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Abstract

We consider how large a tournament must be in order to guarantee the appearance of a

given oriented tree. Sumner’s universal tournament conjecture states that every (2n−2)-

vertex tournament should contain a copy of every n-vertex oriented tree. However, it

is known that improvements can be made over Sumner’s conjecture in some cases by

considering the number of leaves or maximum degree of an oriented tree. To this end, we

establish the following results.

(1) There exists C > 0 such that any (n + Ck)-vertex tournament contains a copy of

every n-vertex oriented tree with k leaves.

(2) For each k, there exists n0 ∈ N, such that, whenever n ⩾ n0, any (n+ k− 2)-vertex

tournament contains a copy of every n-vertex oriented tree with at most k leaves.

(3) For every α > 0, there exists n0 ∈ N such that, whenever n ⩾ n0, any ((1+α)n+k)-

vertex tournament contains a copy of every n-vertex oriented tree with k leaves.

(4) For every α > 0, there exists c > 0 and n0 ∈ N such that, whenever n ⩾ n0,

any (1 + α)n-vertex tournament contains a copy of any n-vertex oriented tree with

maximum degree ∆(T ) ⩽ cn.

(5) For all countably-infinite oriented graphs H, either (i) there is a countably-infinite

tournament not containing H, or (ii) every countably-infinite tournament contains

a spanning copy of H.

(1) improves the previously best known bound of n+O(k2). (2) confirms a conjecture of

Dross and Havet. (3) provides an asymptotic form of a conjecture of Havet and Thomassé.

(4) improves a result of Mycroft and Naia which applies to trees with polylogarithmic

maximum degree. (5) extends the problem to the infinite setting, where we also consider

sufficient conditions for the appearance of oriented graphs satisfying (i).
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CHAPTER 1

INTRODUCTION AND PRELIMINARY
MATERIAL

A fundamental class of combinatorial problems ask how large a certain discrete structure

needs to be, in order to guarantee it contains some specified substructure. For example,

due to Ramsey’s theorem, it has long been known that, given any finite graph H, if

the edges of a sufficiently large complete graph are coloured red and blue in any fashion

then it must contain a monochromatic copy of H. How large such a complete graph

must be for different graphs H is the central consideration of Ramsey Theory, alongside

generalisations using more colours and other discrete structures, such as hypergraphs,

hypercubes, integers, and infinite graphs.

This thesis studies the natural analogue of these questions where we orient edges

instead of colouring them. That is, given an oriented graph H, how large does a complete

graph need to be before orienting its edges in any fashion (giving a tournament) guarantees

a copy of H within these edges? Unlike for colourings, it is not true here that any oriented

graph H is guaranteed to appear in a sufficiently large tournament, for if H contains a

directed cycle then H is not contained in any transitive tournament (that is, a tournament

G for which there exists a labelling V (G) = {v1, . . . , vm} such that vi → vj whenever

i < j). On the other hand, an n-vertex oriented graph is acyclic if and only if it is a

subgraph of the transitive tournament on n vertices, and it is well-known (see [12]) that

every tournament on at least 2n−1 vertices contains a transitive tournament of order n.
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S

Figure 1.1: The oriented tree S and a regular tournament on 2n − 3 vertices containing
no copy of S.

Thus, if we define the unavoidability of an oriented graph H to be the smallest m such

that every m-vertex tournament contains a copy of H, then every acyclic oriented graph

has a well-defined unavoidability.

Motivated by the requirement forH to be acyclic, the unavoidability of oriented graphs

has been most extensively studied in the case of oriented trees. The aim of this thesis is to

present several new results in this setting. So suppose T is an n-vertex oriented tree. In

some cases, determining the unavoidability of T is straightforward. For example, if P is

an n-vertex directed path (that is, a path with all edges oriented forward) then it is easy

to see that any n-vertex tournament contains a copy of P . Indeed, if G is an n-vertex

tournament, we can label the vertices V (G) = {v1, . . . , vn} to maximise the number of

pairs i < j with vi → vj. We would then find that vi → vi+1 for every i < n, else we

could swap vi and vi+1, a contradiction to the maximisation. Therefore, P is contained

in any n-vertex tournament, and so has unavoidability n. For another example, consider

an n-vertex star S (see Figure 1.1). In a regular tournament (i.e., a tournament where

every vertex has the same in- and out-degree) on 2n − 3 vertices, every vertex has out-

degree n− 2, and hence such a tournament contains no copy of S. On the other hand, by

considering the average out-degree, any tournament on 2n− 2 vertices contains a vertex

with out-degree at least n− 1. Thus, S has unavoidability 2n− 2.

Determining the unavoidability for trees in general is usually not as easy as these

cases. However, in 1971 Sumner conjectured that every (2n−2)-vertex tournament should
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contain a copy of every n-vertex oriented tree (see, e.g., [26]). The first major step towards

Sumner’s conjecture was taken by Häggkvist and Thomason [14] in 1991, who showed

that O(n) vertices in a tournament are sufficient to find a copy of any n-vertex oriented

tree. The constant implicit in this result has been improved in the intervening years

by Havet [15], Havet and Thomassé [17], El Sahili [11], and Dross and Havet [10]. In

particular, the result of Dross and Havet that any
⌈
21
8
n− 47

16

⌉
-vertex tournament contains

a copy of every n-vertex oriented tree remains the best current bound applicable for all

n. Significantly, however, Sumner’s conjecture has been proved exactly for all sufficiently

large n, by Kühn, Mycroft and Osthus [22], so that the conjecture remains open for only

finitely many oriented trees.

Meanwhile, there has also been an extensive amount of investigation into other ques-

tions on the unvaoidability of oriented trees. We have already seen that Sumner’s conjec-

ture is far from tight in the case of a directed path, which is contained in any tournament

on the same number of vertices. One line of investigation is to ask which other n-vertex

trees are unavoidable, in the sense that they are guaranteed to appear in any tournament

of size n. Thomason [29] showed in 1986 that the behaviour for oriented paths holds

more generally, proving that there is some n0 such that, whenever n ⩾ n0, any n-vertex

tournament contains a copy of every n-vertex oriented path, confirming a conjecture of

Rosenfeld [28]. In 2000, Havet and Thomassé [18] showed that the optimal value of n0 is

8, with the only paths that are not unavoidable being the antidirected paths of lengths

3, 5, and 7, which have unavoidability n+ 1, rather than n. A claws (i.e., a collection of

directed paths which meet only at their common start vertex) with maximum degree at

most 19n/50 is known to be unavoidable due to Lu, Wang and Wong [24]. By defining a

large class of oriented trees that are unavoidable, Mycroft and Naia [25] proved in 2018

that if T is selected uniformly at random from the set of all labelled oriented trees on n

vertices, then asymptotically almost surely T is unavoidable.

Another approach to the unavoidability problem is to consider whether we can impose

stronger bounds than Sumner’s conjecture if we fix some structural property of the tree.
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For example, Häggkvist and Thomason [14] showed in 1991 that the number of additional

vertices required in the tournament can be bounded as a function of the number of leaves

in the tree. That is, for each k, there is some smallest g(k) such that every (n + g(k))-

vertex tournament contains a copy of every n-vertex tree with k leaves. We note that,

because every (n+1)-vertex tournament contains a copy of every n-vertex oriented path,

g(2) = 1, and also that the example of an n-vertex star implies g(k) ⩾ k − 1. Motivated

in part by these observations, Havet and Thomassé [16] generalised Sumner’s conjecture

by suggesting that g(k) = k − 1, as follows.

Conjecture 1.1. Every (n+ k− 1)-vertex tournament contains a copy of every n-vertex

oriented tree with k leaves.

While the upper bound shown by Häggkvist and Thomason on g(k) was exponential

in k3, it was recently improved to 144k2−280k+124 by Dross and Havet [10]. In the same

paper, Dross and Havet also provided further evidence for Conjecture 1.1, by proving that

every (n+ k− 1)-vertex tournament contains a copy of every n-vertex k-leaf arborescence

(that is, a tree with all paths branching outwards, or all paths branching inwards, from

some designated root vertex).

The first three results of this thesis make further progress towards Conjecture 1.1,

which we state now. The following theorem provides the first linear bound on g(k).

Theorem 1.2. There is some C > 0 such that every (n+Ck)-vertex tournament contains

a copy of every n-vertex oriented tree with k leaves.

If true, Conjecture 1.1 would be tight whenever k = n− 1 (i.e., whenever it is covered

by Sumner’s conjecture), but for general n and k, we only have examples showing that

the tournament may need to have at least n+ k − 2 vertices (as described below). From

the result of Havet and Thomassé [18] on oriented paths we know that n + k − 2 is best

possible if k = 2 and n ⩾ 8, while Ceroi and Havet [6] proved that n + k − 2 is also

best possible if k = 3 and n ⩾ 5. Dross and Havet [10] conjectured that, for each k,
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T

a c

|P | = n− a− c

B

n− a− c− 1

2a− 1

A

2c− 1

C

G

Figure 1.2: The oriented tree T and a tournament G containing no copy of T .

if n is sufficiently large then n + k − 2 is best possible. Our second result confirms this

conjecture, as follows.

Theorem 1.3. For each k, there is some n0 such that, for each n ⩾ n0, every (n+k−2)-

vertex tournament contains a copy of every n-vertex oriented tree with k leaves.

The following ‘double-star’ example of Allen and Cooley (see [21]), illustrated in Fig-

ure 1.2, shows that Theorem 1.3 is tight. Given a, c, n ∈ N with n > a+ c, form a tree T

by taking a directed path P with n− a− c vertices and attaching a in-leaves to the first

vertex of P and c out-leaves to the last vertex of P . The resulting oriented tree T has n

vertices and a+c leaves. Construct the following (n+a+c−3)-vertex tournament G. Let

V (G) = A∪B ∪C, where A, B and C are disjoint with |A| = 2a− 1, |B| = n− a− c− 1,

and |C| = 2c− 1. Orient the edges of G so that G[A] and G[C] are regular tournaments,

G[B] is an arbitrary tournament, and all other edges are directed from A to B, from B to

C, or from A to C. As every vertex in A has a− 1 in-neighbours, if G contains a copy of

T then the first vertex of P must be copied to B ∪C. Similarly, as every vertex in C has
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c− 1 out-neighbours, any copy of T in G must have the last vertex of P copied to A∪B.

But then every vertex of P must be copied into B, a contradiction as |B| = n− a− c− 1.

Thus, taking a, c ∈ N such that a+ c = k, we have that the n-vertex tree T with k leaves

does not appear in the (n+ k − 3)-vertex tournament G.

Theorems 1.2 and 1.3 are of course only useful if the oriented tree has a small number of

leaves, with the largest gap between the results and Conjecture 1.1 occuring whenever k =

Ω(n). Accordingly, we also aim to prove an upper bound on the unavoidability of oriented

trees with many leaves. As a stepping stone towards proving Sumner’s conjecture for large

n [22], Kühn, Mycroft and Osthus first proved an asymptotic form of the conjecture,

showing that 2(1+ o(1))n vertices are enough to guarantee the appearance of an n-vertex

oriented tree [21]. To address the case where k = Ω(n), we prove a similar asymptotic

form of Conjecture 1.1, as follows.

Theorem 1.4. Let α > 0. There exists n0 ∈ N such that for any n ⩾ n0, if G is a

((1 + α)n + k)-vertex tournament and T is an n-vertex oriented tree with k leaves, then

G contains a copy of T .

In the work of Kühn, Mycroft and Osthus on Sumner’s conjecture, moving from the

asymptotic form to an exact version for large n was achieved by noting that significantly

fewer than 2n−2 vertices are required in most cases, and sharpening the bound of 2(1+α)n

is thus most involved for certain ‘star-like’ classes of trees. It is natural to ask whether it

is also possible to use Theorem 1.4 as a stepping stone towards proving Conjecture 1.1 for

large n. In fact, the bound on unavoidability obtained in the proof of Theorem 1.4 is not

strictly ((1+α)n+k), but rather (1+γ+α)n, where γ ∈ [0, 1] is a parameter depending on

T satisfying γ ≲ k/n. In many cases, we find γ is significantly less than k/n, and so fewer

than n+k−1 vertices are required. In the case where γ ≈ k/n and k = Ω(n), the resulting

tree has many of the ‘star-like’ properties that could allow for careful analysis to remove

the αn error term, similar to the work of Kühn, Mycroft and Osthus. However, a new

difficulty arises when k = o(n), where, unlike for Sumner’s conjecture, Conjecture 1.1

allows very little extra space in the tournament relative to the size of the tree being
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embedded. If k is extremely small then Theorem 1.3 can apply instead; however, this

still leaves a significant range (cases such as k = Θ(log n) or k = Θ(
√
n)) where neither

approach proves fruitful and new ideas will be needed to make further progress towards

Conjecture 1.1.

We turn now to consider whether stronger bounds than Sumner’s conjecture are also

possible if, instead of restricting the number of leaves in the oriented tree, we restrict

the maximum degree. Indeed, it is already known that only a few additional vertices

are required in a tournament to guarantee the appearance of an oriented tree with low

maximum degree, however many leaves it has. Specifically, Kühn, Mycroft and Osthus [21]

proved in 2010 that, if ∆ is a fixed constant, then every (1 + o(1))n-vertex tournament

contains a copy of every n-vertex oriented tree with maximum degree ∆(T ) ⩽ ∆. Mycroft

and Naia [25] later showed that the same conclusion holds even if the bound on ∆(T ) is

relaxed to one polylogarithmic in n. We will relax the bound on ∆(T ) much further still,

showing that a degree bound linear in n is sufficient, as follows.

Theorem 1.5. Let α > 0. There exists c > 0 and n0 ∈ N such that for any n ⩾ n0, if G

is a (1 +α)n-vertex tournament and T is an n-vertex oriented tree with ∆(T ) ⩽ cn, then

G contains a copy of T .

Despite these results, it appears that bounding unavoidability based on maximum

degree is more difficult than for the number of leaves. Indeed, the following question of

Kühn, Mycroft and Osthus [21] remains open.

Question 1.6. Does there exist a function h such that any (n+h(∆))-vertex tournament

contains a copy of every oriented tree with maximum degree at most ∆?

Mycroft and Naia [25] further asked whether h(∆) = 2∆− 4 is sufficient as long as n

is much larger than ∆, noting that the earlier ‘double-star’ example (with a = c = ∆− 1)

demonstrates this would be tight for each ∆. On this question, perhaps the least is known

for aborescences. The balanced binary arborescence Bd is the arborescence on 2d+1 − 1

vertices in which every leaf is of distance d from the root, and every non-leaf vertex has

7



Figure 1.3: The binary arborescence B3.

exactly 2 out-neighbours. It is not known whether there exists an absolute constant C

such that any tournament on |Bd| + C vertices contains a copy of Bd, and so this is a

critical case for further study in relation to Question 1.6.

We next consider how the notion of unavoidability may be extended to infinite oriented

graphs. We say that a countably-infinite oriented graph H is unavoidable if H is a

subgraph of every countably-infinite tournament (note that this differs from the definition

of an unavoidable oriented graph in the finite setting). Unlike the finite setting, it is not

true that a countably-infinite oriented graph is unavoidable if and only if it is acyclic. For

example, if K is the tournament on N with E(K) = {(i, j) : i < j}, then K does not have

a copy of any oriented graph containing either a vertex of infinite in-degree or an infinite

backward directed path. Similarly, the reversal of K does not have a copy of any oriented

graph containing either a vertex of infinite out-degree or an infinite forward directed path.

Therefore, for a countably-infinite oriented graph to be unavoidable, it must at least be

acyclic, locally-finite (i.e., every vertex is incident with only finitely many edges), and

have no infinite directed paths.

So our first goal is to characterise which countably-infinite oriented graphs are un-

avoidable. Having done that, the next goal is to get quantitative results for unavoidable

countably-infinite oriented graphs along the lines of Sumner’s conjecture and unavoidabil-

ity results for finite oriented trees. For instance, motivated by recent Ramsey-type results

regarding monochromatic subgraphs in edge-colourings of KN [9, 8, 7, 23, 2], it would be
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natural try to prove that there exists d > 0 such that for every countably-infinite unavoid-

able oriented tree T and every tournamentK on N, there is an embedding ϕ : T → K such

that ϕ(V (T )) ⊆ N has upper density at least d. So it is perhaps surprising that we prove

the following result which both characterises unavoidable oriented graphs and proves that

all such countably-infinite unavoidable oriented graphs are unavoidable in a very strong

sense (in a way which makes the quantitative question mentioned above irrelevant).

Theorem 1.7. Let H be a countably-infinite oriented graph. The following are equivalent:

(i) H is acyclic, locally-finite, and has no infinite directed paths.

(ii) H is contained in every countably-infinite tournament.

(iii) H is a spanning subgraph of every countably-infinite tournament.

Despite this characterisation, there are still many interesting questions that can be

asked in the infinite setting. A natural one is to consider how Theorem 1.7 may generalise

to uncountable cardinals if the conditions of (i) are modified accordingly. Indeed, a

version of Theorem 1.7 does still hold for oriented graphs of cardinality ℵ1 which are

acyclic, locally-countable, and have no infinite directed paths (for a discussion of this

generalisation to ℵ1, and the potential for generalisations to even larger cardinals, we

direct the reader to the results of DeBiasio and Larson in Section 3 of [3]). Another

question is, if we drop one or more of the conditions of (i), can we still guarantee a copy of

H in a tournament on N if we additionally ask for the tournament to have some prescribed

density of forward edges? In Section 4.3 we will state the latter question precisely, and

prove a quantitive answer in the case where H is the infinite forward directed path.

In the remainder of this chapter, we give notation, definitions, and preliminary results

that will be useful throughout this thesis. The proofs of Theorems 1.2 and 1.3 both use

techniques that rely heavily on median orders, and are presented in Chapter 2. Theo-

rems 1.4 and 1.5 are proven under a common framework, using regularity and random

homomorphisms to reduce these theorems to critical cases amenable to a more direct
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study, and so these results are proven together in Chapter 3. Finally, in Chapter 4 we

will prove Theorem 1.7 and consider the forward density version of the infinite case de-

scribed above. Before all proofs, we provide further discussion of the results and relevant

techniques, as well as proof sketches.

1.1 Notation

A digraph G consists of a vertex set V (G) and an edge set E(G), where each edge e ∈ E(G)

is an ordered pair (u, v) of vertices, which we write as uv. We write |G| = |V (G)| for the

order of G, and refer to edges of the form vv as looped edges. If uv ∈ E(G), then we say

that u dominates v (written u→G v), that v is an out-neighbour of u, and that u is an in-

neighbour of v. Given v ∈ V (G), the out-neighbourhood of v, written N+
G (v), is the set of

out-neighbours of v in V (G), and the in-neighbourhood of v, written N−
G (v) is the set of in-

neighbours of v in V (G). Throughout, we use + and − interchangeably with ‘out’ and ‘in’

respectively. For X, Y ⊆ V (G) and ⋄ ∈ {+,−}, we write N⋄
G(X) = (∪v∈XN

⋄
G(v)) \X and

N⋄
G(X, Y ) = N⋄

G(X)∩ Y . For each ⋄ ∈ {+,−}, the ⋄-degree of v in G is d⋄G(v) = |N⋄
G(v)|,

and for X, Y ⊆ V (G) we also write d⋄G(X, Y ) = |N⋄
G(X, Y )|. For a vertex v, we also define

its neighbourhood to be NG(v) = N+
G (v) ∪ N

−
G (v) and its degree to be dG(v) = |NG(v)|,

and similarly define NG(X) = N+
G (X)∪N−

G (X) for a set X ⊆ V (G). We denote by G[X]

the induced sub-digraph of G with vertex set X and let G−X = G[V (G)\X]. Subscripts

are omitted wherever they are clear from context, as are rounding signs wherever they

are not crucial.

If G,H are digraphs, a homomorphism ϕ from H to G is a function ϕ : V (H) → V (G)

such that ϕ(u)ϕ(v) ∈ E(G) whenever uv ∈ E(H). We sometimes write ϕ : H → G to

denote a homomorphism from H to G. We say G contains H if there is an injective

homomorphism ϕ from H to G, and refer to such a ϕ as an embedding of H into G.

An oriented graph is a digraph with at most one edge between any pair of vertices. The

underlying graph of an oriented graph G is the (non-oriented) graphH with V (H) = V (G)
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and E(H) = {{u, v} : uv ∈ E(G)}. A tournament G is a digraph whose underlying graph

is a complete graph, so for each u, v ∈ V (G) with u ̸= v, exactly one of uv or vu is in

E(G). An oriented tree (respectively, oriented path) is a digraph whose underlying graph

is a tree (respectively, path). The maximum degree of an oriented tree T is the maximum

degree of its underlying tree, and denoted ∆(T ). A directed path from v0 to vℓ is a path

of the form v0 → v1 → . . .→ vℓ, and we refer to {v1, . . . , vℓ−1} as the internal vertices of

P . The length of a path P is |P | − 1, and denoted ℓ(P ). We say a subpath P of a forest

T is a bare path if all of the internal vertices v of P have dT (v) = 2, and we denote by

T − P the digraph formed from T by removing all the edges and internal vertices of P .

A directed cycle on n vertices is the oriented graph C⃗n with V (C⃗n) = {x1, . . . , xn} and

E(C⃗n) = {x1x2, . . . , xn−1xn, xnx1}. Say that an oriented graph is acyclic if it contains no

directed cycles.

Having proved, for example, a result holds for ⋄ = +, we will occasionally deduce the

same result for ⋄ = − by directional duality. That is, reversing all the relevant orientations

and applying the result with ⋄ = + implies, after reversing the edges again, the result

with ⋄ = −. Where the symbol ± appears in a formula, we mean the formula holds for

both + and − in place of ±. Given n ∈ N, we use [n] to denote the set {1, . . . , n}. For a

set X and a function f : X → R, if A ⊆ X we will often write f(A) to mean
∑

x∈A f(x)

and f(x1, . . . , xk) to mean f({x1, . . . , xk}). For an event En depending on the parameter

n, we will say that En holds with high probability if P(En) → 1 as n → ∞. We also use

standard hierarchy notation. That is, for a, b ∈ (0, 1], we write a≪ b to mean that there

is a non-decreasing function f : (0, 1] → (0, 1] such that the subsequent statement holds

whenever a ⩽ f(b).
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1.2 Embedding results for oriented trees

We will often embed small parts of a tree into a subset of a tournament with many spare

vertices. To do this we could use any result embedding an n-vertex tree into a tournament

with O(n) vertices, but for convenience we will use the following result of El Sahili [11].

Theorem 1.8 ([11, Corollary 2]). For each n ⩾ 2, every (3n − 3)-vertex tournament

contains a copy of every n-vertex oriented tree.

The following corollary shows how Theorem 1.8 can be used to extend a partial copy

of a tree to a full copy, provided each vertex in the partial copy has sufficient out- and

in-degree to the remaining vertices in the tournament.

Corollary 1.9. Let G be a tournament with disjoint subsets U, V ⊆ V (G). Let T be

a tree, and suppose T ′ ⊆ T is a subtree such that there is a copy S ′ of T ′ in G[V ]. If

d±G(v, U) ⩾ 3|V (T ) \V (T ′)| for every v ∈ V , then S ′ can be extended to a copy of T in G,

with T − V (T ′) copied to U .

Proof. Label the components of T − V (T ′) as T1, . . . , Tr, and take the largest s ⩽ r such

S ′ can be extended to a copy S of T [V (T ′) ∪ (∪i∈[s]V (Ti))]. Suppose that s < r. Then,

if ⋄ ∈ {+,−} is such that Ts+1 is attached to T ′ by a ⋄-neighbour, and v ∈ V (S ′) is the

copy of the attachment point, then

d⋄G(v, U \ V (S)) ⩾ 3|V (T ) \ V (T ′)| − |T1| − . . .− |Ts| ⩾ 3|Ts+1|,

and so, by Theorem 1.8, N⋄
G(v, U \ V (S)) contains a copy of Ts+1, contradicting the

maximality of s. Thus, S is a copy of T in G.

While Theorem 1.8 would suffice to prove all of our main results, Theorem 1.2 can

be proven with a significantly lower value of C by instead using Corollary 1.11, which we

derive from the following theorem of Dross and Havet [10].

Theorem 1.10. For each n ⩾ 2, every
⌈
3
2
n+ 3

2
k− 2

⌉
-vertex tournament contains a copy

of every n-vertex oriented tree with k leaves.
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Corollary 1.11. Let n, r, k ⩾ 1, and suppose G is a tournament with at least 3
2
n+ 3

2
k−2r

vertices and T is an oriented forest with n vertices, r components and, in total, k leaves

and isolated vertices. Then, G contains a copy of T .

Proof. Label the components of T as T1, . . . , Tr, and say, for each i ∈ [r], that Ti has ni

vertices and, in total, ki isolated vertices and leaves. Note that ni + 3ki ⩾ 4 for each

i ∈ [r]. Take the largest s ⩽ r for which there are vertex-disjoint subgraphs Si ⊆ G,

i ∈ [s] such that, for each i ∈ [s], Si is a copy of Ti. Suppose s < r, for otherwise we have

already found a copy of T in G, and note that

∣∣∣∣G−
⋃
i∈[s]

V (Si)

∣∣∣∣ ⩾ |G| − n+ ns+1

⩾
∑

i∈[r]\{s+1}

ni + 3ki − 4

2
+

3ns+1

2
+

3ks+1

2
− 2 ⩾

3ns+1

2
+

3ks+1

2
− 2.

Therefore, by Theorem 1.10, G−∪i∈[s]V (Si) contains a copy of Ts+1, a contradiction.

1.3 Embedding results for oriented paths

There will be many places in our proofs where it will be useful to embed a subpath of a

tree into a tournament after the endpoints of the path have already had their embedding

fixed (or, if there is a limited number of candidates for the embedding of the endpoints of

the path). This embedding is most difficult if the path in question is a directed path, and

indeed, embedding such paths will form much of the technical work of Chapter 2. On the

other hand, for paths which instead have at least one change of direction, we can rely on

some established results quoted here.

To discuss the changes of direction in a path and recall these results, we use the

terminology of blocks. A block of an oriented path P is a maximal directed subpath.

When we introduce an oriented path we assume it has an associated overall direction,

and thus a first and last vertex as well as a first block and a last block. When the path
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is a directed path we will always assume the associated direction is the natural one, i.e.,

the one in which the first vertex has no in-neighbours.

We will often embed a path P into a tournament G while furthermore requiring the

first vertex of P to be embedded into a fixed set of two vertices of G (and sometimes also

requiring the last vertex of P to be embedded into another fixed set of two vertices of G).

The following two results of Thomason show this is possible, provided that any restricted

endvertex of P is next to a block of length 1, and also that the G has one more vertex

than P (or two more vertices than P , if both endvertices are restricted).

Theorem 1.12. Let P be an oriented path of order n with first block of length 1. Let G

be a tournament of order n+1 and X be a subset of V (G) of order at least 2. Then, there

is a copy of P in G with first vertex in X.

Theorem 1.13. Let P be a non-directed oriented path of order n with first and last block

of length 1. Let G be a tournament of order n + 2 and X and Y be disjoint subsets of

V (G) of order at least 2. If P does not consist of three blocks with length one, then there

is a copy of P in G with first vertex in X and last vertex in Y .

Theorem 1.12 is a special case of [29, Theorem 1], and Theorem 1.13 is a special case

of [29, Theorem 5]. In Section 3.6.1 we will consider a class of tournaments in which

oriented paths can be robustly embedded. For this, we need a result more general, but

less tight, than those stated above. The following corollary is a direct consequence of

Thomason’s results.

Corollary 1.14. Let P be a non-directed path of order n with at least two blocks. Let G

be a tournament, and let X and Y be subsets of V (G) of order at least n+2. Then, there

is a copy of P in G with first vertex in X and last vertex in Y .

Proof. If P consists of just two blocks, then the result follows from [29, Theorem 3]. If P

consists of exactly three blocks, and the middle block has length 1, then the result follows

from [29, Theorem 4]. In all other cases, the result follows from [29, Theorem 5].
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1.4 Properties of trees

Here we collect a number of elementary properties of oriented trees for use later. Our first

proposition considers the number of maximal bare paths in a (non-oriented) tree with k

leaves, as follows.

Proposition 1.15. An n-vertex tree T with k ⩾ 2 leaves has at most 2k − 3 maximal

bare paths, one of which must have length at least (n − 1)/(2k − 3), and at most 2k − 2

vertices whose degree is not 2.

Proof. For the appropriate r, let P1, . . . , Pr be the maximal bare paths in T , and label

vertices such that, for each i ∈ [r], Pi is an xi, yi-path. Note that the tree T ′ formed

from T by replacing each path Pi, i ∈ [r], by a single undirected edge has r edges, r + 1

vertices, k leaves and no degree 2 vertices. Therefore,

2(|T ′| − 1) = 2e(T ′) =
∑

v∈V (T ′)

dT ′(v) ⩾ k + 2(|T ′| − k) + |{v : dT ′(v) ⩾ 3}|,

and thus |{v : dT ′(v) ⩾ 3}| ⩽ k − 2. As |{v : dT (v) ⩾ 3}| = |{v : dT ′(v) ⩾ 3}|, T has at

most 2k − 2 vertices whose degree is not 2. Furthermore, |T ′| = r + 1 ⩽ k + (k − 2), so

that r ⩽ 2k − 3. Finally, as
∑

i∈[r] ℓ(Pi) = e(T ) = n− 1, one of the paths Pi, i ∈ [r], has

length at least (n− 1)/(2k − 3).

In the main embedding for both Theorem 1.2 and Theorem 1.3, we will embed col-

lections of small subtrees with directed paths between them. The next two propositions

(appropriately applied to an auxiliary oriented tree with vertices representing subtrees

and edges representing paths) will give us an order in which these trees and paths will

be embedded along a median order of the tournament. We use Proposition 1.16 for

Theorem 1.2, and Proposition 1.17 for Theorem 1.3.

Proposition 1.16. Every oriented tree T with n ⩾ 1 vertices has a vertex partition

V (T ) = V1 ∪ . . . ∪ Vs of non-empty sets, for some s ∈ [n], such that, for each edge

e ∈ E(T ), for some i ∈ [s− 1], e is an edge directed from Vi to Vi+1.
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Proof. Noting that the statement is trivially true if |T | ⩽ 2, we prove this by induction

on |T |. Suppose then it is true for all oriented trees with fewer than n ⩾ 3 vertices. We

may assume, by directional duality, that T has an out-leaf. Let T ′ be formed from T

by removing such an out-leaf, t say, and let s ∈ [n − 1] be such that there is a vertex

partition V (T ′) = V1 ∪ . . .∪ Vs of non-empty sets, such that, for each edge e ∈ E(T ′), for

some i ∈ [s− 1], e is an edge directed from Vi to Vi+1. Let Vs+1 = ∅. Let j be such that

the in-neighbour of t in T is in Vj, and add t to Vj+1. Taking the non-empty sets from

V1, . . . , Vs+1 completes the proof of the inductive step, and hence the proposition.

Proposition 1.17. Every n-vertex oriented tree T has labellings V (T ) = {t1, . . . , tn} and

E(T ) = {e1, . . . , en−1}, such that, for every j ∈ [n − 1], there is some i1, i2 ∈ [n] with

i1 ⩽ j < i2 and ej = ti1ti2.

Proof. We proceed by induction on n, noting the proposition is trivial for n = 1. For

n > 1, we may assume, by directional duality, that T has an out-leaf. Let tn be this

out-leaf, and en−1 its adjacent edge. By the inductive hypothesis, there are labellings

V (T−tn) = {t1, . . . , tn−1} and E(T−tn) = {e1, . . . , en−2}, such that, for every j ∈ [n−2],

ej = ti1ti2 for some i1 ⩽ j < i2. Taking V (T ) = {t1, . . . , tn} and E(T ) = {e1, . . . , en−1}

completes the proof.

1.5 Probabilistic results

Parts of our embeddings will be random, or use some reserved random set. To anal-

yse these parts, we will use the following probabilistic bounds. The first is a Chernoff

bound [13, Corollary 2.21], and the second is Hoeffding’s inequality [13, Corollary 2.28].

Lemma 1.18. If X is a binomial variable with standard parameters n and p, denoted

X = Bin(n, p), and ε satisfies 0 < ε ⩽ 3/2, then

P(|X − EX| ⩾ εEX) ⩽ 2 exp
(
−ε2EX/3

)
.
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Theorem 1.19. Let X1, . . . , Xn be independent random variables with Xi bounded by the

interval [ai, bi] for i ∈ [n]. Let X =
∑

i∈[n]Xi. Then, for any t > 0, we have

P(|X − EX| ⩾ t) ⩽ 2 exp

(
− 2t2∑

i∈[n](bi − ai)2

)
.

It will often be convenient for most of the vertices to have large in- and out-degree

into a reserved random set, for which we use the following result.

Proposition 1.20. Fix p > 0. Let G be a tournament with n ⩽ |G| ⩽ 3n. Let U ⊆

V (G) be a random subset, with elements from V (G) chosen independently at random with

probability p. Let V ′ be the set of vertices v ∈ V (G) \U for which d±(v, U) ⩾ p2n. Then,

with high probability, pn/2 ⩽ |U | ⩽ 4pn, and |V (G) \ V ′| ⩽ 12pn.

Proof. By Lemma 1.18 and the fact that pn ⩽ E|U | ⩽ 3pn, we have pn/2 ⩽ |U | ⩽ 4pn

with high probability. If v ∈ V (G) is such that d±G(v) ⩾ 2pn, then, by setting ε = 1/2 in

Lemma 1.18, the probability that d±(v, U) ⩾ p2n fails for v is at most 4 exp (−p2n/6). Any

set of 4pn+1 vertices in G contains a vertex with out-degree at least 2pn and a vertex with

in-degree at least 2pn. So at most 4pn vertices v of G have d+G(v) < 2pn and at most 4pn

vertices ofG have d−G(v) < 2pn. Therefore, the probability that |V (G)\V ′| ⩽ |U |+8pn fails

is at most 12n exp (−p2n/6). So U satisfies both pn/2 ⩽ |U | ⩽ 4pn and |V (G)\V ′| ⩽ 12pn

with high probability.
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CHAPTER 2

EMBEDDING ORIENTED TREES USING
MEDIAN ORDERS

In this chapter we present proofs of the following results, which we recall from the intro-

duction.

Theorem 1.2. There is some C > 0 such that every (n+Ck)-vertex tournament contains

a copy of every n-vertex oriented tree with k leaves.

Theorem 1.3. For each k, there is some n0 such that, for each n ⩾ n0, every (n+k−2)-

vertex tournament contains a copy of every n-vertex oriented tree with k leaves.

To prove Theorems 1.2 and 1.3, we use median orders, a technique first used to embed

trees in tournaments by Havet and Thomassé [17]. In particular, we exploit the property

that pairs of vertices in a median order can be robustly connected by directed paths with

length 3 travelling in the direction of the order (see Lemma 2.4), using this repeatedly in

our embeddings. We have not optimised the value of C reachable with our methods as

this will not reach a plausibly optimal bound, but we show that Theorem 1.2 holds for

some C < 500. We do not calculate an explicit function n0(k) for Theorem 1.3, but our

methods show that we may take n0(k) = kO(k). However, it seems likely some function

n0(k) satisfying Theorem 1.3 with n0(k) = O(k) exists.

We next recall median orders and their basic properties, before proving Lemma 2.4,

a crucial tool in the proofs of this chapter. In Section 2.2 we prove Theorem 1.2, and in

Section 2.3 we prove Theorem 1.3, sketching the proofs beforehand in each case.
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2.1 Median orders

Given a tournament G, an ordering σ = v1, . . . , vn of V (G) is a median order if it max-

imises the number of pairs i < j with vivj ∈ E(G). The following lemma gives two simple

fundamental properties of median orders (see, e.g., [10, Lemma 9]).

Lemma 2.1. Let G be a tournament and v1, . . . , vn a median order of G. Then, for any

two indices i, j with 1 ⩽ i < j ⩽ n, the following properties hold.

(i) vi, vi+1, . . . , vj is a median order of the induced subtournament G[{vi, vi+1, . . . , vj}].

(ii) vi dominates at least half of the vertices vi+1, vi+2, . . . , vj, and vj is dominated by at

least half of the vertices vi, vi+1, . . . , vj−1. In particular, each vertex vi, 1 ⩽ i < n,

dominates its successor vi+1.

Median orders contain short directed paths from any vertex to any vertex later in the

order, as follows (in combination with Lemma 2.1 (i)).

Corollary 2.2. Let n ⩾ 2. If v1, . . . , vn is a median order of the n-vertex tournament G,

then G contains a directed path from v1 to vn with length at most 2.

Proof. Suppose v1vn /∈ E(G), for otherwise such a path exists, and let V = {v2, . . . , vn−1}.

Then, by Lemma 2.1 (ii), |N+(v1, V )| = |N+(v1)| ⩾ n−1
2
> |V |/2. Similarly, |N−(vn, V )| >

|V |/2. Therefore, there is some w ∈ V such that v1wvn is a directed path.

Median orders have been used particularly effectively to embed arborescences in tour-

naments. An out-arborescence (respectively, in-arborescence) is an oriented tree T with

a root vertex t ∈ V (T ) such that, for every v ∈ V (T ), the path between t and v in T

is directed from t to v (respectively, from v to t). Dross and Havet [10] used median

orders to prove that any (n + k − 1)-vertex tournament contains a copy of any n-vertex

arborescence with k leaves. We will use their result in the following slightly stronger form

(see [10, Theorem 12]).
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Theorem 2.3. Let A be an n-vertex out-arborescence with k ⩾ 1 out-leaves and root r.

Let G be a tournament on n+ k− 1 vertices and let σ = v1, . . . , vn+k−1 be a median order

of G. Then, there is an embedding ϕ of A in G such that ϕ(r) = v1.

In both the proofs of Theorem 1.2 and 1.3, we will take a median order, σ = v1, . . . , vm

say, of an m-vertex tournament, G say, and carefully partition this order into intervals

before embedding different parts of the tree into each interval. Having found parts of a

tree in distinct intervals, we will often wish to join two of them with a directed path. The

following lemma shows that this is possible across a median order, even in cases where

the interval in between the vertices to be joined contains some forbidden vertices.

Lemma 2.4. Suppose G is an n-vertex tournament with a median order σ = v1, . . . , vn.

Then, for any set A ⊆ V (G) \ {v1, vn} with |A| ⩽ (n− 8)/6, there is a directed v1, vn-path

in G− A with length 3.

Proof. If there are some distinct x, y ∈ (N+
G (v1)∩N

−
G (vn))\A, then assume, by relabelling

if necessary, that xy ∈ E(G) and observe that v1xyvn is a path with length 3 in G − A,

as required. Therefore, suppose that |(N+
G (v1) ∩N

−
G (vn)) \ A| ⩽ 1.

By Lemma 2.1 (ii), we have |N+
G (v1) \ {vn}|, |N

−
G (vn) \ {v1}| ⩾ (n − 2)/2. Let B1 =

N+
G (v1)\(A∪N

−
G (vn)∪{vn}) and B2 = N−

G (vn)\(A∪{v1}). Note that |B1| ⩾ n/2−2−|A| >

0 and |B2| ⩾ n/2− 1− |A|. Let B0 = V (G) \ (B1 ∪B2 ∪ {v1, vn}), so that

|B0| = n− 2− |B1| − |B2| ⩽ n− 2− (n/2− 2− |A|)− (n/2− 1− |A|) = 2|A|+ 1. (2.1)

Colour vertices in B0, B1 and B2 respectively green, red and blue. If any blue vertex,

x say, has a red in-neighbour, y say, then v1yxvn is a path with length 3 in G − A, as

required. Therefore, suppose that every in-neighbour of each blue vertex is a green vertex

or a blue vertex, for otherwise we have the desired path.

Let j be the largest integer such that vj is blue. Let A1 = A ∩ {v2, . . . , vj−1} and

A2 = A ∩ {vj+1, . . . , vn−1}, so that |A1|+ |A2| = |A|. For the appropriate r, let I1, . . . , Ir

be the maximal intervals of v2, . . . , vj−1 consisting of only red and green vertices. Observe
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that, for each i ∈ [r], the vertex after Ii in σ is blue, and has at least |Ii|/2 in-neighbours

in Ii by Lemma 2.1 (ii), all of which must be green. Thus, every interval Ii, i ∈ [r],

contains at least as many green vertices as red vertices.

As every red or green vertex before vj in σ is in some interval Ii, i ∈ [r], we have that

there are at least as many green vertices as there are red vertices in {v2, . . . , vj−1}. As

|N+
G (v1)∩ {v2, . . . , vj}| ⩾ (j − 1)/2 by Lemma 2.1 (ii), at least (j − 1)/2− |A1| − 1 of the

vertices in {v2, . . . , vj−1} are red. Therefore, there are at least (j − 1)/2− |A1| − 1 green

vertices in {v2, . . . , vj−1}. By (2.1) and the definition of A2, we have that there at most

2|A|+1−|A2| green vertices in {v2, . . . , vj−1}. Thus, 2|A|+1−|A2| ⩾ (j−1)/2−|A1|−1.

Rearranging, and using that |A1|+ |A2| = |A|, we get 3|A| ⩾ 2|A2|+ j/2− 5/2.

Now, by Lemma 2.1 (ii), |N−
G (vn) ∩ ({vj+1, . . . , vn−1})| ⩾ (n − 1 − j)/2, so, as vj is

the last blue vertex in σ, there are at least (n − 1 − j)/2 vertices in A2. Thus, 3|A| ⩾

2|A2| + j/2 − 5/2 ⩾ (n − j) + j/2 − 7/2 = n − j/2 − 7/2. As j ⩽ n − 1, we have

3|A| ⩾ (n− 6)/2, contradicting that |A| ⩽ (n− 8)/6.

2.2 Proof of Theorem 1.2

In Section 2.2.1, we use the results quoted in Section 1.3 to show that it is enough to

prove Theorem 1.2 in the case where all bare paths of T are directed. That is, we reduce

the proof to showing the following result.

Theorem 2.5. There is some C > 0 such that each (n+Ck)-vertex tournament contains

a copy of every n-vertex oriented tree with k leaves in which every bare path is a directed

path.

To prove Theorem 2.5, we first remove O(k) long directed paths from T to leave a

forest with size linear in k. The components of this forest we embed into carefully chosen

intervals of a median order with O(k) spare vertices in total, using Corollary 1.11. It

remains then to embed the long directed paths, where we only have a constant number

of spare vertices per path. This we do with Lemma 2.6 in Section 2.2.2. A simple
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modification of Dross and Havet’s procedure for embedding arborescences into median

orders (which they used to prove Theorem 2.3) allows directed paths from specified first

vertices to be embedded efficiently into a median order. To embed such paths with both

endvertices specified, we adapt this procedure, using it to embed most of the directed

paths, but, as soon as all but three edges of any path are embedded, using Lemma 2.4 to

connect the path to its desired last vertex. This allows us to find a set of directed paths

while having only constantly many spare vertices per path (see Lemma 2.6), which we

use to prove Theorem 2.5 in Section 2.2.3.

2.2.1 Reduction to trees with only directed bare paths

To prove Theorem 1.2 from Theorem 2.5, we take a tree T , remove most of the middle

section of the maximal bare paths with at least 6 blocks, and duplicate each new leaf

created by this removal. (Here, a duplicated vertex is a new vertex with exactly the same

in- and out-neighbourbood as the matching original vertex.) Calling the resulting forest

T ′, if we have an embedding of T ′ then the duplication of a leaf gives us two options to

embed the original vertex from T . This will allow us to use the results in Section 1.3 to

embed the deleted path given enough other vertices in the tournament (with no further

restriction on these other vertices).

Not every maximal bare path in T ′ will be directed, but each such path will have at

most 5 blocks. Adding a dummy leaf at any vertex in two blocks will give a forest T ′′

containing T ′ whose maximal bare paths are all directed, allowing us to apply Theorem 2.5

to each component. Importantly, T ′, and hence T ′′, will still have O(k) leaves.

Proof of Theorem 1.2 from Theorem 2.5. Using Theorem 2.5, let C ⩾ 8 be large enough

that, for every n̄ and k̄, every (n̄+ (C − 8)k̄)-vertex tournament contains a copy of every

n̄-vertex oriented tree with (at most) 9k̄ leaves in which every bare path is a directed

path. Let G be an (n + Ck)-vertex tournament, and let T be an n-vertex oriented tree

with k leaves.
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For the appropriate r, let P1, . . . , Pr be the maximal bare paths in T , and label vertices

such that, for each i ∈ [r], Pi is an xi, yi-path. By Proposition 1.15, we have r ⩽ 2k − 3.

Let I ⊆ [r] be the set of i ∈ [r] such that Pi has at least 6 blocks.

For each i ∈ I, let P
(1)
i and P

(2)
i be the first two blocks of Pi from xi, and let P

(3)
i and

P
(4)
i be the first two blocks of Pi from yi. Let e

(1)
i be the furthest edge of P

(2)
i from xi on Pi,

and let e
(2)
i be the furthest edge of P

(4)
i from yi on Pi. Let Qi = (Pi−

∑4
j=1 P

(j)
i )+e

(1)
i +e

(2)
i .

Note that, for each i ∈ I, the first and last block of Qi have length 1, its endvertices

have degree 2 in T , and it has at least 4 blocks (and thus length at least 4). Label vertices

so that, for each i ∈ I, Qi is a ui, vi-path. Let T
′ be the forest formed from T by, for each

i ∈ I, deleting the edges of Qi and creating two new vertices, u′i and v
′
i, so that u′i is a

duplicate of ui and v
′
i is a duplicate of vi. Note that ui, u

′
i, vi and v

′
i are all leaves of T ′.

Let B be the set of vertices with degree 2 in T ′ with either no in-neighbour or no

out-neighbour, so that they lie in the intersection of two (consecutive) blocks. Observe

that each such vertex must lie on some path Pi, i ∈ [r] \ I, or on P (1)
i ∩P (2)

i or P
(3)
i ∩P (4)

i

for some i ∈ I. Therefore, |B| ⩽ 4(r − |I|) + 2|I|. Now, form T ′′ from T ′ by taking each

v ∈ B and adding a new out-neighbour as a leaf, calling the new vertex uv. We note here

that all bare paths of T ′′ are directed paths.

Note that, if T̄ is a component of T ′, and q is the number of paths Qi adjacent to T̄

that are deleted when forming T ′ from T , then T̄ has at most k− q+2q ⩽ k+ |I| leaves.

Furthermore, T ′ has in total n+2|I| −
∑

i∈I(|Qi| − 2) ⩽ n+2|I| − 3|I| = n− |I| vertices.

Therefore, as r ⩽ 2k− 3, each component of T ′′ has at most k+ |I|+ |B| ⩽ 9k leaves and

T ′′ in total has at most n− |I|+ |B| ⩽ n+ 8k vertices. Iteratively and vertex-disjointly,

embed as many different components from T ′′ into G as possible. If a component of T ′′,

say a tree T̄ with n̄ vertices and k̄ leaves, is left unembedded then there are at least

|G| − (|T ′′| − |T̄ |) ⩾ (n+ Ck)− (n+ 8k) + n̄ ⩾ n̄+ (C − 8)k

vertices not used in the embedding, and k̄ ⩽ 9k. Thus, by the choice of C, we can embed
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T̄ using the unused vertices in G, a contradiction. Thus, G contains a copy of T ′′, S ′′ say.

For each v ∈ B, delete the copy of uv from S ′′, and let the resulting copy of T ′ be S ′.

Note that, as C ⩾ 8 and |I| ⩽ 2k − 3,

|V (G) \ V (S ′)| = n+ Ck − |T ′| = n+ Ck −
(
n+ 2|I| −

∑
i∈I

(|Qi| − 2)
)
⩾
∑
i∈I

(|Qi| − 2),

and take vertex disjoint sets Ai, i ∈ I, in V (G) \V (S ′) with |Ai| = |Qi|− 2 for each i ∈ I.

For each i ∈ I, let ūi, ū
′
i, v̄i, v̄

′
i be the copy of ui, u

′
i, vi, v

′
i respectively in S ′. Using

Theorem 1.13, for each i ∈ I, find a copy of Qi, say Ri, in G[Ai ∪ {ūi, ū′i, v̄i, v̄′i}] starting

at ūi or ū
′
i and ending at v̄i or v̄

′
i. Take then S ′, and, for each i ∈ I, delete from T ′ any

vertices in {ūi, ū′i, v̄i, v̄′i} which are not an endvertex of Ri and add the path Ri. Note that

this gives a copy of T .

2.2.2 Joining vertex pairs with directed paths disjointly

We now connect multiple pairs of vertices with directed paths, where the start vertex for

each path lies in a set B1, and the end vertex lies in another set B2, and the vertices of

B1 come before the vertices of B2 in a median order. With Lemma 2.4 we can find such

paths; the challenge here is to find these paths when they collectively must use almost all

of the intermediate vertices in the median order. To do this, we find most of the paths

using a procedure of Dross and Havet [10] for embedding arborescences, modifying it with

Lemma 2.4 to attach each path to the correct end vertex when most of the path has been

found.

Lemma 2.6. Let G be an (m0 + m1 + m2)-vertex tournament, and suppose σ =

v1, . . . , vm0+m1+m2 is a median order of G. Let B1 ⊆ V (G) be the first m1 vertices of

G according to σ, let B2 ⊆ V (G) be the last m2 vertices of G according to σ, and let

B0 = V (G) \ (B1 ∪B2). Let (x1, . . . , xr) ∈ Br
1 and (y1, . . . , yr) ∈ Br

2. For each i ∈ [r], let
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ℓi ⩾ 5. Suppose finally that

m0 ⩾ m1 +m2 +
∑
i∈[r]

ℓi + 22r − 15. (2.2)

Then, there are internally vertex-disjoint directed paths P1, . . . , Pr in G such that, for each

i ∈ [r], Pi is a directed xi, yi-path with length ℓi and internal vertices in B0.

Proof. Let B′
1 be the first (m1 + 2r − 2) vertices of B0 according to σ, and let B′

2 be the

last (m2 + 2r − 2) vertices of B0 according to σ. Choose a set X ′ = {x′1, . . . , x′r} ⊆ B′
1 of

distinct vertices such that x′i ∈ N+(xi) for each i ∈ [r]. This is possible as, if for i ∈ [r] we

have chosen x′1, . . . , x
′
i−1, letting Ui = {w ∈ B1 : xi <σ w ⩽σ vm1}, then Lemma 2.1 (ii)

gives

|N+(xi, B
′
1) \ {x′1, . . . , x′i−1}| = |N+(xi, Ui ∪B′

1) \ (Ui ∪ {x′1, . . . , x′i−1})|

⩾
|Ui|+ |B′

1|
2

− |Ui| − |{x′1, . . . , x′i−1}| =
|B′

1| − |Ui|
2

− (i− 1)

⩾
(m1 + 2r − 2)− (m1 − 1)

2
− (r − 1) > 0.

Similarly, choose a set Y ′ = {y′1, . . . , y′r} ⊆ B′
2 of distinct vertices such that y′i ∈ N−(yi)

for each i ∈ [r].

Let A be a digraph formed by taking the disjoint union of directed paths Qi, i ∈ [r],

where Qi has length ℓi − 5 for each i ∈ [r]. For i ∈ [r], let bi be the first vertex and ci be

the last vertex of Qi. Note that A has
∑

i∈[r](ℓi − 4) vertices.

Let n1 = m0 − m2 − 20r + 13. We now give a procedure which produces a partial

embedding ϕ of A into G[{vm1+1, . . . , vm1+n1}]. Throughout, if a vertex vj of G is the

image of a vertex of A, we say that it is hit and denote its pre-image by aj ∈ V (A). The

sets Wj record vertices of G already used for the last two internal vertices of the paths

P1, . . . , Pr found by stage j.

• Initially, set Wm1+1 = ∅ and ϕ(bi) = x′i for each i ∈ [r] (so that x′1, . . . , x
′
r are hit).

• For j = m1 + 1 to m1 + n1 in turn, do the following.
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(a) If vj is hit and aj = ci for some i ∈ [r], then, if possible, let wi,1, wi,2 ∈

{vj+1, . . . , vm1+m0} \ (Wj ∪ Y ′) be such that wi,1 and wi,2 are not yet hit, and

vj → wi,1 → wi,2 → y′i in G. Set Wj+1 = Wj ∪ {wi,1, wi,2}. If it is not possible

to find such a wi,1 and wi,2, then simply set Wj+1 = Wj.

(b) If vj is hit and aj /∈ {c1, . . . , cr}, then extend ϕ if possible by assigning the first

not-yet-hit out-neighbour of vj in {vj+1, . . . , vm1+n1}\Wj to the out-neighbour

of aj in A. Set Wj+1 = Wj.

(c) If vj ∈ Wj, then set Wj+1 = Wj.

(d) If vj /∈ Wj and vj is not hit, then say that vj is failed. Set Wj+1 = Wj.

Note that, for each m1+1 ⩽ j ⩽ m1+n1, the vertices in Wj are never hit, so that this

procedure is well-defined. We first show that the paths with length 3 in (a) are always

found, as follows.

Claim 2.7. For each m1+1 ⩽ j ⩽ m1+n1, if vj is hit and aj = ci for some i ∈ [r], then

the procedure finds vertices wi,1 and wi,2 as described in (a).

Proof of Claim 2.7. Suppose j satisfies m1 + 1 ⩽ j ⩽ m1 + n1, vj is hit and aj = ci for

some i ∈ [r], so that, at stage j, we carry out (a). Let s denote the number of times

(a) was carried out before stage j. As Wj contains only vertices found in these previous

instances of (a), we have |Wj| ⩽ 2s.

At stage j, each pathQi has at most one vertex embedded by ϕ to {vj, vj+1, . . . , vm1+n1}.

Moreover, if a path Qi has a vertex embedded by ϕ to {vj+1, . . . , vm1+n1}, then (a) has not

been carried out for that ci. Thus, at most r − 1 − s vertices in {vj+1, . . . , vm1+n1} have

been hit. Let W ′ be the union of Wj, Y
′ \ {y′i}, and the hit vertices in {vj+1, . . . , vm1+n1}.

Thus, as s ⩽ r − 1,

|W ′| ⩽ 2s+ (r − 1) + (r − 1− s) ⩽ 3(r − 1). (2.3)

Let j′ be such that vj′ = y′i, and note that, as y′i ∈ B′
2, j

′ ⩾ m1 +m0 −m2 − 2r + 3,
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so that, as n1 = m0 −m2 − 20r + 13, we have

j′ − j + 1 ⩾ m1 +m0 −m2 − 2r + 4−m1 − n1 = 18(r − 1) + 9 ⩾ 6|W ′|+ 9. (2.4)

Therefore, by Lemma 2.4, vertices wi,1 and wi,2 exist in {vj, vj+1, . . . , vj′}\(Wj∪Y ′) which

have not yet been hit so that vj → wi,1 → wi,2 → vj′ = y′i in G. ⊡

If the procedure finds a full embedding of A into G[{vm1+1, vm1+2, . . . , vm1+n1}], then

observe that, for each i ∈ [r], the image of Qi and the path ϕ(ci) → wi,1 → wi,2 → y′i

together give a path, P ′
i say, with length ℓi − 2 which is directed from ϕ(bi) = x′i to y

′
i.

Furthermore, the paths P ′
i , i ∈ [r], are vertex-disjoint with vertices in B0. Taking Pi to

be the path xiP
′
iyi for each i ∈ [r] gives the desired result.

All that remains to show is that the procedure produces a full embedding ϕ of A. Let

W = Wm1+n1+1 and note that |W | ⩽ 2r. Assume for a contradiction that the procedure

does not yield an embedding of A into G. Then the set, F say, of failed vertices in

{vm1+1, . . . , vm1+n1} has |F | > n1 − |A| − |W |. Let U ⊆ V (A) be the set of embedded

vertices at the end of the procedure. Let L be the set of vertices of A which are the last

embedded vertex on some path Qi. Note we have |L| = r.

Say a vertex a ∈ V (A) is active at stage j if ϕ(a) ∈ {vm1+1, . . . , vj−1} and a has

an out-neighbour b that is not embedded in {vm1+2, . . . , vj} (i.e., either b is not em-

bedded or ϕ(b) ∈ {vj+1, . . . , vm1+n1}). Now, if vj ∈ F comes before some vertex in

X ′ = {x′1, . . . , x′r} ⊆ B′
1, then it is possible there will be no active vertex at stage j.

However, because we have assumed that the procedure does not yield an embedding of A

into G, if vj ∈ F and j ⩾ 2m1 + 2r − 1, then there must be some active vertex at stage

j, for otherwise all the vertices of A would be embedded in {vm1+1, . . . , vj−1}.

Let F̄ = {vj ∈ F : j ⩾ 2m1 + 2r − 1}, so that, for each vj ∈ F̄ we can define rj to be

the largest index such that arj is active for j. Note, by the definition of an active vertex,

rj < j. Furthermore, as |F | > n1 − |A| − |W |, B′
1 = {vm1+1, . . . , v2m1+2r−2} contains at
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least r vertices in the embedding (those in X ′), and |A| =
∑

i∈[r](ℓi − 4), we have

|F̄ | > n1−|A|−|W |−(m1+2r−2−r) ⩾ m0−m2−20r+13−
∑
i∈[r]

ℓi+r−m1+2
(2.2)

⩾ 3r. (2.5)

For each vj ∈ F̄ , set Ij = {vi : rj < i ⩽ j}. We now bound from above the number of

vertices of F̄ in Ij, as follows.

Claim 2.8. If vj ∈ F̄ , then |Ij ∩ F | ⩽ |Ij ∩ ϕ(L)|+ |Ij ∩W |.

Proof of Claim 2.8. Let J = (Ij ∩ N+(vrj)) \ W . As the out-neighbour of arj is never

embedded in Ij, all the vertices in J must be hit by the start of stage rj. Thus, as

F ∩W = ∅, we have Ij ∩ F ⊆ Ij ∩N−(vrj), so that

|Ij ∩ F | ⩽ |Ij ∩N−(vrj)|. (2.6)

Now, let Arj and Aj−1 be the sub-digraphs of G[vm1+1, . . . , vj] which are the image of

the partial embedding ϕ at the end of stage rj and stage j − 1, respectively, restricted to

the vertex set {vm1+1, . . . , vj}. Observe the following.

• Each vertex of J is the last vertex of a path of Arj , as it is hit by the end of stage

rj and occurs later in σ than rj.

• Any vertex in Ij which is the last vertex of some path of Aj−1 must be the image

of some ci, for otherwise it is active for j, contradicting the definition of rj. Thus,

because L is the set of vertices of A which are the last embedded vertex on some

path Qi, such a vertex is in Ij ∩ ϕ(L).

• As rj ⩽ j − 1, Arj ⊆ Aj−1, and V (Aj−1) \ V (Arj) ⊆ Ij, so Aj−1 must have at least

as many paths terminating in Ij as Arj does.

Combining these three observations we have |J | ⩽ |Ij ∩ ϕ(L)|, and hence

|Ij ∩N+(vrj)| ⩽ |Ij ∩ ϕ(L)|+ |Ij ∩W |. (2.7)
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Now, by Lemma 2.1 (ii), |Ij ∩ N−(vrj)| ⩽ |Ij ∩ N+(vrj)|. Together with (2.6) and (2.7),

this proves the claim. ⊡

Let M be the set of indices j such that vj ∈ F̄ , and Ij is maximal for inclusion among

the sets Ii, with vi ∈ F̄ . We will show that the sets Ij, j ∈ M are disjoint. If i, j ∈ M

with i < j and Ii ∩ Ij ̸= ∅, then we have rj < i. Observe that, as arj is active for j and

ϕ(arj) ∈ {v0, . . . , vi−1}, arj is also active for i, and hence ri ⩾ rj. Thus, Ii ⊆ Ij and, as

i < j, Ii ̸= Ij, and hence Ii is not maximal for inclusion among the sets Ii′ , with vi′ ∈ F̄ ,

a contradiction.

Since vj ∈ Ij for all vj ∈ F̄ , we have F̄ ⊆ ∪j∈MIj. As the sets Ij, j ∈M , are pairwise

disjoint, |F̄ | ⩽
∑

j∈M |Ij ∩ F |. By Claim 2.8, we therefore obtain

|F̄ | ⩽
∑
j∈M

|Ij ∩ F | ⩽
∑
j∈M

(|Ij ∩ ϕ(L)|+ |Ij ∩W |) ⩽ |ϕ(L)|+ |W | ⩽ 3r,

contradicting (2.5). This completes the proof of the lemma. □

2.2.3 Proof of Theorem 2.5

Given Lemma 2.6 it is now straight-forward to prove Theorem 2.5. Given an n-vertex

oriented tree T with k leaves whose maximal bare paths are directed, we label such paths

with length at least 5 as P1, . . . , Pr, for the appropriate r (which, by Proposition 1.15,

satisfies r = O(k)). We can then consider T to be formed of small vertex-disjoint subtrees

T1, . . . , Tr+1 connected by the paths P1, . . . , Pr. We use Proposition 1.16 to group these

subtrees into classes, with the classes ordered so that each path Pi goes from some class

to the next class. Given then a tournament G with n+ 50k vertices, we divide a median

order into intervals, with one interval for each class of subtrees and one for the set of paths

between each pair of consecutive classes (see (2.9)). Then, we then use Corollary 1.11 to

embed the subtrees Ti into their interval in the median order before using Lemma 2.6 to

embed the paths Pi with interior vertices in their interval in the median order.
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Proof of Theorem 2.5. We will prove this with C = 50, so let n̄ = n + 50k. Let T be

an n-vertex oriented tree with k leaves in which every bare path is a directed path, and

let G be a n̄-vertex tournament. Let B be the set of vertices of T which do not have

degree 2, so that, by Proposition 1.15, |B| ⩽ 2k − 2. Remove all maximal bare paths

of length at least 5 from T . Let r be the number of removed paths, noting that, by

Proposition 1.15, r ⩽ 2k − 3, and label these paths as P1, . . . , Pr (where we recall ℓ(Pi)

denotes the length of Pi). Say the remaining forest F has component trees T1, . . . , Tr+1,

and, for each i ∈ [r + 1], let ki be the number of leaves of Ti if |Ti| ⩾ 2, and let ki = 1 if

|Ti| = 1. Note that F is a union of (|B| − 1 − r) maximal bare paths of T with length

at most 4 between vertices in B, resulting in a forest with r + 1 components. Thus, we

have that |F | ⩽ |B|+3(|B| − 1− r) ⩽ 8k− 3r− 11. Observing that every leaf or isolated

vertex of F is in B, we have
∑

i∈[r+1] ki ⩽ |B| ⩽ 2k − 2. We also note that

|F | =
∑

i∈[r+1]

|Ti| and
∑
i∈[r]

ℓ(Pi) = |T | − |F |+ r = n−
∑

i∈[r+1]

|Ti|+ r. (2.8)

Let S be the oriented tree on vertex set [r + 1] with ij ∈ E(S) whenever there is a

directed path from Ti to Tj in T . By applying Proposition 1.16 to S, let s ⩽ r + 1 be

such that there is a partition I1, . . . , Is of [r + 1] into non-empty sets such that, for each

distinct i, j ∈ [r+1], and i′ ∈ [s], if i ∈ Ii′ and there is a directed path from Ti to Tj in T ,

then i′ < s and j ∈ Ii′+1. For each i ∈ [s− 1], let Ji be the set of indices j ∈ [r] such that

Pj is directed from Ti′ to Tj′ for some i′ ∈ Ii and j
′ ∈ Ii+1, and note that ∪i∈[s−1]Ji = [r].

Let σ = v1, . . . , vn̄ be a median order of G. In this median order take consecutive

intervals

V1, U1, V2, U2, V3, . . . , Vs−1, Us−1, Vs, (2.9)

appearing in that order, such that, for each j ∈ [s],

|Vj| =

⌈
3

2

∑
i∈Ij

(|Ti|+ ki)

⌉
− 2|Ij| ⩽

3

2

∑
i∈Ij

(|Ti|+ ki) +
1

2
− 2|Ij|, (2.10)
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and, for each j ∈ [s− 1],

|Uj| = |Vj|+ |Vj+1|+
∑
i∈Jj

ℓ(Pi) + 22|Jj| − 15. (2.11)

Note that this is possible, as

s∑
j=1

|Vj|+
s−1∑
j=1

|Uj|
(2.11)

⩽ 3
s∑

j=1

|Vj|+
∑
j∈[r]

ℓ(Pj) + 22
∑

j∈[s−1]

|Jj| − 15(s− 1)

(2.10)

⩽
9

2

∑
i∈[r+1]

(|Ti|+ ki) +
3

2
s− 6

s∑
j=1

|Ij|+
∑
j∈[r]

ℓ(Pj) + 22r − 15(s− 1)

(2.8)

⩽ n+ r +
7

2
|F |+ 9

2

∑
i∈[r+1]

ki − 6(r + 1) + 22r

⩽ n+
7

2
(8k − 3r − 11) +

9

2
(2k − 2) + 17r − 6

⩽ n+ 37k +
13

2
r ⩽ n+ 50k,

where we have used that r ⩽ 2k − 3. By Corollary 1.11 and (2.10), a copy of ∪i∈IjTi

exists in G[Vj] for each j ∈ [s]. By Lemma 2.6 and (2.11), for each j ∈ [s − 1], the |Jj|

paths Pi, i ∈ Jj, between ∪i∈IjTi and ∪i∈Ij+1
Ti can then be embedded in the intervals

Vj, Uj, Vj+1 with the appropriate first and last vertex in Vj and Vj+1, respectively, and

internal vertices in Uj. This completes the embedding of T , and hence the proof of the

theorem.

2.3 Proof of Theorem 1.3

We now turn to Theorem 1.3, where we aim to embed to embed an n-vertex oriented

tree T with k ≪ n leaves in an arbitrary (n+ k − 2)-vertex tournament. This is not too

difficult if T contains a long path P which has first and last block of length 1 and whose

endvertices have degree 2 in T . Indeed, similar to the previous reduction in Section 2.2.1,

each component of T−P can be embedded separately using Theorem 1.2 (with duplicated
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vertices for the endpoints of P ), and then an appropriate result from Section 1.3 can be

used to extend the embedding to a full copy of T . Therefore, the most difficult cases for

consideration will be when the bare paths of T have few changes of direction.

Thus, as an illustrative case, let us first sketch Theorem 1.3 for trees consisting of a

directed path between two arborescences, as follows. Suppose we have a directed path

P , an in-arborescence S with root the first vertex of P , and an out-arborescence S ′

with root the last vertex of P , and suppose that S ∪ P ∪ S ′ is an oriented tree with n

vertices. Say S has k in-leaves and S ′ has k′ out-leaves, and the tournament G has m :=

n+k+k′−2 vertices and a median order v1, . . . , vm. Using Lemma 2.1 (i) and Theorem 2.3

(via directional duality), we can embed S into G[{v1, . . . , v|S|+k−1}] with the root vertex

embedded to v|S|+k−1. Similarly, we can embed S ′ into G[{vm−|S′|−k′+2, . . . , vm}] with

the root vertex of S ′ embedded to vm−|S′|−k′+2. Finally, by Lemma 2.1 (ii), we have

v|S|+k−1 → v|S|+k → . . . → vm−|S′|−k′+2, so we can use this path to embed the n − |S| −

|S ′|+ 2 = m− |S| − |S ′| − k − k′ + 4 vertices of P and complete an embedding of T into

G.

Essentially, all our embeddings will look like this, where P will be a very long path,

but with some additional subtrees and paths found within the interval we use to embed

P . For example, suppose now the tree T also has a subtree F which shares one vertex,

t say, with S, where t only has out-neighbours in F . If P is a long path (compared

to |F |, |S|, |S ′|) then we can embed T = F ∪ S ∪ P ∪ S ′ into a tournament G with

m := |T | + k + k′ − 2 vertices as follows. Carry out the above embedding of S and S ′

into the start and end respectively of a median order v1, . . . , vm of G and note that the

path Q := v|S|+k−1 → v|S|+k → . . . → vm−|S′|−k′+2 has |F | − 1 + |P | vertices. If s is the

embedding of t ∈ V (S), then by Lemma 2.1 (ii) and as |Q| ⩾ |P | − 1 ≫ |F |, |S|, s will

have many out-neighbours in this path, enough that we can easily embed F − t among

the out-neighbours of s in Q (using, in particular, Corollary 1.11). However, we wish to

do this so that there is a directed path between v|S|+k−1 and vm−|S′|−k′+2 covering exactly

the |Q| − (|F | − 1) = |P | vertices of V (Q) which are not used to embed F − t.
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To do this, before embedding F , we first find a short directed v|S|+k−1, vm−|S′|−k′+2-

path R with vertices in V (Q) so that every vertex in V (Q) has at least one out-neighbour

on R occurring after some in-neighbour on R. Obtaining this property is straightforward,

by ensuring R covers a randomly selected subset of V (Q). The path R will be short

enough that we can embed F − t in the out-neighbours of s in V (Q) while avoiding V (R).

Once F − t has been embedded, we slot the remaining vertices in V (Q) into R one by

one. This will be easy as, even after some vertices have been slotted into the R, every

vertex v in V (Q) will still have an out-neighbour on R occurring after some in-neighbour

on R, allowing us to find consecutive vertices u1, u2 on R such that u1 → v → u2, thus

enabling the insertion of v also (see Claim 2.13). Note that, in the language of absorption

(as codified by Rödl, Ruciński and Szemerédi [27]), R is a path which can absorb any set

of vertices from the interval of the median order between its first and last vertex.

More generally, we can embed small trees attached with an out-edge from S ∪P ∪ S ′,

as long as the attachment point is not too late in P , and also not in S ′, by embedding

such small trees within the interval for the path P . Similarly, we can embed small trees

attached with an in-edge from S ∪ P ∪ S ′, as long as the attachment point is not too

early in P , and also not in S. We can also use Lemma 2.4 to add short paths between

vertices in the interval from P that are not too close together. We therefore decompose

any n-vertex tree T with k leaves by finding a digraph D which can be built in this way

and which contains T .

Roughly speaking, we call the digraph D a good decomposition for T if it contains T

and can be built from some S∪P∪S ′ as described above by adding digraphs in these ways;

this is defined precisely in Section 2.3.1. In Section 2.3.2, we show that there is a good

decomposition for any tree without a subpath that we could otherwise deal with using

Section 1.3 as before. Then, in Section 2.3.3, we show it is possible to embed any good

decomposition of any n-vertex tree with k leaves into an (n+ k − 2)-vertex tournament.

In fact, only leaves inside S and S ′ will contribute to the number of vertices needed to

embed a good decomposition, implying fewer than n+ k− 2 vertices are needed in many

33



cases. Finally, in Section 2.3.4, we put this together to prove Theorem 1.3.

2.3.1 (r,m)-good decompositions

We now define a good decomposition precisely, using the following definition of a path

partition.

Definition 2.9. Say a sequence of paths P1 . . . Pℓ is a path partition of a path P if

P = ∪i∈[ℓ]Pi and, for each i ∈ [ℓ− 1], the end vertex of Pi is the start vertex of Pi+1, and

all the paths are otherwise pairwise vertex disjoint.

Roughly speaking, as depicted in Figure 2.1, an (r,m)-good decomposition for a tree

T is a digraph D with T ⊆ D, such that D can be constructed by taking a long directed

path P from the root of an in-arborescence S1 to the root of an out-arborescence Sr+1,

attaching small forests Fi to a limited number of well-separated subpaths Si of P , and,

finally, attaching short directed paths Qi between some of these well-separated subpaths

and forests. More precisely, we define an (r,m)-good decomposition as follows.

Definition 2.10. Say that a digraph D is an (r,m)-good decomposition for an n-vertex

oriented tree T if V (D) = V (T ), and, for some distinct x, y ∈ V (D), there is a directed

x, y-path P with path partition

P = P1S2P2S3 . . . Pr−1SrPr, (2.12)

an in-arborescence S1 with root x, an out-arborescence Sr+1 with root y, and

• forests F+
i , F−

i , i ∈ [r + 1], and

• for some 0 ⩽ ℓ ⩽ 2r, vertices si, ti and directed si, ti-paths Qi, i ∈ [ℓ],

such that, letting Fi = F−
i ∪ F+

i for each i ∈ [r + 1], the following hold.

A1 T ⊆ S1 ∪ P ∪ Sr+1 ∪ (∪i∈[r+1]Fi) ∪ (∪i∈[ℓ]Qi) = D.
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Figure 2.1: An (r,m)-good decomposition.

A2 The following sets, over i ∈ [r + 1] and j ∈ [ℓ], form a partition of V (T ) = V (D):

V (P ), V (F+
i )\V (Si), V (F−

i )\V (Si), V (S1)\{x}, V (Sr+1)\{y}, V (Qj)\{sj, tj}.

A3 For each i ∈ [r], Pi has length at least 2000m.

A4 For each i ∈ [r + 1] and ⋄ ∈ {+,−}, V (Si) ⊆ V (F ⋄
i ), |F ⋄

i | ⩽ m, and F ⋄
i is a forest

in which each component has exactly one vertex in Si, which furthermore has only

⋄-neighbours in F ⋄
i .

A5 E(F−
1 ) = E(F+

r+1) = ∅ and |S1|, |Sr+1| ⩾ 2.

A6 The total number of in-leaves of S1 and out-leaves of Sr+1 is at most the number of

leaves of T .

A7 For each i ∈ [ℓ], one of the following holds.

A7.1 For some 1 ⩽ j < j′ ⩽ r + 1, Qi is a directed path from Fj to Fj′ with length

3(j′ − j) + 1.

A7.2 For some 2 ⩽ j ⩽ r, Qi is a directed path with length 3 from V (F−
j ) \ V (Sj)

to the last vertex of Sj.

It should be noted that, in our proof, D will be almost identical to T , with only a few

possible additional edges to ensure P is indeed a directed path from S1 to S2. Strictly

speaking, these edges are included only for the sake of illustration, as the presence of P

helps indicate the link between the embeddings in the proof and the embeddings in the
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examples sketched earlier. For the embeddings in the proof, all extra edges will only ever

be embedded to consecutive vertices in a median order, and so they present no additional

difficulty.

2.3.2 Finding a good decomposition

As noted previously, the most difficult cases for Theorem 1.3 occur when an oriented

tree mostly consists of directed bare paths. We will handle such cases by embedding a

corresponding good decomposition. To find a good decomposition, we first arrange these

directed bare paths in order of decreasing length. Identifying a point where the length of

these paths drops significantly (perhaps including all the paths), we show that removing

these long paths creates a forest in which each component is much smaller than each of

the removed paths. Next, we order these paths and components using Proposition 1.17.

Taking (essentially) the removed paths as the paths Pi, carefully chosen directed subpaths

Si of the components of the forest (see B1–B4 later) and some dummy edges if necessary

will form the path in (2.12). After the careful selection in B1–B4, we will be able to

divide naturally the rest of the tree into the other sets in the decomposition.

Lemma 2.11. Let 1/n≪ µ≪ 1/k. Let T be an n-vertex oriented tree with k ⩾ 2 leaves.

Suppose T contains no bare path of length at least µn which has first and last block of

length 1 and whose endvertices have degree 2 in T . Then, for some r ⩽ 10k and m ⩾ µn,

T has an (r,m)-good decomposition.

Proof. We will construct an (r,m)-good decomposition using the notation in Defini-

tion 2.10, and confirm that each of A1–A7 hold.

Let p be the number of maximal bare paths of T , and let them be T ′
1, . . . , T

′
p. By

Proposition 1.15, we have p ⩽ 2k − 3. Observe that each T ′
i has fewer than µn edges

that are not contained in the first two blocks or the last two blocks, for otherwise, taking

the last edge of the second block, and the first edge of the penultimate block, and all the

edges between them on T ′
i , gives a bare path with length at least µn with first and last
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block of length 1 whose endvertices have degree 2 in T . Let q be the number of maximal

directed bare paths of T with length at least µn, and let them be T1, . . . , Tq with length

ℓ1, . . . , ℓq respectively, so that ℓ1 ⩾ ℓ2 ⩾ . . . ⩾ ℓq. By the above observation, we find

q ⩽ 4p ⩽ 8k − 12, and |T − T1 − . . .− Tq| ⩽ (2k − 3)(4µn+ µn) ⩽ 10kµn. Furthermore,

as µ≪ 1/k, we must have that q ⩾ 1 and ℓ1 ⩾ n/2q ⩾ n/20k.

Now, let r ∈ [q − 1] be the smallest integer such that ℓr > 106kℓr+1, if it exists, and

r = q otherwise. Let m = ℓr/2500. Note that, as ℓ1 ⩾ n/20k and µ≪ 1/k,

m ⩾
ℓ1

2500 · (106k)r−1
⩾

n/20k

2500 · (106k)8k−12
⩾ µn. (2.13)

Note that r ⩽ q ⩽ 10k and m ⩾ µn, as required. As T − T1 − . . . − Tr is the union

of T − T1 − . . . − Tq and at most 8k − 12 paths of length at most ℓr/10
6k, we have

|T − T1 − . . . − Tr| ⩽ 10kµn + m/4 ⩽ m/2. Note that T − T1 − . . . − Tr has r + 1

components. Say these are R1, . . . , Rr+1, and note that |Ri| ⩽ |T − T1 − . . .− Tr| ⩽ m/2

for each i ∈ [r + 1].

Using Proposition 1.17, relabel the components {R1, . . . , Rr+1} and paths {T1, . . . , Tr},

and define functions i−, i+ : [r] → [r + 1], so that, for every j ∈ [r], Tj is a directed path

from Ri−(j) to Ri+(j), and i
−(j) ⩽ j < i+(j).

For each j ∈ [r], label vertices so that Tj is an x
′
j, y

′
j-path directed from x′j ∈ V (Ri−(j))

to y′j ∈ V (Ri+(j)). Let I ⊆ {2, . . . , r} be the set of i with y′i−1 ∈ V (Ri), x
′
i ∈ V (Ri), and

such that the path between y′i−1 and x′i in Ri is not directed from y′i−1 to x′i. For each

j ∈ [r], let Q+
j be the path consisting of the last 3(i+(j)− j − 1) + 1 ⩾ 1 edges of Tj. For

each j ∈ [r] \ I, let Q−
j be the path consisting of the first 3(j − i−(j)) + 1 ⩾ 1 edges of

Tj. For each j ∈ I, let Q−
j be the path consisting of the first 3 edges of Tj. Note that the

lengths of the paths Q+
j , Q

−
j are always much smaller than the length of the path Tj.

For each i ∈ [r], let Pi be such that Ti = Q−
i PiQ

+
i is a path partition. Label vertices

so that Pi is an xi, yi-path directed from xi to yi. Note that each path Pi is Ti with up to

3r + 1 edges removed from each end. As the original length of such a path was at least
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ℓr = 2500m, and we have 1/n≪ µ≪ 1/r, we have by (2.13) that A3 holds.

Let x = x1 and note thatQ−
1 = x′1x. Let S1 ⊆ R1+x

′
1x be the maximal in-arborescence

in R1+x′1x with root x. Note we have that |S1| ⩾ 2. Let y = yr and note that Q+
r = yy′r.

Let Sr+1 be the maximal out-arborescence in Rr+1 + yy′r with root y. Note we have

|Sr+1| ⩾ 2.

If k0 is the number of in-leaves of S1, then as its root x is an out-leaf, S1 has k0 + 1

leaves. Similarly, if k1 is the number of out-leaves of Sr+1, then Sr+1 has k1 + 1 leaves.

Now, take the path, S say, between S1 and Sr+1 in T and note that the tree S1∪S ∪Sr+1

has (k0 + 1) + (k1 + 1)− 2 = k0 + k1 leaves. Noting that T has at least as many leaves as

S1 ∪ S ∪ Sr+1 ⊆ T completes the proof that A6 holds.

Now, for each i ∈ {1, r + 1} and each ⋄ ∈ {+,−}, let F ⋄
i ⊆ Si ∪ Ri be the digraph

formed from the union of the paths in (Si ∪ Ri) − E(Si) from V (Si) which start with a

⋄-edge, and let Fi = F+
i ∪ F−

i = (Si ∪ Ri) − E(Si). Note that, by the maximality of S1

as an in-arborescence and the maximality of Sr+1 as an out-arborescence, we have that

E(F−
1 ) = E(F+

r+1) = ∅, completing the proof that A5 holds. For each i ∈ {1, r + 1},

|Fi| ⩽ |Ri|+ 1 ⩽ m/2 + 1 ⩽ m, so A4 holds as well for i ∈ {1, r + 1}.

We now construct yi−1, xi-paths Si, for each 2 ⩽ i ⩽ r. For each such i, we consider

Q+
i−1 ∪ Ri ∪ Q−

i , and add up to two edges (according to the cases below) before finding

a directed path Si through the resulting digraph. We next divide into cases B1–B4

according to whether y′i−1 ∈ V (Ri) (i.e., if i
+(i− 1) = i) and whether x′i ∈ V (Ri) (i.e., if

i−(i) = i). These cases are depicted in Figure 2.2. Note that, if y′i−1 ∈ V (Ri) then Q
+
i−1

consists of only the edge yi−1y
′
i−1, and if x′i ∈ V (Ri) with i /∈ I, then Q−

i consists of only

the edge x′ixi. Precisely, for each 2 ⩽ i ⩽ r, we do the following.

B1 If y′i−1 and x′i are both in V (Ri), then do the following.

B1.1 If the y′i−1, x
′
i-path in the tree Ri is a directed path from y′i−1 to x

′
i, then let Si

be the directed path from yi−1 to xi in Ri + yi−1y
′
i−1 + x′ixi.

B1.2 If the y′i−1, x
′
i-path in the tree Ri is not a directed path from y′i−1 to x′i (i.e., if
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Figure 2.2: Cases B1-B4.

i ∈ I), then let S ′
i be the maximal directed subpath from y′i−1 that it contains.

Let Si be the path consisting of the edge yi−1y
′
i−1, followed by S ′

i, followed by

a new edge from the endvertex of S ′
i to xi.

B2 If y′i−1 ∈ V (Ri) and x
′
i /∈ V (Ri), then let Si be the path yi−1y

′
i−1xi.

B3 If y′i−1 /∈ V (Ri) and x
′
i ∈ V (Ri), then let Si be the path yi−1x

′
ixi.

B4 If y′i−1, x
′
i /∈ V (Ri), then let z ∈ V (Ri) be arbitrary, and let Si be the path yi−1zxi.

Now, for each 2 ⩽ i ⩽ r, we choose F+
i , F−

i and Fi = F+
i ∪ F−

i . To do so, for

each 2 ⩽ i ⩽ r and each ⋄ ∈ {+,−}, let F ⋄
i ⊆ Si ∪ Ri be the digraph formed from the

union of the paths in (Si ∪ Ri) − E(Si) from V (Si) which start with a ⋄-edge, and let

Fi = F+
i ∪F−

i = (Si∪Ri)−E(Si). Note that F
+
i and F−

i could consist of a single vertex.

For each 2 ⩽ i ⩽ r, |Fi| = |Ri|+ 2 ⩽ m/2 + 2 ⩽ m. We now have that A4 holds for each

i ∈ [r + 1], as required.

Let ℓ be the number of paths Q⋄
i , i ∈ [r], ⋄ ∈ {+,−} with length greater than 1, so

that 0 ⩽ ℓ ⩽ 2r. Relabel these paths arbitrarily as Qi, i ∈ [ℓ]. Note that, as we created no

new vertices, we have that V (D) ⊆ V (T ) (with equality once we confirm T ⊆ D below).

It is left then to prove that A1, A2, and A7 hold and check the properties at the start

of Definition 2.10.
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Note that, for each 2 ⩽ i ⩽ r, Si was a directed yi−1, xi-path. Therefore, as x = x1

and y = yr,

P := P1S2P2S2 . . . Pr−1SrPr (2.14)

is a path partition of the directed x, y-path P . Furthermore, we have that S1 is an

in-arborescence with root x and that Sr+1 is an out-arborescence with root y.

Now, by construction, T ⊆ P ∪ S1 ∪ Sr+1 ∪ (∪i∈[r+1]Fi) ∪ (∪i∈[r],⋄∈{+,−}Q
⋄
i ) = D.

Whenever Q+
i has length 1 and i < r, we have that i+(i) = i+1, so Si+1 is chosen in B1.1,

B1.2, or B2, and hence Q+
i = yi−1y

′
i−1 ⊆ Si+1. Note that Q

+
r has length 1, and Q+

r = yy′r

is in Sr+1. Whenever Q−
i has length 1 and i > 1, we must have that i /∈ I and i−(i) = i,

and therefore Si is chosen inB1.1 orB3, so thatQ−
i = x′ixi ⊆ Si. Note thatQ

−
1 has length

1, and Q−
1 = x′1x is in S1. Therefore, P ∪ (∪i∈[r],⋄∈{+,−}Q

⋄
i ) = P ∪ (∪i∈[ℓ]Qi) + x′1x + yy′r,

and so T ⊆ P ∪ S1 ∪ Sr+1 ∪ (∪i∈[r+1]Fi) ∪ (∪i∈[ℓ]Qi) = D and A1 holds.

Furthermore, note that V (Ri), i ∈ [r+1], and V (Ti)\{x′i, y′i}, i ∈ [r], form a partition

of V (T ). For each i ∈ [r], V (Q−
i ) \ {xi, x′i}, V (Pi) and V (Q+

i ) \ {yi, y′i} form a partition

of V (Ti) \ {x′i, y′i}. For each 2 ⩽ i ⩽ r, by the choice of F+
i and F−

i , V (F+
i ) \ V (Si),

V (F−
i ) \ V (Si) and V (Si) \ {yi−1, xi} form a partition of Ri, while V (F−

1 ) \ V (S1) = ∅,

V (F+
1 )\V (S1) and V (S1)\{x1} partition V (R1)\{x1}, and V (F−

r+1)\V (Sr+1), V (F+
r+1)\

V (Sr+1) = ∅ and V (Sr+1) \ {yr} partition V (Rr+1) \ {yr}. As V (P ) = (∪i∈[r]V (Pi)) ∪

(∪2⩽i⩽r(V (Si) \ {yi−1, xi})), the sets listed in A2 form a partition of V (T ).

Therefore, we need only show that, for each path i ∈ [ℓ], either A7.1 or A7.2 holds. If

Qi = Q+
j for some j ∈ [r], then Qi is a directed yj, y

′
j-path of length 3(i+(j)−(j+1))+1 >

1, so that i+(j) > j + 1. As yj ∈ V (Sj+1) ⊆ V (Fj+1) and y′j ∈ V (Ri+(j)) ⊆ V (Fi+(j)),

A7.1 holds for Qi. If Qi = Q−
j for some j ∈ [r] \ I, then Qi is a directed x′j, xj-path

of length 3(j − i−(j)) + 1 > 1, so that i−(j) < j. As x′j ∈ V (Ri−(j)) ⊆ V (Fi−(j)), and

xj ∈ V (Sj) ⊆ V (Fj), A7.1 holds for Qi. Finally, if Qi = Q−
j for some j ∈ I, then Sj

was chosen in B1.2. From the choice of the relevant maximal directed path S ′
j, the first

vertex x′j of Qi is in V (F−
j ) \ V (Sj) and the last vertex xj of Qi is also the last vertex of

Sj, and therefore A7.2 holds.
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2.3.3 Embedding a good decomposition

We now show that it is possible to embed an (r,m)-good decomposition D of a n-vertex

tree T with k leaves into an (n+k−2)-vertex tournament G, when 1/n≪ 1/r, 1/k,m/n.

For our sketch we will use the notation of Definition 2.10. We take a median order

of G and find within it consecutive disjoint intervals V1, U1, V2, U2, . . . , Vr, Ur, Vr+1 with

carefully chosen sizes. We will embed S1 into G[V1] while embedding its root to the last

vertex of V1 under σ, using Theorem 2.3, and similarly embed Sr+1 into Vr+1 so that its

root is embedded to the first vertex of Vr+1 under σ. For each i ∈ {2, . . . , r}, we will have

|Vi| = |Si| and embed the directed path Si into G[Vi] using the ordering provided by σ.

As described at the start of this section, for each i ∈ [r], we then find a short path Ri

from the last vertex of Vi under σ to the first vertex of Vi+1 under σ which can ‘absorb’

any subset of vertices from Ui (see Claim 2.13). We then embed the forests F+
i , F−

i ,

i ∈ [r + 1] and directed paths Qi, i ∈ [ℓ], into ∪i∈[r](Ui \ V (Ri)), before incorporating the

right number of vertices into each path Ri. More specifically, as depicted in Figure 2.3, for

each i ∈ [r], we will divide Ui into six parts, Ui,1, . . . , Ui,6, again with carefully chosen sizes.

The sets Ui,1 and Ui,6 will be small and covered by Ri (aiding the desired ‘absorption’

property of Ri). We will embed V (F+
i )\V (Si) into Ui,2\V (Ri), using A4 and that typical

vertices in Vi (the image of Si) have plenty of out-neighbours in Ui,2 (see Claim 2.14) and

V (Ri) is small. Similarly, we will embed V (F−
i+1) \ V (Si+1) into Ui,4 \ V (Ri) (see also

Claim 2.14). We will embed paths Qj satisfying A7.2 using the appropriate set Ui,5 (see

Claim 2.15). We will then embed paths Qj satisfying A7.1 using different sets Ui,3 (see

Claim 2.16). As we chose the size of the sets Ui, i ∈ [r], carefully, for each i ∈ [r], we will

then have the correct number of vertices unused in Ui to absorb into Ri and complete the

embedding of Pi, and hence also the embedding of T ⊆ D.
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Lemma 2.12. Let 1/n ≪ µ, 1/r, 1/k and m ⩾ µn. Every tournament with n + k − 2

vertices contains a copy of every n-vertex oriented tree with k leaves which has an (r,m)-

good decomposition.

Proof. Note that we can additionally assume that µ≪ 1/r, 1/k. Let G be an (n+ k− 2)-

vertex tournament and suppose that the n-vertex tree T with k leaves has an (r,m)-good

decomposition D using the notation in Definition 2.10. Let k0 be the number of in-leaves

of S1 and let k1 be the number of out-leaves of Sr+1. By A5, we have k0, k1 ⩾ 1 and by

A6 we have k0 + k1 ⩽ k.

Let I1 ⊆ [ℓ] be the set of i ∈ [ℓ] satisfying A7.1. Let I2 = [ℓ] \ I1, so that, by A7,

each i ∈ I2 satisfies A7.2. For each i ∈ I1, using A7.1, let qi, ri ∈ [r + 1] with qi < ri

be such that Qi is a directed path from Fqi to Fri with length 3(ri − qi) + 1. For each

i ∈ [r], let ai be the number of j ∈ I1 for which qj ⩽ i < rj. For each i ∈ I2, using A7.2,

let 2 ⩽ si ⩽ r be such that Qi is a directed path from V (F−
si
) \ V (Ssi) to the last vertex

of Ssi . For each i ∈ [r], let bi be the number of j ∈ I2 with sj = i + 1 (and note that we

always have br = 0).

Let σ = v1, . . . , vn+k−2 be a median order of G. Take in v1, . . . , vn+k−2 consecutive

disjoint intervals

V1, U1, V2, U2, V3, . . . , Vr, Ur, Vr+1

such that |V1| = |S1|+ k0− 1, |Vr+1| = |Sr+1|+ k1− 1, and, for each 2 ⩽ i ⩽ r, |Vi| = |Si|,

and, for each i ∈ [r],

|Ui| = |Pi| − 2 + |V (F+
i ) \ V (Si)|+ |V (F−

i+1) \ V (Si+1)|+ 3ai + 2bi (2.15)

⩾ |Pi| − 2
A3

⩾ 2000m− 1. (2.16)

Note that this is possible, as, by A4 and A5, |F−
1 | = |S1| and |F+

r+1| = |Sr+1|, so that,
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using A4, we have

r∑
i=2

|Vi|+
r∑

i=1

|Ui| =
r∑

i=2

|Si|+
r∑

i=1

(|Pi| − 2 + |F+
i |+ |F−

i+1| − |Si| − |Si+1|+ 3ai + 2bi)

=
r∑

i=2

|Si|+
r∑

i=1

(|Pi| − 2) +
r+1∑
i=1

(|F+
i |+ |F−

i | − 2|Si|) +
∑
i∈[r]

(3ai + 2bi)

(2.12)
= |P | − 2 +

r+1∑
i=1

(|F+
i |+ |F−

i | − 2|Si|) + 3
∑
i∈I1

(ri − qi) + 2|I2|

A7.1,A7.2
= |P | − 2 +

r+1∑
i=1

|(V (F+
i ) ∪ V (F−

i )) \ V (Si)|+
∑
i∈[ℓ]

(|Qi| − 2)

A2
= n− |S1| − |Sr+1|,

and hence,
r+1∑
i=1

|Vi|+
r∑

i=1

|Ui| = n+ k0 + k1 − 2
A6

⩽ n+ k − 2.

Next, for each i ∈ [r], partition Ui as intervals Ui,1, . . . , Ui,6 in that order such that

|Ui,1| = m, |Ui,2| = 10m, |Ui,4| = 110m, |Ui,5| = 100m, |Ui,6| = m (2.17)

and |Ui,3| = |Ui| − 222m
(2.15)

⩾ 1700m. (2.18)

Note also, by A4, that, for each i ∈ {2, . . . , r},

|Vi| = |Si| ⩽ |Fi| ⩽ m. (2.19)

For each i ∈ [r], let U ′
i be a subset of Ui where each vertex is included independently

at random with probability µ/20. By Lemma 2.1 (ii) v1v2 . . . vn+k−2 forms a directed path

in that order, so there is a directed path from the last vertex of Vi under σ to the first

vertex of Vi+1 under σ, whose vertex set covers Ui,1 ∪ U ′
i ∪ Ui,6 and whose vertex order

is a suborder of σ. Let Ri be a shortest such path. We now prove that, with positive

probability, the ‘absorption property’ we need for Ri holds, as well as a bound on |Ri|.
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Claim 2.13. With positive probability, for each i ∈ [r], |V (Ri)\ (Ui,1∪Ui,6)| ⩽ m, so that

|Ri| ⩽ 3m, and, for any U ⊆ Ui ∪ V (Ri) with V (Ri) ⊆ U , there is a directed path with

the same start vertex and end vertex as Ri but with vertex set U .

Proof of Claim 2.13. Let p = µ/20 and i ∈ [r]. Note that, by Lemma 1.18, as |Ui| ⩽ n

and 1/n ≪ µ, 1/r, we have, with probability at least 1− 1/3r that |U ′
i | ⩽ 2pn. For each

v ∈ Ui \ (Ui,1 ∪ Ui,6), let Ev be the following event.

Ev: There are u ∈ N−(v) ∩ U ′
i and u

′ ∈ N+(v) ∩ U ′
i with u <σ v <σ u

′.

Now, by Lemma 2.1 (ii), for each v ∈ Ui \ (Ui,1 ∪ Ui,6), we have

|{u ∈ N−(v) ∩ Ui : u <σ v}| ⩾
|{u ∈ Ui : u <σ v}|

2
⩾

|Ui,1|
2

(2.17)
=

m

2
,

and

|{u ∈ N+(v) ∩ Ui : u >σ v}| ⩾
|{u ∈ Ui : u >σ v}|

2
⩾

|Ui,6|
2

(2.17)
=

m

2
,

so that P(Ev does not hold) ⩽ 2(1 − p)m/2 ⩽ 2 exp(−pm/2) ⩽ 2 exp(−µ2n/40). There-

fore, as 1/n≪ µ, 1/r, a union bound implies that, with probability at least 1− 1/3r, Ev

holds for each v ∈ Ui \ (Ui,1 ∪Ui,6). Thus, with probability at least 1/3, we have, for each

i ∈ [r], that Ev holds for each v ∈ Ui \ (Ui,1∪Ui,6), and |U ′
i | ⩽ 2pn. Assuming these events

occur, we now prove that the property in the claim holds for each i ∈ [r].

By Corollary 2.2 and the minimality of Ri, any two vertices in Ui,1∪U ′
i ∪Ui,6, with no

vertices between them on Ri from Ui,1∪U ′
i∪Ui,6 have at most 1 vertex between them on Ri.

As the vertices from Ui,1∪Ui,6 form two intervals on Ri, just after the first vertex and just

before the last vertex of Ri respectively, |V (Ri)\(Ui,1∪Ui,6)| ⩽ 2+2|U ′
i |+1 ⩽ 4pn+3 ⩽ m.

Now, take any set U ⊆ Ui ∪ V (Ri) with V (Ri) ⊆ U . Let RU be a directed path

with the same endvertices as Ri which contains every vertex of Ri in order according

to σ and for which V (RU) ⊆ U , and which, under these conditions, has the maximum

possible length. Note that this exists as Ri itself satisfies these conditions. Suppose,

for contradiction, that there is some v ∈ U \ V (RU). Note that v ∈ Ui \ (Ui,1 ∪ Ui,6).
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Ui−1,1 Ui−1,2 Ui−1,3 Ui−1,4 Ui−1,5 Ui−1,6 Vi Ui,1 Ui,2 Ui,3 Ui,4 Ui,5 Ui,6

Si F+
i \ Si

[Claim 2.14]

F−
i \ Si

[Claim 2.14]

Qj1

[Claim 2.16]

Qj2

[Claim 2.15]

Ui−1

Pi−1 [Claim 2.13]

Ui

Pi [Claim 2.13]

Figure 2.3: Embedding an (r,m)-good decomposition (as depicted in Figure 2.1) into a
median order, with the claims used to embed each part.

Let ℓ be the length of RU and label vertices so that RU = u0u1 . . . uℓ. As Ev holds and

U ′
i ⊆ V (Ri) ⊆ V (RU), we can take j = min{j′ ∈ {0, 1, . . . , ℓ} : uj′ ∈ N−(v)} and find

that uj <σ v. Let j
′′ ∈ {0, 1, . . . , ℓ} be the smallest j′′ > j such that uj′′ ∈ N+(v), noting

that this is well-defined also by Ev.

Observe that uj′′−1 /∈ N+(v), so that, as G is a tournament, uj′′−1 ∈ N−(v) and

therefore

u0u1 . . . uj′′−1vuj′′ . . . uℓ,

is a directed path with the same endvertices as RU (and hence Ri) which contains every

vertex of Ri in order according to σ. As this path has vertex set {v} ∪ V (RU) ⊆ U and

v /∈ V (RU), this path contradicts the maximality of RU . Thus, V (RU) = U , so that RU is

a directed path with the same endvertices as Ri and with vertex set U , as required. ⊡

Assume then, that the property in Claim 2.13 holds. We now show three further claims,

before embedding T . This embedding, annotated with which part of the embedding is

done with each claim, is depicted in Figure 2.3. For each i ∈ [r + 1], we will use the

following claim to embed the vertices in V (F+
i ) \ V (Si) to Ui,2 (if i ̸= r + 1) and embed

the vertices in V (F−
i ) \ V (Si) to Ui−1,4 (if i ̸= 1) so that they attach appropriately to an

embedding of Si into the vertex set Vi.

Claim 2.14. For each i ∈ [r] and v ∈ Vi, we have |N+(v, Ui,2) \ V (Ri)| ⩾ 3m, and, for
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each i ∈ [r] and v ∈ Vi+1, we have |N−(v, Ui,4) \ V (Ri)| ⩾ 3m.

Proof of Claim 2.14. Let i ∈ [r] and v ∈ Vi, and take Vi,v = {u ∈ Vi : u >σ v}. By

Lemma 2.1 (ii), we have that

|N+(v, Ui,2)| ⩾ |N+(v, Vi,v ∪ Ui,1 ∪ Ui,2)| − |Vi,v ∪ Ui,1| ⩾
|Vi,v ∪ Ui,1 ∪ Ui,2|

2
− |Vi,v ∪ Ui,1|

=
|Ui,2| − |Vi,v ∪ Ui,1|

2
⩾

|Ui,2| − |Vi ∪ Ui,1|
2

(2.17),(2.19)

⩾
10m−m−m

2
= 4m.

Therefore, by the property from Claim 2.13, |N+(v, Ui,2)\V (Ri)| ⩾ |N+(v, Ui,2)|− (|Ri|−

|Ui,1| − |Ui,6|) ⩾ 3m.

Let then i ∈ [r] and v ∈ Vi+1 and let V ′
i+1,v = {u ∈ Vi+1 : u <σ v}. By Lemma 2.1 (ii),

we have similarly that

|N−(v, Ui,4)| ⩾ |N−(v, V ′
i+1,v ∪ Ui,4 ∪ Ui,5 ∪ Ui,6)| − |V ′

i+1,v ∪ Ui,5 ∪ Ui,6|

⩾
|Ui,4| − |V ′

i+1,v ∪ Ui,5 ∪ Ui,6|
2

(2.17),(2.19)

⩾
110m− 100m−m−m

2
= 4m.

Therefore, by the property from Claim 2.13 again, |N−(v, Ui,4) \ V (Ri)| ⩾ |N−(v, Ui,4)| −

(|Ri| − |Ui,1| − |Ui,6|) ⩾ 3m. ⊡

Recall that, for each i ∈ I2, Qi is a directed path of length 3 from V (F−
si
) \ V (Ssi) to

the last vertex of Ssi . The following claim will be used to embed such a path when its

first and last vertex have already been embedded into Usi−1,4 and Vsi respectively.

Claim 2.15. For each 2 ⩽ j ⩽ r, v ∈ Uj−1,4, w ∈ Vj and U ⊆ Uj−1,4 ∪ Uj−1,5 with

|U | ⩽ 2m, there is a directed v, w-path in G with length 3 and internal vertices in (Uj−1,4∪

Uj−1,5) \ (U ∪ V (Rj−1)).

Proof of Claim 2.15. Let Aj,v,w,U = {u ∈ U ∪ V (Rj−1) ∪ Vj : v <σ u <σ w} , and note

that, by (2.19) and the choice of Ri according to Claim 2.13, |Aj,v,w,U | ⩽ 6m. The number

of vertices between v and w in σ is at least |Uj−1,5| + |Uj−1,6| = 101m > 6|Aj,v,w,U | + 8.

Therefore, by Lemma 2.4, there is a directed v, w-path in G with length 3 and internal
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vertices in {u /∈ Aj,v,w,U : v <σ u <σ w}. Because Uj−1,6 ⊆ V (Rj−1), we have {u /∈

Aj,v,w,U : v <σ u <σ w} ⊆ (Uj−1,4 ∪ Uj−1,5) \ (U ∪ V (Rj−1)), and so the claim holds. ⊡

For each i ∈ [6], let U0,i = Ur+1,i = ∅, and note that, by A4 and A6, |V1|, |Vr+1| ⩽

m + k ⩽ 2m. For each i ∈ [r + 1], let V̄i = Ui−1,4 ∪ Ui−1,5 ∪ Ui−1,6 ∪ Vi ∪ Ui,1 ∪ Ui,2, and

note that, by (2.17) and (2.19), |V̄i| ⩽ 225m. Note that V̄1U1,3V̄2U2,3 . . . V̄rUr,3V̄r+1 are

consecutive intervals in σ.

Recall that, for each i ∈ I1, Qi is a directed path from Fqi to Fri with length 3(ri−qi)+1.

The following claim will be used to embed such a path when its first and last vertex have

already been embedded into V̄qi and V̄ri respectively.

Claim 2.16. For each 1 ⩽ i < j ⩽ r + 1, v ∈ V̄i, w ∈ V̄j and U ⊆ V (G) with |U | ⩽ m,

there is a directed v, w-path in G with length 3(j − i) + 1 and exactly 3 vertices in each

set Ui′,3 \ (U ∪ V (Ri′)), i ⩽ i′ < j.

Proof of Claim 2.16. First we will choose vertices ui′ , i ⩽ i′ < j between ui−1 := v and

w in the median order, with uj−1w ∈ E(G) before carefully applying Lemma 2.4 to each

consecutive pair of vertices in v, ui, ui+1, . . . , uj−1 to get, together with uj−1w, a v, w-path

with length 3(j − i) + 1.

To do this, first, for each i′, i ⩽ i′ ⩽ j−2, let ui′ be the last vertex in Ui′,3\(U∪V (Ri′))

under σ. Let U ′
j−1,3 be the set of the last 250m vertices of Uj−1,3 under σ, and let

V̄j,w = {w′ ∈ V̄j : w
′ <σ w}, so that |V̄j,w| ⩽ |V̄j| ⩽ 225m. Note that, by Lemma 2.1 (ii),

we have

|N−(w,U ′
j−1,3) \ (U ∪ V (Rj−1))| ⩾ |N−(w, V̄j,w ∪ U ′

j−1,3)| − |V̄j,w| − |U ∪ V (Rj−1)|

⩾
|U ′

j−1,3| − |V̄j,w|
2

− |U ∪ V (Rj−1)| ⩾
250m− 225m

2
− 4m > 0.

Let uj−1 then be the last vertex of N−(w,Uj−1,3) \ (U ∪ V (Rj−1)) under σ, noting that

there are fewer than 250m vertices in Uj−1,3 after uj−1 under σ. Let ui−1 = v.

For each i ⩽ i′ < j, we will show there exists a directed ui′−1, ui′-path Ti′ with length
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3 and internal vertices in Ui′,3 \ (U ∪ V (Ri′)). Noting that TiTi+1 . . . Tj−1w is a directed

path with length 3(j − i) + 1 and exactly three vertices in each set Ui′,3 \ (U ∪ V (Ri′)),

i ⩽ i′ < j, will then complete the proof of the claim.

Let then i ⩽ i′ < j and let Ai′ = {u ∈ Ui′−1,3∪V̄i′∪((U∪V (Ri′))∩Ui′,3) : ui′−1 <σ u <σ

ui′}. Note that, for each i ⩽ i′ < j, by the choice of ui′ there are at most |U ∪V (Ri′−1)| ⩽

4m vertices after ui′−1 in Ui′−1,3 under σ, so |Ai′ | ⩽ 4m + 225m + |U ∪ V (Ri′)| ⩽ 233m.

In addition, recall that there are fewer than 250m vertices in Uj−1,3 after uj−1 under σ.

Therefore, by (2.18), for each i ⩽ i′ < j, there are at least 1700m − 250m > 6|Ai′ | + 8

vertices in Ui′,3 before ui′ under σ. So, by Lemma 2.4, there is a directed ui′−1, ui′-path Ti′

with length 3 and internal vertices in {u /∈ Ai′ : ui′−1 <σ u <σ ui′} ⊆ Ui′,3 \ (U ∪ V (Ri′)),

as required. ⊡

We are now ready to embed the (r,m)-good decomposition D into G, as follows.

Begin with the empty embedding ϕ : ∅ → V (G). For each 2 ⩽ i ⩽ r, recalling that

|Vi| = |Si|, extend ϕ to embed the directed path Si onto the vertices in Vi in the order

given by σ. Note that the vertices of each interval Vi form a directed path in this order

by Lemma 2.1 (ii).

Let x′ be the last vertex of V1 under σ, and let y′ be the first vertex of Vr+1 under σ.

Recall that P , as defined in (2.12), is a directed x, y-path, S1 is an in-arboresence with

k0 in-leaves and root x, and Sr+1 is an out-arboresence with k1 out-leaves and root y.

Therefore, as |V1| = |S1| + k0 − 1 and |Vr+1| = |Sr+1| + k1 − 1, by Theorem 2.3 (applied

twice, once with directional duality) we can extend ϕ to embed S1 into V1 such that

ϕ(x) = x′ and embed Sr+1 into Vr+1 such that ϕ(y) = y′.

Now, for each i ∈ [r + 1] and v ∈ V (Si), let F
−
v be the component of F−

i containing

v and let F+
v be the component of F+

i containing v. For each vertex v ∈ V (Si) in

increasing order of ϕ(v) under σ, greedily and disjointly extend ϕ to embed F−
v − v into

N−(ϕ(v), Ui−1,4) \ V (Ri−1) and F
+
v − v into N+(ϕ(v), Ui,2) \ V (Ri). Note this is possible
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for each v ∈ V (Si) as, by A5, if |E(F−
v )| > 0, then i ⩾ 2 and thus, by Claim 2.14,

|N−(ϕ(v), Ui−1,4) \ (V (Ri−1) ∪ (∪u∈V (Si):ϕ(u)<σϕ(v)ϕ(F
−
u )))| ⩾ 3m− (|F−

i | − |V (F−
v ) \ {v}|)

A4

⩾ 3|V (F−
v ) \ {v}|,

so that a copy of F−
v −v in N−(ϕ(v), Ui−1,4)\ (V (Ri−1)∪ (∪u∈V (Si):ϕ(u)<σϕ(v)ϕ(F

−
u ))) exists

by Theorem 1.8. Similarly, for each v ∈ V (Si), this is also possible for F+
v − v.

For each i ∈ [ℓ], say that Qi is a directed path from xi to yi. For each i ∈ [ℓ] in turn,

extend ϕ to cover V (Qi) \ {xi, yi}, by doing the following.

• If i ∈ I1, recall that qi, ri are such that Qi is a directed path from Fqi to Fri with

length 3(ri − qi) + 1, where qi < ri, and note that ϕ(xi) ∈ ϕ(V (Fqi)) ⊆ V̄qi and

ϕ(yi) ∈ ϕ(V (Fri)) ⊆ V̄ri . Embed Qi as a directed ϕ(xi), ϕ(yi)-path with length

3(ri − qi) + 1 and exactly three vertices in Ui′,3 \ (V (Ri′) ∪ (∪j∈[i−1]ϕ(V (Qj)))), for

each qi ⩽ i′ < ri. Note that this is possible, by Claim 2.16, as when we look for such

a path we have | ∪j∈[i−1] ϕ(V (Qi))| ⩽ ℓ · (3r + 2) ⩽ m as ℓ ⩽ 2r, 1/n ≪ µ ≪ 1/r

and m ⩾ µn.

• If i ∈ I2, recall that 2 ⩽ si ⩽ r is such that Qi is a directed path with length 3 from

V (F−
si
)\V (Ssi) to the last vertex of Ssi , and note that ϕ(xi) ∈ ϕ(V (F−

si
)\V (Ssi)) ⊆

Usi−1,4 and ϕ(yi) ∈ ϕ(V (Ssi)) ⊆ Vsi . Embed Qi as a directed path with length

3 from ϕ(xi) to ϕ(yi) with interior vertices in (Usi−1,4 ∪ Usi−1,5) \ (ϕ(V (F−
si
)) ∪

(∪j∈[i−1]ϕ(V (Qj)))∪ V (Rsi−1)). Note that this possible, by Claim 2.15, as when we

look for such a path we have, by A4, |ϕ(V (F−
si
))| + | ∪j∈[i−1] ϕ(V (Qj))| ⩽ m + ℓ ·

(3r + 2) ⩽ 2m.

Finally, we extend ϕ to cover the internal vertices of Pi, for each i ∈ [r]. For each

i ∈ [r], let U ′′
i =

(
V (Ri)∪Ui

)
\ϕ
(
V (F+

i )∪V (F−
i+1)∪ (∪j∈[ℓ]V (Qj))

)
. Note that V (Ri)∪Ui
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contains exactly the vertices in Ui and the endvertices of Ri. Therefore,

|U ′′
i | = |Ui|+ 2− (|F+

i | − |Si|)− (|F−
i+1| − |Si+1|)− | ∪j∈[ℓ] (V (Qj) ∩ Ui)|

(2.15)
= (|Pi|+ 3ai + 2bi)− 3|{j ∈ I1 : qj ⩽ i < rj}|)− 2|{j ∈ I2 : sj = i+ 1}|

= (|Pi|+ 3ai + 2bi)− 3ai − 2bi = |Pi|.

By Claim 2.13, for each i ∈ [r], there is a directed path between the endvertices of Ri with

vertex set U ′′
i . Using these paths, for each i ∈ [r], extend the embedding ϕ to cover Pi, for

each i ∈ [r]. This completes the embedding ϕ ofD = P∪S1∪Sr+1∪(∪i∈[r+1]Fi)∪(∪i∈[ℓ]Qi),

and hence, by A1, G contains a copy of T . □

2.3.4 Proof of Theorem 1.3

Given Lemmas 2.11 and 2.12, it is now straight-forward to prove Theorem 1.3.

Proof of Theorem 1.3. Note that, due to the result of Thomason [29] quoted in the intro-

duction, we may assume that k ⩾ 3. Let n0 and µ be such that 1/n0 ≪ µ≪ 1/k. Let T

be a tree with n ⩾ n0 vertices and k leaves, and let G be a tournament with n + k − 2

vertices.

If there are no vertices x and y with degree 2 in T and a bare x, y-path P with length at

least µn with first and last block of length 1, then, by Lemma 2.11, T has an (r,m)-good

decomposition for some m ⩾ µn and r ⩽ 10k. In this case, by Lemma 2.12, G contains a

copy of T . Thus, we can assume that T contains vertices x and y with degree 2 in T and

a bare x, y-path P with length at least µn with first and last block of length 1.

Suppose first, that k = 3. Note that in this case P must lie in a maximal bare path

of T with one endvertex that is a leaf. Say this leaf is z, and assume, by relabelling x

and y if necessary, that the path, Q say, from x to z in T contains y (and hence P ). Let

T ′ = T−(V (Q)\{x}). Noting that x is a leaf of T ′, duplicate x to get the tree T ′′ with the

new leaf x′. Note that T ′′ has 4 leaves and |T |−|Q|+2 ⩽ n−µn+1 vertices. Therefore, by
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Theorem 1.2, as 1/n≪ µ, 1/k, G contains a copy of T ′′, S ′′ say. Let s and s′ be the copy

of x and x′ in S ′′ respectively. Note that |G−(V (S ′′)\{s, s′})| = n+1−(n−|Q|) = |Q|+1.

By Theorem 1.12, there is a copy, Q′ say, of Q with x embedded to {s, s′}. Then S ′′ ∪Q′

gives a copy of T .

Therefore, we have that k ⩾ 4. In this case, let T ′ = T − (V (P ) \ {x, y}). Noting

that x and y are leaves of T ′, create T ′′ by duplicating x and y to get the new vertices

x′ and y′ respectively, and adding the edge xy. Note that T ′′ has k + 2 leaves and

|T |−|P |+4 ⩽ n−µn+3 vertices. Therefore, by Theorem 1.2, as 1/n≪ µ, 1/k, G contains

a copy of T ′′, S ′′ say. Let s, s′, t and t′ be the copy of x, x′, y and y′ in S ′′ respectively.

Note that |G− (V (S ′′) \ {s, s′, t, t′})| = n+ k− 2− (n− |P |) = |P |+ k− 2 ⩾ |P |+2. By

Theorem 1.13, there is a copy, P ′ say, of P with x embedded to {s, s′} and y embedded

to {t, t′}. Observing that S ′′ ∪ P ′ contains a copy T completes the proof that G contains

a copy of T in this case.
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CHAPTER 3

EMBEDDING ORIENTED TREES USING THE
REGULARITY LEMMA

In this chapter we present proofs of the following results, which we recall from the intro-

duction.

Theorem 1.4. Let α > 0. There exists n0 ∈ N such that for any n ⩾ n0, if G is a

((1 + α)n + k)-vertex tournament and T is an n-vertex oriented tree with k leaves, then

G contains a copy of T .

Theorem 1.5. Let α > 0. There exists c > 0 and n0 ∈ N such that for any n ⩾ n0, if G

is a (1 +α)n-vertex tournament and T is an n-vertex oriented tree with ∆(T ) ⩽ cn, then

G contains a copy of T .

Both proofs make use of a reduction of the theorems to critical cases which can be

embedded using the regularity lemma (introduced properly in Section 3.3). As there is

significant overlap in this reduction for the two theorems, many parts of this chapter

will apply to both results. Though our methods apply to all the trees covered by these

theorems, Theorem 1.2 already implies both theorems for those trees with o(n) leaves.

Thus, the critical case for consideration are those trees with Ω(n) leaves. The most

difficult cases arise when these leaves are all close to each other within the tree, connected

via some smaller core tree (see Figure 3.1). The challenge is then to be able to distribute

these leaves around the tournament despite their location being quite tightly restricted
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Figure 3.1: Examples of oriented trees with many leaves close to one another. While the
first two trees have ∆(T ) ≈ n/2, the third tree may be realised with ∆(T ) ⩽ cn for a
small constant c, making it a case of particular interest for Theorem 1.5.

by the location of the vertices in the core tree. For Theorem 1.5, the maximum degree

condition will imply the core tree cannot be too small, and we exploit this to distribute

the vertices of the core tree around the tournament. Here, the key novelty in our methods

is the identification of the small core tree in the most challenging cases, and its embedding

around the tournament.

For Theorem 1.4, we will be able to contract this small core tree in the most challenging

cases to a single vertex without increasing the number of leaves. As the core tree is small,

if we can find a copy of this contracted tree then we will be able to recover the original

tree using suitable regularity techniques. The critical case will then be trees which have

one very high degree vertex, whose removal results in components of at most constant

size. Further simplification will allow us to assume that this high degree vertex has either

in-degree or out-degree 0. This simplification focuses in on the hardest cases in our proof.

To embed a tree T with one high out-degree vertex x with in-degree 0 into a tournament

G, a natural approach is to place x at the vertex of G with highest out-degree, maximising

the attachment possibilities for the components of T −{x}. Often, this is a good strategy

(indeed, this approach will always succeed for the first tree depicted in Figure 3.1), but

when many vertices of T are reached from x by travelling along a path beginning with

a forward edge followed by a backward edge (such as for the second tree depicted in
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Figure 3.1), this may fail. The key to our proof is to use the failure in these cases to

identify structural properties of the tournament, and thus a better location for the high

out-degree vertex. This is the most significant novelty in our proof of Theorem 1.4, and

enables the most difficult trees to be found in tournaments.

3.1 Outline of proof of Theorem 1.4 and Theorem 1.5

We will now sketch the proofs for both Theorem 1.4 and Theorem 1.5 together in more

detail. We have already discussed the need to take particular care with trees which

contain some small core subtree that restricts the distribution of the other vertices in the

tree around the tournament. Therefore, we will identify a small core in any tree T , from

which T can be recovered by first appending a collection of constant-sized trees, then

connecting components by constant-length paths, and then iteratively attaching a small

number of additional leaves. This decomposition is independent of the directions of the

edges of T , and so we state it for non-oriented trees. More precisely, given any tree T , we

find T0 ⊆ T1 ⊆ T2 ⊆ T3 ⊆ T4 = T (shown in Figure 3.2), such that

i) T0 is small,

ii) T1 is formed by adding constant-sized trees, each attached with an edge to some

vertex of T0,

iii) T2 is formed by adding (unattached) constant-sized trees to T1,

iv) T3 is formed by adding long but constant-sized paths connecting the components of

T2, and

v) T4 is formed by attaching constant-sized trees to T3, so that few vertices are added

in total.

Having found such a decomposition, we need a strategy for embedding these pieces. We

note first that the vertices added in iii) and v) above pose little trouble given the spare

vertices in our tournament. Indeed, within, say, any αn/2 vertices in a tournament, any

oriented tree with up to αn/6 vertices can be found using known results (see Theorem 1.8).
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This allows the new constant-sized trees in iii) to be found greedily. For v), we note that

setting aside a small random subset of the spare vertices preserves some in- and out-

neighbours for almost all the remaining vertices in the tournament (see Proposition 1.20).

Carrying out the embedding for i)–iv) within the tournament induced on these good

remaining vertices, will then allow us to extend the embedding greedily to cover the final

vertices in v) (see Corollary 1.9).

Thus, our focus is on how to embed the vertices in T0 so that this can be extended

to an embedding of T1, and how to embed the paths at iv). In certain tournaments the

paths at iv) can also be embedded straightforwardly by reserving a random set of vertices

for this purpose. Where this is not possible, by removing a small set of vertices from the

tournament, we will be able to partition the vertices into a sequence of linearly-sized sets,

with all edges between the sets directed forward along the sequence. This partition allows

us to divide the tree naturally into pieces, which can then be found separately along the

sequence of sets. We note that this is a streamlined version of a decomposition due to

Kühn, Mycroft and Osthus [21, 22].

Let us assume then that the tournament is sufficiently well connected that the paths

at iv) can be embedded within a reserved random set of vertices. We need then to embed

T0 so that the vertices of T1 − V (T0) can be distributed throughout the tournament. To

do this we will use the regularity lemma for digraphs, so that we may assign vertices to

clusters before embedding them. The challenge is to identify some good clusters for T0,

for which we can assign the vertices in V (T1) \ V (T0) across the other regularity clusters.

The whole of T1 can then be embedded using relatively standard regularity techniques,

in combination with the result that any oriented tree with ℓ vertices can be found in

tournaments with only O(ℓ) vertices.

Embedding the core T0 of the tree and extending it to cover T1 is the only part where

the proofs of Theorem 1.4 and Theorem 1.5 differ. For Theorem 1.4, the core tree can

always be embedded within a single regularity cluster, which will allow us to reduce the

problem to embedding trees where the core is a single vertex, x say (which may have
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very high degree), and further reduction will allow us to assume that all components of

T −{x} are attached to x by out-edges. Similar to the discussion in the introduction, here

it would be natural to try embedding x to a cluster with as many out-edges as possible

in a suitable ‘reduced digraph’ (see Section 3.3). This may fail, but we try this anyway,

essentially embedding as much of T1 as possible. If the embedding fails, it will be due to

certain structural properties of the tournament which will allow us to move the embedding

of x, along with some of the embedded vertices, to complete the embedding. This part

of the proof, with its division into a number of detailed subcases, is the most technical

aspect of our proof, but solves the key problem and allows the proof of Theorem 1.4.

Fortunately, embedding T0 and extending this to cover T1 is less involved for Theo-

rem 1.5. The maximum degree condition in this case ensures that T0 necessarily contains

at least a large constant number of vertices (for example, for the third tree shown in

Figure 3.1, we may identify T0 with the star consisting of all non-leaf vertices). Thus, it

is possible to distribute the vertices of T0 across several regularity clusters if required for

the even distribution of V (T1) \ V (T0) throughout the tournament. For this, we identify

a particular caterpillar-like structure which spans most of the clusters in the regularity

graph (see Section 3.5.1).

Each aspect of the proof is discussed in more detail before it is carried out. In Sec-

tion 3.2, we define precisely our tree decomposition and show that such a decomposition

can always be found. We then state and discuss the regularity lemma is Section 3.3. In

Section 3.4, we embed the core tree T0 and extend the embedding to cover T1 for The-

orem 1.4 (see Theorem 3.9), deferring the most technical parts to Section 3.7 where we

prove a key intermediate result, Theorem 3.13. In Section 3.5, we embed the core tree

T0 and extend the embedding to cover T1 for Theorem 1.5 (see Theorem 3.18). These

embeddings of T0 extended to T1 allow us then to prove both Theorem 1.4 and 1.5 in

Section 3.6. We then finish with the deferred proof of Theorem 3.13 in Section 3.7.
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3.2 Tree decomposition

We now give the tree decomposition discussed in the proof outline (see Figure 3.2). This

is a modified version of a result of Kathapurkar and Montgomery (see [19]); though its

proof is very similar, we include it for completeness.

Lemma 3.1. Let 1/n ≪ 1/m ≪ η, 1/q with q ⩾ 2. Then, any n-vertex tree T contains

forests T0 ⊆ T1 ⊆ T2 ⊆ T3 ⊆ T4 = T , such that T3 is a tree, and the following properties

hold.

C1 |T0| ⩽ ηn.

C2 T1 is formed from T0 by vertex-disjointly attaching a tree Sv to each v ∈ V (T0), so

that, for each v ∈ V (T0), Sv − v is a forest with each component tree having size at

most m.

C3 T2 is the disjoint union of T1 and a forest with each component tree having size at

most m.

C4 T3 is formed from T2 by connecting components by paths of length q.

C5 |V (T4) \ V (T2)| ⩽ ηn.

Proof. Choose ε > 0 and k ∈ N such that 1/m ≪ ε ≪ 1/k ≪ η, 1/q. Fix an arbitrary

vertex t ∈ V (T ). We start by finding a subtree T ′ of T which includes t and has few

leaves, and is such that T − V (T ′) is a forest of components each having size at most

m. We do this by including in T ′ every vertex which appears on the path in T from t

to many other vertices. That is, for each v ∈ V (T ), let w(v) be the number of vertices

u ∈ V (T ) whose path from t to u includes v (in particular, v is such a vertex). Let T ′ be

the subgraph of T induced on all the vertices v ∈ V (T ) with w(v) ⩾ m+ 1.

For each v ∈ V (T ′), let Sv be the tree containing v in T − (V (T ′) \ {v}). Note that

Sv − v is a forest with each component tree having size at most m. Indeed, suppose T ′′ is

a component of Sv − v, and let v′ be the neighbour of v in T ′′. Since every path from a
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T0

T1

T2 T3

T4

v

Sv

Figure 3.2: A simplified example of the tree decomposition T0 ⊆ T1 ⊆ T2 ⊆ T3 ⊆ T4 = T
described by Lemma 3.1. In this illustration, the forest T0 consists of a single edge together
with an isolated vertex, and there are three paths, each with length q = 12, connecting
components of T2 to form the tree T3.

vertex u ∈ V (T ′′) to t in T goes through v′ (and then v), we have that m ⩾ w(v′) ⩾ |T ′′|

(and, in fact, the final inequality is an equality). Observe further that, for any leaf v of

T ′, |Sv − v| = w(v)− 1 ⩾ m, and, therefore, T ′ can have at most n/m ⩽ εn leaves.

Recall that a subpath P of T ′ is called a bare path (in T ′) if all of the internal vertices

v of P have dT ′(v) = 2, and we denote by T ′ − P the graph formed from T ′ by removing

all the edges and internal vertices of P . Using [19, Lemma 2.8], find in T ′ vertex disjoint

bare paths P1, . . . , Pr with length k such that

|T ′ − P1 − . . .− Pr| ⩽ 6k · εn+ 2n/(k + 1) ⩽ ηn/4 (3.1)

Note that r ⩽ n/k. For each path Pi, if possible, find within Pi a path P ′
i with length at

least k − 2η3k, such that, letting Xi, Yi be the subpaths of P ′
i induced by the first and

last q − 1 vertices of P ′
i , the following hold.
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(i)
∑

v∈V (Xi)
|Sv|,

∑
v∈V (Yi)

|Sv| ⩽ ηk/4.

(ii) Letting Qi be the component of T − Xi − Yi containing P ′
i − Xi − Yi, we have

|Qi| ⩽ m.

Say, with relabelling, these paths are P ′
1, . . . , P

′
r′ . Let T0 = T ′ − P ′

1 − . . . − P ′
r′ . We

will show that |T0| ⩽ ηn. Consider first the number of paths Pi which do not have

length q − 2 subpaths Xi, Yi, each contained within η3k of each end of Pi, and for which∑
v∈V (Xi)

|Sv|,
∑

v∈V (Yi)
|Sv| ⩽ ηk/4. Each such path contains at least ⌊η3k/(q−1)⌋ disjoint

length q− 2 subpaths Z satisfying
∑

v∈V (Z) |Sv| > ηk/4, and so the number of such paths

is at most

n

⌊η3k/(q − 1)⌋(ηk/4)
⩽ ηn/4k.

Of the remaining paths, at most n/m may fail to produce a P ′
i due to having |Qi| > m.

Thus, we have r′ ⩾ r − ηn/4k − n/m ⩾ r − ηn/2k.

Note that, for each i ∈ [r′], |V (Pi) \ V (P ′
i )| ⩽ 2η3k. Therefore

|T0| ⩽ |T ′ − P1 − . . .− Pr|+ k(r − r′) + r′(2η3k) ⩽ ηn/4 + k(ηn/2k) + r(2η3k) ⩽ ηn,

and hence C1 holds. Let T1 = T [∪v∈V (T0)V (Sv)]. Recall that for each v ∈ V (T ′), Sv − v

is a forest with each component tree having size at most m. Therefore, C2 holds. Let

T2 = T1 ∪ (∪i∈[r′]Qi), and note that C3 holds. Note that

|V (T ) \ V (T2)| =
∑
i∈[r′]

∑
v∈V (Xi)∪V (Yi)

|Sv| ⩽ 2r(ηk/4) ⩽ ηn,

and hence C5 holds. Let T3 = T [V (T2)∪(∪i∈[r′](V (Xi)∪V (Yi)))] and note that C4 holds.

Finally, the only vertices missing from T3 are those in Sv − v for each v ∈ ∪i∈[r′](V (Xi) ∪

V (Yi)), and hence T3 is a tree.
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3.3 Regularity

Our embeddings use the regularity lemma for digraphs, by now a well-established tool in

the study of tournaments (see, for example, [21, 22, 25]). As with the regularity lemma

for graphs, this partitions most of the vertices of a tournament into clusters so that edges

behave pseudorandomly between most pairs of clusters. We will now recall the notation

needed to state the regularity lemma for digraphs.

Let G be a digraph. For disjoint subsets A,B ⊆ V (G), define the directed density

from A to B to be

d(A,B) =
|E(A,B)|
|A||B|

,

where E(A,B) denotes the set of edges of G directed from A towards B. Note that, if G

is a tournament, then d(B,A) = 1− d(A,B). We say that (A,B) forms an ε-regular pair

if, for every X ⊆ A such that |X| ⩾ ε|A| and every Y ⊆ B such that |Y | ⩾ ε|B|, we have

|d(X, Y )− d(A,B)| ⩽ ε. Note that, for tournaments, |d(X, Y )− d(A,B)| ⩽ ε if and only

if |d(Y,X)− d(B,A)| ⩽ ε. We say that (A,B) forms an ε-regular pair of density at least

µ if, in addition to forming an ε-regular pair, we also have d(A,B) ⩾ µ.

We will use the following directed version of Szemerédi’s regularity lemma proved by

Alon and Shapira [1].

Theorem 3.2 (Regularity lemma for digraphs). Let 1/r2 ≪ 1/r1 ≪ ε. Every digraph on

a vertex set V of order at least r1 partitions as V = V0 ∪ V1 ∪ . . . ∪ Vr, with r1 ⩽ r ⩽ r2,

satisfying the following.

D1 |V0| ⩽ ε|V |.

D2 |V1| = . . . = |Vr|.

D3 All but at most εr2 pairs (Vi, Vj) with 1 ⩽ i < j ⩽ r are ε-regular.

We now state the definition of an ε-regular partition. For convenience, we use a slightly

different definition of an ε-regular partition of a tournament than is directly produced by

Theorem 3.2, but which is gained through the removal of few clusters (see Corollary 3.4).
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Definition 3.3. An ε-regular partition of a tournament G is a partition V (G) = V1 ∪

. . . ∪ Vr with |V1| = . . . = |Vr| such that, for each fixed i ∈ [r], (Vi, Vj) forms an ε-regular

pair for all but at most
√
εr many j ∈ [r].

Corollary 3.4. Let α > β > 0 and 1/n ≪ 1/r2 ≪ 1/r1 ≪ ε ≪ β. Let G be a (1 + α)n-

vertex tournament. Then, there is a subtournament G′ ⊆ G with |G′| ⩾ (1+α−β)n, and

an ε-regular partition V (G′) = V1 ∪ . . . ∪ Vr with r1 ⩽ r ⩽ r2.

Proof. Given a tournamentG, using Theorem 3.2, take a partition V (G) = V0∪V1∪. . .∪Vr̄,

with 2r1 ⩽ r̄ ⩽ r2, satisfying D1-D3. By reordering, we may suppose there is some r

with 0 ⩽ r ⩽ r̄ such that, for each fixed i ∈ [r̄], (Vi, Vj) forms an ε-regular pair with at

least (1−
√
ε/2)r̄ many j ∈ [r̄] if and only if i ∈ [r]. By D3, we find (r̄− r)

√
εr̄/2 ⩽ εr̄2,

and hence r ⩾ (1− 2
√
ε)r̄ ⩾ r1. Let G

′ = G[V1 ∪ . . . ∪ Vr]. The desired properties for G′

then follow by noting that |V (G) \V (G′)| ⩽ |V0|+ r̄−r
r̄
|G| ⩽ (ε+2

√
ε)|G| ⩽ βn, and that

√
εr̄/2 ⩽

√
εr.

We will use the following simple proposition on vertex degrees in ε-regular partitions.

Proposition 3.5. Let ε, µ > 0 and r,m ∈ N. Suppose G is a tournament with disjoint

subsets W,V1, . . . , Vr ⊆ V (G) of size |W | = |V1| = . . . = |Vr| = m, such that (W,Vi) is an

ε-regular pair of density at least µ for each 1 ⩽ i ⩽ r. Fix a subset U ⊆ ∪i∈[r]Vi. Then,

all but at most εm vertices of W have at least (µ− ε)(|U | − εrm) out-neighbours in U .

Proof. Let Z be the set of vertices of W which have fewer than (µ− ε)(|U | − εrm) out-

neighbours in U , and suppose that |Z| ⩾ εm. Then, for each i ∈ [r], because (W,Vi)

is an ε-regular pair of density at least µ, there are at least |Z|(µ − ε)(|U ∩ Vi| − εm)

edges directed from Z to U ∩ Vi, noting that this is trivial if |U ∩ Vi| ⩽ εm. Therefore,

there are at least |Z|(µ− ε)(|U | − εrm) edges directed from Z to U . However, from the

definition of Z, the number of edges from Z to U is less than |Z|(µ − ε)(|U | − εrm), a

contradiction.

Our proofs will often allocate the vertices of a tree to the clusters of a regularity par-

tition, before applying variations of standard regularity methods to embed these vertices
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so that they are (mostly) embedded to their assigned cluster. For this we will use, in

part, the following simple proposition, which embeds a tree from an assignment in this

way, provided that the tree is small and also that the vertices of the tree are not assigned

to too many different clusters.

Proposition 3.6. Let 1/m ≪ ε ≪ β, µ, 1/ℓ. Suppose G is a tournament with subsets

V1, . . . , Vℓ ⊆ V (G) of size |V1| = . . . = |Vℓ| = m, and, for j ∈ [ℓ], let Uj ⊆ Vj have size

|Uj| ⩾ βm. Let T be an oriented tree with |T | ⩽ εm, and suppose φ : V (T ) → [ℓ] is such

that if uv ∈ E(T ) and φ(u) ̸= φ(v), then (Vφ(u), Vφ(v)) is an ε-regular pair of density at

least µ. Then, there is an embedding ψ : T → G with ψ(v) ∈ Uφ(v) for each v ∈ V (T ).

Proof. Let V (T ) = Y1 ∪ . . . ∪ Yr be a partition such that

• for each i ∈ [r], T [Yi] is a connected component of T [ϕ−1(j)] for some j ∈ [ℓ], and

• for each i ∈ [r], T [Y1 ∪ . . . ∪ Yi] is a tree.

Let s ∈ {0}∪ [r] be maximal such that, if Ts = T [Y1∪ . . .∪Ys], then there is an embedding

ψ : Ts → G with ψ(v) ∈ Uφ(v) for every v ∈ V (Ts), and, for every v ∈ V (Ts) and j ∈ [ℓ]

for which (Vφ(v), Vj) is an ε-regular pair, we have d+G(ψ(v), Uj) ⩾ (d(Vφ(v), Vj) − ε)βm

and d−G(ψ(v), Uj) ⩾ (d(Vj, Vφ(v)) − ε)βm. Suppose, for contradiction, that s < r. If

s = 0, then let y ∈ Y1 be arbitrary and set Z1 = Uφ(y). If instead we have s > 0,

then let x ∈ V (Ts), y ∈ Ys+1 and ⋄ ∈ {+,−} be such that y ∈ N⋄
T (x), and set Zs+1 =

N⋄
G(ψ(x), Uφ(y)). In either case, we find that |Zs+1| ⩾ βµm/2 and Zs+1 ⊆ Uφ(y). For

each j ∈ [ℓ] such that (Vφ(y), Vj) is an ε-regular pair, all but at most εm vertices z of

Zs+1 satisfy d+G(z, Uj) ⩾ (d(Vφ(y), Vj) − ε)βm and all but at most εm vertices z of Zs+1

satisfy d−G(z, Uj) ⩾ (d(Vj, Vφ(y)) − ε)βm. Therefore, as ε ≪ β, µ, 1/ℓ, there is a subset

Z ′
s+1 ⊆ Zs+1 \ ψ(V (Ts)) with |Z ′

s+1| ⩾ βµm/4, such that, for every z ∈ Z ′
s+1 and j ∈ [ℓ]

for which (Vφ(y), Vj) is an ε-regular pair, we have d+G(z, Uj) ⩾ (d(Vφ(y), Vj) − ε)βm and

d−G(z, Uj) ⩾ (d(Vj, Vφ(y)) − ε)βm. But then, by Theorem 1.8, there is a copy of T [Ys+1]

in G[Z ′
s+1], and so we can extend ψ to cover Ys+1, a contradiction to the maximality of

s.
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As is common, given an ε-regular partition V1 ∪ . . . ∪ Vr of a tournament G, we will

consider the reduced digraph R for the partition which has V (R) = [r], and ij ∈ E(R)

exactly when (Vi, Vj) is an ε-regular pair with density comfortably larger than ε. We will

sometimes delete edges arbitrarily from R so that there is at most 1 edge between any

pair of vertices. As a small proportion of pairs of clusters in an ε-regular partition may

not form an ε-regular pair, this will not necessarily result in a tournament. For this, we

define an ε-almost tournament, as follows.

Definition 3.7. An ε-almost tournament R is an oriented graph in which, for each

v ∈ V (R), there are at most ε|R| vertices u ∈ V (R) with vu /∈ E(R) and uv /∈ E(R).

We will use the following simple property of ε-almost tournaments, which shows they

each have some vertex with a good number of both in- and out-neighbours.

Proposition 3.8. Let R be an ε-almost tournament on r vertices. Then, there exists a

vertex v ∈ V (R) such that d+R(v), d
−
R(v) ⩾

r−1
4

− εr.

Proof. Let H be any tournament with V (H) = V (R) such that R ⊆ H, and let m = r−1
4
.

Any set of 2m+1 vertices in H contains a vertex with out-degree at least m and a vertex

with in-degree at least m. Therefore, all but at most 2m vertices of H have out-degree

at least m, and all but at most 2m vertices of H have in-degree at least m. Therefore,

as n > 4m, there is some v ∈ V (H) with d+H(v), d
−
H(v) ⩾

r−1
4
. Then, v ∈ V (R) satisfies

d+R(v), d
−
R(v) ⩾

r−1
4

− εr.

3.4 Theorem 1.4: embedding the core and attached

small trees

In this section, following the proof outline in Section 3.1, we embed T0 and T1 for The-

orem 1.4. In the embeddings we may assume that T0 is connected (i.e., that it is a tree

not just a forest), and so our embedding of T0 and T1 will follow by identifying T1 with T

in the following theorem.
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Theorem 3.9. Let 1/n≪ η ≪ ᾱ < 1. Suppose T is an n-vertex k-leaf oriented tree with

a subtree T0 ⊆ T , such that |T0| ⩽ ηn and every component of T −V (T0) has size at most

ηn. Then, any ((1 + ᾱ)n+ k)-vertex tournament contains a copy of T .

Note that, within this section, T will refer to trees satisfying the hypotheses of Theo-

rem 3.9 (i.e., those usually denoted as T1 elsewhere in this chapter).

We require, for Theorem 3.9, the components of T − V (T0) to be bounded above by

ηn, for some appropriately small η. This is not required for its application, where these

components will have constant size (see C2 earlier), but this small linear bound follows

at no additional cost. As discussed in Section 3.1, to embed the core T0 and extend

this embedding to T , we will first allocate the vertices of the tree to regularity clusters.

This allocation requires care beyond that in previous embeddings of trees in tournaments

(see [21, 22, 25]) as the large degree of some vertices in the tree require edges not just

to have sufficient density for regularity embedding techniques to be effective (i.e., ε ≪ µ

in Proposition 3.6), but sufficient density for potentially linearly many neighbours of a

vertex to be embedded within the same regularity cluster. For this, we find it convenient

to consider an ε-regular partition of clusters V1 ∪ . . . ∪ Vr as a weighted complete looped

digraph D with vertex set [r] and edge weights d(e) ∈ [0, 1], e ∈ E(D), indicating the edge

density between ε-regular pairs of clusters. We call the sets of edge weights we typically

encounter ε-complete, as follows.

Definition 3.10. Given a complete looped digraph D on vertex set [r], we say edge weights

d(e) ∈ [0, 1], e ∈ E(D), are ε-complete if the following holds.

E For each j ∈ [r], d(j, j) = 1 and, for all but at most εr values of i ∈ [r] \ {j},

d(i, j) + d(j, i) = 1.

From this perspective, an allocation of the vertices of an oriented tree T to the regu-

larity clusters is a map from V (T ) to the vertices of a complete looped digraph D with

edge weights representing the density of edges between regularity clusters. Considering

the role of µ in Proposition 3.6, it is important that whenever endpoints of an edge of

64



T are allocated to different clusters, those clusters form an ε-regular pair of density at

least µ. When D is introduced in the proof later, we will adjust the weights on some

edges to ensure that d(i, j) = 0 whenever d(Vi, Vj) < µ. Thus, a valid allocation will be a

homomorphism from T to D, defined as follows.

Definition 3.11. Given a digraph H and a complete looped digraph D with associated

edge-weights d(e) ∈ [0, 1], e ∈ E(D), we say that a function ϕ : V (H) → V (D) is a

homomorphism from H to D if d(ϕ(v), ϕ(w)) > 0 whenever vw ∈ E(H).

We need to find such a homomorphism from T to D satisfying additional properties,

such as a limit to how many vertices are assigned to each cluster. The allocation we find for

Theorem 3.9 will always assign the vertices of T0 to a single cluster, whose index we call jt,

and then distribute the vertices of the components of T−V (T0) across the other regularity

clusters. Rather than considering the components of T − V (T0) directly, we will work

with a small vertex-weighted digraph H, which represents an average of the components

of T −T (V0). We will find a probability distribution D on the set of homomorphisms from

H to D so that when we assign vertices of each component of T − V (T0) according to

an independent sampling of D, then, with high probability, the resulting homomorphism

from T to D has the required properties. Working in this randomised setting allows us to

obtain this homomorphism concisely and without the need to consider the many distinct

oriented trees which may appear as components of T − V (T0).

The existence of the probability distribution D is asserted by Theorem 3.13 below,

which is used in this section as a starting point for Theorem 3.9. The proof of Theo-

rem 3.13 itself is the most involved part of this chapter, and so we defer this to Section 3.7.

Before stating Theorem 3.13, and also explaining the statement in more detail, we first

define the digraph H used to represent the components of T −V (T0) (see also Figure 3.3).

To simplify the notation relating to H, we make use of the following definition.
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Figure 3.3: The fully-looped oriented forest H (with looped edges omitted).

Definition 3.12. Say that a digraph F is a fully-looped oriented forest if F has a looped

edge on every vertex, and the deletion of all looped edges from F leaves an oriented forest.

Let H be the fully-looped oriented forest with vertex and edge sets given by

V (H) =
{
x+, y+, z+, u+, w+, x̄+, z̄+, ū+, w̄+, x−, y−, z−, u−, w−, x̄−, z̄−, ū−, w̄−} ,

E(H) =

 x+y+, z+x+, z+u+, w+z+, z̄+x̄+, z̄+ū+, w̄+z̄+,

y−x−, x−z−, u−z−, z−w−, x̄−z̄−, ū−z̄−, z̄−w̄−

 ∪ {vv : v ∈ V (H)}.
(3.2)

For each ⋄ ∈ {+,−}, let X⋄ = {x⋄, x̄⋄}. Let X = X+ ∪X−.

We are now ready to state Theorem 3.13. Note that, for the function β : V (H) → [0, 1],

if A ⊆ V (H) we will often write β(A) to mean
∑

v∈A β(v) and β(v1, . . . , vk) to mean

β({v1, . . . , vk}).

Theorem 3.13. Let 1/r ≪ ε ≪ µ ≪ α < 1. Let H be the fully-looped oriented forest

with vertex and edge sets given by (3.2). For each ⋄ ∈ {+,−}, set X⋄ = {x⋄, x̄⋄}, and

set X = X+ ∪X−. Let β : V (H) → [0, 1] be a function satisfying
∑

v∈V (H) β(v) = 1 with

β(y+) ⩾ β(x+) and β(y−) ⩾ β(x−), and, for every v ∈ V (H), β(v) ⩾ µ. Let D be a

complete looped digraph on vertex set [r] with ε-complete edge weights d(e) for e ∈ E(D).

Let

γ = max {β(x+, x̄+), β(z+, z̄+)}+max {β(x−, x̄−), β(z−, z̄−)}. (3.3)

Then, there is a fixed jt ∈ [r] and a probability distribution D on the set of functions from
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V (H) to V (D), such that, if ϕ is sampled according to D, then the following properties

hold.

F1 With probability 1, ϕ is a homomorphism from H to D, and jt /∈ ϕ({x+, x̄+, x−, x̄−}).

F2 For each j ∈ [r], E(β(ϕ−1(j))) ⩽ 1+γ+α
r

.

F3 For each j ∈ [r], either

F3.1 E(β(ϕ−1(j) ∩X+)) ⩽ d(jt, j) · 1+γ+α
r

and E(β(ϕ−1(j) ∩X)) ⩽ d(j, jt) · 1+γ+α
r

,

or

F3.2 E(β(ϕ−1(j) ∩X−)) ⩽ d(j, jt) · 1+γ+α
r

and E(β(ϕ−1(j) ∩X)) ⩽ d(jt, j) · 1+γ+α
r

.

F4 With probability 1, we have |ϕ(e)| = 2 for every non-looped edge e of H.

The technical nature of Theorem 3.13 is a result of the complications involved in

finding an appropriate allocation of the vertices of T − V (T0) to the regularity clusters

represented by D. Having chosen a single cluster (indexed by jt) for the embedding of T0,

the restriction on where a vertex u in T − V (T0) can be embedded depends on the path

from T0 to u in T , and its edge directions. However, it will turn out that all we need to

consider is what proportion of the vertices in T − V (T0) have paths from T0 beginning

with any given oriented path of length at most 3. Accordingly, in the application of

Theorem 3.13, each vertex u of T − V (T0) will be associated to a vertex of H depending

on the orientation of the first few edges on the path from T0 to u. Then, each vertex v

of H will be given weight β(v) roughly equal to the proportion of vertices of T − V (T0)

associated to v. It is in this sense that the digraph H together with the weight function

β represents an average of the components of T − V (T0). Vertices in X represent the

vertices connected by an edge to T0 in T , which may therefore be neighbours of any very

high degree vertices in T0, and so we need to pay particular attention to how often they

are assigned to each regularity cluster.

Identifying H and β in this way helps contextualise the statement of Theorem 3.13.

Suppose jt is fixed as the index corresponding to the image of T0, and ϕ is sampled
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according to D. By F1, we will have with probability 1 that ϕ is a homomorphism,

so that the regularity properties can be used to embed any edges assigned between two

regularity clusters, and, for convenience, no vertex in X is assigned to jt. F2 ensures

that (on average) not too much weight is allocated to a single cluster. F3 ensures that

(on average) the weight of vertices in X+ (i.e., those which need to be attached by an

out-edge to T0, which is allocated to jt), or X
−, allocated to each cluster is not too much,

where the limit is dictated by the appropriate density from that cluster to jt, or from

jt to that cluster. Finally, F4 is present to later ensure that vertices of NT (V (T0)) are

allocated to a different cluster to their neighbours, which will assist with the embedding

process.

We use the parameter γ (see (3.3) in Theorem 3.13) to control the total size of com-

ponents we can embed using ϕ relative to the size of the tournament from which D is

derived. As we use this for Theorem 1.4 it should be related to the number of leaves. In

the application of Theorem 3.13, the weight on the vertices with base label ‘x’ or ‘z’ is

distributed so that it can be bounded based on the number of leaves of the original tree

(and in certain cases uses a lower bound than that required for Theorem 1.4).

We now sketch the proof of Theorem 3.9 from Theorem 3.13. In this proof, we first

define a homomorphism f from T − V (T0) to H, and then use f to define an appropriate

weight function β : V (H) → [0, 1]. Then, taking an ε-regular partition of a tournament G

with vertex classes V1, . . . , Vr, we choose the appropriate edge-weighted complete looped

digraph D. Applying Theorem 3.13, we obtain jt ∈ [r] and the probability distribution D.

We then embed T0 into a subset of good vertices inside Vjt . By independently sampling

ϕ according to D for each component of T −V (T0), we then get a homomorphism φ̂ from

T − V (T0) to D. We will see later (in Claim 3.15) that φ̂ is a good guide for assigning

vertices of T − V (T0) to the clusters V1, . . . , Vr.

Because T0 may have vertices with high degree, we need to allocate room in the clusters

for vertices in NT (V (T0)) before embedding the rest of T − V (T0). However, if we fix the

images of NT (V (T0)), then the embedding of the components of NT (V (T0)) is restricted in
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a way that possibly prevents us from being able to exactly follow the allocation given by φ̂.

To handle this, we consider large components and small components separately. Precisely,

using Sx to denote the component of T − V (T0) containing x ∈ NT (V (T0)), we partition

NT (V (T0)) = X0∪Y0 such that Sx is at most constant-sized whenever x ∈ X0 (and larger

than constant-sized whenever x ∈ Y0). We then embed as much of ∪x∈X0∪Y0V (Sx) as

possible. Given x ∈ X0, if it is not possible to embed Sx according to φ̂, then we may

still be able to find an embedding for Sx by switching its allocation with an identical

component. Indeed, if a significant number of x ∈ X0 are yet to have their corresponding

component embedded, then the bound on |Sx| for x ∈ X0 helps to find a suitable identical

pair. Thus, we can extend the embedding to cover most of ∪x∈X0V (Sx). On the other

hand, Y0 is small, and so the corresponding larger components can be all be embedded

greedily using specially reserved sets for their roots. Finally, any remaining components

of T −V (T0) that are not embedded can then be handled by greedily embedding them to

a random subset U ⊆ V (G) reserved at the beginning of the proof.

Proof of Theorem 3.9. Let α = ᾱ/35 and introduce constants µ, ε, r1, r2 such that η ≪

1/r2 ≪ 1/r1 ≪ ε ≪ µ ≪ α. For each x ∈ NT (V (T0)), let Sx be the component of

T − V (T0) containing x.

Let G be a ((1 + 35α)n + k)-vertex tournament, and note that n ⩽ |G| ⩽ 3n. Let

U ⊆ V (G) be a random subset, with elements from V (G) chosen independently at random

with probability 2α, and let V ′ be the set of vertices v ∈ V (G) \U with d±G(v, U) ⩾ 4α2n.

By Proposition 1.20, we may proceed assuming that |U | ⩾ αn and |V ′| ⩾ ((1+11α)n+k).

Define f0 : NT (V (T0)) → {x+, x̄+, x−, x̄−} as follows. For each ⋄ ∈ {+,−} and v ∈

N⋄
T (V (T0)), set f0(v) = x⋄ if N⋄

T (v) \ V (T0) ̸= ∅, and set f0(v) = x̄⋄ if N⋄
T (v) \ V (T0) = ∅.

Then, let f : V (T )\V (T0) → V (H) be the homomorphism from T−V (T0) to H extending

f0 such that f−1({x+, x̄+, x−, x̄−}) = NT (V (T0)), f
−1({z+, z̄+}) = N−

T (N
+
T (V (T0))) \

V (T0), and f−1({z−, z̄−}) = N+
T (N

−
T (V (T0))) \ V (T0). (Note that this homomorphism

is unique, as each vertex in (N−
T (N

+
T (V (T0))) ∪ N+

T (N
−
T (V (T0)))) \ V (T0) has only one

viable candidate for its image among {z+, z̄+, z−, z̄−}, and once those vertices have their

69



images fixed, each remaining vertex has only one viable candidate for its image among

{y+, u+, w+, ū+, w̄+, y−, u−, w−, ū−, w̄−}.)

Let β : V (H) → [0, 1] be given by setting, for each v ∈ V (H),

β(v) =
|f−1(v)|+ 2µn

|V (T ) \ V (T0)|+ 36µn
, (3.4)

and note that, because |V (H)| = 18, β is a function satisfying
∑

v∈V (H) β(v) = 1, and

β(v) ⩾ µ for every v ∈ V (H). Set

γ = max {β(x+, x̄+), β(z+, z̄+)}+max {β(x−, x̄−), β(z−, z̄−)}. (3.5)

We remark that, for each ⋄ ∈ {+,−}, if v ∈ f−1(x⋄), then there is some v′ ∈ N⋄
T (v) \

V (T0) with f(v
′) = y⋄. Therefore, β(y+) ⩾ β(x+) and β(y−) ⩾ β(x−). We also remark

that, for each x ∈ NT (V (T0)), the number of leaves of T appearing in Sx is at least

max {1, |f−1({z+, z̄+, z−, z̄−}) ∩ V (Sx)|}, and hence

k ⩾
∑

x∈NT (V (T0))

max {1, |f−1({z+, z̄+, z−, z̄−}) ∩ V (Sx)|}

⩾ max {|N+
T (V (T0))|, |f−1({z+, z̄+})|}+max {|N−

T (V (T0))|, |f−1({z−, z̄−})|}

= max {|f−1({x+, x̄+})|, |f−1({z+, z̄+})|}+max {|f−1({x−, x̄−})|, |f−1({z−, z̄−})|}.

Therefore, by (3.4) and (3.5), γ ⩽ α + k/n and hence |V ′| ⩾ (1 + γ + 10α) · n.

By Corollary 3.4, there is some r with r1 ⩽ r ⩽ r2 and disjoint subsets V1, . . . , Vr ⊆ V ′,

with |V1| = . . . = |Vr| ⩾ (1+ γ+9α) ·n/r, such that V1 ∪ . . .∪Vr is an ε-regular partition

of G[V1 ∪ . . . ∪ Vr]. Let D be a complete looped digraph on vertex set [r] with edge

weights d(e), e ∈ E(D) given by setting d(j, j) = 1 for every j ∈ [r], d(j, j′) = 0 for

every jj′ ∈ E(D) for which j ̸= j′ and (Vj, Vj′) is not an ε-regular pair, and, for every
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jj′ ∈ E(D) for which (Vj, Vj′) forms an ε-regular pair, setting

d(j, j′) =


1 if d(Vj, Vj′) > 1− µ,

d(Vj, Vj′) if µ ⩽ d(Vj, Vj′) ⩽ 1− µ,

0 if d(Vj, Vj′) < µ.

We remark that the edge weights d(e), e ∈ E(D) are
√
ε-complete, and, for j ̸= j′, if

d(j, j′) > 0, then (Vj, Vj′) is an ε-regular pair with density satisfying d(Vj, Vj′) ⩾ µ and

d(Vj, Vj′) ⩾ (1− µ) · d(j, j′).

By Theorem 3.13 applied to β andD, there is some jt ∈ [r] and probability distribution

D on the set of functions from V (H) to V (D), such that, if ϕ is sampled according to D,

then F1-F4 hold. Let J1 be the set of j ∈ [r] for which we have F3.1, and let J2 = [r]\J1,

so that F3.2 holds for every j ∈ J2. For j ∈ [r], let Uj,Wj ⊆ Vj be disjoint subsets with

|Uj| = (1 + γ + 4α) · n/r and |Wj| = 3α · n/r. Let Z be the set of z ∈ Vjt \ (Ujt ∪Wjt)

such that the following holds for ϕ with probability at least 1−
√
ε.

d+G(z, Uϕ(x+)) ⩾ d(jt, ϕ(x
+)) · (1 + γ + 3α) · n/r, d+G(z,Wϕ(x+)) ⩾ 2αµ · n/r,

d+G(z, Uϕ(x̄+)) ⩾ d(jt, ϕ(x̄
+)) · (1 + γ + 3α) · n/r, d+G(z,Wϕ(x̄+)) ⩾ 2αµ · n/r,

d−G(z, Uϕ(x−)) ⩾ d(ϕ(x−), jt) · (1 + γ + 3α) · n/r, d−G(z,Wϕ(x−)) ⩾ 2αµ · n/r,

d−G(z, Uϕ(x̄−)) ⩾ d(ϕ(x̄−), jt) · (1 + γ + 3α) · n/r, d−G(z,Wϕ(x̄−)) ⩾ 2αµ · n/r.

(3.6)

Claim 3.14. |Z| ⩾ α · n/r.

Proof of Claim 3.14. Let Z̄ be the set of z ∈ Vjt such that (3.6) fails with probability at

least
√
ε. If |Z̄| < α · n/r, then, as |Vjt \ (Ujt ∪Wjt)| ⩾ 2α · n/r, the claim follows. So

assume for contradiction that |Z̄| ⩾ α · n/r.

Let Ω be the set of homomorphisms ϕ̄ : H → D such that jt /∈ ϕ̄({x+, x̄+, x−, x̄−})

and d(jt, ϕ̄(x
+)), d(jt, ϕ̄(x̄

+)), d(ϕ̄(x−), jt)), and d(ϕ̄(x̄−), jt) are all positive, and hence,

by our choice of d(e), e ∈ E(D), are all at least µ. Note that, by F1, P(ϕ ∈ Ω) = 1.

Given ϕ̄ ∈ Ω, let Bϕ̄ be the set of z ∈ Vjt such that (3.6) fails for ϕ = ϕ̄. We claim that
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|Bϕ̄| ⩽ 24ε · n/r for every ϕ̄ ∈ Ω. Indeed, if ϕ̄ ∈ Ω, then (Vjt , Vϕ̄(x+)) is an ε-regular pair

of density d(Vjt , Vϕ̄(x+)) ⩾ min {d(jt, ϕ̄(x+)), 1− µ} ⩾ µ, and so the number of z ∈ Vjt

for which we do not have d+G(z, Uϕ̄(x+)) ⩾ d(jt, ϕ̄(x
+)) · (1 + γ + 3α) · n/r is at most

ε|Vjt | ⩽ 3ε · n/r (using, for example, Proposition 3.5, with r′ = 1 and µ′ = d(Vjt , Vϕ̄(x+))).

More generally, if ϕ̄ ∈ Ω, then (Vjt , Vϕ̄(x+)), (Vjt , Vϕ̄(x̄+)), (Vϕ̄(x−), Vjt), and (Vϕ̄(x̄−), Vjt) all

form ε-regular pairs (of density at least µ), and thus each one of the inequalities of (3.6)

fails for at most 3ε · n/r many z ∈ Vjt . Hence we have |Bϕ̄| ⩽ 8 · 3ε · n/r = 24ε · n/r for

every ϕ̄ ∈ Ω, as claimed. But then

α
√
ε · n/r ⩽ |Z̄| ·

√
ε ⩽

∑
ϕ̄∈Ω

P(ϕ = ϕ̄) · |Bϕ̄| ⩽ 24ε · n/r,

a contradiction as ε≪ α. ⊡

Note that, by Claim 3.14 and as η ≪ α, 1/r2, |Z| ⩾ 3ηn ⩾ 3|T0|. Therefore, using

Theorem 1.8, let ψ : T0 → G be an embedding so that ψ(V (T0)) ⊆ Z. For each x ∈

NT (V (T0)), let zx ∈ Z be the image under ψ of the unique neighbour of x in V (T0). Our

aim now is to extend ψ to cover the components Sx, x ∈ NT (V (T0)), with each ψ(x) in

the appropriate in- or out-neighbourhood of zx.

Given v ∈ V (T ) \ V (T0), let x(v) ∈ NT (V (T0)) be the unique vertex such that v ∈

V (Sx(v)). For each x ∈ NT (V (T0)), choose a homomorphism ϕx : H → D by sampling ϕ,

conditioned on the event that (3.6) holds for z = zx. Define a function φ̂ : V (T )\V (T0) →

[r] by setting φ̂(v) = ϕx(v)(f(v)). We remark that φ̂ is a homomorphism from T − V (T0)

to D, with |φ̂(V (Sx))| ⩽ |H| for every x ∈ NT (V (T0)).

Let X0 be the set of x ∈ NT (V (T0)) with |Sx| ⩽ 1/µ3, and let Y0 = NT (V (T0))\X0, so

that |Sx| > 1/µ3 whenever x ∈ Y0. Note that |Y0| ⩽ µ3n. Roughly speaking, we will try to

embed each v ∈ V (T ) \ V (T0) into Vφ̂(v), with each v ∈ Y0 embedded into Wφ̂(v) and each

v ∈ V (T ) \ (V (T0) ∪ Y0) embedded into Uφ̂(v). This motivates the following claim, which

we will prove later. For this, for each j ∈ [r] and ⋄ ∈ {+,−}, let X⋄
j (respectively, Y ⋄

j ) be

the set of vertices in X0 (respectively, Y0) which are ⋄-neighbours of V (T0) and allocated
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to Vj by φ̂. That is, for each j ∈ [r] and ⋄ ∈ {+,−}, let X⋄
j = X0 ∩ f−1(X⋄)∩ φ̂−1(j) and

Y ⋄
j = Y0 ∩ f−1(X⋄) ∩ φ̂−1(j).

Claim 3.15. With probability at least 3/4, the following properties hold.

G1 For every j ∈ [r], |φ̂−1(j)| ⩽ (1 + γ + 3α) · n/r.

G2 For every j ∈ [r] and x ∈ X+
j ∪X−

j ,

G2.1 if j ∈ J1, then d+G(zx, Uj) ⩾ |X+
j | if x ∈ X+

j and d−G(zx, Uj) ⩾ |X+
j ∪ X−

j | if

x ∈ X−
j ;

G2.2 if j ∈ J2, then d−G(zx, Uj) ⩾ |X−
j | if x ∈ X−

j and d+G(zx, Uj) ⩾ |X+
j ∪ X−

j | if

x ∈ X+
j .

G3 |Y +
j ∪ Y −

j | ⩽ αµ · n/r for every j ∈ [r].

We therefore proceed with the assumption that properties G1-G3 hold. Extend ψ to

cover X0 as follows.

• For each j ∈ J1, using G2.1, greedily extend ψ to first cover X+
j , and then to cover

X−
j , so that ψ(X+

j ∪X−
j ) ⊆ Uj.

• For each j ∈ J2, using G2.2 greedily extend ψ to first cover X−
j , and then to cover

X+
j , so that ψ(X+

j ∪X−
j ) ⊆ Uj.

Next, let X ′ ⊆ X0 ∪ Y0 be a maximal set such that there exists a homomorphism φ

from T − V (T0) to D and an extension of ψ covering ∪x∈X′V (Sx) such that the following

properties hold.

H1 φ(v) = φ̂(v) for every v ∈ X0 ∪ (∪x∈Y0V (Sx)).

H2 |φ(V (Sx))| ⩽ |H| for every x ∈ X0 ∪ Y0.

H3 |φ−1(j)| = |φ̂−1(j)| for every j ∈ [r].

H4 If x ∈ X ′ ∩ Y0 then ψ(x) ∈ Wφ(x), and if v ∈ (∪x∈X′V (Sx)) \ Y0 then ψ(v) ∈ Uφ(v).
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We remark that this is well-defined, as we may take X ′ = ∅ and φ = φ̂.

For this maximal X ′, take (φ, ψ) so that H1-H4 hold, and let A = ψ(V (T0) ∪ X0 ∪

(∪x∈X′V (Sx))). Note that, by G1, H3 and H4, we have

|Uj \ A| ⩾ α · n/r (3.7)

for every j ∈ [r]. We now show that X ′ includes all of Y0 and almost all of X0.

Claim 3.16. Y0 ⊆ X ′.

Proof of Claim 3.16. For any ⋄ ∈ {+,−} and x ∈ N⋄
T (V (T0)) ∩ Y0, we have

|N⋄
G(zx,Wφ(x)) \ A|

(3.6)

⩾ 2αµ · n/r − |Y +
j ∪ Y −

j |
G3

⩾ αµ · n/r.

So if x ∈ Y0 \X ′, then, by Proposition 3.6 and (3.7), ψ can be extended to cover V (Sx)

with ψ(x) ∈ Wφ(x) \A and ψ(v) ∈ Uφ(v) \A whenever v ∈ V (Sx) \ {x}, contradicting the

maximality of X ′. So we must have Y0 ⊆ X ′. ⊡

Claim 3.17. |X0 \X ′| ⩽ µ4n.

Proof of Claim 3.17. For each m ∈ N, let g(m) denote the number of rooted oriented

trees with at most m vertices. Suppose, for contradiction, that |X0 \ X ′| > µ4n. Then

there is some j ∈ [r] with |(X+
j ∪X−

j ) \X ′| > µ4 · n/r. Therefore, there is some rooted

oriented tree S such that, if XS
j is the set of x ∈ (X+

j ∪X−
j )\X ′ for which Sx is isomorphic

to S, then |XS
j | ⩾ (µ4/g(⌊1/µ3⌋)) · n/r.

Choose x1 ∈ XS
j arbitrarily. By Proposition 3.6 and (3.7), there is a copy of Sx1 in G,

with each v ∈ V (Sx1) \ {x1} copied to Uφ(v) \A and x1 copied to ψ(XS
j ), and let x2 ∈ XS

j

be such that ψ(x2) is the image of x1 in this copy. Because Sx1 and Sx2 are isomorphic,

we may regard this as a copy of Sx2 , and use this copy to extend ψ to cover V (Sx2).
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Let ρ be an automorphism of T − V (T0) with ρ(Sx1) = Sx2 , ρ(Sx2) = Sx1 , and

ρ(v) = v whenever v /∈ V (Sx1) ∪ V (Sx2). Note that ψ(v) ∈ Uφ(ρ(v)) whenever v ∈

(∪x∈X′∪{x2}V (Sx)) \ Y0, and so φ ◦ ρ is a homomorphism from T − V (T0) to D also satis-

fying H1-H4. So using this extension of ψ and the homomorphism φ ◦ ρ, we may add x2

to X ′, a contradiction. ⊡

We now have an embedding of a subtree T [ψ−1(A)] ⊆ T into G[V ′], where, using

Claims 3.16 and 3.17,

|V (T ) \ ψ−1(A)| ⩽
∑

x∈(X0∪Y0)\X′

|Sx| ⩽ µn.

Recall that we also have d±G(v, U) ⩾ 4α2n ⩾ 3µn for every v ∈ V ′. Therefore, by

Corollary 1.9, this embedding can be extended to an embedding of T into G with the

vertices of V (T ) \ψ−1(A) embedded into U . All that remains now is to prove Claim 3.15.

Proof of Claim 3.15. We will prove that each of the properties G1-G3 fails with proba-

bility at most 1/16, and so the claim then follows.

G1: As each ϕx was chosen previously by sampling ϕ conditioned on an event which

holds with probability at least (1−
√
ε), we have that for any v ∈ V (T ) \ V (T0), j ∈ [r],

P(ϕx(v)(f(v)) = j) ⩽ (1−
√
ε)−1P(ϕ(f(v)) = j). (3.8)

Thus, we find that, for any w ∈ V (H), j ∈ [r],

E(|φ̂−1(j) ∩ f−1(w)|) =
∑

v∈f−1(w)

P(ϕx(v)(f(v)) = j)

(3.8)

⩽
∑

v∈f−1(w)

(1−
√
ε)−1P(ϕ(f(v)) = j)

(3.4)

⩽ (1 +
√
µ) · E(β(ϕ−1(j) ∩ {w})) · n. (3.9)
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For any j ∈ [r], we have

E(|φ̂−1(j)|) =
∑

w∈V (H)

E(|φ̂−1(j) ∩ f−1(w)|)

(3.9)

⩽ E(β(ϕ−1(j))) · n+ α · n/r
F2

⩽ (1 + γ + 2α) · n/r. (3.10)

Therefore, as ∑
x∈X0∪Y0

|Sx|2 ⩽
∑

x∈X0∪Y0

|Sx| · max
x∈X0∪Y0

|Sx| ⩽ ηn2, (3.11)

we find that

P(|φ̂−1(j)| > (1 + γ + 3α) · n/r)
(3.10)

⩽ P(||φ̂−1(j)| − E(|φ̂−1(j)|)| ⩾ α · n/r)
Theorem 1.19

⩽ 2 exp

(
− 2α2 · n2/r2∑

x∈X0∪Y0
|Sx|2

)
(3.11)

⩽ 2 exp

(
−2α2

ηr2

)
,

and so the probability that G1 fails is at most 2r · exp (−2α2/ηr2) < 1/16.

G2: We first note that, for any j ∈ [r] and ⋄ ∈ {+,−},

E(|X⋄
j |) =

∑
w∈X⋄

E(|φ̂−1(j) ∩ f−1(w)|)
(3.9)

⩽ (1 +
√
µ) · E(β(ϕ−1(j) ∩X⋄)) · n. (3.12)

Also,

P(||X⋄
j | − E(|X⋄

j |)| ⩾ µ2 · n/r)
Theorem 1.19

⩽ 2 exp

(
− 2µ4 · n2/r2

|X0 ∩ f−1(X⋄)|

)
⩽ 2 exp

(
−2µ4

r2
· n
)
.

Therefore, with probability at least 1− 4r · exp (−(2µ4/r2) · n) > 15/16, we have

||X⋄
j | − E(|X⋄

j |)| ⩽ µ2 · n/r for every j ∈ [r], ⋄ ∈ {+,−}. (3.13)

Thus, it is enough to show that G2 follows from (3.13). Indeed, for j ∈ J1, if P(|X+
j | >

0),P(|X−
j | > 0) > 0, then d(jt, j), d(j, jt) > µ, and so for any x ∈ X+

j we have

|X+
j |

(3.13)

⩽ E(|X+
j |)+µ2·n/r

(3.12),F3.1

⩽ (1+
√
µ)d(jt, j)(1+γ+α)·n/r+µ2·n/r

(3.6)

⩽ d+G(zx, Uj),
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and for any x ∈ X−
j we have

|X+
j ∪X−

j |
(3.13)

⩽ E(|X+
j ∪X−

j |) + 2µ2 · n/r
(3.12),F3.1

⩽ (1 +
√
µ)d(j, jt)(1 + γ + α) · n/r + 2µ2 · n/r

(3.6)

⩽ d−G(zx, Uj),

and so G2.1 holds. If instead |X+
j | = 0 with probability 1 or |X−

j | = 0 with probability

1, then the same conclusion holds. Similarly, if j ∈ J2 then (3.13) implies G2.2.

G3: Note that if x ∈ NT (V (T0)) and j ∈ [r], then, because β(f(x)) ⩾ µ,

P(φ̂(x) = j) = P(ϕx(f(x)) = j)
(3.8)

⩽ (1−
√
ε)−1P(ϕ(f(x)) = j)

= (1−
√
ε)−1 1

β(f(x))
· E(β(ϕ−1(j) ∩ {f(x)}))

F2

⩽ 6/µr,

and so, for any j ∈ [r], we have E(|Y +
j ∪ Y −

j |) ⩽ 6µ2 · n/r. Therefore, for any j ∈ [r],

P(|Y +
j ∪ Y −

j | > αµ · n/r) ⩽ P(||Y +
j ∪ Y −

j | − E(|Y +
j ∪ Y −

j |)| > µ2 · n/r)
Theorem 1.19

⩽ 2 exp

(
−2µ4 · n2/r2

|Y0|

)
⩽ 2 exp

(
−2µ4

r2
· n
)
,

and so, the probability that G3 fails is at most r · exp (−(2µ4/r2) · n) < 1/16. ⊡ □

3.5 Theorem 1.5: embedding the core and attached

small trees

In this section, following the proof outline in Section 3.1, we embed T0 and T1 for The-

orem 1.5, doing so in the form of the following result, Theorem 3.18. (This compares to

our work in Section 3.4 for Theorem 1.4, proving Theorem 3.9.)

Theorem 3.18. Let 1/n≪ η ≪ α. Suppose T is an n-vertex oriented tree with a subtree

T0 ⊆ T , such that |T0| ⩽ ηn and T is formed from T0 by attaching to each vertex v of T0

a tree Sv with |Sv| ⩽ ηn. Then, any (1 + α)n-vertex tournament contains a copy of T .
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Note that there is no direct maximum degree imposed on T in Theorem 3.18, but as

(exactly) one tree is attached to each vertex in T0 to get T , it follows that ∆(T ) ⩽ 2ηn.

As with Theorem 3.9, the proof of Theorem 3.18 is broken into two main parts – in

Section 3.5.1 we allocate the vertices of T to regularity clusters, before embedding the

vertices according to this allocation in Section 3.5.2.

3.5.1 Allocating vertices for Theorem 3.18

To allocate the vertices of an oriented tree T from Theorem 3.18 to regularity clusters in

some ε-regular partition V1∪ . . .∪Vr, we first find an assignment of the vertices of T to the

vertices of a simpler ‘caterpillar-like’ digraph (see Figure 3.4). This assignment maps the

vertices of the core T0 ⊆ T into a small transitive tournament, with the components of

T − V (T0) assigned to an in- or out-leaf from this transitive tournament according to the

direction of the edge from T0 to the component. The number of in- and out-leaves from

each transitive tournament vertex is chosen so that the number of vertices of V (T )\V (T0)

mapped onto each one is approximately even.

We ultimately find the ‘caterpillar-like’ digraph within the reduced digraph R for

an ε-regular partition V1 ∪ . . . ∪ Vr (see Section 3.3), and therefore we wish to find the

‘caterpillar-like’ digraph in any ε-almost tournament R. The method for finding such a

‘caterpillar-like’ digraph is presented in Lemma 3.19, which is then applied, to a weight

function naturally arising from the simplification of T discussed above, to produce a full

description of the ‘caterpillar-like’ digraph in Corollary 3.20. The transitive tournament

of the ‘caterpillar-like’ digraph is found with vertex set {j1, j2, . . . , js} (where condition J2

in Corollary 3.20 guarantees it is a transitive tournament), with sets of out-leaves I+i and

in-leaves I−i of ji, for each i ∈ [s]. The condition J3 in Corollary 3.20 ensures there are

enough in- and out-leaves to allow the approximately even distribution of V (T ) \ V (T0)

in the simplification of T .
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Lemma 3.19. Let ε > 0 and s̄, m, r ∈ N. Let n+
i , n

−
i ∈ N, i ∈ [s̄], be such that m ⩽

n+
i + n−

i ⩽ 4m for each i ∈ [s̄]. Suppose that R is an oriented graph on [r] in which, for

each j ∈ [r],

d+R(j) + d−R(j) ⩾ |R| −m ⩾ (25 + 1000 log s̄)m+
∑
i∈[s̄]

(n+
i + n−

i ). (3.14)

Then, there is some s ∈ [s̄] for which there exists 0 = i0 < i1 < . . . < is−1 < is = s̄, and

subsets {jℓ}, I+ℓ , I
−
ℓ ⊆ [r] for ℓ ∈ [s], all disjoint, with the following properties.

I1 jℓ1 →R jℓ2 whenever ℓ1 < ℓ2.

I2 For each ℓ ∈ [s] and ⋄ ∈ {+,−}, we have I⋄ℓ ⊆ N⋄
R(jℓ), and

|I⋄ℓ | =
iℓ∑

i=iℓ−1+1

n⋄
i .

Proof. Fix m ∈ N and ε > 0. We will show, by strong induction on s̄, that the lemma

holds for each s̄ ⩾ 1.

First, suppose s̄ = 1. It follows from (3.14) that R is a (1/25)-almost tournament

with |R| ⩾ 25m, and therefore, by Proposition 3.8, there is some j1 ∈ [r] such that

d+R(j1), d
−
R(j1) ⩾ |R|/5 ⩾ 4m. If we set I⋄1 ⊆ N⋄

R(j1) with |I⋄1 | = n⋄
1 for ⋄ ∈ {+,−}, then

all the required properties are satisfied.

Suppose then that s̄ > 1. It follows from (3.14) that R is an (1/25)-almost tournament

with |R| ⩾ 25m, and therefore, by Proposition 3.8, there is some j ∈ [r] such that

d+R(j), d
−
R(j) ⩾ |R|/5. Now, by (3.14), we have d+R(j)+d

−
R(j) ⩾

∑
i∈[s̄](n

+
i +n

−
i ). Therefore,

at least one of
∑

i∈[s̄] n
+
i ⩽ d+R(j) or

∑
i∈[s̄] n

−
i ⩽ d−R(j) holds. If both inequalities hold, then

the desired result follows by taking s = 1, j1 = j, and I⋄1 ⊆ N⋄
R(j) with |I⋄1 | =

∑
i∈[s̄] n

⋄
i for

each ⋄ ∈ {+,−}. Otherwise, by directional duality, we may assume that
∑

i∈[s̄] n
+
i ⩽ d+R(j)

and
∑

i∈[s̄] n
−
i > d−R(j).
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Then, let s′ ∈ [s̄− 1] be maximal such that

∑
i∈[s′]

n−
i ⩽ d−R(j).

Note that, as

d−R(j) ⩾
|R|
5

(3.14)

⩾
1

5

∑
i∈[s̄]

(n+
i + n−

i ) ⩾
s̄m

5

and n−
i ⩽ (n+

i + n−
i ) ⩽ 4m for each i ∈ [s̄], we have s′ ⩾ s̄/20. Furthermore, by the

maximality of s′, we have ∑
i∈[s′]

n−
i ⩾ d−R(j)− 4m. (3.15)

Let i0 = 0 and i1 = s′. Let I−1 ⊆ d−R(j) have size
∑

i∈[s′] n
−
i . Using that d+R(j) ⩾∑

i∈[s̄] n
+
i , let I

+
1 ⊆ d+R(j) have size

∑
i∈[s′] n

+
i and let I = N+

R (j) \ I
+
1 .

Now, s̄− s′ ⩽ s̄− s̄/20 = 19s̄/20 so that 1000 log(s̄− s′) ⩽ −5+ 1000 log s̄, and hence

|I| = d+R(j)− |I+I |
(3.15)

⩾ d+R(j)− |I+1 |+ d−R(j)− |I−1 | − 4m

(3.14)

⩾ (25 + 1000 log s̄)m+
∑
i∈[s̄]

(n+
i + n−

i )− |I+1 | − |I−1 | − 4m

= (21 + 1000 log s̄)m+
∑

i∈[s̄]\[s′]

(n+
i + n−

i )

⩾ (26 + 1000 log(s̄− s′))m+
∑

i∈[s̄]\[s′]

(n+
i + n−

i ).

Let R′ = R[I], and note that, for each j ∈ V (R′), by (3.14) we have d+R′(j) + d−R′(j) ⩾

|R′| −m = |I| −m, so that, in combination with the above calculation,

d+R′(j) + d−R′(j) ⩾ |R′| −m ⩾ (25 + 1000 log(s̄− s′))m+
∑

i∈[s̄]\[s′]

(n+
i + n−

i ),

for each j ∈ V (R′). Therefore, by the inductive hypothesis for s̄ − s′, there is (with

relabelling) some s ∈ [s̄] for which there exists s′ = i1 < i2 < . . . < is = s̄ and subsets

{jℓ}, I+ℓ , I
−
ℓ ⊆ V (R′) = N+

R (j) \ I
+
1 for ℓ ∈ [s] \ [1], all disjoint, such that jℓ1 →R jℓ2
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j1
j2 j3

. . . js

I+1

I−1

I+2

I−2

I+3

I−3

I+ℓ

I−ℓ

Figure 3.4: A ‘caterpillar-like’ digraph, as appearing in Lemma 3.19 and Corollary 3.20.
While the other edges are omitted for legibility, jℓ1 → jℓ2 → . . . → js is the underlying
directed path of a transitive tournament.

whenever ℓ1 < ℓ2, and, for each ℓ ∈ [s] and ⋄ ∈ {+,−}, we have |I⋄ℓ | =
∑iℓ

i=iℓ−1+1 n
⋄
i .

Thus, the required properties are satisfied, completing the proof. □

Corollary 3.20. Let 1/n ≪ ε, η, 1/r ≪ α ⩽ 1. Suppose T is an n-vertex oriented tree

with a subtree T0 ⊆ T , such that |T0| ⩽ ηn and T is formed from T0 by attaching to each

vertex v of T0 a tree S+
v in which v only has out-neighbours and a tree S−

v in which v only

has in-neighbours, so that |S+
v |, |S−

v | ⩽ ηn. Let R be an ε-almost tournament with vertex

set [r].

Then, there is some s ⩽ α/100ε for which there exists a partition V (T0) = X1∪. . .∪Xs

and subsets {jℓ}, I+ℓ , I
−
ℓ ⊆ [r] for ℓ ∈ [s], all disjoint, with the following properties.

J1 There are no edges of T0 directed from Xi to Xj with i, j ∈ [s] and i > j.

J2 jℓ1 →R jℓ2 whenever ℓ1 < ℓ2.

J3 For each ℓ ∈ [s] and ⋄ ∈ {+,−}, we have I⋄ℓ ⊆ N⋄
R(jℓ), and

|I⋄ℓ | ⩾
r

(1 + α/4)n
·
∑
v∈Xℓ

|S⋄
v |.

Proof. Pick c ⩾ 2η such that ε, 1/r ≪ c ≪ α. Let m̄ = cn. Let n0 = |T0| and let

v1, . . . , vn0 order V (T0) such that i < j whenever vi →T vj. Let s̄ be the largest integer

for which there are integers 0 = k0 < k1 < . . . < ks̄ ⩽ n0 such that m̄ ⩽
∑kℓ

k=kℓ−1+1(|S+
vk
|+
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|S−
vk
|) ⩽ 2m̄ for each ℓ ∈ [s̄]. Now, as |S+

vk
|+ |S−

vk
| ⩽ m̄ for each k ∈ [n0], we must have by

this maximality that
∑n0

k=ks̄+1(|S+
vk
| + |S−

vk
|) < m̄, and therefore, as T has n vertices, we

have that s̄ ⩾ n/3m̄ = 1/3c ⩾ 1. Furthermore, setting Wℓ = {vkℓ−1+1, . . . , vkℓ} for each

ℓ ∈ [s̄− 1] and Ws̄ = {vks̄−1+1, . . . , vn0}, we have, for each ℓ ∈ [s̄], that

m̄ ⩽
∑
v∈Wℓ

(|S+
v |+ |S−

v |) ⩽ 3m̄.

Finally, note that

n

3m̄
⩽ s̄ ⩽

2n

m̄
. (3.16)

Now, for each i ∈ [s̄], let

n⋄
i =

⌈
r

(1 + α/4)n

∑
v∈Wi

|S⋄
v |

⌉
.

Let m = rm̄/n(1+α/4), so that cr/2 ⩽ m ⩽ cr and, for each i ∈ [s̄], m ⩽ n+
i +n−

i ⩽ 4m.

From (3.16), we have r/4m ⩽ s̄ ⩽ 2r/m. Therefore, as s̄ ⩾ 1/3c and 1/r ≪ c ≪ α, we

have

2s̄+ (26 + 1000 log s̄)m ⩽
4r

m
+

(
105 log s̄

s̄

)
r ⩽

8

c
+
αr

16
⩽
αr

8
. (3.17)

Note that

∑
i∈[s̄]

(n+
i +n

−
i ) ⩽ 2s̄+

r

(1 + α/4)n
·
∑
i∈[s̄]

∑
v∈Wi

(|S+
v |+ |S−

v |) ⩽ 2s̄+
r(1 + η)

(1 + α/4)
⩽ 2s̄+(1−α/8)r,

as η, 1/r ≪ α, so that, by (3.17), we have

r ⩾ (26 + 1000 log s̄)m+
∑
i∈[s̄]

(n+
i + n−

i ).

Finally, we have m ⩾ cr/2 ⩾ εr, so that, as R is an ε-almost tournament, for each

v ∈ V (R), we have d+R(v) + d−R(v) ⩾ |R| − ε|R| ⩾ |R| −m.

Thus, by Lemma 3.19, there is some s ∈ [s̄] for which there exists 0 = i0 < i1 < . . . <
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is−1 < is = s̄, and subsets {jℓ}, I+ℓ , I
−
ℓ ⊆ [r] for ℓ ∈ [s], all disjoint, such that I1 and I2

hold. Letting Xℓ = ∪jℓ
i=jℓ−1

Wi for each ℓ ∈ [s] then gives the required partition. □

3.5.2 Embedding vertices for Theorem 3.18

We can now prove Theorem 3.18 using Corollary 3.20. We first prove Lemma 3.21 which

can embed the vertices of T that have been mapped to a single vertex of the small

transitive tournament and its in- and out-neighbours in the ‘caterpillar-like’ digraph (here

corresponding to V0, with in-neighbours corresponding to V +
1 , . . . , V

+
k and out-neighbours

corresponding to V −
1 , . . . , V

−
ℓ ), before using this repeatedly for each vertex of the small

transitive tournament produced by Corollary 3.20 to prove Theorem 3.18.

Lemma 3.21. Fix α ⩾ β > 0, µ > 0 and let 1/m ≪ η ≪ 1/r ≪ ε ≪ γ ≪

µ, β. Let G be a tournament. Suppose, for some k, ℓ ⩽ r, there are disjoint subsets

V0, V
+
1 , . . . , V

+
k , V

−
1 , . . . , V

−
ℓ of V (G), all of size (1 + α)m, such that (V0, V

+
i ) is an ε-

regular pair of density at least µ for i ∈ [k], and (V −
i , V0) is an ε-regular pair of density

at least µ for i ∈ [ℓ].

Suppose T is an oriented tree with a subtree T0 ⊆ T , such that |T0| ⩽ ηm, and T

is formed from T0 by attaching to each vertex v of T0 trees S+
v , S

−
v with d−

S+
v
(v) = 0,

d+
S−
v
(v) = 0, and |S+

v |, |S−
v | ⩽ ηm.

LetW ⊆ V0 be a set with |W | ⩾ γm, and let U+
i ⊆ V +

i , i ∈ [k], and U−
i ⊆ V −

i , i ∈ [ℓ] be

sets such that
∑

i∈[k] |U
+
i | ⩾

∑
v∈V (T0)

|S+
v |+kβm and

∑
i∈[ℓ] |U

−
i | ⩾

∑
v∈V (T0)

|S−
v |+ ℓβm.

Then, there is a copy of T in G, with T0 copied to W and T − V (T0) copied to

U+
1 ∪ . . . ∪ U+

k ∪ U−
1 ∪ . . . ∪ U−

ℓ .

Proof. For the smallest possible p, take a partition V (T0) = X1∪. . .∪Xp such that, for each

j ∈ [p], T0[X1∪. . .∪Xj] is a tree,
∑

v∈Xj
|S+

v | ⩽ kβµm/4, and
∑

v∈Xj
|S−

v | ⩽ ℓβµm/4. This

is possible for p = |T0|, so a smallest such p will exist. We in fact claim that p ⩽ 32/βµ.

Indeed, for this smallest possible p, take a partition that minimises
∑

j∈[p] j|Xj|. Suppose

there is some j′ < p for which both
∑

v∈Xj′
|S+

v | ⩽ kβµm/8 and
∑

v∈Xj′
|S−

v | ⩽ ℓβµm/8.
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V0V0
W1

W2

W3

Wp

. . .

w
N+(w)

N−(w)

Figure 3.5: The sets W1 ⊆ . . . ⊆ Wp in the proof of Lemma 3.21. The sets are chosen so
that each vertex w ∈ Wj has sufficiently many in- and out-neighbours in Wj+1.

Let x ∈ Xj′+1 be such that T0[X1∪ . . .∪Xj′ ∪{x}] is a tree. Then moving x from Xj′+1 to

Xj′ produces a partition which contradicts the minimality of
∑

j∈[p] j|Xj|. Thus we have

p ⩽ 1 +

∑
v∈V (T0)

|S+
v |

(kβµm/8)
+

∑
v∈V (T0)

|S−
v |

(ℓβµm/8)
⩽ 1 +

8
∑

i∈[k] |U
+
i |

kβµm
+

8
∑

i∈[ℓ] |U
−
i |

ℓβµm
⩽ 32/βµ.

Now find vertex sets W1 ⊆ W2 ⊆ . . . ⊆ Wp = W such that |Wj| ⩾ |Wj+1|/8 for each

j ∈ [p − 1], and d±(w,Wj+1) ⩾ |Wj+1|/8 for each j ∈ [p − 1], w ∈ Wj. This is possible

by starting with Wp and iteratively using that fact that at most |Wj+1|/4 vertices w

of Wj+1 have d+(w,Wj+1) ⩽ |Wj+1|/8, and at most |Wj+1|/4 vertices w of Wj+1 have

d−(w,Wj+1) ⩽ |Wj+1|/8.

We will now embed T in p stages as follows. At stage j, suppose we have already

embedded T [∪j−1
j′=1∪v∈Xj′

(V (S+
v )∪V (S−

v ))]. For each v ∈ X1∪ . . .∪Xj−1 in turn, consider

the forest F+
v consisting of trees of T0[Xj] attached to v by out-neighbours of v, and

suppose v has already been copied to some w ∈ Wj−1 (for the case j = 1, regard all of

T0[Xj] as components attached to a single auxiliary vertex v by out-neighbours, where
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v has already been copied to an auxiliary vertex w satisfying W1 ⊆ N+
G (w)). Let Z+

j,v

be the set of unoccupied out-neighbours of w in Wj which each have at least 3kβµm/4

unoccupied out-neighbours in ∪i∈[k]U
+
i as well as 3ℓβµm/4 unoccupied in-neighbours in

∪i∈[ℓ]U
−
i . Because there are always at least kβm unoccupied vertices in ∪i∈[k]U

+
i and ℓβm

unoccupied vertices in ∪i∈[ℓ]U
−
i , Proposition 3.5 implies |Z+

j,v| ⩾ |N+(w,Wj)| − |T0| −

2εm ⩾ |W1|/8− 3εm ⩾ |W |/8p+1 ⩾ 3ηm. Therefore, by Theorem 1.8, there is a copy of

F+
v in Z+

j,v. Then, for each v′ ∈ V (Fv), if v
′ has now been copied to w′, find a copy of

S+
v′ − v′ in the unoccupied vertices of N+(w′,∪i∈[k]U

+
i ). Because w′ ∈ Z+

j,v, and only at

most
∑

v′′∈Xj ,v′′ ̸=v′ |S
+
v′′ | additional vertices ofN+(w′,∪i∈[k]U

+
i ) may become occupied since

choosing Z+
j,v, at least 3kβµm/4−

∑
v′′∈Xj ,v′′ ̸=v′ |S

+
v′′ | ⩾ 3|S+

v′ | vertices of N+(w′,∪i∈[k]U
+
i )

remain unoccupied, allowing the copy of S+
v′−v′ to be found using Theorem 1.8. Similarly,

find a copy of S−
v′−v′ in the unoccupied vertices of N−(w′,∪i∈[ℓ]U

−
i ). We then do the same

for the forest F−
v consisting of trees of T0[Xj] attached to X1∪ . . .∪Xj−1 by in-neighbours.

Performing this process for each v ∈ X1 ∪ . . . ∪Xj−1 completes stage j of the embedding

procedure. Upon the completion of stage p, we obtain a copy of T in G, with T0 copied

to W and T − V (T0) copied to U+
1 ∪ . . . ∪ U+

k ∪ U−
1 ∪ . . . ∪ U−

ℓ . □

We now combine Lemma 3.19 and Lemma 3.21 to prove Theorem 3.18.

Proof of Theorem 3.18. Set β = α/4, µ = 1/2, and introduce constants ε, r1, r2 such that

η ≪ 1/r2 ≪ 1/r1 ≪ ε ≪ β. Let G be a (1 + α)n-vertex tournament. By Corollary 3.4,

there is a subtournament G′ ⊆ G with |G′| ⩾ (1 + 3β)n, and an ε-regular partition

V (G′) = V1 ∪ . . . ∪ Vr with r1 ⩽ r ⩽ r2. Let R be a
√
ε-almost tournament with vertex

set [r], such that (Vi, Vj) is an ε-regular pair of density at least µ whenever i →R j. Fix

disjoint subsets Uj,Wj ⊆ Vj for each j ∈ [r] with |Uj| = (1+ 2β) ·n/r and |Wj| = β ·n/r.

For each v ∈ V (T0), let S
+
v ⊆ Sv be the subtree of Sv induced by the vertices whose

path from v begins with an out-edge, and let S−
v ⊆ Sv be the subtree of Sv induced by

the vertices whose path from v begins with an in-edge. Note that we have |S+
v |, |S−

v | ⩽ ηn

for every v ∈ V (T0). By Corollary 3.20, there is some s ⩽ α/100ε for which there exists
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a partition V (T0) = X1 ∪ . . . ∪ Xs and subsets {jℓ}, I+ℓ , I
−
ℓ ⊆ [r] for ℓ ∈ [s], all disjoint,

satisfying properties J1-J3. In particular, for each ℓ ∈ [s] and ⋄ ∈ {+,−}, we have

∑
v∈Xℓ

|S⋄
v |+ |I⋄ℓ |β · n/r

J3

⩽ |I⋄ℓ |(1 + 2β) · n/r =
∑
j∈I⋄ℓ

|U⋄
j | (3.18)

Set γ = βµ/8r. Using J2, Proposition 3.5, and s ⩽ α/100ε, for each ℓ ∈ [s] at most

sε(1+α)·n/r ⩽ 2γn vertices w ofWjℓ have either some ℓ′ > ℓ for which d+(w,Wjℓ′
) ⩽ 4γn,

or some ℓ′ < ℓ for which d−(w,Wjℓ′
) ⩽ 4γn. Therefore, we may take subsetsW ′

jℓ
⊆ Wjℓ for

ℓ ∈ [s] such that, d+(w,W ′
jℓ2
) ⩾ 2γn whenever ℓ2 > ℓ1 and w ∈ W ′

jℓ
, and d−(w,W ′

jℓ2
) ⩾

2γn whenever ℓ2 < ℓ1 and w ∈ W ′
jℓ
.

Now obtain a partition V (T0) = Y1 ∪ . . . ∪ Yτ such that

• for each t ∈ [τ ], T [Yt] is a connected component of T0[Xℓ] for some ℓ ∈ [s], and

• for each t ∈ [τ ], T0[Y1 ∪ . . . ∪ Yt] is a tree.

We will now embed T into G so that Xℓ is copied to W ′
jℓ

for each ℓ ∈ [s], and

∪v∈Xℓ
V (S⋄

v) is copied to ∪j∈I⋄ℓU
⋄
j for each ℓ ∈ [s] and ⋄ ∈ {+,−}. The embedding is given

in τ stages as follows. Let C0 be the empty graph. Suppose after stage t − 1, we have

embedded T [∪v∈Y1∪...∪Yt−1V (Sv)] to get Ct−1. Let ℓ ∈ [s] be such that Yt ⊆ Xℓ. If t = 1,

set At = W ′
jℓ
. Otherwise, if t > 1, let yt be the unique vertex of Y1 ∪ . . . ∪ Yt−1 with a

neighbour in Yt, let ⋄ ∈ {+,−} be such that the neighbour in Yt is a ⋄-neighbour, let zt

be the image of yt in Ct−1, and set At = N⋄(zt,W
′
jℓ
) \ V (Ct−1). Note that in both cases

we find |At| ⩾ γn. Also, we find for ⋄ ∈ {+,−} that

∑
j∈I⋄ℓ

|U⋄
j \ V (Ct−1)|

(3.18)

⩾
∑
v∈Yt

|S⋄
v |+ |I⋄ℓ |βn/r.

Therefore, by I2 and Lemma 3.21, there is a copy of T [Yt∪ (∪v∈YtSv)] in G with Yt copied

to At ⊆ W ′
jℓ
, and (∪v∈YtV (S⋄

v)) \ Yt copied to (∪j∈I⋄ℓU
⋄
j ) \ V (Ct−1) for ⋄ ∈ {+,−}. Thus

we obtain a copy of T after stage τ . □
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3.6 Proof of Theorem 1.4 and Theorem 1.5

Recall the decomposition of our tree T from Section 3.1 as T0 ⊆ T1 ⊆ T2 ⊆ T3 ⊆ T4 = T .

In Sections 3.4 and 3.5 respectively, we showed how to embed T0 and extend this to T1 for

both Theorems 1.4 and 1.5. In this section, we will show how a copy of T1 can be extended

to a copy of T , completing the proof of both theorems. As noted in the proof outline, the

main challenge here is to embed the vertices in V (T3) \ V (T2), where these vertices form

paths with constant length between vertices in T2. Indeed, firstly, T2 − V (T1) is a forest

of constant-sized components not directly connected to T1 (see C3 in Lemma 3.1), which

can be embedded greedily using, for example, Theorem 1.8. Secondly, to reach T4 from

T3 we add small tree components on to T3, which is already connected. This can be done

by reserving a small random subset of vertices U (using Proposition 1.20) and carrying

out the rest of the embedding in the vertices with sufficient out- and in-degree to U . Such

an embedding can then be completed greedily, giving an embedding of T4 = T .

Thus, most of this section will be dedicated to showing how we can extend a copy

of T2 to a copy of T3 (using a method effective for both Theorems 1.4 and 1.5). Recall

that T3 is obtained from T2 by attaching paths of fixed length by their endpoints (see

C4 in Lemma 3.1), but such that the total number of vertices contained in such paths

is only a small proportion of the resulting tree (see C5 in Lemma 3.1). Thus, with a

copy of T2 already found, we will often wish to find paths of a fixed length between

certain attachment points. By ensuring these attachment points have plenty of out- and

in-neighbours, we need only to be able to connect linear-sized sets with paths of fixed but

small length, while avoiding some small set of vertices already used in some paths. As

we will see, paths with changes of direction are comparatively easy to find, so we only

consider whether we can find such paths so that they are directed paths. We will call

tournaments with this connection property well-connected, as follows.

Definition 3.22. We say a tournament G is (a, b, ℓ)-well-connected if, for every A1, A2 ⊆

V (G) with |A1|, |A2| ⩾ a and B ⊆ V (G) with |B| ⩽ b, there is a directed path in V (G)\B
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from A1 to A2 with length ℓ.

In Lemma 3.28, we will see that both of our main theorems hold if the tournament G

is well-connected. Of course, not every tournament is well-connected, but, in Lemma 3.26

we will see that any tournament that is not well-connected contains a bipartition of most

of its vertices, so that all the relevant edges are directed in the same direction across the

bipartition. Through the repeated application of Lemma 3.26, we can then decompose

the vertices of any tournament as V (G) = B ∪ W1 ∪ . . . ∪ Wr, so that B is small, all

possible edges are directed from Wi to Wj for 1 ⩽ i < j ⩽ r, and each G[Wi] is either

small or well-connected (see Lemma 3.27). We then assign the vertices of T to the sets

W1, . . . ,Wr, so that any edge of T assigned between some Wi and Wj with i < j is to be

embedded as directed from Wi into Wj. Thus, we can embed the vertices of T assigned to

Wi into G[Wi] independently for each i ∈ [r], while knowing the other edges of T can then

be embedded. As noted in the proof sketch, this is a streamlined version of techniques

by Kühn, Mycroft and Osthus [21, 22]. In [21, 22], a notion of robust out-expansion is

used, from which our well-connected property can be derived. As we do not need any

other results of robust out-expansion (most notably, we do not use a Hamilton, or almost-

spanning, cycle in the reduced digraph), we use the well-connected property directly. This

allows the decomposition of [22, Lemma 5.2] to be simplified to find bipartitions with all

the edges directed from one side to another, rather than just most of the edges.

In Section 3.6.1, we will prove a number of results on well-connected tournaments,

including the tournament decomposition discussed above. Then, in Section 3.6.2, after

showing our main results hold for well-connected tournaments (i.e., Lemma 3.28), we

prove both Theorems 1.4 and 1.5.

3.6.1 Well-connected tournaments

We start by proving two simple properties of well-connected tournaments in Lemma 3.23.

The first is that removing a small number of vertices from a well-connected tournament
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maintains some (potentially slightly weaker) connection property. The second shows that

(a, b, ℓ)-well-connected tournaments robustly contain paths of length ℓ, regardless of the

desired orientation of the paths’ edges. While Definition 3.22 only refers to directed paths,

the results of Section 1.3 show that a path with at least one change of direction can be

found between two sufficiently large subsets of any tournament, covering all other cases.

Lemma 3.23. Let a, b, ℓ ⩾ 0, and suppose G is a (a, b, ℓ)-well-connected tournament.

(i) If C ⊆ V (G) has size c ⩽ b, then G− C is (a, b− c, ℓ)-well-connected.

(ii) Suppose P is an oriented path of length ℓ, and A1, A2, B ⊆ V (G) satisfy |A1|, |A2| ⩾

a, |B| ⩽ b. If a ⩾ b+ ℓ+3, then there is a copy of P in G−B, with its first vertex

in A1 and its last vertex in A2.

Proof. First, fix a subset C ⊆ V (G) with size c. Then, if A1, A2, B ⊆ V (G) satisfy

|A1|, |A2| ⩾ a and |B| ⩽ b − c, then, because G is (a, b, ℓ)-well-connected, there is a

directed path in V (G) \ (B ∪ C) from A1 to A2 with length ℓ. Therefore, G − C is

(a, b− c, ℓ)-well-connected and (i) holds.

Next, suppose P is an oriented path of length ℓ, and A1, A2, B ⊆ V (G) satisfy

|A1|, |A2| ⩾ a, |B| ⩽ b. If P is a directed path, then, because G is (a, b, ℓ)-well-connected

there is a copy of P in G − B with first vertex in A1 and last vertex in A2. On the

other hand, if P has at least two blocks, then by Corollary 1.14, there is a copy of P in

G[(A1 ∪ A2) \B], with first vertex in A1 and last vertex in A2. Therefore, (ii) holds. □

We will need to set aside a random subset of vertices to use to attach paths to T2 to

obtain T3. We need therefore to show that random subsets of well-connected tournaments

can be used to find connecting paths of this sort. To do this, we use median orders,

the main embedding tool of Chapter 2. We recall that a median order is an ordering

v1, . . . , vn of the vertices of a tournament that maximises the number of pairs i < j with

vi → vj. While median orders have several useful properties applicable to embedding

trees in tournaments (see Section 2.1), here we only require Lemma 2.4, which is restated

below with slightly different notation.
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Lemma 3.24. Suppose G is a tournament with a median order v1, . . . , vn. Then, for any

1 ⩽ i < j ⩽ n with j − i ⩾ 7, and A ⊆ V (G) \ {vi, vj} with |A| ⩽ (j − i− 7)/6, there is a

directed vi, vj-path in G− A with length 3.

We are now ready to state and prove our lemma, showing that, with high probability,

a random subset of vertices in a well-connected tournament induces a well-connected

tournament, as follows.

Lemma 3.25. Let 1/n ≪ η ≪ 1/ℓ ≪ ε ≪ p. Suppose G is a (εn, ηn, ℓ)-well-connected

tournament with |G| ⩽ 3n, and that U ⊆ V (G) is a random subset with vertices included

uniformly at random with probability p. Then, with high probability, G[U ] is (6εn, η2n, ℓ+

6)-well-connected.

Proof. Let v1, . . . , vm be a median order for G. Let W1 and W2 respectively denote the

first and last εn vertices of the median order. Let V ′ be the middle m − 4εn vertices of

the median order.

It is enough to show that, with high probability, for every v, w ∈ V ′, there are at least

2η2n internally vertex-disjoint directed v, w-paths with length ℓ+ 6 and with all internal

vertices in U . Indeed, then for any A1, A2 ⊆ U with |A1|, |A2| ⩾ 6εn and B ⊆ U with

|B| ⩽ η2n, there is some v ∈ (V ′ ∩ A1) \ B and w ∈ (V ′ ∩ A2) \ (B ∪ {v}), and hence at

least 2η2n internally vertex-disjoint directed paths from A1 \ B to A2 \ B in G[U ] with

length ℓ+6. Of these paths, at most η2n contain some internal vertex in B, and so there

is some directed path in U \B from A1 to A2 of length ℓ+6, thus demonstrating G[U ] is

(6εn, η2n, ℓ+ 6)-well-connected.

Fix v, w ∈ V ′. Because G is (εn, ηn, ℓ)-well-connected, and |W1|, |W2| ⩾ εn, we can

greedily find at least ηn/2ℓ disjoint directed paths in V (G) \ {v, w} from W2 to W1 with

length ℓ. Using Lemma 3.24, we can greedily and disjointly connect v to the first vertex

of each path by a directed path of length 3, while avoiding all other vertices used so far.

Indeed, at least εn vertices in the median order lie between v and the first vertex of each

path, while the total number of vertices to be avoided each time is at most ηn ⩽ (εn−7)/6.
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Similarly, we can also disjointly connect the last vertex of each path to w by a directed

path of length 3, also avoiding any vertex used previously. Therefore, we have at least

ηn/2ℓ internally disjoint directed paths in V (G) from v to w, each with length ℓ+ 6.

LetXv,w be the number of these directed v, w-paths which additionally have all internal

vertices in U , and note that Xv,w is a binomial variable with EXv,w ⩾ pℓ+5ηn/2ℓ > 3η2n.

From Lemma 1.18, we have

P(Xv,w ⩽ 2η2n) ⩽ P(|Xv,w − EXv,w| ⩾ EXv,w/3) ⩽ 2 exp (−EXv,w/27) ⩽ 2 exp (−η2n/9).

Thus, the probability that the desired property fails is at most 18n2 exp (−η2n/9), and

so, as 1/n≪ η, the conclusion of the lemma holds with high probability. □

Next we will show that, if a tournament is not well-connected, then, except for a small

subset of vertices, we may partition the vertices in two so that all the edges between the

parts are directed into the same part.

Lemma 3.26. Let ε > 0, ℓ ∈ N, and η ≪ ε, 1/ℓ. Suppose G is a tournament with |G| ⩽

3n that is not (εn, ηn, ℓ)-well-connected. Then, there is a partition V (G) = W1 ∪W2 ∪B

so that |W1|, |W2| ⩾ εn/2, |B| ⩽ 4ℓ−1n, and x→ y for every x ∈ W1, y ∈ W2.

Proof. Using that G is not (εn, ηn, ℓ)-well-connected, let A1, A2, B0 ⊆ V (G) be sets such

that |A1|, |A2| ⩾ εn, |B0| ⩽ ηn, and there is no directed path in V (G) \ B from A1 to

A2 with length ℓ. Construct a chain of subsets U0 ⊆ U1 ⊆ . . . ⊆ Uℓ as follows. Let

U0 = A1 \ B0, and, for i ∈ [ℓ], let Ui be the set of vertices x ∈ V (G) such that there

is a directed path from A1 to x in V (G) \ B0 with length at most i. We remark that

|(Ur \ Ur−1) ∩ A2| ⩽ ℓ + 1 for any r ⩽ ℓ, else, by taking a directed path of length ℓ − r

in (Ur \Ur−1)∩A2 together with a path of length r from A1 to that path’s initial vertex,

we would be able to find a directed path in V (G) \ B0 from A1 to A2 of length ℓ. In

particular, we have |Ur ∩ A2| ⩽ (ℓ+ 1)2 for any r ⩽ ℓ.

Let r ∈ [ℓ] be minimal such that |Ur \ Ur−1| ⩽ 3ℓ−1n. Set W2 = Ur−1, B = B0 ∪

(Ur \ Ur−1), and W1 = V (G) \ (Ur ∪ B0), so that W1 ∪W2 ∪ B is a partition of V (G).
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Because A1 \ B0 ⊆ W2, we have |W2| ⩾ εn/2. Because A2 \ (Ur ∪ B0) ⊆ W1, we have

|W1| ⩾ εn−(ℓ+1)2−ηn ⩾ εn/2. From the choice of r, we have |B| ⩽ 3ℓ−1n+ηn ⩽ 4ℓ−1n.

Finally, the fact that x → y for every x ∈ W1, y ∈ W2 follows from the definition of Ur

and Ur−1. □

Using a repeated application of Lemma 3.26, we are now ready to state and prove the

tournament decomposition referred to at the start of this section.

Lemma 3.27. Suppose η ≪ ε and let ℓ = ⌈ε−3⌉. Suppose G is a tournament with

|G| ⩽ 3n. Then, there is a partition V (G) = B ∪W1 ∪ . . . ∪Wr so that |B| ⩽ εn and the

following properties hold.

K1 If 1 ⩽ i < j ⩽ r and x ∈ Wi, y ∈ Wj, then x→ y.

K2 For i ∈ [r], if |Wi| ⩾
√
εn, then G[Wi] is (εn, ηn, ℓ)-well-connected.

Proof. Initially, set B(1) = ∅ and W
(1)
1 = V (G). Then, for r ⩾ 1, do the following. We

are given a partition V (G) = B(r) ∪ W
(r)
1 ∪ . . . ∪ W

(r)
r with |B(r)| ⩽ 5rε3n, such that

|W (r)
i | ⩾ εn/2 for each i ∈ [r], and, if 1 ⩽ i < j ⩽ r and x ∈ W

(r)
i , y ∈ W

(r)
j , then

x → y. If we have that G[W
(r)
i ] is (εn, ηn, ℓ) well-connected whenever |W (r)

i | ⩾
√
εn,

then set B = B(r) and Wi = W
(r)
i for i ∈ [r]. Otherwise, let j ∈ [r] be such that W

(r)
j is

not (εn, ηn, ℓ)-well-connected, with |W (r)
j | maximal (so |W (r)

j | ⩾
√
εn). By Lemma 3.26,

there is a partition W
(r)
j = U1 ∪ U2 ∪ Br so that |U1|, |U2| ⩾ εn/2, |Br| ⩽ 4ℓ−1n ⩽ 5ε3n,

and x→ y for every x ∈ U1 and y ∈ U2. We then set

B(r+1) = B(r) ∪Br

W
(r+1)
i =



W
(r)
i if 1 ⩽ i < j

U1 if i = j

U2 if i = j + 1

W
(r)
i−1 if j + 1 < i ⩽ r + 1

92



We remark that V (G) = B(r+1) ∪ W
(r+1)
1 ∪ . . . ∪ W

(r+1)
r+1 is a partition with |B(r+1)| ⩽

5(r + 1)ε2n, such that |W (r+1)
i | ⩾ εn/2 for each i ∈ [r], and, if 1 ⩽ i < j ⩽ r + 1 and

x ∈ W
(r+1)
i , y ∈ W

(r+1)
j , then x→ y, and so the procedure may continue.

On the rth iteration of this procedure, the largest |W (r)
i | that is not (εn, ηn, ℓ)-well-

connected has size at most 3n− (r − 1) · εn/2, and so the procedure will terminate after

at most 6ε−1 iterations, at which point we find |B(r)| ⩽ 30ε2n ⩽ εn. □

3.6.2 Proof of Theorem 1.4 and Theorem 1.5

We first prove that our two main theorems hold when the tournament is well-connected.

Lemma 3.28. Suppose 1/n≪ η ≪ ε≪ α and let ℓ = ⌈ε−3⌉. Suppose G is a tournament

which is (εn, 5η1/4n, ℓ)-well-connected, and that T is an n-vertex oriented tree.

(1) Suppose that |G| = ((1 + α)n + k) where k is the number of leaves of T . Then, G

contains a copy of T .

(2) Suppose that c is a constant such that 1/n ≪ c ≪ η, that |G| = (1 + α)n, and that

∆(T ) ⩽ cn. Then, G contains a copy of T .

Proof. The proof for each statement of this theorem is nearly identical, so here we will

present a proof for (1), and explain in the footnotes any places where the proof for (2)

differs.

Fix α > 0 and introduce a constant m such that 1/n ≪ 1/m ≪ η ≪ ε ≪ α. Fix an

n-vertex k-leaf oriented tree T and let G be a ((1 + α)n + k)-vertex tournament which

is (εn, 5η1/4n, ℓ)-well-connected. We will show that G contains a copy of T , thus proving

(1).1

Let U0 ⊆ V (G) be a random subset, with elements from V (G) chosen independently

at random with probability 2
√
η, and let W0 be the set of vertices v in V (G) \ U0 with

1For (2), fix α > 0 and introduce a constant m such that 1/n ≪ c ≪ 1/m ≪ η ≪ ε ≪ α. Fix
an n-vertex oriented tree T with ∆(T ) ⩽ cn and let G be a (1 + α)n-vertex tournament which is
(εn, 5η1/4n, ℓ)-well-connected. We will show that G contains a copy of T , thus proving (2).
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d±(v, U0) ⩾ 4ηn. By Proposition 1.20, we have that |V (G) \ W0| ⩽ 24
√
ηn with high

probability. V (G)\U0 may be regarded as a random subset of V (G) with elements chosen

independently at random with probability 1−2
√
η, and so, by Lemma 3.25, we have that

G[V (G) \ U0] is (6εn, 25
√
ηn, ℓ + 6)-well-connected with high probability. Therefore, we

may proceed assuming that |V (G)\W0| ⩽ 24
√
ηn, and, using Lemma 3.23 (i), that G[W0]

is (6εn,
√
ηn, ℓ+ 6)-well-connected.

Let U1 ⊆ W0 be a random subset, with elements from W0 chosen independently

at random with probability α/36, and let W1 be the set of vertices v in W0 \ U1 with

d±(v, U1) ⩾ 36εn. By Proposition 1.20, we have that |W1 \ W0| ⩽ αn/3 with high

probability, and, by Lemma 3.25, we have that G[U1] is (36εn, ηn, ℓ+ 12)-well-connected

with high probability. Therefore, we may proceed assuming that |W1| ⩾ ((1+α/2)n+k),

and that G[U1] is (36εn, ηn, ℓ+ 12)-well-connected. 1

Let q = ℓ + 14. By Lemma 3.1, there exist forests T0 ⊆ T1 ⊆ T2 ⊆ T3 ⊆ T4 = T ,

such that T3 is a tree and properties C1-C5 hold. By Theorem 3.9, G[W1] contains a

copy, C1 say, of T1.
2 By Theorem 1.8 applied iteratively to the components of T2−V (T1),

G[W1]− V (C1) then contains a copy of T2 − V (T1), which, taken together with C1, gives

a copy, C2 say, of T2.

Let P1, . . . , Pr be the paths of length ℓ+14 attached to T2 to obtain T3. For i ∈ [r], let

xi, yi be the endvertices of Pi, let P
′
i = Pi − xi − yi (so that P ′

i has length ℓ+12), and let

x′i, y
′
i be the images of xi, yi in C2. For each i ∈ [r] in turn, using Lemma 3.23 (ii), there

is a copy Qi of P
′
i in the unoccupied vertices of G[U1], with first vertex in N⋄1(x′i, U1) and

last vertex in N⋄2(y′i, U1), where ⋄1, ⋄2 ∈ {+,−} are taken so that x′iQiy
′
i gives a copy of

Pi. We remark that we may always proceed as, by C5, the total number of vertices being

embedded into U1 is at most |T3 \T2| ⩽ ηn, and G[U1] is (36εn, ηn, ℓ+12)-well-connected

with d±(v, U1) ⩾ 36εn for every v ∈ W1. Thus, we obtain a copy, C3 say, of T3 in G[W0].

Finally, using Corollary 1.9, C3 can be extended to a copy of T4 = T in G, with the

1For (2), we may proceed assuming that |W1| ⩾ (1 + α/2)n, and that G[U1] is (36εn, ηn, ℓ+ 12)-well-
connected.

2For (2), as ∆(T ) ⩽ cn, each tree Sv of C2 satisfies |Sv| ⩽ cmn + 1 ⩽ ηn. By Theorem 3.18, G[W1]
contains a copy, C1 say, of T1.
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vertices of V (T4) \ V (T3) copied to U0. □

To finish the proof of both our main results simultaneously we will use superadditive

set functions. In the proof of each case, we define a function fT : P(V (T )) → N0 on

the power set of V (T ), where, for A ⊆ V (T ), fT (A) may be interpreted as representing

a rough upper bound on the number of vertices required to guarantee a copy of T [A],

according to each of the theorems. The only limitation on fT required for the proof to

work is for it to be superadditive.

Definition 3.29. Given a set X, we say that a set function f : P(X) → N0 is superad-

ditive if f(A ∪B) ⩾ f(A) + f(B) for any disjoint sets A,B ⊆ X.

In particular, we will use the property that, if f : P(X) → N0 is a superadditive set

function and X = A1 ∪ . . . ∪ Ar is a partition, then

f(X) ⩾
∑
i∈[r]

f(Ai). (3.19)

We also remark that superadditive set functions are increasing, in the sense that if A ⊆ B,

then f(A) ⩽ f(B).

Given a tree T , we will have one particular superadditive set function fT : P(V (T )) →

N0 for each main theorem. For Theorem 1.4, we take fT (A) = |A|+ k(A)− 2s(A), where

k(A) denotes the number of leaves of the forest T [A] (and isolated vertices count as two

leaves), and s(A) denotes the number of components of the forest T [A]. For Theorem 1.5,

we take fT (A) = |A|. To see that the first function is superadditive, let A,B ⊆ V (T ) be

disjoint sets, and compare the forest T [A ∪ B] to the forest T [A] ∪ T [B]. T [A] ∪ T [B]

can be reached from T [A∪B] by removing the edges with one endpoint in each of A and

B one at a time. Each time an edge is removed, the total number of vertices remains

the same, the total number of leaves increases by at most 2, and the total number of

components increases by 1. Thus we find that fT (A ∪B) ⩾ fT (A) + fT (B).

We are now ready to prove Theorems 1.4 and 1.5 using Lemma 3.28. The proof for

each theorem is nearly identical, so we will present a proof for Theorem 1.4, and explain
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in the footnotes any places where the proof for Theorem 1.5 differs. In each case, using

Lemma 3.27, we will have a partition of most of the vertex set of the tournament G into

sets W1, . . . ,Wr such that, if u ∈ Wi and v ∈ Wj with i < j, then uv ∈ E(G), and

such that each G[Wi] is well-connected if Wi is not too small (i.e., K1 and K2 hold). It

remains to find a good way to partition the tree T to embed it across this decomposition.

For each i ∈ [r], if |Wi| ⩾
√
εn, then let wi = (1 − α/4)|Wi|, and otherwise let

wi = |Wi|. For each i ∈ [r], we want to assign a set Ui ⊆ V (T ) satisfying fT (Ui) ⩽ wi to

embed in Wi. First, if |Wr| ⩾
√
εn, then we order the vertices of T as v1, . . . , vn so that

all edges of T go forward in this ordering, and let Ur be a set of vertices at the end of the

ordering satisfying (1− ε)wi ⩽ fT (Ui) ⩽ wi (in this case, we will be able to embed T [Ur]

into G[Wr] by K2 and Lemma 3.28). If |Wr| <
√
εn, then, if possible, we let Ur be wr

out-leaves of T , and if it is not possible then we stop. If we have not stopped, then we

remove Ur from T and repeat this procedure to find Ur−1, and so on. Note that if this

stops then either we have assigned vertices for each Wi, or the remaining forest has at

most
√
εn out-leaves. In the latter case we carry out a similar assignment for W1,W2, . . ..

When this stops either all the vertices have been assigned or the remaining forest has at

most
√
εn in-leaves as well as at most

√
εn out-leaves — such a forest we can embed with

O(
√
εn) spare vertices using Theorem 1.2.

Proof of Theorem 1.4 (with appropriate alterations for Theorem 1.5 indicated). Fix α >

0, and note that we may additionally assume that α ⩽ 1. Introduce constants ε, η, n0 such

that 1/n0 ≪ η ≪ ε ≪ α. Given a tree T , let fT : P(V (T )) → N0 be the superadditive

set function defined by fT (A) = |A| + k(A) − 2s(A), where k(A) denotes the number of

leaves of the forest T [A] (and isolated vertices count as two leaves), and s(A) denotes the

number of components of the forest T [A].1

Let n ⩾ n0. Fix an n-vertex k-leaf oriented tree T and let G be a ((1+α)n+k)-vertex

tournament, so that fT (V (T )) + αn ⩽ |G| ⩽ 3n. We will show that G contains a copy of

1For (2), fix α > 0 and introduce constants ε, η, c, n0 such that 1/n0 ≪ c ≪ η ≪ ε ≪ α. Given a tree
T , let fT : P(V (T )) → N0 be the superadditive set function defined by fT (A) = |A|.
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T , thus proving the theorem.1

By Lemma 3.27, there is a partition V (G) = B∪W1∪. . .∪Wr so that |B| ⩽ εn and the

properties K1 and K2 hold. For each i ∈ [r], if |Wi| ⩾
√
εn, then let wi = (1−α/4)|Wi|,

and otherwise let wi = |Wi|. Partition [r] into intervals I−, I, I+ (in that order), so that

I is minimal subject to there being disjoint sets Ui ⊆ V (T ), i ∈ I− ∪ I+, for which the

following hold.

L1 For each i ∈ I− ∪ I+, (1− ε)wi ⩽ fT (Ui) ⩽ wi.

L2 There are no edges from ∪i∈I+Ui to V (T ) \ (∪i∈I+Ui) in T .

L3 There are no edges from V (T ) \ (∪i∈I−Ui) to ∪i∈I−Ui in T .

L4 If |Wi| <
√
εn, then there are no edges in T [Ui].

L5 If i, j ∈ I− ∪ I+ with i < j, then there are no edges from Uj to Ui in T .

Note that this is possible as I = [r] is a valid partition. Let T ′ = T − ∪i∈I+∪I−Ui and

W = ∪i∈IWi. We will show that, for each i ∈ I− ∪ I+, G[Wi] contains a copy of T [Ui],

and G[W ] contains a copy of T ′. Putting these together then gives a copy of T , by L2,

L3, L5, and K1.

For each i ∈ I− ∪ I+, if |Wi| ⩾
√
εn, then

|Ui| ⩾ fT (Ui)/2
L1

⩾ (1− ε)wi/2 ⩾
√
εn/4, (3.20)

and

fT (Ui) + (α/4) · |Ui| ⩽ (1 + α/4) · fT (Ui)
L1

⩽ (1 + α/4)wi ⩽ |Wi|,

and so G[Wi] contains a copy of T [Ui] by K2 and Lemma 3.28 (noting that (3.20) gives

the required lower bound on |T [Ui]| for the application of Lemma 3.28). On the other

hand, if |Wi| <
√
εn, then by L4, G[Wi] contains a copy of T [Ui], noting that we have

fT (Ui) = |Ui| in this case.

1For (2), fix an n-vertex oriented tree T with ∆(T ) ⩽ cn and let G be a (1 + α)n-vertex tournament,
so that fT (V (T ))+αn = |G| ⩽ 3n. We will show that G contains a copy of T , thus proving the theorem.
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It is left to show that G[W ] contains a copy of T ′. Note that this is trivial if I = ∅,

and so we can assume I ̸= ∅ and label j1, j2 ∈ [r] so that I is the interval from j1 to j2.

Also, note that, because
∑

i∈I−∪I+ fT (Ui) ⩽ 2n,

|W | = |G| − |B| −
∑

i∈I−∪I+
|Wi|

L1

⩾ fT (V (T )) + αn− εn− (1− α/4)−1(1− ε)−1
∑

i∈I−∪I+
fT (Ui)

⩾ fT (V (T ))−
∑

i∈I−∪I+
fT (Ui) + αn/4

(3.19)

⩾ fT (V (T ′)) + αn/4 ⩾ |T ′|+ αn/4.

If |Wj2 | ⩾
√
εn, then we must have fT (V (T ′)) < (1 − ε)wj2 , otherwise we could order

V (T ′) as v1, . . . , v|T ′| so that all edges of T ′ go forward in this ordering, and define Uj2 =

{vs, . . . , v|T ′|} for some s chosen such that (1− ε)wj2 ⩽ fT (Uj2) ⩽ wj2 , a contradiction to

the minimality of I. Thus, if |Wj2 | ⩾
√
εn, then G[Wj2 ], and hence G[W ], contains a copy

of T ′ by Lemma 3.28. Similarly, if |Wj1| ⩾
√
εn, then G[Wj1 ], and hence G[W ], contains

a copy of T ′. We must have then that |Wj1 | <
√
εn and |Wj2| <

√
εn. Thus, by the

minimality of I, T ′ has at most wj2 ⩽
√
εn out-leaves and at most wj1 ⩽

√
εn in-leaves.

As |W | ⩾ |T ′|+αn/4, G[W ] then contains a copy of T ′ by Theorem 1.2, as required. □

3.7 Proof of Theorem 3.13

In this section we prove Theorem 3.13, which, in the notation in Section 3.1, finds an index

jt for a regularity cluster for the core T0 of a tree, and a random homomorphism of a fixed

digraph H with vertex weight function β representing an average component of T1−V (T0)

(where here, and throughout this section, we use the term random homomorphism to refer

to any random variable taking values in the set of all possible homomorphisms, in the

sense of Theorem 3.13). For convenience, we restate the definition of H (see Figure 3.3)

and Theorem 3.13. Let H be the fully-looped oriented forest with vertex and edge sets
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given by

V (H) =
{
x+, y+, z+, u+, w+, x̄+, z̄+, ū+, w̄+, x−, y−, z−, u−, w−, x̄−, z̄−, ū−, w̄−} ,

E(H) =

 x+y+, z+x+, z+u+, w+z+, z̄+x̄+, z̄+ū+, w̄+z̄+,

y−x−, x−z−, u−z−, z−w−, x̄−z̄−, ū−z̄−, z̄−w̄−

 ∪ {vv : v ∈ V (H)}.
(3.2)

For each ⋄ ∈ {+,−}, let X⋄ = {x⋄, x̄⋄}. Let X = X+ ∪X−.

Theorem 3.13. Let 1/r ≪ ε ≪ µ ≪ α < 1. Let H be the fully-looped oriented forest

with vertex and edge sets given by (3.2). For each ⋄ ∈ {+,−}, set X⋄ = {x⋄, x̄⋄}, and

set X = X+ ∪X−. Let β : V (H) → [0, 1] be a function satisfying
∑

v∈V (H) β(v) = 1 with

β(y+) ⩾ β(x+) and β(y−) ⩾ β(x−), and, for every v ∈ V (H), β(v) ⩾ µ. Let D be a

complete looped digraph on vertex set [r] with ε-complete edge weights d(e) for e ∈ E(D).

Let

γ = max {β(x+, x̄+), β(z+, z̄+)}+max {β(x−, x̄−), β(z−, z̄−)}. (3.3)

Then, there is a fixed jt ∈ [r] and a probability distribution D on the set of functions from

V (H) to V (D), such that, if ϕ is sampled according to D, then the following properties

hold.

F1 With probability 1, ϕ is a homomorphism from H to D, and jt /∈ ϕ({x+, x̄+, x−, x̄−}).

F2 For each j ∈ [r], E(β(ϕ−1(j))) ⩽ 1+γ+α
r

.

F3 For each j ∈ [r], either

F3.1 E(β(ϕ−1(j) ∩X+)) ⩽ d(jt, j) · 1+γ+α
r

and E(β(ϕ−1(j) ∩X)) ⩽ d(j, jt) · 1+γ+α
r

,

or

F3.2 E(β(ϕ−1(j) ∩X−)) ⩽ d(j, jt) · 1+γ+α
r

and E(β(ϕ−1(j) ∩X)) ⩽ d(jt, j) · 1+γ+α
r

.

F4 With probability 1, we have |ϕ(e)| = 2 for every non-looped edge e of H.

To prove Theorem 3.13, we first make two key simplifications before dividing into three

critical cases. Our first simplification is to work only with the vertices of H representing
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components attached by an out-edge from T0 (see Figure 3.3). Let H+ and H− be the

subdigraphs of H induced on the vertices with + and − in the superscript, respectively

(i.e., the right and the left parts of H in Figure 3.3). Considering each possible location

j ∈ [r] for jt in Theorem 3.13, either a) j has enough weight on its out-edges that a random

embedding of H− can be extended relatively easily (with perhaps some modification) to

one of H satisfying our requirements, or b) j has enough weight on its in-edges to similarly

extend a random embedding of H+. If many j ∈ [r] satisfy a), then we may randomly

embed H− into the weighted looped digraph D induced on these j. If not, then enough

j ∈ [r] satisfy b), so that we may randomly embed H+ into the weighted looped digraph

D induced on these j. By appealing to directional duality if necessary, this allows us to

prove a simplified version of Theorem 3.13 with weight only on H+ (see Section 3.7.4).

Our second simplification to Theorem 3.13 is to drop the condition F4; we later show

this condition can be recovered without undue difficulty. These two simplifications of

Theorem 3.13 result in Theorem 3.34, which we state in Section 3.7.2 after introducing

a notational framework of ‘distillations’ in Section 3.7.1 in order to have a concise and

consistent language for the proofs in this section. The proof of Theorem 3.34 varies

depending on the weight distribution β on the vertices in H. This falls into three main

cases, which we also state in Section 3.7.2, in the form of Lemmas 3.35, 3.37 and 3.38,

before deducing Theorem 3.34 from these cases. We then prove the lemma for each of

these cases in Section 3.7.3, before finally deducing Theorem 3.13 from Theorem 3.34 in

Section 3.7.4.

3.7.1 Distillations

We prove Theorem 3.13 from three specific cases where, roughly speaking, H is replaced

by simpler subgraphs of H. In order to have a concise and consistent language for proving

these cases, we will use the notion of a distillation, as follows.
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Definition 3.30. A distillation is a triple F = (F,X, β), where F is a fully-looped ori-

ented forest, X ⊆ V (F ) is a set containing precisely one vertex in each component of F ,

and β : V (F ) → [0, 1] satisfies
∑

v∈V (F ) β(v) = 1.

In Theorem 3.13, we have a distillation (H,X, β) which we used to represent the

average component of T − V (T0) for Theorem 3.9. There is some flexibility in how we

could have chosen this distillation — for example we could move all the weight from y+ to

x+, or from u+ to z+ and still have a useful distillation of the average component if we can

find a matching random homomorphism. However, H is the smallest digraph that records

enough structure in the average component to allow every relevant distillation to have a

matching random homomorphism. The construction of the random homomorphism falls

into three cases depending on the distribution of the weight — in each case we can move

weight off some vertices (different in each case) to simplify the digraph in the distillation

for which we find a random homomorphism.

To describe which simplifications of distillations are valid in this way formally, and

prove this validity, we will define a transitive relation ↪→ between distillations. Very

roughly, given two distillations F0 and F1, if F0 ↪→ F1, then we can move weight in F1

(and possibly delete vertices) to transform it into F0. Formally, we define the relation as

follows.

Definition 3.31. Given distillations Fi = (Fi, Xi, βi) for i ∈ {0, 1}, say F0 ↪→ F1 if there

is a random homomorphism ρ : F0 → F1 with the following properties.

M1 With probability 1, ρ(X0) ⊆ X1.

M2 E(β0(ρ−1(v))) = β1(v) for every v ∈ V (F1).

Finally, we need a notion of which distillations are useful — i.e., which distillations

have a matching random homomorphism with properties like those in Theorem 3.13. It

will be convenient to consider a small collection of distillations and allow a sampling of

the random homomorphism to take any one of them as its domain, and so we define the
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following notion of γ-goodness on sets of distillations. Roughly speaking, γ corresponds to

the extra proportion of vertices we need to embed the tree, as in the use of Theorem 3.13.

Definition 3.32. Given γ ⩾ 0, and distillations Fi = (Fi, Xi, βi), i ∈ [m], we say {Fi}mi=1

is γ-good if the following holds for any fixed α > 0: if 1/r ≪ ε≪ α and D is a complete

looped digraph on vertex set [r] with ε-complete edge weights d(e), e ∈ E(D), then there

exists some jt ∈ [r] and a random (ϕ, i(ϕ)) with the following properties.

N1 With probability 1, we have that i(ϕ) ∈ [m], that ϕ is a homomorphism from Fi(ϕ)

to D, and that jt /∈ ϕ(Xi(ϕ)).

N2 For each j ∈ [r], E(βi(ϕ)(ϕ−1(j))) ⩽ 1+γ+α
r

.

N3 For each j ∈ [r], E(βi(ϕ)(ϕ−1(j) ∩Xi(ϕ))) ⩽ d(jt, j) · 1+γ+α
r

.

Note that if {Fi}mi=1 is γ-good for some γ ⩾ 0, then {Fi}mi=1 is γ
′-good for every γ′ ⩾ γ.

In addition, a set of distillations is γ-good if and only if it contains a non-empty subset

which is γ-good.

Finally here, we prove the following key lemma that confirms that if a distillation

can be simplified via the relation ↪→ to each one of a family of distillations which are

collectively γ-good, then that original distillation is γ-good, as follows.

Lemma 3.33. Let γ ⩾ 0, and suppose F and G1, . . . ,Gm are distillations such that

F ↪→ Gi for every i ∈ [m]. If {Gi}mi=1 is γ-good, then {F} is γ-good.

Proof. Let F = (F,X, β) and Gi = (Gi, Xi, βi) for each i ∈ [m]. For each i ∈ [m], let

ρi : F → Gi be a random homomorphism realising F ↪→ Gi.

Take 1/r ≪ ε ≪ α, and let D be a complete looped digraph on vertex set [r] with

ε-complete edge weights d(e), e ∈ E(D). Let jt ∈ [r] and (ϕ, i(ϕ)) realise that {Gi}mi=1 is

γ-good in the case of D. Define (ψ, k(ψ)) as follows. First, sample (ϕ, i(ϕ)). Then, with

i(ϕ) now fixed, sample ρi(ϕ), and set ψ = ϕ ◦ ρi(ϕ). Let k(ψ) = 1 with probability 1, and

note that N1 holds for (ψ, k(ψ)).
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For i ∈ [m] let Ai be the event {i(ϕ) = i}. Then, by the law of total expectation,

E(β(ψ−1(j))) =
∑
i∈[m]

P(Ai) · E(β(ψ−1(j)) | Ai) =
∑
i∈[m]

P(Ai) · E(β(ρ−1
i (ϕ−1(j))) | Ai)

M2
=
∑
i∈[m]

P(Ai) · E(βi(ϕ−1(j)) | Ai) = E(βi(ϕ)(ϕ−1(j))),

so N2 holds for (ψ, k(ψ)), and

E(β(ψ−1(j) ∩X)) =
∑
i∈[m]

P(Ai) · E(β(ψ−1(j) ∩X) | Ai)

=
∑
i∈[m]

P(Ai) · E(β(ρ−1
i (ϕ−1(j)) ∩X) | Ai)

⩽
∑
i∈[m]

P(Ai) · E(β(ρ−1
i (ϕ−1(j) ∩ ρi(X))) | Ai)

M1

⩽
∑
i∈[m]

P(Ai) · E(β(ρ−1
i (ϕ−1(j) ∩Xi)) | Ai)

M2
= E(βi(ϕ)(ϕ−1(j) ∩Xi(ϕ))),

so N3 holds for (ψ, k(ψ)). □

3.7.2 Statement of overarching theorem and subcases

Let H0 be the fully-looped oriented forest with vertices {x, y, z, u, w, x̄, z̄, ū, w̄} and non-

looped edges {xy, zx, zu, wz, z̄x̄, z̄ū, w̄z̄}, noting that this is the subdigraph of H defined

at the start of this section restricted to the vertices with + in the superscript, and with

vertices labelled more concisely (see also Figure 3.3). As noted at the start of this section,

we will first prove a version of Theorem 3.13 for this subdigraph of H, without the

condition F4, before deducing Theorem 3.13 from this in Section 3.7.4. Having introduced

our relevant notation, we can now state this version of Theorem 3.13 concisely, as follows.
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Theorem 3.34. Let β0 : V (H0) → [0, 1] be a function with
∑

v∈V (H0)
β0(v) = 1 and

β0(y) ⩾ β0(x), and set X0 = {x, x̄}. Set γ = max {β0(x, x̄), β0(z, z̄)}. Let H0 =

(H0, X0, β0). Then, {H0} is γ-good.

As mentioned before, the proof of Theorem 3.34 depends on the weight distribution

β0 on H0. Dividing into cases, solving them, and showing they combine to prove this

theorem is no easy task. Doing so while additionally motivating the choice of these cases

is more difficult still. However, while we do concentrate on giving as clear and concise

a proof of Theorem 3.34 as possible, we will give some motivation behind the cases by

relating them to an embedding of a tree T into a tournament G.

In particular, our notation is designed to make the cases as efficient as possible to

check, rather than explain the larger understanding that is necessary to produce these

cases. To motivate the cases more directly, we now recall the discussion in Section 3.1.

Our aim is to use Theorem 3.13 to embed a tree T with a small core T0, where T −V (T0)

is a collection of small components. To do this we take the tournament G and find a

regularity partition V1 ∪ . . . ∪ Vr. We then want to make a careful choice of jt ∈ [r] and

embed T0 into Vjt before distributing the components of T − V (T0) across the clusters

of the regularity partition. The choice of jt restricts which component any vertex in

v ∈ V (T ) \ V (T0) can be embedded to. For example, if the path from T0 to v in T is a

directed path towards v, and v ∈ Vi, then there must be a directed path from Vjt to Vi of

edges with positive weight in the reduced digraph obtained from the regularity partition.

Fortunately, for our cases we need to consider at most the direction of the first three edges

on the path from T0 to v (and the first edge will always be directed away from T0).

Very roughly, we first divide into two cases corresponding to the following situations,

where, for example, we use the notation of a (++)-path from u to v to be a length two

path from u to v comprised of two edges directed forward from u to v, with other notation

used similarly.

• For most of the vertices v ∈ V (T ) \ V (T0), if T0 is embedded to Vjt , i ∈ [r], and

there is a (++)-path from Vjt to Vi in D, then we could embed v to Vi.
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• For most of the vertices v ∈ V (T ) \ V (T0), if T0 is embedded to Vjt , i ∈ [r], and

there is a (+−)-path from Vjt to Vi in D then we could embed v to Vi.

These cases correspond roughly to Lemma 3.35 and Lemma 3.36, respectively. We

then further subdivide the latter case into two cases, essentially replacing the (+−)-path

with a (+−+)-path and a (+−−)-path, respectively. This gives us cases 1, 2, and 3 which,

in terms of the weight distribution β on H correspond to the following roughly-defined

three cases:

1. Most of the weight not on {x, x̄} is on y.

2. Most of the weight not on {x, x̄} is on {y, u, ū} (but Case 1 does not apply).

3. Most of the weight not on {x, x̄} is on {z, w, z̄, w̄}.

We now use our concept of distillations and the relation ↪→ to state the lemmas

corresponding to these cases and combine them to prove Theorem 3.34. We first divide

Theorem 3.34 into two lemmas – based on the distribution of β0, we distill H0 into H1 or

H2, where for the former we remove the vertices {u,w, ū, w̄} and in the latter we remove

{x̄, z̄, ū, w̄}. This gives Lemma 3.35 (corresponding to Case 1 above) and Lemma 3.36. We

then break Lemma 3.36 into two further lemmas, Lemma 3.37 and 3.38 which correspond

respectively to Case 2 and 3 above, where in each case we have a set of distillations rather

than simplifying to just one distillation. The structure of this division is depicted in

Figure 3.7.

Let H1 be the fully-looped oriented forest with vertices {x, y, z, x̄, z̄} and non-looped

edges {xy, zx, z̄x̄}.

Lemma 3.35. Let H = (H1, {x, x̄}, β) be a distillation with β(y) ⩾ β(z, z̄), β(x). Then,

{H} is β(x, x̄)-good.

Let H2 be the fully-looped oriented forest with vertices {x, y, z, u, w} and non-looped

edges {xy, zx, zu, wz}.
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Figure 3.6: The underlying digraphs of the distillations described in this section (with
looped edges omitted).

Lemma 3.36. Let H = (H2, {x}, β) be a distillation with β(y) ⩽ β(z, u, w). Then, {H}

is (max {β(x), β(z)})-good.

Let H3,1 be the fully-looped oriented forest with vertices {x, y} and non-looped edges

{xy}. Let H3,2 be the fully-looped oriented forest with vertices {x, z} and non-looped

edges {zx}.

Lemma 3.37. Let βx ∈ [0, 1] and, set β1(x) = β2(x) = (1 + βx)/2 and β1(y) = β2(z) =

(1− βx)/2. For i ∈ [2], set Hi = (H3,i, {x}, βi). Then, {Hi}2i=1 is βx-good.

LetH4,1 be the fully-looped oriented forest with vertices {x, y, z} and non-looped edges

{xy, zx}. Let H4,2 be the fully-looped oriented forest with vertices {x, y} and non-looped

edges {xy}. Let H4,3 be the fully-looped oriented forest with vertices {x, z} and non-

looped edges {zx}. Let H4,4 be the fully-looped oriented forest with vertices {x, z, w} and

non-looped edges {zx, wz}. Let H4,5 = H4,3.

Lemma 3.38. Let βx, βy, βz, βu, βw ∈ [0, 1] have sum 1 and βy + βu ⩽ βz + βw. Let

γ = max {βx, βz}. Take the following weight functions βi : V (H4,i) → [0, 1] for i ∈ [5].

β1(y) = max{βx+βy−γ, 0} β1(z) = min{βw+βz, 1−βz} β1(x) = 1−β1(y)−β1(z),

106



β2(x) = β3(x) = βx + βz + βw β2(y) = β3(z) = βy + βu,

β4(x) = min{βx+βy+βu,max{βx+βy, βz}} β4(w) = βw β4(z) = 1−β4(x)−β4(w),

β5(x) = βx + βy β5(z) = βz + βu + βw.

For i ∈ [5], set Hi = (H4,i, {x}, βi). Then, {Hi}5i=1 is γ-good.

We remark that each set of weights defined in Lemma 3.38 sum to 1, either by the

choice of β1(x) or β4(z) or as βx + βy + βz + βu + βw = 1. Furthermore, from the choices

they can all immediately be seen to be non-negative except for β1(x) and β4(z), but this

we can also show, as follows.

First note that

β4(z) = 1−min{βx + βy + βu + βw,max{βx + βy + βw, βz + βw}}

= max{βz,min{βu + βz, βx + βy + βu}}. (3.21)

Therefore, β4(z) ⩾ 0. For use later, we will show that β1(x) ⩾ β4(z), which also then

confirms that β1(x) ⩾ 0.

First suppose that βz ⩽ βx + βy. Then, 1− βz = βu + βy + βx + βw ⩾ βw + βz, so that

β1(z) = βw + βz, and hence

β1(x) = 1− β1(y)− β1(z) = 1− (βx + βy − γ)− (βw + βz) = βu + γ ⩾ βu + βz.

On the other hand, if βz > βx + βy, then β1(y) = 0, so that

β1(x) = 1− β1(z) = max{1− (βw + βz), βz} = max{βu + βy + βx, βz}.

Therefore, in both cases, we have β1(x) ⩾ βz and either β1(x) ⩾ βu + βz or β1(x) ⩾

βu + βy + βx. Thus, by (3.21), we have

β1(x) ⩾ β4(z). (3.22)
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Figure 3.7: An overview of how the results of this section combine to prove Theorem 3.13.
Each implication denoted by =⇒ indicates a suitable application of Lemma 3.33.

We will now outline how Lemmas 3.35, 3.36, 3.37, and 3.38 together imply Theo-

rem 3.34 (see Figure 3.7). First, we will show that Theorem 3.34 follows from Lemmas 3.35

and 3.36. We will then show that Lemma 3.36 follows from Lemmas 3.37 and 3.38. The

proof of each of these implications is a straightforward case of verifying certain ↪→ rela-

tions between the relevant distillations hold according to the different values β may take,

and applying Lemma 3.33 to deduce γ-goodness. All that will remain then is to prove

Lemmas 3.35, 3.37, and 3.38, which we do in Section 3.7.3, and then deduce Theorem 3.13

from Theorem 3.34, which we do in Section 3.7.4.

3.7.2.1 Proof of Theorem 3.34 using Lemmas 3.33, 3.35, and 3.36

Using Lemma 3.33, it is simple to deduce Theorem 3.34 from Lemmas 3.35 and 3.36.

Proof of Theorem 3.34. Define ρ1 : H0 → H1 by setting ρ1(x) = x, ρ1(y) = y, ρ1(z, u, w) =

z, ρ1(x̄) = x̄ and ρ1(z̄, ū, w̄) = z̄. Define ρ2 : H0 → H2 by setting ρ2(x, x̄) = x, ρ2(y) = y,

ρ2(z, z̄) = z, ρ2(u, ū) = u and ρ2(w, w̄) = w.

For each i ∈ [2], let βi : V (Hi) → [0, 1] be given by βi(v) = β0(ρ
−1
i (v)). Let H1 =

(H1, {x, x̄}, β1) and H2 = (H2, {x}, β2). Note that, for each i ∈ [2], the homomorphism

ρi : H0 → Hi realises H0 ↪→ Hi.

If β0(y) ⩾ β0(z, u, w, z̄, ū, w̄), then, by Lemma 3.35, {H1} is β0(x, x̄)-good.

On the other hand, if β0(y) ⩽ β0(z, u, w, z̄, ū, w̄), then, by Lemma 3.36, {H2} is
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(max {β0(x, x̄), β0(z, z̄)})-good. In either case we find {H0} is γ-good, by Lemma 3.33. □

3.7.2.2 Proof of Lemma 3.36 using Lemmas 3.33, 3.37, and 3.38

To prove Lemma 3.36 follows from Lemmas 3.37 and 3.38 using Lemma 3.33 requires more

checking due to the larger sets of distillations, but this is straightforward, as follows.

Proof of Lemma 3.36. For v ∈ V (H2), let βv = β(v). Note that we have βy ⩽ βz+βu+βw.

Define H3,i, i ∈ [2] and H4,i, i ∈ [5] as described in Lemmas 3.37 and 3.38.

We will later prove the following two claims.

Claim 3.39. If βy + βu ⩾ βz + βw, then H ↪→ H3,i for i ∈ [2].

Claim 3.40. If βy + βu ⩽ βz + βw, then H ↪→ H4,i for i ∈ [5].

If βy + βu ⩾ βz + βw, then H is γ-good by Lemma 3.37, Lemma 3.33 and Claim 3.39.

Otherwise, if βy + βu ⩽ βz + βw, then H is γ-good by Lemma 3.38, Lemma 3.33 and

Claim 3.40. Therefore, it remains only to prove Claims 3.39 and 3.40.

Proof of Claim 3.39. For i ∈ [2], let βi : V (H3,i) → [0, 1] be defined as in Lemma 3.37.

To realise H ↪→ H3,1: If βy + βu = 0 (and hence, β1(y) = 0) then let p1 = 0, and

otherwise let

p1 =
β1(y)

βy + βu
=

1− βx
2(βy + βu)

=
βy + βu + βz + βw

2(βy + βu)
⩽ 1.

Define ρ1 : H2 → H3,1 by ρ1(x, z, w) = x and setting ρ1(y, u) = y with probability p1, and

otherwise setting ρ1(x, y, z, u, w) = x.

To realise H ↪→ H3,2: If βz + βu + βw = 0 (and hence, β2(z) = 0) then let p2 = 0, and

otherwise let

p2 =
β2(z)

βz + βu + βw
=

1− βx
2(βz + βu + βw)

=
βy + βz + βu + βw
2(βz + βu + βw)

⩽ 1.

Define ρ2 : H2 → H3,2 by ρ2(x, y) = x and setting ρ2(z, u, w) = z with probability p2, and

otherwise setting ρ2(x, y, z, u, w) = x. ⊡
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Proof of Claim 3.40. For i ∈ [5], let βi : V (H4,i) → [0, 1] be defined as in Lemma 3.38.

To realise H ↪→ H4,1: If βy = 0 (and hence, β1(y) = 0) then let p1 = 0, and otherwise

let

p1 =
β1(y)

βy
=

max{βx + βy −max{βx, βz}, 0}
βy

⩽
βy
βy

= 1.

If βz + βu + βw = 0 (and hence, β1(z) = 0) then let p′1 = 0, and otherwise let

p′1 =
β1(z)

βz + βu + βw
⩽

βw + βz
βz + βu + βw

⩽ 1.

Define ρ1 : H0 → H4,1 by ρ1(x) = x, and independently at random with probability p1

setting ρ1(y) = y and otherwise setting ρ1(y) = x, and independently at random with

probability p′1 setting ρ1(z, u, w) = z and otherwise setting ρ1(z, u, w) = x.

To realise H ↪→ H4,2: Define ρ2 : H2 → H4,2 by ρ2(x, z, w) = x and ρ2(y, u) = y.

To realise H ↪→ H4,3: If βz + βw + βu = 0 (and hence, β3(z) = 0) then let p3 = 0, and

otherwise let

p3 =
β3(z)

βz + βw + βu
=

βy + βu
βz + βw + βu

⩽ 1.

Define ρ3 : H2 → H4,3 by ρ3(x, y) = x and setting ρ3(z, w, u) = z with probability p3, and

otherwise setting ρ3(z, w, u) = x.

To realise H ↪→ H4,4: From (3.21) we have βz ⩽ β4(z) ⩽ βz +βu. Using this, if βu = 0

(and hence, β4(z) = βz) then let p4 = 0, and otherwise let

p4 =
β4(z)− βz

βu
,

so that 0 ⩽ p4 ⩽ 1 and p4βu + βz = β4(z). Define ρ4 : H2 → H4,4 by ρ4(x, y) = x,

ρ4(z) = z, ρ4(w) = w, and setting ρ4(u) = z with probability p4, and otherwise setting

ρ4(u) = x.

To realise H ↪→ H4,5: Define ρ5 : H2 → H4,5 by ρ5(x, y) = x and ρ5(z, u, w) = z.

⊡ □
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3.7.3 Proofs of the three cases

We are now ready to prove Lemmas 3.35, 3.37, and 3.38, thus completing the proof of

Theorem 3.34. We give these in order of difficulty, first proving Lemma 3.37, followed by

Lemma 3.35 and finally Lemma 3.38, with an informal motivating discussion preceding

each proof.

3.7.3.1 Proof of Lemma 3.37

In the following proof of Lemma 3.37, we describe the random (ϕ, i(ϕ)) realising the

βx-goodness of the set {Hi}2i=1. We assume (by relabelling) that jt = r has at least

average out-edge weight, and describe a simple random homomorphism based on these

edge weights. As this proof is relatively easy to check we do not motivate this further,

but comment on it in the motivation for the other two cases. In the proof, we will use

ND(j) to denote the set of j′ ∈ V (D) with d(j, j′) + d(j′, j) > 0.

Proof of Lemma 3.37. Let γ = βx. Let 1/r ≪ ε ≪ α, and let D be a complete looped

digraph on vertex set [r] with ε-complete edge weights d(e), e ∈ E(D). We will find a

random (ϕ, i(ϕ)) satisfying N1-N3. By relabelling, we can assume that

∑
j∈[r−1]

d(r, j) ⩾ (1
2
− 2ε) · r.

For j ∈ [r − 1], choose 0 ⩽ dj ⩽ d(r, j) so that
∑

j∈[r−1] dj = (1
2
− 2ε) · r.

Define (ϕ, i(ϕ)) randomly as follows. First, choose ϕ(x) ∈ [r − 1] at random, so that

ϕ(x) = j with probability dj/(
1
2
− 2ε) · r. Then choose j′ ∈ ND(ϕ(x)) at random so that

j′ = j with probability (1− dj)/
∑

j∈ND(ϕ(x))(1− dj). If d(ϕ(x), j
′) > 0, then set i(ϕ) = 1

and ϕ(y) = j′. Otherwise, set i(ϕ) = 2 and ϕ(z) = j′. Note that, in either case, ϕ is a

homomorphism from H3,ϕ(i) to D. By identifying jt = r, N1 holds. We now note that,
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for j ∈ [r − 1],

E(βi(ϕ)(ϕ−1(j) ∩ {x})) = (1 + βx)

2
· dj
(1
2
− 2ε) · r

⩽ dj ·
1 + γ + α

r
,

and, because
∑

j∈ND(j′)(1− dj) ⩾ (1
2
− 3ε) · r for any j′ ∈ [r − 1],

E(βi(ϕ)(ϕ−1(j) ∩ {y, z})) ⩽ (1− βx)

2
· (1− dj)

(1
2
− 3ε) · r

⩽ (1− dj) ·
1 + γ + α

r
.

Thus, we deduce N2 and N3 hold. □

3.7.3.2 Proof of Lemma 3.35

Describing our proofs of the two remaining cases directly is difficult, in part because we are

finding homomorphisms to a weighted digraph so we can apply our results to a regularity

partition. What we do instead is describe an embedding of a tree T into a tournament G

that follows all the major steps in our proof in an analogous, but more comprehensible,

way. The embedding we describe is plausible but lacks detail and ignores several subtleties

that influence the formal proof – our aim is to give a step by step embedding (see steps

1 to 8 below, and also Figure 3.8) in a simplified set-up that, by comparison, makes the

proof of Lemma 3.35 easier to follow.

For this simplified set-up, assume that we have a tree T containing a vertex t with

only out-neighbours in T , such that T−{t} consists of small components. Assume further

we have a tournament G, which is larger than T , into which we are attempting to find

an embedding ψ of T . As t has many out-neighbours in T , an obvious choice for ψ(t) is

a vertex in G with maximal out-degree – say vt is such a vertex and set ψ(t) = vt. Let

A = N+
G (vt) and B = V (G)\ (A∪{vt}). Any component of T −{t} can be embedded into

G[A] to extend the embedding to cover that component (using, for example, Theorem 1.8),

but there is not necessarily enough room in A to embed all of the components at once,

and so the challenge is to embed components so that many vertices in B are also used.

Let Ĥ1 have vertex set {x, y, z} and edge set {xy, zx}. For each component of T −{t},
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map the out-neighbour of t to x, any vertex whose path in T from t begins with two

out-edges to y, and any vertex whose path in T from t begins with an out-edge then an

in-edge to z. Thus, all vertices are mapped to V (Ĥ1). We always want to embed the

vertices of T mapped to x into A, so that they are out-neighbours of vt. If all the edges

between A and B in G are directed from A to B then, given a component of T − {t}

we could embed vertices mapped to y into B and vertices mapped to z into A. On the

other hand, if all the edges between A and B in G are directed from B to A then, given a

component, we could embed vertices mapped to z into B and vertices mapped to y into

A. In practice, we expect the edges between A and B to meet neither extreme, and that

some components can be embedded with vertices in B using edges directed from A to B

and some using edges directed from B to A.

It may be be that all, or almost all, the edges between A and B in G are directed from

A to B. Here, it is crucial that Lemma 3.35 covers the case corresponding to components

having enough vertices mapped to y in order to place plenty of vertices into B. The other

extreme, where almost all the edges between A and B in G are directed from B to A,

cannot occur unless B is very small, otherwise we can find a vertex in B with high enough

out-degree, both in G[B] and into A, so that it has higher out-degree than vt.

In trees corresponding to Case 1 (i.e., those for which we use Lemma 3.35), more

vertices are mapped to y than z, so we prefer to embed components with the vertices

mapped to y embedded in B. Our embedding is then via the following steps (where we

first recap the embedding of t), and also sketched in Figure 3.8.

1. Embed t to a vertex vt with a largest out-neighbourhood in G, and let A = N+
G (v)

and B = V (G) \ (A ∪ {vt}).

2. Embed as many components of T − {t} mapped to {x, y, z} ⊆ V (H1) as possible

with the vertex mapped to x ∈ V (H1) in A and either a) all other vertices embedded

into B or b) the vertices mapped to y embedded into B and the vertices mapped

to z embedded into A.
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3. Subject to this, choose the embedding maximising the number of components sat-

isfying a).

4. Let A0 be the unused vertices in A and B0 be the unused vertices in B.

5. If B0 is small (smaller than the number of leaves of T , say), then we do not need to

use these vertices and can greedily find the remaining components within A0. Thus,

we assume B0 is not too small and that we have not found all our components.

6. A0 then cannot be too small as we always embedded enough vertices in B compared

to A.

7. There cannot be many edges directed from A0 to B0, for otherwise another compo-

nent could be embedded with vertices mapped to y embedded in B0.

8. Using a sequence of deductions from the maximality of our component embeddings,

we can then find large sets A1 and B1 with A0 ⊆ A1 ⊆ A and B0 ⊆ B1 ⊆ B so that

the edges in G are mostly directed from B1 into A1, before concluding there is some

vertex in B1 with out-degree approximately |A1|+ |B1|/2, which will be higher than

the out-degree of vt, |A|, giving a contradiction.

An example deduction is the following: for components satisfying b), the image of the

vertex mapped to x must have few in-neighbours in B0, for otherwise the vertices mapped

to z could be embedded into B0 to increase the number of embedded components satisfying

a). Consequently, there cannot be many edges from A0 to the images of vertices mapped

to y in components satisfying b), else we could move the images of such vertices into B0

and embed a new component using the freed up space. Thus we can add the images of

vertices mapped to y in components satisfying b) to B1.

We now describe the proof of Lemma 3.35 in comparison to these steps. For the lemma,

T contains a small core T0 ⊆ T (corresponding to t above) and we have a distillation

(H1, {x, x̄}, β) representing an average component of T − V (T0), where H1 is the fully-

looped oriented forest with vertex set {x, y, z, x̄, z̄} and edge set {xy, zx, z̄x̄}. We have a
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Figure 3.8: An example of how we aim to embed components of T − {t} into the sets A
and B in the simplified set-up. For this case, where more vertices in the components are
mapped to y, we at first aim to embed these vertices mapped to y in B. Once this is no
longer possible, we find that edges between the leftover vertices are mostly directed from
B0 towards A0.

complete looped weighted digraph D which represents a regularity partition, and choose

jt to maximise the weight on the out-edges from jt in D (cf. 1. above). By relabelling, we

assume jt = r. Instead of having a partition A ∪ B of the other vertices j ∈ V (D), each

vertex is duplicated and lies in both A and B with a weight, representing the proportion of

that vertex that is in the out- and in-neighbourhood of jt respectively (i.e., the proportions

d(jt, j) and d(j, jt)).

Instead of embedding components, we find homomorphisms ϕ1, . . . , ϕs (for some ap-

propriate s) from H1, before ultimately picking at random from these homomorphisms

to get our required random homomorphism. These homomorphisms effectively allocate

space within regularity clusters (represented by vertices of D) to embed a batch of compo-

nents of T−V (T0), and we similarly aim to allocate as much space in B as possible. To do

this, we first find as many as many homomorphisms ϕ̂1, . . . , ϕ̂s0 from Ĥ1 = H1[{x, y, z}]

as possible so that, ideally, y and z are both embedded into B (see condition O1 in the

proof), and, failing this, at least y is embedded into B (see O2), while x is always em-

bedded to A (cf. 2. and 3. above). In doing so, we always ensure that the total weight
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assigned to any one vertex of D is not too much (see O3). Maximising the number of

such homomorphisms (s0), and then the number for which O1 is relevant, in fact will

allow us to find the remaining homomorphisms ϕ̂s0+1, . . . , ϕ̂s before extending them to

homomorphisms from H1 (cf. 5. above). We prove this by assuming it cannot be done

and steadily deducing a series of claimed properties of D that ultimately allow us to find

a vertex with more weight on its out-edges in D than jt, a contradiction.

Proof of Lemma 3.35. Let γ = β(x, x̄). Let 1/r ≪ ε ≪ α. We remark that γ ⩽ 1, and

we may also assume that α ⩽ 1, so we have (1 + γ + α) ⩽ 3.

Let D be a complete looped digraph on vertex set [r] with ε-complete edge weights

d(e), e ∈ E(D). We will find a random (ϕ, i(ϕ)) satisfying N1-N3. By relabelling, we

can assume that

∑
j∈[r−1]

d(r, j) = max
i∈[r]

∑
j∈[r]\{i}

d(i, j) ⩾ (1
2
− 2ε) · r. (3.23)

Take two new disjoint vertex sets A = {a1, . . . , ar−1} and B = {b1, . . . , br−1}. Let D̄

be the weighted complete looped digraph on A∪B in which the edges aibj, aiaj, bibj and

biaj have weight d(i, j).

Let s be such that 1/s≪ 1/r. For each i ∈ [r − 1], let wai = d(r, i) · (1 + γ + α) · s/r

and wbi = (1− d(r, i)) · (1 + γ + α) · s/r. Note that

∑
v∈A∪B

wv ⩾ (1 + β(x, x̄) + 7α/8) · s, (3.24)

and

∑
v∈B

wv =
∑

i∈[r−1]

(1− d(r, i)) · (1 + γ + α) · s/r
(3.23)
< (1

2
+ 1

2
β(x, x̄) + 3α/4) · s. (3.25)

We aim to find homomorphisms ϕ1, . . . , ϕs : H1 → D̄, with ϕi(x), ϕi(x̄) ∈ A for each

i ∈ [s] and
∑

i∈[s] β(ϕ
−1
i (v)) ⩽ wv for every v ∈ V (D̄). Then if ϕ : H1 → D is the natural
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homomorphism induced by a uniform random selection from {ϕ1, . . . , ϕs}, the conclusion

of the theorem will hold.

Let Ĥ1 = H1[{x, y, z}]. Let s0 ⩽ s be the largest integer for which there exist homo-

morphisms ϕ̂1, . . . , ϕ̂s0 : Ĥ1 → D̄ and indicators j1, . . . , js0 ∈ [2] such that the following

properties hold.

O1 For each i ∈ [s0] with ji = 1, we have ϕ̂i(x) ∈ A, ϕ̂i(y) ∈ B, and ϕ̂i(z) ∈ B.

O2 For each i ∈ [s0] with ji = 2, we have ϕ̂i(x) ∈ A, ϕ̂i(y) ∈ B, and ϕ̂i(z) ∈ A.

O3 For each v ∈ A ∪B,
∑

i∈[s0] β(ϕ̂
−1
i (v)) ⩽ wv.

Subject to this, maximise the number of i ∈ [s0] with ji = 1. Let I1 be the set of i ∈ [s0]

with ji = 1, and let I2 be the set of i ∈ [s0] with ji = 2. For each v ∈ A ∪ B, let

ŵv =
∑

i∈[s0] β(ϕ̂
−1
i (v)), so that, by O3, we have ŵv ⩽ wv.

Note that

∑
v∈A∪B

ŵv =
∑

v∈A∪B

∑
i∈[s0]

β(ϕ̂−1
i (v)) =

∑
i∈[s0]

β(ϕ̂−1
i (A ∪B)) = β(x, y, z) · s0. (3.26)

Let B0 be the set of v ∈ B with wv − ŵv ⩾ 1. Let A0 be the set of v ∈ A with

wv − ŵv ⩾ 2, noting that we are placing a slightly stronger condition on the definition of

A0 to enable a switching argument later on (see the end of the proof of Claim 3.45).

We now show that we are done, unless
∑

v∈B(wv − ŵv) is not too small.

Claim 3.41. Either there exists a random (ϕ, i(ϕ)) satisfying N1-N3, or

∑
v∈B

(wv − ŵv) > (β(x, x̄) + 3α/4) · s. (3.27)
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Proof of Claim 3.41. Suppose that
∑

v∈B(wv − w̄v) ⩽ (β(x, x̄) + 3α/4) · s. Then

∑
v∈A

(wv − ŵv) =
∑

v∈A∪B

(wv − ŵv)−
∑
v∈B

(wv − ŵv)

(3.24),(3.26)

⩾ (1 + β(x, x̄) + 7α/8) · s− β(x, y, z) · s0 − (β(x, x̄) + 3α/4) · s

= (1 + α/8) · s− β(x, y, z) · s0

= β(x̄, z̄) · s0 + β(x, y, z, x̄, z̄) · (s− s0) + (α/8) · s. (3.28)

Greedily extend the homomorphisms ϕ̂1, . . . , ϕ̂s0 : Ĥ1 → D̄ to homomorphisms ϕ1, . . . , ϕs0 :

H1 → D̄, so that, for every i ∈ [s0], ϕi|{x,y,x} = ϕ̂i, and ϕi(x̄), ϕi(z̄) ∈ A. Then, greedily

choose homomorphisms ϕs0+1, . . . , ϕs so that, for every i ∈ [s] \ [s0], ϕi(V (H1)) = {aj} for

some aj ∈ A. These steps are possible, while also ensuring that
∑

i∈[s] β(ϕ
−1
i (v)) ⩽ wv for

every v ∈ V (D̄), due to (3.28). Then, by defining (ϕ, i(ϕ)) by sampling ϕ from ϕ1, . . . , ϕs

uniformly at random (identifying the result as a map V (H1) → V (D) in the natural way)

and setting i(ϕ) = 1, we obtain a random (ϕ, i(ϕ)) satisfying N1-N3. ⊡

Thus, we may now assume that (3.27) holds, and hence also |B0| ⩾ 2εr. In particular,

as ϕ̂i(y) ∈ B for each i ∈ [s0], we have

β(y) · s0 ⩽
∑
v∈B

ŵv

(3.27)
<
∑
v∈B

wv − (β(x, x̄) + 3α/4) · s
(3.25)
<

1

2
(1− β(x, x̄)) · s ⩽ β(y) · s,

and so we have that s0 < s.

Claim 3.42. If i ∈ I2 and v ∈ B0, then d(v, ϕ̂i(x)) = 0. Hence, by E, given i ∈ I2, there

is some v ∈ B0 with d(ϕ̂i(x), v) = 1.

Proof of Claim 3.42. Let i ∈ I2, v ∈ B0, and suppose that d(v, ϕ̂i(x)) > 0. Then we may

instead set ϕ̂i(z) = v and ji = 1 and observe that O1–O3 still hold. As this increases

|I1|, this is a contradiction. ⊡
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Given v ∈ B, let w̄v = β(y) · |{i ∈ I2 : ϕ̂i(y) = v}|. We remark that w̄v ⩽ ŵv, and

∑
j∈[r−1]

w̄bj

O1,O2

⩾
∑

j∈[r−1]

ŵaj − β(x) · s. (3.29)

Let By be the set of v ∈ B for which w̄v ⩾ 2.

Claim 3.43. If i, i′ ∈ I2 are such that i ̸= i′, then d(ϕ̂i′(y), ϕ̂i(x)) = 0. Hence, d(v, ϕ̂i(x)) =

0 whenever i ∈ I2 and v ∈ By.

Proof of Claim 3.43. Let i, i′ ∈ I2 be such that i ̸= i′, and suppose that d(ϕ̂i′(y), ϕ̂i(x)) >

0. Let v′ = ϕ̂i′(y). By Claim 3.42, there is some v ∈ B0 such that d(ϕ̂i′(x), v) = 1. Then,

because β(y) ⩾ β(z), we may instead set ϕ̂i(z) = v′, ϕ̂i′(y) = v, and ji = 1, increasing

|I1|, a contradiction. ⊡

Claim 3.44. If i ∈ I2, then d(v, ϕ̂i(x)) > 0 for at least εr many v ∈ A0.

Proof of Claim 3.44. Let i ∈ I2. Suppose that there are fewer than εr many v ∈ A0 for

which d(v, ϕ̂i(x)) > 0. So, using Claim 3.42 and Claim 3.43, d(v, ϕ̂i(x)) = 0 for all but at

most εr many v ∈ A0∪B0∪By. Then, by E, for all but at most 2εr many v ∈ A0∪B0∪By,

we have d(ϕ̂i(x), v) = 1.

Let j′ be such that ϕ̂i(x) = aj′ . Let J be the set of j ∈ [r− 1] such that (waj − ŵaj) +

(wbj − ŵbj) + w̄bj ⩾ 5. If j ∈ J , then either aj ∈ A0 or bj ∈ B0 ∪ By. So d(j′, j) = 1 for

all but at most 2εr many j ∈ J , and hence
∑

j∈[r]\{j′} d(j
′, j) ⩾ |J | − 3εr. Noting that

(waj − ŵaj)+ (wbj − ŵbj)+ w̄bj ⩽ waj +wbj = (1+ γ+α) · s/r for any j ∈ [r− 1], we have

∑
j∈[r]\{j′}

d(j′, j) · (1 + γ + α) · s/r ⩾ |J | · (1 + γ + α) · s/r − 3ε(1 + γ + α) · s

⩾
∑

j∈[r−1]

[(waj − ŵaj) + (wbj − ŵbj) + w̄bj ]− 5r − 9εs

(3.27)

⩾
∑

j∈[r−1]

waj +
∑

j∈[r−1]

(w̄bj − ŵaj) + (β(x, x̄) + α/2) · s

(3.29)

⩾
∑

j∈[r−1]

waj + (β(x̄) + α/2) · s >
∑

j∈[r−1]

d(r, j) · (1 + γ + α) · s/r,
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contradicting (3.23). ⊡

Let IY be the set of i ∈ [s0] such that there exist distinct i0, . . . , iℓ ∈ [s0] with i0 = i,

such that

• d(ϕ̂ik−1
(x), ϕ̂ik(y)) > 0 for k ∈ [ℓ], and

• d(ϕ̂iℓ(x), v) > 0 for some v ∈ B0.

We remark that d(ϕ̂i(x), v) = 0 whenever i /∈ IY , v ∈ B0, and also that d(ϕ̂i(x), ϕ̂i′(y)) = 0

whenever i /∈ IY , i
′ ∈ IY .

Let A1 be the set of v ∈ A with wv −
∑

i∈IY β(ϕ̂
−1
i (v) ∩ {x}) ⩾ 1, and let B1 be the

set of v ∈ B with wv − ŵv +
∑

i∈IY β(ϕ̂
−1
i (v) ∩ {y}) ⩾ 1.

Claim 3.45. If u ∈ A1 and v ∈ B1, then d(u, v) = 0.

Proof of Claim 3.45. Let u ∈ A1 and v ∈ B1, and suppose for contradiction that d(u, v) >

0.

If ϕ̂i(x) = u for some i /∈ IY , then we must have d(u, v′) = 0 for every v′ ∈ B0, else

i ∈ IY . So in particular, we would have v ∈ B1\B0, and hence ϕ̂i′(y) = v for some i′ ∈ IY .

But then d(ϕ̂i(x), ϕ̂i′(y)) > 0 for some i /∈ IY , i
′ ∈ IY , a contradiction.

Therefore, we may assume that
∑

i∈[s0]\IY β(ϕ̂
−1
i (u) ∩ {x}) = 0, and hence

wu − ŵu +
∑
i∈I2

β(ϕ̂−1
i (u) ∩ {z}) = wu −

∑
i∈[s0]

β(ϕ̂−1
i (u) ∩ {x}) ⩾ 1. (3.30)

Set ϕ̂s0+1(x), ϕ̂s0+1(z) = u and ϕ̂s0+1(y) = v, and set js0+1 = 2.

Let IZ ⊆ I2 be a minimal set such that ϕ̂i(z) = u for i ∈ IZ and wu − ŵu +∑
i∈IZ β(ϕ̂

−1
i (u) ∩ {z}) ⩾ 1, noting that (3.30) shows such a choice is possible. By mini-

mality of IZ , we have
∑

i∈IZ β(ϕ̂
−1
i (u)∩{z}) ⩽ 2. Using Claim 3.44, choose ui ∈ A0 \ {u}

for i ∈ IZ with d(ui, u) > 0.

If wv − ŵv ⩾ β(y), then set ℓ = 0, iℓ = s0 + 1, and v⋆ = v. Otherwise, we find there is

some i ∈ IY with ϕ̂i(y) = v, and so let i0, . . . , iℓ ∈ [s0] be distinct with i0 = i, and v⋆ ∈ B0
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be such that d(ϕ̂ik−1
(x), ϕ̂ik(y)) > 0 for k ∈ [ℓ] and d(ϕ̂iℓ(x), v

⋆) > 0. In either case, set

vik−1
= ϕ̂ik(y) for k ∈ [ℓ], and set viℓ = v⋆.

Now, setting ϕ̂i(z) = ui for i ∈ IZ and ϕ̂ik(y) = vik for k ∈ {0} ∪ [ℓ] yields a contra-

diction to the maximality of s0, proving the claim. ⊡

Let JA be the set of j ∈ [r − 1] with aj ∈ A1 and JB be the set of j ∈ [r − 1] with

bj ∈ B1. By Claim 3.45, JA and JB are disjoint. Let j′ ∈ JB be such that
∑

j∈JB d(j
′, j)

is maximised. So by Claim 3.45,

∑
j∈[r]\{j′}

d(j′, j) ⩾ |JA|+
1

2
|JB| − 2εr. (3.31)

Also, because β(y) ⩾ β(x),

∑
v∈B

(
wv − ŵv +

∑
i∈IY

β(ϕ̂−1
i (v) ∩ {y})

)
(3.27)
> (β(x, x̄) + 3α/4) · s+ β(y) · |IY |

⩾ 2β(x) · |IY |+ (3α/4) · s = 2
∑
v∈A

∑
i∈IY

β(ϕ̂−1
i (v) ∩ {x}) + (3α/4) · s. (3.32)

Therefore,

∑
j∈[r]\{j′}

d(j′, j) · (1 + γ + α) · s/r
(3.31)

⩾
(
|JA|+ 1

2
|JB| − 2εr

)
· (1 + γ + α) · s/r

= |JA| · (1 + γ + α) · s/r + 1

2
|JB| · (1 + γ + α) · s/r − 2ε(1 + γ + α) · s

⩾
∑
v∈A

(wv −
∑
i∈IY

β(ϕ̂−1
i (v) ∩ {x})) + 1

2

∑
v∈B

(
wv − ŵv +

∑
i∈IY

β(ϕ̂−1
i (v) ∩ {y})

)
− 10εs

(3.32)
>
∑
v∈A

wv + (3α/8) · s >
∑

j∈[r−1]

d(r, j) · (1 + γ + α) · s/r,

contradicting (3.23). □
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3.7.3.3 Proof of Lemma 3.38

In this section, we will prove Lemma 3.38. Similarly as in Section 3.7.3.2, we will outline

our strategy in a simplified setting, along with a depiction in Figure 3.9, so that this

outline may guide the reader through the technical proof. For this, let T again be a tree

containing a vertex t with only out-neighbours in T , such that T − {t} consists of small

components. Furthermore, let G be a tournament with more vertices than T into which

we are attempting to find an embedding ψ of T . We proceed initially with a very similar

strategy to that described at the start of Section 3.7.3.2, as follows.

Let vt be a vertex in G with maximal out-degree and set ψ(t) = vt. Let A = N+(vt)

and B = V (G) \ (A∪ {vt}). Just as before, we now aim to embed components of T −{t}

so that they can be attached correctly to vt but so that as many vertices as possible lie

in B. For the trees relevant for Lemma 3.35, if we carefully maximised the number of

components we embedded, then we covered enough vertices in B that we were able to

finish the embedding by embedding the remaining components into the unused vertices

in A. The problem here is that Lemma 3.38 covers trees for which this might not be

possible. To see this, consider again Ĥ1 with vertex set {x, y, z} and edge set {xy, zx},

and, for each component of T − {t}, map the out-neighbour of t to x, and map the other

vertices to y or z according to the direction of the first edge of their path from t in the

component as before. If all edges between A and B in G are directed from A to B then

the only vertices we can embed into B are those mapped to y, and in the trees relevant

to Lemma 3.38 there may be few or even none of these! That is, it simply may not be

the case that we can embed T with t embedded to vt as before.

Nevertheless, with t embedded to vt, we attempt to embed as many components

as possible subject to a careful maximisation as before. In particular, we always have

the vertex mapped to x embedded into A and vertices mapped to z embedded into B.

Previously, we then made a sequence of deductions that led us to find sets A1 ⊆ A and

B1 ⊆ B such that almost all the edges of G were directed from B1 to A1, and this led

to a contradiction (see step 8 in Section 3.7.3.2). For Lemma 3.38, we again make a
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(here, simpler) sequence of deductions. Roughly, if A0 and B0 are the vertices in A and

B respectively which are not in the image of any component we have embedded, then

G must have almost all the possible edges directed from A0 into B0 as well as certain

other properties. The vertices in B0 are then the vertices we struggled to cover when

embedding components of the tree. However, if we pick a typical vertex v′t in A0 and try

instead to embed the tree starting with embedding t to v′t, then it is easy to cover vertices

in B0 with components in T −{t} as most of these vertices are in the out-neighbourhood

of v′t. Even better, the vertices in A0 \ {v′t} can also be used relatively easily as there

are many edges from A0 to B0 and, now the embedding of t is changed, components of

T − {t} can be embedded with vertices mapped to {x, y} embedded into B0 and vertices

mapped to z embedded into A0 (and for the trees covered by Lemma 3.38 significantly

many vertices are mapped to z). Of course, the remaining vertices of G – those which had

components embedded to them – may now be hard to cover, but, from our maximised

component embedding and subsequent deductions, we will have information about how

we can adjust the embedded components to attach them instead to the new image, v′t,

of t while still using roughly the same vertices for that component. This is not always

simple, and we allocate some additional vertices in B0 to each embedded component

before finding a new version of that component using the old vertices for that component

and possibly also the additional vertices allocated from B0. That we can allocate some

additional vertices in this fashion relies on the fact that G is larger than T , so we can

afford not to use every vertex in G in the final embedding.

The portioning of the vertices in B0 to allow the rearrangement and reattachment

of the components requires quite some delicacy, resulting ultimately in the choice of the

functions β1, . . . , β5 in Lemma 3.38. This choice can be motivated, but only at some

length and difficulty, so instead we concentrate on writing a proof that can be directly

verified. As in Section 3.7.3.2, in the actual setting, with a tree T with small core T0

in mind, given a distillation of an average component, we find homomorphisms to a

weighted looped digraph which will represent a regularity partition. We then pick from
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Figure 3.9: In our simplified set-up, for the case corresponding to Lemma 3.38, we may
instead begin by aiming to embed vertices of T −{t} mapped to z in B. The component
in the lower half of the diagram illustrates how leftover space in A0 and B0 may be used
efficiently via a new embedding v′t for t.

these homomorphisms randomly to get a random homomorphism. These homomorphisms

again essentially allocate room for components of T − V (T0) in the regularity clusters

corresponding to the weighted digraph D.

To find these homomorphisms, we begin by selecting a vertex jt ∈ V (D) with at least

the average amount of weight on its out-edges. By relabelling, we assume jt = r. Similarly

to the proof of Lemma 3.35, we again duplicate vertices of D to get weighted vertex sets A

and B representing the proportion of each vertex that is in the out- and in-neighbourhood

of jt respectively, and aim to find homomorphisms which allocate plenty of space in B.

To do this, we find maximally many homomorphisms from H4,1 to D satisfying certain

conditions (P1–P4 in the proof), and further optimising over two additional conditions

(stated just after P4), to get homomorphisms ϕ1, . . . , ϕs0 . Assuming we do not have

enough homomorphisms to easily find the remaining ones we wanted (see Claim 3.47), we

make a sequence of deductions based on this assumption and the maximality (Claim 3.46

and Claim 3.48) about the weight distribution on D. Letting A0 ⊆ A and B0 ⊆ B be

the sets of vertices with unallocated weight, an example deduction is that almost all of

the weight on the edges of D between A0 and B0 is on edges directed from A0 to B0 (for
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otherwise we would have found at least one more homomorphism). We then choose a

new vertex j′t ∈ [r], with aj′t ∈ A0, to use instead of jt = r by selecting it so that aj′t has

sufficient out-weight to certain vertices in the image of the homomorphisms we have found

(just before Claim 3.49) – this will allow us later to rearrange these homomorphisms to

embed x into the out-neighbourhood of j′t instead of jt. While it may not necessarily be

possible to ensure the desired conditions on j′t hold with respect to every homomorphism

chosen so far, Claim 3.49 confirms that there is a choice of j′t with the required conditions

for rearrangement holding with respect to most of them – by relabelling, these will be the

homomorphisms ϕ1, . . . , ϕs1 . We add a dummy vertex q with weight β1(q) = max {βx, βz}

to H4,1, and then extend ϕ1, . . . , ϕs1 to homomorphisms ψ1, . . . , ψs1 also covering q (see

S1, S2 and Claim 3.50). The role played by q is to reserve additional weight in the

out-neighbourhood of j′t, which may be required for the desired rearrangement. Each ψi

then represents some allocated space, for which we then find homomorphisms ϕi,j from

H4,2, H4,3 or H4,4 which use a proportion of this space (in either Claim 3.51 or Claim 3.52)

– a proportion matching the space a tree must cover in the tournament following an

eventual application of the lemma (that is, the proportion |T |/|G|). The homomorphisms

ϕi,j potentially leave plenty of weight remaining on vertices in A0 and B0, but, as noted

above in the simplified setting, these vertices are easiest to use for new homomorphisms

as there is a lot of weight on edges from j′t to B0 and from B0 to A0 in D. We therefore

find more homomorphisms, this time from H4,5, to use enough of this weight (that is,

so that the proportion of the weight used is at least the matching proportion |T |/|G|).

Finally, then, we have a collection of homomorphisms from which to pick our random

homomorphism to complete the proof.

Proof of Lemma 3.38. Let γ = max{βx, βz}. Let 1/r ≪ ε ≪ α. We remark that γ ⩽ 1,

and we may also assume that α ⩽ 1, so we have (1 + γ + α) ⩽ 3.

Let D be a complete looped digraph on vertex set [r] with ε-complete edge weights

d(e), e ∈ E(D). We will find a random (ϕ, i(ϕ)) satisfying N1-N3. By relabelling, we
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can assume that ∑
j∈[r−1]

d(r, j) ⩾ (1
2
− 2ε) · r. (3.33)

Take two new disjoint vertex sets A = {a1, . . . , ar−1} and B = {b1, . . . , br−1}. Let D̄

be the weighted complete looped digraph on A∪B in which the edges aibj, aiaj, bibj and

biaj have weight d(i, j).

Let s be such that 1/s≪ 1/r. For each i ∈ [r − 1], let wai = d(r, i) · (1 + γ + α) · s/r

and wbi = (1− d(r, i))(1 + γ + α) · s/r. Note that

∑
v∈A∪B

wv ⩾ (1 + γ + α/2) · s, (3.34)

and ∑
v∈A

wv =
∑

i∈[r−1]

d(r, i) · (1 + γ + α) · s/r
(3.33)

⩾
1

2
(1 + γ + α/2) · s. (3.35)

Let s0 ⩽ s be the largest integer for which there exist homomorphisms ϕ1, . . . , ϕs0 :

H4,1 → D̄ and indicators j1, . . . , js0 ∈ [2] such that the following properties hold.

P1 For each i ∈ [s0], d(ϕi(y), ϕi(z)) + d(ϕi(z), ϕi(y)) > 0.

P2 For each i ∈ [s0] with ji = 1, we have ϕi(x) ∈ A, ϕi(y) ∈ B, and ϕi(z) ∈ B.

P3 For each i ∈ [s0] with ji = 2, we have ϕi(x) ∈ A, ϕi(y) ∈ A, and ϕi(z) ∈ B.

P4 For each v ∈ A ∪B,
∑

i∈[s0] β1(ϕ
−1
i (v)) ⩽ wv.

Given s0, take ϕ1, . . . ϕs0 and j1, . . . , js0 such that the number of i ∈ [s0] with ji = 1 is

maximised. For each v ∈ A ∪ B, let w̃v =
∑

i∈[s0] β1(ϕ
−1
i (v)), so that, by P4, we have

w̃v ⩽ wv.

Note that

∑
v∈A∪B

w̃v =
∑

v∈A∪B

∑
i∈[s0]

β1(ϕ
−1
i (v)) =

∑
i∈[s0]

β1(ϕ
−1
i (A ∪B)) = s0. (3.36)
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Let A0 be the set of v ∈ A with wv − w̃v ⩾ 1. Let B0 be the set of v ∈ B with

wv − w̃v ⩾ 1. Subject to the value of s0, and the value of |{i ∈ [s0] : ji = 1}|, assume that

|{(i, v) : i ∈ [s0], v ∈ A0, d(ϕi(y), v) > 0}| (3.37)

is minimised.

Suppose that s0 < s, for otherwise we are done by letting i(ϕ) = 1 and picking ϕ from

{ϕi : i ∈ [s]} uniformly at random. Note that, as 1− γ ⩽ 1− βx = βy + βu + βz + βw ⩽

2(βz + βw), we have

1 + γ

2
− β1(x, y) =

1 + γ

2
− (1− β1(z)) = min{βw + βz, 1− βz} −

1− γ

2

⩾ min

{
1− γ

2
, 1− γ

}
− 1− γ

2
= 0. (3.38)

Therefore,

∑
v∈A0

(wv − w̃v) ⩾
∑
v∈A

(wv − w̃v)− r =
∑
v∈A

wv − r −
∑
i∈I1

β1(x)−
∑
i∈I2

β1(x, y)

⩾
∑
v∈A

wv − r − β1(x, y) · s0
(3.35)

⩾
1

2
(1 + γ + α/4) · s− β1(x, y) · s0

=

(
1 + γ

2

)
· (s− s0) +

(
1 + γ

2
− β1(x, y)

)
· s0 + (α/8) · s

(3.38)

⩾

(
1 + γ

2

)
· (s− s0) + (α/8) · s, (3.39)

and hence, |A0| ⩾ (α/32) · r. In addition, we have

∑
v∈A0∪B0

(wv − w̃v) ⩾
∑

v∈A∪B

(wv − w̃v)− 2r
(3.34),(3.36)

⩾ (1 + γ + α/2) · s− s0 − 2r

⩾ (s− s0) + (γ + α/4) · s. (3.40)

We now show there are few pairs from B0 to A0 with positive weight.

Claim 3.46. If u ∈ A0 and v ∈ B0, then d(v, u) = 0.
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Proof of Claim 3.46. If u ∈ A0, v ∈ B0, are such that d(v, u) > 0, then we may

set ϕs0+1(x), ϕs0+1(y) = u, ϕs0+1(z) = v, and is0+1 = 2, contradicting the maximality

of s0. ⊡

We now show that we are done unless
∑

v∈B0
(wv − w̃v) is not too small.

Claim 3.47. Either there exists a random (ϕ, i(ϕ)) satisfying N1-N3, or

∑
v∈B0

(wv − w̃v) ⩾ (γ + α/16) · s+ β1(y) · (s− s0). (3.41)

Proof of Claim 3.47. Suppose that (3.41) does not hold. If
∑

v∈B0
(wv−w̃v) ⩽ (γ+α/8)·s,

then set s1 = s0. Otherwise, let s1 ∈ [s] \ [s0] be maximal such that
∑

v∈B0
(wv − w̃v) ⩾

(γ + α/16) · s+ β1(y) · (s1 − s0). Note that s1 < s, else (3.41) holds. By considering the

cases s1 = s0 and s1 > s0 separately (using the maximality of s1 in the latter), we deduce

that ∑
v∈B0

(wv − w̃v) ⩽ (γ + α/8) · s+ β1(y) · (s1 − s0), (3.42)

and hence,

∑
v∈A0

(wv − w̃v)
(3.40),(3.42)

⩾ β1(x, z) · (s1 − s0) + (s− s1) + (α/8) · s.

Therefore, using Claim 3.46, we may greedily choose homomorphisms ϕs0+1, . . . , ϕs :

H4,1 → D̄ such that the following properties hold.

Q1 For each i ∈ [s1] \ [s0], we have ϕi(x) ∈ A, ϕi(y) ∈ B, and ϕi(z) ∈ A.

Q2 For each i ∈ [s] \ [s1] we have ϕi(x) ∈ A, ϕi(y) ∈ A, and ϕi(z) ∈ A.

Q3 For each v ∈ A ∪B,
∑

i∈[s] β(ϕ
−1
i (v)) ⩽ wv.

Thus, by defining (ϕ, i(ϕ)) by sampling ϕ from ϕ1, . . . , ϕs uniformly at random (identifying

the result as a map V (H4,1) → V (D) in the natural way) and setting i(ϕ) = 1, we obtain

a random (ϕ, i(ϕ)) satisfying N1-N3. ⊡
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Thus, we may now assume that (3.41) holds, and hence also |B0| ⩾ (α/64) · r. Next

we show that each i ∈ [s0] satisfies (at least) one of two properties, R1 or R2.

Claim 3.48. For each i ∈ [s0], at least one of the following holds.

R1 d(ϕi(z), v) = 0 for every v ∈ A0.

R2 d(v, ϕi(x)) = 0 for every v ∈ B0, d(ϕi(y), v) = 0 for every v ∈ A0, and ji = 1.

Proof of Claim 3.48. Let i ∈ [s0]. Assume there is some u ∈ A0 with d(ϕi(z), u) > 0, for

otherwise R1 holds.

Now, if there is some v ∈ B0 with d(v, ϕi(x)) > 0, set ϕs0+1(x), ϕs0+1(y) = u and

ϕs0+1(z) = ϕi(z), and then switch ϕi(z) = v. This contradicts the maximality of s0.

Thus, d(v, ϕi(x)) = 0 for every v ∈ B0. As |B0| ⩾ (α/64) · r, we may now fix some

v ∈ B0 with d(ϕi(x), v) > 0 and d(v, ϕi(z)) + d(ϕi(z), v) > 0, by E. Then we must have

that ji = 1, else we could switch ϕi(y) = v and ji = 1, contradicting the maximality of

|{i ∈ [s0] : ji = 1}|.

Now, note that, by Claim 3.46, |{u′ ∈ A0 : d(v, u′) > 0}| = 0. Therefore, if |{u′ ∈

A0 : d(ϕi(y), u
′) > 0}| > 0, we could switch ϕi(y) = v to reduce

∑
i′∈[s0] |{u

′ ∈ A0 :

d(ϕi′(y), u
′) > 0}| while leaving A0 unmodified, a contradiction to the minimisation of

(3.37). Thus, |{u′ ∈ A0 : d(ϕi(y), u
′) > 0}| = 0, and hence R2 holds. ⊡

Given u ∈ A0, let I1(u) be the set of i ∈ [s0] which satisfy R1 and are such that

d(u, ϕi(z)) = 1 and ϕ−1
i (u) = ∅, and let I2(u) be the set of i ∈ [s0]\I1(u) which satisfy R2

and are such that d(u, ϕi(y)) = 1 and ϕ−1
i (u) = ∅. Pick j′t ∈ {j ∈ [r − 1] : aj ∈ A0} such

that |I1(aj′t)| + |I2(aj′t)| is maximised, and set I1 = I1(aj′t), I2 = I2(aj′t). By relabelling,

we may assume that I1 ∪ I2 = [s1] for some s1 ⩽ s0.

Claim 3.49. s1 ⩾ (1−
√
ε)s0.

Proof of Claim 3.49. If i ∈ [s0] satisfies R1, then, by E, d(u, ϕi(z)) = 1 holds for all but

at most εr many u ∈ A0. Similarly, if i ∈ [s0] satisfies R2, then d(u, ϕi(y)) = 1 holds for

all but at most εr many u ∈ A0. In addition, for each i ∈ [s0], we have ϕ−1
i (u) ̸= ∅ for at
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most three u ∈ A0. Therefore, for every i ∈ [s0], we have i ∈ I1(u) ∪ I2(u) for all but at

most 2εr + 3 many u ∈ A0. In particular,

∑
u∈A0

(|I1(u)|+ |I2(u)|) ⩾ s0 · (|A0| − 3εr).

Noting that |I1| + |I2| ⩾ 1
|A0|
∑

u∈A0
(|I1(u)| + |I2(u)|) and |A0| ⩾ (α/32) · r, we deduce

s0 − |I1| − |I2| ⩽
√
εs0, and hence the claim. ⊡

LetB1 ⊆ B0 be the subset of vertices v ∈ B0 with d(aj′t , v) = 1, and note, by Claim 3.46

and E, that |B0 \ B1| ⩽ εr. Let q be a new vertex disjoint from V (H4,1) and add it to

H4,1 to get H ′
4,1. Let β1(q) = γ. Let s′1 ⩽ s1 be maximal for which, for each i ∈ [s′1], we

can define ψi(q) ∈ B1 such that the following hold.

S1 For each i ∈ [s′1] and u ∈ {x, y, z}, d(ψi(q), ϕi(u)) + d(ϕi(u), ψi(q)) > 0.

S2 For each v ∈ B,

w̃v + γ · |{i ∈ [s′1] : ψi(q) = v}| ⩽ wv. (3.43)

Let ψi : H
′
4,1 → D̄ be defined by this choice of ψi(q) and by setting ψi(v) = ϕi(v) for each

v ∈ V (H4,1).

Claim 3.50. s′1 = s1.

Proof of Claim 3.50. Suppose for contradiction that s′1 < s1. Let B
′
1 be the set of v ∈ B1

such that d(v, ϕs′1+1(u)) + d(ϕs′1+1(u), v) > 0 for every u ∈ {x, y, z}. Because the edge

weights d(e), e ∈ E(D), are ε-complete and |B0 \ B1| ⩽ εr, we have |B0 \ B′
1| ⩽ 4εr.

Therefore, we have

∑
v∈B′

1

(wv − w̃v − γ · |{i ∈ [s′1] : ψi(q) = v}|) ⩾
∑
v∈B0

(wv − w̃v)−
∑

v∈B′
1\B0

wv − γ · s′1

(3.41)

⩾ (γ + α/16) · s− 12ε · s− γ · s′1 ⩾ (α/32) · s ⩾ γ · r
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Thus, there is some v ∈ B′
1 such that w̃v + γ · |{i ∈ [s′1] : ψi(q) = v}|+ γ ⩽ wv. But then

setting ψs′1+1(q) = v contradicts the maximality of s′1. ⊡

Let m satisfy ε≪ 1/m≪ α.

Claim 3.51. For each i ∈ I1, there are homomorphisms ϕi,j and indicators ki,j ∈ {2, 3},

j ∈ [m − 1], such that, for each j ∈ [m − 1], ϕi,j is a homomorphism from H4,ki,j to

D̄[ψi(V (H ′
4,1))], and the following hold.

T1 d(aj′t , ϕi,j(x)) = 1.

T2 For each v ∈ ψi(V (H ′
4,1)), β1(ψ

−1
i (v)) ⩾

∑
j∈[m−1] βki,j(ϕ

−1
i,j (v))/m.

Proof of Claim 3.51. Fixing i ∈ I1, for each j′ = 1, . . . ,m − 1 in turn, choose a

homomorphism ϕi,j′ from H4,2 or H4,3 to D̄[ψi(V (H ′
4,1))] such that the following prop-

erties hold.

(i) β1(ψ
−1
i (v)) ⩾

∑
j∈[j′] βki,j(ϕ

−1
i,j (v))/m for each v ∈ ψi(H

′
4,1).

(ii) ϕi,j′(x) ∈ {ψi(z), ψi(q)}.

(iii) (a) ϕi,j′(y) ∈ {ψi(x), ψi(y)} if ϕi,j′ is a homomorphism from H4,2.

(b) ϕi,j′(z) ∈ {ψi(x), ψi(y)} if ϕi,j′ is a homomorphism from H4,3.

Then T1 holds, through the definition of either I1 (if ϕi,j′(x) = ψi(z)) or B1 (if ϕi,j′(x) =

ψi(q)).

Note that this is possible because, as

β1(z, q) = min {βw + βz, 1− βz}+max {βx, βz} ⩾ min {βw + βz + βx, 1} = β2(x) = β3(x),

there is enough room in {ψi(z), ψi(q)} for ϕi,j′(x), and, as

β1(x, y) = 1− β1(z) ⩾ 1− (βw + βz) = βx + βu + βy ⩾ β2(y) = β3(z).
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there is enough room in {ψi(x), ψi(y)} for ϕi,j′(y). We also use that there is weight in

at least one direction between any pair from {ψi(z), ψi(q)} and {ψi(x), ψi(y)}, where the

direction of the edge gives whether we embed H4,2 or H4,3. ⊡

Claim 3.52. For each i ∈ I2, there are homomorphisms ϕi,j, j ∈ [m− 1], such that, for

each j ∈ [m− 1], ϕi,j is a homomorphism from H4,4 to D̄[ψi(V (H ′
4,1))], and the following

holds.

U1 d(aj′t , ϕi,j(x)) = 1.

U2 For each v ∈ ψi(V (H ′
4,1)), β1(ψ

−1
i (v)) ⩾

∑
j∈[m−1] β4(ϕ

−1
i,j (v))/m.

Proof of Claim 3.52. Fixing i ∈ I2, for each j
′ = 1, . . . ,m−1 in turn, choose a homomor-

phism ϕi,j′ from H4,4 to D̄[ψi(V (H ′
4,1))] such that β1(ψ

−1
i (v)) ⩾

∑
j∈[j′] β4(ϕ

−1
i,j (v))/m for

each v ∈ ψi(H
′
4,1), ϕi,j′(x) ∈ {ψi(y), ψi(q)}, ϕi,j′(z) = ψi(x) and ϕi,j′(w) = ψi(z). Then

U1 holds, through the definition of either I2 (if ϕi,j′(x) = ψi(y)) or B1 (if ϕi,j′(x) = ψi(q)).

Note that this is possible using the following. As β1(y)+β1(q) = β1(y)+γ = max{βx+

βy, γ} = max{βx + βy, βz} ⩾ β4(x), there is enough room in {ψi(y), ψi(q)} for ϕi,j′(x).

As β1(z) ⩾ min{βw, 1 − βz} ⩾ βw = β4(w), there is enough room in ψi(z) for ϕi,j′(w).

Finally, recall from (3.22), that β4(z) ⩽ β1(x), so there is enough room in ψi(x) for ϕi,j′(z).

Because d(ψi(x), ψi(y)), d(ψi(z), ψi(x)) > 0 (as ψi : H
′
4,1 → D̄ is a homomorphism) and

d(ψi(x), ψi(q)) > 0 (by R2 and S1), we also have that ϕi,j′ : H4,4 → D̄[ψi(V (H ′
4,1))] is a

homomorphism, as required. ⊡

For each i ∈ I2 and j ∈ [m− 1], let ki,j = 4. For each v ∈ A ∪B, let

ŵv =
1

m

∑
i∈[s1]

∑
j∈[m−1]

βki,j(ϕ
−1
i,j (v))

T2,U2

⩽
∑
i∈[s1]

β1(ψ
−1
i (v))

=
∑
i∈[s1]

β1(ϕ
−1
i (v)) + γ · |{i ∈ [s1] : ψi(q) = v}|

= w̃v + γ · |{i ∈ [s1] : ψi(q) = v}|
(3.43)

⩽ wv. (3.44)
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We note that

∑
v∈A0∪B1

(wv − ŵv) ⩾
∑

v∈A0∪B0

(wv − ŵv)− 3ε · s

(3.44)

⩾
∑

v∈A0∪B0

(wv − w̃v)− 3ε · s−
∑

v∈A0∪B0

γ · |{i ∈ [s1] : ψi(q) = v}|

(3.40)

⩾ s− s0 + (γ + α/8) · s− γ · s1
Claim 3.49

⩾ (1 + γ) · (s− s1) + (α/16) · s. (3.45)

Furthermore,

∑
v∈B1

(wv − ŵv) ⩾
∑
v∈B0

(wv − ŵv)− 3ε · s

(3.44)

⩾
∑
v∈B0

(wv − w̃v)− 3ε · s−
∑
v∈B0

γ · |{i ∈ [s1] : ψi(q) = v}|

(3.41)

⩾ β1(y) · (s− s0) + (γ + α/32) · s− γ · s1
Claim 3.49

⩾ (γ + β1(y)) · (s− s1) + (α/64)s. (3.46)

Take a maximal set J ⊆ ([s]×[m])\([s1]×[m−1]) for which there are homomorphisms

ϕi,j : H4,5 → D̄[A0 ∪B1], (i, j) ∈ J such that the following hold.

V1 For each (i, j) ∈ J , ϕi,j(x) ∈ B1.

V2 For each v ∈ A ∪B,
∑

(i,j)∈J β5(ϕ
−1
i,j (v))/m ⩽ wv − ŵv.

Subject this choice of J , maximise

|{(i, j) ∈ J : ϕi,j(z) ∈ A0}|. (3.47)

Claim 3.53. J = ([s]× [m]) \ ([s1]× [m− 1]).

Proof of Claim 3.53. Suppose, for contradiction, that there is some (i′, j′) ∈ (([s]× [m]) \

([s1]× [m− 1])) \ J . We must then have, for each v ∈ B1, that
∑

(i,j)∈J β5(ϕ
−1
i,j (v))/m ⩾

wv − ŵv − 1/m, for otherwise we can take the homomorphism ϕi′,j′ sending H4,5 to v.
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Therefore, we have

∑
v∈A0

(
wv − ŵv − 1

m
−
∑

(i,j)∈J

β5(ϕ
−1
i,j (v))/m

)
(3.45)

⩾ γ · (s− s1) + (α/16) · s− |A0|
m

− |B1|
m

⩾ (α/32) · s.

Thus, there must be at least 2εr vertices v ∈ A0 with
∑

(i,j)∈J β5(ϕ
−1
i,j (v))/m ⩽ wv − ŵv −

1/m. Therefore, by Claim 3.46, if there is some (i, j) ∈ J with ϕi,j(z) /∈ A0, then we could

move ϕi,j(z) into A0, and increase the value of (3.47). Thus, we must have ϕi,j(z) ∈ A0

for each (i, j) ∈ J \ ([s1]× [m− 1]).

Therefore, using that β5(x) ⩽ γ + β1(y) and |J | ⩽ (s− s1)m+ s,

0 ⩾
∑
v∈B1

(
wv − ŵv − 1

m
−
∑

(i,j)∈J

β5(ϕ
−1
i,j (v))/m

)
⩾
∑
v∈B1

(wv − ŵv)− |B1|/m− ((s− s1)m+ s) · β5(x)/m

⩾
∑
v∈B1

(wv − ŵv)− (s− s1) · (γ + β1(y))− s/m− |B1|/m
(3.46)
> 0,

a contradiction. Therefore, J = ([s]× [m]) \ ([s1]× [m− 1]). ⊡

For each (i, j) ∈ ([s]× [m]) \ ([s1]× [m− 1]), let ki,j = 5. Select (ϕ, i(ϕ)) uniformly at

random from (ϕi,j, ki,j), (i, j) ∈ [s]× [m]. □

3.7.4 Proof of Theorem 3.13

We are now ready to complete this section by proving Theorem 3.13. To give a brief

overview of this proof, we again turn to our simplified situation: assume we are trying

to embed a tree T in a tournament G and suppose we have t ∈ V (T ) so that T − {t}

consists of small components. Unlike in Sections 3.7.3.2 and 3.7.3.3, t can have both in-

and out-neighbours in T . Let T+ and T− be the trees covering the edges of T , intersecting

only on t, so that t has only out-neighbours in T+ and only in-neighbours in T−. As G is a
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tournament with distinctly more vertices than T , each vertex v ∈ V (G) either has enough

out-neighbours in G that we can embed the components of T+−{t} greedily into N+
G (v) or

the components of T−−{t} greedily into N−
G (v). If we partition V (G) = V +∪V − so that

the former holds for vertices in V + and the latter holds for vertices in V −, then, from this

partition, either G[V +] will be large enough to embed T− (using our previous methods)

or G[V −] will be large enough to embed T+. By directional duality, we can assume that

the latter case holds. This allows us to find a copy of T+ in G with t embedded to vt,

a vertex of G which has enough in-neighbours for us to greedily embed the components

of T− − {t}. Of course, some of these in-neighbours may be occupied already by the

embedding of T+, but, by embedding T+ in such a way to cover minimally many of these

in-neighbours we will have there are enough in-neighbours to embed the components of

T− − {t}, and complete the embedding.

For Theorem 3.13, we do this in the setting of distillations, random homomorphisms

and a weighted looped digraph D. We ultimately wish to find a random homorphism

from H, where H is the fully-looped oriented forest with vertex and edge sets given by

V (H) =
{
x+, y+, z+, u+, w+, x̄+, z̄+, ū+, w̄+, x−, y−, z−, u−, w−, x̄−, z̄−, ū−, w̄−} ,

E(H) =

 x+y+, z+x+, z+u+, w+z+, z̄+x̄+, z̄+ū+, w̄+z̄+,

y−x−, x−z−, u−z−, z−w−, x̄−z̄−, ū−z̄−, z̄−w̄−

 ∪ {vv : v ∈ V (H)}.

For each ⋄ ∈ {+,−}, let X⋄ = {x⋄, x̄⋄}, and let X = X+ ∪X−.

Note that H0
∼= H[{x+, y+, z+, u+, w+, x̄+, z̄+, ū+, w̄+}]. Therefore, we will assume

equality here by letting, for example, x+ = x. In addition, let H ′
0 = H − V (H0), and

note that H ′
0 is itself isomorphic to a copy of H0 with all edges reversed. Here H0 and H

′
0

correspond to T+ and T− in the sketch above.

Instead of partitioning V (G) as V + ∪ V − we partition V (D) as J+ ∪ J− in a similar

manner, and assume, by directional duality, that J− is large enough that we can apply

Theorem 3.34 to get a random homomorphism of H0 into D[J−] satisfyingW1–W3 below

(comparable to the embedding of T+ into G[V −] in the sketch above) before minimising a
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certain property (comparable to the embedding of T+ using minimally many in-neighbours

of vt above). We then use the minimisation of the random homomorphism to extend it

to cover H ′
0, so that we have a random homorphism of H into D. Finally, we adjust

this random homomorphism to get the additional condition F4 which we dropped for

Theorem 3.34, completing the proof.

Proof of Theorem 3.13. For ⋄ ∈ {+,−}, let

λ⋄ = β(x⋄, y⋄, z⋄, u⋄, w⋄, x̄⋄, z̄⋄, ū⋄, w̄⋄)

so that λ+ + λ− = 1, and let

γ⋄ = max {β(x⋄, x̄⋄), β(z⋄, z̄⋄)}/λ⋄.

For ⋄ ∈ {+,−}, define

r⋄ =

⌈
λ⋄(1 + γ⋄ + α/16)

1 + γ + α/4
· r
⌉
,

so that r+ + r− ⩽ (1− ε) · r.

Let K be an ε-almost tournament with vertex set [r], such that d(i, j) ⩾ 1/2 whenever

i →K j. Partition [r] as J+ ∪ J− such that d⋄K(j) ⩾ r⋄ whenever j ∈ J⋄. Note that we

either have |J+| ⩾ r− or |J−| ⩾ r+. By directional duality, we may assume that |J−| ⩾ r+.

Let β0 : V (H0) → [0, 1] be given by β0(v) = β(v)/λ+, and note that
∑

v∈V (H0)
β0(v) =

1 and β0(y
+) ⩾ β0(x

+). By Theorem 3.34, if H0 = (H0, X
+, β0), then {H0} is γ+-good.

Therefore, because β = λ+ · β0 and λ+ · 1+γ++α/16
r+

⩽ 1+γ++α/4
r

, there exists some jt ∈ J−

and random ψ : H0 → D[J−] such that the following hold.

W1 With probability 1, we have that ψ is a homomorphism from H0 to D, and that

jt /∈ ψ(X+).

W2 For each j ∈ [r], E(β(ψ−1(j))) ⩽ 1+γ+α/4
r

.

W3 For each j ∈ [r], E(β(ψ−1(j) ∩X+)) ⩽ d(jt, j) · 1+γ+α/4
r

.
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Fix such a jt ∈ J−. Let A = N+
K(jt) and B = N−

K(jt). Take a random ψ : H0 → D

satisfying W1-W3 so that E(β(ψ−1(B))) is minimised.

Claim 3.54. |B| · 1+γ+α/4
r

− E(β(ψ−1(B)))− E(β(ψ−1(B) ∩X+)) ⩾ λ− + β(X−) + α/8.

Proof of Claim 3.54. First, if |A| · 1+γ+α/4
r

−E(β(ψ−1(A))−E(β(ψ−1(A)∩X+)) ⩽ 0, then

|B| · 1+γ+α/4
r

−E(β(ψ−1(B)))− E(β(ψ−1(B) ∩X+)) ⩾ |D| · 1+γ+α/4
r

− 3ε− λ+ − β(X+)

⩾ 1 + γ + α/8− λ+ − β(X+) ⩾ λ− + β(X−) + α/8.

So we may assume that |A| · 1+γ+α/4
r

− E(β(ψ−1(A)))− E(β(ψ−1(A) ∩X+)) > 0, else the

claim is proven. In particular, we may assume there is some j ∈ A such that, if

p :=
1

2

(
1 + γ + α/4

r
− E(β(ψ−1(j)))− E(β(ψ−1(j) ∩X+))

)
⩽ d(jt, j) ·

1 + γ + α/4

r
− E(β(ψ−1(j) ∩X+)),

then 0 < p < 1. In addition, we may assume that E(β(ψ−1(B))) > 0, else the claim

follows immediately from the definition of J−. Then, however, if we define ψ̂ : H0 → D

by setting ψ̂(V (H0)) = j with probability p and sampling ψ otherwise, we find ψ̂ satisfies

W1-W3, but E(β(ψ̂−1(B))) = (1− p) · E(β(ψ−1(B))), a contradiction to the minimality

of E(β(ψ−1(B))). ⊡

Consider the random ϕ̂ : H → D defined by sampling ψ to determine ϕ̂|V (H0), and

independently choosing ϕ̂(V (H ′
0)) ∈ B at random so that

P(ϕ̂(V (H ′
0)) = j) = pj :=

1+γ+α/4
r

− E(β(ψ−1(j)))− E(β(ψ−1(j) ∩X+))

|B| · 1+γ+α/4
r

− E(β(ψ−1(B)))− E(β(ψ−1(B) ∩X+))
.

We remark that for every j ∈ B, we have

pj ·max {λ−, 2β(X−)} ⩽ pj · (λ− + β(X−))

Claim 3.54

⩽ 1+γ+α/4
r

− E(β(ψ−1(j)))− E(β(ψ−1(j) ∩X+)). (3.48)
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Therefore, if j ∈ B, we have

E(β(ϕ̂−1(j))) = E(β(ψ−1(j))) + pj · λ−
(3.48)

⩽
1 + γ + α/4

r
,

E(β(ϕ̂−1(j) ∩X+))
W3

⩽ d(jt, j) ·
1 + γ + α/4

r
,

E(β(ϕ̂−1(j) ∩X)) ⩽ E(β(ψ−1(j) ∩X+)) + pj · β(X−)

(3.48)

⩽
1

2

(
1 + γ + α/4

r

)
⩽ d(j, jt) ·

1 + γ + α/4

r
,

whereas if j ∈ [r] \B, we have

E(β(ϕ̂−1(j))) = E(β(ψ−1(j)))
W2

⩽
1 + γ + α/4

r
,

E(β(ϕ̂−1(j) ∩X−)) = 0 ⩽ d(j, jt) ·
1 + γ + α/4

r
,

E(β(ϕ̂−1(j) ∩X)) = E(β(ψ−1(j) ∩X+))
W3

⩽ d(jt, j) ·
1 + γ + α/4

r
.

Take ϕ̄ : H → D with
∑

e∈E(H) P(|ϕ̄(e)| = 1) minimal, such that the following proper-

ties hold.

X1 With probability 1, we have that ϕ̄ is a homomorphism from H to D, and that

jt /∈ ϕ̄({x+, x̄+, x−, x̄−}).

X2 For each j ∈ [r], E(β(ϕ̄−1(j))) ⩽ 1+γ+α/2
r

− α2

r
·
∑

e∈E(H) P(|ϕ̄(e)| = 1).

X3 For each j ∈ [r], either

X3.1 E(β(ϕ̄−1(j)∩X+)) ⩽ d(jt, j) · 1+γ+α/2
r

and E(β(ϕ̄−1(j)∩X)) ⩽ d(j, jt) · 1+γ+α/2
r

,

or

X3.2 E(β(ϕ̄−1(j)∩X−)) ⩽ d(j, jt) · 1+γ+α/2
r

and E(β(ϕ̄−1(j)∩X)) ⩽ d(jt, j) · 1+γ+α/2
r

.

ϕ̄ is well-defined, as we may take ϕ̄ = ϕ̂.

We will shortly prove the following claim.

Claim 3.55. P(|ϕ̄(e)| = 1) ⩽ ε1/4/|E(H)| for every non-looped edge e of H.
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From Claim 3.55 it follows that P(|ϕ̄(e)| = 2 for every non-looped edge e of H) ⩽ ε1/4.

Then, if we take ϕ to be ϕ̄ conditioned on the event that |ϕ̄(e)| = 2 for every non-looped

edge e of H, we have

E(β(ϕ−1(j) ∩ {v})) ⩽ (1− ε1/4)−1 · E(β(ϕ̄−1(j) ∩ {v}))

for every j ∈ [r], v ∈ V (H), thus ϕ satisfies the conclusion of the theorem. So it only

remains to prove Claim 3.55.

Proof of Claim 3.55. Suppose for contradiction that there is some non-looped edge e of

H with P(|ϕ̄(e)| = 1) ⩾ ε1/4/|E(H)|. Let e = v1v2. For i ∈ [2], let Hi be the component

of H − e containing vi. Assume, by directional duality, that X ∩ V (H2) = ∅.

Note that, because β(v1, v2) ⩾ 2µ, X2 implies that P(ϕ̄(e) = {j}) ⩽ 2
µr

for every

j ∈ [r]. So, if J is the set of j ∈ [r] for which P(ϕ̄(e) = {j}) ⩾
√
ε
r
, then |J | ⩾

√
ε · r, else

we find P(|ϕ̄(e)| = 1) =
∑

j∈[r] P(ϕ̄(e) = {j}) ⩽ 2
√
ε

µ
+
√
ε < ε1/4/|E(H)|.

Let m be the number of possible homomorphisms H → D. Choose homomorphisms

ϕj, j ∈ J such that ϕj(e) = {j} and P(ϕ̄ = ϕj) ⩾
√
ε

mr
for every j ∈ J (these can be found

as the edge weights of D are ε-complete).

Set s = ⌈1/α3⌉. Let j1, . . . , js+1 ∈ J be distinct such that d(ji, ji+1) > 0 for every

i ∈ [s]. Let k ∈ [2] be random, with distribution coupled with ϕ̄ such that P(k = 2) =

(s+1)
√
ε

mr
, and that P(ϕ̄ = ϕji | k = 2) =

√
ε

mr
for every i ∈ [s+ 1].

Define a random ψ : H → D as follows. Sample (ϕ̄, k), choose i ∈ [s+1] uniformly at

random, and set

ψ(v) =



ϕ̄(v) if k = 1,

ϕji(v) if k = 2, i = s+ 1,

ϕji(v) if k = 2, i ∈ [s], v ∈ V (H1),

ϕji+1
(v) if k = 2, i ∈ [s], v ∈ V (H2).
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We then find P(|ψ(e)| = 1) = P(|ϕ̄(e)| = 1)− s
√
ε

mr
, yet E(β(ψ−1(j)∩X)) = E(β(ϕ̄−1(j)∩

X)) and E(β(ψ−1(j))) ⩽ E(β(ϕ̄−1(j))) +
√
ε

mr
for every j ∈ [r], a contradiction to the

minimality of
∑

e∈E(H) P(|ϕ̄(e)| = 1). ⊡ □
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CHAPTER 4

UNAVOIDABLE SUBGRAPHS OF INFINITE
TOURNAMENTS

In this chapter we extend the study of oriented subgraphs of tournaments to an infinite

setting. First, recall from Chapter 1 the discussion of the following theorem.

Theorem 1.7. Let H be a countably-infinite oriented graph. The following are equivalent:

(i) H is acyclic, locally-finite, and has no infinite directed paths.

(ii) H is contained in every countably-infinite tournament.

(iii) H is a spanning subgraph of every countably-infinite tournament.

Of course, (ii) follows from (iii) trivially, and (i) follows easily from (ii) by considering

tournaments on N with all edges oriented forward (or with all edges oriented backward).

Thus, the proof of Theorem 1.7 will mostly consist of showing (i) implies (iii). After

stating some further notation required for the results of this chapter, we sketch and prove

the theorem in Section 4.2. We then take the infinite setting further in Section 4.3, where

we consider whether certain oriented graphs which are not contained in every countably-

infinite tournament can still be guaranteed to appear in a tournament on N if we impose

a condition on the lower density of the tournament’s forward edges (i.e., those edges (i, j)

such that i < j).
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4.1 Notation

An (oriented) graph is locally-finite if every vertex is incident with finitely many edges.

The infinite directed path with exactly one vertex of in-degree 0 is called the infinite

forward directed path and the infinite directed path with exactly one vertex of out-degree

0 is called the infinite backward directed path.

Say that an oriented graph H is weakly-connected if the underlying graph is connected.

Given oriented graphs H and G, say that H is a spanning subgraph of G if there exists a

bijective embedding ϕ : H → G. For each ⋄ ∈ {+,−}, the common ⋄-neighbourhood of a

set X ⊆ V (G) is N̂⋄(X) =
⋂

v∈X N
⋄(v).

Given an acyclic oriented graph H and u ∈ V (H), let

Γ+(u) = {v ∈ V (H) : there exists a directed path from u to v}

and let

Γ−(u) = {v ∈ V (H) : there exists a directed path from v to u}

(equivalently, Γ⋄(u) is the ⋄-neighbourhood of u in the transitive, reflexive closure of H).

Given a strict total order τ = (V,≺), let Kτ be the tournament on V where (u, v) ∈

E(Kτ ) if and only if u ≺ v. We write τ ∗ to be the converse of τ ; that is, τ ∗ = (V,≻). We

say that Kτ and Kτ∗ are the transitive tournaments of type-τ .

We use the von Neumann definition of ordinals where an ordinal is the strictly well-

ordered set of all smaller ordinals. Thus, given an ordinal λ, the definition of Kλ and Kλ∗

is given in the previous paragraph. As is standard, we let ω be the first infinite ordinal

and ω1 be the first uncountable ordinal. Given ordinals α, β, we define β · α to be the

order type of (β × α,≺), where (i1, j1) ≺ (i2, j2) if either j1 < j2 or j1 = j2 and i1 < i2.
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4.2 Proof of Theorem 1.7

The most involved part of the proof of Theorem 1.7 is showing that, for any countably-

infinite acyclic locally-finite graphH that has no infinite directed paths, and any countably-

infinite tournament K on N, there is a bijective embedding ϕ : H → K. To construct this

ϕ, we first partition V (K) = V + ∪ V − so that, for any finite non-empty subsets X ⊆ V +

and Y ⊆ V −, N̂+(X) ∩ N̂−(Y ) is infinite. The aim then is to extend an embedding of

H finitely many vertices at a time, each time covering at least the next vertex of K (see

Z1 later), while requiring that whenever v ∈ V (H) is embedded to some u ∈ V +, then

N−
H (v) is embedded at the same time as v (and whenever v ∈ V (H) is embedded to some

u ∈ V −, then N+
H (v) is embedded at the same time as v). It is therefore useful to partition

V (H) into finite sets, with each set having only out-edges or only in-edges to the rest of

H, so that each set can be embedded simultaneously to ensure the above requirement

holds. This motivates the following definition.

Definition 4.1. Given a countably-infinite acyclic weakly-connected oriented graph H, a

±-partition of H is a partition {Ci : i ∈ N} of V (H) such that the following properties

hold:

Y1 For all i ∈ N, Ci is finite and non-empty.

Y2 For all (u, v) ∈ E(H), there exists i ∈ N such that {u, v} ⊆ Ci ∪ Ci+1.

Y3 If i is odd, then every vertex in Ci has in-degree 0 to Ci−1 ∪ Ci+1, and if i is even,

then every vertex in Ci has out-degree 0 to Ci−1 ∪ Ci+1.

Y4 If i is odd, then there exists a vertex in Ci with in-degree 0 in H, and if i is even

there exists a vertex in Ci with out-degree 0 in H.

If i is odd, we say that Ci has type +, and if i is odd, we say that Ci has type −.

Likewise one can define a ∓-partition by switching every instance of in/out in the

above definition. We note that a similar definition for finite oriented trees was given by

Dross and Havet [10].
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Lemma 4.2. Let H be a countably-infinite oriented graph. If H is weakly-connected,

acyclic, locally-finite, and has no infinite directed paths, then for every vertex v of in-

degree 0, H has a ±-partition with C1 = {v}, and for every vertex v of out-degree 0, H

has a ∓-partition with C1 = {v}.

Proof. Since H is acyclic and has no infinite directed paths, the set of vertices with in-

degree 0 is non-empty; let v be a vertex of in-degree 0 and set C1 = {v}. For even i ⩾ 1,

let Ci =
(⋃

v∈Ci−1
Γ+(v)

)
\ (Ci−1 ∪ Ci−2), and for odd i ⩾ 1, let Ci =

(⋃
v∈Ci−1

Γ−(v)
)
\

(Ci−1 ∪Ci−2). Note that since H is locally-finite, and has no infinite directed paths, each

Ci is finite. In addition, because H is weakly-connected, {Ci : i ∈ N} is a partition of

V (H), and each Ci is non-empty. Therefore, Y1 holds.

Suppose, for some i < j, that (u, v) ∈ E(H) with u ∈ Ci and v ∈ Cj. Then, we must

have that i is odd (else v ∈ Ci) and j = i+1. On the other hand, if (v, u) ∈ E(H) is such

that u ∈ Ci and v ∈ Cj for some i < j, then we must have that i is even (else v ∈ Ci)

and j = i+ 1. Therefore, we deduce that Y2 and Y3 hold.

Finally, note that since Ci is finite and H is acyclic, H[Ci] has a vertex ui of in-degree

0 in H[Ci] and a vertex vi of out-degree 0 in H[Ci]. Thus, by Y3, if i is even, then vi has

out-degree 0 in H, and if i is odd, then ui has in-degree 0 in H. Therefore, Y4 holds, and

{Ci : i ∈ N} is a ±-partition with C1 = {v}.

Likewise, by directional duality, for every vertex v of out-degree 0, H has a ∓-partition

with C1 = {v}. □

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. First note that if H has a cycle, then H ̸⊆ Kω and H ̸⊆ Kω∗ .

If H has a vertex of infinite in-degree, then H ̸⊆ Kω, and if H has a vertex of infinite

out-degree, then H ̸⊆ Kω∗ . If H has an infinite directed path with the first vertex having

out-degree 0, then H ̸⊆ Kω, and if H has an infinite directed path with the first vertex

having in-degree 0, then H ̸⊆ Kω∗ . Therefore, (ii) implies (i). In addition, (iii) implies

(ii) trivially. Therefore, all that remains is to show (i) implies (iii).
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So suppose H is acyclic, locally-finite, and has no infinite directed paths. If H is

not weakly-connected, we can make it so while maintaining the three properties (say by

choosing a vertex vi from each component Hi of H and adding an antidirected path on

v1, v2, . . . ). Let K be a countably-infinite tournament and let (ui)i∈N be an enumeration

of V (K). Define ∗1, ∗2, ∗3, . . . inductively by

∗i =


+ if

(⋂i−1
j=1N

∗j(uj)
)
∩N+(ui) is infinite,

− otherwise.

Let V + = {ui ∈ V (K) : ∗i = +} and let V − = {ui ∈ V (K) : ∗i = −}. The key property

is that for all ⋄, ∗ ∈ {+,−} and all finite non-empty subsets X ⊆ V ⋄ and Y ⊆ V ∗,

N̂⋄(X) ∩ N̂∗(Y ) is infinite. (A more standard approach to assigning the ∗i would have

been to choose a non-principal ultrafilter on N and let ∗i = ⋄ if and only if N⋄(ui) is in

the ultrafilter. We note that our assignment of ∗i without the use of ultrafilters is inspired

by the proof of [23, Lemma 1].)

If ∗1 = +, then we choose a vertex v1 ∈ V (H) with in-degree 0 and apply Lemma 4.2

to get a ±-partition {Ci : i ∈ N} of H with C1 = {v1}. If ∗1 = −, then we choose a vertex

v1 ∈ V (H) with out-degree 0 and apply Lemma 4.2 to get a ∓-partition {Ci : i ∈ N}

of H with C1 = {v1}. We may suppose by directional duality that ∗1 = + and thus we

choose a vertex v1 ∈ V (H) with in-degree 0 and apply Lemma 4.2 to get a ±-partition

{Ci : i ∈ N} of H with C1 = {v1}. Finally, define

⋄i =


+ if i is odd,

− if i is even

and note that ⋄i simply describes the type of the set Ci.

We construct a sequence i1 ⩽ i2 ⩽ . . ., growing an embedding ϕ : H[∪i∈[ij ]Ci] → K as

we do so, such that following properties hold for every j ∈ N.

Z1 {u1, . . . , uj} ⊆ ϕ(∪i∈[ij ]Ci).
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Z2 ϕ(Cij) ⊆ V ⋄ij .

If such a sequence exists, then by Z1, the resulting embedding ϕ : H → K proves the

theorem.

We initially set i1 = 1 and ϕ(v1) = u1. Then, given ij−1 and ϕ : H[∪i∈[ij−1]Ci] → K

satisfying Z1 and Z2, we proceed as follows.

If uj ∈ ϕ(∪i∈[ij−1]Ci), then set ij = ij−1 (trivially, Z1 and Z2 are satisfied). Otherwise,

by Z2 we have that Uj−1 := N∗j(uj)∩ N̂⋄ij−1 (ϕ(Cij−1
)) is infinite. If Uj−1∩V + is infinite,

set ij to be the smallest integer at least ij−1 + 5 with ⋄ij = + (i.e., the smallest odd

integer at least ij−1+5). Otherwise, Uj−1 ∩V − is infinite and we set ij to be the smallest

integer at least ij−1 +5 with ⋄ij = − (i.e., the smallest even integer at least ij−1 +5). We

now embed the acyclic finite subgraph H[Cij−1+1 ∪ . . .∪Cij ] into the infinite tournament

K[{uj} ∪ (Uj−1 ∩ V ⋄ij )] in such a way that if ∗j = ⋄ij−1
, then we will choose a vertex

vj ∈ Cij−1+2 which only has ∗j-neighbours and embed vj to uj, and if ∗j ̸= ⋄ij−1
, then we

will choose a vertex vj ∈ Cij−1+3 which only has ∗j-neighbours and embed vj to uj. Thus

Z1 is satisfied. Also note that by construction, every vertex in Cij is embedded into V ⋄ij ,

so Z2 is satisfied.

(In the above paragraph, it is instructive to have a specific example, so suppose

ϕ(Cij−1
) ⊆ V + (i.e., ij−1 is odd), uj ∈ V −, and (N−(uj) ∩ N̂+(ϕ(Cij−1

)) ∩ V − is infi-

nite. In this case we would set ij = ij−1 + 5 (note that ij is even), embed a vertex from

Cij−1+3 (ij−1+3 is also even) with in-degree 0 to uj and embed the rest of Cij−1+1∪· · ·∪Cij

into (N−(uj) ∩ N̂+(ϕ(Cij−1
)) ∩ V −. Note that since ij is even and ϕ(Cij) ⊆ V −, Z2 is

satisfied.) □

4.3 Forward edge density

By Theorem 1.7, if we are given a countably-infinite oriented graph H such that H is

acyclic, locally-finite, and has no infinite directed paths, then for every countably-infinite

tournament K, we have H ⊆ K. However, if we drop one or more of these conditions on
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H, what conditions could we impose on the tournament K to still ensure H ⊆ K? One

approach to this question is to consider the density of the forward (or backward) edges

in the tournament K.

For an infinite tournament K on N, define, for each n,

d+(K[n]) =
|{(i, j) ∈ E(K) : 1 ⩽ i < j ⩽ n}|(

n
2

) ,

and define the forward density of K to be

d+(K) = lim inf
n→∞

d+(K[n]).

Given an oriented graph H, define −→ρ (H) to be the smallest ρ ∈ [0, 1] such every tourna-

ment K on N with d+(K) > ρ contains a copy of H. By Theorem 1.7, we know that if

H is acyclic, locally-finite, and has no infinite directed paths, then −→ρ (H) = 0. On the

other hand, if H contains a cycle, a vertex of infinite in-degree, or an infinite backward

directed path, then H does not appear in Kω, and so we have −→ρ (H) = 1. In addition, if H

contains a vertex of infinite out-degree, then we also have −→ρ (H) = 1, due to the existence

of tournaments with forward density 1 in which every vertex has finite out-degree (such

as the tournament on N with forward edges given by {(i, j) : j ⩽ 2i}).

The only oriented graphs then left to consider are those which are acyclic, locally-

finite, and contain an infinite forward directed path (but no infinite backward directed

path). A natural case to consider then is to determine the value of −→ρ (P ), where P is the

infinite forward directed path. Notably, we have −→ρ (P ) strictly between 0 and 1.

Theorem 4.3. Let P be the infinite forward directed path. Then, −→ρ (P ) = 3/4.

Note that obtaining a lower bound of −→ρ (P ) ⩾ 1/2 is easy. Let Ik = [k!] \ [(k − 1)!]

for k ⩾ 2, and let K be the tournament on N with all edges with both endpoints some

Ik oriented forward and all other edges oriented backward. Then, d+(K) = 1/2, but,

because K ∼= Kω∗ , K contains no copy of P .
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Proving an upper bound strictly below 1, and also sharpening the lower bound, is

more involved. To do this, we will reduce the problem to finding the smallest possible

forward density of a large class of P -free tournaments on N, defined as follows. Given an

ordinal λ and an injection f : N → λ, define Kf∗ to be the tournament on N with

E(Kf∗) = {(i, j) : f(i) > f(j)}.

Because λ is well ordered, no tournament defined in this way contains a copy of P . In

addition, the forward density of Kf∗ can be easily related to the density of inversions of

f . Precisely, if we define, for sets A,B ⊆ N,

If [A,B] = |{(i, j) ∈ A×B : i < j and f(i) > f(j)}|

and also If [A] = If [A,A] and If [n] = If [[n]], then we have

d+(Kf∗) = lim inf
n→∞

If [n]/
(
n
2

)
. (4.1)

The quantity lim infn→∞ If [n]/
(
n
2

)
can be thought of as an infinite analogue of the inversion

number of a permutation (see, for example, [20]), especially if we consider a bijection

f : N → ω, which may be regarded as a permutation of N.

We note that the earlier P -free tournament showing −→ρ (P ) ⩾ 1/2 can be realised as

Kf∗ for some appropriate f : N → ω. In fact, given any P -free tournament K on N, we

can construct an injection h : N → ω1 such that d+(Kh∗) ⩾ d+(K). From this we obtain

the following correspondence.

Lemma 4.4. Define

C = sup
{
lim inf
n→∞

If [n]/
(
n
2

)
: f : N → ω1 is an injection

}
.

Then −→ρ (P ) = C.
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Proof. Because −→ρ (P ) ⩾ d+(Kf∗) for any injection f : N → ω1, we have, by (4.1), that

−→ρ (P ) ⩾ C. Therefore it is enough to show that for any P -free tournament K on N there

is an injection f : N → ω1 with d+(Kf∗) ⩾ d+(K), and hence

−→ρ (P ) = sup {d+(K) : K is P -free}

⩽ sup {d+(Kf∗) : f : N → ω1 is an injection} (4.1)
= C.

So suppose K is a P -free tournament on N. For i, j ∈ N, say that j is a forward out-

neighbour of i if i < j and i→K j. Define A0 = ∅. Given an ordinal α, define Aα+1 ⊇ Aα

to be the set of x ∈ N such that every forward out-neighbour of x is in Aα. If α is a limit

ordinal, define Aα = ∪β<αAβ. Define ∂Aα = Aα+1 \ Aα. Let λ be the smallest ordinal

with ∂Aλ = ∅, and note that λ is well-defined and λ < ω1 (because we can inject λ → N

by sending α < λ to the smallest x ∈ N with x ∈ ∂Aα). If Aλ ̸= N, then K contains a

copy of P (any xi /∈ Aλ has a forward out-neighbour xi+1 /∈ Aλ). Therefore, we have a

partition N = ∪α<λ∂Aα. Given i ∈ N, let α(i) < λ be the unique ordinal with i ∈ ∂Aα(i).

Define an injection f : N → ω ·λ < ω1 by f(i) = (i, α(i)). Note that, if i < j and i→K j,

then α(i) > α(j), and hence f(i) > f(j). Therefore, d+(K) ⩽ d+(Kf∗). □

With Lemma 4.4, determining the value of −→ρ (P ) is now equivalent to this natural

question of what is the maximum ‘inversion density’ that can be attained by an injection

f : N → ω1. Thus, Theorem 4.3 is now an immediate consequence of the following result.

Theorem 4.5.

(i) If f : N → ω1 is an injection, then lim infn→∞ If [n]/
(
n
2

)
⩽ 3/4.

(ii) There is an injection g : N → ω such that lim infn→∞ Ig[n]/
(
n
2

)
= 3/4.

To prove Theorem 4.5 (ii), for the sake of convenience we will actually describe an

injection g : N → ω2; however, because each set of the form ω×{n} will only be hit by g

finitely many times, the order type of g(N) will be ω, and so we could have equivalently

constructed (with some added technicalities) an injection g : N → ω.
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Proof of Theorem 4.5 (ii). Given n ∈ N, let an be the smallest odd number such that

n ∈ [(an + 2)2!] and let bn be the smallest even number such that n ∈ [(bn + 2)2!]. Define

functions g0, g1 : N → ω2 as follows. (We recall here that for (n1, n2), (m1,m2) ∈ ω2 we

have (n1, n2) < (m1,m2) if n2 < m2, or if n2 = m2 and n1 < m1.)

g0(n) = ((an + 2)2!− n, an) g1(n) = ((bn + 2)2!− n, bn)

We note that lim infn→∞ Ig0 [n]/
(
n
2

)
= lim infn→∞ Ig1 [n]/

(
n
2

)
= 1/2 (Kg∗0

and Kg∗1
are both

similar to the P -free tournament realizing −→ρ (P ) ⩾ 1/2 that was described earlier); how-

ever, we can selectively choose values from either g0 or g1 to construct an injection g with

lim infn→∞ Ig[n]/
(
n
2

)
⩾ 3/4.

Let cn = max {an, bn} so that n ∈ [(cn + 1)2!], and let qn ∈ [2cn + 1] be minimal such

that n ∈ [(c2n + qn)!]. Finally, let rn ∈ [2cn] be such that n ≡ rn mod 2cn. Then set

g(n) =



g0(n) if cn is odd and rn < qn,

g1(n) if cn is odd and rn ⩾ qn,

g1(n) if cn is even and rn < qn,

g0(n) if cn is even and rn ⩾ qn.

The specific details of this technical definition are not very important, and it is perhaps

most useful to understand g by referring to Figures 4.1 and 4.2.

We will now show lim infn→∞ Ig[n]/
(
n
2

)
⩾ 3/4. Given sets A,B ⊆ N, define

Ig[A,B] = |{(i, j) ∈ A×B : i < j and g(i) < g(j)}|,

and for integers n1, n2 ∈ N, define Ig[n1, n2] = Ig[[n1], [n2]]. Suppose n ∈ N is sufficiently

large so that cn ⩾ 2. If qn = 1, then

Ig[n] = Ig[(c
2
n − 1)!, n] ⩽

(
(c2n − 1)!

n

)
· n2 ⩽

n2

c2n
. (4.2)
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cn = 2

cn = 3

qn=1 qn=2 qn=3 qn=4 qn=5

qn=1 qn=2 qn=3 qn=4 qn=5 qn=6 qn=7

n
5! 6! 7! 8! 9! 10! 11! 12! 13! 14! 15! 16!

32! 42!

ω2

ω3

ω4

Figure 4.1: A representation of the values taken by g for n up to 42!, with the blue region
indicating points where g(n) = g0(n) and the orange region indicating points where
g(n) = g1(n). While the columns are here shown as equal width, each corresponding
interval of N is of course actually much larger than everything coming before, and so
Ig[n]/

(
n
2

)
may be approximated using local behaviour only. Thus, if qn is close to 1 or

2cn+1 we have Ig[n]/
(
n
2

)
≈ 1, whereas if qn is close to (2cn+1)/2 we have Ig[n]/

(
n
2

)
≈ 3/4.

an=1

an=3

an=5

an=7

an=9

n
32! 52! 72! 92! 112!

ω2
ω3
ω4
ω5
ω6
ω7
ω8
ω9

ω10

bn=2

bn=4

bn=6

bn=8

n
42! 62! 82! 102!

ω2
ω3
ω4
ω5
ω6
ω7
ω8
ω9

ω10

an=1

an=3

an=5

an=7

an=9

bn=2

bn=4

bn=6

bn=8

cn=2

cn=3

cn=4

cn=5

cn=6

cn=7

cn=8

cn=9

n
32! 42! 52! 62! 72! 82! 92! 102! 112!

ω2

ω3

ω4

ω5

ω6

ω7

ω8

ω9

ω10

Figure 4.2: A representation of the values taken by g for n up to 112!, with the blue
region indicating points where g(n) = g0(n) and the orange region indicating points
where g(n) = g1(n). Here, the opacity of the black lines on the right hand axis is in
correspondence with density of the points in Figure 4.1.
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On the other hand, if qn > 1, then, letting An be the set of n′ ∈ [n] \ [(c2n + qn − 2)!] such

that ri < qi and Bn be the set of n′ ∈ [n] \ [(c2n + qn − 2)!] such that ri ⩾ qi, we have

Ig[n] = Ig[(c
2
n + qn − 2)!, n] + Ig[An, Bn] ⩽

n2

c2n
+
∑
n′∈An

|Bn ∩ ([n] \ [n′])|

⩽
n2

c2n
+
∑
n′∈An

(
2cn + 2− qn

2cn

)
(n− n′) ⩽

n2

c2n
+

1

2

(
2cn + 2− qn

2cn

)(
qn
2cn

)
· n2

⩽

(
1

4
+

100

c2n

)
· 1
2
n2. (4.3)

Therefore, we have

lim inf
n→∞

Ig[n]/
(
n
2

)
= 1− lim supn→∞ Ig[n]/

(
n
2

) (4.2),(4.3)

⩾ 3/4,

as required. □

Finally, to prove Theorem 4.5 (i), we must show that every injection f : N → ω1 has

lim infn→∞ If [n]/
(
n
2

)
⩽ 3/4. To do this, given an injection f : N → ω1 we will define a

sequence of ordinals α1, α2, . . . in {0, 1} · ω, where αn can be considered to be the median

of the set f([n]). The key property is that every time we find αn > αn−1, we have that

f(n′) > f(n) for fewer than (n− 1)/2 many n′ < n; that is, at every n where the median

increases, there are more non-inversions ending with n than there are inversions. We then

identify a large finite interval [n1]\[n0] with n1 ≫ n0 in which for every n ∈ [n1]\[n0] where

the median decreases, there is some n′ ∈ [n1]\ [n0] with n
′ > n where the median increases

back to the same value. From this, we deduce at least (n1 − n0)/2 of the n ∈ [n1] \ [n0]

give rise to an increase of the median, and also that these median increases are not skewed

towards the beginning of [n1] \ [n0], thus the number of inversions satisfies If [n1] ≲ 3
4

(
n1

2

)
.

Proof of Theorem 4.5 (i). Let f : N → ω1 be an injection. Note that, for each n, f([n])

is a subset of ω1 of size n. Given n, define the median αn to be the unique element

of {0, 1} × f([n]) ⊆ {0, 1} × ω1 such that ⌊n/2⌋ elements of {1} × f([n]) are greater

than αn and ⌊n/2⌋ elements of {0} × f([n]) are less than αn (where here, {0, 1} × ω1 is
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ordered according to the ordinal product {0, 1} · ω1). Note that {0, 1} essentially acts as

a tiebreaker here, as it will later be important that αn+1 ̸= αn holds for every n ∈ N.

Let N ∈ N and ε > 0. We will show that there exists n1 > N such that If [n1] <

(3
4
+ ε)

(
n1

2

)
, thus proving lim infn→∞ If [n]/

(
n
2

)
⩽ 3/4.

Claim 4.6. There exists n0, n1 ∈ N with N < n0 ⩽ εn1, such that αn1 =

max{αn0 , αn0+1, . . . , αn1}.

Proof of Claim 4.6. For j ⩾ 0, define mj = ⌈
(
2
ε

)j
(N + 1)⌉. For j ⩾ 0, define γj =

max{αmj
, αmj+1, . . . , αmj+1−1}. We must have γj ⩽ γj+1 for some j, otherwise the set

{γ1, γ2, . . .} contains no minimal element. For this j, let n0 = mj > N , and let n1 ⩾ mj+1

be minimal such that αn1 ⩾ γj. We then have n0 = mj ⩽ εmj+1 ⩽ εn1 and αn1 =

max{αn0 , αn0+1, . . . , αn1}. ⊡

Let A be the set of n ∈ [n1] \ [n0] such that αn > αn−1, and let B be the set of

n ∈ [n1] \ [n0] such that αn < αn−1. Because αn ̸= αn+1 for every n ∈ N, A ∪ B is a

partition of [n1] \ [n0]. We note that for any n ∈ B, there exists n′ ∈ [n1] \ [n] with

αn′ = αn−1. Given n ∈ B, we define σ(n) to be the smallest such n′. We remark that

σ(n) ∈ A for any n ∈ B. We also note that σ : B → A is an injection. Therefore, we have

(1− ε)

(
n1

2

)
⩽

∑
n∈[n1]\[n0]

(n− 1) =
∑
n∈A

(n− 1) +
∑
n∈B

(n− 1)

⩽
∑
n∈A

(n− 1) +
∑
n∈B

(σ(n)− 1) ⩽ 2
∑
n∈A

(n− 1).

(4.4)

Finally, observe that if n ∈ A, then, because αn > αn−1, we have |{n′ ∈ [n− 1] : f(n′) <

f(n)}| ⩾ 1
2
(n− 1). Hence,

If [n1] =

(
n1

2

)
−
∑
n∈[n1]

|{n′ ∈ [n− 1] : f(n′) < f(n)}|

⩽

(
n1

2

)
−
∑
n∈A

|{n′ ∈ [n− 1] : f(n′) < f(n)}| ⩽
(
n1

2

)
− 1

2

∑
n∈A

(n− 1)

(4.4)

⩽
(
3
4
+ ε
)(n1

2

)
,
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as required. □

There are still other interesting questions that can be asked on what forward density

is required to ensure a copy of an infinite oriented graph.

Question 4.7. Let H be a countably-infinite acyclic oriented graph such that H is locally-

finite, has no infinite backward directed path, but does have an infinite forward directed

path.

(i) Determine −→ρ (H).

(ii) For which d ∈ [3
4
, 1] does there exist such an oriented graph H with −→ρ (H) = d?
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[21] D. Kühn, R. Mycroft, and D. Osthus. An approximate version of Sumner’s universal
tournament conjecture. Journal of Combinatorial Theory, Series B, 101(6):415–447,
2011.
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[27] V. Rödl, A. Ruciński, and E. Szemerédi. A Dirac-type theorem for 3-uniform hyper-
graphs. Combinatorics, Probability & Computing, 15(1-2):229, 2006.

[28] M. Rosenfeld. Antidirected Hamiltonian paths in tournaments. Journal of Combi-
natorial Theory, Series B, 12(1):93–99, 1972.

[29] A. Thomason. Paths and cycles in tournaments. Transactions of the American
Mathematical Society, 296:167–180, 1986.

157


	Introduction and preliminary material
	Notation
	Embedding results for oriented trees
	Embedding results for oriented paths
	Properties of trees
	Probabilistic results

	Embedding oriented trees using median orders
	Median orders
	Proof of Theorem 1.2
	Reduction to trees with only directed bare paths
	Joining vertex pairs with directed paths disjointly
	Proof of Theorem 2.5

	Proof of Theorem 1.3
	(r,m)-good decompositions
	Finding a good decomposition
	Embedding a good decomposition
	Proof of Theorem 1.3


	Embedding oriented trees using the regularity lemma
	Outline of proof of Theorem 1.4 and Theorem 1.5
	Tree decomposition
	Regularity
	Theorem 1.4: embedding the core and attached small trees
	Theorem 1.5: embedding the core and attached small trees
	Allocating vertices for Theorem 3.18
	Embedding vertices for Theorem 3.18

	Proof of Theorem 1.4 and Theorem 1.5
	Well-connected tournaments
	Proof of Theorem 1.4 and Theorem 1.5

	Proof of Theorem 3.13
	Distillations
	Statement of overarching theorem and subcases
	Proofs of the three cases
	Proof of Theorem 3.13


	Unavoidable subgraphs of infinite tournaments
	Notation
	Proof of Theorem 1.7
	Forward edge density

	List of References

