

T847 The MSc professional project

End-of-module assessment (EMA)

“An exploration of the capability of a relational database management system to encompass

business and persistence capabilities within architecturally layered software.”

MSc in Computing (Software Engineering) (F66)

6th April 2023

10,258 words

T847 The MSc professional project Page 2 of 53

1 Contents

All references to the student’s organisation have been changed to Bridgevale Metropolitan Borough Council /

Bridgevale MBC / Bridgevale.

T847 The MSc professional project .. 1

1 Contents ... 2

2 Executive summary ... 5

3 Introduction ... 7

4 Background ... 8

4.1 Layered software architecture .. 8

4.2 Object Relational Impedance Mismatch (ORIM) and Object Relational Mappers (ORMs) 9

4.3 Portability and interoperability .. 9

4.4 The “thick” database paradigm .. 10

4.5 RDBMS applicability to the “thick” database paradigm... 11

4.6 Summary ... 12

5 Project evaluation and specification .. 13

5.1 Personal and academic suitability .. 13

5.1.1 Stakeholder analysis .. 13

5.1.2 Suitability analysis .. 13

5.2 Feasibility .. 13

5.2.1 Suitability ... 13

5.2.2 Intended research details ... 13

5.2.3 Aim .. 14

5.2.4 Objectives .. 14

5.2.5 Scale and scope .. 14

5.2.6 Resources required .. 14

5.3 Risk ... 15

5.4 Project specification ... 16

5.4.1 Project title ... 16

5.4.2 Project timetable/schedule ... 16

6 The research process ... 17

6.1 Research question ... 17

6.2 Model of causality .. 17

7 Research design and methodology ... 18

7.1 Research paradigm ... 18

7.2 Key features of preferred research approach/methodology discussion .. 18

7.2.1 Primary research .. 18

7.2.2 Qualitative data .. 18

7.2.3 Case study ... 18

7.3 Critical evaluation/discussion ... 18

8 Data generation/collection methods .. 20

8.1 Considered research methods ... 20

T847 The MSc professional project Page 3 of 53

8.1.1 Survey/questionnaire (not utilised) ... 20

8.1.2 Interviews (not utilised)... 20

8.1.3 Experiment (utilised) .. 20

8.1.4 Design research: prototyping (utilised) ... 21

8.2 Controlled or ‘quasi-’ experimentation? .. 21

8.3 Suitability ... 22

9 Data generation/collection method details, assessment, and related issues 23

9.1 Method of data generation ... 23

9.1.1 Commonalities ... 23

9.1.2 Variables .. 25

9.2 Technology review ... 26

9.2.1 PHP: Hypertext Preprocessor (PHP) .. 26

9.2.2 Laravel ... 27

9.2.3 PostgreSQL RDBMS .. 27

9.3 Deployment .. Error! Bookmark not defined.

9.4 Problems, issues, and successes .. 27

10 Analysis and findings .. 28

10.1 Tool and techniques .. 28

10.2 Analysis ... 28

10.2.1 Knowledge of server-side scripting and OOP ... 28

10.2.2 Datatype mapping .. 30

10.2.3 Dealing with challenges and setbacks .. 31

10.2.4 Layer/tier coupling .. 32

10.2.5 SQL query construction and tuning .. 34

10.3 Findings ... 34

11 Conclusions .. 35

11.1 Research aim and question ... 35

11.2 Database-centric OOP knowledge required and abstraction possibilities 35

11.3 Problem solving ... 36

11.4 Layer/tier coupling ... 36

11.5 Mitigating the strengths of ORM tools .. 36

11.6 Limitation: peer assessment of database-centric method .. 37

11.7 Future research questions ... 37

12 References.. 38

13 Appendices ... 45

13.1 Appendix A: Establish a database connection using PHP Data Objects (PDO) 45

13.2 Appendix B: Calling procedure CREATE_UPDATE_INCIDENT_DETAIL() from AppA using PHP

 .. 46

13.3 Appendix C: Process CREATE_UPDATE_INCIDENT() (PLpg/SQL) ... 49

13.4 Appendix D: Fetch all INCIDENTS records (AppA in SQL) .. 50

13.5 Appendix E: Fetch all INCIDENTS records (AppB in PHP with EloquentORM) 51

13.6 Appendix F: Requirements for health and safety incident logging system at Bridgevale MBC ... 52

T847 The MSc professional project Page 4 of 53

T847 The MSc professional project Page 5 of 53

2 Executive summary

The accepted approach in developing architecturally layered software is to process business logic as object

data in the application server before transforming it into records for storage in a relational database;

likewise, retrieval of data involves the reverse conversion of relational data to object data. These

conversions are typically performed by a specialist ‘persistence’ tool known as an object relational mapper

(ORM).

Layered architectures do not accommodate the programming language preferences of database engineers

or the extended capabilities of modern databases with their ability to augment structured query language

(SQL) with procedural language components. As business data requirements increase, the ability to

construct applications with the database as the processing engine facilitates greater realisation of the

expertise database professionals can offer.

Layered software typically consists of presentation, business, (persistence), and data layers, each with a

specific purpose in data processing. This has been expressed in popular frameworks using the Model-

View-Controller (MVC) paradigm, which are typically written using object-oriented programming (OOP)

languages. These in turn utilise ORM tools to transform class instances into or from database tables.

However, ORM tools have their own drawbacks as, for example, table relationships cannot naturally map to

the inheritance hierarchy of object classes.

An alternative approach is to utilise extended database functionality to process business logic (incorporated

in a “thick” database), a controversial approach due to its abandonment of OOP and the subsequent tight

coupling between business and data layers. However, it has been demonstrated both theoretically and

commercially that such an approach is both practical and viable. There remains, however, limited options in

designing and building applications using such an approach, with the de facto framework being limited to a

single, proprietary, database vendor.

Consequently, the aim of this research project was to explore the feasibility of implementing a “thick”

database approach to layered software architectures and compare and contrast this approach with building

an MVC application using a wider variety of relational database management systems. A quasi-experiment

method was used that involved building two conceptually similar programs that differed according to the

location of the business logic within the technology stack.

The commonalities between the two programs included the presentation layer (including end user

interactions) and the database design as captured in an entity relationship diagram (ERD). The differences

were the location of the business layer and the programming language utilised to define the business logic.

The vehicle for enquiry was determined to be the design/practice-based research concept of the process of

building the prototypes.

The completed experiment yielded observational notes taken throughout the build process, the source code

of the “thick” database application (AppA), the source code of the MVC application (AppB), and working

copies of both AppA and AppB.

Through analysis of the experience of building both applications, it was found the process of building a

database-centric application still required limited use of OOP compared to MVC applications, which

conversely could almost entirely ignore SQL and relational concepts. However, ORM tools limited the

capabilities of developers in constructing queries, and needed augmenting with either raw SQL or

additional transformation post execution.

Developing a database-centric application was found to present challenges in resolving architecture-

specific problems compared to MVC applications, which have a large and active community of developers

T847 The MSc professional project Page 6 of 53

willing to help. Additionally, when compared to AppB, AppA demonstrated a looser coupling between the

application server and database at the paradoxical expense of tighter coupling between business and data

layers.

The experiment demonstrated the feasibility of building layered applications where the business logic is

located within the database. Knowledge of OOP was still required to establish database connections and

execute queries, but it was observed tools such as Oracle APEX have successfully abstracted this

functionality to libraries that allow procedures to be called from the URL. This would be a useful foundation

for future research into such an approach.

The looser coupling between application server and database tiers means there is greater flexibility for the

developer in selecting their preferred RDBMS product, with the trade-off being the product must satisfy both

business and data requirements. An MVC application facilitates separation of these layers, but at the

expense of more limited query construction capabilities, and fewer suitable vendors.

Finally, a database-centric approach to development is comparable to the strengths of ORM tools. By

requiring pre-validation and compilation of routines within the database before being able to be called, the

database can optimise their execution ahead of utilisation. Additionally, by hiding actual SQL within the

routines, the threat of SQL injection attacks is significantly weakened.

T847 The MSc professional project Page 7 of 53

3 Introduction

My research project focused on layered software architectures and the role of the database in building,

executing, and enforcing business logic. The project’s purpose was to demonstrate that a relational

database management system (RDBMS) is capable of more than just data storage, and that contemporary

products offer features which make it both feasible and desirable to delegate business processing activities

to it.

The de facto approach to layered architectures is the interaction of object data in the business layer with

relational data in the data layer, typically transformed via a persistence layer utilising an object relational

mapper (ORM) tool. However, there have been notable deviations to this approach which have favoured a

‘database-centric’ approach to the architecture; that is, the database encapsulates functions of the

business and potentially presentation layers of its application. The dominant product within this space is,

however, proprietary, and remains niche as an accepted development paradigm.

Figure 1: De facto approach to how business and data layers communicate in a layered software architecture.

Within the software development community, there is a growing body of work exploring the capabilities of

the RDBMS beyond just relational data storage, up to and including encompassing application components

definition. As the volume of business data created and stored exponentially increases (Simpson, 2020;

Taylor, 2022), The demands placed on database engineers will including making this data even more

accessible and informative.

This project attempted to demonstrate:

• the validity of expanding the role of the RDBMS;

• how such expansion compares to traditional business<->data approaches.

Subsequently, it is hoped the project encourages exploration and development of specialist database-

focused frameworks, expanding the choice of tools for database engineers beyond existing commercial

ventures.

T847 The MSc professional project Page 8 of 53

4 Background

The dominant approach in wider industry is to utilise an application server to house and process business

logic (Eckerson, 1995; Liu et al, 2008). The benefit of this is separation of business logic from business

data, which in turn facilitates efficient management of both, especially when running mission-critical

applications available across HTTP protocols (Eckerson, 1995; Fowler, 2003, ch.1).

The increasing popularity of layered architectures coincided with the growing prevalence of object-oriented

programming (OOP), and the demand for increasingly complex web applications have seen accepted

approaches in developing business logic utilise languages such as Java, Perl, or PHP (Fowler, 2003, ch.1;

Richards, 2022, ch.3).

Subsequently, I accept that the options available for database-centric software development are

significantly less compared to OOP tools, thus limiting the ability of programmers proficient in structured

query language (SQL) and database programming languages (DPLs) to produce software.

4.1 Layered software architecture

Layered software is amongst the most common software architecture styles (Vicente, Etcheverry, and

Sabiguero, 2021; Richards, 2022, ch.3). It embodies increasingly low-level layers of decoupled abstraction,

each representing core system functionality such as presentation, middle/business, and data/persistence

(Garlan and Shaw, 1994; Richards, 2022, ch.3).

Each architectural layer has a specific purpose:

• Presentation: handles interaction between users and the system; it captures user events and

includes the system’s user interface.

• Business: defines business functionality the system was designed to fulfil; it contains business

logic and implements business rules.

• Data: handles storage of persistent data and networking with other systems.

(The Open University, 2021a)

Layers facilitate abstraction of complex procedures into steps that each process the data travelling through

an application, breaking problems into manageable units (Richards, 2022, ch.3). Loose coupling between

layers also supports component upgrades/replacements with minimal impact on other layers (Garlan and

Shaw, 1994).

Around a similar time as the conception of layered architectures, Reenskaug theorised the utility of

separating computing concerns into the domains of ‘Models’, ‘Views’, and ‘Controllers’ (MVC) (1979), and

this was later incorporated into the Smalltalk-80 system (Krasner and Pope, 1988). This architectural

pattern maps to layered software in the following ways:

• Models: a representation of application or system ‘data’ and the functions to process it. Ties in

closely with data and persistence layers with some overlap with business layers.

• Views: a graphical depiction of a model consumed by end users. Can be considered analogous to

presentation layers.

• Controllers: the interface or messaging system between views and models. Ties in with the

presentation and business layers.

The MVC architectural style has been adopted by popular web application frameworks such as Django

(Shaw et al, 2021, ch.1), Laravel (Sinha, 2019, ch.1), Ruby on Rails (Notodikromo, 2021, ch.1), and Spring

T847 The MSc professional project Page 9 of 53

MVC (Ganeshan, 2016, ch.2). These correspond with the popular OOP languages of: Python, PHP, Ruby,

and Java.

Layered architectures favour monolithic applications, can scale poorly, and single layer faults can render

entire applications inoperable (Richards, 2022, ch.3). Furthermore, defining appropriate abstraction levels

between layers is challenging, as concerns do not always logically separate themselves into identifiable

groups (Garlan and Shaw, 1994). Consequently, the pattern does not suit all software development

projects.

4.2 Object Relational Impedance Mismatch (ORIM) and Object Relational

Mappers (ORMs)

To facilitate layered architectural patterns, engineers must resolve ORIM, where relationally formatted

business data must be transformed to object data for processing. This is due to each paradigm having a

distinct and well-developed optimal approach (Neward, 2006). The accepted solution to ORIM is

abstraction of object-relational mapping to specialist ORM tools, as demonstrated by their utilisation within

the aforementioned MVC frameworks, such as: Eloquent (Laravel), ActiveRecord (Ruby on Rails), and

Java Persistence API/Hibernate (Spring MVC).

Studies have shown the many benefits to ORMs, including enabling OOP engineers to envisage data rows

as object instances, validation and caching of pre-compiled queries, and facilitation of secure development

practices, such as preventing SQL injection1 (Fowler, 2003; Vial, 2019). However, their drawbacks include

managing the challenges of lazy/eager loading and a lack of control over SQL produced, complicating

performance tuning (Neward, 2006; Gunnulfsen, 2013, p.31; Vial, 2019).

4.3 Portability and interoperability

Software designed utilising a layered architectural approach are primarily focused on building a higher

quality product (Ghidersa, 2022, ch.1), increasing its value and decreasing negative stakeholder

consequences. Specific quality metrics are defined and covered in a range of literature and standards,

including ISO/IEC 25010:2011 (BSI, 2011), which enables vendors to demonstrate their software conforms

with established, trusted metrics, increasing consumer trust (Galin, 2018, p.25). When considering these

standards and the relationship between business and data layers, interoperability and portability are

notably pertinent.

Interoperability concerns the capabilities of software and systems to communicate and exchange

information, subsequently removing duplication and enhancing business processes (Baxendale, 2021).

This standard is present in McCall’s classic model for software quality factors (McCall, Richards, and

Walters, 1977) and as a sub-characteristic of functionality in the Aspect-Oriented Software Quality Model

(Kumar, 2012). Portability concerns the ability of software components to: (1) be replaced by new or

alternative products, and (2) communicate with other systems seamlessly, broadening market choice and

diversity (Galin, 2018, p.31). This standard is present in McCall’s aforementioned classic model and the

ISO/IEC 25010:2011 standard (Galin, 2018, p.33).

It could consequently be argued that any existing approach to layered software development must consider

the quality characteristics of portability and interoperability to meet the stakeholder requirements, and that

they may be positively or negatively affected by an augmentation of this approach.

1 An attack involving passing of custom, malicious SQL code for execution on database servers (Microsoft, 2021, Kuhn and Kyte,
2022, p.26).

T847 The MSc professional project Page 10 of 53

4.4 The “thick” database paradigm

Traditionally, business logic resides within the middle tier of a layered architecture, and is written in an OOP

language, acting as the middleware between end user interactions and RDBMS data (Northwood, 2018,

p.71; Richards, 2022, ch.3). Literature considers this approach to be thick middleware/thin database, and it

is characterised by the use of an ORM tool, sometimes residing within its own “persistence” layer between

the business and data layers (Northwood, 2018, p.71).

Research suggests an alternative approach is to expand the role of RDBMSs in layered architectures by

incorporating functionality traditionally performed by the middle/business layer, jettisoning OOP for

application logic (Oracle Learning, 2016; Vicente, Etcheverry, and Sabiguero, 2021).

Studies argue this “thick” database paradigm does not fit into modern layered architectures because

practice has evolved to encapsulate business logic in an object manner2. Additionally, it is widely accepted

architectural layers should be loosely coupled to maintain separation of concerns and component portability

(Garlan and Shaw, 1994; Richards, 2022, ch.3). These arguments can be countered; Vial, an advocate of

ORM engines, surmises the only barrier to implementing business logic in the database is potential

conflicts with ORM caching operations (2019).

Neward (2006) states six recommendations to manage ORIM, of which 1, 5, and 6 involve increased use of

relational concepts:

1. Abandonment of OOP.

2. Abandonment of relational storage.

3. Manual mapping of relational entities to object instances.

4. Acceptance of the limitations of ORM tools.

5. Integration of relational concepts into OOP.

6. Integration of relational concepts into frameworks.

Furthermore, software layers are separated logically, meaning a single product or technology can

encapsulate multiple layers whilst still separating concerns (The Open University, 2021b). This contrasts

with tiered architectures, which – whilst fundamentally akin to layers – physically separates concerns

through client-server communication (The Open University, 2021c). Consequently, databases can consist

of multiple layers, as discussed by Tang, YongFeng, and Yip (2009) and demonstrated by Vicente,

Etcheverry, and Sabiguero (2021) (see figure 2).

2 The 10 most popular programming languages applicable to writing business logic are JavaScript/TypeScript, Python, Java, C#,
C++, PHP, C, Go, Rust, and Kotlin (Stack Overflow, 2022b). Eight of these either fully/partially utilise OOP.

T847 The MSc professional project Page 11 of 53

Figure 2: Two-tier, three-layer software architecture utilising thin/thick database functionality respectively (Vicente,

Etcheverry, and Sabiguero, 2021). © 2021 IEEE.

4.5 RDBMS applicability to the “thick” database paradigm

Gupta and Surabhi (2021) defined three extended features of RDBMS products enabling procedural

extension of SQL code, facilitating realisation of business processes execution and business rule

enforcement:

• User-defined functions: procedural code executable within SQL statements, returning either scalar

(single) values or tables. They do not mutate database state.

• Stored procedures: invokable program units (not executable within SQL statements) that can

mutate database state and optionally return values to callers.

• Triggers: program units called in response to database events, such as user login or data changes.

Can mutate the database state in a similar manner to stored procedures.

Functions, procedures, and triggers are homogeneously referred to as “routines” (‘23.2 Using Stored

Routines’, n.d.; ‘38.4. User-Defined Procedures’, n.d.).

With this knowledge, we can assess the most popular RDBMS solutions (as identified by Kamaruzzaman,

[2021]) and their suitability to perform the thick database role within layered architectures.

Table 1: RDBMS programming capabilities (‘Comparison of Relational Database Management Systems’, 2022).

RDBMS Licence Database
programming
language (DPL)

User defined
functions

Stored
procedures

Triggers

Oracle Commercial PL/SQL Yes Yes Yes

MySQL GNU General
Public Licence /
commercial

SQL/PSM Yes Yes Yes

MS SQL Server Commercial Transact-SQL Yes Yes Yes

PostgreSQL PostgreSQL
Licence

PLpg/SQL Yes Yes Yes

T847 The MSc professional project Page 12 of 53

RDBMS Licence Database
programming
language (DPL)

User defined
functions

Stored
procedures

Triggers

IBM Db2 Commercial SQL PL
(implements
SQL/PSM) or
PL/SQL

Yes Yes Yes

MariaDB GNU General
Public Licence

SQL/PSM Yes Yes Yes

I assert the thick database approach is not novel; Oracle has offered the development framework

Application Express (APEX) as a free toolkit to Oracle RDBMS customers since 2004 (‘Oracle Application

Express’, 2022). APEX is tightly coupled to the database (being typically installed on the same database

instance) and advertises itself as a tool that eliminates ORIM and application logic in the middle tier (where

the business layer would normally reside) (Oracle, n.d.). This RDBMS-only architecture was the foundation

of Vicente, Etcheverry, and Sabiguero’s research (2021), where they observe ‘...feasibility of [adopting a

database-centric architecture] does not seem to depend on any particularity of the Oracle RDBMS, and any

RDBMS that implements a [database programming language] may be the basis of the RDBMS-only

architecture.’ This ties in with Gupta and Surabhi’s assertions (2021) and the assessment of popular

products in table 1.

4.6 Summary

For this project, it is important to establish that, in layered architectures, business process and rules are

typically written using OOP, and business data is normally stored using an RDBMS (Kamaruzzaman,

2021). This current layered approach is arguably beneficial to a product’s portability quality standard as

long as loose coupling is maintained between business and data layers; consequently, a degree of

portability should be sought in any attempt to expand the role of the database.

The fundamental differences between relational and object data arguably negatively impact interoperability

within a software system, diminishing its quality and preventing full exploitation of the benefits of

information sharing without the use of specialist tools and expertise to transform the data.

Developers may find integrating business and data layers into the database complicates porting of either

layer to an alternative product challenging due to the tight coupling between them, reducing software

quality. However, Kuhn and Kite (2022, p.51) argue database portability is not realistic for scalable

applications due to inherent technological differences between RDBMS products. It could therefore be

argued implementing a business layer within the database adds only a small amount of complexity to the

architecture, which is negated by the removal of the persistence layer.

T847 The MSc professional project Page 13 of 53

5 Project evaluation and specification

5.1 Personal and academic suitability

5.1.1 Stakeholder analysis

The following stakeholder individuals/groups were identified and analysed using guidance from The Open

University (2022a):

• Myself:

o high interest in topic and project;

o responsible for determining direction and pace of progress.

• Oracle APEX/Forms software houses / development teams:

o expected to be interested in research outcomes and applicability to vendor lock-in when

utilising Oracle RDBMS;

o may advise on common business processes and suitability for study in research phase;

o low influence on research outcomes as project is not organisation-specific and no entity is

providing funding.

5.1.2 Suitability analysis

I am experienced in building layered software architectures within corporate structures as an employee and

as a freelancer. This includes RDBMS technologies including: Oracle, MySQL, and PostgreSQL, and

application frameworks and tools including Oracle APEX and PHP (interfacing with databases using ORM

tools). This enables me to build and assess products utilising the thick or thin database approach and

derive research outcomes.

5.2 Feasibility

5.2.1 Suitability

The project ideas link to The Open University postgraduate modules M813: Software Development and

M814: Software Engineering.

M813 discusses software architectures and how these can be logically sorted into layers and physically into

tiers (The Open University, 2021a). M814 covers the definition of business processes and rules and the

role of software in realising these (The Open University, 2021d).

5.2.2 Intended research details

The study involved design and build of two prototype applications sharing the following characteristics:

• Database structure and stored data.

• Presentation layer functionality for end-user consumption.

• Business processes and rules definition (as much as possible).

The applications differed in the following ways:

T847 The MSc professional project Page 14 of 53

• Application A: business processes and rules coded using a database programming language

residing within the application’s RDBMS. The procedures/functions accessed using a server-side

programming language.

• Application B: business processes and rules coded using OOP and database access controlled

through an appropriate connection and querying tool.

The resulting applications were assessed on:

• skills and resources required for each database approach;

• challenges encountered and opportunities uncovered in the design and build process.

5.2.3 Aim

This project aimed to demonstrate the feasibility of expanding the database role to encompass business

and persistence functions in terms of software complexity, especially where engineer expertise is proficient

in SQL and database programming languages. This was achieved by designing and building two

conceptually similar layered applications that differ by business logic location within the technology stack.

5.2.4 Objectives

1. Understand the existing paradigms in writing layered software and existing research exploring the

role of RDBMS in augmenting this [literature review].

2. Identify an appropriate business use case to utilise as the foundation of the design and build

process of the applications.

3. Define a set of business processes to be expressed in both applications.

4. Build applications based on the use case identified in (2):

a. using an appropriate MVC framework;

b. using the RDBMS to encompass business and data functions.

5. Assess the differences between the two approaches to determine feasibility of expanding the role of

the RDBMS [analysis].

5.2.5 Scale and scope

The concept applications needed to be an appropriate size to facilitate collection of relevant and effective

data, but not so large as to introduce delays into the collection and analysis of outcomes. This was

documented as a project risk to be appropriately managed.

5.2.6 Resources required

• A server capable of setting up isolated development environments for design and implementation of

conceptual applications to explore the different paradigms. The researcher already had access to

this.

• A “production” server available on the Internet to facilitate interaction with the conceptual

applications for appraisal by peers and assessors.

T847 The MSc professional project Page 15 of 53

5.3 Risk

Table 2: Failure mode and effects analysis (The Open University, 2022b)

Project
stage/process

Potential failure Potential
effect(s)

SR Potential cause of failure LR PRN Prevention plan PEN RRF

Design and
build

Design and build of
the conceptual
application takes up
considerable
project time
resources, leaving
limited time for
output analysis and
project write-up.

Project findings
and conclusions
are incomplete or
underwhelming.

6
(Moderate)

Poor forward planning,
resulting in an application
that is not narrow enough in
scope to be achievable within
project window.

5
(Moderate)

30 Set a timeline for the
project’s design and
build stage and monitor
it.

Keep the scope of the
concept application
narrow and regularly
review it.

0.4 12

Analyse outputs The conceptual
applications are lost
prior to deriving
value from their
outputs.

It is not possible
to analyse the
outputs and
derive findings
without significant
rework.

5
(Moderate)

Server failure, data
corruption.

3 (Unlikely) 15 Ensure there is a
backup plan for the
applications in case of
failure.

0.2 3

T847 The MSc professional project Page 16 of 53

5.4 Project specification

5.4.1 Project title

An exploration of the capability of a relational database management system to encompass business and persistence capabilities within architecturally layered

software.

5.4.2 Project timetable/schedule

Figure 3: Project plan and progress Gantt chart

T847 The MSc professional project Page 17 of 53

6 The research process

6.1 Research question

The research project aimed to answer the following question:

“In a model-view-controller framework, how does object-oriented programming compare with

embedding business logic in a relational database management system?”

By comparing de facto and novel approaches to writing and storing business logic, the advantages and

disadvantages of a ‘database-centric’ approach can be established against a frame of reference and not in

isolation. Additionally, by narrowing the scope to two architectural approaches, the research question

promotes analytic depth in discussion of the research outcomes.

However, by framing the research in such a way, the scope is limited to a comparison between model-view-

controller (MVC) framework-developed applications utilising OOP and relational database technologies.

Although these approaches have been established as amongst the most utilised layered application

development approaches, they are not universally so. Consequently, choices such as model-view-adaptor

and NoSQL databases are not considered in this project.

6.2 Model of causality

The model of causality informing this research project is linear/successionist. Because the scope of the

research question has been narrowed down to specific technology paradigms, the research outcomes can

be generalised across similar use cases where the appropriate technologies are utilised (Stern et al, 2012).

However, in doing so, the research becomes increasingly difficult to apply to use cases where the

constraints are changed (such as utilising a NoSQL database), unlike in a realist/generative model

approach, which may conclude many different outcomes dependent on the context of the cause and effect

(The Open University, 2022i).

T847 The MSc professional project Page 18 of 53

7 Research design and methodology

7.1 Research paradigm

I consider the following research paradigms to be broadly consistent with my own philosophical

approaches:

• Constructivism: the practice of generating knowledge through practice and in partnership with

participants (The Open University, 2022d).

• Praxis: the alignment and equality of knowledge and practice in research (Schwandt, 2007, Praxis).

The project’s intent was to derive findings through the practical application of theories that challenged de

facto industry approaches and existing human understanding. Additionally, some of these theories were

expected to emerge as the research was conducted, meaning a hypothesis was not utilised (Cresswell and

Cresswell, 2018, ch.1). This pointed towards a practice-led approach to the research.

7.2 Key features of preferred research approach/methodology discussion

The preferred research methods were primary research yielding qualitative data. This was achieved by

undertaking a case study utilising methodological triangulation to strengthen the research findings (The

Open University, 2005, p.71).

7.2.1 Primary research

By conducting primary research, the aim and research question were addressed through the extrapolation

of new data gained through specific research method(s) designed to derive such findings. However, in

doing so, the time and cost elements required consideration in the research plan to ensure the scope of the

research was achievable (Hewson, 2006).

7.2.2 Qualitative data

Qualitative data is by nature impractical to quantify and subsequently undertake statistical analysis on

(‘Qualitative’, 2005). Although its open-ended nature makes it well-suited to deriving unexpected and

subjective insights, it is both impractical to hypothesise the research outcomes and difficult to replicate

(Langridge and Hagger-Johnson, 2013, p.15). Qualitative data is more commonly sought by researchers

adopting a naturalist paradigm (The Open University, 2022j).

7.2.3 Case study

An in-depth, descriptive examination of a typically small sample of participants utilising a range of data

collection methods (The Open University, 2005, p.71) which can be descriptive, exploratory, or explanatory

(Keddie, 2006). A case study approach can reinforce the integrity of research outcomes through

triangulation of research methods. This subsequently offsets a limitation of this approach, which is the

normally low number of participants (Keddie, 2006).

7.3 Critical evaluation/discussion

The constructivist research paradigm requires input and validation by participants in the research, and

although this research project intended to utilise peer assessment in the validation of the research

T847 The MSc professional project Page 19 of 53

outcomes, this stage was outside the scope of the project timescales. This was noted as a limitation in the

conclusions section.

Adopting a case study approach could facilitate the production and collection of quantitative data either

instead of or alongside qualitative data (The Open University, 2022g). This could, in a longer form project,

be analysed using mixed methods, yielding further findings that naturally complement one-another,

strengthening the findings of the research, especially in the context of fieldwork (Mathison, 2005, ‘Mixed

Methods’).

The constructivist paradigm requires caution to be exercised in utilising any form of experiment. However,

triangulating methods, previously identified as a key characteristic of case studies, can reinforce

experiment outcomes that produce either partially or wholly qualitative data.

Finally, undertaking secondary research would have given the project the opportunity to explore how

datasets produced by previous field researchers could, under appropriate analysis, address the research

aim and answer the research question (The Open University, 2022m). However, the literature review

established a paucity of material of this nature, owing to existing dominant development paradigms.

Consequently, conducting primary research was most appropriate in addressing the aim and question.

However, the findings of previous research were utilised to inform design and implementation of the chosen

research method(s).

T847 The MSc professional project Page 20 of 53

8 Data generation/collection methods

8.1 Considered research methods

In considering data generation/collection methods suitable for addressing the research aims, objectives,

and questions, and in line with the causality model and research paradigm, the following options were

considered:

8.1.1 Survey/questionnaire (not utilised)

As the research question concerns the differences in approach towards developing business logic,

surveying a range of industry professionals would yield sets of quantitative data. This would strengthen the

integrity of the research through reduction of researcher bias if distribution of the survey was random.

However, development of an effective survey would require significant planning, development, and testing

(The Open University, 2005, pp.72-73). A complementary research method may also be required to explore

the initial outcomes the data suggests, such as interviews (The Open University, 2022c). This would

produce qualitative data, something well-suited to constructivism, even though surveys align well with all

research paradigms.

8.1.2 Interviews (not utilised)

Similar to surveys, interviews offer the opportunity to obtain peer feedback towards the differing

approaches to business logic development. They would be particularly effective when triangulated as part

of a mixed-methods approach. A survey plus interview (for example) could be utilised to identify

quantitative trends and subsequently explore qualitative reasoning for such trends as part of the data

analysis stage. However, because a ‘database-centric’ approach is uncommon and typically only employed

by developers utilising the Oracle Application Express (APEX) framework, finding suitably experienced

participants to undertake a survey and/or interview would be challenging. For this reason, surveys and

interviews are not considered suitable research methods for this project.

8.1.3 Experiment (utilised)

I am proficient in developing layered software from both database-centric and object-oriented programming

perspectives. Consequently, an experiment exploring the development process of prototype software

utilising each approach could yield data capable of answering the research question.

Experiments can be either ‘controlled’ or ‘quasi-’, which are normally characterised in the following ways:

• Controlled or ‘laboratory’ experiments enable precise and systematic control of the variables within

a organised setting to ensure accurate recording of outcomes derived from their manipulation.

• Quasi-experiments or ‘natural’ experiments are concerned with conducting the experiment within a

setting more common to its context, allowing more realistic outcomes at the expense of

experimental precision.

(The Open University, 2005, pp.71-73; The Open University, 2022e)

Experiments are time-consuming to setup and ideally should be run more than once to ensure outcomes

are consistent (The Open University, 2022e). As the research project is being conducted within a very short

time window, this presents potential challenges if the scope of the experiment is not tightly controlled.

T847 The MSc professional project Page 21 of 53

8.1.4 Design research: prototyping (utilised)

Design research is the process of broadening knowledge and gaining insights from the process of design

(‘Design Research’, 2021). Because the research question is focused on the validity of a niche form of

business logic development, it was worth considering the value of design research on achieving the aims

and objectives of the project.

One of the sub-domains of design research is building prototypes, which allow researchers to gain a richer

understanding of concepts that are, until that point, only theoretically understood (Koskinen et al, 2011,

pp.134-135). Prototyping as a research method can be further defined as one of four ‘roles’:

1. The prototype as an experimental component: where the prototype is intended to be a subject of

testing and study in a subsequent experiment.

2. The prototype as a means of inquiry: where the prototype is an instrument to assist in the

collection of data in a subsequent experiment.

3. The prototype as a research archetype: where the prototype is intended to demonstrate a specific

function for inquiry (as opposed to being the subject of inquiry or an instrument to assist in inquiry).

4. The process of prototyping as a vehicle for enquiry: The process of producing the prototype is

the subject of study, or, the journey undertaken to produce the prototype is studied, as opposed to

the completed prototype being instrumental in the subsequent research taking place.

(Matthews and Wensveen, 2017)

Roles 3 and 4 both represent potential approaches to this research project, with role 4 being particularly

suited to exploring the implementation of what has been, thus far, a theoretical examination. Additionally,

this approach derives its data through a qualitative case study, which can be performed through the

medium of quasi-experimentation (The Open University, 2005, p.71). Finally, this approach aligns well with

the praxis paradigm in furthering knowledge through experimentation as well as theory.

To increase the validity of the research outcomes, the research project methodically triangulated

experimental research with prototyping to produce the data required to address the research question.

8.2 Controlled or ‘quasi-’ experimentation?

To conduct the research as a controlled experiment, the prototype applications required constructing

within an appropriately controlled environment with identified variables and constants. The Model-View-

Controller (MVC) application would have been the control group (representing the de facto industry

paradigm) and the database-centric approach would have been the experimental group. This was

achievable using the resources available; however, as the only intended participant at this stage was the

researcher, random allocation was not possible, potentially making the avoidance of systematic bias

impossible.

As the applications were constructed using proven, real-world use cases, it was more appropriate to

consider this a quasi-experiment, especially as it would likely not fit the criteria of a ‘true’ experiment due to

the difficulty in randomly assigning participants. This approach is more conducive to seeking qualitative

data, which was envisioned to be the research data type based on the research aim, objectives, and

question. Additionally, triangulating a quasi-experiment with prototyping increased trust in the outcomes of

a less-than-true experiment (Langridge and Hagger-Johnson, 2013, p.116; The Open University, 2022e).

T847 The MSc professional project Page 22 of 53

8.3 Suitability

To assess the method’s suitability, the following questions were answered as suggested by The Open

University (2022f):

Appropriate for research paradigm: Case study research is a neutral method in terms of research

paradigms (The Open University, 2022g), and experimentation, whilst typically a positivist approach, can be

applied with caution to a constructivist paradigm (The Open University, 2022l).

Relevance: As the research question focused on the development ‘approach’, an experiment that focused

on the data produced by the process of producing prototypes was relevant to answering it.

Complementary: It was established that design research, where the prototype is the vehicle for enquiry,

can be conducted via case study research, of which quasi-experiments are an example.

Manageable/Efficient: A timescale for the research project was produced and a separate plan was

produced to demonstrate the timescales the data generation and collection was performed against.

Effective: As the process of constructing the prototype applications was the vehicle of enquiry, data was

gathered and preliminarily analysed as it was produced. This ensured some overlap between the collection

and analysis stages, and was particularly effective due to the researcher’s existing proficiency in application

development, meaning significant data points were observed and analysed immediately (The Open

University, 2022h).

T847 The MSc professional project Page 23 of 53

9 Data generation/collection method details, assessment, and related

issues

9.1 Method of data generation

Data was generated via an exploratory case study, conducted through a quasi-experiment consisting of the

design and build of two prototype applications using a layered architectural design. The vehicle of enquiry

was the construction of two applications from the perspective of the researcher.

• Application A (AppA) incorporated all business logic into the database in the form of stored

procedures and user-defined functions.

• Application B (AppB) was developed using a model-view-controller (MVC) framework (Laravel), with

business logic contained within controller classes and database calls handled by an object-relational

mapper (ORM) tool.

The applications were based on the initial requirements for a health and safety incident logging system at

Bridgevale (Appendix F).

9.1.1 Commonalities

End user client-side interactions on the presentation layer were designed to be identical. For example, the

home page for each application looks as follows:

Figure 4: The home page of AppA

This was rendered using HTML as follows:

<!DOCTYPE html>

<html lang="en">

 <head>

 ...

 </head>

 <body>

 <div>

 <div>

 <div>

 <h1>Bridgevale Health and Safety Application:

 Thick DB Paradigm -- AppA

 Thin DB Paradigm -- AppB

 </h1>

 </div>

 </div>

 <div>

T847 The MSc professional project Page 24 of 53

 <h2>Incident records</h2>

 <p>

 Create -- AppA

 Create -- AppB

 </p>

 </div>

 <div>

 <table>

 <thead>

 <tr>

 <th />

 <th>Received Date</th>

 <th>School / Service</th>

 <th>Incident Date/Time</th>

 <th>Submitted Date</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>

 Edit -- AppA

 Edit -- AppB

 </td>

 <td>12-Dec-2022</td>

 <td>Integrated Commissioning, Contracts and Quality (Adults

Services and Wellbeing)</td>

 <td>12-Dec-2022 09:09:00</td>

 <td>-</td>

 </tr>

 ... Remaining rows ...

 </tbody>

 </table>

 <p>

 Returned 12 row(s)

 </p>

 </div>

 </div>

 </body>

</html>

HTML was generated using template PHP files stored on the application server, which were populated

using business processes (in this case, function FETCH_INCIDENTS()). The presentation layer consisted

of three pages:

• View all incident records (see figure 4).

• Edit a single incident record.

• Edit a single incident details record.

Both applications shared a PostgreSQL 14 database server in the data layer (in separate schemas),

utilising the following Entity Relationship Diagram (ERD):

T847 The MSc professional project Page 25 of 53

Figure 5: Database ERD for both applications

The following business processes were identified for both applications:

1. Create/update an incident detail record.

2. Create/update an incident record (see figures 7 and 8).

3. Fetch email records.

4. Fetch single incident detail record.

5. Fetch single incident record.

6. Fetch incident detail records.

7. Fetch incident records.

8. Fetch list of values entries.

9. Return whether an incident record represents a school or service.

10. Submit an incident detail record.

9.1.2 Variables

The differences between AppA and AppB concerns their use of layers and tiers. Layers refers to the logical

separation of software functionality, and tiers to their physical separation (The Open University, 2021a).

This experiment consisted of three tiers: the client’s machine, the application server, and the database

server.

The flow of data between the tiers and layers was conceived as follows:

T847 The MSc professional project Page 26 of 53

Figure 6: Flow of data between layers and tiers for both applications

App A deferred all business logic to the business layer residing in the database, which was defined using

Structured Query Language (SQL) and PostgreSQL procedural language extension to SQL

(PLpg/SQL). AppB processed all logic in the middle tier (written in PHP: Hypertext Preprocessor [PHP])

and utilised an ORM tool to execute database queries.

As development progressed, interim observations were made and documented, including positive findings,

issues, and areas to consider for further enquiry.

9.2 Technology review

9.2.1 PHP: Hypertext Preprocessor (PHP)

Of the most popular languages utilised in writing business logic, PHP was the one I was most familiar with

personally and professionally. It is a long-standing general purpose scripting language which is especially

suited to web development due to its ability to embed HTML directly within its syntax (‘What is PHP?’, n.d.).

A common perception is that it is well-suited to rapid application development for quick deployment or

proof-of-concept realisation compared to, for example, Java (Burets, 2019); an important consideration

when conducting an experiment over a very limited period of time.

Of the other feasible options, Java was rejected due to its aforementioned longer development times and

my relative lack of knowledge in its usage. Additionally, I had limited experience of, or was unfamiliar with

T847 The MSc professional project Page 27 of 53

Ruby, Python, C++, and C#. I was proficient in JavaScript but had never utilised its server-side counterpart

NodeJS.

PHP 8.1 was utilised as the application server programming language for both AppA and AppB.

9.2.2 Laravel

Laravel is an MVC framework built using PHP to deliver web applications or APIs. Although there were a

number of options available, including Symfony, CakePHP, and CodeIgniter, Laravel was chosen because:

(1) I was already familiar with it, and (2) it was a popular choice with good quality documentation and

community support were it to be required.

Laravel 9 was utilised as the MVC framework for the construction of AppB.

9.2.3 PostgreSQL RDBMS

PostgreSQL is an open source relational database management system with an extended feature set that

includes a wide array of datatypes, advanced concurrency, and the ability to extend SQL with procedural

language components (‘About’, n.d.).

If I had selected an RDBMS based on my professional experience, it would have been Oracle. However, I

discarded this option for three reasons: (1) the de facto database-centric application framework – Oracle

APEX – utilises (and can only utilise) an Oracle database, (2) Laravel MVC was not compatible with Oracle,

and (3) I was inclined towards an open source database product that presently lacked an obvious

framework for database-centric development.

Other suitable options included MySQL and MariaDB. However, PostgreSQL was chosen as its procedural

extension to SQL – PLpg/SQL – was similar to PL/SQL (‘43.13. Porting from Oracle PL/SQL’, n.d.). Firebird

was also considered but was not compatible with Laravel.

PostgreSQL 14 was utilised as the data layer for both applications and the business layer of AppA.

9.3 Problems, issues, and successes

The scheduled two weeks (approximately 30 hours) to build both applications was inadequate, with two

factors combining to increase design and build time to approximately four weeks:

• AppA: Resolving a PHP bug where (IN)OUT parameters in stored procedures were not returned to

the assigned variable (see analysis for more details).

• AppB: Implementing non-trivial validation rules.

However, delays aside, both applications were completed and fully usable for the use case they were

addressing and, other than aesthetic pointers in the presentation layer and web URLs, were

indistinguishable in terms of end-user experience. This, alongside observation notes taken throughout the

experiment, meant I was able to derive findings from the data and draw conclusions.

T847 The MSc professional project Page 28 of 53

10 Analysis and findings

10.1 Tool and techniques

The quasi-experimental case study delivered a range of qualitative data for comparative analysis between

the process of building AppA and AppB respectively. The analysis approach was autoethnography, where

the researcher connects their personal and professional experience of the experiment with the gathered

data to derive findings (Grbich, 2013, ch.10). This is the preferred method of Gauntlett (2021), who sees

the approach as integral to analysis in practice-based research, and is corroborated by Matthews and

Wensveen (2017), who analysed four different research approaches to building prototypes, including where

the prototype is the vehicle for enquiry.

Autoethnography instinctively casts doubt on the reliability and objectivity of the researcher’s findings (The

Open University, 2022n). To mitigate this, a diverse series of data sets were produced beyond field

observations, such as computer code demonstrating solutions to the underlying business problem. The

experiment yielded four sets of data:

• Source code of AppA.

• Source code of AppB.

• Working applications for both AppA and AppB (grouped together as – per the experiment’s intent –

they are functionally identical).

• Observational notes captured during the design and build process of each application.

From this data, a small set of themes were selected for analysis. These themes are not exhaustive and

were deliberately narrowed due to the limited time and scale of the research project:

• Knowledge of server-side scripting and OOP.

• Datatype mapping.

• Dealing with challenges and setbacks.

• Layer/tier coupling.

• SQL query construction and tuning.

10.2 Analysis

10.2.1 Knowledge of server-side scripting and OOP

Web-based applications designed in a layered architectural style utilise application servers – also called

“middle tiers” – to respond to a user’s Hypertext Transfer Protocol (HTTP) request by producing Hypertext

Markup language (HTML), Cascading Style Sheets (CSS), and JavaScript that can be read by the user’s

web browser (‘An Overview of HTTP’, 2023).

To deliver a response that dynamically reacts to individual user attributes, it must be processed using a

programming language on the application server. The programming language facilitates connections and

interactions with the database, without which utilising a database would not be possible (even if the

database existed on the same physical server) (‘Introduction to the server side’, 2023). Therefore,

whichever approach taken towards implementing business logic, use of an application server is

inescapable.

Take the following business process, and the differing approaches utilised by AppA and AppB:

T847 The MSc professional project Page 29 of 53

Figure 7: Process diagram for CREATE_UPDATE_INCIDENT() (AppA)

Figure 8: Process diagram for CREATE_UPDATE_INCIDENT() (AppB)

T847 The MSc professional project Page 30 of 53

Both processes demonstrate different approaches to database utilisation. AppA defers business processes

to the database, whereas AppB processes business logic in the middle tier, with database operations

limited to simple CRUD operations as required. However, in both cases, the application server must still

facilitate data flows between client and database.

In AppA, the PHP Data Objects (PDO) class was instantiated to create an object – $v_pdo – that facilitated

database routine execution (see Appendix A). Subsequently, whilst the application server functioned

principally as a message dispatcher/receiver, knowledge of OOP was still mandatory to establish the

communication pipeline. AppB, conversely, did not require the developer to write database queries when

interacting with the database, as the ORM tool translated OOP syntax into SQL.

10.2.2 Datatype mapping

Now that it was established AppA could not be constructed without some knowledge of OOP, the issue of

handling datatype mapping issues between tiers needed to be resolved. Each tier approached datatypes as

follows:

• Client side HTML forms and submitted request data were all strings.

• The application server received all submitted data (via the $_GET[] and $_POST[] superglobals),

initially encoding all items as strings. This potentially required casting to a different, PHP-specific,

datatype prior to submission to the database.

• The database expected all data items to map explicitly or implicitly to a predefined datatype, or an

error would be thrown.

Table 3: Datatypes utilised in both applications

 HTML PHP PostgreSQL

Text String Primitive: string (no maximum size) varchar(n) (n = maximum length)

text (no maximum size)

Integer Primitive: integer (signed, no
maximum/minimum size)

integer (signed, -231 to 231-1)

Date Class: DateTime (time element
required manually removing)

date

Date/Time Class: DateTime timestamp

Boolean Primitive: bool (true/false) boolean (true/false/null)

The complexities of managing this can be seen in Appendix B, where each parameter must be manually

mapped to an applicable database datatype (using the bindValue() method), potentially via an intermediary

PHP datatype. See the following examples:

Table 4: Datatype conversions from client, to PHP, to PostgreSQL

Code sample (Appendix B) PHP datatype
conversion*

PostgreSQL datatype
conversion

$v_record_process->bindValue
 (param: ":p_id",
 value: $_POST ["id"],
 type: ($_POST ["id"]
 ? PDO::PARAM_INT
 : PDO::PARAM_NULL
)

None. If $_POST ["id"] is
present, convert PHP
string to PostgreSQL
integer, otherwise pass in
NULL.

T847 The MSc professional project Page 31 of 53

Code sample (Appendix B) PHP datatype
conversion*

PostgreSQL datatype
conversion

);

$v_record_process->bindValue
 (param: ":p_major_injury",
 value: (bool)($_POST ["major_injury"]
 ?? false),
 type: PDO::PARAM_BOOL
);

Boolean equivalent of
$_POST
["major_injury"], or false
if not present.

PHP boolean to
PostgreSQL boolean.

$v_record_process->bindValue
 (param: ":p_school_playground",
 value: ($_POST ["school_or_service"]
 === "SCHOOL"
 ? ((bool)
 ($_POST
 ["school_playground"]
 ?? false
)
)
 : null
),
 type: ($_POST ["school_or_service"]
 === "SCHOOL"
 ? PDO::PARAM_BOOL
 : PDO::PARAM_NULL
)
);

If a school specific

incident, the boolean

equivalent of $_POST

["school_playground"]

(false if not present),

otherwise null.

If a school specific
incident, convert PHP
boolean to PostgreSQL
boolean, otherwise pass
in NULL.

This approach requires an understanding of the middle tier programming language datatypes, and how

they could be mapped to database equivalents. As these datatypes do not perfectly align, the chance for

mismatches and subsequent application exceptions emerges. For instance, attempting to input a string of

length >50 into a VARCHAR(50) database column.

Using an ORM tool, as with AppB, mitigates these problems by closely matching the datatypes of its model

classes with the associated database table columns, validating entries to ensure mismatches are

minimised ahead of query execution.

10.2.3 Dealing with challenges and setbacks

Software developers regularly encounter problems that lack an immediately obvious solution. However, the

developer community enables common problems to be resolved relatively quickly. But during development

of AppA, I encountered a major obstacle. Consider the following PLpg/SQL procedure double() (written to

conceptually “prove” defective behaviour):

CREATE OR REPLACE PROCEDURE business_layer_thick_db.double

 (IN OUT p_value INTEGER

)

LANGUAGE plpgsql

AS

$PROC$

 BEGIN

 p_value := p_value * 2;

 END;

T847 The MSc professional project Page 32 of 53

$PROC$

The procedure takes an INOUT parameter p_value and multiplies it by 2. Calling it within an anonymous

PLpg/SQL block against the database executes as expected, but fails to alter the parameter when

executed via a PDO instance in PHP.

Upon investigation, I established this was likely an unresolved bug within PHP (PHP, 2009; Stack Overflow,

2022a). However, as PHP’s documentation did not indicate the presence of a bug, substantial development

time was expended attempting to resolve this defect, including raising an unanswered issue on Stack

Overflow.

Consequently, I made the decision to utilise a vendor-specific approach to retrieving (IN)OUT parameter

values. This was because – despite selecting PostgreSQL Relational Database Management System

(RDBMS) for the experiment – the prototype did not intend to recommend a specific RDBMS product, and

was the reasoning behind utilising the PDO framework.

However, when researching PHP PostgreSQL database drivers, I encountered a workaround which

enabled continued use of PDO. This involved fetching the results of a PDO query execution (much like a

traditionally executed SQL query) which returned the values of (IN)OUT parameters within an associative

array. However, reaching this stage took considerably longer than anticipated because use of (IN)OUT

parameters within stored procedures calls from a PDO instance is not especially common.

Use of an MVC framework, such as in AppB, avoids this scenario as use of stored procedures would

involve delegating business logic to the database.

10.2.4 Layer/tier coupling

A motivation of this project was exploring feasibility of developing database-centric layered-architecture

applications with a high-level of choice between database products. However, for the choice to be

meaningful, I needed to demonstrate the database would not become tightly coupled to the application

server, complicating product porting.

Table 5: Types of coupling between application modules (Stevens, Myers, and Constantine, 1974).

Type Tightness Description

Content Tightest/strongest Sharing of code between modules.

Common

Shared access to same global data.

External Two or more modules sharing imposed characteristics.

Control One module controls the flow of another, such as instructing it.

Stamp Sharing of composite data structures.

Data
Loosest/weakest

Sharing of simple data.

The de facto industry approach to developing database-centric applications is Oracle APEX (Vicente,

Etcheverry, and Sabiguero, 2021) which tightly couples presentation, business, and data logic in an Oracle

database; the application server exists only to establish database connections. Business and data layers

are “content” coupled, meaning any organisational decision to change database vendors would require

complete rewrites of their applications and their approach to handling business logic.

AppB was developed using Laravel 9, which supports a limited number of RDBMS products with medium

coupling between application logic and the database layer. This is achieved by constructing queries using

T847 The MSc professional project Page 33 of 53

an ORM tool which utilises common SQL functionality across the products. There are small instances of

vendor-specific behaviour to consider, such as implicit commits in MySQL, but unless I deliberately built

PostgreSQL-specific SQL3 into the ORM methods, it would be theoretically possible to run database

migration scripts against a different database server and the have the application continue to behave as

expected.

This is “control”-level coupling, as the ORM is sending two kinds of information to the database: (1)

composite data that will be used to mutate the database, and (2) instructions on what to do with this data

(such as inserting or updating, and any conditions on those operations).

Business logic in AppA is contained within stored procedures and user-defined functions and would require

rewriting if a decision was made to change the database product. Despite this, the middle and database

tiers exhibit a lower (“stamp”) coupling than AppB, as the application server is only responsible for sending

and receiving messages to/from the database. However, the business layer and data layer – now both

within the database – are tightly (“common”) coupled, complicating attempts to separate data and business

logic into different products. However, this project did not aim to achieve that.

Table 6: Summary of coupling tightness between AppA, AppB, and an application developed using Oracle APEX.

Approach Middle to database
tier coupling

Business to data
layer coupling

Database product flexibility

“Database-centric” (AppA) Stamp Common Cubrid
Firebird
FreeTDS
IBM DB2
IBM Informix Dynamic Server
MariaDB
MySQL
Oracle RDBMS
PostgreSQL
SQLite
SQL Server
Sybase

MVC (AppB) Control Control MariaDB
MySQL
PostgreSQL
SQLite
SQL Server

Oracle APEX Content Content Oracle RDBMS.

During the early stages of development, AppA was observed as forming a loose “data” coupling between

the middle and database tiers. However, it became necessary for the database to return composite data to

the application server to return the following messages:

• Process success or failure

• Validation failure messages

• Fields failing validation rules

3 The following query:

SELECT id FROM incident_details WHERE incident_summary LIKE '%Pothole%';

is a SQL-standard query. Substituting LIKE for ILIKE (which is a case-insensitive search) would make the query executable only by
PostgreSQL (‘9.7. Pattern Matching’, n.d.).

T847 The MSc professional project Page 34 of 53

Stored procedure CREATE_UPDATE_INCIDENT() (see Appendix C) returns the aforementioned

messages via a JSON document through OUT parameter P_RESPONSE, which in turn is decoded by PHP

for utilisation within the presentation layer. Use of the composite format JSON was considered due to its

ability to be natively processed by both PostgreSQL and PHP, as well as other object-oriented and

database processing languages (‘JSON’, 2023).

10.2.5 SQL query construction and tuning

Colley, Stanier, and Asaduzzaman claim database engineers are generally distrustful of ORM tools in

constructing SQL queries, citing performance and tuning issues, which they evidence through experimental

data (2020). As a consequence, they engineers will choose to work directly with SQL where there is a

choice.

MVC framework applications typically utilise an ORM tool specific to the product, and they are not governed

by standards, with largely homogeneous functionality existing due to decades of parallel development

(Torres et al., 2017). On the other hand, SQL is governed by official standards (Kelechava, 2018), resulting

in greater product portability and engineer cross-platform expertise.

For example, in Appendix D, AppA has constructed its query purely in SQL, with custom formats (such as

date and date/time fields) being handled using SQL functions such as TO_CHAR(). Conversely, in

attempting to produce the same result set (Appendix E), AppB is required to utilise model class methods

that facilitate injection of raw SQL. Additionally, even once the result set has been produced, additional

transformation must be performed using PHP functions to format the data correctly.

10.3 Findings

Due to the nature of the HTTP request-response cycle, it was found that bypassing OOP was impractical

due to the role the application server took in facilitating communication to/from the database, regardless of

where the business layer was located. Consequently, for AppA, this presented challenges in mapping

object datatypes to SQL datatypes. Development on AppB, conversely, was possible with very little

understanding of SQL, but the ORM tool limited the ability to produce sophisticated database queries, and

needed augmenting with raw SQL and/or further transformation outside of query execution.

As asserted by Vial (2019), mixing business logic between middle and database tiers can cause state

management problems. Examples of this include:

• A user updating a database record in-between another user fetching the same record and posting

an update request of their own.

• Cached data not being marked as “stale” when the underlying data source mutates.

Consequently, developers are advised to limit processing to the middle tier.

As a result of the de facto decision to limit business logic processes to the middle tier, resolving

development issues was significantly more challenging during development of AppA due to the uncommon

nature of the architecture. Contrarily, challenges encountered in development of AppB were easier to

resolve due to the size of the active community, and this was reinforced when I needed to ascertain how to

implement custom validation rules extending beyond single fields.

Although AppA maintained loose coupling between the middle and database tiers, the necessity of a data

traversal method (JSON) to return response data to the application server introduced an additional

technology dependency not present in AppB, since business logic execution is processed in the middle tier

before being passed to the ORM tool for database execution.

T847 The MSc professional project Page 35 of 53

11 Conclusions

11.1 Research aim and question

This project aimed to demonstrate the feasibility of expanding the database role to encompass business

and persistence functionality, especially where engineer expertise is in SQL and database programming

languages. This was to be achieved by designing and building two conceptually similar applications that

differed in where the business layer was located. Subsequently, the following research question was

formed:

“In a model-view-controller framework, how does object-oriented programming compare with

embedding business logic in a relational database management system?”

11.2 Database-centric OOP knowledge required and abstraction possibilities

Whilst development of database-centric applications still requires preliminary knowledge of OOP to

establish connections and execute database queries, in the literature review it was established Oracle

Application Express (APEX) (the de facto framework for developing database-centric applications)

circumvents this problem by removing the application server. This is, however, inaccurate, as an

application server is still required to facilitate client HTTP requests/responses; in this case this is achieved

by Oracle Rest Data Services (ORDS) (Basapur, Murray, and Das, 2022, p.19).

ORDS is a Java-based product which refers HTTP requests to the database, with the parameters being

contained both within the URL and the body of the request (such as for POST requests). ORDS is specific

to Oracle databases, but AppA demonstrated the feasibility for calling stored procedures and user-defined

functions to execute business logic, and further development could simplify it further so that a URL call

could execute specific procedures/functions. See figure 9:

Figure 9: Calling a stored procedure via HTTP request

This approach does not remove the requirement to understand OOP, but is capable of being abstracted to

a library or plugin for other developers to utilise without necessarily understanding the finer execution

T847 The MSc professional project Page 36 of 53

details. With a greater understanding of the ORDs process from the outset, I may have been able to

address this solution within construction of AppA; this will now require delegating to future research.

However, AppA has still proven the potential of developing applications with minimal use of OOP and

greater use of a database programming language.

11.3 Problem solving

In terms of problem solving, AppA presented greater challenges compared to AppB when difficulties were

encountered. This demonstrates that, until the paradigm gains a greater level of maturity within the

software development field, there will likely be unknown issues which severely hinder development that the

wider developer community will initially struggle to solve. This is largely due to the problems encountered

being of a framework nature, which MVC frameworks have mostly resolved through many years of

coordinated development effort.

11.4 Layer/tier coupling

AppA demonstrated a looser level of coupling between the middle tier and the database compared to MVC

frameworks and Oracle APEX. Loose coupling between these tiers provides development teams the

freedom to choose a database product that suits their expertise and (potentially) budget without extensive

reconstruction of the rest of the architecture. It is demonstrably more flexible than MVC-framework

developed applications, and considerably more so than Oracle APEX. However, the trade-off is stronger

coupling between the business and data layers, meaning the chosen product must meet both persistence

requirements and programming capabilities.

However, in AppA, locating the business layer within the RDBMS worked well when a process was required

to execute multiple queries (reducing network round trips between tiers) and provided a precise level of

control over database interactions, facilitating efficient application performance. This is verified by Tang,

YongFeng, and Yip (2009), who observe the benefits of stored procedures scale particularly well when they

process substantially more data.

Additionally, the tight coupling between business and data layers in AppA would normally mean an

extensive rewrite of business logic should a database migration be required, as common RDBMS products

typically utilise one of: PL/SQL, PLpg/SQL, SQL/PSM, or Transact-SQL. However, this is mitigated by the

aforementioned languages sharing functionality and syntax. For example, PostgreSQL documentation

includes a guide on porting Oracle PL/SQL modules to PLpg/SQL (‘43.13. Porting from Oracle PL/SQL’,

n.d.) and MariaDB has a database mode that enables stored procedures to be written in PL/SQL instead of

SQL/PSM (‘SQL_MODE=ORACLE’, 2021).

Ultimately, the paradox of loosening coupling between layers consequently tightening coupling between

tiers in AppA should be investigated further, particularly in terms of its effect on the quality of the software in

terms of portability.

11.5 Mitigating the strengths of ORM tools

Two of the major strengths of using ORM tools are: pre-validation of SQL logic, and increased protection

from SQL injection (Vial, 2019). However, as SQL injection attacks are normally achieved through

exploitation of the method programs build their queries (Microsoft, 2021), and AppA abstracts its actual

queries to database stored routines, this problem can largely by ignored. Additionally, the aforementioned

routines are compiled within the database during definition, validating their use prior to execution.

T847 The MSc professional project Page 37 of 53

On the other hand, AppA – by discarding use of an ORM tool – considered relational data the definitive

paradigm for data residing in both the business and data layers, in line with recommendations 1 and 6 of

Neward’s considerations for overcoming ORIM (2006). This is demonstrated in Appendix A, where the

connection mode establishes a default fetch mode of associative arrays as opposed to class instances or

objects. The PDO interface is a PHP OOP construct, but is never leveraged in such a way (such as through

inheritance).

This approach consequently improves the interoperability of the business and data layers, potentially

improving the quality of the software architecture.

11.6 Limitation: peer assessment of database-centric method

As discussed in the methodology discussion, a constructivist research paradigm values the input of peers

in the assessment and validation of research findings, but the project timescales were unable to

accommodate what would otherwise have been a valuable contributing experiment to the analysis and

findings. Such an approach may have also augmented the data with quantitative findings (i.e. If conducted

via a survey), which could have been triangulated with this project’s findings to strengthen the conclusions.

However, as the development method has been defined and proven as a viable option in layered software

development, exploring its utility with peers would form a strong foundation for future research.

11.7 Future research questions

1. How feasible is abstracting calls to database stored routines to the URL of architecturally layered

web applications?

2. How does adopting a database-centric approach to layered software development impact the

portability of the database tier and the subsequent software quality?

3. How does the database-centric approach to layered software development compare to using a

model-view-controller framework across differing engineer skillsets?

T847 The MSc professional project Page 38 of 53

12 References

‘An Overview of HTTP’ (2023) MDN Web Docs. Available at: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Overview (Accessed: 18 February 2023).

Basapur, M., Murray, C., Das, T. (2022) Oracle® REST Data Services: Developer’s Guide. Texas, USA:

Oracle Corporation. Available at: https://docs.oracle.com/en/database/oracle/oracle-rest-data-

services/22.4/orddg/oracle-rest-data-services-developers-guide.pdf (Accessed: 28 February 2023).

Baxendale, G. (2021) ‘What is interperability?’, British Computer Society, 29 June. Available at:

https://www.bcs.org/articles-opinion-and-research/what-is-interoperability/ (Accessed: 24 March 2023).

BSI (2011) Systems and software engineering – Systems and software Quality Requirements and

Evaluation (SQuaRE) – System and software quality models (BS ISO/IEC 25010:2011). Geneva,

Switzerland: BSI.

Burets, A. (2019) ‘PHP vs Java: Which Is Better For Web Development’, SCAND, 29 August. Available at:

https://scand.com/company/blog/php-vs-java-difference-comparison/ (Accessed: 22 March 2023).

Colley, D., Stanier, C., Asaduzzaman, M., (2020) ‘Investigating the Effects of Object-Relational Impedance

Mismatch on the Efficiency of Object-Relational Mapping Frameworks’, Journal of Database Management

(JDM), 31(4), pp. 1-23. DOI:10.4018/JDM.2020100101.

‘Comparison of Relational Database Management Systems’ (2022) Wikipedia. Available at:

https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems#Other_objects

(Accessed: 15 November 2022).

Cresswell, J.W., Cresswell, J.D. (2018) Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches. 5th edn. CA, USA: SAGE Publications, Inc.

‘Design research’ (2021) Wikipedia. Available at: https://en.wikipedia.org/wiki/Design_research (Accessed:

27 December 2022).

Eckerson, W. (1995) ‘Client server architectures’, Network World, 12(3), pp. 18-36. Available at

https://www.proquest.com/docview/215930618?parentSessionId=flGQQGZ0RN1eF65czygvdNzTbYjOhzd

wsqeFlBotGEg%3D&pq-origsite=primo&accountid=14697 (Accessed: 11 March 2023).

Fowler, M. (2003) Patterns of Enterprise Application Architecture. Available at: https://learning-oreilly-

com.libezproxy.open.ac.uk/library/view/patterns-of-enterprise/0321127420/ (Accessed: 25 March 2023).

Galin, D. (2018) Software Quality: Concepts and Practice. NJ, USA: the IEEE Computer Society, Inc.

Ganeshan, A. (2016) Spring MVC Beginner’s Guide. 2nd Edn. Birmingham, UK: Packt Publishing.

T847 The MSc professional project Page 39 of 53

Garlan, D., Shaw, M. (1994) An Introduction to Software Architecture. CMU/SEI-94-TR-021. Pittsburgh, PA:

Software Engineering Institute. Available at: https://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=12235 (Accessed: 6 November 2022).

Gauntlett, D. (2021) ‘What is Practice-Based Research?’, David Gauntlett, 26 March. Available at:

https://davidgauntlett.com/research-practice/what-is-practice-based-research/ (Accessed: 4 January 2023).

Ghidersa, M.R. (2022) Software Architecture for Web Developers. Available at: https://learning-oreilly-

com.libezproxy.open.ac.uk/library/view/software-architecture-for/9781803237916/B18222_FM.xhtml

(Accessed: 24 March 2023).

Grad Coach (2022) Qualitative Coding Tutorial: How To Code Qualitative Data For Analysis (4 Steps +

Examples). 27 January. Available at: https://www.youtube.com/watch?v=8MHkVtE_sVw (Accessed 24

February 2023).

Grbich, C. (2013) Qualitative Data Analysis: An Introduction. CA, USA: SAGE Publications Ltd.

Gunnulfsen, M. (2013) Scalable and Efficient Web Application Architectures: Thin-clients and SQL vs.

Thick-clients and NoSQL. Masters Thesis. University of Oslo. Available at:

https://www.duo.uio.no/handle/10852/37423 (Accessed: 29 October 2022).

Gupta, S., Ramachandra, K. (2021) ‘Procedural extensions of SQL: understanding their usage in the wild’,

Proceedings of the VLDB Endowment, 14(8), pp. 1378–1391. DOI:10.14778/3457390.3457402.

Hewson, C. (2006) ‘Primary Research’, in Jupp, V. (ed.) The SAGE Dictionary of Social Research Methods.

CA, USA: SAGE Publications, Inc.

‘Introduction to the server side’ (2023) MDN Web Docs. Available at: https://developer.mozilla.org/en-

US/docs/Learn/Server-side/First_steps/Introduction (Accessed: 18 February 2023).

‘JSON’ (2023) Wikipedia. Available at: https://en.wikipedia.org/wiki/JSON (Accessed 21 February 2023).

Kamaruzzaman, M. (2021) ‘Top 10 Databases to Use in 2021’, Towards Data Science, 20 January.

Available at: https://towardsdatascience.com/top-10-databases-to-use-in-2021-d7e6a85402ba (Accessed:

12 November 2022).

Keddie, V. (2006) ‘Case Study Method’, in Jupp, V. (ed.) The SAGE Dictionary of Social Research

Methods. CA, USA: SAGE Publications, Inc.

Kelechava, B. (2018) ‘The SQL Standard – ISO/IEC 9075:2016 (ANSI X3.135)’, American National

Standards Institute, 05 October. Available at: https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-

ansi-x3-135/ (Accessed 21 February 2023).

Koskinen, I., Zimmerman, J., Binder, T., Redstrom, J., Wensveen, S. (2011) Design Research Through

Practice: From the Lab, Field, and Showroom. San Francisco, USA: Elsevier Science & Technology.

T847 The MSc professional project Page 40 of 53

Available at: http://ebookcentral.proquest.com/lib/open/detail.action?docID=767255 (Accessed: 22

December 2022).

Krasner, G.E., Pope, S.T. (1988) A Description of the Model-View-Controller User Interface Paradigm in the

Smalltalk-80 System. Mountain View, CA: ParcPlace Systems. Available at:

http://heaveneverywhere.com/stp/PostScript/mvc.pdf (Accessed: 12 November 2022).

Kuhn, D., Kyte, T. (2022) Expert Oracle Database Architecture. 4th Edn. CO, USA: Darl Kuhn and Thomas

Kyte.

Kumar, P. (2012) ‘Aspect-Oriented Software Quality Model: The AOSQ Model’, Advanced Computing: An

International Journal (ACIJ), 3(2), pp. 105-118. DOI:10.5121/acij.2012.3212.

Langridge, D., Hagger-Johnson, G. (2013) Introduction to Research Methods and Data Analysis in

Psychology. 3rd edn. Edinburgh: Pearson Education Limited.

Liu, X., Heo, J., Sha, L., Zhu, X. (2008) ‘Queueing-Model-Based Adaptive Control of Multi-Tiered Web

Applications’, IEEE Transactions on Network and Service Management, 5(3), pp. 157-167.

DOI:10.1109/TNSM.2009.031103.

Mathison, S. (2005) Encyclopedia of Evaluation. CA, USA: SAGE Publications, Inc.

Matthews, B., Wensveen, S. (2017) ‘Prototypes and Prototyping in Design Research’, in Rodgers, P.A.,

Yee. J. (ed.) Routledge Companion to Design Research. Abingdon-on-Thames, Oxfordshire, UK:

Routledge, pp. 262–276.

McCall, J.A., Richards, P.K., Walters, G.F. (1977) Factors in Software Quality: Concept and Definitions of

Software Quality. RADC-TR-77-369 (Volume 1). New York: Rome Air Development Center. Available at

https://apps.dtic.mil/sti/pdfs/ADA049014.pdf (Accessed 04 April 2023).

Garlan, D., Shaw, M. (1994) An Introduction to Software Architecture. CMU/SEI-94-TR-021. Pittsburgh, PA:

Software Engineering Institute. Available at: https://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=12235 (Accessed: 06 November 2022).

Microsoft (2021) ‘SQL Injection’, Microsoft SQL Docs. 19 March. Available at:

https://learn.microsoft.com/en-us/sql/relational-databases/security/sql-injection (Accessed: 14 November

2022).

Neward, T. (2006) ‘The Vietnam of Computer Science’, Ted Neward’s Blog, 26 June. Available at:

http://blogs.tedneward.com/post/the-vietnam-of-computer-science/ (Accessed: 25 September 2021).

Northwood, C. (2018) The Full Stack Developer: Your Essential Guide to the Everyday Skills Expected of a

Modern Full Stack Web Developer. Manchester, UK: Chris Northwood.

Notodikromo, A. (2021) Learn Rails 6: Accelerated Web Development with Ruby on Rails. New York:

Apress.

T847 The MSc professional project Page 41 of 53

The Open University (2005) M801 Postgraduate Computing: Research Project and Dissertation. 2nd edn.

Milton Keynes, UK: The Open University.

The Open University (2021a) ‘M813 Unit 8: Software Architectures 3 Layers and tiers’, M813: Software

Development. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=1732151§ion=3

(Accessed: 10 November 2022).

The Open University (2021b) ‘M813 Unit 8: Software Architectures 3.1 Layers’, M813: Software

Development. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=1732151§ion=3.1

(Accessed: 17 November 2022).

The Open University (2021c) ‘M813 Unit 8: Software Architectures 3.2 Tiers’, M813: Software

Development. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=1732151§ion=3.2

(Accessed: 17 November 2022).

The Open University (2021d) ‘M814 Unit 2: The organisational and business context 2.2 Inside

organisations’, M814: Software Development. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=1757741§ion=1.2 (Accessed: 14 March 2023).

The Open University (2022a) ‘M815 Tributary: Stakeholders 2 Stakeholder Analysis’, M815: Project

Management. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=1922839§ion=2

(Accessed: 19 November 2022).

The Open University (2022b) ‘T847 Block 1 Activities: Activity 15’, T847: The MSc Professional Project.

Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022172§ion=3.15 (Accessed: 19

November 2022).

The Open University (2022c) ‘T847 Block 2 Designing and doing your research: 4.2.1 Surveys -> Uses’,

T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=5.2.1 (Accessed: 24 December

2022).

The Open University (2022d) ‘T847 Block 2 Designing and doing your research: 3.5 Naturalistic research’,

T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=4.5 (Accessed: 24 December

2022).

The Open University (2022e) ‘T847 Block 2 Designing and doing your research: 4.7.2 Experiments ->

Design’, T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=5.7.2 (Accessed: 24 December

2022).

The Open University (2022f) ‘T847 Block 2 Designing and doing your research: 4.10 Choosing your

methods’, T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=5.10 (Accessed: 26 December

2022).

T847 The MSc professional project Page 42 of 53

The Open University (2022g) ‘T847 Block 2 Designing and doing your research: 3.4 Positivist research’,

T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=4.4 (Accessed: 26 December

2022).

The Open University (2022h) ‘T847 Block 3 Analysing data and presenting your findings: 4.1 Overlapping

processes’, T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022253§ion=7.1 (Accessed: 26 December

2022).

The Open University (2022i) ‘T847 Road widening intervention to reduce congestion (T847 block 2 section

2.3 box 1)’, T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/resource/view.php?id=2022223 (Accessed: 28 December 2022).

The Open University (2022j) ‘T847 Block 2 Designing and doing your research: 3.8 The

qualitative/quantitative divide’, T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=4.8 (Accessed: 08 January 2023).

The Open University (2022k) ‘T847 Block 1 Developing your project: 7.2.1 Primary research’, T847: The

MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022099§ion=11.2.1 (Accessed: 01 January

2023).

The Open University (2022l) ‘T847 Block 2 Designing and doing your research: 4 Research methods’,

T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=5 (Accessed: 01 January 2023).

The Open University (2022m) ‘T847 Block 1 Developing your project: 7.2.2 Secondary research’, T847:

The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022099§ion=11.2.2 (Accessed: 01 January

2023).

The Open University (2022n) ‘T847 Block 3 Analysing data and presenting your findings: 7.7 Summary’,

T847: The MSc Professional Project. Available at:

https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022253§ion=10.7 (Accessed: 22 February

2023).

Oracle (n.d.) Why Oracle APEX. Available at: https://apex.oracle.com/en/platform/why-oracle-apex/

(Accessed: 3 November 2022).

‘Oracle Application Express’ (2022) Wikipedia. Available at:

https://en.wikipedia.org/w/index.php?title=Oracle_Application_Express (Accessed: 14 November 2022).

Oracle Learning (2016) NoPLSql and Thick Database Approaches with Toon Koppelaars. 31 October.

Available at: https://www.youtube.com/watch?v=8jiJDflpw4Y (Accessed: 14 November 2022).

T847 The MSc professional project Page 43 of 53

‘9.7. Pattern Matching’ (n.d.) PostgreSQL. Available at: https://www.postgresql.org/docs/14/functions-

matching.html (Accessed: 19 March 2023).

PHP (2009) Bug #43887 mssql2005 PROCEDURE PDO::PARAM_INPUT_OUTPUT. Available at:

https://bugs.php.net/bug.php?id=43887 (Accessed: 18 February 2023).

‘43.13. Porting from Oracle PL/SQL’ (n.d.) PostgreSQL. Available at:

https://www.postgresql.org/docs/14/plpgsql-porting.html (Accessed: 07 March 2023).

‘About’ (n.d.) PostgreSQL. Available at: https://www.postgresql.org/about/ (Accessed: 22 March 2023).

‘Qualitative’ (2005) in Vogt, P. (ed.) Dictionary of Statistics & Methodology. 3rd edn. CA, USA: SAGE

Publications, Inc.

Reenskaug, T. (1979) The Original MVC Reports. University of Oslo. Available at:

https://folk.universitetetioslo.no/trygver/2007/MVC_Originals.pdf (Accessed: 12 November 2022).

Richards, M. (2022) Software Architecture Patterns. Available at: https://www-oreilly-

com.libezproxy.open.ac.uk/library/view/software-architecture-patterns/9781098134280/ (Accessed: 27

October 2022).

Schwandt, T. (2007) The SAGE Dictionary of Qualitative Inquiry. CA, USA: SAGE Publications, Inc.

Shaw, B., Badhwar, S., Bird, A., Chandra K S, B., Guest, C. (2021) Web Development with Django.

Birmingham, UK: Packt Publishing.

Simpson, J. (2020) ‘The Past, Present And Future Of Big Data In Marketing’, Forbes, 17 January. Available

at: https://www.forbes.com/sites/forbesagencycouncil/2020/01/17/the-past-present-and-future-of-big-data-

in-marketing/ (Accessed 11 March 2023).

Sinha, S. (2019) Beginning Laravel : Build Websites with Laravel 5.8. 2nd Edn. New York: Apress.

‘SQL_MODE=ORACLE’ (2021) MariaDB. Available at: https://mariadb.com/kb/en/sql_modeoracle/

(Accessed: 07 March 2023).

Stack Overflow (2022a) PDO::PARAM_INPUT_OUTPUT not working in PostgreSQL?. Available at:

https://stackoverflow.com/questions/71340197/pdoparam-input-output-not-working-in-

postgresql/75493064#75493064 (Accessed: 18 February 2023).

Stack Overflow (2022b) Stack Overflow Developer Survey 2022. Available at:

https://survey.stackoverflow.co/2022/?utm_source=social-share&utm_medium=social&utm_campaign=dev-

survey-2022 (Accessed: 15 November 2022).

Stern, E., Stame, N., Mayne, J., Forss, K., Davies, R., Befani, B. (2012) Broadening the Range of Designs

and Methods for Impact Evaluations. Working Paper 38. London: Department for International

T847 The MSc professional project Page 44 of 53

Development. Available at: https://www.betterevaluation.org/sites/default/files/design-method-impact-

eval_0.pdf (Accessed: 28 December 2022).

Stevens, W.P., Myers, G.J., Constantine, L.L. (1974) ‘Structured design’, IBM Systems Journal, 13(2), pp.

115–139. DOI:10.1147/sj.132.0115.

Tang, S., YongFeng, H., Yip, YJ. (2009) ‘Performance of database driven network applications from the

user perspective’, KSII Transactions on Internet and Information Systems, 3(3), pp. 235–251.

DOI:10.3837/tiis.2009.03.002.

Taylor, P. (2022) ‘Volume of data/information created, captured, copied, and consumed worldwide from

2010 to 2020, with forecasts from 2021 to 2025’, Statista, 08 September. Available at:

https://www.statista.com/statistics/871513/worldwide-data-created/ (Accessed 11 Mar 2023).

Torres, A., Galante, R., Pimenta, M.S., Martins, J.B. (2017) ‘Twenty years of object-relational mapping: A

survey on patterns, solutions, and their implications on application design’, Information and Software

Technology, 82(February 2017), pp. 1-18. DOI:10.1016/J.INFSOF.2016.09.009.

‘38.3. User-Defined Procedures’ (n.d.) PostgreSQL. Available at:

https://www.postgresql.org/docs/14/xproc.html (Accessed: 02 April 2023).

‘23.2 Using Stored Routines’ (n.d.) MySQL. Available at: https://dev.mysql.com/doc/refman/5.7/en/stored-

routines.html (Accessed: 02 April 2023).

Vial, G. (2019) ‘Lessons in Persisting Object Data Using Object-Relational Mapping’, IEEE Software, 36(6),

pp. 43-52. DOI:10.1109/MS.2018.227105428.

Vicente, A., Etcheverry, L., Sabiguero, A. (2021) ‘An RDBMS-Only Architecture for Web Applications’, 2021

XLVII Latin American Computing Conference (CLEI), Online, 25-29 October, pp. 1-9.

DOI:10.1109/CLEI53233.2021.9640017.

‘What is PHP?’ (n.d.) PHP. Available at: https://www.php.net/manual/en/intro-whatis.php (Accessed: 22

March 2023).

T847 The MSc professional project Page 45 of 53

13 Appendices

13.1 Appendix A: Establish a database connection using PHP Data Objects

(PDO)

// Define database connection parameters

$v_user = "postgres";

$v_password = "<<redacted>>";

$v_dsn = "pgsql:host=192.168.0.14;port=5432;dbname=dms_t847_22k;

 user=$v_user;password=$v_password";

$v_options = [// PDO fetches return associative arrays

 PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,

 // Use inbuilt database functionality to prepare queries

 PDO::ATTR_EMULATE_PREPARES => false

];

try

{

 // Define $v_pdo as the PDO instance that all database calls utilise.

 $v_pdo = new PDO

 (dsn: $v_dsn,

 username: $v_user,

 password: $v_password,

 options: $v_options

);

}

catch (\PDOException $v_exception) // Run when try {} raises an exception

{

 throw new \PDOException ($v_exception->getMessage (), (int)$v_exception->getCode ());

}

T847 The MSc professional project Page 46 of 53

13.2 Appendix B: Calling procedure CREATE_UPDATE_INCIDENT_DETAIL()

from AppA using PHP

// Execute the following when a HTTP POST request has been issued

if ((bool)$_POST)

{

 // Prepare a call to stored procedure CREATE_UPDATE_INCIDENT_DETAIL()

 // and store it in variable $v_record_process

 $v_record_process = $v_pdo->prepare

 ("CALL business_layer_thick_db.create_update_incident_detail

 (-- IN

 p_incident_id

 => :p_incident_id,

 p_summary

 => :p_summary,

 p_accident_book_date

 => :p_accident_book_date,

 p_major_injury

 => :p_major_injury,

 p_hospital

 => :p_hospital,

 p_hospital_details

 => :p_hospital_details,

 p_work_injury

 => :p_work_injury,

 p_contact_sport

 => :p_contact_sport,

 p_incident_location

 => :p_incident_location,

 p_person_returned_home

 => :p_person_returned_home,

 p_gp_consulted

 => :p_gp_consulted,

 p_first_aid

 => :p_first_aid,

 p_first_aid_book

 => :p_first_aid_book,

 p_incident_details

 => :p_incident_details,

 p_body_part

 => :p_body_part,

 p_service_risk_assessment

 => :p_service_risk_assessment,

 p_service_risk_assessment_satisfactory

 => :p_service_risk_assessment_satisfactory,

 p_service_risk_assessment_action

 => :p_service_risk_assessment_action,

 p_service_risk_assessment_investigation_required

 => :p_service_risk_assessment_investigation_required,

 p_service_line_manager_reported

 => :p_service_line_manager_reported,

 p_service_hse_incident_report_number

 => :p_service_hse_incident_report_number,

 p_school_playground

 => :p_school_playground,

 p_school_school_time

 => :p_school_school_time,

 p_school_play_or_lunch_time

 => :p_school_play_or_lunch_time,

 p_school_pe_lesson

 => :p_school_pe_lesson,

 p_school_equipment_involved

 => :p_school_equipment_involved,

T847 The MSc professional project Page 47 of 53

 p_school_staff_supervision

 => :p_school_staff_supervision,

 p_school_supervised_curriculum_activity

 => :p_school_supervised_curriculum_activity,

 p_school_activity_details

 => :p_school_activity_details,

 p_school_school_grounds

 => :p_school_school_grounds,

 p_submit

 => :p_submit,

 -- IN OUT

 p_id

 => :p_id,

 -- OUT

 p_response

 => NULL

);

 "

);

 // Bind each parameter (:p_*) to a value and set its database datatype

 $v_record_process->bindValue

 (// The specific parameter to bind to

 param: ":p_id",

 // The value (or variable passed by value) to use

 value: $_POST ["id"],

 // The datatype to map the value to

 // note the use of tertiary expressions:

 // (expression ? value_if_true : value_if_false)

 type: ($_POST ["id"] ? PDO::PARAM_INT : PDO::PARAM_NULL)

);

 $v_record_process->bindValue

 (param: ":p_incident_id",

 value: $_POST ["incident_id"],

 type: PDO::PARAM_INT

);

 $v_record_process->bindValue

 (param: ":p_summary",

 value: $_POST ["summary"],

 type: ($_POST ["summary"] ? PDO::PARAM_STR : PDO::PARAM_NULL)

);

 $v_record_process->bindValue

 (param: ":p_accident_book_date",

 value: $_POST ["accident_book_date"],

 type: ($_POST ["accident_book_date"] ? PDO::PARAM_STR : PDO::PARAM_NULL)

);

 $v_record_process->bindValue

 (param: ":p_major_injury",

 value: (bool)($_POST ["major_injury"] ?? false),

 type: PDO::PARAM_BOOL

);

 // All other non-service/school specific fields trimmed from code sample

 // Service specific fields

 $v_record_process->bindValue

 (param: ":p_service_risk_assessment",

 value: ($_POST ["school_or_service"] === "SERVICE"

 /* Implicitly convert the value to its equivalent

 boolean value.

 Note the coalesce operator (??) to account for

T847 The MSc professional project Page 48 of 53

 null/empty values.

 */

 ? ((bool)($_POST ["service_risk_assessment"] ?? false))

 : null),

 type: ($_POST ["school_or_service"] === "SERVICE" ? PDO::PARAM_BOOL

 : PDO::PARAM_NULL)

);

 $v_record_process->bindValue

 (param: ":p_service_risk_assessment_satisfactory",

 value: ($_POST ["school_or_service"] === "SERVICE"

 ? ((bool)($_POST["service_risk_assessment_satisfactory"]

 ?? false))

 : null),

 type: ($_POST ["school_or_service"] === "SERVICE" ? PDO::PARAM_BOOL

 : PDO::PARAM_NULL)

);

 // All other service specific fields trimmed from code sample

 $v_record_process->bindValue

 (param: ":p_school_playground",

 value: ($_POST ["school_or_service"] === "SCHOOL"

 ? ((bool)($_POST ["school_playground"] ?? false))

 : null),

 type: ($_POST ["school_or_service"] === "SCHOOL"

 ? PDO::PARAM_BOOL

 : PDO::PARAM_NULL)

);

 // All other school specific fields trimmed from code sample

 // Execute the prepared query

 $v_record_process->execute ();

 // Get (IN)OUT returned parameters (Workaround for non-working

 // PDO::PARAM_INPUT_OUTPUT)

 $v_out_params = $v_record_process->fetch ();

 $_POST ["id"] = $v_out_params ["p_id"];

 $_GET ["v_id"] = $_POST ["id"];

 // Decode P_RESPONSE, which is encoded in JSON format

 $v_response = json_decode

 (json: $v_out_params ["p_response"],

 associative: true

);

}

T847 The MSc professional project Page 49 of 53

13.3 Appendix C: Process CREATE_UPDATE_INCIDENT() (PLpg/SQL)

CREATE OR REPLACE PROCEDURE business_layer_thick_db.create_update_incident

 (IN OUT p_id data_layer_thick_db.incidents.id%TYPE,

 OUT p_response TEXT,

 IN p_received_date DATE,

 IN p_incident_date_time TIMESTAMP,

 IN p_service_id data_layer_thick_db.corporate_services.id%TYPE DEFAULT NULL,

 IN p_school_id data_layer_thick_db.schools.id%TYPE DEFAULT NULL

)

LANGUAGE plpgsql

AS

$PROC$

 DECLARE

 v_error_stack TEXT[]; -- Text array to hold validation error messages

 v_error_fields TEXT[]; -- Text array to hold validation fields affected

 BEGIN

 /* Execute precondition checks here.

 Each failed error will populate v_error_stack with a new message

 and v_error_fields with a field reference (to highlight to end user).

 */

 -- Execute when at least one validation error message exists

 IF CARDINALITY (v_error_stack) > 0

 THEN

 p_response :=

 JSON_BUILD_OBJECT

 ('response', 'fail',

 'validation_errors', ARRAY_TO_JSON (v_error_stack),

 'error_fields', ARRAY_TO_JSON (v_error_fields)

)::text;

 RETURN; -- END execution of procedure

 END IF;

 -- Passed precondition checks business processing here ...

 p_response := JSON_BUILD_OBJECT

 ('response', 'success',

 'validation_errors', ROW (),

 'error_fields', ROW ()

)::text;

 END;

$PROC$

/incident.php:

$v_response = json_decode (json: $v_out_params ["p_response"],

 associative: true

);

T847 The MSc professional project Page 50 of 53

13.4 Appendix D: Fetch all INCIDENTS records (AppA in SQL)

SELECT id,

 -- format RECEIVED_DATE in dd-Mon-yyyy format

 TO_CHAR (received_date, 'dd-Mon-yyyy') AS received_date,

 service_id,

 service_name,

 school_id,

 school_name,

 -- format INCIDENT_DATE_TIME in dd-Mon-yyyy hh24:mi:ss format

 TO_CHAR (incident_date_time, 'dd-Mon-yyyy hh24:mi:ss') AS incident_date_time,

 -- format SUBMITTED_DATE in dd-Mon-yyyy format

 TO_CHAR (submitted_date, 'dd-Mon-yyyy') AS submitted_date

 FROM business_layer_thick_db.v_incidents

 ORDER BY -- order unsubmitted incidents first

 CASE

 WHEN submitted_date IS NULL

 THEN 1

 ELSE 2

 END,

 received_date,

 incident_date_time;

CREATE OR REPLACE VIEW business_layer_thick_db.v_incidents AS

 SELECT inc.id,

 inc.received_date,

 inc.service_id,

 -- Return Service Name (Directorate Name) using INC.SERVICE_ID

 (SELECT corp.name

 || ' ('

 || (SELECT dir.name

 FROM data_layer_thick_db.corporate_directorates dir

 WHERE dir.id = corp.directorate_id

)

 || ')'

 FROM data_layer_thick_db.corporate_services corp

 WHERE corp.id = inc.service_id

) AS service_name,

 inc.school_id,

 -- Return School name using INC.SCHOOL_ID

 (SELECT sch.name

 FROM data_layer_thick_db.schools sch

 WHERE sch.id = inc.school_id

) AS school_name,

 inc.incident_date_time,

 /* Get the most recent submitted date from INCIDENT_DETAILS

 child records

 */

 (SELECT MAX (det.submitted_date)

 FROM data_layer_thick_db.incident_details det

 WHERE det.incident_id = inc.id

) AS submitted_date

 FROM data_layer_thick_db.incidents inc;

T847 The MSc professional project Page 51 of 53

13.5 Appendix E: Fetch all INCIDENTS records (AppB in PHP with

EloquentORM)

$v_incidents =

 // Create a new instance of class DB with the table() method

 DB::table

 // Select the following columns from the Incident model class

 (Incident::select

 ("id",

 "received_date",

 "service_id",

 "school_id",

 "incident_date_time"

)

 // Add sub-queries to get service, school, and submitted details

 ->addSelect

 (["service_name" => DB::table ("corporate_services")

 ->select ("name")

 ->whereColumn ("corporate_services.id",

 "service_id"

),

 "school_name" => DB::table ("schools")

 ->select ("name")

 ->whereColumn ("schools.id",

 "school_id"

),

 /* Note the use of selectRaw() static method to use the MAX

 aggregate function

 */

 "submitted_date" => IncidentDetail::selectRaw ("MAX (submitted_date)")

 ->whereColumn ("incident_id",

 "incidents.id"

)

]

), "inc"

)

 // orderByRaw() method to implement non-trivial sorting

 ->orderByRaw ("CASE

 WHEN submitted_date IS NULL

 THEN 1

 ELSE 2

 END,

 received_date,

 incident_date_time

 "

)

 ->get (); // execute the query

// Iterate retrieved records from previous query

foreach ($v_incidents as $v_key => $v_incident)

{

 // Format RECEIVED_DATE, INCIDENT_DATE_TIME, and SUBMITTED_DATE

 $v_incidents [$v_key]->received_date = date("d-M-Y", strtotime ($v_incident->received_date));

 $v_incidents [$v_key]->incident_date_time

 = date ("d-M-Y H:i:s", strtotime ($v_incident->incident_date_time));

 // If SUBMITTED_DATE is not present, ensure the value remains NULL

 $v_incidents [$v_key]->submitted_date =

 (isset ($v_incident->submitted_date)

 ? date ("d-M-Y", strtotime ($v_incident->submitted_date))

 : null

);

}

T847 The MSc professional project Page 52 of 53

13.6 Appendix F: Requirements for health and safety incident logging system

at Bridgevale MBC

(These high-level requirements copied from M813: Software Development, TMA01, submitted June 2021.

Requirements incorporated into AppA/AppB highlighted in bold/green)

Public sector body Bridgevale MBC is required to safeguard the health and safety of employees and

personnel conducting business with employees or on organisation premises. To fulfill these responsibilities,

incident details must be recorded to advise, investigate and report on health and safety provision within the

borough. Additionally, accidents resulting in serious injury/illness must be reported to the Health and Safety

Executive.

Product overview

• Purpose of the product

o To enable the capture, storage, and analysis of health and safety incidents to fulfil

Bridgevale’s legislative requirements. By utilising a centralised application, all data capture

and security functions can be appropriately assessed and accounted for. There will be

opportunities for automation, historical record keeping/retrieval, and accurate reporting. An

effective solution would open commercial possibilities, such as product licensing.

• Stakeholders

o Health and safety team members and manager(s), insurance team members, other staff

members requiring access to the data, business intelligence team members, senior

corporate managers.

Product functionality

• Scope of the product

o The product is solely concerned with Bridgevale’s Health and Safety Team’s functionality

and data they collect; specifically, the requirement to keep records of incidents and

accidents involving employees discharging contractual responsibilities and other persons

operating alongside them or on business premises. This will include

employees/schoolchildren at schools not under Bridgevale’s remit (e.g. academies) if they

choose to buy into the service.

• Functional requirements

o The functional requirements of the system are to:

▪ record the details of a health and safety incident or accident

▪ submit a completed and validated incident, making it “live”

▪ create a PDF export of a live incident, with the option to automatically send it to the

reporter

▪ upload documents to incidents, allowing collation of evidence

▪ record notes against incidents

T847 The MSc professional project Page 53 of 53

▪ associate uploaded evidence with incident notes

▪ facilitate the creation of multiple records against an incident, allowing a

“history” of incident details

▪ Record the details of violence towards staff

▪ provide read-only access to lowest-level system users

▪ facilitate creating reports for the purpose of data analysis

Quality requirements

• ‘Look-and-feel’ requirements: the product must adhere to internal software style guidelines.

• Compatibility requirements: the system is accessible on any modern browser where the device

is connected to Bridgevale’s network.

• Usability requirements: the system utilises existing functionality in other internal applications to

reduce development time and maintenance requirements (e.g. email functionality, AD

authentication).

• Security requirements: initial system access will be through existing security management protocols,

with the product owner authorising requests.

• Legal requirements: The system will apply a retention and disposal policy in line with GDPR and

organisation guidelines.

	Structure Bookmarks
	
	
	T847 The MSc professional project
	End-of-module assessment (EMA)
	“An exploration of the capability of a relational database management system to encompass business and persistence capabilities within architecturally layered software.”
	MSc in Computing (Software Engineering) (F66)
	6th April 2023
	10,258 words
	1 Contents
	All references to the student’s organisation have been changed to Bridgevale Metropolitan Borough Council / Bridgevale MBC / Bridgevale.
	T847 The MSc professional project
	T847 The MSc professional project
	T847 The MSc professional project
	T847 The MSc professional project
	

	..
 1
	

	1 Contents
	1 Contents
	1 Contents
	

	..
 2
	

	2 Executive summary
	2 Executive summary
	2 Executive summary
	

	...
	 5
	

	3 Introduction
	3 Introduction
	3 Introduction
	

	..
 7
	

	4 Background
	4 Background
	4 Background
	

	..
 8
	

	4.1 Layered software architecture
	4.1 Layered software architecture
	4.1 Layered software architecture
	

	..
 8
	

	4.2 Object Relational Impedance Mismatch (ORIM) and Object Relational Mappers (ORMs)
	4.2 Object Relational Impedance Mismatch (ORIM) and Object Relational Mappers (ORMs)
	4.2 Object Relational Impedance Mismatch (ORIM) and Object Relational Mappers (ORMs)
	 9

	

	4.3 Portability and interoperability
	4.3 Portability and interoperability
	4.3 Portability and interoperability
	

	..
 9
	

	4.4 The “thick” database paradigm
	4.4 The “thick” database paradigm
	4.4 The “thick” database paradigm
	

	..
 10
	

	4.5 RDBMS applicability to the “thick” database paradigm
	4.5 RDBMS applicability to the “thick” database paradigm
	4.5 RDBMS applicability to the “thick” database paradigm

	..
	. 11
	

	4.6 Summary
	4.6 Summary
	4.6 Summary
	

	..
 12
	

	5 Project evaluation and specification
	5 Project evaluation and specification
	5 Project evaluation and specification
	

	..
 13
	

	5.1 Personal and academic suitability
	5.1 Personal and academic suitability
	5.1 Personal and academic suitability
	

	..
	 13
	

	5.1.1 Stakeholder analysis
	5.1.1 Stakeholder analysis
	5.1.1 Stakeholder analysis
	

	..
 13
	

	5.1.2 Suitability analysis
	5.1.2 Suitability analysis
	5.1.2 Suitability analysis
	

	..
 13
	

	5.2 Feasibility
	5.2 Feasibility
	5.2 Feasibility
	

	..
 13
	

	5.2.1 Suitability
	5.2.1 Suitability
	5.2.1 Suitability
	

	...
	 13
	

	5.2.2 Intended research details
	5.2.2 Intended research details
	5.2.2 Intended research details
	

	..
 13
	

	5.2.3 Aim
	5.2.3 Aim
	5.2.3 Aim
	

	..
 14
	

	5.2.4 Objectives
	5.2.4 Objectives
	5.2.4 Objectives
	

	..
	 14
	

	5.2.5 Scale and scope
	5.2.5 Scale and scope
	5.2.5 Scale and scope
	

	..
 14
	

	5.2.6 Resources required
	5.2.6 Resources required
	5.2.6 Resources required
	

	..
 14
	

	5.3 Risk
	5.3 Risk
	5.3 Risk
	

	..
 15
	

	5.4 Project specification
	5.4 Project specification
	5.4 Project specification
	

	..
 16
	

	5.4.1 Project title
	5.4.1 Project title
	5.4.1 Project title
	

	...
	 16
	

	5.4.2 Project timetable/schedule
	5.4.2 Project timetable/schedule
	5.4.2 Project timetable/schedule
	

	..
	... 16
	

	6 The research process
	6 The research process
	6 The research process
	

	...
	 17
	

	6.1 Research question
	6.1 Research question
	6.1 Research question
	

	..
 17
	

	6.2 Model of causality
	6.2 Model of causality
	6.2 Model of causality
	

	..
 17
	

	7 Research design and methodology
	7 Research design and methodology
	7 Research design and methodology
	

	..
 18
	

	7.1 Research paradigm
	7.1 Research paradigm
	7.1 Research paradigm
	

	..
 18
	

	7.2 Key features of preferred research approach/methodology discussion
	7.2 Key features of preferred research approach/methodology discussion
	7.2 Key features of preferred research approach/methodology discussion
	

 18
	

	7.2.1 Primary research
	7.2.1 Primary research
	7.2.1 Primary research
	

	..
 18
	

	7.2.2 Qualitative data
	7.2.2 Qualitative data
	7.2.2 Qualitative data
	

	..
 18
	

	7.2.3 Case study
	7.2.3 Case study
	7.2.3 Case study
	

	...
	 18
	

	7.3 Critical evaluation/discussion
	7.3 Critical evaluation/discussion
	7.3 Critical evaluation/discussion
	

	..
 18
	

	8 Data generation/collection methods
	8 Data generation/collection methods
	8 Data generation/collection methods
	

	..
 20
	

	8.1 Considered research methods
	8.1 Considered research methods
	8.1 Considered research methods
	

	..
 20
	

	8.1.1 Survey/questionnaire (not utilised)
	8.1.1 Survey/questionnaire (not utilised)
	8.1.1 Survey/questionnaire (not utilised)
	

	..
 20
	

	8.1.2 Interviews (not utilised)
	8.1.2 Interviews (not utilised)
	8.1.2 Interviews (not utilised)

	..
 20
	

	8.1.3 Experiment (utilised)
	8.1.3 Experiment (utilised)
	8.1.3 Experiment (utilised)
	

	..
 20
	

	8.1.4 Design research: prototyping (utilised)
	8.1.4 Design research: prototyping (utilised)
	8.1.4 Design research: prototyping (utilised)
	

	..
 21
	

	8.2 Controlled or ‘quasi-’ experimentation?
	8.2 Controlled or ‘quasi-’ experimentation?
	8.2 Controlled or ‘quasi-’ experimentation?
	

	..
 21
	

	8.3 Suitability
	8.3 Suitability
	8.3 Suitability
	

	..
 22
	

	9 Data generation/collection method details, assessment, and related issues
	9 Data generation/collection method details, assessment, and related issues
	9 Data generation/collection method details, assessment, and related issues
	

 23
	

	9.1 Method of data generation
	9.1 Method of data generation
	9.1 Method of data generation
	

	..
 23
	

	9.1.1 Commonalities
	9.1.1 Commonalities
	9.1.1 Commonalities
	

	..
 23
	

	9.1.2 Variables
	9.1.2 Variables
	9.1.2 Variables
	

	..
	 25
	

	9.2 Technology review
	9.2 Technology review
	9.2 Technology review
	

	..
 26
	

	9.2.1 PHP: Hypertext Preprocessor (PHP)
	9.2.1 PHP: Hypertext Preprocessor (PHP)
	9.2.1 PHP: Hypertext Preprocessor (PHP)
	

	..
 26
	

	9.2.2 Laravel
	9.2.2 Laravel
	9.2.2 Laravel
	

	..
	. 27
	

	9.2.3 PostgreSQL RDBMS
	9.2.3 PostgreSQL RDBMS
	9.2.3 PostgreSQL RDBMS
	

	..
 27
	

	9.3 Deployment .. Error! Bookmark not defined.
	9.3 Deployment .. Error! Bookmark not defined.
	

	9.4 Problems, issues, and successes
	9.4 Problems, issues, and successes
	9.4 Problems, issues, and successes
	

	..
	 27
	

	10 Analysis and findings
	10 Analysis and findings
	10 Analysis and findings
	

	..
 28
	

	10.1 Tool and techniques
	10.1 Tool and techniques
	10.1 Tool and techniques
	

	..
 28
	

	10.2 Analysis
	10.2 Analysis
	10.2 Analysis
	

	..
 28
	

	10.2.1 Knowledge of server-side scripting and OOP
	10.2.1 Knowledge of server-side scripting and OOP
	10.2.1 Knowledge of server-side scripting and OOP
	

	..
 28
	

	10.2.2 Datatype mapping
	10.2.2 Datatype mapping
	10.2.2 Datatype mapping
	

	..
 30
	

	10.2.3 Dealing with challenges and setbacks
	10.2.3 Dealing with challenges and setbacks
	10.2.3 Dealing with challenges and setbacks
	

	..
 31
	

	10.2.4 Layer/tier coupling
	10.2.4 Layer/tier coupling
	10.2.4 Layer/tier coupling
	

	..
 32
	

	10.2.5 SQL query construction and tuning
	10.2.5 SQL query construction and tuning
	10.2.5 SQL query construction and tuning
	

	..
 34
	

	10.3 Findings
	10.3 Findings
	10.3 Findings
	

	..
 34
	

	11 Conclusions
	11 Conclusions
	11 Conclusions
	

	..
 35
	

	11.1 Research aim and question
	11.1 Research aim and question
	11.1 Research aim and question
	

	..
 35
	

	11.2 Database-centric OOP knowledge required and abstraction possibilities
	11.2 Database-centric OOP knowledge required and abstraction possibilities
	11.2 Database-centric OOP knowledge required and abstraction possibilities
	

	... 35
	

	11.3 Problem solving
	11.3 Problem solving
	11.3 Problem solving
	

	...
	 36
	

	11.4 Layer/tier coupling
	11.4 Layer/tier coupling
	11.4 Layer/tier coupling
	

	..
 36
	

	11.5 Mitigating the strengths of ORM tools
	11.5 Mitigating the strengths of ORM tools
	11.5 Mitigating the strengths of ORM tools
	

	..
 36
	

	11.6 Limitation: peer assessment of database-centric method
	11.6 Limitation: peer assessment of database-centric method
	11.6 Limitation: peer assessment of database-centric method
	

	..
	 37
	

	11.7 Future research questions
	11.7 Future research questions
	11.7 Future research questions
	

	..
 37
	

	12 References
	12 References
	12 References

	..
 38
	

	13 Appendices
	13 Appendices
	13 Appendices
	

	..
 45
	

	13.1 Appendix A: Establish a database connection using PHP Data Objects (PDO)
	13.1 Appendix A: Establish a database connection using PHP Data Objects (PDO)
	13.1 Appendix A: Establish a database connection using PHP Data Objects (PDO)
	

	 45
	

	13.2 Appendix B: Calling procedure CREATE_UPDATE_INCIDENT_DETAIL() from AppA using PHP
	13.2 Appendix B: Calling procedure CREATE_UPDATE_INCIDENT_DETAIL() from AppA using PHP
	13.2 Appendix B: Calling procedure CREATE_UPDATE_INCIDENT_DETAIL() from AppA using PHP
	

	..
	 46
	

	13.3 Appendix C: Process CREATE_UPDATE_INCIDENT() (PLpg/SQL)
	13.3 Appendix C: Process CREATE_UPDATE_INCIDENT() (PLpg/SQL)
	13.3 Appendix C: Process CREATE_UPDATE_INCIDENT() (PLpg/SQL)
	

 49
	

	13.4 Appendix D: Fetch all INCIDENTS records (AppA in SQL)
	13.4 Appendix D: Fetch all INCIDENTS records (AppA in SQL)
	13.4 Appendix D: Fetch all INCIDENTS records (AppA in SQL)
	

 50
	

	13.5 Appendix E: Fetch all INCIDENTS records (AppB in PHP with EloquentORM)
	13.5 Appendix E: Fetch all INCIDENTS records (AppB in PHP with EloquentORM)
	13.5 Appendix E: Fetch all INCIDENTS records (AppB in PHP with EloquentORM)
	

	 51
	

	13.6 Appendix F: Requirements for health and safety incident logging system at Bridgevale MBC
	13.6 Appendix F: Requirements for health and safety incident logging system at Bridgevale MBC
	13.6 Appendix F: Requirements for health and safety incident logging system at Bridgevale MBC
	 ... 52

	

	

	
	2 Executive summary
	The accepted approach in developing architecturally layered software is to process business logic as object data in the application server before transforming it into records for storage in a relational database; likewise, retrieval of data involves the reverse conversion of relational data to object data. These conversions are typically performed by a specialist ‘persistence’ tool known as an object relational mapper (ORM).
	Layered architectures do not accommodate the programming language preferences of database engineers or the extended capabilities of modern databases with their ability to augment structured query language (SQL) with procedural language components. As business data requirements increase, the ability to construct applications with the database as the processing engine facilitates greater realisation of the expertise database professionals can offer.
	Layered software typically consists of presentation, business, (persistence), and data layers, each with a specific purpose in data processing. This has been expressed in popular frameworks using the Model-View-Controller (MVC) paradigm, which are typically written using object-oriented programming (OOP) languages. These in turn utilise ORM tools to transform class instances into or from database tables. However, ORM tools have their own drawbacks as, for example, table relationships cannot naturally map to
	An alternative approach is to utilise extended database functionality to process business logic (incorporated in a “thick” database), a controversial approach due to its abandonment of OOP and the subsequent tight coupling between business and data layers. However, it has been demonstrated both theoretically and commercially that such an approach is both practical and viable. There remains, however, limited options in designing and building applications using such an approach, with the de facto framework be
	Consequently, the aim of this research project was to explore the feasibility of implementing a “thick” database approach to layered software architectures and compare and contrast this approach with building an MVC application using a wider variety of relational database management systems. A quasi-experiment method was used that involved building two conceptually similar programs that differed according to the location of the business logic within the technology stack.
	The commonalities between the two programs included the presentation layer (including end user interactions) and the database design as captured in an entity relationship diagram (ERD). The differences were the location of the business layer and the programming language utilised to define the business logic. The vehicle for enquiry was determined to be the design/practice-based research concept of the process of building the prototypes.
	The completed experiment yielded observational notes taken throughout the build process, the source code of the “thick” database application (AppA), the source code of the MVC application (AppB), and working copies of both AppA and AppB.
	Through analysis of the experience of building both applications, it was found the process of building a database-centric application still required limited use of OOP compared to MVC applications, which conversely could almost entirely ignore SQL and relational concepts. However, ORM tools limited the capabilities of developers in constructing queries, and needed augmenting with either raw SQL or additional transformation post execution.
	Developing a database-centric application was found to present challenges in resolving architecture-specific problems compared to MVC applications, which have a large and active community of developers
	willing to help. Additionally, when compared to AppB, AppA demonstrated a looser coupling between the application server and database at the paradoxical expense of tighter coupling between business and data layers.
	The experiment demonstrated the feasibility of building layered applications where the business logic is located within the database. Knowledge of OOP was still required to establish database connections and execute queries, but it was observed tools such as Oracle APEX have successfully abstracted this functionality to libraries that allow procedures to be called from the URL. This would be a useful foundation for future research into such an approach.
	The looser coupling between application server and database tiers means there is greater flexibility for the developer in selecting their preferred RDBMS product, with the trade-off being the product must satisfy both business and data requirements. An MVC application facilitates separation of these layers, but at the expense of more limited query construction capabilities, and fewer suitable vendors.
	Finally, a database-centric approach to development is comparable to the strengths of ORM tools. By requiring pre-validation and compilation of routines within the database before being able to be called, the database can optimise their execution ahead of utilisation. Additionally, by hiding actual SQL within the routines, the threat of SQL injection attacks is significantly weakened.
	
	3 Introduction
	My research project focused on layered software architectures and the role of the database in building, executing, and enforcing business logic. The project’s purpose was to demonstrate that a relational database management system (RDBMS) is capable of more than just data storage, and that contemporary products offer features which make it both feasible and desirable to delegate business processing activities to it.
	The de facto approach to layered architectures is the interaction of object data in the business layer with relational data in the data layer, typically transformed via a persistence layer utilising an object relational mapper (ORM) tool. However, there have been notable deviations to this approach which have favoured a ‘database-centric’ approach to the architecture; that is, the database encapsulates functions of the business and potentially presentation layers of its application. The dominant product wit
	
	Figure
	Figure 1: De facto approach to how business and data layers communicate in a layered software architecture.
	Within the software development community, there is a growing body of work exploring the capabilities of the RDBMS beyond just relational data storage, up to and including encompassing application components definition. As the volume of business data created and stored exponentially increases (Simpson, 2020; Taylor, 2022), The demands placed on database engineers will including making this data even more accessible and informative.
	This project attempted to demonstrate:
	• the validity of expanding the role of the RDBMS;
	• the validity of expanding the role of the RDBMS;
	• the validity of expanding the role of the RDBMS;

	• how such expansion compares to traditional business<->data approaches.
	• how such expansion compares to traditional business<->data approaches.

	Subsequently, it is hoped the project encourages exploration and development of specialist database-focused frameworks, expanding the choice of tools for database engineers beyond existing commercial ventures.
	4 Background
	The dominant approach in wider industry is to utilise an application server to house and process business logic (Eckerson, 1995; Liu et al, 2008). The benefit of this is separation of business logic from business data, which in turn facilitates efficient management of both, especially when running mission-critical applications available across HTTP protocols (Eckerson, 1995; Fowler, 2003, ch.1).
	The increasing popularity of layered architectures coincided with the growing prevalence of object-oriented programming (OOP), and the demand for increasingly complex web applications have seen accepted approaches in developing business logic utilise languages such as Java, Perl, or PHP (Fowler, 2003, ch.1; Richards, 2022, ch.3).
	Subsequently, I accept that the options available for database-centric software development are significantly less compared to OOP tools, thus limiting the ability of programmers proficient in structured query language (SQL) and database programming languages (DPLs) to produce software.
	4.1 Layered software architecture
	Layered software is amongst the most common software architecture styles (Vicente, Etcheverry, and Sabiguero, 2021; Richards, 2022, ch.3). It embodies increasingly low-level layers of decoupled abstraction, each representing core system functionality such as presentation, middle/business, and data/persistence (Garlan and Shaw, 1994; Richards, 2022, ch.3).
	Each architectural layer has a specific purpose:
	• Presentation: handles interaction between users and the system; it captures user events and includes the system’s user interface.
	• Presentation: handles interaction between users and the system; it captures user events and includes the system’s user interface.
	• Presentation: handles interaction between users and the system; it captures user events and includes the system’s user interface.

	• Business: defines business functionality the system was designed to fulfil; it contains business logic and implements business rules.
	• Business: defines business functionality the system was designed to fulfil; it contains business logic and implements business rules.

	• Data: handles storage of persistent data and networking with other systems.
	• Data: handles storage of persistent data and networking with other systems.

	(The Open University, 2021a)
	Layers facilitate abstraction of complex procedures into steps that each process the data travelling through an application, breaking problems into manageable units (Richards, 2022, ch.3). Loose coupling between layers also supports component upgrades/replacements with minimal impact on other layers (Garlan and Shaw, 1994).
	Around a similar time as the conception of layered architectures, Reenskaug theorised the utility of separating computing concerns into the domains of ‘Models’, ‘Views’, and ‘Controllers’ (MVC) (1979), and this was later incorporated into the Smalltalk-80 system (Krasner and Pope, 1988). This architectural pattern maps to layered software in the following ways:
	• Models: a representation of application or system ‘data’ and the functions to process it. Ties in closely with data and persistence layers with some overlap with business layers.
	• Models: a representation of application or system ‘data’ and the functions to process it. Ties in closely with data and persistence layers with some overlap with business layers.
	• Models: a representation of application or system ‘data’ and the functions to process it. Ties in closely with data and persistence layers with some overlap with business layers.

	• Views: a graphical depiction of a model consumed by end users. Can be considered analogous to presentation layers.
	• Views: a graphical depiction of a model consumed by end users. Can be considered analogous to presentation layers.

	• Controllers: the interface or messaging system between views and models. Ties in with the presentation and business layers.
	• Controllers: the interface or messaging system between views and models. Ties in with the presentation and business layers.

	The MVC architectural style has been adopted by popular web application frameworks such as Django (Shaw et al, 2021, ch.1), Laravel (Sinha, 2019, ch.1), Ruby on Rails (Notodikromo, 2021, ch.1), and Spring
	MVC (Ganeshan, 2016, ch.2). These correspond with the popular OOP languages of: Python, PHP, Ruby, and Java.
	Layered architectures favour monolithic applications, can scale poorly, and single layer faults can render entire applications inoperable (Richards, 2022, ch.3). Furthermore, defining appropriate abstraction levels between layers is challenging, as concerns do not always logically separate themselves into identifiable groups (Garlan and Shaw, 1994). Consequently, the pattern does not suit all software development projects.
	4.2 Object Relational Impedance Mismatch (ORIM) and Object Relational Mappers (ORMs)
	To facilitate layered architectural patterns, engineers must resolve ORIM, where relationally formatted business data must be transformed to object data for processing. This is due to each paradigm having a distinct and well-developed optimal approach (Neward, 2006). The accepted solution to ORIM is abstraction of object-relational mapping to specialist ORM tools, as demonstrated by their utilisation within the aforementioned MVC frameworks, such as: Eloquent (Laravel), ActiveRecord (Ruby on Rails), and Jav
	Studies have shown the many benefits to ORMs, including enabling OOP engineers to envisage data rows as object instances, validation and caching of pre-compiled queries, and facilitation of secure development practices, such as preventing SQL injection1 (Fowler, 2003; Vial, 2019). However, their drawbacks include managing the challenges of lazy/eager loading and a lack of control over SQL produced, complicating performance tuning (Neward, 2006; Gunnulfsen, 2013, p.31; Vial, 2019).
	1 An attack involving passing of custom, malicious SQL code for execution on database servers (Microsoft, 2021, Kuhn and Kyte, 2022, p.26).
	1 An attack involving passing of custom, malicious SQL code for execution on database servers (Microsoft, 2021, Kuhn and Kyte, 2022, p.26).

	4.3 Portability and interoperability
	Software designed utilising a layered architectural approach are primarily focused on building a higher quality product (Ghidersa, 2022, ch.1), increasing its value and decreasing negative stakeholder consequences. Specific quality metrics are defined and covered in a range of literature and standards, including ISO/IEC 25010:2011 (BSI, 2011), which enables vendors to demonstrate their software conforms with established, trusted metrics, increasing consumer trust (Galin, 2018, p.25). When considering these
	Interoperability concerns the capabilities of software and systems to communicate and exchange information, subsequently removing duplication and enhancing business processes (Baxendale, 2021). This standard is present in McCall’s classic model for software quality factors (McCall, Richards, and Walters, 1977) and as a sub-characteristic of functionality in the Aspect-Oriented Software Quality Model (Kumar, 2012). Portability concerns the ability of software components to: (1) be replaced by new or alternat
	It could consequently be argued that any existing approach to layered software development must consider the quality characteristics of portability and interoperability to meet the stakeholder requirements, and that they may be positively or negatively affected by an augmentation of this approach.
	4.4 The “thick” database paradigm
	Traditionally, business logic resides within the middle tier of a layered architecture, and is written in an OOP language, acting as the middleware between end user interactions and RDBMS data (Northwood, 2018, p.71; Richards, 2022, ch.3). Literature considers this approach to be thick middleware/thin database, and it is characterised by the use of an ORM tool, sometimes residing within its own “persistence” layer between the business and data layers (Northwood, 2018, p.71).
	Research suggests an alternative approach is to expand the role of RDBMSs in layered architectures by incorporating functionality traditionally performed by the middle/business layer, jettisoning OOP for application logic (Oracle Learning, 2016; Vicente, Etcheverry, and Sabiguero, 2021).
	Studies argue this “thick” database paradigm does not fit into modern layered architectures because practice has evolved to encapsulate business logic in an object manner2. Additionally, it is widely accepted architectural layers should be loosely coupled to maintain separation of concerns and component portability (Garlan and Shaw, 1994; Richards, 2022, ch.3). These arguments can be countered; Vial, an advocate of ORM engines, surmises the only barrier to implementing business logic in the database is pote
	2 The 10 most popular programming languages applicable to writing business logic are JavaScript/TypeScript, Python, Java, C#, C++, PHP, C, Go, Rust, and Kotlin (Stack Overflow, 2022b). Eight of these either fully/partially utilise OOP.
	2 The 10 most popular programming languages applicable to writing business logic are JavaScript/TypeScript, Python, Java, C#, C++, PHP, C, Go, Rust, and Kotlin (Stack Overflow, 2022b). Eight of these either fully/partially utilise OOP.

	Neward (2006) states six recommendations to manage ORIM, of which 1, 5, and 6 involve increased use of relational concepts:
	1. Abandonment of OOP.
	1. Abandonment of OOP.
	1. Abandonment of OOP.

	2. Abandonment of relational storage.
	2. Abandonment of relational storage.

	3. Manual mapping of relational entities to object instances.
	3. Manual mapping of relational entities to object instances.

	4. Acceptance of the limitations of ORM tools.
	4. Acceptance of the limitations of ORM tools.

	5. Integration of relational concepts into OOP.
	5. Integration of relational concepts into OOP.

	6. Integration of relational concepts into frameworks.
	6. Integration of relational concepts into frameworks.

	Furthermore, software layers are separated logically, meaning a single product or technology can encapsulate multiple layers whilst still separating concerns (The Open University, 2021b). This contrasts with tiered architectures, which – whilst fundamentally akin to layers – physically separates concerns through client-server communication (The Open University, 2021c). Consequently, databases can consist of multiple layers, as discussed by Tang, YongFeng, and Yip (2009) and demonstrated by Vicente, Etchever
	
	Figure
	Figure 2: Two-tier, three-layer software architecture utilising thin/thick database functionality respectively (Vicente, Etcheverry, and Sabiguero, 2021). © 2021 IEEE.
	4.5 RDBMS applicability to the “thick” database paradigm
	Gupta and Surabhi (2021) defined three extended features of RDBMS products enabling procedural extension of SQL code, facilitating realisation of business processes execution and business rule enforcement:
	• User-defined functions: procedural code executable within SQL statements, returning either scalar (single) values or tables. They do not mutate database state.
	• User-defined functions: procedural code executable within SQL statements, returning either scalar (single) values or tables. They do not mutate database state.
	• User-defined functions: procedural code executable within SQL statements, returning either scalar (single) values or tables. They do not mutate database state.

	• Stored procedures: invokable program units (not executable within SQL statements) that can mutate database state and optionally return values to callers.
	• Stored procedures: invokable program units (not executable within SQL statements) that can mutate database state and optionally return values to callers.

	• Triggers: program units called in response to database events, such as user login or data changes. Can mutate the database state in a similar manner to stored procedures.
	• Triggers: program units called in response to database events, such as user login or data changes. Can mutate the database state in a similar manner to stored procedures.

	Functions, procedures, and triggers are homogeneously referred to as “routines” (‘23.2 Using Stored Routines’, n.d.; ‘38.4. User-Defined Procedures’, n.d.).
	With this knowledge, we can assess the most popular RDBMS solutions (as identified by Kamaruzzaman, [2021]) and their suitability to perform the thick database role within layered architectures.
	Table 1: RDBMS programming capabilities (‘Comparison of Relational Database Management Systems’, 2022).
	RDBMS
	RDBMS
	RDBMS
	RDBMS
	RDBMS

	Licence
	Licence

	Database programming language (DPL)
	Database programming language (DPL)

	User defined functions
	User defined functions

	Stored procedures
	Stored procedures

	Triggers
	Triggers

	Oracle
	Oracle
	Oracle
	Oracle

	Commercial
	Commercial

	PL/SQL
	PL/SQL

	Yes
	Yes

	Yes
	Yes

	Yes
	Yes

	MySQL
	MySQL
	MySQL

	GNU General Public Licence / commercial
	GNU General Public Licence / commercial

	SQL/PSM
	SQL/PSM

	Yes
	Yes

	Yes
	Yes

	Yes
	Yes

	MS SQL Server
	MS SQL Server
	MS SQL Server

	Commercial
	Commercial

	Transact-SQL
	Transact-SQL

	Yes
	Yes

	Yes
	Yes

	Yes
	Yes

	PostgreSQL
	PostgreSQL
	PostgreSQL

	PostgreSQL Licence
	PostgreSQL Licence

	PLpg/SQL
	PLpg/SQL

	Yes
	Yes

	Yes
	Yes

	Yes
	Yes

	RDBMS
	RDBMS
	RDBMS
	RDBMS
	RDBMS

	Licence
	Licence

	Database programming language (DPL)
	Database programming language (DPL)

	User defined functions
	User defined functions

	Stored procedures
	Stored procedures

	Triggers
	Triggers

	IBM Db2
	IBM Db2
	IBM Db2
	IBM Db2

	Commercial
	Commercial

	SQL PL (implements SQL/PSM) or PL/SQL
	SQL PL (implements SQL/PSM) or PL/SQL

	Yes
	Yes

	Yes
	Yes

	Yes
	Yes

	MariaDB
	MariaDB
	MariaDB

	GNU General Public Licence
	GNU General Public Licence

	SQL/PSM
	SQL/PSM

	Yes
	Yes

	Yes
	Yes

	Yes
	Yes

	I assert the thick database approach is not novel; Oracle has offered the development framework Application Express (APEX) as a free toolkit to Oracle RDBMS customers since 2004 (‘Oracle Application Express’, 2022). APEX is tightly coupled to the database (being typically installed on the same database instance) and advertises itself as a tool that eliminates ORIM and application logic in the middle tier (where the business layer would normally reside) (Oracle, n.d.). This RDBMS-only architecture was the fo
	4.6 Summary
	For this project, it is important to establish that, in layered architectures, business process and rules are typically written using OOP, and business data is normally stored using an RDBMS (Kamaruzzaman, 2021). This current layered approach is arguably beneficial to a product’s portability quality standard as long as loose coupling is maintained between business and data layers; consequently, a degree of portability should be sought in any attempt to expand the role of the database.
	The fundamental differences between relational and object data arguably negatively impact interoperability within a software system, diminishing its quality and preventing full exploitation of the benefits of information sharing without the use of specialist tools and expertise to transform the data.
	Developers may find integrating business and data layers into the database complicates porting of either layer to an alternative product challenging due to the tight coupling between them, reducing software quality. However, Kuhn and Kite (2022, p.51) argue database portability is not realistic for scalable applications due to inherent technological differences between RDBMS products. It could therefore be argued implementing a business layer within the database adds only a small amount of complexity to the
	
	
	
	5 Project evaluation and specification
	5.1 Personal and academic suitability
	5.1.1 Stakeholder analysis
	The following stakeholder individuals/groups were identified and analysed using guidance from The Open University (2022a):
	• Myself:
	• Myself:
	• Myself:
	• Myself:
	o high interest in topic and project;
	o high interest in topic and project;
	o high interest in topic and project;

	o responsible for determining direction and pace of progress.
	o responsible for determining direction and pace of progress.

	• Oracle APEX/Forms software houses / development teams:
	• Oracle APEX/Forms software houses / development teams:
	• Oracle APEX/Forms software houses / development teams:
	o expected to be interested in research outcomes and applicability to vendor lock-in when utilising Oracle RDBMS;
	o expected to be interested in research outcomes and applicability to vendor lock-in when utilising Oracle RDBMS;
	o expected to be interested in research outcomes and applicability to vendor lock-in when utilising Oracle RDBMS;

	o may advise on common business processes and suitability for study in research phase;
	o may advise on common business processes and suitability for study in research phase;

	o low influence on research outcomes as project is not organisation-specific and no entity is providing funding.
	o low influence on research outcomes as project is not organisation-specific and no entity is providing funding.

	5.1.2 Suitability analysis
	I am experienced in building layered software architectures within corporate structures as an employee and as a freelancer. This includes RDBMS technologies including: Oracle, MySQL, and PostgreSQL, and application frameworks and tools including Oracle APEX and PHP (interfacing with databases using ORM tools). This enables me to build and assess products utilising the thick or thin database approach and derive research outcomes.
	5.2 Feasibility
	5.2.1 Suitability
	The project ideas link to The Open University postgraduate modules M813: Software Development and M814: Software Engineering.
	M813 discusses software architectures and how these can be logically sorted into layers and physically into tiers (The Open University, 2021a). M814 covers the definition of business processes and rules and the role of software in realising these (The Open University, 2021d).
	5.2.2 Intended research details
	The study involved design and build of two prototype applications sharing the following characteristics:
	• Database structure and stored data.
	• Database structure and stored data.
	• Database structure and stored data.

	• Presentation layer functionality for end-user consumption.
	• Presentation layer functionality for end-user consumption.

	• Business processes and rules definition (as much as possible).
	• Business processes and rules definition (as much as possible).

	The applications differed in the following ways:
	• Application A: business processes and rules coded using a database programming language residing within the application’s RDBMS. The procedures/functions accessed using a server-side programming language.
	• Application A: business processes and rules coded using a database programming language residing within the application’s RDBMS. The procedures/functions accessed using a server-side programming language.
	• Application A: business processes and rules coded using a database programming language residing within the application’s RDBMS. The procedures/functions accessed using a server-side programming language.

	• Application B: business processes and rules coded using OOP and database access controlled through an appropriate connection and querying tool.
	• Application B: business processes and rules coded using OOP and database access controlled through an appropriate connection and querying tool.

	The resulting applications were assessed on:
	• skills and resources required for each database approach;
	• skills and resources required for each database approach;
	• skills and resources required for each database approach;

	• challenges encountered and opportunities uncovered in the design and build process.
	• challenges encountered and opportunities uncovered in the design and build process.

	5.2.3 Aim
	This project aimed to demonstrate the feasibility of expanding the database role to encompass business and persistence functions in terms of software complexity, especially where engineer expertise is proficient in SQL and database programming languages. This was achieved by designing and building two conceptually similar layered applications that differ by business logic location within the technology stack.
	5.2.4 Objectives
	1. Understand the existing paradigms in writing layered software and existing research exploring the role of RDBMS in augmenting this [literature review].
	1. Understand the existing paradigms in writing layered software and existing research exploring the role of RDBMS in augmenting this [literature review].
	1. Understand the existing paradigms in writing layered software and existing research exploring the role of RDBMS in augmenting this [literature review].

	2. Identify an appropriate business use case to utilise as the foundation of the design and build process of the applications.
	2. Identify an appropriate business use case to utilise as the foundation of the design and build process of the applications.

	3. Define a set of business processes to be expressed in both applications.
	3. Define a set of business processes to be expressed in both applications.

	4. Build applications based on the use case identified in (2):
	4. Build applications based on the use case identified in (2):
	4. Build applications based on the use case identified in (2):
	a. using an appropriate MVC framework;
	a. using an appropriate MVC framework;
	a. using an appropriate MVC framework;

	b. using the RDBMS to encompass business and data functions.
	b. using the RDBMS to encompass business and data functions.

	5. Assess the differences between the two approaches to determine feasibility of expanding the role of the RDBMS [analysis].
	5. Assess the differences between the two approaches to determine feasibility of expanding the role of the RDBMS [analysis].

	5.2.5 Scale and scope
	The concept applications needed to be an appropriate size to facilitate collection of relevant and effective data, but not so large as to introduce delays into the collection and analysis of outcomes. This was documented as a project risk to be appropriately managed.
	5.2.6 Resources required
	• A server capable of setting up isolated development environments for design and implementation of conceptual applications to explore the different paradigms. The researcher already had access to this.
	• A server capable of setting up isolated development environments for design and implementation of conceptual applications to explore the different paradigms. The researcher already had access to this.
	• A server capable of setting up isolated development environments for design and implementation of conceptual applications to explore the different paradigms. The researcher already had access to this.

	• A “production” server available on the Internet to facilitate interaction with the conceptual applications for appraisal by peers and assessors.
	• A “production” server available on the Internet to facilitate interaction with the conceptual applications for appraisal by peers and assessors.

	5.3 Risk
	Table 2: Failure mode and effects analysis (The Open University, 2022b)
	Project stage/process
	Project stage/process
	Project stage/process
	Project stage/process
	Project stage/process

	Potential failure
	Potential failure

	Potential effect(s)
	Potential effect(s)

	SR
	SR

	Potential cause of failure
	Potential cause of failure

	LR
	LR

	PRN
	PRN

	Prevention plan
	Prevention plan

	PEN
	PEN

	RRF
	RRF

	Design and build
	Design and build
	Design and build
	Design and build

	Design and build of the conceptual application takes up considerable project time resources, leaving limited time for output analysis and project write-up.
	Design and build of the conceptual application takes up considerable project time resources, leaving limited time for output analysis and project write-up.

	Project findings and conclusions are incomplete or underwhelming.
	Project findings and conclusions are incomplete or underwhelming.

	6 (Moderate)
	6 (Moderate)

	Poor forward planning, resulting in an application that is not narrow enough in scope to be achievable within project window.
	Poor forward planning, resulting in an application that is not narrow enough in scope to be achievable within project window.

	5 (Moderate)
	5 (Moderate)

	30
	30

	Set a timeline for the project’s design and build stage and monitor it.
	Set a timeline for the project’s design and build stage and monitor it.
	Keep the scope of the concept application narrow and regularly review it.

	0.4
	0.4

	12
	12

	Analyse outputs
	Analyse outputs
	Analyse outputs

	The conceptual applications are lost prior to deriving value from their outputs.
	The conceptual applications are lost prior to deriving value from their outputs.

	It is not possible to analyse the outputs and derive findings without significant rework.
	It is not possible to analyse the outputs and derive findings without significant rework.

	5 (Moderate)
	5 (Moderate)

	Server failure, data corruption.
	Server failure, data corruption.

	3 (Unlikely)
	3 (Unlikely)

	15
	15

	Ensure there is a backup plan for the applications in case of failure.
	Ensure there is a backup plan for the applications in case of failure.

	0.2
	0.2

	3
	3

	
	5.4 Project specification
	5.4.1 Project title
	An exploration of the capability of a relational database management system to encompass business and persistence capabilities within architecturally layered software.
	5.4.2 Project timetable/schedule
	
	Figure
	Figure 3: Project plan and progress Gantt chart
	6 The research process
	6.1 Research question
	The research project aimed to answer the following question:
	“In a model-view-controller framework, how does object-oriented programming compare with embedding business logic in a relational database management system?”
	By comparing de facto and novel approaches to writing and storing business logic, the advantages and disadvantages of a ‘database-centric’ approach can be established against a frame of reference and not in isolation. Additionally, by narrowing the scope to two architectural approaches, the research question promotes analytic depth in discussion of the research outcomes.
	However, by framing the research in such a way, the scope is limited to a comparison between model-view-controller (MVC) framework-developed applications utilising OOP and relational database technologies. Although these approaches have been established as amongst the most utilised layered application development approaches, they are not universally so. Consequently, choices such as model-view-adaptor and NoSQL databases are not considered in this project.
	6.2 Model of causality
	The model of causality informing this research project is linear/successionist. Because the scope of the research question has been narrowed down to specific technology paradigms, the research outcomes can be generalised across similar use cases where the appropriate technologies are utilised (Stern et al, 2012). However, in doing so, the research becomes increasingly difficult to apply to use cases where the constraints are changed (such as utilising a NoSQL database), unlike in a realist/generative model
	7 Research design and methodology
	7.1 Research paradigm
	I consider the following research paradigms to be broadly consistent with my own philosophical approaches:
	• Constructivism: the practice of generating knowledge through practice and in partnership with participants (The Open University, 2022d).
	• Constructivism: the practice of generating knowledge through practice and in partnership with participants (The Open University, 2022d).
	• Constructivism: the practice of generating knowledge through practice and in partnership with participants (The Open University, 2022d).

	• Praxis: the alignment and equality of knowledge and practice in research (Schwandt, 2007, Praxis).
	• Praxis: the alignment and equality of knowledge and practice in research (Schwandt, 2007, Praxis).

	The project’s intent was to derive findings through the practical application of theories that challenged de facto industry approaches and existing human understanding. Additionally, some of these theories were expected to emerge as the research was conducted, meaning a hypothesis was not utilised (Cresswell and Cresswell, 2018, ch.1). This pointed towards a practice-led approach to the research.
	7.2 Key features of preferred research approach/methodology discussion
	The preferred research methods were primary research yielding qualitative data. This was achieved by undertaking a case study utilising methodological triangulation to strengthen the research findings (The Open University, 2005, p.71).
	7.2.1 Primary research
	By conducting primary research, the aim and research question were addressed through the extrapolation of new data gained through specific research method(s) designed to derive such findings. However, in doing so, the time and cost elements required consideration in the research plan to ensure the scope of the research was achievable (Hewson, 2006).
	7.2.2 Qualitative data
	Qualitative data is by nature impractical to quantify and subsequently undertake statistical analysis on (‘Qualitative’, 2005). Although its open-ended nature makes it well-suited to deriving unexpected and subjective insights, it is both impractical to hypothesise the research outcomes and difficult to replicate (Langridge and Hagger-Johnson, 2013, p.15). Qualitative data is more commonly sought by researchers adopting a naturalist paradigm (The Open University, 2022j).
	7.2.3 Case study
	An in-depth, descriptive examination of a typically small sample of participants utilising a range of data collection methods (The Open University, 2005, p.71) which can be descriptive, exploratory, or explanatory (Keddie, 2006). A case study approach can reinforce the integrity of research outcomes through triangulation of research methods. This subsequently offsets a limitation of this approach, which is the normally low number of participants (Keddie, 2006).
	7.3 Critical evaluation/discussion
	The constructivist research paradigm requires input and validation by participants in the research, and although this research project intended to utilise peer assessment in the validation of the research
	outcomes, this stage was outside the scope of the project timescales. This was noted as a limitation in the
	outcomes, this stage was outside the scope of the project timescales. This was noted as a limitation in the
	conclusions
	conclusions

	 section.

	Adopting a case study approach could facilitate the production and collection of quantitative data either instead of or alongside qualitative data (The Open University, 2022g). This could, in a longer form project, be analysed using mixed methods, yielding further findings that naturally complement one-another, strengthening the findings of the research, especially in the context of fieldwork (Mathison, 2005, ‘Mixed Methods’).
	The constructivist paradigm requires caution to be exercised in utilising any form of experiment. However, triangulating methods, previously identified as a key characteristic of case studies, can reinforce experiment outcomes that produce either partially or wholly qualitative data.
	Finally, undertaking secondary research would have given the project the opportunity to explore how datasets produced by previous field researchers could, under appropriate analysis, address the research aim and answer the research question (The Open University, 2022m). However, the literature review established a paucity of material of this nature, owing to existing dominant development paradigms. Consequently, conducting primary research was most appropriate in addressing the aim and question. However, th
	8 Data generation/collection methods
	8.1 Considered research methods
	In considering data generation/collection methods suitable for addressing the research aims, objectives, and questions, and in line with the causality model and research paradigm, the following options were considered:
	8.1.1 Survey/questionnaire (not utilised)
	As the research question concerns the differences in approach towards developing business logic, surveying a range of industry professionals would yield sets of quantitative data. This would strengthen the integrity of the research through reduction of researcher bias if distribution of the survey was random.
	However, development of an effective survey would require significant planning, development, and testing (The Open University, 2005, pp.72-73). A complementary research method may also be required to explore the initial outcomes the data suggests, such as interviews (The Open University, 2022c). This would produce qualitative data, something well-suited to constructivism, even though surveys align well with all research paradigms.
	8.1.2 Interviews (not utilised)
	Similar to surveys, interviews offer the opportunity to obtain peer feedback towards the differing approaches to business logic development. They would be particularly effective when triangulated as part of a mixed-methods approach. A survey plus interview (for example) could be utilised to identify quantitative trends and subsequently explore qualitative reasoning for such trends as part of the data analysis stage. However, because a ‘database-centric’ approach is uncommon and typically only employed by de
	8.1.3 Experiment (utilised)
	I am proficient in developing layered software from both database-centric and object-oriented programming perspectives. Consequently, an experiment exploring the development process of prototype software utilising each approach could yield data capable of answering the research question.
	Experiments can be either ‘controlled’ or ‘quasi-’, which are normally characterised in the following ways:
	• Controlled or ‘laboratory’ experiments enable precise and systematic control of the variables within a organised setting to ensure accurate recording of outcomes derived from their manipulation.
	• Controlled or ‘laboratory’ experiments enable precise and systematic control of the variables within a organised setting to ensure accurate recording of outcomes derived from their manipulation.
	• Controlled or ‘laboratory’ experiments enable precise and systematic control of the variables within a organised setting to ensure accurate recording of outcomes derived from their manipulation.

	• Quasi-experiments or ‘natural’ experiments are concerned with conducting the experiment within a setting more common to its context, allowing more realistic outcomes at the expense of experimental precision.
	• Quasi-experiments or ‘natural’ experiments are concerned with conducting the experiment within a setting more common to its context, allowing more realistic outcomes at the expense of experimental precision.

	(The Open University, 2005, pp.71-73; The Open University, 2022e)
	Experiments are time-consuming to setup and ideally should be run more than once to ensure outcomes are consistent (The Open University, 2022e). As the research project is being conducted within a very short time window, this presents potential challenges if the scope of the experiment is not tightly controlled.
	8.1.4 Design research: prototyping (utilised)
	Design research is the process of broadening knowledge and gaining insights from the process of design (‘Design Research’, 2021). Because the research question is focused on the validity of a niche form of business logic development, it was worth considering the value of design research on achieving the aims and objectives of the project.
	One of the sub-domains of design research is building prototypes, which allow researchers to gain a richer understanding of concepts that are, until that point, only theoretically understood (Koskinen et al, 2011, pp.134-135). Prototyping as a research method can be further defined as one of four ‘roles’:
	1. The prototype as an experimental component: where the prototype is intended to be a subject of testing and study in a subsequent experiment.
	1. The prototype as an experimental component: where the prototype is intended to be a subject of testing and study in a subsequent experiment.
	1. The prototype as an experimental component: where the prototype is intended to be a subject of testing and study in a subsequent experiment.

	2. The prototype as a means of inquiry: where the prototype is an instrument to assist in the collection of data in a subsequent experiment.
	2. The prototype as a means of inquiry: where the prototype is an instrument to assist in the collection of data in a subsequent experiment.

	3. The prototype as a research archetype: where the prototype is intended to demonstrate a specific function for inquiry (as opposed to being the subject of inquiry or an instrument to assist in inquiry).
	3. The prototype as a research archetype: where the prototype is intended to demonstrate a specific function for inquiry (as opposed to being the subject of inquiry or an instrument to assist in inquiry).

	4. The process of prototyping as a vehicle for enquiry: The process of producing the prototype is the subject of study, or, the journey undertaken to produce the prototype is studied, as opposed to the completed prototype being instrumental in the subsequent research taking place.
	4. The process of prototyping as a vehicle for enquiry: The process of producing the prototype is the subject of study, or, the journey undertaken to produce the prototype is studied, as opposed to the completed prototype being instrumental in the subsequent research taking place.

	(Matthews and Wensveen, 2017)
	Roles 3 and 4 both represent potential approaches to this research project, with role 4 being particularly suited to exploring the implementation of what has been, thus far, a theoretical examination. Additionally, this approach derives its data through a qualitative case study, which can be performed through the medium of quasi-experimentation (The Open University, 2005, p.71). Finally, this approach aligns well with the praxis paradigm in furthering knowledge through experimentation as well as theory.
	To increase the validity of the research outcomes, the research project methodically triangulated experimental research with prototyping to produce the data required to address the research question.
	8.2 Controlled or ‘quasi-’ experimentation?
	To conduct the research as a controlled experiment, the prototype applications required constructing within an appropriately controlled environment with identified variables and constants. The Model-View-Controller (MVC) application would have been the control group (representing the de facto industry paradigm) and the database-centric approach would have been the experimental group. This was achievable using the resources available; however, as the only intended participant at this stage was the researcher
	As the applications were constructed using proven, real-world use cases, it was more appropriate to consider this a quasi-experiment, especially as it would likely not fit the criteria of a ‘true’ experiment due to the difficulty in randomly assigning participants. This approach is more conducive to seeking qualitative data, which was envisioned to be the research data type based on the research aim, objectives, and question. Additionally, triangulating a quasi-experiment with prototyping increased trust in
	8.3 Suitability
	To assess the method’s suitability, the following questions were answered as suggested by The Open University (2022f):
	Appropriate for research paradigm: Case study research is a neutral method in terms of research paradigms (The Open University, 2022g), and experimentation, whilst typically a positivist approach, can be applied with caution to a constructivist paradigm (The Open University, 2022l).
	Relevance: As the research question focused on the development ‘approach’, an experiment that focused on the data produced by the process of producing prototypes was relevant to answering it.
	Complementary: It was established that design research, where the prototype is the vehicle for enquiry, can be conducted via case study research, of which quasi-experiments are an example.
	Manageable/Efficient: A timescale for the research project was produced and a separate plan was produced to demonstrate the timescales the data generation and collection was performed against.
	Effective: As the process of constructing the prototype applications was the vehicle of enquiry, data was gathered and preliminarily analysed as it was produced. This ensured some overlap between the collection and analysis stages, and was particularly effective due to the researcher’s existing proficiency in application development, meaning significant data points were observed and analysed immediately (The Open University, 2022h).
	9 Data generation/collection method details, assessment, and related issues
	9.1 Method of data generation
	Data was generated via an exploratory case study, conducted through a quasi-experiment consisting of the design and build of two prototype applications using a layered architectural design. The vehicle of enquiry was the construction of two applications from the perspective of the researcher.
	• Application A (AppA) incorporated all business logic into the database in the form of stored procedures and user-defined functions.
	• Application A (AppA) incorporated all business logic into the database in the form of stored procedures and user-defined functions.
	• Application A (AppA) incorporated all business logic into the database in the form of stored procedures and user-defined functions.

	• Application B (AppB) was developed using a model-view-controller (MVC) framework (Laravel), with business logic contained within controller classes and database calls handled by an object-relational mapper (ORM) tool.
	• Application B (AppB) was developed using a model-view-controller (MVC) framework (Laravel), with business logic contained within controller classes and database calls handled by an object-relational mapper (ORM) tool.

	The applications were based on the initial requirements for a health and safety incident logging system at Bridgevale (
	The applications were based on the initial requirements for a health and safety incident logging system at Bridgevale (
	Appendix F
	Appendix F

).

	9.1.1 Commonalities
	End user client-side interactions on the presentation layer were designed to be identical. For example, the home page for each application looks as follows:
	
	Figure
	Figure 4: The home page of AppA
	This was rendered using HTML as follows:
	<!DOCTYPE html>
	<html lang="en">
	 <head>
	 ...
	 </head>
	 <body>
	 <div>
	 <div>
	 <div>
	 <h1>Bridgevale Health and Safety Application:
	 Thick DB Paradigm -- AppA
	 Thin DB Paradigm -- AppB
	 </h1>
	 </div>
	 </div>
	 <div>
	 <h2>Incident records</h2>
	 <p>
	 Create -- AppA
	 Create -- AppB
	 </p>
	 </div>
	 <div>
	 <table>
	 <thead>
	 <tr>
	 <th />
	 <th>Received Date</th>
	 <th>School / Service</th>
	 <th>Incident Date/Time</th>
	 <th>Submitted Date</th>
	 </tr>
	 </thead>
	 <tbody>
	 <tr>
	 <td>
	 Edit -- AppA
	 Edit -- AppB
	 </td>
	 <td>12-Dec-2022</td>
	 <td>Integrated Commissioning, Contracts and Quality (Adults Services and Wellbeing)</td>
	 <td>12-Dec-2022 09:09:00</td>
	 <td>-</td>
	 </tr>
	 ... Remaining rows ...
	 </tbody>
	 </table>
	 <p>
	 Returned 12 row(s)
	 </p>
	 </div>
	 </div>
	 </body>
	</html>
	HTML was generated using template PHP files stored on the application server, which were populated using business processes (in this case, function FETCH_INCIDENTS()). The presentation layer consisted of three pages:
	• View all incident records (see figure 4).
	• View all incident records (see figure 4).
	• View all incident records (see figure 4).

	• Edit a single incident record.
	• Edit a single incident record.

	• Edit a single incident details record.
	• Edit a single incident details record.

	Both applications shared a PostgreSQL 14 database server in the data layer (in separate schemas), utilising the following Entity Relationship Diagram (ERD):
	
	Figure
	Figure 5: Database ERD for both applications
	The following business processes were identified for both applications:
	1. Create/update an incident detail record.
	1. Create/update an incident detail record.
	1. Create/update an incident detail record.

	2. Create/update an incident record (see figures 7 and 8).
	2. Create/update an incident record (see figures 7 and 8).

	3. Fetch email records.
	3. Fetch email records.

	4. Fetch single incident detail record.
	4. Fetch single incident detail record.

	5. Fetch single incident record.
	5. Fetch single incident record.

	6. Fetch incident detail records.
	6. Fetch incident detail records.

	7. Fetch incident records.
	7. Fetch incident records.

	8. Fetch list of values entries.
	8. Fetch list of values entries.

	9. Return whether an incident record represents a school or service.
	9. Return whether an incident record represents a school or service.

	10. Submit an incident detail record.
	10. Submit an incident detail record.

	9.1.2 Variables
	The differences between AppA and AppB concerns their use of layers and tiers. Layers refers to the logical separation of software functionality, and tiers to their physical separation (The Open University, 2021a). This experiment consisted of three tiers: the client’s machine, the application server, and the database server.
	The flow of data between the tiers and layers was conceived as follows:
	
	Figure
	Figure 6: Flow of data between layers and tiers for both applications
	App A deferred all business logic to the business layer residing in the database, which was defined using Structured Query Language (SQL) and PostgreSQL procedural language extension to SQL (PLpg/SQL). AppB processed all logic in the middle tier (written in PHP: Hypertext Preprocessor [PHP]) and utilised an ORM tool to execute database queries.
	As development progressed, interim observations were made and documented, including positive findings, issues, and areas to consider for further enquiry.
	9.2 Technology review
	9.2.1 PHP: Hypertext Preprocessor (PHP)
	Of the most popular languages utilised in writing business logic, PHP was the one I was most familiar with personally and professionally. It is a long-standing general purpose scripting language which is especially suited to web development due to its ability to embed HTML directly within its syntax (‘What is PHP?’, n.d.). A common perception is that it is well-suited to rapid application development for quick deployment or proof-of-concept realisation compared to, for example, Java (Burets, 2019); an impor
	Of the other feasible options, Java was rejected due to its aforementioned longer development times and my relative lack of knowledge in its usage. Additionally, I had limited experience of, or was unfamiliar with
	Ruby, Python, C++, and C#. I was proficient in JavaScript but had never utilised its server-side counterpart NodeJS.
	PHP 8.1 was utilised as the application server programming language for both AppA and AppB.
	9.2.2 Laravel
	Laravel is an MVC framework built using PHP to deliver web applications or APIs. Although there were a number of options available, including Symfony, CakePHP, and CodeIgniter, Laravel was chosen because: (1) I was already familiar with it, and (2) it was a popular choice with good quality documentation and community support were it to be required.
	Laravel 9 was utilised as the MVC framework for the construction of AppB.
	9.2.3 PostgreSQL RDBMS
	PostgreSQL is an open source relational database management system with an extended feature set that includes a wide array of datatypes, advanced concurrency, and the ability to extend SQL with procedural language components (‘About’, n.d.).
	If I had selected an RDBMS based on my professional experience, it would have been Oracle. However, I discarded this option for three reasons: (1) the de facto database-centric application framework – Oracle APEX – utilises (and can only utilise) an Oracle database, (2) Laravel MVC was not compatible with Oracle, and (3) I was inclined towards an open source database product that presently lacked an obvious framework for database-centric development.
	Other suitable options included MySQL and MariaDB. However, PostgreSQL was chosen as its procedural extension to SQL – PLpg/SQL – was similar to PL/SQL (‘43.13. Porting from Oracle PL/SQL’, n.d.). Firebird was also considered but was not compatible with Laravel.
	PostgreSQL 14 was utilised as the data layer for both applications and the business layer of AppA.
	9.3 Problems, issues, and successes
	The scheduled two weeks (approximately 30 hours) to build both applications was inadequate, with two factors combining to increase design and build time to approximately four weeks:
	• AppA: Resolving a PHP bug where (IN)OUT parameters in stored procedures were not returned to the assigned variable (see
	• AppA: Resolving a PHP bug where (IN)OUT parameters in stored procedures were not returned to the assigned variable (see
	• AppA: Resolving a PHP bug where (IN)OUT parameters in stored procedures were not returned to the assigned variable (see
	• AppA: Resolving a PHP bug where (IN)OUT parameters in stored procedures were not returned to the assigned variable (see
	analysis
	analysis

	 for more details).

	• AppB: Implementing non-trivial validation rules.
	• AppB: Implementing non-trivial validation rules.

	However, delays aside, both applications were completed and fully usable for the use case they were addressing and, other than aesthetic pointers in the presentation layer and web URLs, were indistinguishable in terms of end-user experience. This, alongside observation notes taken throughout the experiment, meant I was able to derive findings from the data and draw conclusions.
	10 Analysis and findings
	10.1 Tool and techniques
	The quasi-experimental case study delivered a range of qualitative data for comparative analysis between the process of building AppA and AppB respectively. The analysis approach was autoethnography, where the researcher connects their personal and professional experience of the experiment with the gathered data to derive findings (Grbich, 2013, ch.10). This is the preferred method of Gauntlett (2021), who sees the approach as integral to analysis in practice-based research, and is corroborated by Matthews
	Autoethnography instinctively casts doubt on the reliability and objectivity of the researcher’s findings (The Open University, 2022n). To mitigate this, a diverse series of data sets were produced beyond field observations, such as computer code demonstrating solutions to the underlying business problem. The experiment yielded four sets of data:
	• Source code of AppA.
	• Source code of AppA.
	• Source code of AppA.

	• Source code of AppB.
	• Source code of AppB.

	• Working applications for both AppA and AppB (grouped together as – per the experiment’s intent – they are functionally identical).
	• Working applications for both AppA and AppB (grouped together as – per the experiment’s intent – they are functionally identical).

	• Observational notes captured during the design and build process of each application.
	• Observational notes captured during the design and build process of each application.

	From this data, a small set of themes were selected for analysis. These themes are not exhaustive and were deliberately narrowed due to the limited time and scale of the research project:
	• Knowledge of server-side scripting and OOP.
	• Knowledge of server-side scripting and OOP.
	• Knowledge of server-side scripting and OOP.

	• Datatype mapping.
	• Datatype mapping.

	• Dealing with challenges and setbacks.
	• Dealing with challenges and setbacks.

	• Layer/tier coupling.
	• Layer/tier coupling.

	• SQL query construction and tuning.
	• SQL query construction and tuning.

	10.2 Analysis
	10.2.1 Knowledge of server-side scripting and OOP
	Web-based applications designed in a layered architectural style utilise application servers – also called “middle tiers” – to respond to a user’s Hypertext Transfer Protocol (HTTP) request by producing Hypertext Markup language (HTML), Cascading Style Sheets (CSS), and JavaScript that can be read by the user’s web browser (‘An Overview of HTTP’, 2023).
	To deliver a response that dynamically reacts to individual user attributes, it must be processed using a programming language on the application server. The programming language facilitates connections and interactions with the database, without which utilising a database would not be possible (even if the database existed on the same physical server) (‘Introduction to the server side’, 2023). Therefore, whichever approach taken towards implementing business logic, use of an application server is inescapab
	Take the following business process, and the differing approaches utilised by AppA and AppB:
	
	
	
	
	
	Figure
	Figure 7: Process diagram for CREATE_UPDATE_INCIDENT() (AppA)

	
	
	Figure
	Figure 8: Process diagram for CREATE_UPDATE_INCIDENT() (AppB)

	Both processes demonstrate different approaches to database utilisation. AppA defers business processes to the database, whereas AppB processes business logic in the middle tier, with database operations limited to simple CRUD operations as required. However, in both cases, the application server must still facilitate data flows between client and database.
	In AppA, the PHP Data Objects (PDO) class was instantiated to create an object – $v_pdo – that facilitated database routine execution (see
	In AppA, the PHP Data Objects (PDO) class was instantiated to create an object – $v_pdo – that facilitated database routine execution (see
	Appendix A
	Appendix A

). Subsequently, whilst the application server functioned principally as a message dispatcher/receiver, knowledge of OOP was still mandatory to establish the communication pipeline. AppB, conversely, did not require the developer to write database queries when interacting with the database, as the ORM tool translated OOP syntax into SQL.

	10.2.2 Datatype mapping
	Now that it was established AppA could not be constructed without some knowledge of OOP, the issue of handling datatype mapping issues between tiers needed to be resolved. Each tier approached datatypes as follows:
	• Client side HTML forms and submitted request data were all strings.
	• Client side HTML forms and submitted request data were all strings.
	• Client side HTML forms and submitted request data were all strings.

	• The application server received all submitted data (via the $_GET[] and $_POST[] superglobals), initially encoding all items as strings. This potentially required casting to a different, PHP-specific, datatype prior to submission to the database.
	• The application server received all submitted data (via the $_GET[] and $_POST[] superglobals), initially encoding all items as strings. This potentially required casting to a different, PHP-specific, datatype prior to submission to the database.

	• The database expected all data items to map explicitly or implicitly to a predefined datatype, or an error would be thrown.
	• The database expected all data items to map explicitly or implicitly to a predefined datatype, or an error would be thrown.

	Table 3: Datatypes utilised in both applications
	
	
	
	
	

	HTML
	HTML

	PHP
	PHP

	PostgreSQL
	PostgreSQL

	Text
	Text
	Text
	Text

	String
	String

	Primitive: string (no maximum size)
	Primitive: string (no maximum size)

	varchar(n) (n = maximum length)
	varchar(n) (n = maximum length)

	TR
	text (no maximum size)
	text (no maximum size)

	TR
	Integer
	Integer

	Primitive: integer (signed, no maximum/minimum size)
	Primitive: integer (signed, no maximum/minimum size)

	integer (signed, -231 to 231-1)
	integer (signed, -231 to 231-1)

	TR
	Date
	Date

	Class: DateTime (time element required manually removing)
	Class: DateTime (time element required manually removing)

	date
	date

	TR
	Date/Time
	Date/Time

	Class: DateTime
	Class: DateTime

	timestamp
	timestamp

	TR
	Boolean
	Boolean

	Primitive: bool (true/false)
	Primitive: bool (true/false)

	boolean (true/false/null)
	boolean (true/false/null)

	The complexities of managing this can be seen in
	The complexities of managing this can be seen in
	Appendix B
	Appendix B

	, where each parameter must be manually mapped to an applicable database datatype (using the bindValue() method), potentially via an intermediary PHP datatype. See the following examples:

	Table 4: Datatype conversions from client, to PHP, to PostgreSQL
	Table
	THead
	TR
	TH
	P
	Span
	Code sample (
	Appendix B
	Appendix B

)

	PHP datatype conversion*
	PHP datatype conversion*

	PostgreSQL datatype conversion
	PostgreSQL datatype conversion

	$v_record_process->bindValue
	$v_record_process->bindValue
	$v_record_process->bindValue
	$v_record_process->bindValue
	 (param: ":p_id",
	 value: $_POST ["id"],
	 type: ($_POST ["id"]
	 ? PDO::PARAM_INT
	 : PDO::PARAM_NULL
)

	None.
	None.

	If $_POST ["id"] is present, convert PHP string to PostgreSQL integer, otherwise pass in NULL.
	If $_POST ["id"] is present, convert PHP string to PostgreSQL integer, otherwise pass in NULL.

	Table
	THead
	TR
	TH
	P
	Span
	Code sample (
	Appendix B
	Appendix B

)

	PHP datatype conversion*
	PHP datatype conversion*

	PostgreSQL datatype conversion
	PostgreSQL datatype conversion

	TBody
	TR
);
);

	$v_record_process->bindValue
	$v_record_process->bindValue
	$v_record_process->bindValue
	 (param: ":p_major_injury",
	 value: (bool)($_POST ["major_injury"]
	 ?? false),
	 type: PDO::PARAM_BOOL
);

	Boolean equivalent of $_POST ["major_injury"], or false if not present.
	Boolean equivalent of $_POST ["major_injury"], or false if not present.

	PHP boolean to PostgreSQL boolean.
	PHP boolean to PostgreSQL boolean.

	$v_record_process->bindValue
	$v_record_process->bindValue
	$v_record_process->bindValue
	 (param: ":p_school_playground",
	 value: ($_POST ["school_or_service"]
	 === "SCHOOL"
	 ? ((bool)
	 ($_POST
	 ["school_playground"]
	 ?? false
)
)
	 : null
),
	 type: ($_POST ["school_or_service"]
	 === "SCHOOL"
	 ? PDO::PARAM_BOOL
	 : PDO::PARAM_NULL
)
);

	If a school specific incident, the boolean equivalent of $_POST ["school_playground"] (false if not present), otherwise null.
	If a school specific incident, the boolean equivalent of $_POST ["school_playground"] (false if not present), otherwise null.

	If a school specific incident, convert PHP boolean to PostgreSQL boolean, otherwise pass in NULL.
	If a school specific incident, convert PHP boolean to PostgreSQL boolean, otherwise pass in NULL.

	This approach requires an understanding of the middle tier programming language datatypes, and how they could be mapped to database equivalents. As these datatypes do not perfectly align, the chance for mismatches and subsequent application exceptions emerges. For instance, attempting to input a string of length >50 into a VARCHAR(50) database column.
	Using an ORM tool, as with AppB, mitigates these problems by closely matching the datatypes of its model classes with the associated database table columns, validating entries to ensure mismatches are minimised ahead of query execution.
	10.2.3 Dealing with challenges and setbacks
	Software developers regularly encounter problems that lack an immediately obvious solution. However, the developer community enables common problems to be resolved relatively quickly. But during development of AppA, I encountered a major obstacle. Consider the following PLpg/SQL procedure double() (written to conceptually “prove” defective behaviour):
	CREATE OR REPLACE PROCEDURE business_layer_thick_db.double
	 (IN OUT p_value INTEGER
)
	LANGUAGE plpgsql
	AS
	$PROC$
	 BEGIN
	 p_value := p_value * 2;
	 END;
	$PROC$
	The procedure takes an INOUT parameter p_value and multiplies it by 2. Calling it within an anonymous PLpg/SQL block against the database executes as expected, but fails to alter the parameter when executed via a PDO instance in PHP.
	Upon investigation, I established this was likely an unresolved bug within PHP (PHP, 2009; Stack Overflow, 2022a). However, as PHP’s documentation did not indicate the presence of a bug, substantial development time was expended attempting to resolve this defect, including raising an unanswered issue on Stack Overflow.
	Consequently, I made the decision to utilise a vendor-specific approach to retrieving (IN)OUT parameter values. This was because – despite selecting PostgreSQL Relational Database Management System (RDBMS) for the experiment – the prototype did not intend to recommend a specific RDBMS product, and was the reasoning behind utilising the PDO framework.
	However, when researching PHP PostgreSQL database drivers, I encountered a workaround which enabled continued use of PDO. This involved fetching the results of a PDO query execution (much like a traditionally executed SQL query) which returned the values of (IN)OUT parameters within an associative array. However, reaching this stage took considerably longer than anticipated because use of (IN)OUT parameters within stored procedures calls from a PDO instance is not especially common.
	Use of an MVC framework, such as in AppB, avoids this scenario as use of stored procedures would involve delegating business logic to the database.
	10.2.4 Layer/tier coupling
	A motivation of this project was exploring feasibility of developing database-centric layered-architecture applications with a high-level of choice between database products. However, for the choice to be meaningful, I needed to demonstrate the database would not become tightly coupled to the application server, complicating product porting.
	Table 5: Types of coupling between application modules (Stevens, Myers, and Constantine, 1974).
	Type
	Type
	Type
	Type
	Type

	Tightness
	Tightness

	Description
	Description

	Content
	Content
	Content
	Content

	Tightest/strongest
	Tightest/strongest

	Sharing of code between modules.
	Sharing of code between modules.

	Common
	Common
	Common

	
	
	Figure

	Shared access to same global data.
	Shared access to same global data.

	TR
	External
	External

	Two or more modules sharing imposed characteristics.
	Two or more modules sharing imposed characteristics.

	TR
	Control
	Control

	One module controls the flow of another, such as instructing it.
	One module controls the flow of another, such as instructing it.

	TR
	Stamp
	Stamp

	Sharing of composite data structures.
	Sharing of composite data structures.

	Data
	Data
	Data

	Loosest/weakest
	Loosest/weakest

	Sharing of simple data.
	Sharing of simple data.

	The de facto industry approach to developing database-centric applications is Oracle APEX (Vicente, Etcheverry, and Sabiguero, 2021) which tightly couples presentation, business, and data logic in an Oracle database; the application server exists only to establish database connections. Business and data layers are “content” coupled, meaning any organisational decision to change database vendors would require complete rewrites of their applications and their approach to handling business logic.
	AppB was developed using Laravel 9, which supports a limited number of RDBMS products with medium coupling between application logic and the database layer. This is achieved by constructing queries using
	an ORM tool which utilises common SQL functionality across the products. There are small instances of vendor-specific behaviour to consider, such as implicit commits in MySQL, but unless I deliberately built PostgreSQL-specific SQL3 into the ORM methods, it would be theoretically possible to run database migration scripts against a different database server and the have the application continue to behave as expected.
	3 The following query:
	3 The following query:
	SELECT id FROM incident_details WHERE incident_summary LIKE '%Pothole%';
	is a SQL-standard query. Substituting LIKE for ILIKE (which is a case-insensitive search) would make the query executable only by PostgreSQL (‘9.7. Pattern Matching’, n.d.).

	This is “control”-level coupling, as the ORM is sending two kinds of information to the database: (1) composite data that will be used to mutate the database, and (2) instructions on what to do with this data (such as inserting or updating, and any conditions on those operations).
	Business logic in AppA is contained within stored procedures and user-defined functions and would require rewriting if a decision was made to change the database product. Despite this, the middle and database tiers exhibit a lower (“stamp”) coupling than AppB, as the application server is only responsible for sending and receiving messages to/from the database. However, the business layer and data layer – now both within the database – are tightly (“common”) coupled, complicating attempts to separate data a
	Table 6: Summary of coupling tightness between AppA, AppB, and an application developed using Oracle APEX.
	Approach
	Approach
	Approach
	Approach
	Approach

	Middle to database tier coupling
	Middle to database tier coupling

	Business to data layer coupling
	Business to data layer coupling

	Database product flexibility
	Database product flexibility

	“Database-centric” (AppA)
	“Database-centric” (AppA)
	“Database-centric” (AppA)
	“Database-centric” (AppA)

	Stamp
	Stamp

	Common
	Common

	Cubrid Firebird FreeTDS IBM DB2 IBM Informix Dynamic Server MariaDB MySQL Oracle RDBMS PostgreSQL SQLite SQL Server Sybase
	Cubrid Firebird FreeTDS IBM DB2 IBM Informix Dynamic Server MariaDB MySQL Oracle RDBMS PostgreSQL SQLite SQL Server Sybase

	MVC (AppB)
	MVC (AppB)
	MVC (AppB)

	Control
	Control

	Control
	Control

	MariaDB MySQL PostgreSQL SQLite SQL Server
	MariaDB MySQL PostgreSQL SQLite SQL Server

	Oracle APEX
	Oracle APEX
	Oracle APEX

	Content
	Content

	Content
	Content

	Oracle RDBMS.
	Oracle RDBMS.

	During the early stages of development, AppA was observed as forming a loose “data” coupling between the middle and database tiers. However, it became necessary for the database to return composite data to the application server to return the following messages:
	• Process success or failure
	• Process success or failure
	• Process success or failure

	• Validation failure messages
	• Validation failure messages

	• Fields failing validation rules
	• Fields failing validation rules

	Stored procedure CREATE_UPDATE_INCIDENT() (see
	Stored procedure CREATE_UPDATE_INCIDENT() (see
	Appendix C
	Appendix C

) returns the aforementioned messages via a JSON document through OUT parameter P_RESPONSE, which in turn is decoded by PHP for utilisation within the presentation layer. Use of the composite format JSON was considered due to its ability to be natively processed by both PostgreSQL and PHP, as well as other object-oriented and database processing languages (‘JSON’, 2023).

	10.2.5 SQL query construction and tuning
	Colley, Stanier, and Asaduzzaman claim database engineers are generally distrustful of ORM tools in constructing SQL queries, citing performance and tuning issues, which they evidence through experimental data (2020). As a consequence, they engineers will choose to work directly with SQL where there is a choice.
	MVC framework applications typically utilise an ORM tool specific to the product, and they are not governed by standards, with largely homogeneous functionality existing due to decades of parallel development (Torres et al., 2017). On the other hand, SQL is governed by official standards (Kelechava, 2018), resulting in greater product portability and engineer cross-platform expertise.
	For example, in
	For example, in
	Appendix D
	Appendix D

	, AppA has constructed its query purely in SQL, with custom formats (such as date and date/time fields) being handled using SQL functions such as TO_CHAR(). Conversely, in attempting to produce the same result set (
	Appendix E
	Appendix E

), AppB is required to utilise model class methods that facilitate injection of raw SQL. Additionally, even once the result set has been produced, additional transformation must be performed using PHP functions to format the data correctly.

	10.3 Findings
	Due to the nature of the HTTP request-response cycle, it was found that bypassing OOP was impractical due to the role the application server took in facilitating communication to/from the database, regardless of where the business layer was located. Consequently, for AppA, this presented challenges in mapping object datatypes to SQL datatypes. Development on AppB, conversely, was possible with very little understanding of SQL, but the ORM tool limited the ability to produce sophisticated database queries, a
	As asserted by Vial (2019), mixing business logic between middle and database tiers can cause state management problems. Examples of this include:
	• A user updating a database record in-between another user fetching the same record and posting an update request of their own.
	• A user updating a database record in-between another user fetching the same record and posting an update request of their own.
	• A user updating a database record in-between another user fetching the same record and posting an update request of their own.

	• Cached data not being marked as “stale” when the underlying data source mutates.
	• Cached data not being marked as “stale” when the underlying data source mutates.

	Consequently, developers are advised to limit processing to the middle tier.
	As a result of the de facto decision to limit business logic processes to the middle tier, resolving development issues was significantly more challenging during development of AppA due to the uncommon nature of the architecture. Contrarily, challenges encountered in development of AppB were easier to resolve due to the size of the active community, and this was reinforced when I needed to ascertain how to implement custom validation rules extending beyond single fields.
	Although AppA maintained loose coupling between the middle and database tiers, the necessity of a data traversal method (JSON) to return response data to the application server introduced an additional technology dependency not present in AppB, since business logic execution is processed in the middle tier before being passed to the ORM tool for database execution.
	11 Conclusions
	11.1 Research aim and question
	This project aimed to demonstrate the feasibility of expanding the database role to encompass business and persistence functionality, especially where engineer expertise is in SQL and database programming languages. This was to be achieved by designing and building two conceptually similar applications that differed in where the business layer was located. Subsequently, the following research question was formed:
	“In a model-view-controller framework, how does object-oriented programming compare with embedding business logic in a relational database management system?”
	11.2 Database-centric OOP knowledge required and abstraction possibilities
	Whilst development of database-centric applications still requires preliminary knowledge of OOP to establish connections and execute database queries, in the
	Whilst development of database-centric applications still requires preliminary knowledge of OOP to establish connections and execute database queries, in the
	literature review
	literature review

	 it was established Oracle Application Express (APEX) (the de facto framework for developing database-centric applications) circumvents this problem by removing the application server. This is, however, inaccurate, as an application server is still required to facilitate client HTTP requests/responses; in this case this is achieved by Oracle Rest Data Services (ORDS) (Basapur, Murray, and Das, 2022, p.19).

	ORDS is a Java-based product which refers HTTP requests to the database, with the parameters being contained both within the URL and the body of the request (such as for POST requests). ORDS is specific to Oracle databases, but AppA demonstrated the feasibility for calling stored procedures and user-defined functions to execute business logic, and further development could simplify it further so that a URL call could execute specific procedures/functions. See figure 9:
	
	Figure
	Figure 9: Calling a stored procedure via HTTP request
	This approach does not remove the requirement to understand OOP, but is capable of being abstracted to a library or plugin for other developers to utilise without necessarily understanding the finer execution
	details. With a greater understanding of the ORDs process from the outset, I may have been able to address this solution within construction of AppA; this will now require delegating to future research. However, AppA has still proven the potential of developing applications with minimal use of OOP and greater use of a database programming language.
	11.3 Problem solving
	In terms of problem solving, AppA presented greater challenges compared to AppB when difficulties were encountered. This demonstrates that, until the paradigm gains a greater level of maturity within the software development field, there will likely be unknown issues which severely hinder development that the wider developer community will initially struggle to solve. This is largely due to the problems encountered being of a framework nature, which MVC frameworks have mostly resolved through many years of
	11.4 Layer/tier coupling
	AppA demonstrated a looser level of coupling between the middle tier and the database compared to MVC frameworks and Oracle APEX. Loose coupling between these tiers provides development teams the freedom to choose a database product that suits their expertise and (potentially) budget without extensive reconstruction of the rest of the architecture. It is demonstrably more flexible than MVC-framework developed applications, and considerably more so than Oracle APEX. However, the trade-off is stronger couplin
	However, in AppA, locating the business layer within the RDBMS worked well when a process was required to execute multiple queries (reducing network round trips between tiers) and provided a precise level of control over database interactions, facilitating efficient application performance. This is verified by Tang, YongFeng, and Yip (2009), who observe the benefits of stored procedures scale particularly well when they process substantially more data.
	Additionally, the tight coupling between business and data layers in AppA would normally mean an extensive rewrite of business logic should a database migration be required, as common RDBMS products typically utilise one of: PL/SQL, PLpg/SQL, SQL/PSM, or Transact-SQL. However, this is mitigated by the aforementioned languages sharing functionality and syntax. For example, PostgreSQL documentation includes a guide on porting Oracle PL/SQL modules to PLpg/SQL (‘43.13. Porting from Oracle PL/SQL’, n.d.) and Ma
	Ultimately, the paradox of loosening coupling between layers consequently tightening coupling between tiers in AppA should be investigated further, particularly in terms of its effect on the quality of the software in terms of portability.
	11.5 Mitigating the strengths of ORM tools
	Two of the major strengths of using ORM tools are: pre-validation of SQL logic, and increased protection from SQL injection (Vial, 2019). However, as SQL injection attacks are normally achieved through exploitation of the method programs build their queries (Microsoft, 2021), and AppA abstracts its actual queries to database stored routines, this problem can largely by ignored. Additionally, the aforementioned routines are compiled within the database during definition, validating their use prior to executi
	On the other hand, AppA – by discarding use of an ORM tool – considered relational data the definitive paradigm for data residing in both the business and data layers, in line with recommendations 1 and 6 of Neward’s considerations for overcoming ORIM (2006). This is demonstrated in
	On the other hand, AppA – by discarding use of an ORM tool – considered relational data the definitive paradigm for data residing in both the business and data layers, in line with recommendations 1 and 6 of Neward’s considerations for overcoming ORIM (2006). This is demonstrated in
	Appendix A
	Appendix A

	, where the connection mode establishes a default fetch mode of associative arrays as opposed to class instances or objects. The PDO interface is a PHP OOP construct, but is never leveraged in such a way (such as through inheritance).

	This approach consequently improves the interoperability of the business and data layers, potentially improving the quality of the software architecture.
	11.6 Limitation: peer assessment of database-centric method
	As discussed in the
	As discussed in the
	methodology discussion
	methodology discussion

	, a constructivist research paradigm values the input of peers in the assessment and validation of research findings, but the project timescales were unable to accommodate what would otherwise have been a valuable contributing experiment to the analysis and findings. Such an approach may have also augmented the data with quantitative findings (i.e. If conducted via a survey), which could have been triangulated with this project’s findings to strengthen the conclusions.

	However, as the development method has been defined and proven as a viable option in layered software development, exploring its utility with peers would form a strong foundation for future research.
	11.7 Future research questions
	1. How feasible is abstracting calls to database stored routines to the URL of architecturally layered web applications?
	1. How feasible is abstracting calls to database stored routines to the URL of architecturally layered web applications?
	1. How feasible is abstracting calls to database stored routines to the URL of architecturally layered web applications?

	2. How does adopting a database-centric approach to layered software development impact the portability of the database tier and the subsequent software quality?
	2. How does adopting a database-centric approach to layered software development impact the portability of the database tier and the subsequent software quality?

	3. How does the database-centric approach to layered software development compare to using a model-view-controller framework across differing engineer skillsets?
	3. How does the database-centric approach to layered software development compare to using a model-view-controller framework across differing engineer skillsets?

	12 References
	‘An Overview of HTTP’ (2023) MDN Web Docs. Available at: https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview (Accessed: 18 February 2023).
	Basapur, M., Murray, C., Das, T. (2022) Oracle® REST Data Services: Developer’s Guide. Texas, USA: Oracle Corporation. Available at: https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/22.4/orddg/oracle-rest-data-services-developers-guide.pdf (Accessed: 28 February 2023).
	Baxendale, G. (2021) ‘What is interperability?’, British Computer Society, 29 June. Available at: https://www.bcs.org/articles-opinion-and-research/what-is-interoperability/ (Accessed: 24 March 2023).
	BSI (2011) Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – System and software quality models (BS ISO/IEC 25010:2011). Geneva, Switzerland: BSI.
	Burets, A. (2019) ‘PHP vs Java: Which Is Better For Web Development’, SCAND, 29 August. Available at: https://scand.com/company/blog/php-vs-java-difference-comparison/ (Accessed: 22 March 2023).
	Colley, D., Stanier, C., Asaduzzaman, M., (2020) ‘Investigating the Effects of Object-Relational Impedance Mismatch on the Efficiency of Object-Relational Mapping Frameworks’, Journal of Database Management (JDM), 31(4), pp. 1-23. DOI:10.4018/JDM.2020100101.
	‘Comparison of Relational Database Management Systems’ (2022) Wikipedia. Available at: https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems#Other_objects (Accessed: 15 November 2022).
	Cresswell, J.W., Cresswell, J.D. (2018) Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 5th edn. CA, USA: SAGE Publications, Inc.
	‘Design research’ (2021) Wikipedia. Available at: https://en.wikipedia.org/wiki/Design_research (Accessed: 27 December 2022).
	Eckerson, W. (1995) ‘Client server architectures’, Network World, 12(3), pp. 18-36. Available at https://www.proquest.com/docview/215930618?parentSessionId=flGQQGZ0RN1eF65czygvdNzTbYjOhzdwsqeFlBotGEg%3D&pq-origsite=primo&accountid=14697 (Accessed: 11 March 2023).
	Fowler, M. (2003) Patterns of Enterprise Application Architecture. Available at: https://learning-oreilly-com.libezproxy.open.ac.uk/library/view/patterns-of-enterprise/0321127420/ (Accessed: 25 March 2023).
	Galin, D. (2018) Software Quality: Concepts and Practice. NJ, USA: the IEEE Computer Society, Inc.
	Ganeshan, A. (2016) Spring MVC Beginner’s Guide. 2nd Edn. Birmingham, UK: Packt Publishing.
	Garlan, D., Shaw, M. (1994) An Introduction to Software Architecture. CMU/SEI-94-TR-021. Pittsburgh, PA: Software Engineering Institute. Available at: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12235 (Accessed: 6 November 2022).
	Gauntlett, D. (2021) ‘What is Practice-Based Research?’, David Gauntlett, 26 March. Available at: https://davidgauntlett.com/research-practice/what-is-practice-based-research/ (Accessed: 4 January 2023).
	Ghidersa, M.R. (2022) Software Architecture for Web Developers. Available at: https://learning-oreilly-com.libezproxy.open.ac.uk/library/view/software-architecture-for/9781803237916/B18222_FM.xhtml (Accessed: 24 March 2023).
	Grad Coach (2022) Qualitative Coding Tutorial: How To Code Qualitative Data For Analysis (4 Steps + Examples). 27 January. Available at: https://www.youtube.com/watch?v=8MHkVtE_sVw (Accessed 24 February 2023).
	Grbich, C. (2013) Qualitative Data Analysis: An Introduction. CA, USA: SAGE Publications Ltd.
	Gunnulfsen, M. (2013) Scalable and Efficient Web Application Architectures: Thin-clients and SQL vs. Thick-clients and NoSQL. Masters Thesis. University of Oslo. Available at: https://www.duo.uio.no/handle/10852/37423 (Accessed: 29 October 2022).
	Gupta, S., Ramachandra, K. (2021) ‘Procedural extensions of SQL: understanding their usage in the wild’, Proceedings of the VLDB Endowment, 14(8), pp. 1378–1391. DOI:10.14778/3457390.3457402.
	Hewson, C. (2006) ‘Primary Research’, in Jupp, V. (ed.) The SAGE Dictionary of Social Research Methods. CA, USA: SAGE Publications, Inc.
	‘Introduction to the server side’ (2023) MDN Web Docs. Available at: https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction (Accessed: 18 February 2023).
	‘JSON’ (2023) Wikipedia. Available at: https://en.wikipedia.org/wiki/JSON (Accessed 21 February 2023).
	Kamaruzzaman, M. (2021) ‘Top 10 Databases to Use in 2021’, Towards Data Science, 20 January. Available at: https://towardsdatascience.com/top-10-databases-to-use-in-2021-d7e6a85402ba (Accessed: 12 November 2022).
	Keddie, V. (2006) ‘Case Study Method’, in Jupp, V. (ed.) The SAGE Dictionary of Social Research Methods. CA, USA: SAGE Publications, Inc.
	Kelechava, B. (2018) ‘The SQL Standard – ISO/IEC 9075:2016 (ANSI X3.135)’, American National Standards Institute, 05 October. Available at: https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/ (Accessed 21 February 2023).
	Koskinen, I., Zimmerman, J., Binder, T., Redstrom, J., Wensveen, S. (2011) Design Research Through Practice: From the Lab, Field, and Showroom. San Francisco, USA: Elsevier Science & Technology.
	Available at: http://ebookcentral.proquest.com/lib/open/detail.action?docID=767255 (Accessed: 22 December 2022).
	Krasner, G.E., Pope, S.T. (1988) A Description of the Model-View-Controller User Interface Paradigm in the Smalltalk-80 System. Mountain View, CA: ParcPlace Systems. Available at: http://heaveneverywhere.com/stp/PostScript/mvc.pdf (Accessed: 12 November 2022).
	Kuhn, D., Kyte, T. (2022) Expert Oracle Database Architecture. 4th Edn. CO, USA: Darl Kuhn and Thomas Kyte.
	Kumar, P. (2012) ‘Aspect-Oriented Software Quality Model: The AOSQ Model’, Advanced Computing: An International Journal (ACIJ), 3(2), pp. 105-118. DOI:10.5121/acij.2012.3212.
	Langridge, D., Hagger-Johnson, G. (2013) Introduction to Research Methods and Data Analysis in Psychology. 3rd edn. Edinburgh: Pearson Education Limited.
	Liu, X., Heo, J., Sha, L., Zhu, X. (2008) ‘Queueing-Model-Based Adaptive Control of Multi-Tiered Web Applications’, IEEE Transactions on Network and Service Management, 5(3), pp. 157-167. DOI:10.1109/TNSM.2009.031103.
	Mathison, S. (2005) Encyclopedia of Evaluation. CA, USA: SAGE Publications, Inc.
	Matthews, B., Wensveen, S. (2017) ‘Prototypes and Prototyping in Design Research’, in Rodgers, P.A., Yee. J. (ed.) Routledge Companion to Design Research. Abingdon-on-Thames, Oxfordshire, UK: Routledge, pp. 262–276.
	McCall, J.A., Richards, P.K., Walters, G.F. (1977) Factors in Software Quality: Concept and Definitions of Software Quality. RADC-TR-77-369 (Volume 1). New York: Rome Air Development Center. Available at https://apps.dtic.mil/sti/pdfs/ADA049014.pdf (Accessed 04 April 2023).
	Garlan, D., Shaw, M. (1994) An Introduction to Software Architecture. CMU/SEI-94-TR-021. Pittsburgh, PA: Software Engineering Institute. Available at: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12235 (Accessed: 06 November 2022).
	Microsoft (2021) ‘SQL Injection’, Microsoft SQL Docs. 19 March. Available at: https://learn.microsoft.com/en-us/sql/relational-databases/security/sql-injection (Accessed: 14 November 2022).
	Neward, T. (2006) ‘The Vietnam of Computer Science’, Ted Neward’s Blog, 26 June. Available at: http://blogs.tedneward.com/post/the-vietnam-of-computer-science/ (Accessed: 25 September 2021).
	Northwood, C. (2018) The Full Stack Developer: Your Essential Guide to the Everyday Skills Expected of a Modern Full Stack Web Developer. Manchester, UK: Chris Northwood.
	Notodikromo, A. (2021) Learn Rails 6: Accelerated Web Development with Ruby on Rails. New York: Apress.
	The Open University (2005) M801 Postgraduate Computing: Research Project and Dissertation. 2nd edn. Milton Keynes, UK: The Open University.
	The Open University (2021a) ‘M813 Unit 8: Software Architectures 3 Layers and tiers’, M813: Software Development. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=1732151§ion=3 (Accessed: 10 November 2022).
	The Open University (2021b) ‘M813 Unit 8: Software Architectures 3.1 Layers’, M813: Software Development. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=1732151§ion=3.1 (Accessed: 17 November 2022).
	The Open University (2021c) ‘M813 Unit 8: Software Architectures 3.2 Tiers’, M813: Software Development. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=1732151§ion=3.2 (Accessed: 17 November 2022).
	The Open University (2021d) ‘M814 Unit 2: The organisational and business context 2.2 Inside organisations’, M814: Software Development. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=1757741§ion=1.2 (Accessed: 14 March 2023).
	The Open University (2022a) ‘M815 Tributary: Stakeholders 2 Stakeholder Analysis’, M815: Project Management. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=1922839§ion=2 (Accessed: 19 November 2022).
	The Open University (2022b) ‘T847 Block 1 Activities: Activity 15’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022172§ion=3.15 (Accessed: 19 November 2022).
	The Open University (2022c) ‘T847 Block 2 Designing and doing your research: 4.2.1 Surveys -> Uses’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=5.2.1 (Accessed: 24 December 2022).
	The Open University (2022d) ‘T847 Block 2 Designing and doing your research: 3.5 Naturalistic research’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=4.5 (Accessed: 24 December 2022).
	The Open University (2022e) ‘T847 Block 2 Designing and doing your research: 4.7.2 Experiments -> Design’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=5.7.2 (Accessed: 24 December 2022).
	The Open University (2022f) ‘T847 Block 2 Designing and doing your research: 4.10 Choosing your methods’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=5.10 (Accessed: 26 December 2022).
	The Open University (2022g) ‘T847 Block 2 Designing and doing your research: 3.4 Positivist research’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=4.4 (Accessed: 26 December 2022).
	The Open University (2022h) ‘T847 Block 3 Analysing data and presenting your findings: 4.1 Overlapping processes’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022253§ion=7.1 (Accessed: 26 December 2022).
	The Open University (2022i) ‘T847 Road widening intervention to reduce congestion (T847 block 2 section 2.3 box 1)’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/resource/view.php?id=2022223 (Accessed: 28 December 2022).
	The Open University (2022j) ‘T847 Block 2 Designing and doing your research: 3.8 The qualitative/quantitative divide’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=4.8 (Accessed: 08 January 2023).
	The Open University (2022k) ‘T847 Block 1 Developing your project: 7.2.1 Primary research’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022099§ion=11.2.1 (Accessed: 01 January 2023).
	The Open University (2022l) ‘T847 Block 2 Designing and doing your research: 4 Research methods’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022211§ion=5 (Accessed: 01 January 2023).
	The Open University (2022m) ‘T847 Block 1 Developing your project: 7.2.2 Secondary research’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022099§ion=11.2.2 (Accessed: 01 January 2023).
	The Open University (2022n) ‘T847 Block 3 Analysing data and presenting your findings: 7.7 Summary’, T847: The MSc Professional Project. Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2022253§ion=10.7 (Accessed: 22 February 2023).
	Oracle (n.d.) Why Oracle APEX. Available at: https://apex.oracle.com/en/platform/why-oracle-apex/ (Accessed: 3 November 2022).
	‘Oracle Application Express’ (2022) Wikipedia. Available at: https://en.wikipedia.org/w/index.php?title=Oracle_Application_Express (Accessed: 14 November 2022).
	Oracle Learning (2016) NoPLSql and Thick Database Approaches with Toon Koppelaars. 31 October. Available at: https://www.youtube.com/watch?v=8jiJDflpw4Y (Accessed: 14 November 2022).
	‘9.7. Pattern Matching’ (n.d.) PostgreSQL. Available at: https://www.postgresql.org/docs/14/functions-matching.html (Accessed: 19 March 2023).
	PHP (2009) Bug #43887 mssql2005 PROCEDURE PDO::PARAM_INPUT_OUTPUT. Available at: https://bugs.php.net/bug.php?id=43887 (Accessed: 18 February 2023).
	‘43.13. Porting from Oracle PL/SQL’ (n.d.) PostgreSQL. Available at: https://www.postgresql.org/docs/14/plpgsql-porting.html (Accessed: 07 March 2023).
	‘About’ (n.d.) PostgreSQL. Available at: https://www.postgresql.org/about/ (Accessed: 22 March 2023).
	‘Qualitative’ (2005) in Vogt, P. (ed.) Dictionary of Statistics & Methodology. 3rd edn. CA, USA: SAGE Publications, Inc.
	Reenskaug, T. (1979) The Original MVC Reports. University of Oslo. Available at: https://folk.universitetetioslo.no/trygver/2007/MVC_Originals.pdf (Accessed: 12 November 2022).
	Richards, M. (2022) Software Architecture Patterns. Available at: https://www-oreilly-com.libezproxy.open.ac.uk/library/view/software-architecture-patterns/9781098134280/ (Accessed: 27 October 2022).
	Schwandt, T. (2007) The SAGE Dictionary of Qualitative Inquiry. CA, USA: SAGE Publications, Inc.
	Shaw, B., Badhwar, S., Bird, A., Chandra K S, B., Guest, C. (2021) Web Development with Django. Birmingham, UK: Packt Publishing.
	Simpson, J. (2020) ‘The Past, Present And Future Of Big Data In Marketing’, Forbes, 17 January. Available at: https://www.forbes.com/sites/forbesagencycouncil/2020/01/17/the-past-present-and-future-of-big-data-in-marketing/ (Accessed 11 March 2023).
	Sinha, S. (2019) Beginning Laravel : Build Websites with Laravel 5.8. 2nd Edn. New York: Apress.
	‘SQL_MODE=ORACLE’ (2021) MariaDB. Available at: https://mariadb.com/kb/en/sql_modeoracle/ (Accessed: 07 March 2023).
	Stack Overflow (2022a) PDO::PARAM_INPUT_OUTPUT not working in PostgreSQL?. Available at: https://stackoverflow.com/questions/71340197/pdoparam-input-output-not-working-in-postgresql/75493064#75493064 (Accessed: 18 February 2023).
	Stack Overflow (2022b) Stack Overflow Developer Survey 2022. Available at: https://survey.stackoverflow.co/2022/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2022 (Accessed: 15 November 2022).
	Stern, E., Stame, N., Mayne, J., Forss, K., Davies, R., Befani, B. (2012) Broadening the Range of Designs and Methods for Impact Evaluations. Working Paper 38. London: Department for International
	Development. Available at: https://www.betterevaluation.org/sites/default/files/design-method-impact-eval_0.pdf (Accessed: 28 December 2022).
	Stevens, W.P., Myers, G.J., Constantine, L.L. (1974) ‘Structured design’, IBM Systems Journal, 13(2), pp. 115–139. DOI:10.1147/sj.132.0115.
	Tang, S., YongFeng, H., Yip, YJ. (2009) ‘Performance of database driven network applications from the user perspective’, KSII Transactions on Internet and Information Systems, 3(3), pp. 235–251. DOI:10.3837/tiis.2009.03.002.
	Taylor, P. (2022) ‘Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025’, Statista, 08 September. Available at: https://www.statista.com/statistics/871513/worldwide-data-created/ (Accessed 11 Mar 2023).
	Torres, A., Galante, R., Pimenta, M.S., Martins, J.B. (2017) ‘Twenty years of object-relational mapping: A survey on patterns, solutions, and their implications on application design’, Information and Software Technology, 82(February 2017), pp. 1-18. DOI:10.1016/J.INFSOF.2016.09.009.
	‘38.3. User-Defined Procedures’ (n.d.) PostgreSQL. Available at: https://www.postgresql.org/docs/14/xproc.html (Accessed: 02 April 2023).
	‘23.2 Using Stored Routines’ (n.d.) MySQL. Available at: https://dev.mysql.com/doc/refman/5.7/en/stored-routines.html (Accessed: 02 April 2023).
	Vial, G. (2019) ‘Lessons in Persisting Object Data Using Object-Relational Mapping’, IEEE Software, 36(6), pp. 43-52. DOI:10.1109/MS.2018.227105428.
	Vicente, A., Etcheverry, L., Sabiguero, A. (2021) ‘An RDBMS-Only Architecture for Web Applications’, 2021 XLVII Latin American Computing Conference (CLEI), Online, 25-29 October, pp. 1-9. DOI:10.1109/CLEI53233.2021.9640017.
	‘What is PHP?’ (n.d.) PHP. Available at: https://www.php.net/manual/en/intro-whatis.php (Accessed: 22 March 2023).
	13 Appendices
	13.1 Appendix A: Establish a database connection using PHP Data Objects (PDO)
	// Define database connection parameters
	$v_user = "postgres";
	$v_password = "<<redacted>>";
	$v_dsn = "pgsql:host=192.168.0.14;port=5432;dbname=dms_t847_22k;
	 user=$v_user;password=$v_password";
	$v_options = [// PDO fetches return associative arrays
	 PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,
	 // Use inbuilt database functionality to prepare queries
	 PDO::ATTR_EMULATE_PREPARES => false
];
	
	try
	{
	 // Define $v_pdo as the PDO instance that all database calls utilise.
	 $v_pdo = new PDO
	 (dsn: $v_dsn,
	 username: $v_user,
	 password: $v_password,
	 options: $v_options
);
	}
	catch (\PDOException $v_exception) // Run when try {} raises an exception
	{
	 throw new \PDOException ($v_exception->getMessage (), (int)$v_exception->getCode ());
	}
	
	13.2 Appendix B: Calling procedure CREATE_UPDATE_INCIDENT_DETAIL() from AppA using PHP
	// Execute the following when a HTTP POST request has been issued
	if ((bool)$_POST)
	{
	 // Prepare a call to stored procedure CREATE_UPDATE_INCIDENT_DETAIL()
	 // and store it in variable $v_record_process
	 $v_record_process = $v_pdo->prepare
	 ("CALL business_layer_thick_db.create_update_incident_detail
	 (-- IN
	 p_incident_id
	 => :p_incident_id,
	 p_summary
	 => :p_summary,
	 p_accident_book_date
	 => :p_accident_book_date,
	 p_major_injury
	 => :p_major_injury,
	 p_hospital
	 => :p_hospital,
	 p_hospital_details
	 => :p_hospital_details,
	 p_work_injury
	 => :p_work_injury,
	 p_contact_sport
	 => :p_contact_sport,
	 p_incident_location
	 => :p_incident_location,
	 p_person_returned_home
	 => :p_person_returned_home,
	 p_gp_consulted
	 => :p_gp_consulted,
	 p_first_aid
	 => :p_first_aid,
	 p_first_aid_book
	 => :p_first_aid_book,
	 p_incident_details
	 => :p_incident_details,
	 p_body_part
	 => :p_body_part,
	 p_service_risk_assessment
	 => :p_service_risk_assessment,
	 p_service_risk_assessment_satisfactory
	 => :p_service_risk_assessment_satisfactory,
	 p_service_risk_assessment_action
	 => :p_service_risk_assessment_action,
	 p_service_risk_assessment_investigation_required
	 => :p_service_risk_assessment_investigation_required,
	 p_service_line_manager_reported
	 => :p_service_line_manager_reported,
	 p_service_hse_incident_report_number
	 => :p_service_hse_incident_report_number,
	 p_school_playground
	 => :p_school_playground,
	 p_school_school_time
	 => :p_school_school_time,
	 p_school_play_or_lunch_time
	 => :p_school_play_or_lunch_time,
	 p_school_pe_lesson
	 => :p_school_pe_lesson,
	 p_school_equipment_involved
	 => :p_school_equipment_involved,
	 p_school_staff_supervision
	 => :p_school_staff_supervision,
	 p_school_supervised_curriculum_activity
	 => :p_school_supervised_curriculum_activity,
	 p_school_activity_details
	 => :p_school_activity_details,
	 p_school_school_grounds
	 => :p_school_school_grounds,
	 p_submit
	 => :p_submit,
	 -- IN OUT
	 p_id
	 => :p_id,
	 -- OUT
	 p_response
	 => NULL
);
	 "
);
	
	 // Bind each parameter (:p_*) to a value and set its database datatype
	 $v_record_process->bindValue
	 (// The specific parameter to bind to
	 param: ":p_id",
	 // The value (or variable passed by value) to use
	 value: $_POST ["id"],
	 // The datatype to map the value to
	 // note the use of tertiary expressions:
	 // (expression ? value_if_true : value_if_false)
	 type: ($_POST ["id"] ? PDO::PARAM_INT : PDO::PARAM_NULL)
);
	
	 $v_record_process->bindValue
	 (param: ":p_incident_id",
	 value: $_POST ["incident_id"],
	 type: PDO::PARAM_INT
);
	
	 $v_record_process->bindValue
	 (param: ":p_summary",
	 value: $_POST ["summary"],
	 type: ($_POST ["summary"] ? PDO::PARAM_STR : PDO::PARAM_NULL)
);
	
	 $v_record_process->bindValue
	 (param: ":p_accident_book_date",
	 value: $_POST ["accident_book_date"],
	 type: ($_POST ["accident_book_date"] ? PDO::PARAM_STR : PDO::PARAM_NULL)
);
	
	 $v_record_process->bindValue
	 (param: ":p_major_injury",
	 value: (bool)($_POST ["major_injury"] ?? false),
	 type: PDO::PARAM_BOOL
);
	
	 // All other non-service/school specific fields trimmed from code sample
	
	 // Service specific fields
	 $v_record_process->bindValue
	 (param: ":p_service_risk_assessment",
	 value: ($_POST ["school_or_service"] === "SERVICE"
	 /* Implicitly convert the value to its equivalent
	 boolean value.
	 Note the coalesce operator (??) to account for
	 null/empty values.
	 */
	 ? ((bool)($_POST ["service_risk_assessment"] ?? false))
	 : null),
	 type: ($_POST ["school_or_service"] === "SERVICE" ? PDO::PARAM_BOOL
	 : PDO::PARAM_NULL)
);
	
	 $v_record_process->bindValue
	 (param: ":p_service_risk_assessment_satisfactory",
	 value: ($_POST ["school_or_service"] === "SERVICE"
	 ? ((bool)($_POST["service_risk_assessment_satisfactory"]
	 ?? false))
	 : null),
	 type: ($_POST ["school_or_service"] === "SERVICE" ? PDO::PARAM_BOOL
	 : PDO::PARAM_NULL)
);
	
	 // All other service specific fields trimmed from code sample
	
	 $v_record_process->bindValue
	 (param: ":p_school_playground",
	 value: ($_POST ["school_or_service"] === "SCHOOL"
	 ? ((bool)($_POST ["school_playground"] ?? false))
	 : null),
	 type: ($_POST ["school_or_service"] === "SCHOOL"
	 ? PDO::PARAM_BOOL
	 : PDO::PARAM_NULL)
);
	
	 // All other school specific fields trimmed from code sample
	
	 // Execute the prepared query
	 $v_record_process->execute ();
	
	 // Get (IN)OUT returned parameters (Workaround for non-working
	 // PDO::PARAM_INPUT_OUTPUT)
	 $v_out_params = $v_record_process->fetch ();
	 $_POST ["id"] = $v_out_params ["p_id"];
	 $_GET ["v_id"] = $_POST ["id"];
	 // Decode P_RESPONSE, which is encoded in JSON format
	 $v_response = json_decode
	 (json: $v_out_params ["p_response"],
	 associative: true
);
	}
	13.3 Appendix C: Process CREATE_UPDATE_INCIDENT() (PLpg/SQL)
	CREATE OR REPLACE PROCEDURE business_layer_thick_db.create_update_incident
	 (IN OUT p_id data_layer_thick_db.incidents.id%TYPE,
	 OUT p_response TEXT,
	 IN p_received_date DATE,
	 IN p_incident_date_time TIMESTAMP,
	 IN p_service_id data_layer_thick_db.corporate_services.id%TYPE DEFAULT NULL,
	 IN p_school_id data_layer_thick_db.schools.id%TYPE DEFAULT NULL
)
	LANGUAGE plpgsql
	AS
	$PROC$
	 DECLARE
	 v_error_stack TEXT[]; -- Text array to hold validation error messages
	 v_error_fields TEXT[]; -- Text array to hold validation fields affected
	 BEGIN
	 /* Execute precondition checks here.
	 Each failed error will populate v_error_stack with a new message
	 and v_error_fields with a field reference (to highlight to end user).
	 */
	
	 -- Execute when at least one validation error message exists
	 IF CARDINALITY (v_error_stack) > 0
	 THEN
	 p_response :=
	 JSON_BUILD_OBJECT
	 ('response', 'fail',
	 'validation_errors', ARRAY_TO_JSON (v_error_stack),
	 'error_fields', ARRAY_TO_JSON (v_error_fields)
)::text;
	 RETURN; -- END execution of procedure
	 END IF;
	
	 -- Passed precondition checks business processing here ...
	
	 p_response := JSON_BUILD_OBJECT
	 ('response', 'success',
	 'validation_errors', ROW (),
	 'error_fields', ROW ()
)::text;
	 END;
	$PROC$
	
	/incident.php:
	$v_response = json_decode (json: $v_out_params ["p_response"],
	 associative: true
);
	13.4 Appendix D: Fetch all INCIDENTS records (AppA in SQL)
	SELECT id,
	 -- format RECEIVED_DATE in dd-Mon-yyyy format
	 TO_CHAR (received_date, 'dd-Mon-yyyy') AS received_date,
	 service_id,
	 service_name,
	 school_id,
	 school_name,
	 -- format INCIDENT_DATE_TIME in dd-Mon-yyyy hh24:mi:ss format
	 TO_CHAR (incident_date_time, 'dd-Mon-yyyy hh24:mi:ss') AS incident_date_time,
	 -- format SUBMITTED_DATE in dd-Mon-yyyy format
	 TO_CHAR (submitted_date, 'dd-Mon-yyyy') AS submitted_date
	 FROM business_layer_thick_db.v_incidents
	 ORDER BY -- order unsubmitted incidents first
	 CASE
	 WHEN submitted_date IS NULL
	 THEN 1
	 ELSE 2
	 END,
	 received_date,
	 incident_date_time;
	
	CREATE OR REPLACE VIEW business_layer_thick_db.v_incidents AS
	 SELECT inc.id,
	 inc.received_date,
	 inc.service_id,
	 -- Return Service Name (Directorate Name) using INC.SERVICE_ID
	 (SELECT corp.name
	 || ' ('
	 || (SELECT dir.name
	 FROM data_layer_thick_db.corporate_directorates dir
	 WHERE dir.id = corp.directorate_id
)
	 || ')'
	 FROM data_layer_thick_db.corporate_services corp
	 WHERE corp.id = inc.service_id
) AS service_name,
	 inc.school_id,
	 -- Return School name using INC.SCHOOL_ID
	 (SELECT sch.name
	 FROM data_layer_thick_db.schools sch
	 WHERE sch.id = inc.school_id
) AS school_name,
	 inc.incident_date_time,
	 /* Get the most recent submitted date from INCIDENT_DETAILS
	 child records
	 */
	 (SELECT MAX (det.submitted_date)
	 FROM data_layer_thick_db.incident_details det
	 WHERE det.incident_id = inc.id
) AS submitted_date
	 FROM data_layer_thick_db.incidents inc;
	13.5 Appendix E: Fetch all INCIDENTS records (AppB in PHP with EloquentORM)
	$v_incidents =
	 // Create a new instance of class DB with the table() method
	 DB::table
	 // Select the following columns from the Incident model class
	 (Incident::select
	 ("id",
	 "received_date",
	 "service_id",
	 "school_id",
	 "incident_date_time"
)
	 // Add sub-queries to get service, school, and submitted details
	 ->addSelect
	 (["service_name" => DB::table ("corporate_services")
	 ->select ("name")
	 ->whereColumn ("corporate_services.id",
	 "service_id"
),
	 "school_name" => DB::table ("schools")
	 ->select ("name")
	 ->whereColumn ("schools.id",
	 "school_id"
),
	 /* Note the use of selectRaw() static method to use the MAX
	 aggregate function
	 */
	 "submitted_date" => IncidentDetail::selectRaw ("MAX (submitted_date)")
	 ->whereColumn ("incident_id",
	 "incidents.id"
)
]
), "inc"
)
	 // orderByRaw() method to implement non-trivial sorting
	 ->orderByRaw ("CASE
	 WHEN submitted_date IS NULL
	 THEN 1
	 ELSE 2
	 END,
	 received_date,
	 incident_date_time
	 "
)
	 ->get (); // execute the query
	
	// Iterate retrieved records from previous query
	foreach ($v_incidents as $v_key => $v_incident)
	{
	 // Format RECEIVED_DATE, INCIDENT_DATE_TIME, and SUBMITTED_DATE
	 $v_incidents [$v_key]->received_date = date("d-M-Y", strtotime ($v_incident->received_date));
	
	 $v_incidents [$v_key]->incident_date_time
	 = date ("d-M-Y H:i:s", strtotime ($v_incident->incident_date_time));
	 // If SUBMITTED_DATE is not present, ensure the value remains NULL
	 $v_incidents [$v_key]->submitted_date =
	 (isset ($v_incident->submitted_date)
	 ? date ("d-M-Y", strtotime ($v_incident->submitted_date))
	 : null
);
	}
	13.6 Appendix F: Requirements for health and safety incident logging system at Bridgevale MBC
	(These high-level requirements copied from M813: Software Development, TMA01, submitted June 2021. Requirements incorporated into AppA/AppB highlighted in bold/green)
	Public sector body Bridgevale MBC is required to safeguard the health and safety of employees and personnel conducting business with employees or on organisation premises. To fulfill these responsibilities, incident details must be recorded to advise, investigate and report on health and safety provision within the borough. Additionally, accidents resulting in serious injury/illness must be reported to the Health and Safety Executive.
	Product overview
	• Purpose of the product
	• Purpose of the product
	• Purpose of the product
	• Purpose of the product
	o To enable the capture, storage, and analysis of health and safety incidents to fulfil Bridgevale’s legislative requirements. By utilising a centralised application, all data capture and security functions can be appropriately assessed and accounted for. There will be opportunities for automation, historical record keeping/retrieval, and accurate reporting. An effective solution would open commercial possibilities, such as product licensing.
	o To enable the capture, storage, and analysis of health and safety incidents to fulfil Bridgevale’s legislative requirements. By utilising a centralised application, all data capture and security functions can be appropriately assessed and accounted for. There will be opportunities for automation, historical record keeping/retrieval, and accurate reporting. An effective solution would open commercial possibilities, such as product licensing.
	o To enable the capture, storage, and analysis of health and safety incidents to fulfil Bridgevale’s legislative requirements. By utilising a centralised application, all data capture and security functions can be appropriately assessed and accounted for. There will be opportunities for automation, historical record keeping/retrieval, and accurate reporting. An effective solution would open commercial possibilities, such as product licensing.

	• Stakeholders
	• Stakeholders
	• Stakeholders
	o Health and safety team members and manager(s), insurance team members, other staff members requiring access to the data, business intelligence team members, senior corporate managers.
	o Health and safety team members and manager(s), insurance team members, other staff members requiring access to the data, business intelligence team members, senior corporate managers.
	o Health and safety team members and manager(s), insurance team members, other staff members requiring access to the data, business intelligence team members, senior corporate managers.

	Product functionality
	• Scope of the product
	• Scope of the product
	• Scope of the product
	• Scope of the product
	o The product is solely concerned with Bridgevale’s Health and Safety Team’s functionality and data they collect; specifically, the requirement to keep records of incidents and accidents involving employees discharging contractual responsibilities and other persons operating alongside them or on business premises. This will include employees/schoolchildren at schools not under Bridgevale’s remit (e.g. academies) if they choose to buy into the service.
	o The product is solely concerned with Bridgevale’s Health and Safety Team’s functionality and data they collect; specifically, the requirement to keep records of incidents and accidents involving employees discharging contractual responsibilities and other persons operating alongside them or on business premises. This will include employees/schoolchildren at schools not under Bridgevale’s remit (e.g. academies) if they choose to buy into the service.
	o The product is solely concerned with Bridgevale’s Health and Safety Team’s functionality and data they collect; specifically, the requirement to keep records of incidents and accidents involving employees discharging contractual responsibilities and other persons operating alongside them or on business premises. This will include employees/schoolchildren at schools not under Bridgevale’s remit (e.g. academies) if they choose to buy into the service.

	• Functional requirements
	• Functional requirements
	• Functional requirements
	o The functional requirements of the system are to:
	o The functional requirements of the system are to:
	o The functional requirements of the system are to:
	o The functional requirements of the system are to:
	▪ record the details of a health and safety incident or accident
	▪ record the details of a health and safety incident or accident
	▪ record the details of a health and safety incident or accident

	▪ submit a completed and validated incident, making it “live”
	▪ submit a completed and validated incident, making it “live”

	▪ create a PDF export of a live incident, with the option to automatically send it to the reporter
	▪ create a PDF export of a live incident, with the option to automatically send it to the reporter

	▪ upload documents to incidents, allowing collation of evidence
	▪ upload documents to incidents, allowing collation of evidence

	▪ record notes against incidents
	▪ record notes against incidents

	▪ associate uploaded evidence with incident notes
	▪ associate uploaded evidence with incident notes

	▪ facilitate the creation of multiple records against an incident, allowing a “history” of incident details
	▪ facilitate the creation of multiple records against an incident, allowing a “history” of incident details

	▪ Record the details of violence towards staff
	▪ Record the details of violence towards staff

	▪ provide read-only access to lowest-level system users
	▪ provide read-only access to lowest-level system users

	▪ facilitate creating reports for the purpose of data analysis
	▪ facilitate creating reports for the purpose of data analysis

	Quality requirements
	• ‘Look-and-feel’ requirements: the product must adhere to internal software style guidelines.
	• ‘Look-and-feel’ requirements: the product must adhere to internal software style guidelines.
	• ‘Look-and-feel’ requirements: the product must adhere to internal software style guidelines.

	• Compatibility requirements: the system is accessible on any modern browser where the device is connected to Bridgevale’s network.
	• Compatibility requirements: the system is accessible on any modern browser where the device is connected to Bridgevale’s network.

	• Usability requirements: the system utilises existing functionality in other internal applications to reduce development time and maintenance requirements (e.g. email functionality, AD authentication).
	• Usability requirements: the system utilises existing functionality in other internal applications to reduce development time and maintenance requirements (e.g. email functionality, AD authentication).

	• Security requirements: initial system access will be through existing security management protocols, with the product owner authorising requests.
	• Security requirements: initial system access will be through existing security management protocols, with the product owner authorising requests.

	• Legal requirements: The system will apply a retention and disposal policy in line with GDPR and organisation guidelines.
	• Legal requirements: The system will apply a retention and disposal policy in line with GDPR and organisation guidelines.

