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STIMULUS-LOCKED TRAVELING WAVES AND BREATHERS IN
AN EXCITATORY NEURAL NETWORK∗

STEFANOS E. FOLIAS† AND PAUL C. BRESSLOFF∗

Abstract. We analyze the existence and stability of stimulus-locked traveling waves in a one-
dimensional synaptically coupled excitatory neural network. The network is modeled in terms of a
nonlocal integro-differential equation, in which the integral kernel represents the spatial distribution
of synaptic weights, and the output firing rate of a neuron is taken to be a Heaviside function of
activity. Given an inhomogeneous moving input of amplitude I0 and velocity v, we derive conditions
for the existence of stimulus-locked waves by working in the moving frame of the input. We use
this to construct existence tongues in (v, I0)-parameter space whose tips at I0 = 0 correspond to the
intrinsic waves of the homogeneous network. We then determine the linear stability of stimulus-locked
waves within the tongues by constructing the associated Evans function and numerically calculating
its zeros as a function of network parameters. We show that, as the input amplitude is reduced, a
stimulus-locked wave within the tongue of an unstable intrinsic wave can undergo a Hopf bifurcation,
leading to the emergence of either a traveling breather or a traveling pulse emitter.
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1. Introduction. Understanding the conditions under which traveling waves of
activity can propagate in cortical neural tissue is becoming an increasingly active
area of research. Experimentally, these waves can be induced by a brief electrical
stimulation of a disinhibited in vitro cortical slice [7, 14, 39, 29, 30]. The underlying
mechanism for the propagation of such waves appears to be synaptic in origin rather
than diffusive, with action potentials traveling along the axons of individual neurons.
Axonal waves are modeled in terms of reaction diffusion equations based on either the
four-variable Hodgkin–Huxley equations [20] or the reduced two-variable FitzHugh–
Nagumo equations [12]. On the other hand, synaptic waves are typically modeled in
terms of nonlocal integro-differential equations of the form [27]

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x|x′)f(u(x′, t))dx′ − βq(x, t) + I(x, t),

1

ε

∂q(x, t)

∂t
= −q(x, t) + u(x, t),(1.1)

where τ is a membrane or synaptic time constant, u(x, t) is a neural field that rep-
resents the local activity of a population of excitatory neurons at position x ∈ R,
I(x, t) is an external input current, f(u) denotes the output firing rate function, and
w(x|x′) is the strength of connections from neurons at x′ to neurons at x. The neu-
ral field q(x, t) represents some form of local negative feedback mechanism such as
spike frequency adaptation or synaptic depression, with β, ε determining the relative
strength and rate of feedback. This form of inhibitory feedback is distinct from non-
local synaptic inhibition, which tends to favor the formation of stationary bumps of

∗Received by the editors September 15, 2004; accepted for publication (in revised form) February
24, 2005; published electronically August 9, 2005.

http://www.siam.org/journals/siap/65-6/61517.html
†Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112 (sfolias

@math.utah.edu, bressloff@math.utah.edu).

2067



2068 STEFANOS E. FOLIAS AND PAUL C. BRESSLOFF

activity rather than traveling waves [38, 1, 28]. The nonlinear function f is typically
taken to be a sigmoid function f(u) = 1/(1 + e−γ(u−κ)) with gain γ and threshold
κ. Since there is strong vertical coupling between cortical layers, it is possible to
treat a thin vertical cortical slice as an effective one-dimensional medium. Analysis
of the model provides valuable information regarding how the speed of a traveling
wave, which is relatively straightforward to measure experimentally, depends on vari-
ous features of the underlying neural tissue [27]. Indeed, one prediction of the model,
concerning how the speed of the wave depends on the firing threshold of the neu-
rons, has recently been confirmed experimentally in disinhibited rat cortical slices
[32]. External electric fields are used to modulate the threshold and thus control wave
propagation.

One of the common assumptions in the analysis of traveling wave solutions of (1.1)
is that the system is spatially homogeneous, that is, that the external input I(x, t) is
independent of both x and t and the synaptic weights depend only on the distance
between presynaptic and postsynaptic cells, w(x|x′) = w(x − x′). The existence of
traveling waves can then be established for a class of positive, bounded weight distri-
butions w(x) that includes the exponential function (2d)−1e−x/d, where d determines
the range of synaptic coupling. For appropriate choices of network parameters, one
finds that a single right- or left-moving traveling front exists in the absence of any
feedback [4, 9, 21], whereas a pair of right- or left-moving traveling pulses exists when
there is significant feedback [27]; numerically it is found that the faster pulse is stable,
whereas the slower pulse is unstable. Following the original work of Amari [1], exact
traveling wave solutions can be constructed by taking the high gain limit γ → ∞, for
which f(u) = H(u − κ), where H is the Heaviside step function; that is, H(u) = 1
if u ≥ 0 and H(u) = 0 if u < 0. The stability of traveling wave solutions of (1.1)
in the case of a Heaviside firing rate function has recently been analyzed by Zhang
[42, 43] using an Evans function approach. This is a technique for analyzing wave
stability in unbounded domains that was originally developed within the context of
reaction diffusion equations describing the axonal propagation of action potentials
[10, 11, 22]. The basic idea is to linearize the full nonlinear equations about the
traveling wave solution and to construct a complex analytic function known as the
Evans function, whose zeros correspond to the point spectrum of the associated linear
operator. Having established that the essential spectrum lies in the left-half complex
plane, the wave is linearly stable if no eigenvalues have a positive real part and the
zero eigenvalue is simple; the existence of the latter reflects the translation invariance
of the system. Evans functions have now been applied to a variety of dissipative and
Hamiltonian PDE systems [35], as well as a number of nonlocal integrodifferential
equations [42, 43, 23, 34]. In the case of traveling wave solutions of (1.1), Zhang
[42] derived an analytical expression for the Evans function using a variation of the
parameters method to solve the inhomogeneous ordinary differential equation arising
from linearization about the traveling wave solution. In the scalar case (zero feed-
back), the eigenvalues can be calculated explicitly and the associated front shown to
be stable. On the other hand, for the full vector equation (1.1), it has been possible
to prove stability of the fast traveling pulse only in the singular limit of slow feedback
(small ε). However, one can still numerically evaluate the zeros of the Evans function
outside this regime. This has been implemented by Coombes and Owen [8], who have
extended the Evans function approach of Zhang [42] to a more general class of network
models that incorporates discrete axonal delays and dendritic processing.

We have recently been interested in the effects of stationary inhomogeneous inputs
on wave propagation and its failure in excitatory networks described by (1.1). As one
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might expect intuitively, a sufficiently large variation in input blocks wave propagation
(in one dimension) by spatially pinning the activity of the network. In particular, a
step input or ramp results in a stationary front, whereas a local Gaussian input
induces a stationary pulse. We have analyzed the stability of these stationary solutions
for a Heaviside firing rate function, and shown how reducing the amplitude of the
input can induce a Hopf bifurcation leading to the formation of a stable, spatially
localized oscillatory solution, or breather [5, 13]. In the case of fronts, we have further
shown that there is a critical level of negative feedback at which the homogeneous
system undergoes a symmetry-breaking front bifurcation, whereby a stationary front
loses stability and bifurcates into a pair of stable counterpropagating fronts. The
front bifurcation acts as an organizing center for the formation of a breather in the
presence of a weak input inhomogeneity [13]. Analogous results have been found
for fronts [36, 18, 19, 2, 31] and pulses [33] in reaction diffusion systems. One of the
potential difficulties in experimentally testing our predictions regarding input-induced
coherent oscillations in cortical slices is that persistent currents tend to destroy the
neurons. Although it might be possible to circumvent this problem using other forms
of stimulation such as external electric fields [32], an alternative strategy is to consider
the effects of moving stimuli. This is also more realistic from the perspective of the
intact cortex, which is constantly being bombarded by nonstationary sensory inputs.

In this paper we extend the Evans function approach of Zhang [42] and our own
previous work on stationary inhomogeneous inputs, in order to analyze the existence
and stability of traveling waves locked to a moving input of constant speed v. In order
to construct exact traveling wave solutions, we follow previous treatments [1, 27, 42]
by considering a Heaviside firing rate function and a homogeneous weight distribution,
for which (1.1) becomes

τ
∂u(x, t)

∂t
= −u(x, t) − βq(x, t) +

∫ ∞

−∞
w(x− x′)H(u(x′, t) − κ)dx′ + I(x− vt),

1

ε

∂q(x, t)

∂t
= −q(x, t) + u(x, t).(1.2)

We assume throughout that w(x) is a positive symmetric function that is monotoni-
cally decreasing on [0,∞) and satisfies the normalization condition

∫∞
−∞ w(x)dx < ∞.

The input is written as I(x−vt) = I0 χ(x−vt), with χ a fixed spatial profile that is ei-
ther a bounded monotonically decreasing function in the case of fronts, or a unimodal
Gaussian-like function in the case of pulses. The input amplitude I0 and velocity v
are treated as bifurcation parameters. Working in the moving frame of the input, we
derive threshold-crossing conditions for the existence of a stimulus-locked wave, and
use this to construct existence tongues in (v, I0)-parameter space whose tips at I0 = 0
correspond to the intrinsic waves of the homogeneous network, assuming that the lat-
ter exist. In the particular case of an exponential weight distribution, we show that
there are two tongues in the positive v domain, corresponding to an unstable/stable
pair of right-moving intrinsic waves. We determine the stability of the waves within
these existence tongues by first constructing the Evans function for a general weight
distribution w satisfying the properties listed below (1.2) and then numerically cal-
culating the zeros of the Evans function for the exponential weight distribution. We
show that as the input is reduced, a stimulus-locked wave within the tongue of the
unstable intrinsic wave can undergo a Hopf bifurcation leading to the emergence of a
traveling oscillatory wave. The latter takes the form of a breather or a pulse emitter
in the moving frame of the stimulus. In the limit v → 0 our results reduce to those
previously obtained for stationary inputs [6, 13].
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Note that analogous wave instabilities have been found in a scalar network with
asymmetric lateral inhibition [40]. Such a network consists of a Mexican hat weight
function w◦ that models short-range excitation and long-range inhibition, which is
shifted asymmetrically from the center such that w(x|x′) = w◦(x − x′ − s) for some
fixed displacement s. This displacement introduces a form of directional selectivity, in
which the network responds preferentially to stimuli moving in a particular direction,
and has thus been suggested as a possible recurrent mechanism for the directional
selectivity of neurons in visual cortex [37, 25]. Xie and Giese [40] have analyzed the
existence and stability of stimulus-locked pulses in an asymmetric lateral inhibition
network. They effectively construct the associated Evans function, although they
do not identify it as such, and show how the pulse can destabilize when the stimulus
velocity differs significantly from the natural velocity of unidirectional intrinsic waves;
this instability generates a transition to a so-called lurching wave. Yet another neural
system in which a traveling pulse can undergo a Hopf bifurcation leading to the
formation of lurching waves is a synaptically coupled integrate-and-fire network with
discrete axonal delays [15, 16]. Here a pulse consists of a single propagating spike, and
the instability is due to fluctuations in the sequence of neuronal firing times, which
start to grow at a critical value of the delay [3]. This example applies to intrinsic
waves in a homogeneous network.

The structure of the paper is as follows. In order to illustrate the general ap-
proach, we begin by considering the simpler case of zero negative feedback (β = 0),
for which (1.1) reduces to a scalar equation in u (section 2). The corresponding
existence tongues for stimulus-locked fronts and their stability can be completely de-
termined analytically. We next consider the existence of stimulus-locked pulses in the
full vector system (1.1), numerically solving a set of nonlinear functional equations in
order to construct the associated tongues (section 3). We then develop the linear sta-
bility analysis of stimulus-locked pulses in order to determine the stability of solutions
within the tongues (section 4). Finally, we present numerical simulations illustrating
the formation of traveling breathers and pulse emitters. Although we focus on travel-
ing pulses rather than fronts in the case of the full system (1.1), it is straightforward
to carry over our results to the case of stimulus-locked fronts, as briefly reported else-
where [6]. Throughout the paper we work with dimensionless units. The fundamental
time scale is taken to be the membrane time constant τ , which is assumed to be of the
order 10 msec. The fundamental length scale is taken to be in the range d of synaptic
coupling, which can vary from a few hundred micrometers to a few millimeters.

2. Stimulus-locked traveling fronts in a scalar equation. In this section
we carry out a complete analysis of the existence and stability of stimulus-locked
fronts in a scalar version of (1.2). As an illustrative example, we construct tongue
diagrams for an exponential weight distribution, showing how the existence regions of
fronts in the (v, I0)-plane deform as the threshold κ is varied. We also establish that
the fronts within the existence tongues are always stable.

2.1. Existence of stimulus-locked fronts. Consider

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)H(u(y, t) − κ)dy + I(x− vt),(2.1)

where the input is taken to be a positive bounded monotonic function. We seek
traveling front solutions of the form u(x, t) = U(ξ), where ξ = x− vt and

U(ξ) > κ, ξ < ξ0; U(ξ0) = κ; U(ξ) < κ, ξ > ξ0,
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for some ξ0 ∈ R. The wave of excitation is assumed to travel at the same velocity
as the input, though the relative positions of the active region (above threshold) and
the input may vary with respect to the velocity and the input strength. Thus, the
active region is locked to the input but may precede or succeed the input in position.
We take U ∈ C1(R,R), where Cn(R,R) denotes the set of all n-times continuously
differentiable functions f : R −→ R that are bounded with respect to the sup norm.
If I0 = 0, then the system is translationally invariant and ξ0 becomes a free parameter.
In this case we refer to traveling waves as intrinsic or natural waves. The profile of
the front is determined according to

−v
dU(ξ)

dξ
= −U(ξ) +

∫ ξ0

−∞
w(ξ − η)dη + I(ξ).(2.2)

Setting

W (ξ) =

∫ ξ

−∞
w(η)dη,

we can integrate (2.2) over [ξ,∞) for v > 0 to obtain

U(ξ) =
1

v

∫ ∞

ξ

e(ξ−η)/vNe(η; ξ0)dη,

where

Ne(ξ; ξ0) = 1 −W (ξ − ξ0) + I(ξ).

We are assuming that w is normalized such that
∫∞
−∞ w(η)dη = 1. Similarly, for v < 0

we integrate over (−∞, ξ] to find

U(ξ) = −1

v

∫ ξ

−∞
e(ξ−η)/vNe(η; ξ0)dη.

The threshold condition for the existence of a stimulus-locked front is κ = U(ξ0).
As a specific example, we consider a Heaviside input I(ζ) = I0H(−ζ) and an

exponential weight function

w(x) =
1

2d
e−|x|/d,(2.3)

with the length scale fixed by setting d = 1. The resulting threshold condition is

κ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2(1 + v)
+

⎧⎨
⎩

0, ξ0 ≥ 0,

I0(1 − eξ0/v), ξ0 < 0,

⎫⎬
⎭ v > 0,

1 + 2|v|
2(1 + |v|) +

⎧⎨
⎩

I0e
ξ0/v, ξ0 > 0,

I0, ξ0 ≤ 0,

⎫⎬
⎭ v < 0.

(2.4)

In the absence of an input (I0 = 0), the threshold condition reduces to

κ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2(1 + v◦)
, v ≥ 0,

1 + 2|v◦|
2(1 + |v◦|)

, v < 0,
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where v◦ is the natural speed of the wave. Solving for v◦ in terms of κ, we find that
v◦ is a sigmoidal function of κ:

v◦(κ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 − κ

κ
, 0 < κ ≤ 1

2 ,

1
2 − κ

(κ− 1)
, 1

2 < κ < 1.

The homogeneous network supports a stationary natural front (v◦ = 0) when κ = 1
2 ,

a front moving to the right for 0 < κ < 1
2 , and front moving to the left for 1

2 < κ < 1.
Moreover, v◦ → ∞ as κ → 0 and v◦ → −∞ as κ → 1. It does not support a natural
front when κ > 1, as any heteroclinic orbit joining the equilibrium {0, 1} at infinity
does not satisfy the threshold behavior used to define a traveling front solution. This
recovers a result from [9].

We now analyze (2.4) for I0 > 0 in order to determine the regions of the (v, I0)-
parameter subspace for which stimulus-locked waves exist. We first consider the case
v > 0. For ξ0 ≥ 0 we have the threshold condition

κ =
1

2(1 + v)
,

and hence there are infinitely many waves parameterized by ξ0 ∈ [0,∞), all of which
travel with the natural speed v = 1−2κ

2κ for 0 < κ < 1
2 . This degeneracy is a con-

sequence of using the Heaviside input and would not occur if a continuous strictly
monotonic input were used; however, the analysis is considerably more involved. For
ξ0 < 0 we have instead

κ =
1

2(1 + v)
+ I0(1 − eξ0/v).

As the right-hand side is monotonic in ξ0, we can solve for ξ0 as a function of v to
obtain

ξ0(v) = v ln

[
1 − 1

I0

(
κ− 1

2(1 + v)

)]
.

Since ξ0 < 0 and v > 0, we see that solutions exist only if

0 < 1 − 1

I0

(
κ− 1

2(1 + v)

)
≤ 1

or, equivalently,

2(κ− I0) <
1

1 + v
≤ 2κ.(2.5)

The right inequality of (2.5) implies that, if κ < 1
2 , then v > v◦(κ), where v◦ is the

corresponding natural velocity. Similarly, the left inequality implies that, if I0 < κ,
then 0 < v < v1(κ − I0), with v1(s) = 1

2s − 1. Hence, for 0 < κ ≤ 1
2 we obtain the

existence regions in the (v, I0)-plane shown in Figure 2.1(a)–(b). The left boundary
is given by v = v◦(κ) and the right boundary by v = v1(κ− I0). The two boundaries
form a tongue that emerges from the natural speed v◦(κ) at I0 = 0.
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Fig. 2.1. Deformation of existence regions (gray) for stimulus-locked traveling fronts as κ
varies in the scalar equation. Particular values of κ are as follows: (a) κ = 0.125, (c) κ = 0.95, (e)
κ = 1.25.

Now consider v < 0. For ξ0 < 0 we have the threshold condition

κ =
1 + 2|v|

2(1 + |v|) + I0,

which implies

|v| =
1 − 2(κ− I0)

2(κ− I0 − 1)
≡ v2(κ− I0).

Again we have an infinite family of waves corresponding to a single speed. Since
|v| ≥ 0, such solutions exist only for

κ− 1 < I0 < κ− 1

2
.

On the other hand, for ξ0 ≥ 0 we have the threshold condition

κ =
1 + 2|v|

2(1 + |v|) + I0e
ξ0/v.

Monotonicity of the right-hand side again allows us to solve for ξ0(v) to find

ξ0(v) = v ln

[
1

I0

(
κ− 1 + 2|v|

2(1 + |v|)

)]
,

and, since v < 0 and ξ0 ≥ 0, it follows that waves exist only for v satisfying

κ− I0 ≤ 1 + 2|v|
2(1 + |v|) < κ.(2.6)

The right inequality of (2.6) implies that if 1
2 < κ < 1, then v◦(κ) < v < 0. Thus, for

1
2 < κ < 1 we obtain the existence region shown in Figure 2.1(c); the left boundary
is given by v = v0(κ) and the right boundary by v = v2(κ − I0) for v < 0 and
v = v1(κ− I0) for v > 0. Again there is a tongue with tip at the natural speed. For
κ > 1 the left boundary disappears, and one finds stimulus-locked waves only when
I0 > κ− 1, i.e., when there no longer exist natural waves. The left inequality of (2.6)
implies that if 1

2 < κ − I0 < 1, then v < v2(κ − I0) < 0, whereas if κ − I0 > 1, then
no solution exists. For all κ > 1 the region of existence is identical to that for κ = 1,
though it is shifted vertically by κ− 1, as shown in Figure 2.1(d)–(e).
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2.2. Stability of stimulus-locked fronts. Consider the evolution of small
smooth perturbations ϕ̄ of the stimulus-locked front solution U . Linearizing (2.1)
about the wave, the perturbations evolve according to

∂ϕ̄

∂t
− v

∂ϕ̄

∂ξ
+ ϕ̄ =

∫
R

w(ξ − η)H ′(U(η) − κ)ϕ̄(η)dη.(2.7)

Separating variables, ϕ̄(ξ, t) = ϕ(ξ)eλt, we find that ϕ ∈ C1(R,C) satisfies the eigen-
value problem

(L + Ns)ϕ = λϕ,(2.8)

where

Lϕ = v
∂ϕ

∂ξ
− ϕ, Nsϕ (ξ) =

w(ξ − ξ0)

|U ′(ξ0)|
ϕ(ξ0).(2.9)

We need to characterize the spectrum of the linear operator L + Ns : C1(R,C) −→
C0(R,C) in order to determine the linear stability of the traveling pulse. The following
definitions concern linear operators T : D(T) −→ B, where B is a Banach space and
the domain D(T) of T is dense in B [41]. In our case D(L + Ns) = C1(R,C), which is
dense in C0(R,C). λ is in the resolvent set ρ if λ ∈ C is such that T − λ has a range
dense in B and a continuous inverse (T − λ)−1; otherwise λ is in the spectrum σ. We
decompose the spectrum into the following disjoint sets: λ is an element of the point
spectrum σp if T − λ is not invertible; λ is an element of the continuous spectrum σc

if T − λ has an unbounded inverse with domain dense in B; λ is an element of the
residual spectrum σr if T − λ has an inverse (bounded or not) whose domain is not
dense in B. We refer to elements of the point spectrum as eigenvalues and the union
of the continuous and residual spectra as the essential spectrum.

Regarding the essential spectrum, we mention that Ns is a compact linear opera-
tor. The consequence is that, since Ns is compact, the operators L + Ns and L have
the same essential spectra [24, 23]. To see that the operator is compact, we define Ns

by the composition TS, where

Sϕ = ϕ(ξ0), (T z)(ξ) =
w(ξ − ξ0)

|U ′(ξ0)|
z.

Since S : C1(R,C) −→ C has a finite-dimensional range, it is a compact linear operator.
Moreover, since T : C −→ C0(R,C) is a bounded linear operator, it follows that the
composition TS is a compact linear operator.

Resolvent and the point spectrum. We seek to construct a bounded inverse by
solving the inhomogeneous equation

(L + Ns − λ)ϕ = −f,(2.10)

where f ∈ C0(R,C), using a variation of parameters approach along the lines of Zhang
[42]. We write (2.10) as

∂

∂ξ

(
e−( 1+λ

v )ξ ϕ(ξ)
)

= −1

v
e−( 1+λ

v )ξ
(
Nsϕ(ξ) + f(ξ)

)
.(2.11)

For Re(λ)+1
v > 0, integrating (2.11) over [ξ,∞) yields

ϕ(ξ) − Λ+(λ; ξ)ϕ(ξ0) = Hf (ξ),(2.12)
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where

Λ+(λ; ξ) =
1

v|U ′(ξ0)|

∫ ∞

ξ

w(η − ξ0)e
( 1+λ

v )(ξ−η)dη,

Hf (ξ) =
1

v

∫ ∞

ξ

e(
1+λ
v )(ξ−η)f(η)dη.

Using the Hölder inequality, it can be shown that both Λ+(λ; ξ) and Hf (ξ) are
bounded for all ξ ∈ R and f ∈ C0(R,C). It is then seen from (2.12) that ϕ(ξ) is
determined by its restriction ϕ(ξ0), in which case we obtain

(1 − Λ+(λ; ξ0))ϕ(ξ0) =
1

v

∫ ∞

ξ0

e(
1+λ
v )(ξ−η)f(η)dη.

This can be solved for ϕ(ξ0) and hence for ϕ(ξ) if and only if

1 − Λ+(λ; ξ0) �= 0.

This results in a bounded inverse which is defined on all of C0(R,C), and therefore
all corresponding λ are in the resolvent set. On the other hand, we cannot invert the
operator for λ such that

1 − Λ+(λ; ξ0) = 0.

In this case

(L + Ns − λ)ϕ = 0(2.13)

has nontrivial solutions, indicating that λ is in the point spectrum. Moreover, if we
define the function

E+(λ; ξ0) = 1 − Λ+(λ; ξ0),
Re(λ) + 1

v
> 0,

we see that eigenvalues form the zero set. Similarly for Re(λ)+1
v < 0, integrating (2.11)

over (−∞, ξ0] yields a similar condition for the existence of eigenfunctions

1 = Λ−(λ, ξ0),
Re(λ) + 1

v
< 0,

where

Λ−(λ; ξ) = − 1

v|U ′(ξ0)|

∫ ξ

−∞
w(η − ξ0)e

( 1+λ
v )(ξ−η)dη.(2.14)

The Evans function is then defined as

E(λ; ξ0) = 1 − Λ±(λ; ξ0),
Re(λ) + 1

v
≷ 0.
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Essential spectrum. Since Ns does not contribute to the essential spectrum of
L + Ns, we need only calculate the essential spectrum of the linear operator L. The
essential spectrum is the set of λ = −1 + ivρ, where ρ ∈ R. Since this has negative
real part, the essential spectrum does not contribute to any wave instabilities. We
demonstrate that, for these values of λ, there exist bounded functions for which the
inverse operator (L−λ)−1 becomes unbounded, indicating that λ is a member of the
continuous spectrum.

Suppose that λ = −1 + ivρ, and consider the sequence of bounded functions [43]

ϕm(ξ) = (1 − e−ξ2/2m2

)eiρξ, m ∈ N,

for which

‖ϕm‖∞ = 1 ∀ m ∈ N, ρ ∈ R.

However,

(L − λ)ϕm(ξ) =
v

m2
ξe−ξ2/2m2

eiρξ,

which implies that∥∥∥(L − λ)ϕm

∥∥∥
∞

=
v

m2

∥∥∥ξe−ξ2/2m2
∥∥∥
∞

−→ 0 as m −→ ∞.

Hence, (L − λ)−1 is unbounded, and the set of λ = −1 + ivρ, where ρ ∈ R, form the
essential spectrum. The residual spectrum in this case is empty, though we shall see
that the vector system does, in fact, have a nonempty residual spectrum.

Evans function for an exponential weight distribution. We now explicitly calcu-
late the zeros of the Evans functions for a Heaviside input and exponential weight
distribution. The region in the complex plane D = {z : Re(z) > −1} is the domain
of the Evans function E+, and we need only consider this region to determine the
stability of the wave. For v > 0 and λ ∈ D,

E+(λ, ξ0) = 1 − 1

v|U ′(ξ0)|

∫ ∞

ξ0

w(η − ξ0)e
( 1+λ

v )(ξ0−η)dη

= 1 − 1

2(1 + λ + v)

1

|U ′(ξ0)|
,

and similarly for v < 0 and λ ∈ D,

E−(λ, ξ0) = 1 +
1

v|U ′(ξ0)|

∫ ξ0

−∞
w(η − ξ0)e

( 1+λ
v )(ξ0−η)dη

= 1 +
1

2(1 + λ + v)

1

|U ′(ξ0)|
.

Note that this recovers the Evans function obtained by Zhang [42] in the case of a
homogeneous input. From this we can directly solve E±(λ; ξ0) = 0 for λ:

λ = − (1 + |v|) +
1

2|U ′(ξ0)|
, v ∈ R,(2.15)
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with U ′(ξ0) determined from (2.2),

U ′(ξ0) =
1

v

(
U(ξ0) −

∫ ξ0

−∞
w(ξ0 − η)dη − I(ξ0)

)

=
1

v

(
κ− 1

2
− I(ξ0)

)

and κ satisfying the self-consistency conditions (2.4).
In the case I0 = 0 the eigenvalues are given by

λ = −(1 + |v|) +
|v|

2
∣∣κ− 1

2

∣∣ , v ∈ R,(2.16)

where v is the natural wave speed. Substituting (2.4) into (2.16), we find that the
only eigenvalue in D is the zero eigenvalue λ = 0. Moreover, it can be shown that the
eigenvalue is simple [42] and hence that the natural front is linearly stable, modulo
uniform translations.

In the case of an inhomogeneous input (I0 > 0), we have to deal with each of the
separate subdomains of the threshold conditions (2.4). First, for v > 0, ξ0 > 0 we
notice that I(ξ0) = 0 and κ is identical to the case of a natural wave; hence, λ = 0 is
the only eigenvalue in D. If v > 0, ξ0 < 0, substituting (2.4) for κ into (2.15) yields
the eigenvalue

λ = −1 − v +
v

2|κ− 1
2 − I0|

= (1 + v)

[
−1 +

v∣∣v + 2(1 + v)I0(1 − eξ0/v)
∣∣
]
.

Since I0(1 − eξ0/v) > 0 for all v > 0, ξ0 < 0, I0 > 0, it follows that λ < 0 and the
corresponding front is always stable. On the other hand, if v < 0 and ξ0 < 0, we
find λ = 0, again indicating stability with respect to the degenerate family of waves
corresponding to the boundary of the tongue. For ξ0 > 0 we similarly calculate

λ = (1 + |v|)
[
−1 +

|v|∣∣|v| + 2(1 + |v|)I0eξ0/v
∣∣
]
.

Since 2(1 + |v|)I0eξ0/v > 0 for v < 0, ξ0 > 0, I0 > 0, it again follows that λ < 0 and
the corresponding front is always stable.

3. Stimulus-locked traveling pulses in the vector system. In this section
we construct stimulus-locked traveling pulse solutions of (1.2) in the case of a uni-
modal input moving with constant velocity v. We first derive the formal solution for a
general weight distribution w, and then use this to construct existence tongues in the
(v, I0)-plane for an exponential weight distribution and a Gaussian input of ampli-
tude I0.

3.1. Existence of stimulus-locked pulses. Consider a traveling pulse that
is generated by, and locked to, an inhomogeneous input I traveling with constant
speed v. Such a wave has permanent or stationary form; i.e., it translates as a rigid
structure. Define the traveling wave coordinates (ξ, t), where ξ = x − vt and v is
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the velocity associated with the input. A stimulus-locked traveling pulse is a pair of
functions (U,Q), with U,Q ∈ C1(R,R), which in traveling wave coordinates satisfy
the conditions

U(ξi) = κ, i = 1, 2; U(ξ) −→ 0 as ξ −→ ±∞;

U(ξ) > κ, ξ1 < ξ < ξ2; U(ξ) < κ, otherwise,

with ξ1, ξ2 defining the points at which the activity U crosses threshold. Taking
u(x, t) = U(x− vt) and q(x, t) = Q(x− vt), the profile of the pulse is governed by

−v Uξ = −U − βQ +

∫ ξ2

ξ1

w(ξ − η)dη + I(ξ),

−v

ε
Qξ = −Q + U.

In general, we take the excitatory weight function w(x) to be nonnegative, continuous,
symmetric in x, and monotonically decreasing in |x|. Let s = (U,Q)T and W denote
an antiderivative of w; we can rewrite the system more compactly as

Ls ≡
(

vUξ − U − βQ
vQξ + εU − εQ

)
= −

(
Ne

0

)
,(3.1)

where

Ne(ξ) = W (ξ − ξ1) −W (ξ − ξ2) + I(ξ).(3.2)

We use variation of parameters to solve this linear equation. The homogeneous
problem Ls = 0 has the two linearly independent solutions,

S+(ξ) =

(
β

m+−1

)
exp(μ+ξ), S−(ξ) =

(
β

m−−1

)
exp(μ−ξ),

where

μ± =
m±

v
, m± =

1

2

(
1 + ε±

√
(1 − ε)2 − 4εβ

)
.

We set

s(ξ) =
[
S+

∣∣S−

]( a(ξ)
b(ξ)

)
,

where a, b ∈ C1(R,R) and [A|B] denotes the matrix whose first column is defined by
the vector A and whose second column is defined by the vector B. Since LS± = 0,
(3.1) becomes

[
S+

∣∣S−

] ∂

∂ξ

(
a(ξ)
b(ξ)

)
= −1

v

(
Ne(ξ)

0

)
.(3.3)

Since [S+|S−] is invertible, we find

∂

∂ξ

(
a(ξ)
b(ξ)

)
= − 1

vβ(m+ −m−)

[
Z+

∣∣Z−

]T(Ne(ξ)
0

)
,
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where

Z+(ξ) =

(
1−m−

β

)
exp(−μ+ξ), Z−(ξ) = −

(
1−m+

β

)
exp(−μ−ξ).

For v > 0, we integrate over [ξ,∞) to obtain(
a(ξ)
b(ξ)

)
=

(
a∞
b∞

)
+

1

vβ(m+ −m−)

∫ ∞

ξ

[
Z+

∣∣Z−

]T(Ne(η)
0

)
dη,

where a∞, b∞ denote the values of a(ξ), b(ξ) as ξ −→ ∞. Thus

s(ξ) =
[
S+

∣∣S−

](
a∞
b∞

)
+

1

vβ(m+ −m−)

[
S+

∣∣S−

] ∫ ∞

ξ

[
Z+

∣∣Z−

]T(Ne(η)
0

)
dη.

(3.4)

Using the Hölder inequality and that Ne ∈ C0(R,R), it is straightforward to show
that the integral term in (3.4) is bounded for all ξ ∈ R; hence, a bounded solution s
exists only if a∞ = b∞ = 0. The general stimulus-locked pulse is given by

s(ξ) =
1

vβ(m+ −m−)

[
S+

∣∣S−

] ∫ ∞

ξ

[
Z+

∣∣Z−

]T(Ne(η)
0

)
dη.

Furthermore, if we define the functions

M±(ξ) =
1

v(m+ −m−)

∫ ∞

ξ

eμ±(ξ−η)Ne(η)dη,

we can express the solution (U,Q) as follows:

U(ξ) = (1 −m−)M+(ξ) − (1 −m+)M−(ξ),(3.5)

Q(ξ) = β−1(m+ − 1)(1 −m−)
[
M+(ξ) − M−(ξ)

]
.(3.6)

Since Ne(ξ) is dependent upon ξ1, ξ2, the threshold conditions U(ξi) = κ, where
i = 1, 2 and ξ1 < ξ2, determine the relationship between the input strength I0 and
the position of the pulse relative to the input I. This provides the following consistency
conditions for the existence of a stimulus-locked traveling pulse, which, we note, reduce
to the case of natural waves for I0 = 0:

κ = (1 −m−)M+(ξ1) − (1 −m+)M−(ξ1),(3.7)

κ = (1 −m−)M+(ξ2) − (1 −m+)M−(ξ2).(3.8)

3.2. Pulses for an exponential weight distribution. Consider, in particular,
an exponential weight distribution given by (2.3) with d = 1 and a Gaussian input

I(x) = I0 e
−(x/σ)2 .(3.9)

Existence conditions determined from (3.7) and (3.8) yield the following system of
nonlinear equations that determines the relationship between the input parameters
(v, I0) and the threshold points (ξ1, ξ2):

κ = K(ξ1 − ξ2) + T+(ξ1) − T−(ξ1),(3.10)

κ = J(ξ1 − ξ2) + T+(ξ2) − T−(ξ2),(3.11)
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Fig. 3.1. Bifurcation curves for the existence of natural traveling pulses (I0 = 0) for the vector
system (1.2) in (a) the (ε, a)-plane and (b) the (ε, v)-plane, illustrating that natural waves exist only
for small ε. Here a = ξ2 − ξ1 denotes the width of a pulse. The stable branch (black), characterized
by wide (large a), fast pulses, and the unstable branch (gray), characterized by narrow, slow pulses,
annihilate in a saddle-node bifurcation at a critical value εc. In this case κ = 0.3, β = 2.5, and
εc ≈ 0.341.

where

K(ζ) = K0 + K1e
ζ −K+e

μ+ζ + K−e
μ−ζ , J(ζ) =

v + ε

2(v + m+)(v + m−)

(
1 − eζ

)
,

K1 =
1

2

v − ε

(v −m+)(v −m−)
, K± =

v2(1 −m∓)

m±(v2 −m±
2)(m+ −m−)

,

K0 =

(
(1 −m−)(2v + m+)

2m+(v + m+)(m+ −m−)

)
−
(

(1 −m+)(2v + m−)

2m−(v + m−)(m+ −m−)

)
,

T±(ζ) =

√
π σI0
2 v

(
1 −m∓

m+ −m−

)
exp

(
(μ±σ)2

4
+ μ±ζ

)
erfc

(
ζ

σ
+

μ±σ

2

)
,

and erfc(z) denotes the complementary Error function.
Natural traveling pulses (I0 = 0). Numerically solving (3.10) and (3.11) for I0 =

0, we find that for sufficiently small ε there exists a pair of traveling pulses arising
from a saddle-node bifurcation. Numerical simulations suggest that the larger and
faster pulse is stable while the smaller slower pulse is unstable and acts as a separatrix
between the fast pulse and the rest state [27]. Zhang’s analysis has shown the fast
pulse to be stable in the singular limit ε −→ 0 [42]. In Figure 3.1 we present bifurcation
diagrams using ε as a bifurcation parameter to demonstrate the existence and stability
of natural waves; stability is determined by numerically solving for the zero set of the
Evans function, constructed in section 4.2. It is found that the larger, faster wave is
stable (black), while the smaller, slower wave is unstable (gray).

Stimulus-locked traveling pulses. Numerically solving (3.10) and (3.11) for I0 > 0,
we can determine the regions in the (v, I0)-plane where one or more stimulus-locked
waves exist. First, performing a continuation from the pair of natural waves, we
generate a corresponding pair of existence tongues with tips at I0 = 0. These are
illustrated in Figure 3.2 with the left-hand (right-hand) tongue emerging from the
unstable (stable) natural wave. We then note that the left-hand tongue includes
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Fig. 3.2. Regions of existence of the stimulus-locked traveling pulses in the (v, I0)-plane for
σ = 1.0, κ = 0.3, ε = 0.03, and β = 2.5. The left and right regions form tongues that issue from the
unstable vu and stable vs natural traveling pulses, respectively. The Hopf curve within the left-hand
tongue is shown in gray. Stationary pulses correspond to the intersection of the tongue and the line
v = 0.

stationary pulses at v = 0. In previous work we have shown how a stationary unimodal
input can generate a stable stationary pulse that bifurcates to a stable breather via a
Hopf bifurcation as the input amplitude is reduced [5, 13]. In section 4 we construct
the associated Evans function for traveling pulses within the tongue regions and use
this to determine the stability of stimulus-locked pulses. We find that there is a Hopf
curve within the left-hand tongue that is a continuation of the Hopf bifurcation point
for stationary pulses (v = 0); this is shown in Figure 3.2 by the gray curve. Above
the Hopf curve the pulse is stable, while it is unstable below. On the other hand
the pulse within the right-hand tongue is always stable. Finally, note that there also
exist additional stimulus-locked pulse solutions in certain subregions inside as well as
outside of the tongues; however, these are found to be always unstable.

4. Stability of the stimulus-locked traveling pulse. We begin by analyzing
the resolvent and the spectrum of the operator associated with the linearization of
the vector system (1.2) about the general stimulus-locked traveling pulse constructed
in section 3.1. This analysis indicates that potential instabilities arise only due to the
behavior of eigenvalues, which can be determined by calculation of the zero set of the
Evans function. We then present the explicit construction of the Evans function for
the stimulus-locked traveling pulse in the particular case of the exponential weight
distribution, and calculate the zero sets of this Evans function for the pulse existence
tongues shown in Figure 3.2, thereby determining their stability.

4.1. Spectral analysis of the linearized operator. Consider the evolution
of small smooth perturbations of the stimulus-locked traveling pulse with stationary
form (U,Q),

u = U + ϕ̄,

q = Q + ψ̄.
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Substituting into the system expressed in traveling wave coordinates and linearizing,
we find that the perturbations, to first order, satisfy

∂ϕ̄

∂t
− v

∂ϕ̄

∂ξ
+ ϕ̄ + βψ̄ =

∫
R

w(ξ − η)H ′(U(η) − κ)ϕ̄(η)dη,(4.1)

∂ψ̄

∂t
− v

∂ψ̄

∂ξ
− εϕ̄ + εψ̄ = 0.(4.2)

Separating variables, (
ϕ̄(ξ, t)
ψ̄(ξ, t)

)
=

(
ϕ(ξ)
ψ(ξ)

)
eλt,(4.3)

the spatial components ϕ,ψ ∈ C1(R,C) satisfy the spectral problem

(L + Ns)

(
ϕ
ψ

)
= λ

(
ϕ
ψ

)
,(4.4)

where

L = v
∂

∂ξ
− A, A =

[
1 β
−ε ε

]
,(4.5)

Ns

(
ϕ
ψ

)
=

( w(ξ−ξ1)
|U ′(ξ1)| ϕ(ξ1) + w(ξ−ξ2)

|U ′(ξ2)| ϕ(ξ2)

0

)
.(4.6)

Resolvent and the point spectrum. Letting z = (ϕ,ψ)T , we seek to construct a
bounded inverse by solving

(L + Ns − λ)z = −f ,

where f = (f1, f2)
T and f1, f2 ∈ C0(R,C). Following the variation of parameters

approach of Zhang [42], we find that the linearly independent solutions of the homo-
geneous problem (L − λ)φ = 0 are

Φ+(ξ, λ) =

(
β

m+−1

)
e

(
λ+m+

v

)
ξ,

Φ−(ξ, λ) =

(
β

m−−1

)
e

(
λ+m−

v

)
ξ,

in which case we set

z(ξ) =
[
Φ+

∣∣Φ−

]( ā(ξ)
b̄(ξ)

)
.

Subsequently, the coefficient functions are determined according to[
Φ+

∣∣Φ−

] ∂

∂ξ

(
ā
b̄

)
= −1

v

(
Nsz + f

)
.(4.7)

Inversion of [Φ+|Φ−] leads to

∂

∂ξ

(
ā
b̄

)
= − 1

vβ(m+ −m−)

[
Ψ+

∣∣Ψ−

]T(
Nsz + f

)
,(4.8)
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where

Ψ+(ξ, λ) =

(
1−m−

β

)
e−

(
λ+m+

v

)
ξ,

Ψ−(ξ, λ) = −
(

1−m+

β

)
e−

(
λ+m−

v

)
ξ.

For Re(λ) > −m−, we integrate over [ξ,∞) to obtain(
ā(ξ)
b̄(ξ)

)
=

(
ā∞
b̄∞

)
+

1

vβ(m+ −m−)

∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T (
Nsz + f

)
dη,

where ā∞, b̄∞ denote the values of a(ξ), b(ξ) as ξ −→ ∞. Thus

z(ξ) =
[
Φ+

∣∣Φ−

](
ā∞
b̄∞

)
+

1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T (
Nsz + f

)
dη.

As we shall discuss, the integral term is bounded for all ξ, and, consequently, for a
bounded solution to exist, we must require that ā∞ = b̄∞ = 0. Thus

z(ξ) =
1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T (
Nsz + f

)
dη,

which can be rewritten as(
ϕ(ξ)
ψ(ξ)

)
− Λ1(λ, ξ)

(
ϕ(ξ1)

0

)
− Λ2(λ, ξ)

(
ϕ(ξ2)

0

)
= H(ξ),(4.9)

where

Λi(λ, ξ) =
1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T w(η − ξi)

|U ′(ξi)|
dη,

H(ξ) =
1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T
f(η) dη.

Elements of Λi and H are finite sums of terms of the forms∫ ∞

ξ

e

(
λ+m±

v

)
(ξ−η)

w(η − ξi)dη,

∫ ∞

ξ

e

(
λ+m±

v

)
(ξ−η)

fi(η)dη.

Using the Hölder inequality, it is straightforward to show that these terms, and hence
Λi and H, are bounded for all ξ ∈ R and for all fi ∈ C0(R,C). Now we must determine
the conditions under which (4.9) has a unique solution. Since the solution z(ξ) is
determined completely by the restrictions z(ξ1) and z(ξ2), we obtain the following
finite-dimensional system by substituting ξ = ξ1, ξ2 into (4.9):(

I − Δ(λ)

)(
ϕ(ξ1)
ϕ(ξ2)

)
=

(
H1(ξ1)
H1(ξ2)

)
,

where H = (H1,H2)
T , Λ̄i(λ, ξ) = ( 1 0 ) Λi(λ, ξ) ( 1 0 )T , and

Δ(λ, ξ1, ξ2) =

(
Λ̄1(λ, ξ1) Λ̄2(λ, ξ1)

Λ̄1(λ, ξ2) Λ̄2(λ, ξ2)

)
.
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This system has a unique solution if and only if det(I−Δ(λ)) �= 0, resulting in a
bounded inverse defined on all of C0(R,C) × C0(R,C). All such λ are elements of the
resolvent set. Conversely, we cannot invert the operator for λ such that

det
(
I − Δ(λ, ξ1, ξ2)

)
= 0,

in which case

(L + Ns − λ)z = 0

has nontrivial solutions and λ is an element of the point spectrum. As in the scalar
front case, the function

E(λ, ξ1, ξ2) = det
(
I − Δ(λ, ξ1, ξ2)

)
, Re(λ) > −m−(4.10)

identifies eigenvalues with its zero set, indicating that E is an Evans function for the
set for which Re(λ) > −m−. In a similar fashion, a resolvent and an Evans function
can be defined on the set for which Re(λ) < −m+; however, we do not pursue the
explicit construction, as it does not reflect an instability of the stimulus-locked wave.

Continuous spectrum. Using arguments similar to those of the case of the scalar
equation, it can be shown that the operator Ns : C1(R,C) × C1(R,C) −→ C0(R,C) ×
C0(R,C) is compact. Again this implies that the essential spectrum of L + Ns is
identical to that of L. In the case of the vector operator L, the continuous spectrum
is the union of the disjoint sets of λ = −m±+ivρ, where ρ ∈ R. To see this, assume such
λ and consider the sequence of functions φ±

n ∈ C1(R,C)×C1(R,C), where n is a positive
integer; Y± are the eigenvectors of the matrix A defined in (4.5), corresponding to
the eigenvalues m±; and

φ±
n(ξ) = eiρξ

(
1 − e−ξ2/2n2)Y±.

If Y± are normalized to unity, then
∥∥φ±

n

∥∥
∞ = 1 for all n; however,

∥∥∥Lφ±
n

∥∥∥ =
v

n2

∥∥∥ξe− ξ2

2n2

∥∥∥−→ 0 as n −→ ∞.

Hence, (L − λ)−1 is unbounded, and λ is a member of the continuous spectrum of
L + Ns.

Residual spectrum. To complete the characterization of the spectrum, we demon-
strate that the set {λ ∈ C : Re(λ) ∈ (−m+,−m−)} defines the residual spectrum of
L + Ns. We must show that for such λ there exists a bounded inverse whose domain
is not dense in C0(R,C)×C0(R,C). Consider our previous construction of the inverse
operator (L + Ns − λ)−1. Since we need calculate only the residual spectrum of L,
we integrate (4.8) over [c, d], neglecting Ns, to obtain

(
ā(d)
b̄(d)

)
−
(
ā(c)
b̄(c)

)
= − 1

vβ(m+ −m−)

∫ d

c

[
Ψ+

∣∣Ψ−

]T
f(η)dη.

There are only two cases to consider. First, taking c = ξ and d = ∞, we examine the
integral term of z(ξ), components of which have the form∫ ∞

ξ

e

(
λ+m±

v

)
(ξ−η)

[
(1 −m∓)f1(η) + βf2(η)

]
dη.
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Since λ + m− < 0 and v > 0, all components are bounded, and hence L + Ns − λ is
bounded only if f either decays sufficiently fast such that∫ ∞

ξ

e

(
λ+m+

v

)
(ξ−η)

[
(1 −m−)f1(η) + βf2(η)

]
dη < ∞, ξ ∈ R,

or satisfies (1−m−)f1(η) + βf2(η) = 0 for all η. Similarly, for c = −∞ and d = ξ, we
must require that

∫ ξ

−∞
e

(
λ+m−

v

)
(ξ−η)

[
(1 −m+)f1(η) + βf2(η)

]
dη < ∞, ξ ∈ R,

or (1 −m+)f1(η) + βf2(η) = 0 for all η. Since the union of all such f is not dense in
C0(R,C) × C0(R,C), we conclude that λ lies in the residual spectrum.

4.2. Evans function for stimulus-locked traveling pulses. The following
gives the explicit construction of the Evans function for stimulus-locked waves in
the case of a Gaussian input, Heaviside firing rate function, and exponential weight
distribution. Note that this includes natural waves where I0 = 0. After a lengthy
calculation,

E(λ, ξ1, ξ2) = det
(
I − Δ(λ, ξ1, ξ2)

)
Re(λ) > −m−

=

(
1 − Θ+(λ)∣∣U ′(ξ1)

∣∣
)(

1 − Θ+(λ)∣∣U ′(ξ2)
∣∣
)

− Θ+(λ)Γ(λ)∣∣U ′(ξ1)U
′(ξ2)

∣∣e(ξ1−ξ2),(4.11)

where

Γ±(λ) =
(1 −m∓)v

(m+ −m−)(v2 − (λ + m±)2)
,

Θ±(λ) =
1

2(m+ −m−)

(
1 −m−

λ + m+ ± v
− 1 −m+

λ + m− ± v

)
,(4.12)

Γ(λ) = Θ−(λ)e(ξ1−ξ2) + Γ+(λ)e

(
λ+m+

v

)
(ξ1−ξ2) − Γ−(λ)e

(
λ+m−

v

)
(ξ1−ξ2).

Since the zero set of the Evans function (4.11) comprises solutions of a transcendental
equation, we solve for the eigenvalues numerically by finding the intersection points
of the zero sets of the real and complex parts of the Evans function. This leads to
the stability results shown in Figure 3.2, namely, that pulses within the right-hand
tongue are stable whereas pulses within the left-hand tongue are stable only if they lie
inside the region enclosed by the Hopf curve. An example of a zero set construction
is shown in Figure 4.1 for fixed I0 and various values of v.

Linear stability of the traveling pulse solution is characterized by all eigenvalues
of the linearization having negative real part, with the possible exception that λ = 0
is a simple eigenvalue. Moreover, Hopf bifurcations may be identified by a pair of
complex eigenvalues crossing the imaginary axis from the left-half plane. It has been
found in many infinite-dimensional dynamical systems, such as semilinear parabolic
equations, that the criterion for a Hopf bifurcation carries over from ordinary dif-
ferential equations. Although smoothness properties of the flow are required for its
proof using invariant manifold theory, the result is essentially based on the behavior
of eigenvalues of the linearized operator [26]. We shall assume this and use numerical



2086 STEFANOS E. FOLIAS AND PAUL C. BRESSLOFF

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.2 0.2 0.4
λR

λI

0.0

(a) v = 0.0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.2 0.2 0.4
λR

0.0

(b) v = 0.05

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.2 0.2 0.4
λR

0.0

(c) v = 0.1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.2 0.2 0.4
λR

0.0

(d) v = 0.1175

Fig. 4.1. Graphs of the zero sets of the real (dark curves) and imaginary (light curves) parts
of the Evans functions for I0 = 2.0 and a sequence of stimulus speeds v; intersection points indicate
eigenvalues. Note that the horizontal gray line is part of the zero set of the imaginary part. The
vertical shaded region Re(λ) ≤ −m− indicates the essential spectrum. This sequence of plots indi-
cates that two Hopf bifurcation points occur, thus defining the boundary of the stable region within
the left tongue depicted in Figure 3.2. Case (a) is associated with the existence of a stable stationary
breather, case (b) with a stable traveling pulse, and cases (c) and (d) with a traveling emitter. See
text for more details.

simulations, as discussed in the following section, to explore the behavior of the model
near these bifurcation points. Note, for I0 > 0, λ = 0 is not an eigenvalue and does
not complicate the eigenvalue criteria of the standard Hopf bifurcation theorem, as
would be the case with natural waves.

4.3. Numerical simulations. In this section we explore the behavior of the
vector system (1.2) in all regions of the (v, I0)-plane shown in Figure 3.2. In particular,
we describe the various types of solutions that emerge beyond the Hopf bifurcation
curve, as well as beyond the existence tongues.

For parameter values supporting natural traveling waves, and in the absence of
an input (I0 = 0), an initial sufficiently large local displacement of the activity u from
rest induces a locally excited region of activity, which rapidly develops into a pair of
diverging natural traveling pulses, as in the reaction diffusion analogue. Similarly, for
parameter values supporting stable stimulus-locked waves in the presence of an input
(I0 > 0), an initial displacement of u near the input (or no initial displacement in
the case of sufficiently large input strength I0) rapidly approaches the stable traveling
pulse. For certain speeds v the initial transient can generate an additional single or
pair of traveling waves that propagate away from the input. As expected, the speed
and width of the stimulus-locked traveling pulse closely match those of the theory.

Interestingly, for the parameter values in Figure 3.2, numerical simulations suggest
that the left-hand branch of the Hopf curve (gray) corresponds to a supercritical
bifurcation, while the right-hand branch is subcritical without a sharp transition to
a breathing pulse. We first characterize the nature of solutions obtained by crossing
the subcritical branch of the Hopf curve. We find a region of activity moving with
the input whose right boundary oscillates with increasing amplitude. After a critical
point, the system emits a natural traveling pulse, whose speed is faster than that
of the input, as shown in Figure 4.2. The region between the one excited by the
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Fig. 4.2. Instability of the stimulus-locked traveling pulse in the presence of two complex conju-
gate eigenvalues with positive real part for I0 = 1.0, v = 0.07, σ = 1, κ = 0.3, ε = 0.03, and β = 2.5.
In this case the bifurcation appears subcritical with the absence of a sharp jump to a stable breathing
pulse. Instead, instability manifests itself as a periodic cycling of an initial phase of periodically
modulated growth of the active region, followed ultimately by the shedding of a natural traveling
pulse. (a) Space-time plot showing one cycle of the instability, where the vertical axis represents
time and the horizontal axis represents space. (b) Graph of the corresponding zero set of the Evans
function. The periodic process of shedding or emitting natural traveling pulses becomes more rapid
as the real part of the eigenvalue increases.

input and the new natural wave recovers, and the process repeats periodically. Such
solutions we refer to as pulse-emitters. The smaller the real part of the eigenvalue,
the slower the instability grows and the more time is required for the wave to be
emitted. As v is increased, the real part of the eigenvalue grows and the number
of oscillations occurring before the shedding of natural waves decreases, until the
eigenvalues become real, as illustrated in the figure sequence 4.1(b)–(d), and the
pulse rapidly emits natural pulses. This behavior continues until v is increased to
the boundary of the right-hand tongue where there is a smooth transition to a stable
stimulus-locked pulse.

When the left-hand supercritical branch of the Hopf curve is crossed by reduc-
ing I0 or v, we find a smooth transition to a stimulus-locked traveling breather. In
the special case of a stationary stimulus (v = 0), reducing I0 generates a stationary
breather, as we have shown previously [5, 13]. The breathing solutions continue to
persist in a subregion of the (v, I0)-plane bounded to the right by the left (supercriti-
cal) branch of the Hopf curve in 3.2. As one moves in this subregion away from the left
Hopf branch, the amplitude of the oscillations grows. After some point, the breathing
solution disappears, and a new type of temporally periodic solution appears, each
cycle of which is characterized by one or more breathing pulse oscillations followed by
the emission of a pair of natural waves, possibly intermixed with interludes of sub-
threshold behavior. An example of such a transition is illustrated in Figure 4.3. This
type of pulse-emitting solution appears to be part of a family of related responses
of the system to a localized input, which also includes the pulse-emitting behavior
associated with the region between the subcritical Hopf curve and the stable right



2088 STEFANOS E. FOLIAS AND PAUL C. BRESSLOFF

300

250

200

150

100

50

5 10 15 20 25
space (in units of d)

ti
m

e
 (

in
 u

n
it

s 
o
f 

τ)

(a) v = 0.01
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(b) v = 0.014
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(c) v = 0.03
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Fig. 4.3. Sequence of space-time plots for fixed input I0 = 1.5, illustrating the transition from
pulse emitter, to breather, to stimulus-locked pulse as v increases through the supercritical branch of
the Hopf curve shown in Figure 3.2. Other parameters are ε = 0.03, κ = 0.3, β = 2.5, σ = 1.
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(a) v = 0.04
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(b) v = 0.05
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(c) v = 0.07
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Fig. 4.4. Transitions between various pulse-emitting solutions for fixed I0 = 0.9 as v is in-
creased. These solutions exist within the unstable part of the left-hand tongue of Figure 3.2, suf-
ficiently below the Hopf curve such that stable breathers no longer exist. Other parameters are
ε = 0.03, κ = 0.3, β = 2.5, σ = 1.

tongue shown in Figure 3.2. Furthermore, there is a smooth transition of behaviors
joining the two regions, as shown in Figure 4.4.

Although the above account applies to the case σ = 1, most features are valid for
more general σ. One main point of difference lends insight into the disappearance of
the breather. If we consider stationary pulses for σ =

√
2 and explore the evolution

of the breathing pulse as we further decrease I0 beyond the bifurcation point, we find
that a secondary bifurcation occurs, giving rise to two modes of breathing rather than
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(b) I0 = 2.3
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(c) I0 = 2.2

Fig. 4.5. Sequence of period-doubling bifurcations of a breathing pulse for σ =
√

2. The left-
hand column shows space-time plots for different values of current amplitude beyond the initial Hopf
bifurcation point, with an orbit corresponding to the center spatial point plotted in the (u, q)-phase
plane in the right-hand column; other spatial points are qualitatively similar. Other parameter values
are κ = 0.3, β = 2.5, ε = 0.03, v = 0. (Note that at higher resolution each loop in (c) is actually a
pair of closely spaced loops, indicating that it corresponds to the third doubling in the sequence.)

one. By graphing, in the (u, q)-phase plane, the orbit corresponding to a spatial point
at the center of the input, we find that the evolution of the orbit, as I0 is decreased,
strongly resembles that of a period-doubling bifurcation, as shown in Figure 4.5(a)–
(b). Decreasing I0 leads to additional period doublings, as illustrated in Figure 4.5(c).
Ultimately, decreasing I0 leads to behavior similar to that found for σ = 1. This
suggests that for σ = 1 the first period-doubling bifurcation may be subcritical, and
the orbit instead weaves its way around the unstable limit cycle giving rise to the
sequence of breathing pulses and emission, as shown in Figure 4.6.
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Fig. 4.6. (a) Space-time plot of a stationary (v = 0) pulse-emitter for σ = 1, I0 = 1.35, κ = 0.3,
β = 2.5 and ε = 0.03. (b) Corresponding phase portrait showing the orbit (gray trajectory) of the
center spatial point plotted in the (u, q)-phase plane. Also shown is the corresponding orbit (black
trajectory) of the stable breather that exists when I0 = 1.4.

5. Discussion. In this paper we have shown how to extend the analysis of the
existence and stability of pulses arising from a stationary stimulus input to that of
a input moving with constant speed. We described the continuation from the un-
stable/stable pair of natural waves by constructing a corresponding pair of existence
tongues emerging from the natural waves at I0 = 0, with the left-hand tongue includ-
ing stationary pulses at v = 0, for a particular choice of parameter values supporting
natural waves. We have extended Zhang’s analysis of stability of natural waves to
that of stimulus-locked waves and numerically evaluated the Evans function to deter-
mine eigenvalues away from the singular limit ε → 0. This allowed us to analyze the
stability of the existence tongues in the (v, I0)-plane and show the continuation of the
Hopf bifurcation found for stationary pulses. Numerically this Hopf curve was found
to have a supercritical branch, from which breathing pulses emerge and a subcritical
branch from which no breathing pulse emerges. In general for parameter values that
do not support either stimulus-locked pulses or breathers, the system generates more
complicated behavior, including the emission of natural traveling waves when such
waves exist.

It would be interesting to contrast the type of local inhibition analyzed in this
paper, which is primarily due to intrinsic neuronal properties, with that of nonlocal
inhibition, arising from the ubiquitous inhibitory populations of neurons found in
cortex. From previous work [1, 28], we know that the two-population, excitatory-
inhibitory system supports stable stationary pulses which, moreover, can undergo a
subcritical Hopf bifurcation. In this case no breathing pulse emerges; however, it is
possible that the presence of a localized input is capable of stabilizing such a breathing
pulse solution. In addition, it would be interesting to provide a more thorough analysis
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of the scalar model considered by Xie and Giese [40], by constructing tongue diagrams
and Hopf bifurcation curves and, furthermore, considering the effect of varying the
degree of nonlocal inhibition.

From a more general perspective, the analysis presented here and in related work
[6, 13] has established that the combined effect of local inhomogeneities and recur-
rent synaptic interactions can result in nontrivial forms of coherent oscillations and
waves. Although we have focused on rather abstract neural field equations, we ex-
pect our results to carry over (at least qualitatively) to more biophysically realistic
conductance-based models. Indeed, elsewhere we have confirmed the existence of sta-
tionary breathers and pulse emitters in the case of a modified Traub model [13]. One
of the advantages of studying simplified models is that it can generate predictions
regarding how dynamical properties such as wave speed depend on characteristic fea-
tures of neural tissue. One striking demonstration of this is the recent study of wave
propagation in disinhibited cortical slices, where the speed of the wave was controlled
by external electric fields, confirming predictions based on homogeneous neural field
equations [32]. Our own work predicts that coherent oscillations can be induced by
local inhomogeneities. Such inhomogeneities could arise from external stimuli or re-
flect changes in the excitability of local populations of neurons. The former suggests
a network mechanism for stimulus-induced oscillations, which may play an important
role in visual processing [17], whereas the latter suggests a network mechanism for
generating epileptiform activity.
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