribution has presented a framework to address optimal soil sounding placement prob-645

lems in the context of shallow foundation design under spatially variable, undrained soil conditions.646

To identify optimal borehole configurations, a suitable optimization problem is formulated. The647

corresponding objective function quantifies the reduction, with respect to the base scenario, of648

the bearing capacity standard deviations due to the presence of soil soundings. Two performance649

measures are considered, namely, the average and maximum normalized standard deviation of the650

system bearing capacities. By resorting to the random failure mechanism method (RFMM), these651

measures are estimated in a numerically tractable fashion while fully accounting for the spatial652

variability of undrained shear strength. In addition, a stochastic search technique that relies on an653
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equivalent sampling problem is adopted as optimization method, thereby retrieving valuable sen-654

sitivity information as a byproduct of the solution process. Moreover, specialized implementation655

strategies are discussed to enhance the numerical efficiency of the proposed approach.656

The applicability and advantages of the herein proposed framework are demonstrated in three657

examples involving different foundation layouts. These include a single rectangular foundation,658

a symmetrical arrangement of four identical squared footings, and a non-symmetrical system in-659

volving four foundations of different sizes. For each example, different scenarios are studied in660

terms of the number of available soil soundings and the fluctuation scales of the underlying ran-661

dom field. Despite the challenging characteristics of the associated optimization problems, the662

approach allows identifying target locations for the available soil soundings in an effective man-663

ner. Such locations are obtained in terms of a set of nearly-optimal borehole configurations rather664

than a single final solution, which enables additional flexibility for decision making. Considering665

the inherent variability arising in the estimation of bearing capacity standard deviations, this666

strategy can be regarded as a prudent and appropriate choice for optimal soil sounding place-667

ment. Furthermore, another advantage of the proposed framework pertains to its ability to obtain668

non-trivial sensitivity information about the effect of borehole locations into bearing capacities.669

Specifically, the soil sounding arrays obtained throughout the different optimization stages, and670

the related bearing capacity histograms, provide valuable insight about the problem at hand.671

Finally, additional types of analyses for the design of site investigation programs can be carried672

out by the approach. Notably, the sensitivity of final designs with respect to fluctuation scales673

and the effect of the number of soil soundings on bearing capacity variability can be assessed in674

a unified formulation by virtue of the proposed framework, whereby a thorough assessment of675

potential design conditions can be developed. This feature is particularly valuable not only due676

to the usual unavailability of prior information about soil properties, but also to the typically677

high investment levels that soil sounding techniques require in their implementation. Overall, the678

above discussion and the numerical results presented in this contribution suggest that the herein679

proposed framework can be potentially adopted as a supportive tool to assist the design of site680

investigation programs in a class of geotechnical engineering problems.681

Future research efforts consider the extension of the proposed approach to additional classes of682

shallow foundation systems, such as those involving, e.g., cohesive-frictional and ponderable soils,683

smooth-based foundations, mechanical interaction between footings, and non-stationary random684
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fields for the characterization of soil properties. Besides, the proposed framework could also be685

implemented in a comprehensive study for typical foundation layouts which, based on theoretical686

findings, may provide general guidelines for soil sounding placement in practical situations. Some687

of these topics are currently under consideration.688
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A. Kinematic method of limit analysis696

For simplicity, the bearing capacity of a given foundation is denoted in this appendix by ζ, the697

dissipation regions of its failure mechanism by Ri, i = 1, . . . , 30, and the corresponding averaged698

undrained shear strengths by c̄u,Ri , i = 1, . . . , 30. The reference points shown in Fig. 1 are related699

to the different dissipation regions according to Table 3. In this regard, Ri, i = 1, . . . , 4, correspond700

to rectangular regions; Ri, i = 5, . . . , 20, to triangular regions; R21 and R22 to sections of solid701

cylinders; and Ri, i = 23, . . . , 30, to conical regions.702

Table 3: Dissipation regions of a single failure mechanism in terms of the reference points shown in Fig. 1.

Region Points Region Points Region Points

R1 ABFE R11 UEP R21 ABC-EFG
R2 DCHG R12 USR R22 AMN-EPR
R3 AMEP R13 IAJ R23 EFG-W
R4 NORS R14 TAJ R24 ABC-I
R5 ABI R15 IKL R25 EPR-U
R6 ICD R16 TKL R26 AMN-T
R7 EFW R17 WEZ R27 AKJ-I
R8 GWH R18 WXY R28 AKJ-T
R9 TAM R19 UEZ R29 EYZ-W
R10 TON R20 UXY R30 EYZ-U
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The ultimate load associated with the failure mechanism shown in Fig. 1, for given values of703

c̄u,i, i = 1, . . . , 30, is denoted by ζ̃ and expressed as704

ζ̃ = ζ̃(1) + ζ̃(2) + ζ̃(3) + ζ̃(4) (10)

with705

ζ̃(1) = b2(a− (d1 + d2))m1 + 0.5b2d1n1m2 + 0.5b2d2n2m3 (11)
706

ζ̃(2) = b1(a− (d1 + d2))m4 + 0.5b1d1n3m5 + 0.5b1d2n4m6 (12)
707

ζ̃(3) = 0.5b1d1n5m7 + 0.5b2d1n6m8 (13)
708

ζ̃(4) = 0.5b1d2n7m9 + 0.5b2d2n8m10 (14)

where the coefficients mi, i = 1, . . . , 10, and ni, i = 1, . . . , 8, are given in Tables 4 and 5, respec-709

tively.710

The ultimate bearing load of any admissible failure mechanism provides an upper bound to711

the bearing capacity, that is, ζ̃ ­ ζ. Then, the expression in Eq. (10) is minimized in terms of the712

geometrical parameters αj, βj, j = 1, . . . , 4, d1, d2, b1, to determine the best upper bound to the713

bearing capacity, i.e., ζ̃∗ = min ζ̃. Any suitable optimization technique can be adopted to this end714

[39]. Finally, the foundation bearing capacity is evaluated as ζ = ζ̃∗.715

Table 4: Coefficients mi, i = 1, . . . , 10, involved in Eqs. (10) to (14).

Coefficient Expression

m1 c̄u,R2 cotα2 + 2c̄u,R21(α2 + β2) + c̄u,R1 cot β2
m2 c̄u,R6 cotα2 + 2c̄u,R24(α2 + β2) + c̄u,R5 cot β2
m3 c̄u,R8 cotα2 + 2c̄u,R23(α2 + β2) + c̄u,R7 cot β2
m4 c̄u,R4 cotα3 + 2c̄u,R22(α3 + β3) + c̄u,R3 cot β3
m5 c̄u,R10 cotα3 + 2c̄u,R26(α3 + β3) + c̄u,R9 cot β3
m6 c̄u,R12 cotα3 + 2c̄u,R25(α3 + β3) + c̄u,R11 cot β3
m7 c̄u,R16 cotα1 + 2c̄u,R28(α1 + β1) + c̄u,R14 cot β1
m8 c̄u,R15 cotα1 + 2c̄u,R27(α1 + β1) + c̄u,R13 cot β1
m9 c̄u,R20 cotα4 + 2c̄u,R30(α4 + β4) + c̄u,R19 cot β4
m10 c̄u,R18 cotα4 + 2c̄u,R29(α4 + β4) + c̄u,R17 cot β4
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Table 5: Coefficients ni, i = 1, . . . , 8, involved in Eqs. (10) to (14).

Coefficient Expression

n1
√
1 + (b2/d1 sin β2)2

n2
√
1 + (b2/d2 sin β2)2

n3
√
1 + (b1/d1 sin β3)2

n4
√
1 + (b1/d2 sin β3)2

n5
√
1 + (d1/b1 sin β1)2

n6
√
1 + (d1/b2 sin β1)2

n7
√
1 + (d2/b1 sin β4)2

n8
√
1 + (d2/b2 sin β4)2
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