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Abstract

We study an excitatory all-to-all coupled network of
N spiking neurons with synaptically filtered back-
ground noise and slow activity–dependent hyperpo-
larization (AHP) currents. Such a system exhibits
noise-induced burst oscillations over a range of val-
ues of the noise strength (variance) and level of cell
excitability. Since both of these quantities depend on
the rate of background synaptic inputs, we show how
noise can provide a mechanism for increasing the ro-
bustness of rhythmic bursting and the range of burst
frequencies. By exploiting a separation of time scales
we also show how the system dynamics can be re-
duced to low-dimensional mean field equations in the
limit N → ∞. Analysis of the bifurcation structure
of the mean field equations provides insights into the
dynamical mechanisms for initiating and terminating
the bursts.

1 Introduction

A major area of study in neurobiology is under-
standing the dynamical mechanisms that underly the
production of oscillations (Buzaki, 2007). One par-
ticularly interesting way rhythmic burst oscillations
can arise is through a recurrently connected network
of neurons possessing excitatory synapses and slow
activity-dependent depression or adaptation (Tabak
and Rinzel, 2005, Van Vreeswijk and Hansel, 2001).
Such rhythms have been found in several brain ar-
eas including the Pre-Bötzinger complex (PreBotC)

(Smith et al, 1991) and the developing chick spinal
cord (O’Donovan, 1999). In the present work we
explore the role of random synaptic fluctuations in
modulating rhythmic bursting in an excitatory neu-
ronal network model with slow adaptation. Specif-
ically, we establish the following results: (1) Inde-
pendent noise input to cells can induce very regu-
lar population-level oscillations in the averaged firing
rate of the neurons. (2) Noise can increase the pa-
rameter range where rhythmic population oscillations
exist, while also increasing the available frequency
range, thereby making the rhythm generator more ro-
bust. (3) Under the assumption that the variability
of noise depends on the rate of background synaptic
inputs, we illustrate how noise can be an important
modifying component to the global network behav-
ior. (4) By performing an analytical reduction of the
large spiking network to a mean-field description, we
reveal the mechanism of the population burst as a
bifurcation in the mean-field model, which we show
for two distinct adaptation mechanisms – one a lin-
ear, synaptically mediated adaptation, resulting in a
Hopf bifurcation, and the other a nonlinear, calcium-
mediated adaptation, resulting in a saddle-node on
an invariant cycle bifurcation (SNIC). By analyzing
the bifurcation structure of these mean-field models,
we establish that population-level burst oscillations
in excitatory networks can behave analogously to the
Hopf or SNIC classifications of single model neurons
(Rinzel and Ermentrout, 1998).

The PreBotC is a rhythmogenic network in the
mammalian brainstem thought to control the inspi-
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ratory phase of breathing (Smith et al. 1991). Cells
in the PreBotC exhibit synchronized bursts of ac-
tion potentials that together form a population-level
oscillation with periods on the order from seconds
to minutes in a slice preparation (Funk and Feld-
man, 1995). The rhythmogenic PreBotC cells form a
synaptically connected network that requires gluta-
matergic excitatory neurotransmission to create the
breathing rhythm (Ge and Feldman, 1998). On the
other hand, inhibition appears non-essential since the
rhythm persists when inhibition is blocked (Brock-
haus and Ballanyi, 1998; Johnson et. al., 2002).
Many studies have focused on how intrinsic currents
in a minority population of intrinsically rhythmic
bursting, so called “pacemaker” cells, could mediate
population rhythmicity (Butera RJ, Rinzel J, Smith
JC, 1999a,b; Del Negro, et al. 2001; Tryba, Peña, and
Ramirez, 2003). More recently, however, there is evi-
dence that pacemaker bursting cells may not be nec-
essary for the production of the population rhythm,
and it has been hypothesized that the rhythm is an
emergent network property mediated by recurrent
excitation (Pace et al., 2007; Feldman and Del Ne-
gro, 2006; Del Negro, Morgado-Valle, and Feldman,
2002).

Developing chick spinal cord is another area where
excitatory neurotransmission plays a role in rhyth-
mic burst generation. In this preparation synchro-
nized population burst episodes are observed between
silent periods on the order of many minutes. These
episodes are thought to be a population-level phe-
nomenon which is terminated through an activity-
dependent depression (Chub and O’Donovan, 2001;
O’Donovan, 1999) and mediated through purely exci-
tatory synapses. The absence of inhibition is a conse-
quence of the fact that the chloride reversal potential
in the developing nervous system is above the rest-
ing potential and therefore GABAergic synapses are
excitatory (Cupello, 2003; Sernagor et al., 1995).

Modeling studies suggest that emergent synchro-
nized oscillatory network bursting is a generic prop-
erty of recurrently connected excitatory neuronal net-
works with slow activity-dependent depression. This
type of bursting can induce synchronization at the
single spike level as has been shown by Tsodyks,
Uziel, and Markram (2000) in the case of a net-

work of predominantly excitatory leaky integrate-
and-fire (LIF) cells. These cells transiently synchro-
nize and then synaptically depress, effectively decou-
pling the network until the depression wears off and
a population spike recurs. More recently, Lobel and
Tsodyks (2002) have shown how this network behav-
ior can be well captured by a low-dimensional mean-
field equation representing the population firing rate.
Van Vreeswijk and Hansel (2001) have shown simi-
lar rhythmic population bursting in LIF model cells
coupled to a slow activity-dependent hyperpolarizing
current.

Tabak et al. (2000, 2001, 2006) have employed
a form of Wilson-Cowan mean-field equations (Wil-
son and Cowan 1972) to investigate the dynamics of
synchronized population bursts in developing chick
spinal cord. In this model synchronization occurs at
the level of the mean firing rate of each cell rather
than at the level of individual spikes. Analysis of the
mean-field equations establishes how a burst oscilla-
tion mediated by recurrent excitation is terminated
by slowly activating synaptic depression, which then
slowly deinactivates until the next bursting episode is
elicited. Recently, an approximate derivation of the
mean-field equations in Tabak et al. (2000) has been
carried out for a population of LIF spiking neurons
possessing a certain level of disorder, either due to a
spatial heterogeneity in the excitability of each cell
(as determined by an external bias current) or due
to each cell being driven by a small amount of white
noise (Vladimirski et al., in press). Analysis of the
spiking network dynamics establishes that burst os-
cillations are more robust in the presence of spatial
heterogeneity due to the crucial role of a subpopu-
lation of cells with intermediate excitability, which
are able to become active in response to input from
more excited subpopulations, thus generating suffi-
cient input onto the remaining less excitable cells to
initiate a full population burst. Spatial heterogeneity
also appears more effective than white noise in gener-
ating spontaneous rhythmic bursting, assuming that
the noise is independent of the bias current.

Kosmidis, Pierrefiche, and Vibert (2004) have ex-
plored the role of noise in a computational model
of PreBotC consisting of an excitatory network of
Hodgkin Huxley neurons. All cells were identical and
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possessed an activity-dependent calcium-activated
potassium current that terminates bursts and intrin-
sic calcium currents IL and IT (high and low thresh-
old activated calcium currents, respectively) that can
only produce autonomous bursting in synaptic iso-
lation (i.e. pacemaker activity) with a sufficiently
large depolarizing current. The authors show how
noise-induced population bursts can occur below the
threshold of autonomous pacemaker bursting, with
the oscillations persisting over a finite range of white
noise current input strengths (variance). The oscilla-
tions appear at a critical level of noise, beyond which
increasing the noise produces a progressive increase
in the burst frequency along with a decrease in the
burst amplitude until bursting stops when the ampli-
tude reaches zero for sufficiently high levels of noise.

Many theoretical studies have focused on how ran-
dom membrane fluctuations can affect cellular ex-
citability and firing rate (Destexhe et al., 2001; Lind-
ner et al., 2004). In these studies the random cur-
rent inputs to the excitable cells are taken to be
Gaussian white noise or near-white noise processes.
White noise inputs can produce coherent spiking in
single cells (see Linder et al., 2004 for a review). In
excitable neuronal models such as leaky integrate-
and-fire (LIF) and relaxation oscillators, it has been
found that there is an optimal white noise ampli-
tude, termed coherence resonance (CR), that pro-
duces the most regular spiking statistics, usually indi-
cated by the height and sharpness of the power spec-
trum (Gang et al., 1993; Rappel and Strogatz, 1994)
and is found to be a generic property of excitable sys-
tems possessing fast and slow time scales (Pradines,
Osipov, and Collins, 1999). White-noise-induced os-
cillations have also been observed at the network
level, in which there is an optimal noise strength
that causes the most coherent spike–synchronization
(Rappel and Karma, 1996; Pham, Pakdaman, and
Vibert, 1998; Han et al. 1999). If the network size
is made sufficiently large (N → ∞) then the coher-
ence can be described in terms of a deterministic
mean-field model (Kurrer and Schulten, 1995; Piko-
visky and Ruffo, 1999). Recently, mean-field equa-
tions have also been derived for a large-N excitatory
spiking network of VSLI model (non-leaky IF model)
cells possessing a slow activity-dependent hyperpo-

larizing current (AHP) in addition to white noise in-
puts (Gigante, Mattia, and Giudice, 2007). In this
model, noise is set to a fixed value and a population
firing-rate is derived via the numerical computation
of a truncated set of eigenfunctions for the associated
nonlinear Fokker-Planck equation (Mattia and Giu-
dice, 2002). Population-level burst oscillations are
found to depend on the synaptic coupling and the
strength of the AHP but the level of noise itself was
not investigated as a control parameter.

Motivated by the above studies we present a sys-
tematic analysis of the effects of synaptic noise on the
production of rhythmic synchronized bursting in an
excitatory network with slow adaptation, where ran-
dom fluctuations in network activity kindle an ever-
increasing excitation leading to a burst; the burst
is then terminated by a slow AHP current resulting
in a well-defined rhythmic pattern. Note that in this
model the burst phenomena is purely network driven.
There are no intrinsic voltage-gated currents that
autonomously elicit bursting in isolated cells. One
main conclusion from this analysis is that Poisson–
like synaptic inputs, which cause both noise strength
and excitability to increase together, can provide a
greater range of burst frequencies compared to the
case where no noise is present.

For simplicity, we consider a globally coupled net-
work of N LIF neurons with slow AHP currents and
synaptically filtered background noise. We assume
that the membrane time constant is fast relative to
the synaptic and AHP time scales so that we can re-
duce the complex spiking model to a firing rate model
through short-time averaging. Using stochastic anal-
ysis we then reduce the rate–based network equations
to a low-dimensional mean field equation in the large-
N limit. We show through numerical simulations
that the mean-field equations match well the behav-
ior of the full large-N spiking model. We find that
the mean-field system exhibits a non-oscillatory, low
firing-rate “resting” state for sufficiently weak noise
and bias current. The system exhibits oscillations
for an intermediate range of noise strengths and in-
put currents as indicated by bifurcation analysis of
the mean-field system. The existence of oscillations
over this parameter range is analogous to population-
level coherence resonance. In this paper we consider
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two distinct forms of AHP current that both serve
the purpose of burst termination, but produce dif-
ferent bifurcation mechanisms to bursting. The first
models a linear synaptically activated AHP current
in which bursting occurs via a Hopf bifurcation. The
second models a nonlinear calcium–dependent potas-
sium current in which bursting occurs via a saddle–
node on a limit cycle (SNIC) bifurcation.

While the mechanisms for AHP current activation
is quite diverse (e.g. voltage, synaptic, or second-
messenger activated, see Hille, 2001), the particular
AHP schemes are chosen so that (1) isolated cells
do not exhibit autonomous bursting in the absence
of synaptic input, thus showing that the population
rhythm is an emergent network-level phenomenon,
and (2) reveal that the excitability mechanism of the
network system can take the Hopf and SNIC forms
analogous to that observed in single-neuron excitabil-
ity (see Rinzel and Ermentrout, 1998). The onset of
oscillations through the Hopf mechanism emerge at
a finite frequency. On the other hand, SNIC oscilla-
tions emerge through a homoclinic cycle, exhibit ar-
bitrarily long periods near the bifurcation, and tran-
sient super-threshold inputs can produce arbitrarily
long latencies to complete the oscillation. Voltage-
gated AHP mechanisms are not studied in the present
work because the LIF model is not a realistic model
of nerve membrane voltage. However, we postulate
that one could construe a voltage-gated AHP model
in combination with a more realistic model of mem-
brane voltage that exhibits network level bursting
similar to the two AHP models presently studied. For
parsimony, we leave such prospects for another time.

2 Methods

2.1 Derivation of the N-cell spiking

network

Consider a globally coupled network of N model neu-
rons labeled i = 1, . . . , N . Each neuron is described
by a somatic membrane voltage variable vi that cap-
tures the spiking dynamics of the cell. The mem-
brane voltage receives a synaptic input s(t), a synap-
tic noise current xi(t), a bias current Iv, and an

activity-dependent hyperpolarization (AHP) hi cur-
rent. The voltage is modeled with leaky integrate-
and-fire (LIF) dynamics as

τv

dvi

dt
= −vi + s − hi + Iv + xi, vi < θ. (1)

When vi is below the spiking threshold θ, the cell has
a linear response to the total input s−hi+Iv+xi. Im-
mediately after firing, vi is reset to a hyperpolarized
level vr < 0 for a refractory time τr, during which the
cell is held “offline” such that the synaptic inputs and
the bias current Iv have no affect on the vi dynamics.
In order for all terms in equation (1) to have the same
physical units, we assume that the voltage is scaled
by a unit resistance.

vi (t),  hi (t)

i = 1,...,N

xi (t)

Figure 1: Schematic diagram of the all-to-all coupled
network defined by voltage variables vi(t) and adap-
tation variables hi(t) (and other variables not shown),
for i = 1 . . .N indicated by the lower circular array
of open circles. The exogenous synaptic input xi(t)
is indicated by the gray circles above.

The synaptic dynamics are modeled as an “alpha”
function response to each spike event in the network
with time constant τs. We denote the list of spike
events elicited by the ith cell by Si = {tij}∞j=1. Hence,
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the synaptic dynamics are

τs

ds

dt
= − s + w (2)

τs

dw

dt
= − w +

as

N

N
∑

i=1

∑

j∈Si

δ(t − tij), (3)

where as is a positive parameter and δ(t) is the Dirac
delta function. For simplicity, we take the network
to be homogenous and globally coupled. Thus, each
cell in the network receives the same synaptic in-
put s(t). Figure 1 depicts schematically the network
setup where the i = 1 . . .N all-to-all coupled cells
produce the population synaptic activity s(t), and
an outside neural structure provides randomly fluc-
tuating synaptic currents to the population.

The synaptic noise xi(t) is modeled as an “al-
pha” function response to a Poisson input spike train
µi(t) =

∑

j δ(t − tij), where the inputs tij , j ∈ Z are
statistically independent for each i. We conceive of
this synaptic noise as arising outside the network as
an exogenous input from other neural sources. Hence,
similar to equations (2) and (3), the synaptic kinetics
processes the synaptic noise input as

τx

dxi

dt
= − xi + yi (4)

τx

dyi

dt
= − yi + axµi(t), (5)

where upon each Poisson event, the y variable is in-
creased by ax, representing the synaptic strength of
the input. Let q(y, t) represent the probability den-
sity that yi = y at time t. The dynamics of this dis-
tribution due to the Poisson input can be described
by the master equation

τx

∂q(y, t)

∂t
=

∂

∂y

[

yq(y, t)
]

+ ν
[

q(y − ax, t) − q(y, t)
]

,

(6)

where the first term on the right-hand side of (6) rep-
resents the negative gradient of the probability flux
given no spike input occurs, and the second term rep-
resents the probability shift of y by ax at a rate ν that
the spike events do occur. If we assume that the in-
put to each cell is weak so that ax is small, then we

can Taylor expand the second term in (6) to second
order in ax, leading to the Fokker-Planck equation

τx

∂q(y, t)

∂t
= − ∂

∂y

[

(νax − y)q(y, t)
]

+
νa2

x

2

∂2

∂y2

[

q(y, t)
]

(7)

The attracting steady state solution to (7) is a Gaus-
sian distribution q(y) with mean νax and variance
νa2

x/2τx. The corresponding steady-state probability
density for xi = x, which we denote by p(x), is also
Gaussian with the same mean but half the variance.
This follows from approximating equations (4) and
(10) by a multidimensional Ornstein-Uhlenbeck pro-
cess (see below). Hence, the synaptically driven noise
x provides a constant input current νax to the mem-
brane voltage equation and a fluctuating part with
variance σ2/4 where

σ =

√

ν

τx

ax (8)

For simplicity, we will absorb the mean current νax

into the membrane bias current by performing the
shift x → x − νax and setting

Iv = I0 + νax. (9)

for some fixed background I0. Under these approxi-
mations, we can replace equations (4) and (5) by the
the multidimensional Ornstein-Uhlenbeck process

τx

dxi

dt
= − xi + yi (10)

τx

dyi

dt
= − yi + σ

√
τxξi(t) (11)

where ξi(t) is a white noise process with 〈ξi〉 =
0, 〈ξi(t)ξj(t

′)〉 = δ(t − t′)δi,j .
In this paper we model the noise according to equa-

tions (10) and (11) and investigate how rhythmic
bursting depends on the level of cellular excitabil-
ity (as determined by the bias current Iν) and the
noise strength σ, both treated as independent param-
eters. We then apply our results to the particular case
of Poisson inputs, for which variation in one of the
control parameters ν or ax generates a natural path
through Iv-σ parameter space.
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The activity-dependent hyperpolarizing (AHP)
current hi is assumed to have slow kinetics relative
to other time scales in the model. Taken together
with the aforementioned time-scale separation be-
tween soma and synapse, we have τv ≪ τs, τx ≪ τh

where τh denotes the time constant for AHP acti-
vation. We consider two distinct activating schemes
for the AHP current, which differ in their underlying
biophysical interpretation and also produce distinct
mechanisms for population burst rhythmogenesis (see
section 3). The purpose behind either type of AHP
current is that elevated activity, defined in terms
of prevalence of spiking or the consequent synaptic
activity s(t), will slowly activate the AHP current,
thereby depressing the elevated activity. The first
scheme is modeled as a synaptically activated AHP
current, in which the synaptic inputs s(t) and xi(t)
produce spiking in the voltage equation at a short
time scale and slowly activate hi according to the
linear equation

τh

dhi

dt
= −hi + ah(s + xi), (12)

where ah is a positive constant. This simple acti-
vation scheme loosely models the slow kinetics as-
sociated with a synaptically activated matabotropic
outward current (see Jonas and Kaczmarek, 1999, for
a review).

The second AHP model we examine possesses a
more complicated activation scheme based upon a
calcium-activated potassium current. We now as-
sume that each time a cell fires a bolus ac of calcium
enters the cell and the resulting increase in calcium
concentration activates the AHP current. Let ci de-
note the intracompartmental calcium level of the ith

cell. The nonlinear AHP dynamics is then

τh

dhi

dt
= − hi + h∞(ci) (13)

τc

dci

dt
= − ci + ac

∑

j∈Si

δ(t − tij). (14)

where 1/τc is the rate at which calcium is cleared from
the cell and h∞(c) is a smooth sigmoidal activation
curve of the form

h∞(c) =
ah

exp(−β(c − γ)) + 1
(15)

+

+

+

+

+

+ Spike initiation

Synaptic inputHyperpolarizing
current

v(t)

v(t)

h(t) s(t) + x(t)

c(t)

h(t) s(t) + x(t)
Synaptic inputHyperpolarizing

current

Spike initiation

A

B

Figure 2: Schematic diagram of the two different
AHP models. (A) Linear synaptically activated AHP
current evolving according to equation (12). (B)
Non-linear calcium-mediated AHP current given by
equations (13) and (14).
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Here β and γ are the gain and threshold of acti-
vation, respectively. Figure 2 illustrates the activa-
tion scheme for the linear synaptically activated AHP
given by equation (12) (figure 2 A) and the nonlinear
calcium-mediated AHP given by equations (13) and
(14) (figure 2B).

2.2 Large-N limit: Reduction to a

mean-field description

2.2.1 Mean-field model for linear synaptic

AHP

In order to derive a mean-field model, we first assume
that the total input ui ≡ s− hi + xi + Iv in equation
(1) is slowly varying relative to the fast membrane
dynamics as specified by τv. For simplicity we set
the threshold to unity (θ = 1) and the reset level to
negative unity (vr = −1). Solving the LIF equation
(1) for constant input ui shows that each neuron fires
spikes at a uniform rate f(ui) with

f(u) =
1

τr + ln
(

u+1
u−1

)Θ(u − 1), (16)

where Θ is the Heaviside step function. When ui is
time–dependent but slowly varying, we can still use
f(ui) to represent the short-term average firing rate
of the neuron. The assumption that synaptic inputs
are slowly varying also means that we can perform a
short-term time average of equation (3) and replace
the input spike trains by a mean firing rate according
to

1

N

N
∑

i=1

∑

j∈Si

δ(t − tij) →
1

N

N
∑

i=1

f(ui). (17)

There are two factors that make this a reasonable ap-
proximation. First, there is the separation of time–
scales τv ≪ τs, τx. Second, in the case of a sufficiently
large network, population averaging contributes to
smoothing out the synaptic input s, assuming that
the neurons fire asynchronously. It follows that the
approximation (17) will tend to break down at low
spike rates and small N . Finally, the separation
of time-scales (τh ≫ τs, τx) allows us to adiabat-
ically eliminate xi(t) from equation (12) (see Gar-

diner, 2004). That is, the slow variable hi cannot ef-
fectively track the relatively fast fluctuations of xi(t)
and we can replace xi by its mean value 〈xi〉 = 0 in
the h equation (12).

It follows from the above analysis that in the large–
N limit, the population dynamics reduces to the set
of mean field equations

τh

dh

dt
= − h + ahs (18)

τs

ds

dt
= − s + w (19)

τs

dw

dt
= − w + as〈f〉. (20)

where 〈f〉 represents the population (ensemble) aver-
age of the firing rates of each cell

〈f〉 = lim
N→∞

1

N

N
∑

i=1

f(s − hi + Iv + xi)

=

∫

f(s − h + Iv + x)p(x)dx. (21)

Here p(x) is the steady–state Gaussian distribution
for the Ornstein–Uhlenbeck noise process given by
equations (10) and (11):

p(x) =

√

2

πσ2
e
−

(

2x
σ

)2

. (22)

Note that in the large–N limit we have used ergod-
icity to replace the sum over the N time–dependent
random variables xi by an integral over the station-
ary distribution p(x). Hence, the ensemble averaged
firing rate is shaped by noise through a convolution of
f with a Gaussian distribution (22), where the noise
strength σ controls the width of the Gaussian.

2.2.2 Mean-field reduction for nonlinear

calcium-activated AHP

In the case of calcium-activated AHP, the hi dynam-
ics cannot so easily be adiabatically reduced because
of the presence of nonlinearities. Carrying out time–
averaging as in the previous example leads to the
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stochastic activation dynamics

τh

dhi

dt
= − hi + h∞(ci) (23)

τc

dci

dt
= − ci + acf(s − h + Iv + xi). (24)

We see that stochastic fluctuations in the calcium
concentration driven by synaptic noise can be ampli-
fied by the nonlinearities f and h∞. Such an effect
will be particularly strong when ci is close to the
activation threshold γ and the gain β is large, see
equation (15). In order to carry out a mean–field
reduction, we need to average these equations with
respect to xi under the approximations 〈f(I +xi)〉 =
f(〈(I +xi)〉) and 〈h∞(ci)〉 = h(〈ci〉). Combining this
with averaging the synaptic equations as in the pre-
vious case, we obtain the following mean-field model:

τh

dh

dt
= − h + h∞(c) (25)

τc

dc

dt
= − c + f(s − h + Iv) (26)

τs

ds

dt
= − s + w (27)

τs

dw

dt
= − w + as〈f〉. (28)

In spite of the severe approximations involved in car-
rying out this reduction, we find numerically that the
mean–field model captures well the dynamics of the
full spiking model in the large-N limit (see section 3).
Note that the mean–field analysis of Vladimirski et al
(in press) handles nonlinearities in a similar fashion.

2.2.3 Stability analysis of the mean-field

equations

We now have two different mean-field models, de-
pending on the choice of linear activation (18) or non-
linear activation (25). In section 3 we show that these
two systems exhibit noise–induced burst oscillations
via distinct bifurcation mechanisms. The starting
point for the bifurcation analysis is to consider the
stability of steady–state solutions. Recall from equa-
tion (16) that the firing rate function f is monotonic
increasing, implying that 〈f〉 is also a monotonically

increasing sigmoidal function of s − h. In the lin-
early activated case (12), solving for a steady state
(h∗, s∗, w∗), where h∗ = ahs∗, allows a reduction to
a single-variable fixed-point equation

0 = −s∗+

√

2

πσ2

∫

f(z)e−2[
z−((1−ah)s∗+Iv)

σ
]2dz. (29)

The second term in (29) intersects the straight line
s = s∗ to form one, two, or three steady state solu-
tions, depending on the exact shape of f and σ. For
notational simplicity we set kj = 1/τj, for j = u, h, s.
We linearize equations (18,19,20) about the fixed
point by setting z = z∗ + ∆zeλt for z = (h∗, s∗, w∗)T

and expanding to first order in ∆z. This generates
the linearized system

d∆z

dt
=





−kh ahkh 0
0 −ks ks

−ksA ksA −ks



 ∆z, (30)

where

A =
4
√

2as

σ3
√

π

∫

R

xf(s − h + Iv + x)e−2
(

x
σ

)2

dx, (31)

The real part of the eigenvalues of the linearized sys-
tem (30) indicate the stability of the fixed point.

In the nonlinearly activated system (13) the
method is much the same as above except the fixed
point z = (h∗, c∗, s∗, w∗)T is defined by

h∗ = h∞ ◦ f(s∗ − h∗ + Iv), (32)

where ◦ represents functional composition, and

0 = −s∗ +

√

2

πσ2

∫

f(z)e−2[ z−(s∗−h∗+Iv)
σ

]2dz, (33)

and the linearized equation for ∆z is

d∆z

dt
=









−kh khh′

∞
0 0

−kcf
′ −kc kcf

′ 0
0 0 −ks ks

−ksA 0 ksA −ks









∆z, (34)

where the prime indicates derivative in the input vari-
able evaluated at the fixed point z.
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2.3 Numerical methods for the spik-

ing model

Numerical simulations are implemented using the
MATLAB (Mathworks inc.) computing environment
with a simple forward Euler variable time step algo-
rithm for the hi, s, w, xi, and yi variables, where the
yi are integrated stochastically (see Gardener, 1996).
For simplicity we set the threshold to unity (θ = 1)
and the reset level to negative unity (vr = −1). We
also choose τv = 1ms as a baseline time scale for
the model. To correctly model the refractory period,
upon spiking, we reset vi to vr − 1 and define the vi

dynamics to be

dvi

dt
=

1

τr

, vi < vr. (35)

Hence, upon spiking vi will increase linearly to vr in
time τr. Let uj

i = s − hj
i + xj

i + Iv denote the total
input to the ith cell at the jth discrete time step and
let vj

i denote the corresponding membrane potential.

We treat uj
i as constant on a short time scale and

calculate analytically the time to spike T j
i for each

vj
i according to

T j
i =

{

ln
(

−v
j

i
+Iv+u

j

i

u
j

i+Iv−1

)

, uj
i + Iv > 1

∞, otherwise
(36)

We choose an upper and a lower bound on time steps
∆tmin and ∆tmax. For the jth iteration of the algo-
rithm a time step ∆tj is chosen by minimizing the
following set

∆tj = min
{

∆tmax,
{

{T j
i }N

i=1|T j
i > ∆tmin

}

,
}

,

(37)
where the maximum time step is chosen small enough
to ensure sufficient accuracy of the input variables,
and the minimum time step is chosen to provide
sufficient temporal fidelity of spike times. Those
T j

i that are smaller than ∆tj will fire during the
time step and their somatic voltages are advanced to
vj+1

i = vr − 1+ (∆tj −T j
i )/τr for the next time step.

For those that do not fire but are above vr (they are
“online”) the voltage is advanced by the analytical
solution of the LIF equation,

vj+1
i = e−∆tjvj

i + (1 − e−∆tj )(uj
i + Iv) (38)

Those vj
i that are below vr−∆tj/τr, so that they are

offline and stay offline during the time step ∆tj , are

advanced to vj+1
i = vj

i + ∆tj/τr. Finally, those vj
i

that will come online during the interval ∆tj (vj
i >

vr − ∆tj/τr) are then advanced to

vj+1
i = e−zvr + (1 − e−z)(uj

i + Iv), (39)

where z = ∆tj − τr(vr − vj
i ). Upon each time step,

the number of spikes k that occur during ∆tj is then
fed into the synaptic integrator

wj+1 = −wj

τs

+
as

τs

k. (40)

This algorithm accurately keeps track of spike times
and offline-to-online transitions assuming the ui are
constant over each short time step. The algorithm
is based on Shelly and Tao’s (2001) second-order nu-
merical scheme of integrate–and–fire cells, which ap-
proximates the synaptic response times as in (40)
(while still guaranteeing second-order convergence).
However, we have replaced their second-order Runge-
Kutta time step and backward linearly interpolated
spike time estimate with the analytical solution (38-
39) because in our model the inputs change slowly.

3 Results

3.1 Linear synaptically activated

AHP

Numerically solving the large-N LIF spiking network
given by equations (1)–(3), (10) and (11) with linear
synaptically activated AHP currents, equation (12),
establishes that for an appropriate choice of param-
eters the network can produce regular spontaneous
burst oscillations. Figure 3 illustrates these synchro-
nized population bursts for a network of N = 500
neurons. The top panel (figure 3A) shows the net-
work synaptic activity s(t) for the stochastic spiking
model (solid line) and the mean-field model (dashed
line) for N = 500 cells. Figure 3B shows all the
hi(t) variables as thin solid lines clustered tightly to-
gether throughout every oscillation cycle. The mean-
field h(t) is indicated by the grey dashed line. The
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mean-field model matches well with the large-N spik-
ing model, although the oscillation period is roughly
3-6% longer than the stochastic simulations. Note
that the hi(t) variables have a small variation over a
burst cycle indicating that the adiabatic elimination
is a reasonable approximation. The population-level
synaptic variable s(t) is also very smooth. Examina-
tion of a single voltage trace (figure 3C) indicates that
at the single cell level the burst duration is variable
and smaller spiking episodes randomly occur in the
inter-burst cycle. To illustrate the randomness of the
single–cell spiking behavior, we show a single burst
cycle in a raster plot for 20 cells from the N = 500 in
figure 4. The network spiking initially climbs slowly
during a kindling stage due to the slow decay of the
AHP current. Once the spiking is high enough, the
network accelerates quickly through positive synaptic
feedback to a high rate of spiking (the burst) which
then terminates to a quiescent state through the ac-
tivation of the AHP. The decay of AHP triggers a
subsequent kindling stage, thus forming an oscilla-
tion.. Notice that in the pre-burst kindling stage
multiple spike events occur in quick succession due
to the slowly fluctuating noise.

The population burst oscillation can be controlled
by noise. Figure 5 plots the synaptic s(t) variable
of the large-N spiking model (solid line) and the
mean-field reduction (dashed line) over nearly two
orders of magnitude of noise levels from σ = 0.025 to
σ = 0.95. For the particular choices of model param-
eters we observe that for very low noise levels (figure
5A; σ = 0.025) no burst oscillations are observed.
As noise is increased, burst oscillations are seen to
emerge in both the spiking model and the mean-field
model. Figure 5B shows that there is a discrepancy
between the precise onset of existence of the burst
oscillations between the two models. Both figures 3
and 5 suggest that the mean-field model is slightly
less active and underestimates the burst frequency of
the spiking model. As the noise level is increased to
large noise levels, both models increase their burst
frequency and their amplitudes diminish. At suffi-
ciently high noise levels neither the mean-field model
nor the spiking model support burst oscillations. Fig-
ure 6 summarizes the relationship between noise and
burst frequency for the spiking model and mean-field

Figure 3: Stochastic simulations of the spiking net-
work model for N = 500 and a linear synaptically
activated AHP current, equations (1)–(3), (10), (11)
and (12). Corresponding mean field solution of equa-
tions (18)–(20)) is shown by dashed curves. (A) s(t)
trace, (B) hi(t), i = 1 . . . N traces are depicted as thin
solid lines; mean-field h depicted by a gray dashed
line. Panel C shows a single voltage trace of the
stochastic spiking model. The neuron spikes upon
reaching threshold (θ = 1) and is reset to −2 and
held offline for a refractory time τr during which it
increases to vr and is put back online. Notice the
stochastic voltage fluctuations between bursts and
the variable burst duration at the single-cell level, in
addition to the random smaller spiking events in be-
tween the main bursts. The parameters are τv = 1ms,
τh = 500ms, τs = 5ms, τx = 5ms, Iv = 0.95mv,
σ = 0.25, vr = −1, θ = 1, τr = 1ms, as = 3, and
ah = 1.
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Figure 4: Stochastic simulation of the network model
with linear AHP given by equations (1)–(3), (10) (11)
and (12) for N = 500 and σ = 0.25. (A) Raster
plot of 20 of the 500 cells. Individual spike times
(abscissa) are indicated by a single black dot for the
i = 1 . . . 20 cells (ordinate). (B) Spike counts for the
N = 500 network in 1ms bins revealing that the net-
work is asynchronously activated on a 1ms time scale.
(C) Single voltage trace v(t) of the i = 1 cell. Notice
the small spiking events that occur preceding prior
to the main population burst. All other parameters
are the same as in Figure 3.

Figure 5: Control of oscillations by noise for lin-
ear AHP model. The population synaptic input
s(t) for the stochastic spiking model (solid line) and
the mean-field model (dashed line) over nine noise
strength levels spanning two orders of magnitude
(panels A to I). At low noise (σ = 0.025; panel A) no
oscillations are observed. As noise is increased, burst
oscillations emerge and increase in frequency. At high
noise the frequency speeds up and the amplitude is
squashed. The mean-field model matches well with
the qualitative behavior of the spiking model. All
other parameters are the same as in figure 3.
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model over a similar range of noise levels as shown in
figure 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

σ

F
iri

ng
 r

at
e 

(H
z)

 Spiking Model
 Mean Field

Figure 6: The population burst frequency for the
stochastic spiking model with linear AHP (solid line)
and the corresponding mean-field model (ball-linked
line) over 18 noise strength levels spanning two or-
ders of magnitude from σ = 0.025 to σ = 0.85. There
exists a window of noise levels that support oscilla-
tions. Within that window frequency increases with
increasing noise. The mean-field model predicts well
the behavior of the spiking model, with a 3-6% fre-
quency difference. All other parameters are the same
as in figure 3.

Burst oscillations can also be controlled by the ap-
plied bias current Iv. Figure 7 shows the variation
of Iv for a fixed σ = 0.45. At low current levels no
oscillations are observed and the network is in a low
activity steady state (figure 7A). Increased bias cur-
rent produces oscillations, and the burst oscillation
frequency increases with increased current (figures
7B-F). At sufficiently high current levels the system
oscillations disappear and the network is now in a
high activity steady state (figure 7G).

We find that the presence of noise can increase the
available frequency range of burst oscillations of the
system as Iv is varied. Figure 8 shows the firing rate
(Hz), indicated by grayscale in (figure 8A), as a func-
tion of both the bias current Iv (abscissa) and noise

Figure 7: Varying bias current in linear AHP model.
The population synaptic input s(t) for the stochastic
spiking model (solid line) and the mean-field model
(dashed line) over seven bias current levels (panels
A to G) for a fixed noise level σ = 0.45. For suf-
ficiently low noise no oscillations are observed. As
current is increased, burst oscillations emerge and in-
crease in frequency. At sufficiently high current the
oscillations disappear but with no accompanying am-
plitude modulation, unlike figure 5 where we varied
noise strength. The mean-field model matches well
with the qualitative behavior of the spiking model.
All other parameters are the same as in figure 3.
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σ (ordinate). For this figure the shaded patch asso-
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Figure 8: (A) The population burst frequency for
the mean-field model with linear AHP, indicated by
greyscale (right) as a function of the bias current Iv

(abscissa) and noise σ (ordinate). (B) Fine grained
burst rate as a function of Iv (solid dotted line) with
σ = 0.025 (black dot path in A), and as a function
of both Iv and σ scaled together: σ(Iv) = 0.025 +
(1.47 − 0.025)(Iv − 0.95)/(1.47 − 0.95) (open circled
dotted line; path shown in A). All other parameters
are the same as in figure 3.

ciated with a certain firing rate corresponds to the
parameter pair associated with the lower left vertex
of each grid square. For low noise levels (σ = 0.025) a
sweep through increasing bias currents can achieve a
limited range of firing rates, from approximately 0.5
Hz to 0.75 Hz, as shown by the solid dotted black line
in figures 8A and B. However, linearly increasing the
noise with the bias current as in the case of Poisson
background inputs, see section 2.1.1, can produce fir-
ing rates in a much wider range. This is indicated
by the open circled line in figures 8A and B, which

shows the frequency varying from approximately 0.5
Hz to 2.5 Hz, corresponding to an eight fold increase
in available frequencies compared to varying current
alone with very low noise. Thus, the inclusion of
noise in the system increases the robustness of the
oscillation.

The slight overestimation of the period by the
mean-field model shown in figures 3 and 5 was ob-
served for any parameter choices that elicited burst
oscillations. The discrepancies between the mean-
field model and the large-N spiking model are due to
a number of factors that are neglected in the deriva-
tion of the mean-field model. (a) Fluctuations in the
slow activation variable hi(t) driven by the synaptic
noise xi(t), see equation (12). (b) As mentioned ear-
lier, at low firing rates a scalar firing rate description
of spike activity breaks down because temporal av-
eraging of spike emission must be carried out over
long time scales. At higher firing rates this will not
be a problem. This is supported by the observation
the mean-field model captures very well the shape of
the spike model burst at high firing rates, but not
as well at low rates. (c) For finite N , the popula-
tion average 〈f〉 of equation (21) randomly fluctu-
ates about the ensemble average over the stationary
distribution p(x). Reduction of network size pro-
duces irregular burst amplitudes and periods (data
not shown). All of the preceding factors introduce
discrepancies between the mean-field equations and
the spiking model. The value of deriving the mean-
field equations, however, does not lie in reproducing
the spiking model precisely, but in permitting math-
ematical analysis of the dynamical mechanisms that
produce bursting.

We now focus on the bifurcation structure of the
mean–field equations (18)–(20). We proceed by pro-
jecting the solution of these equations onto a two-
dimensional submanifold along with the projected
null surfaces to gain insight into the system behav-
ior. Figure 9 shows the projected solution (thick solid
line) in the s-h phase plane along side the projected s
null surface (thin solid line) and h null surface (thin
dashed line) for four noise levels (figure 9 panels A-
D). For low noise levels the system settles onto a sta-
ble fixed point representing a “silent” or low activity
state; the inset in figure 9A suggests that the sta-
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Figure 9: Varying noise in the phase plane for linear
AHP model. Projected mean-field dynamics in the
s-h plane for four noise levels (panels A-D) and fixed
bias current Iv = 0.95. The mean-field solution (thick
solid line) evolves from an initial condition marked
by a dot ( ·). For low noise (panel A, σ = 0.05) the
system settles into a low-activity fixed point indicated
by the intersection of the projected null surfaces (see
inset) of s and h (thin solid line and thin dashed line,
respectively). With increased noise (panel B, σ =
0.35) a large amplitude oscillation emerges. At σ =
0.75 (panel C) the oscillation amplitude diminishes.
(D) At high noise σ = 0.95 there exists a stable spiral.
The same parameters are used as in figure 3.

bility of the fixed point is stable. Panel B of fig-
ure 9 reveals that large enough noise can produce
deterministic oscillations. Geometrically, the oscilla-
tion emerges as the leftmost local minimum of the
projected s null surface elevates with respect to the
fixed h null surface. As the intersection of the sur-
faces moves rightward with increasing σ, it appears
to become unstable. By numerically calculating the
eigenvalues of the linearized system about this fixed
point as in equation (30), we find that the real part of
a single complex eigenvalue pair goes from negative
to positive if noise is elevated above a certain thresh-
old. The first Lyapunov coefficient (see Kuznetsov,
1998) at this bifurcation point is positive. Hence, the
fixed point destabilizes in a subcritical Hopf bifur-
cation. An analogous mechanism of rhythmogenesis
occurs in two-variable models of single-cell excitable
membranes such as the Fitzhugh-Nagumo equations
and the Morris-Lecar equations, both of which are
examples of relaxation oscillators (Izhikevich, 2007).
Hence, during noise–induced population-level rhyth-
mic bursting the globally coupled excitatory network
acts like a low-dimensional relaxation oscillator. As
the noise level is further increased the system un-
dergoes a supercritical Hopf bifurcation at σ = 0.95,
beyond which the network settles into a stable spiral
(see inset of figure 9D).

Next we probe the mean-field system in the pro-
jected phase plane as we vary Iv and keep the noise
fixed at an intermediate noise level. As suggested
by figure 7, we find that the oscillation exists over
a finite range of bias currents. Figure 10 shows the
projected s-h phase plane over four bias currents. For
low bias current (figure 10A) the system settles into
a low-activity fixed point indicated by the intersec-
tion of the projected null surfaces (see inset) of s and
h (thin solid line and thin dashed line, respectively).
With increased current (figure 10B) a finite ampli-
tude oscillation emerges that persists over a range of
values of Iv without a significant change in ampli-
tude (figure 10C). At sufficiently high bias currents
(figure 10D) there exists a high-activity stable fixed
point analogous to the low-activity resting state at
low currents. Stability analysis of the fixed point
over this parameter range shows that initiation and
termination of bursting both occur via a subcritical
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Figure 10: Varying current in the phase plane for
linear AHP model. Projected mean-field dynamics
in the s-h plane for four bias current levels (panels
A-D) and fixed noise σ = 0.45. The mean-field solu-
tion (thick solid line) evolves from an initial condition
marked by a dot ( ·). For low bias current (panel A,
Iv = 0.8) the system settles into a low-activity fixed
point indicated by the intersection of the projected
null surfaces (see inset) of s and h (thin solid line
and thin dashed line, respectively). With increased
current (panel B, Iv = 0.9) a large amplitude oscilla-
tion emerges. At Iv = 1.25 (panel C) the oscillation
amplitude in s does not change much. (D) At high
current Iv = 1.45 there exists a high-activity stable
fixed point analogous to the low-activity state for low
current. All other parameters are as in figure 3.

Hopf bifurcation. Figure 11 illustrates the bifurcation
results from figures 8, 9, and 10 in the Iv-σ param-
eter plane. The lower left corner, when noise and
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Figure 11: Bifurcation diagram in Iv (abscissa) and
noise σ (ordinate) with all other parameters as in
figure 3. Burst oscillations exist in the interior of
the region bounded by subcritical (solida lines) and
supercritical Hopf curves (dashed lines), which meet
at Bautin codimension-two bifurcation points (open
circles). The dotted lines represent some of the paths
in parameter space that have been explored in the
above analysis, see figures 5, 8, and 7, correspond
to the vertical, diagonal, and horizontal dotted lines,
respectively.

current are low, corresponds to the low-activity, non
oscillatory “resting” state. Increasing noise or cur-
rent can produce burst oscillations via a subcritical
Hopf bifurcation where the state of the system enters
the inner region encircled by Hopf bifurcation man-
ifolds. Along the manifolds there are two codimen-
sion two Bautin bifurcation points separating super-
critical Hopf (dashed line) and subcritical Hopf (solid
line) boundaries. Moving to the right in this parame-
ter space puts the system in a non oscillatory “high”
activity state. The thin dotted lines represent the
paths in parameter space that have been explored in
the above analysis contained in figures 5, 8, and 7
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corresponing to the vertical, diagonal, and horizontal
dotted lines, respectively.

3.2 Nonlinearly activated AHP re-

sults

Numerical simulations of the spiking model (1)–(3)
with nonlinear activation of h (equations (13) and
(14)) establishes that oscillations exist for an appro-
priate set of parameters as shown in figure 12. As
before, the mean-field model matches well the burst
shape and period (figure 12A). Figure 12B shows all
of the AHP variables h(t) (thin solid lines) and a
single c1(t) trace of the spiking model (solid line),
where the jagged c1(t) is due to ac/τc discrete jumps
upward corresponding to influx due to spike events
from the cell in question. The mean field approxi-
mation (dashed lines) matches well, but for the c(t)
variable it only captures mean-value-like behavior be-
cause spikes are not explicitly modeled in the mean-
field model. Just as in the linearly activating AHP
model the single voltage spiking traces (figure 12,
panel C) reveal small spiking events in the run up
to the large bursting events. Note that due to the
nonlinear activation the variance of the hi(t) traces
varies through the burst cycle, where during the silent
state the AHP traces coalesce, and during the burst
the traces disperse maximally at the peak of burst-
ing. As we shall see, the mean-field approximation
breaks down if the dispersion of the AHP traces is
too great.

Just as with the linear AHP model, the modu-
lation of noise strength of the nonlinear model can
control the existence and period of the burst oscilla-
tions. Figure 13 reveals that at low noise levels burst
oscillation existence and period can be predicted by
the mean-field model (25)–(28). At high noise levels,
however, there is a significant mismatch between the
two models (figure 13F). Discrepancies also arise be-
tween the models at high current levels. As can be
seen in figure 12B, the AHP traces disperse during
the transition to and from bursting and coalesce dur-
ing the silent phase. At high noise or current levels,
the cells switch between these two states more often
such that dispersion dominates cohesion of the AHP
variables and the mean-field description breaks down.

Figure 12: Stochastic simulations of spiking network
model for N = 500 and a nonlinear calcium activated
AHP current, equations (1)–(3), (10), (11), (13) and
(14). Corresponding mean–field solution of equations
(18)–(20) is shown by dashed lines. (A) s(t) trace,
(B) All the hi(t) traces and a single c1(t) trace of the
spiking model (solid line) are depicted along side the
mean-field solutions h(t) and c(t) of equations (13
and (14), which are depicted by thick gray dashed
lines. Panel C shows a single voltage trace of the
stochastic spiking model. The neuron spikes upon
reaching threshold (θ = 1) and is reset to −2 and
held offline for a refractory time τr during which it
increases to vr and is put back online. Notice the
stochastic voltage fluctuations between bursts and
the variable burst duration at the single-cell level, in
addition to the random smaller spiking events inbe-
tween the main bursts. The parameters are τv = 1ms,
τh = 500ms, τs = 5ms, τx = 5ms, τc = 10ms,
Iv = 0.95mv, σ = 0.2, vr = −1, θ = 1, τr = 1ms,
as = 3, ah = 2, ac = 1, and γ = 0.3, and β = 100.
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Figure 13: Varying noise strength for nonlinear AHP
model. The population synaptic input s(t) for the
stochastic spiking model (solid line) and the mean-
field model (dashed line) over six noise strength lev-
els spanning two orders of magnitude (panels A to
F). At low noise (σ = 0.025; panel A) no oscillations
are observed. As noise is increased, burst oscillations
emerge and increase in frequency. At high noise the
frequency speeds up and the amplitude is squashed.
The mean-field model matches well with the quali-
tative behavior of the spiking model except at the
highest noise level (panel F). All other parameters
are the same as in figure 12.

To illustrate this breakdown we simulate the nonlin-
ear AHP spiking model and the mean-field reduction
for two bias currents and a fixed noise value σ = 0.25,
see figure 14. In these simulations (and all other sim-

Figure 14: Breakdown of mean-field theory in non-
linear AHP model. The population activity at two
high current levels Iv = 1.8 (panels A and B) and
Iv = 1.87 (panels C and D) illustrate how the mean-
field model breaks down when AHP dispersion is too
great. Panels A and C show synaptic input s(t)
for the stochastic spiking model (solid line) and the
mean-field model (dashed line). Panels B and D show
all the hi(t) variables (thin black lines) and the mean-
field h(t) variable (thick grey dashed line). All other
parameters are the same as in figure 12.

ulations in this paper) we initialize the AHP vari-
ables to the same value (no dispersion). Over time
the AHP variables will disperse as the random spik-
ing of each cell differentially activates the respective
AHP currents. Figure 14 panels A and B show the
system with a lower level of bias current (Iv = 1.80)
where the mean-field model matches very well the
full spiking system. Changing the current to a larger
amount (Iv = 1.87) causes the solution of the full
spiking model to follow the mean-field model for one
burst cycle, but on the second cycle, after the AHP
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traces have dispersed, the full spiking model diverges
from the mean-field prediction. Because of this effect,
we restrict our subsequent analysis of the non-inear
AHP mean-field system to low noise and bias current
levels, where the mean-field model is quantitatively
predictive.

By carrying out phase plane and bifurcation anal-
ysis of the calcium mediated AHP mean-field equa-
tions (18)–(20) we will establish that the noise-
induced mechanism of burst rhythm onset is due to
a SNIC bifurcation. First we note that the projected
s null surface for both the linear and nonlinear mod-
els are identical, being given by equation (33). On
the other hand, the projected null surface of the h
variable is now nonlinear, see equation (32). Figure
15 shows the evolution of the mean-field system in
the s-h projected plane for four increasing noise lev-
els (panels A-D). At low noise levels the null surfaces
intersect to form three fixed points (figure 15A). The
rightmost fixed point is unstable. The leftmost fixed
point, which is stable (see inset of figure 15A), and
the middle fixed point, which is unstable are formed
by the local minimum of the s null-surface crossing
with the horizontal “foot” of the h null-surface. As
the noise level is increased, the local minimum of the
projected s null-surface elevates with respect to the
foot of the h null-surface, causing the left and middle
fixed points to disappear in a saddle node bifurca-
tion, leaving a periodic solution in its place (figure
15B). As the noise is increased further the slope of
the middle section of the s null surface becomes less
positive and the amplitude of the oscillation as mea-
sured in the h or the s dimension is decreased (figure
15C). At very high noise levels the mean-field system
undergoes a supercritical Hopf bifurcation to a non-
oscillatory state (figure 15D). Numerical simulations
of the full spiking model suggest a similar qualitative
behavior in the high-noise regime (data not shown),
but the mean-field model can make no quantitative
predictions here.

Finally, increasing the bias current can also give
rise to a SNIC bifurcation to burst oscillations in the
nonlinear calcium-mediated AHP model. Figure 16
shows the evolution of the mean-field system in the
s-h projected plane for two current levels (panels A
and B). In a similar fashion to increasing the noise

Figure 15: Increasing noise produces a SNIC in non-
linear AHP model. Projected mean-field dynamics
(18)–(20) of the nonlinear calcium mediated AHP in
the s-h plane for four noise levels (panels A-D) and
fixed bias current Iv = 0.9001. The mean-field so-
lution (thick solid line) evolves from an initial con-
dition marked by a dot ( ·). For low noise (panel
A, σ = 0.05) the system settles into a low-activity
fixed point indicated by the leftmost intersection of
the projected null surfaces (see inset) of s and h (thin
solid line and thin dashed line, respectively). With
increased noise (panel B, σ = 0.15) a large ampli-
tude oscillation emerges. At σ = 0.5 (panel C) the
oscillation amplitude diminishes. (D) At high noise
σ = 1.10 (where the mean-field system is no longer a
valid predictor of the full spiking model) there exists
a stable spiral (see inset). The same parameters are
used as in figure 12.
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Figure 16: Increasing current produces a SNIC in
nonlinear AHP model. Projected mean-field dynam-
ics (18)–(20) of the nonlinear calcium mediated AHP
model in the s-h plane for two current levels (panels
A and B) and fixed noise σ = 0.25. The mean-field
solution (thick solid line) evolves from an initial con-
dition marked by a dot ( ·). For low current (panel
A, Iv = 0.7) the system settles into a low-activity
fixed point indicated by the leftmost intersection of
the projected null surfaces (see inset) of s and h (thin
solid line and thin dashed line, respectively). With
increased current (panel B, Iv = 0.8) a large ampli-
tude oscillation emerges. The same parameters are
used as in figure 12.

at fixed bias current, the nonlinear AHP mean-field
model undergoes a SNIC through flattening of the
projected s null-surface, where upon the leftmost two
fixed point intersections shown in figure 16A collide
and annihilate leaving a periodic solution shown in
figure 16B.

4 Discussion

In this paper we have shown that a globally connected
excitatory network of leaky integrate-and-fire model
neurons possessing a slow activity-dependent adap-
tation current can exhibit coherent population burst
oscillations when driven by synaptically filtered noise.
Due to the time scale separation imposed by the slow
AHP current and synaptic filtering (τv ≪ τx, τs ≪
τh) we were able to derive low-dimensional determin-
istic mean-field equations for the two different AHP
currents in the large-N limit. The mean-field dynam-
ical systems are amenable to mathematical analysis
and we have shown that noise induced bursting can
come about through a subcritical Hopf bifurcation in
the linear synaptically activated AHP model, and a
SNIC bifurcation in the nonlinear calcium-mediated
model. In the linear model, by analyzing the joint de-
pendence of the oscillations on the noise strength σ
and the overall excitability (as determined by the bias
current Iv), the burst oscillations are predicted to ex-
ist within an “island” of the Iv-σ parameter space
determined by a continuous Hopf bifurcation curve
(figure 11). Moreover, by conceiving the noise source
as a Poisson input we reason that an increase in input
strength ax or the Poisson rate ν will scale both the
noise and bias current together, suggesting a natural
diagonal (rightward increasing) pathway through Iv-
σ parameter space. We have shown that for a partic-
ular choice of parameters that this pathway through
Iv-σ space can afford both a larger parameter range
that supports oscillations and a frequency range that
is many times greater (approximately eight times)
compared to the zero noise case.

Our results complement the work of Van Vreeswijk
and Hansel (2001), who have studied the basic prin-
ciples of emergent population burst oscillations in
deterministic networks, and Vladimirsky et al. (in
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press), who have shown through mean-field analy-
sis that population heterogeneity can provide added
robustness to population burst oscillations. Further-
more, the present work is distinct from other stud-
ies on noise–induced population burst oscillations, in-
cluding both mean–field models at fixed noise levels
(Gigante, Mattia, and Giudice, 2007; Vladimirski et
al., in press), and conductance–based models of in-
trinsically activated currents (Kosmidis, Pierrefiche,
and Vibert, 2004).

The derivation of the mean-field model rests on
several approximating assumptions, including the
aforementioned separation of time scales, and the
asynchrony of spiking in the large-N network. We
also assume the ergodicity of the large-N system so as
to use the steady state Gaussian probability density
p(x), equation (22), in order to integrate the firing
rate function over the random inputs as in equation
(21). We have shown that the nonlinear calcium-
mediated AHP mean-field model is only valid for suf-
ficiently small currents or noise levels where the hi(t)
variables are not dispersed too much. At higher cur-
rent and noise levels, oscillatory behavior can still
persist, but the full spiking model behavior cannot
be predicted by the mean-field system. More gener-
ally, we note that the requirements for the validity of
the mean-field model are not necessary conditions for
oscillatory behavior in the full spiking model. In fact,
we have observed that direct input of white noise to
the membrane equation in lieu of synaptic filtering
(10, 11) can also produce robust population oscilla-
tions. We leave the systematic study of fast noise
inputs for future work.

As stated in the introduction, Kosmidis, Pier-
refiche, and Vibert (2004) have shown numerically
that white noise inputs to a Hodgkin-Huxley neural
network exhibits burst oscillations over a finite range
of noise levels. Similar to our present results they
found that increased noise strength produces increas-
ing bursting frequency while decreasing the ampli-
tude. Although, there are many differences between
their model and ours, we find the qualitative agree-
ment between the models suggestive of a deeper prin-
ciple, namely, that large-N recurrent neural networks
can exploit ensemble ergodicity, where fast synaptic
transmission in the network computes an effective in-

stantaneous average activity that is a shared input to
every cell in the network in the noisy neural popula-
tion, and slow AHP currents activate and deactivate
based on long-time averaged activity. Oscillations ex-
ist in the network when the excitability of the cells,
due to noise or a constant bias, is in a intermediate
range, which is analogous to coherence resonance in
other excitable neural systems (Lindner et al., 2004).

Our analytical and modeling study has potential
applications to real biological neural networks. In the
PreBotC slice preparation, extracellular potassium
levels can be manipulated to control the existence
and period of burst oscillations (Funk and Feldman,
1995). Increase of extracellular potassium, which re-
duces the potassium outward leak current, thereby
depolarizing the cell, could also increase the noisiness
of the cellular environment.

For our two distinct AHP current models we have
shown two distinct bifurcation mechanisms to os-
cillations that could have important consequences
for burst rhythmogenesis. At the level of general
single cell modeling it has been hypothesized that
SNIC bifurcations in excitable membranes modeled
as a relaxation oscillators can account for the high
spiking irregularity and predict long latency to spik-
ing from weak super-threshold depolarizing inputs,
whereas Hopf instabilities exhibit more regular spik-
ing and do not exhibit long post input latencies to
spike (Gutkin and Ermentrout, 1998). Furthermore,
SNIC bifurcations exhibit an absolute threshold to
spiking, whereas Hopf instabilities exhibit a “soft”
ill-defined threshold to spiking. All of these theoret-
ical results apply to our model because the spiking
network reduces to a relaxation oscillator through
the mean-field approximation in the large–N limit.
This suggests that examining the behavior of the
spiking and mean-field systems to transient inputs or
abrupt parameter changes could generate experimen-
tal predictions regarding PreBotC burst rhythmoge-
nesis. Of course, with a large network the oscillations
are quasi–deterministic and very regular. In a smaller
network however, more irregular population burst
patterns can be observed. These irregular activity
patterns are similar to up and down states observed
in cortical slices (see McCormick and Yuste, 2006,
for a review). Up-states (high activity) and Down
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states (low activity) in cortex are thought to be due to
recurrent excitatory network ensembles that exhibit
transient up and down episodes. Such episodes can
be toggled by inputs, and stochastic forces ostensibly
produce the random-like switching observed in slice
work. Recently, noise driven mean-field equations
of up–down dynamics have been studied (Holcman
and Tsodyks, 2006). While the present work does
not explore finite–N fluctuations, our model could be
adapted to study such up–down phenomena.
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in the pre-bötzinger complex. III. Experimental tests
of model predictions. J. neurophysiol. 86: 59-74.

22



Del Negro CA, Morgado-Valle C, Feldman JL,
(2002) Respiratory rhythm: An emergent network
property? Neuron. 34: 821-830.

O’Donovan MJ, (1999) The origin of spontaneous
activity in developing networks of the vertebrate
nervous system. Curr. Opin. Neurobiol. 9, 94-104

Pace RW, Mackay DD, Feldman JL, Del Negro
CA, (2007) role of persistent sodium current in
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