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Herein, based on studies in mice,
� Hyperhomocysteinemia ispositivelyassociatedwithNASHprogression.

� Increased intrahepatic homocysteine causes NASH.

� STX17 homocysteinylation and ubiquitination leads to a block in
autophagy during NASH progression.

� Supplementary vitamin B12 and folate restore STX17 expression and
autophagy to decrease inflammation and fibrosis in NASH.
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Vitamin B12 and folate decrease inflammation and fibrosis in NASH
by preventing syntaxin 17 homocysteinylation
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Background & Aims: Several recent clinical studies have shown autophagy, stimulated b -oxidation of fatty acids, and improved

that serum homocysteine (Hcy) levels are positively correlated,
while vitamin B12 (B12) and folate levels are negative correlated,
with non-alcoholic steatohepatitis (NASH) severity. However, it
is not known whether hyperhomocysteinemia (HHcy) plays a
pathogenic role in NASH.
Methods: We examined the effects of HHcy on NASH progres-
sion, metabolism, and autophagy in dietary and genetic mouse
models, patients, and primates. We employed vitamin B12 (B12)
and folate (Fol) to reverse NASH features in mice and cell culture.
Results: Serum Hcy correlated with hepatic inflammation and
fibrosis in NASH. Elevated hepatic Hcy induced and exacerbated
NASH. Gene expression of hepatic Hcy-metabolizing enzymes
was downregulated in NASH. Surprisingly, we found increased
homocysteinylation (Hcy-lation) and ubiquitination of multiple
hepatic proteins in NASH including the key autophagosome/
lysosome fusion protein, Syntaxin 17 (Stx17). This protein was
Hcy-lated and ubiquitinated, and its degradation led to a block in
autophagy. Genetic manipulation of Stx17 revealed its critical
role in regulating autophagy, inflammation and fibrosis during
HHcy. Remarkably, dietary B12/Fol, which promotes enzymatic
conversion of Hcy to methionine, decreased HHcy and hepatic
Hcy-lated protein levels, restored Stx17 expression and
words: Homocysteine; Vitamin therapy; Syntaxin-17; Autophagy; Protein
ocysteinylation; Non-alcoholic steatohepatitis (NASH); Fibrosis; B12; Folate.
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hepatic histology in mice with pre-established NASH.
Conclusions: HHcy plays a key role in the pathogenesis of NASH
via Stx17 homocysteinylation. B12/folate also may represent a
novel first-line therapy for NASH.
Lay summary: The incidence of non-alcoholic steatohepatitis, for
which there are no approved pharmacological therapies, is
increasing, posing a significant healthcare challenge. Herein,
based on studies in mice, primates and humans, we found that
dietary supplementation with vitamin B12 and folate could have
therapeutic potential for the prevention or treatment of non-
alcoholic steatohepatitis.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Euro-
pean Association for the Study of the Liver. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Introduction
Hyperhomocysteinemia (HHcy) is a metabolic disorder caused
by improper removal and/or accumulation of homocysteine
(Hcy) most commonly arising from low dietary intake of Folate
(Fol) or Vitamin B12 (B12), or mutations in MTHFR and CBS genes
(Fig 1A).2 Hcy can be covalently linked to proteins via an iso-
peptide bond to lysine (Lys) residues, and this unique post-
translational modification is termed “homocysteinylation”
(Hcy-lation), which leads to impaired protein structure/function
and is associated with cytotoxic, proinflammatory and proa-
therogenic effects linked to cardiovascular disease, diabetes,
etc.3,4 Several recent clinical studies showed that serum Hcy
levels were positively associated with non-alcoholic steatohe-
patitis (NASH), and B12 and Fol levels were negatively correlated
with non-alcoholic fatty liver disease (NAFLD)/NASH severity.5–8

However, it is not known whether HHcy plays a pathogenic role
in NASH.

Herein, we examined the role of HHcy on NASH in mouse
models, patients and primates. We found the HHcy correlated
22 vol. 77 j 1246–1255
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Fig. 1. Dietary mouse model of progressive NASH had concomitant increases in serum Hcy levels. (A) Schematic diagram of Hcy metabolism and protein Hcy-
lation. (B) Experimental design for the induction of steatosis, mild, and moderate NASH (WDF-8w, WDF-16w, and WDF-30w, respectively) (n = 5 animals/group).
(C) % Change in body weight. (D) liver index (liver weight: body weight). (E) Serum ALT. (F) Liver TG. (G) H&E-stained images of liver sections (scale bar-100lm).
(H) NAS scores. (I) Serum Hcy. (J) Liver SAM:SAH. (K-N) Relative mRNA expression of genes by RT-qPCR. (O) Hepatic hydroxyproline content. (P) Correlation
analysis for hepatic hydroxyproline levels (x-axis) vs. serum Hcy levels (y-axis). Results are expressed as mean ± SD. The statistical significance of differences (*p
<0.05) was assessed by a one-way or two-way ANOVA wherever applicable, followed by Tukey’s multiple-comparisons test. ALT, alanine aminotransferase; Hcy,
homocysteine; NASH, non-alcoholic steatohepatitis; NAS, NAFLD activity score; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethione; TG, triglyceride; WDF,
Western diet+fructose. (This figure appears in color on the web.)
with severity of hepatic inflammation and fibrosis, and increased
intrahepatic Hcy induced NASH. We identified Stx17, a
protein involved in autophagosome/lysosome fusion, as
Journal of Hepatology 20
homocysteinylated (Hcy-lated), ubiquitinated, and down-
regulated in NASH. Remarkably, dietary B12/Fol supplementation
increased Stx17 expression, restored autophagy, slowed NASH
22 vol. 77 j 1246–1255 1247
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progression, and reversed inflammation and fibrosis in mice with
pre-established NASH.

Material and methods
Mouse models
NASH-inducing dietary model
12-week-old male C57BL/6J mice fed ad libitum with Western
diet (WD) (D12079B) and 15% (w/v) fructose in drinking water
(WDF) for 8, 16 and, 30 weeks to progressively generate the
spectrum of NAFLD (from steatosis to mild NASH, and moderate
NASH, respectively).9 Customized WDs with either B12+Fol (Vits),
or Fol were used (details are provided in the supplementary
methods). All mice were maintained according to the Guide for
the care and use of laboratory animals (NIH), and the experi-
ments performed were approved by the IACUC’s at SingHealth
(2015/SHS/1104 and 2020/SHS/1549). The dosage was an FDA-
approved human equivalent dose.

HHcy dietary NASH model
12-week-old male C57BL/6J mice were fed control diet or WD
supplemented with 3X methionine (Met) (D18012301) and 15%
(w/v) fructose in drinking water (WDF+Met) for 8 weeks.

HHcy genetic model
Liver-specific Cbs knockdown (Cbs-LKD) mice were generated by
injecting AAV8-Alb-shCbs (1X1012 gc/mice) into the tail vein.
Mice were then fed either control diet or WDF for 8 weeks.

All the diets were procured from Research Diets Inc. For
further details regarding the materials and methods used, please
refer to the CTAT table and supplementary information.

Quantitative and statistical analyses
Results are expressed as mean ± SD. The statistical significance of
differences (*p <0.05, **p <0.01, ***p <0.001, and ****p <0.0001)
was assessed by a one-way or two-way ANOVA for multiple
group comparisons wherever applicable, followed by Tukey’s
multiple-comparisons test. An unpaired 2-tailed t test was used
to compute statistical differences between 2 groups. All statis-
tical tests were performed using Prism 9 for Mac OS X (Graph-
Pad Software).

Results
HHcy is associated with NASH progression in a dietary mouse
model of NASH as well in patients and primates with NASH
To determine whether HHcy was associated with NASH, we
examined serum Hcy and hepatic steatosis, inflammation, and
fibrosis in a dietary mouse model of progressive NASH. Mice
were fed WDF for 8, 16 and, 30 weeks to mimic human NAFLD
progression by inducing steatosis, and mild to moderate/severe
NASH, respectively (Fig. 1B).9 HHcy was associated with pro-
gressive increases in the body weight and liver index, serum
alanine aminotransferase (ALT), and hepatic and serum triglyc-
eride (TG) and cholesterol levels in mice fed WDF for 8, 16, and
30 weeks (WDF 8, 16, and 30w) (Fig. 1C-F and Fig. S1A,B). Liver
histopathology showed mild steatosis and sinusoidal/peri-
sinusoidal infiltration of inflammatory cells in mice fed WDF for
8 weeks; marked steatosis, mild focal, spotty hepatocyte
ballooning and sinusoidal/perisinusoidal cell infiltrate were
observed in mice fed WDF for 16 weeks, and diffuse distribution
of hepatocyte ballooning and lobular infiltration of inflammatory
cells in mice fed WDF for 30 weeks, and overall increased NAFLD
1248 Journal of Hepatology 20
activity score (NAS) (Fig. 1G,H and Fig. S1C,D). Sirius red staining
showed markedly increased collagen content in mice fed WDF
for 30 weeks (Fig. S1E).

Importantly, we observed that progressive increases in serum
Hcy levels occurred concurrently with significant decreases in
hepatic s-adenosylmethionine (SAM)/s-adenosylhomocysteine
(SAH) ratio in mice fed WDF (Fig. 1I,J), reflecting HHcy and he-
patic Hcy accumulation with disease progression. Serum levels of
Met returned to normal in mice fed WDF for 16 and 30 weeks,
suggesting that increased serum HHcy, and not serum Met, was
associated with the hepatic changes that occurred at the later
time points (Fig. S1F). A similar correlation between HHcy and
NAFLD progression was observed in the sera of a cohort of pa-
tients with steatosis and NASH from Singapore General Hospital
(Control, n = 6; Steatosis, n = 6; NASH, n = 24) (Fig. S2A,B).
Additionally, a cohort of primates fed a high-fat diet for 2.5 to 5
years developed NASH (Fig. S2J) and had higher serum Hcy levels
than their baselines or primates fed a normal chow diet. Serum
Hcy levels were also positively correlated with NAS (Fig. S2K-M).
Interestingly, the mRNA expression of key genes involved in Hcy
metabolism (Mat1a, Mthfr, Cbs, Mtr, Pon1, Pon2, Pon3) were
temporally downregulated in mice fed WDF for 8 to 30 weeks
(Fig. 1K). A similar pattern was also observed in hepatic Hcy
metabolism genes (MAT1A, MTHFR, CBS, MTR, PON1, PON2, PON3)
in patients with NAFLD, as their mRNA expression progressively
decreased during steatosis and NASH (Fig. S2C).

Hepatic inflammation (Il6, Il1b, Tnf-a) and chemokine (Ccl2,
Ccl5, Cxcl10, Cx3cl1, Cxcl16) gene expression increased progres-
sively in mice fed WDF (Fig. 1L,M). Similar results were also
observed in the cohort of patients with NAFLD (Fig. S2D,E). He-
patic fibrosis (Tgfb, Col1a1, Col1a2, Col3a1, Acta2, Ctgf) gene
expression and hydroxyproline levels (to measure collagen
content) increased in parallel with NAFLD progression in mice
fed WDF (Fig. 1N,O) and the cohort of patients with NAFLD
(Fig. S2F). Serum Hcy and hydroxyproline levels also positively
correlated with each other (p <0.0001) in both mice fed WDF and
patients with NAFLD (Fig. 1P and Fig. S2G). Previously, Mahamid
et al. 20187 showed low serum levels of Fol and B12 were asso-
ciated with the histological severity of NASH. Interestingly, we
also observed a significant decrease in the levels of serum Fol
and B12 in our progressive model of NASH (Fig. S1G,H).

We next analyzed the transcriptome data obtained from
previously published studies of patients with NASH available on
the public GEO repository GSE48452 (Fig. S2H) and Array Ex-
press (E-MEXP-3291) (Fig. S2I) and found that expressions of Hcy
metabolism genes were also decreased in NASH. Taken together,
these findings showed that HHcy was associated with NASH
progression and correlated with changes in hepatic steatosis,
inflammation, and fibrosis.

HHcy induces NASH in genetic (Cbs-LKD) and dietary models
Patients with CBS deficiency have HHcy and develop hepatic
steatosis and fibrosis, and the global Cbs knockout mouse model
recapitulates the human disease phenotype.13,14,23 To determine
whether elevated hepatic Hcy itself could induce NASH, we
generated liver-specific Cbs knockdown mice (Cbs-LKD) via tail
vein injection with AAV8-mediated gene delivery of short-
hairpin RNA against the Cbs gene (Fig. 2A). Interestingly, these
mice had increased body weight and liver index, serum ALT,
hepatic and serum TG and cholesterol when fed control diet (Fig.
2B-E and Fig. S3A,B). Their liver index, serum ALT, and hepatic
22 vol. 77 j 1246–1255



CB

H

A

I

D FE

J K

L M

G

Ccl2 Ccl5

Cxc
l10

Cx3
cl1

Cxc
l16

0

1

2

3

4

5

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

 
Alb-null control diet Alb-null WDF

Cbs-LKD control diet

Alb-null control diet Alb-null WDF Cbs-LKD control diet Cbs-LKD WDF

Cbs-LKD WDF

Alb-
nu

ll c
on

tro
l d

iet

Alb-
nu

ll W
DF

Cbs
-LK

D co
ntr

ol 
die

t

Cbs
-LK

D W
DF

Alb-
nu

ll c
on

tro
l d

iet

Alb-
nu

ll W
DF

Cbs
-LK

D co
ntr

ol 
die

t

Cbs
-LK

D W
DF

Alb-
nu

ll c
on

tro
l d

iet

Alb-
nu

ll W
DF

Cbs
-LK

D co
ntr

ol 
die

t

Cbs
-LK

D W
DF

Alb-
nu

ll c
on

tro
l d

iet

Alb-
nu

ll W
DF

Cbs
-LK

D co
ntr

ol 
die

t

Cbs
-LK

D W
DF

Alb-
nu

ll c
on

tro
l d

iet

Alb-
nu

ll W
DF

Cbs
-LK

D co
ntr

ol 
die

t

Cbs
-LK

D W
DF

Alb-
nu

ll c
on

tro
l d

iet

Alb-
nu

ll W
DF

Cbs
-LK

D co
ntr

ol 
die

t

Cbs
-LK

D W
DF

Alb-
nu

ll c
on

tro
l d

iet
Alb-

nu
ll W

DF

Cbs
-LK

D co
ntr

ol 
die

t

Cbs
-LK

D W
DF

Chemokines

*
*

* *

*

*

*
*
*

*

*

Il6 Il1b Tnfa
0

2

4

6

*
*
*

*
*

Inflammation

0

5

10

15

20

25

Se
ru

m
 H

cy
 (F

C
)

*

*
*

N

Alb-
nu

ll c
on

tro
l d

iet

Alb-
nu

ll W
DF

Cbs
-LK

D co
ntr

ol 
die

t

Cbs
-LK

D W
DF

0

1

2

3

H
yd

ro
xy

pr
ol

in
e

(μ
g/

m
g 

tis
su

e)

*

*

Mat1
a

Mthf
r

Cbs Mtr
Pon

1 
Pon

3
0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

 

* * * * *
* *

* *
* *

*
* *

*
*

*

Hcy metabolism

AAV8-Alb-null

4w

AAV8-Alb-shCbs
(Cbs-LKD)

Age 8w

Control diet

WDF
8w

4w
Control diet

WDF
8w

0

50

100

150

Se
ru

m
 A

LT
 (U

/L
)

*
*

*

0

50

100

150

Li
ve

r T
G

 (m
g/

g)

*

*

O

0 1 2 3
0

5

10

15

20

25

Hydroxyproline

Se
ru

m
 H

cy

p <0.0001

Tgfb

Col1
a1

Col1
a2

Col3
a1

Acta
2

Ctgf
0

2

4

6

*

**
*

*
*

*

* *
*

*
Fibrosis

0.03

0.04

0.05

0.06

0.07

0.08

Li
ve

r i
nd

ex
(L

iv
er

: b
od

y 
w

ei
gh

t)

*
****

*
p = 0.06

0

2

4

6

8

N
AS

 s
co

re ***

***

**

******

0

1

2

3
Li

ve
r S

AM
\S

AH
 ra

tio

0

10

20

30

40

C
ha

ng
e 

in
 b

od
y 

w
ei

gh
t (

%
)

Fig. 2. Cbs-LKD mice had increased serum Hcy, hepatic inflammation, and fibrosis when fed either control diet or WDF. (A) Experimental design for the
generation of Cbs-LKD mice and NASH. (B) % change in body weight. (C) Liver index. (D) Serum ALT. (E) Liver TG. (F) H&E staining of liver sections (Scale bar:
100 lm). (G) NAS score. (H) Serum Hcy. (I) Liver SAM:SAH. (J-M) Relative mRNA expression of hepatic genes by RT-qPCR. (N) Hepatic hydroxyproline content. (O)
Correlation analysis for hydroxyproline (x-axis) vs. serum Hcy (y-axis). Results are expressed as mean ± SD. The statistical significance of differences (*p <0.05)
was assessed by a one-way or two-way ANOVA wherever applicable, followed by Tukey’s multiple-comparisons test. ALT, alanine transaminase; Cbs-LKD,
cystathinine beta synthase liver-specific knock down; Hcy, homocysteine; NASH, non-alcoholic steatohepatitis; SAH, S-adenosylhomocysteine; SAM, S-adeno-
sylmethione; TG, triglyceride; WDF, Western diet+fructose. (This figure appears in color on the web.)
and serum TG and cholesterol levels further increased when fed
WDF. H&E staining of liver tissues from Cbs-LKD mice fed WDF or
control diet showed increases in micro- and macro-vesicular
perivenular steatosis, pericentral infiltration of inflammatory
cells, mild ballooning and increased NAS (Fig. 2F,G and
Fig. S3C,D).

Increases in serum Hcy were associated with concurrent de-
creases in hepatic SAM/SAH levels (Fig. 2H,I) and downregulation
of Hcy metabolism genes in Cbs-LKD mice fed either control diet
or WDF diet compared to Alb-null mice fed control diet (Fig. 2J).
Hepatic expression of inflammation and chemokine genes was
increased in Cbs-LKD mice fed WDF compared to Alb-null mice
fed WDF for 8 weeks and were comparable to Alb-null mice fed
WDF for 16 weeks (Fig. 2K,L). Hepatic fibrosis gene expression,
Journal of Hepatology 20
Sirius Red staining and hydroxyproline levels in Cbs-LKD mice
were modestly increased when fed control diet and further
increased when fed WDF (Fig. 2M,N and Fig. S3E). Serum Hcy
levels also significantly correlated (p <0.0001) with hepatic hy-
droxyproline levels (Fig. 2O), whereas serum Met did not
correlate with serum Hcy (Fig. S3F,G). Similar to mice chronically
fed WDF to develop NASH (Fig. S1G,H), serum B12 and Fol levels
decreased in Cbs-LKD mice fed control or WDF diets compared to
Alb-null mice fed control diet (Fig. S3H,I).

We next provided excess dietary Met to mice fed WDF to see
whether HHcy itself could exacerbate or accelerate NASH. Mice
were fed control diet for 8 weeks, WDF for 8 and 16 weeks and
WDF+Met for 8 weeks (Fig. S4A). Mice fed WDF+Met for 8 weeks
had increased body weight, liver index serum ALT, liver and
22 vol. 77 j 1246–1255 1249
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serum TG, cholesterol and histological changes consistent with
NASH (Fig. S4B-J). Mice fed WDF+Met for 8 weeks had increased
serum Hcy levels, and decreased SAM/SAH ratio (Fig. S4K-M) and
Hcy metabolism gene expression that were more significant than
mice fed WDF for 8 weeks and comparable to mice fed WDF for
16 weeks. Interestingly, inflammation and fibrosis also were
increased in mice fed WDF+Met (Fig. S4N-Q). Serum B12 and Fol
levels also were significantly decreased (Fig. S4R,S).

Vits or Fol treatment reduces HHcy and improves NASH
To examine whether Vits (B12 and Fol) or Fol could reverse NASH,
mice were fed WDF for 16 weeks to establish NASH, and then
given Vits or Fol supplementation of WDF for an additional 14
weeks (WDF+Vits-16>30w, WDF+Fol-16>30w) (Fig. 3A). There
were no significant changes in body weight and liver index in
mice fed WDF supplemented with Vits or Fol compared to mice
only fed WDF (Fig. 3B,C). Interestingly, serum ALT, TG, and
cholesterol levels markedly improved in mice fed WDF supple-
mented with Vits or Fol (Fig. 3D,E,G). In contrast, hepatic TG
levels were not significantly changed in mice fed WDF supple-
mented with Vits or Fol (Fig. 3F). Likewise, H&E and NAS of liver
samples from mice fed WDF supplemented with Vits of Fol
exhibited histological improvements (except steatosis) in in-
flammatory cell infiltration and fibrosis (Fig. 3H,I and Fig. S5A,B).

Mice fed WDF supplemented with Vits or Fol exhibited
decreased serum Hcy levels and increased hepatic SAM/SAH
ratios (Fig. 3J,K). Remarkably, Vits or Fol restored the expression
of Hcy metabolism genes and markedly reduced expression of
inflammation and chemokine genes to levels similar to mice fed
control diet (Fig. 3L-N). Interestingly, Vits and Fol also reduced
fibrosis gene expression and hepatic hydroxyproline in these
mice (Fig. 3O,P). Hepatic hydroxyproline and serum Hcy levels
were positively correlated in both supplemented and non-
supplemented mice (Fig. 3Q). Sirius red staining decreased
although hepatosteatosis persisted in vitamin-treated mice
(Fig. 3R). Serum B12 and Fol levels in mice fed WDF also improved
after supplementation with Vits or Fol (Fig. 3S,T).

Vits and Fol also prevented NASH development when sup-
plemented to WDF diet from 0-16 weeks (Fig. S5C-Q). In another
model, Leprdb/db (db/db) mice were fed WD for 8 weeks to induce
NASH with and without Vits or Fol supplementation. Vits or Fol
supplementation reduced serum HHcy, inflammation, and
fibrosis in Leprdb/db (db/db) mice fed WD and prevented devel-
opment of NASH (Fig. S6A-O).15

Decreased autophagy and reduced Stx17 occurs in
NASH models
We and others previously showed that decreased autophagy led
to reduced lipophagy, mitophagy, and b-oxidation of fatty acids
that contributed to hepatosteatosis in NAFLD.16–18 This reduced
autophagy and the subsequent changes in cellular metabolism
increased lipotoxicity and oxidative stress.19–21 To examine the
effects of HHcy and NASH on autophagy, we examined the he-
patic expression of autophagy proteins, Map1lc3b-ii and Sqstm1/
p62, in mice fed WDF for 8, 16, and 30 weeks and found pro-
gressively increased levels of both Map1lc3b-ii and Sqstm1/p62
as NASH advanced (Fig. 4A,B). We also saw increased Map1lc3b-
ii and Sqstm1/p62 protein levels in Cbs-LKD mice fed control diet
or WDF (Fig. 4C,D), suggesting that HHcy likely contributed to
the block in autophagy. Furthermore, we saw a similar pattern in
patients with steatosis and NASH (Fig. S7A,B); This profile of
1250 Journal of Hepatology 20
increased Map1lc3b-ii and Sqstm1/p62 suggested that there was
a late block in autophagy in both NASH and HHcy mouse models
and patients.

Since we observed a potential late block in autophagy in mice
with HHcy and NASH, we examined the expression of SNARE
proteins: syntaxin 17 (Stx17), synaptosomal-associated protein
29 (Snap29) and vesicle-associated membrane protein 8
(Vamp8), which are involved in SNARE-mediated autophago-
some-lysosome fusion. Interestingly, we found a selective
decrease in Stx17 protein expression during NASH in mice fed
WDF for 8, 16, and 30 weeks, Cbs-LKD mice and patients with
NASH. However, there were no changes in Vamp8 and Snap29
protein expression in hepatic tissues from the three mouse
models of NASH and patients with NASH (Fig. 4A-D and
Fig. S7A,B). Thus, our findings strongly suggested that decreased
Stx17 protein expression could contribute to the impaired
autophagy found in NASH and HHcy.

Stx17 Hcy-lation and ubiquitination occurs during HHcy
and NASH
Hcy-lation is a rare post-translational protein modification. It
previously was shown that Hcy-lated proteins were ubiquiti-
nated and degraded via the proteasomal pathway.22 Remarkably,
we found hepatic protein Hcy-lation using anti-Hcy antibodies
on Western blots. Several specific bands appearing between 25-
75 kDa on Western blots increased in intensity in parallel with
the severity of HHcy and NASH in mice chronically fed WDF and
Cbs-LKD mice fed WDF (Fig. 4E-H). We also observed increased
ubiquitination of hepatic proteins during HHcy and NASH in
these models (Fig. S7C-F), although we could not determine the
size of specific ubiquitinylated proteins due to the diffuse pattern
observed in the ubiquitination blots.

Stx17 is Hcy-lated and undergoes proteasomal degradation
during NASH
Upon closer inspection, we observed that there was a Hcy-lated
protein expressed during NASH that was 33 kD in size, which
coincidentally corresponded to the molecular weight of Stx17 on
Western blot. This observation raised the interesting possibility
that Stx17 might be Hcy-lated and undergo increased proteaso-
mal degradation. Accordingly, we performed immunoprecipita-
tion of Hcy-lated proteins in Cbs-LKD and control mice, followed
by Western blotting with anti-Stx17 antibody (Fig. 4I,J). We
observed increased Hcy-lated Stx17 in liver tissue samples from
Cbs-LKD mice fed control diet or WDF even though total Stx17
protein expression was decreased. The decrease in Stx17
expression corresponded with the reduction in autophagy re-
flected by the increase in p62 protein expression in Cbs-LKD mice
fed control diet or WDF (Fig. 4C,D).

We next examined the effect of Hcy on autophagy following
Stx17 knockdown (KD) or overexpression in mouse hepatic
AML12 cells. We found increased Map1lc3b-ii and Sqstm1/p62 in
both Stx17 KD cells and WT cells treated with Hcy, suggesting
there was a late block in autophagy in both cases (Fig. 4K,L).
Significantly, Hcy reduced Stx17 expression in WT cells to the
same level as Stx17 KD cells treated with Hcy. We also observed
that Stx17 KD decreased autophagy flux at basal conditions, as
demonstrated by decreased accumulation of Map1lc3b-ii after
Bafilomycin A1 treatment (Fig. S7G). Additionally, both WT and
Stx17 KD cells treated with Hcy had increased expression of
inflammation and fibrosis genes, with the latter having the
22 vol. 77 j 1246–1255
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established NASH. (A) Immunoprecipitation of Stx17 and Hcy-lation and Ubq detection by Western blotting using liver tissue lysates as inputs (n = 3 per
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higher induction (Fig. S7H,I). Remarkably, overexpression of
Stx17 in AML12 cells increased autophagy flux and rescued the
late block in autophagy, as Map1lc3b-ii and Sqstm1/p62
expression levels were restored in Hcy-treated cells (Fig. 4M,N,
Fig. S7J). Inflammation and fibrosis gene expression also
decreased to control cell levels in Stx17-overexpressing cells
treated with Hcy (Fig. S7K,L). These findings suggested that Stx17
had a critical role in autophagy, and its decreased expression by
Hcy led to decreased autophagy and increased expression of
inflammation and fibrosis genes. On the other hand, Stx17
overexpression reversed the autophagy inhibition, and
decreased the expression of inflammation and fibrosis genes that
were induced by Hcy.
Journal of Hepatology 20
Stx17 Hcy-lation and ubiquitination is reversed by Vits or Fol
To study the effects of vitamin therapy on Stx17 during NASH, we
immunoprecipitated Stx17 in liver tissues collected from mice
fed WDF for 8, 16 and 30 weeks or Vits or Fol supplementedWDF
for 16>30 weeks. We observed that hepatic Stx17 was progres-
sively Hcy-lated and ubiquitinated in a time-dependent manner
in mice fed WDF from 8 to 30 weeks (Fig. 5A,B). The increases in
these post-translational modifications of Stx17 occurred in par-
allel with the decreases in total Stx17 expression in the input
(whole tissue lysate) (Fig. 5A).

Remarkably, Vits or Fol decreased Stx17 Hcy-lation and
ubiquitination and global hepatic Hcy-lation and ubiquitination
in mice fed WDF for 16 and 30 weeks (Fig. 5A-F). The decreases
22 vol. 77 j 1246–1255 1253
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in Hcy-lated Stx17 protein expression by Vits and Fol were
associated with increases in total Stx17 expression, and reversal
of the autophagy defect as evident from the significantly reduced
Sqstm1 levels (Fig. 5A,B,G,H). This improvement in autophagy
also increased b-oxidation of fatty acids, reflected by elevated
serum b-hydroxybutyrate and hepatic acylcarnitine levels
(particularly C2, C3, and C4) on metabolomics analysis (Fig. 5I,
Fig. S8A-D). Thus, our findings strongly suggested that Vits or Fol
supplementation increased b-oxidation of fatty acids led to
decreased inflammation and fibrosis in tandemwith the reversal
of hepatic TG and diacylglycerol changes (Fig. S8E,F) in our di-
etary model of pre-established NASH. These beneficial effects
occurred, at least in part due to decreased Hcy-lation of Stx17,
which restored Stx17 expression and hepatic autophagy.

Discussion
Earlier studies showed that serum Hcy levels were positively
associated with NAFLD, whereas serum B12 and Fol levels were
negatively correlated with NAFLD/NASH severity.5–8 Here, we
showed conclusively that serum Hcy was positively correlated
with NASH severity in patients, primates and mice. However, it
was not known whether this association was due to intra-
hepatic Hcy or the systemic effects of HHcy. Accordingly, we
examined whether intrahepatic Hcy had a pathogenic role in
NASH by generating Cbs-LKD mice, to specifically increase
intrahepatic Hcy. Cbs-LKD mice fed control diet for 8 weeks
developed early signs of inflammation and fibrosis that were
not evident in null mice fed WDF. Cbs-LKD mice fed WDF for 8
weeks developed accelerated NASH comparable to null mice
fed WDF for 16 weeks. In another experiment, mice fed
WDF+Met to induce HHcy also had more severe NASH than
mice fed WDF alone. These findings were consistent with
previous studies that showed a decreased rate of trans-
methylation of Hcy into Met in NASH.25 An earlier report
showed that mice fed Met- and choline-deficient diet devel-
oped HHcy and NASH.27 Surprisingly, Hcy supplementation
improved the NASH phenotype in these mice. The reason(s) for
the differences between these findings and ours is not known;
however, it is possible that Hcy supplementation helped
replenish intrahepatic Met and SAM, which were depleted by
the Met- and choline-deficient diet and led to unfolded protein
response-related dysfunction.27

We examined the mechanism(s) by which intrahepatic Hcy
induces NASH. One strong contributor to NASH development and
progression may be protein Hcy-lation that regulates protein
activity, function, and stability through ubiquitin-mediated
degradation.3,4 Here, we found progressive increases in hepatic
protein Hcy-lation and ubiquitination during NASH progression
that were associated with an autophagic block. Remarkably, we
found that the Hcy-lation and ubiquitination of an
autophagosome-lysosome fusion protein (Stx17) were increased,
while the total protein expression of Stx17 was reduced during
NASH. Stx17 Hcy-lation also led to the decrease in autophagy
observed during NASH progression,16 and impaired autophagy’s
critical roles in fatty acid b-oxidation, mitochondrial turnover
and quality control, and inflammation that together prevented
lipotoxicity in the liver.28,29

Fol is a substrate for THFR and B12 is a co-factor for Met
synthase (Fig. 1A). Together they play critical roles in the MHTFR
cycle to convert Hcy to Met. Accordingly, we investigated
whether they restored hepatic autophagy and decreased NASH
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progression. Interestingly, Vits or Fol prevented and reversed the
rises in serum Hcy and hepatic SAH levels and increased auto-
phagy in mice fed WDF. This led to increased b-oxidation of fatty
acids, decreased inflammation and fibrosis, and less NASH pro-
gression. These effects were mediated by decreased Hcy-lation of
hepatic proteins in general, and Stx17 in particular. This reduc-
tion in Hcy-lation of Stx17 led to increased Stx17 protein
expression and reversed the late block in autophagy. Addition-
ally, we observed several other proteins that were Hcy-lated
besides Stx17 during NASH, so it is likely that other hepatic cell
functions are dysregulated through Hcy-lation of these proteins.
Currently, we are identifying these Hcy-lated proteins and
characterizing them. Interestingly, Vits of Fol also improved
serum B12 and Fol levels. Since B12 is not synthesized endoge-
nously in mice and humans and most folate is obtained by diet, it
is possible that there could be increased absorption of B12 and Fol
with the reversal of NASH.

Since HHcy correlated with the progression of liver fibrosis in
our dietary model of NASH, it is a potential biomarker for NASH
severity, perhaps in combination with other serum biomarkers
such as ALT, TG, and serum inflammatory cytokines and che-
mokines. Currently, its specificity for NASH is not known.
Nevertheless, our findings suggest that HHcy, particularly in
patients with diabetes, obesity, or other features of metabolic
syndrome, should warrant further investigation for the diagnosis
of NASH. Presently, there are no pharmacological therapies for
the prevention and treatment of NASH. Given their high safety
profiles and their designation as dietary supplements by the FDA,
Vits or Fol could be used as potential first-line therapies for the
prevention and treatment of NASH either by themselves, or in
combination with other drugs, particularly since B12 and Fol
absorption decrease with age and certain types of diets. The low
cost of therapy is attractive since it would represent tremendous
cost savings and health burden reductions for NASH in both
developed and undeveloped countries. We believe that further
clinical studies to examine the effectiveness of Vits and Fol to
prevent and treat NASH are warranted.
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