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Abstract We study the spatiotemporal dynamics
of a two-dimensional excitatory neuronal network
with synaptic depression. Coupling between pop-
ulations of neurons is taken to be nonlocal, while
depression is taken to be local and presynaptic.
We show that the network supports a wide range
of spatially structured oscillations, which are sug-
gestive of phenomena seen in cortical slice experi-
ments and in vivo. The particular form of the oscil-
lations depends on initial conditions and the level
of background noise. Given an initial, spatially lo-
calized stimulus, activity evolves to a spatially lo-
calized oscillating core that periodically emits tar-
get waves. Low levels of noise can spontaneously
generate several pockets of oscillatory activity that
interact via their target patterns. Periodic activity
in space can also organize into spiral waves, pro-
vided that there is some source of rotational sym-
metry breaking due to external stimuli or noise.
In the high gain limit, no oscillatory behavior ex-
ists, but a transient stimulus can lead to a single,
outward propagating target wave.
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1 Introduction

Spatially localized oscillations arise both in vivo
and in vitro and may be observed experimentally
using multi–electrode arrays or voltage–sensitive
dye imaging [62]. Such organizing activity in the
brain has been purported to play a role in sen-
sory perception [13, 31], memory – both working
and long term [27], and pathological events like
epilepsy [38]. Whether or not large-scale brain os-
cillations are epiphenomena or have functional sig-
nificance remains an open question in many cases.
However, both experiment and modeling continue
to devote efforts to understanding the mechanisms
that generate and sustain oscillations [7].

When neocortical or hippocampal in vitro slices
are treated with an inhibitory neurotransmitter
antagonist such as bicuculline, effectively eliminat-
ing inhibition, a localized current stimulus evokes
population activity. Such activity may take the
form of a spatially localized group of neurons whose
population activity oscillates around 1–10Hz [60,
38, 50]; during each oscillation cycle the popula-
tion may emit elevated activity that propagates
as a traveling pulse [60, 9, 62] or a spiral wave
[23, 48]. Spiral waves provide a mechanism for spa-
tially organizing extensive episodes of periodic ac-
tivity, effectively reducing the dimensionality of
the dynamics [48]. Since inhibitory connectivity is
pharmacologically blocked, any negative feedback
in the network is likely to arise at the single cell
level due to mechanisms such as synaptic depres-
sion [1, 4, 35, 53, 57] and spike frequency adapta-
tion [5].

A variety of sensory stimuli have been linked to
oscillations in vivo. For example, a number of stud-



ies of vertebrate and invertebrate olfactory bulbs
have found that odor stimuli can elicit oscillations
[32, 10]. Stimuli can also evoke oscillations and
waves in visual cortex [51, 45, 63, 6, 20], rat barrel
cortex [41], and auditory cortex [31]. Spatiotempo-
ral activity is not only a neural correlate of sensory
stimuli, but is also associated with various forms of
memory. For example, the encoding of new infor-
mation as well as the retrieval of long-term mem-
ory is reflected by the period of oscillations [27],
and the recall of a previous memory is often ac-
companied by an increase in oscillatory power [49].
On the other hand, stationary bumps of persistent
spatial activity that neither propagate nor oscil-
late have been seen during working memory tasks
[59].

Oscillations can also be the signature of cer-
tain brain pathologies such as epilepsy [38]. Elec-
trophysiology has been used to study epilepsy in
humans as well as animal models, and seizures
are usually accompanied by measurable stuctured
population activity. Trauma or developmental mal-
function can lead to reduced regions of inhibition,
axonal sprouting, or synaptic reorganization of ex-
citatory circuitry [11]. Such regions are prime can-
didates for epileptic seizure foci. Any incurring ex-
citatory input may be sufficient to create high fre-
quency oscillations in the population activity of
these patches of cortex [36]. The nature of such
structured population activity as recorded by elec-
troencephalagram can indicate the nature of the
seizure mechanism [33]. As in cortical slice stud-
ies, some seizures have hallmark electrical activity
traces consisting of focused localized synchronous
oscillations that emit traveling pulses [47].

In light of the above examples, it is impor-
tant to understand the mechanisms behind spa-
tially structured oscillations in large scale neuronal
networks due to their functional and pathologi-
cal implications. A number of organizing mecha-
nisms for such spatiotemporal activity have been
suggested, including a single pacemaker oscillator
exciting successive neighbors in an excitable net-
work, or coupled oscillators propagating gradual
phase delays in space [13, 62]. Therefore, activ-
ity that propagates away from a focused region of
high frequency oscillations may either travel faster
than the characteristic time-scale set by the os-
cillating region, according to dynamics of an ex-
citable medium, or at a speed set by the period
of the oscillating core if the rest of the medium
is oscillatory as well. Conceivably, this may estab-
lish a dynamical systems explanation for the wide

range in speed at which seizures spread across the
cortex, which can be anywhere from 0.05mm/s to
10cm/s [38].

Recently Troy and Shusterman [54] have shown
how a pulse emitting oscillating core can occur in
an excitatory neuronal network based on a neu-
ral field model with linear negative feedback [42].
They first considered a two–dimensional network
operating in an excitable regime with a homoge-
neous low activity (Down) state that corresponded
to a stable fixed point of the space–clamped dy-
namics. Linearization about the fixed point yielded
a Jacobian with complex eigenvalues so that the
fixed point was a stable focus. In this regime, Troy
and Shusterman showed that after breaking the ro-
tational invariance of an initally generated target
wave, reentry of the free ends of the resulting rotor
into the center of the domain generated subsequent
waves. In the same system, spiral waves were gen-
erated by periodically breaking rotational invari-
ance with an inhibitory stimulus. In a subsequent
study they showed that the same system, with
large enough negative feedback, supports spatially
localized oscillations that periodically emit travel-
ing pulses [50]. In this regime the space–clamped
model exhibits bistability, in which a stable Down
state coexists with a stable limit cycle. However,
since the linear form of adaptation used in these
studies is not directly related to physiological mod-
els of adaptation, it is difficult to ascertain whether
or not the levels of feedback required are reason-
able.

In this paper, we show how various forms of
spatially structured oscillations, including spiral
waves and pulse emitters, can occur in a two di-
mensional excitatory neuronal network with a phys-
iologically based form of nonlinear negative feed-
back, namely, synaptic depression. Previously, we
considered the combined effects of synaptic depres-
sion and spike frequency adaptation on the spa-
tiotemporal dynamics of a one–dimensional exci-
tatory network [26]. We showed that synaptic de-
pression tends to dominate the dynamics, provid-
ing a mechanism for generating spatially localized
oscillations. Here we extend our analysis to two
dimensions and to the case of noisy networks. For
simplicity, we ignore the effects of spike frequency
adaptation since they tend to be relatively weak.
The basic two–dimensional model is introduced in
section 2. We then analyze the space–clamped ver-
sion of the model, and show that it supports a sta-
ble limit cycle in the absence of noise (section 3).
However, in the presence of additive white noise,
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the parameter regime over which oscillations can
occur can be significantly widened. In section 4
we present a number of numerical simulations il-
lustrating various two–dimensional spatiotempo-
ral activity patterns supported by the full net-
work model. Depending on the initial conditions,
we show that in the absence of noise, network ac-
tivity can evolve as a pulse-emitting oscillating
core or as a spiral wave. Furthermore, addition of
a small amount of spatially uncorrelated noise to
a quiescent network can drive pockets of the sys-
tem superthreshold and lead to discrete locations
of pulse-emitting cores. On the other hand, large
amounts of noise lead to bulk oscillations which
can disrupt any spatially structured activity. We
also show that when a radially symmetric stim-
ulus is applied to the network in the presence of
noise, spiral waves can be generated due to sym-
metry breaking, similar to the organized activity
found in mammalian cortical slice [23, 48]. Finally,
we study the system in the high–gain limit (sec-
tion 5). In this case, oscillations do not exist in
the deterministic system, but depression is a suffi-
cient mechanism for generating outward propagat-
ing target waves following a brief stimulus.

2 Neural network model with synaptic
depression

We consider a neuronal network model which in-
cludes synaptic depression [1, 4, 35, 53, 57, 64]. As
opposed to the usual Pinto-Ermentrout formula-
tion of negative feedback [42, 14, 54, 55] in spa-
tially extended neural fields, here we take negative
feedback to depend on output firing rate

∂u(r, t)
∂t

= −u(r, t) + w ∗ (qf(u)) (r, t) (2.1a)

∂q(r, t)
∂t

=
1− q(r, t)

α
− βq(r, t)f(u(r, t)), (2.1b)

where

w ∗ (qf(u)) (r, t)

=
∫

R2
w(|r− r′|)q(r′, t)f(u(r′, t))dr′

where r and r′ are spatial positions in the two-
dimensional plane R2. Equation (2.1a) describes
the evolution of the synaptic current or drive u(r, t)
in the presence of synaptic depression, which takes
the form of a synaptic scaling factor q(r, t) evolv-
ing according to equation (2.1b). The factor q(r, t)
can be interpreted as a measure of available presy-
naptic resources, which are depleted at a rate βf
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Fig. 1 Comparison of the step, piecewise linear, and sig-

moid firing rate functions. Parameter values are θ = 0.05

and σ = 4. The sigmoid function has the same slope and
value as the piecewise linear function at their mean values.

When compared to the sigmoid function, it is apparent that

the piecewise linear function’s true threshold is more accu-
rately given by θs = 0.175, rather than θ, the point at which

nonzero firing occurs.

[57, 4, 53], and are recovered on a timescale speci-
fied by the constant α (experimentally shown to be
200-1500ms [1, 56, 57, 52]). In a previous study, we
considered a one-dimensional model with synaptic
depression and adaptation and showed that adap-
tation has a relatively small effect on the dynam-
ics [26]. Therefore, we focus on synaptic depression
here. It will be convenient in the following to fix
parameters so that f is interpreted as the fraction
of the maximum firing rate, that is 0 ≤ f ≤ 1.

Most of our analysis and numerics are carried
out for a general piecewise linear firing rate func-
tion that attains saturation as pictured in Fig. 1:

f(u) =


0, u ∈ (−∞, θ),

σ(u− θ), u ∈ (θ, θ + σ−1),
1, u ∈ [θ + σ−1,∞).

(2.2)

Here σ specifies the slope of the linear regime. (One
could also consider a firing rate function with a
step followed by linear increase [18, 19]). Note that
taking the firing rate to be a linear function close
to threshold is consistent with the observation that
spike frequency adaptation tends to linearize the
firing frequency-input current curve [12, 58]. In the
limit that σ → ∞, we recover the Heaviside step
function used in Amari’s original work on scalar
networks [2] and most analytical studies of the
Pinto-Ermentrout model [42, 43, 50, 14, 16, 15,
54, 55]:

f(u) = H(u− θ) =
{

0, u ∈ (−∞, θ),
1, u ∈ [θ,∞).

(2.3)

We will use such a function in order to study target
waves and stationary bumps (see section 5). One
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important point, as illustrated in Fig. 1, is that
the threshold θ in equation (2.2) is not necessarily
analogous to the threshold θ in equation (2.3). A
region above threshold in the piecewise linear case
might still be considered “off” if it only sustains
a low level of activity. This is further reinforced
by comparison with a sigmoid function in which
threshold is taken to be the point at which the
firing rate is half its maximum value:

f(u) = 1/(1 + exp(−σ(u− θs))). (2.4)

The homogeneous weight distribution w(|r −
r′|) defines the strength of the synaptic connec-
tions between neurons at r and r′, depending only
on the distance between two cells. Typical exci-
tatory weight functions are monotone decreasing
functions such as the exponential and the Gaus-
sian. We will take w to be given by a difference
of modified Bessel functions of the second kind:
[14, 29, 40]

w(r) =
2w0

3πd
(K0(r/d)−K0(2r/d)) , (2.5)

where w0 determines the strength of the synaptic
connections. The factor 2/3π ensures that equa-
tion (2.5) is a very good fit to the exponential
weight function

w(r) =
w0

2πd
e−r/d

The expansion in terms of Bessel functions is par-
ticularly convenient because it allows us to trans-
form the system (2.1) into a fourth order PDE,
which is computationally less expensive to simu-
late [28, 29, 54, 40] (see section 4). Finally, we fix
the temporal and spatial scales of the network by
setting τ = 1 and d = 1. The membrane time con-
stant is typically around 10 ms, whereas the range
of synaptic connections within cortex is of the or-
der 1 mm. We also fix synaptic strength by setting
w0 = 1. The effects of varying w0 are briefly dis-
cussed at the end of section 3.

3 Oscillations in the space-clamped system

Previous modeling studies of space-clamped neu-
ronal networks with synaptic depression showed
the existence of oscillations in the case of excita-
tory/inhibitory networks [57] or for a purely exci-
tatory network with noise [4]. Tabak et. al. showed
that an excitatory network with depression could
support regular oscillations and bursting, using an
alternative form for the neural field equation as

well as different gains and thresholds for each vari-
able’s activation function [53]. In our study, we find
that saturation of the activation function is suffi-
cient to stabilize limit cycles using the same activa-
tion function for both the activity and depression
variables.

3.1 Phase plane for piecewise linear firing rate

As a means of determining the oscillatory behavior
of the system, we examine the equilibria of the
space-clamped system [4, 53, 57]

u̇(t) = −u(t) + q(t)f(u(t)),

αq̇(t) = 1− q(t)− αβq(t)f(u(t)), (3.1)

where f is the piecewise linear activation function
(2.2) shown in Fig. 1. We carry out the stability
analysis of phase space using the piecewise lin-
ear function because explicit analytical expressions
can be derived for the fixed points. However, these
results extend to the case where there is a smooth
transition from the linear to the saturated portion
of the firing rate.

To calculate equilibria of (3.1), we consider the
possible solutions on the three domains of the piece-
wise function f(u). We find that there is a low ac-
tivity or Down state on the lower domain (u < θ)
for θ > 0 such that (u, q) = (0, 1). The stability of
this Down state is determined by the eigenvalues
of the Jacobian

J (0, 1) =
(
−1 0
0 −1/α

)
(3.2)

and is therefore stable for all realistic parameters.
A stable Down state exists in the network for any
f with a hard threshold, that is f(u) = 0 for
u < θ. Without this condition, it is possible that
the Down state may destabilize or vanish due to a
nonzero firing rate existing for zero synaptic drive.

We find additional equilibria by solving (3.1) on
the middle and upper domains of f . On the middle
domain (θ ≤ u ≤ θ+σ−1), where f(u) = σ(u− θ),
we have

u = σ(u− θ)q, (3.3)

q = 1/(1 + σαβ(u− θ)), (3.4)

θ ≤ u ≤ θ + σ−1, (3.5)

which has solutions

u =
σ + σαβθ − 1±

√
D

2σαβ
(3.6)

q =
2

1 + σ − σαβθ ±
√
D

(3.7)

D = (σ + σαβθ − 1)2 − 4σ2αβθ
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Other parameters are θ = 0.01, and σ = 4.
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Fig. 3 (a) Numerical simulation of (3.1) using the parameters θ = 0.01, σ = 4, α = 80, and β = 0.05 given the initial
condition (u,q) = (1,1). The synaptic input u and fraction of available resources q are plotted as a function of time t.

Oscillations lock to a period roughly determined by the time constant α. (b) Corresponding phase–plane plot of q versus

u (dashed line) showing that the system supports a stable limit cycle.

provided D ≥ 0 and condition (3.5) is satisfied.
Stability is determined by the eigenvalues of the
Jacobian

J (u, q) =
(
−1 + σq σ(u− θ)
−βσq −(1/α+ βσ(u− θ))

)
. (3.8)

We find that for a wide range of parameters, the
middle domain contains two equilibria, one of which
is a saddle and the other is a stable or unstable fo-
cus. The latter corresponds to a high activity or
Up state. For sufficiently fast depression, destabi-
lization of the Up state can lead to the formation
of a stable limit cycle via a subcritical Hopf bifur-
cation as pictured in Fig. 2. In parameter regimes
where the focus equilibrium does not exist, the Up
state occurs on the upper domain (u > θ + σ−1),

where f(u) = 1, and is given by

u = 1/(1 + αβ), (3.9)

q = 1/(1 + αβ), (3.10)

Its stability is determined by the eigenvalues of the
Jacobian

J (u, q, a) =
(
−1 1
0 −(1/α+ β)

)
, (3.11)

which guarantees that such an Up state is always
stable.

In Fig. 3 we show a simulation of the space-
clamped network for a choice of parameters that
supports a limit cycle. The parameter value for
synaptic depression time constant α is taken to
be within the physiological range 200-1500ms [1,
57]. Notice that both variables oscillate at a pe-
riod of roughly 40 time units or 400ms, which cor-
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Fig. 4 (a) Bifurcation diagram showing fixed points u of the system (3.1) as a function of β for α = 50. (b) Phase–plane

plot of q versus u (dashed line) showing the system supports a limit cycle. Other parameters are θs = 0.15, and σ = 20.

relates well with the scale of epileptiform events
[8, 36, 38, 50]. This also implies that the timescale
of oscillations is roughly set by the time constant
of synaptic depression. Notice that as opposed to
self sustained oscillations in the Pinto-Ermentrout
model [50], the equilibrium focus in our model is
associated with the Up rather than the Down or
rest state. As stated, these results easily extend
to the case where f is a smooth, saturating func-
tion above the threshold value u = θ. In partic-
ular, since limit cycles are structurally stable so-
lutions in continuous systems, oscillations persist
when f(u) is modified by smoothing out the corner
at u = θ+1/σ. However, without a hard threshold
at u = θ, we have not witnessed the same types of
dynamics as presented here for the piecewise linear
f . If oscillations exist, a stable Down state does
not, which we show in an analysis of the system
with a sigmoidal firing rate function (2.4).

3.2 Phase plane for sigmoidal firing rate

We use a numerical root finding algorithm to iden-
tify the equilibria of the system (3.1) in the case
where f is the sigmoidal function (2.4). It is pos-
sible to find physiologically reasonable parameter
regimes where limit cycles exist, but they do not
appear to coincide with a stable Down state, as in
the piecewise linear f case. We show an example
of one such limit cycle in Fig. 4, where transitions
between low and high activity states occur at the
knees of the u-nullcline . There is no such mech-
anism in the limit cycle present in the piecewise
linear system. This distinction suggests that the
loss of a hard threshold may change the overall
topology of dynamics within the network. Rather

than finding an excitable regime with limit cycles
about the Up state, we find either a purely oscilla-
tory regime, or an excitable regime with no limit
cycles.

3.3 Space–clamped system with noise

A previous study of the space–clamped system (3.1)
with f given by (2.2) considered parameter regimes
in which the subcritical Hopf bifurcation of the
Up state only produced an unstable limit cycle
[4]. In this case the authors showed that oscilla-
tions could be generated in the presence of addi-
tive noise, which switched the system between the
Up and Down states (see also [22]). It follows that
noise enlarges the parameter regime over which
self-sustained oscillations can occur. We illustrate
the effects of additive noise by simulating the sys-
tem

u̇(t) = −u(t) + q(t)f(u(t)) + γν(t),

αq̇(t) = 1− q(t)− αβq(t)f(u(t)), (3.12)

where f is the piecewise linear function (2.2), ν(t)
is a Gaussian white noise process such that 〈ν(t)〉 =
0, and 〈ν(s)ν(t)〉 = 2δ(t−s); γ is the noise strength.
We simulated the system (3.12) using an Euler-
Maruyama scheme for stochastic differentiation with
a timestep ∆t = 10−6. The nature of the noise–
induced oscillations depends upon whether the Up
state is a stable or unstable focus. In the case of a
stable focus, even though oscillations are damped
out eventually in the deterministic system, noise is
sufficient to repeatedly drive the system between
the Up and Down states, along analogous lines to
[4]. However, the oscillations tend to be rather ir-
regular as illustrated in Fig. 5.
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Fig. 5 Numerical simulation of the space–clamped system

(3.12) in which background noise drives the system between
Up and Down states. The horizontal dashed line denotes the

input current value at which activity is half of its maximal
value (θs = 0.135). Firing rate is taken to be piecewise

linear function (2.2). Parameters are α = 60, β = 0.06,
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Up state is a stable focus.
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Fig. 6 Same as Fig. 5 except α = 80 so that now the Up

state is an unstable focus in the absence of noise.

More regular noise–induced oscillations occur
in the case of an unstable focus. Equations (3.12)
now represent an excitable system with only a sta-
ble Down state, in which noise periodically drives
the system above threshold, leading to an elevated
firing rate that then relaxes back down as synaptic
depression is activated. An example simulation is
shown in Fig. 6, which neatly illustrates the regu-
larity of the noise–induced oscillations. This is an
example of a well known stochastic property of ex-
citable systems, namely, coherence resonance [34].
That is, there exists an optimal level of noise with
respect to the degree of regularity of the induced
oscillations; if the level of noise is too high then
this completely washes out any oscillations. We

conclude that noise extends the parameter range
over which the space–clamped system supports os-
cillations to include regions where the underlying
deterministic system supports a stable or unstable
focus without a stable limit cycle. This also has
important implications for the effects of noise in
the spatially extended system (see section 4).

Bart et. al. [4] showed that changing the synap-
tic strength w0 can also alter the stability of the
Up state of the system (3.1), whilst keeping all
other parameters fixed. Stronger synapses (higher
w0) stabilize the Up state, while weaker synapses
(lower w0) destabilize it. Consistent with these ob-
servations, we found that changing w0 alters the
parameter ranges of α and β over which a stable
limit cycle exists. That is, increasing w0 shifts the
region in which limit cycles exist to higher values
of α. On the other hand, decreasing w0 allows for
limit cycles to exist for lower values of α, but the
range of β values over which they exist is much nar-
rower. Thus, superthreshold activity in a network
with weak synapses is much more easily overrid-
den by synaptic depression. In our simulations we
take w0 = 1.

4 Oscillations in the spatially extended
model

We now consider the implications of the existence
of deterministic and noise-induced oscillations in
the splace–clamped model for spatially structured
oscillations in the full model (2.1). Using numerical
simulations, we demonstrate that the two dimen-
sional network supports a spatially localized oscil-
lating core that emits target waves each cycle, as
well as spiral waves. The results presented here can
also be generated for a system with smoother forms
of f . However, as the simulations are qualitatively
similar, we only show results for the piecewise lin-
ear case. As in previous studies of two-dimensional
neural field models, we carry out a transforma-
tion of our system for more efficient computation
[28, 29, 54, 40]. That is, we convert the integro-
differential equation system (2.1) to a fourth order
PDE using two-dimensional Fourier transforms. This
is possible due to the fact that the Fourier trans-
form of the weight distribution w(r, r′) given by
equation (2.5) is a rational function. Discretizing
the resulting differential operators leads to sparse
matrices, as opposed to full matrices arising from
an integral operator.

Numerical simulations are thus performed on
the following system, which is equivalent to equa-
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Fig. 7 Snapshots of the solution u(x, y, t) to the fourth order PDE (4.1), following a stimulus specified by equation (4.3)

at t = 0, where χ = 1 and ζ = 25. Initially, an activated state spreads radially outward, across the entire medium as a
traveling front. Then, the localized oscillating core of activity emits a target wave with each oscillation cycle. Eventually,

these target waves fill the domain. Each target wave can be considered as a phase shift in space of the oscillation throughout

the medium; they travel with the same speed as the initial front. Parameters are α = 80, β = 0.05, σ = 4.

tions (2.1) and (2.5):[
∇4 −A∇2 +B

]
(ut + u) = Mqf(u),

qt =
1− q
α
− βqf(u) (4.1)

over the domain Ω ⊂ R2. Here, the fourth order
operator, L = ∇4−A∇2+B, arises as the denomi-
nator of the two–dimensional Fourier transform of
our modified Bessel weight function (2.5), which is
given by

ŵ(ρ) =
2

3π

(
1

ρ2 + 1
− 1
ρ2 + 22

)
=

2/π
ρ4 + 5ρ2 + 4

, (4.2)

where ·̂ denotes the two-dimensional Fourier trans-
form. In this case, A = 5, B = 4, and M = 2/π,
but we may adjust these parameters by considering
a rescaling of w. We solve the system (4.1) numer-
ically on a Cartesian grid of 1000 × 1000, apply-
ing homogeneous Dirichlet and Neumann bound-
ary conditions. For the fourth order operator, we
employed a second order finite difference method
to construct a matrix version of L. The time deriva-
tive was approximated using forward Euler with a
timestep of ∆t = 0.01, which was small enough so
that shrinking it further did not change results.

4.1 Pulse emitter

Similar to our previous study of a one-dimensional
network [26], we find that in parameter regimes
where a stable limit cycle exists in the space-clamped
system, the corresponding two–dimensional net-
work supports a spatially localized oscillating core
that periodically emits traveling pulses. All that
is necessary to induce such behavior is an initial
condition of the form

(u(r, 0), q(r, 0)) = (χe−(x2+y2)/ζ2 , 1), (4.3)

where χ and ζ parameterize the amplitude and
spatial constant of the initial state. We seek to
characterize the evolving activity in the limit cy-
cle regime, especially the period of oscillation and
the speed of emitted pulses. In Fig. 7, we show an
example of a pulse-emitting core, which oscillates
at a frequency of roughly 3Hz. Pulses are emit-
ted each cycle, and travel at a speed of roughly
30cm/s, which is determined by the period of the
oscillations; the latter is set by the time constant of
synaptic depression. The initial emission of spread-
ing activity appears as a traveling front which prop-
agates from the region activated by the input cur-
rent into the surrounding region of zero activity; it
travels at the same speed as the subsequent target
waves. The front converts each region of the net-
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Fig. 8 Snapshots of a solution u(x, y, t) to the fourth order PDE (4.1) revealing the counter-rotation of two spiral waves

on either side of the domain. These were generated with an initial condition where the target pattern of Fig. 7 had the top

and bottom halves of the domain phase shifted. Parameters are α = 80, β = 0.05, σ = 4, and θ = 0.01.

work into an oscillatory state that is phase–shifted
relative to the core, resulting in the appearance
of a radially symmetric target pattern. Since our
network has solely excitatory connections, we can
consider it to be akin to disinhibited neocortical or
hippocampal slices [9, 60, 62] or regions of cortex
or hippocampus where excitatory circuitry domi-
nates due to some pathology [8, 11]. Interestingly,
the speed of the simulated waves matches the time-
scale of fast seizure spread in cortex [38].

4.2 Spiral waves

Several experimental and modeling studies of two-
dimensional cortex reveal the existence of spiral
waves [23, 29, 38, 47, 48]. Such self-sustained ac-
tivity can often be classified by a constant angu-
lar velocity [23, 47]. When identified using voltage
sensitive dye, one finds such activity patterns have
true phase singularities about which the spiral or-
ganizes. One may think of such spatially struc-
tured activity as a network property manifesting
the recovery period necessary for groups of neu-
rons. Therefore, sections of cortex about the phase
singularity alternate between Down and Up states,
giving ample time for sections to recover during the
Down state.

Spiral waves have been generated in previous
studies of neural field models with linear adapta-
tion, in which the neuronal network acts like an
excitable medium [29, 54]. The oscillations neces-
sary for the generation of spiral waves arise from
the Down state of the network being a stable fo-
cus. Laing used the rotational symmetry of the
spiral waves to generate equations for the activity

profile and angular velocity of a spiral on a disc
domain [29]. Troy and Shusterman generated spi-
ral waves by continually breaking the symmetry of
target waves in the network [54]. In our model, we
find that spiral wave patterns can be induced by
breaking the rotational symmetry of pulse emitter
solutions. More specifically, we chose an initial con-
dition where the target pattern produced by the
emitter has the top and bottom halves of its do-
main phase shifted. The network then evolves into
two counter-rotating spirals on the left and right
halves of the domain as shown in Fig. 8. Closer in-
spection of one of these spirals reveals that it has
a fixed center about which activity rotates indefi-
nitely as shown in Fig. 9.

Huang and others showed that spiral waves gen-
erated in cortical slices are a way for oscillating ac-
tivity to organize spatially in a smooth and isotropic
medium [23]. They found the waves persisted for
up to 30 cycles and rotated at a rate of roughly
10 cycles per second. Also, the phase singularity
at the center of a spiral wave experiences a reduc-
tion in oscillation amplitude due to the mixing of
all phases in a small region. Certainly, the spiral
waves we have found in our system persist for a
long time, but it seems that the rotation rate is
slightly slower at roughly 2Hz. Of course this is
due in part to the time constant of synaptic de-
pression. As we have shown in our previous work,
including spike frequency adaptation can increase
the frequency of oscillations [26].
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β = 0.05, σ = 4, and θ = 0.01.

4.3 Noise–induced oscillations

As in the space-clamped system, it is interesting to
consider the effects of noise on the two–dimensional
spatially extended network. In a recent study of
the role of additive Gaussian noise on Turing insta-
bilities in neural field equations, Hutt et. al. found
that noise delays the onset of pattern formation
[24]. Also, Laing et. al. have shown that in a neural
field model with linear adaptation, moving bumps
are slowed by the introduction of an additive noise
term [30]. Here we show that in addition to modu-
lating spatiotemporal activity patterns that exist
in the deterministic system, noise also gives rise to
new dynamics.

Following a previous study of neural field mod-
els with additive noise [30], we introduce a Gaus-
sian white noise term to each equation of a dis-
cretized version of the fourth order PDE (4.1):

Lh

(
uk+1
ij − ukij
∆t

+ uij + ηµij(t)

)
= Mqijf(uij),

qk+1
ij − qkij
∆t

=
1− qij
α

− βqijf(uij), (4.4)

where i = 1, ..., Nx and j = 1, ..., Ny, Lh is the
finite difference version of the linear operator given
in equation (4.1) , uij and qij are discrete values
of u and q at (x, y) = (xi, yj), each µij evolves

independently as 〈µij(t)〉 = 0 and 〈µij(t)µij(s)〉 =
δ(t − s), and η is the variance of our white noise
term.

In the case of low levels of spatially incoherent
Gaussian noise, we find that small pockets of the
network spontaneously form spatially localized os-
cillators which then interact with one another via
the target waves that propagate from their cores.
We picture this in Fig. 10 for η = 0.005. There-
fore, as in the space-clamped case, noise provides
a mechanism for generating oscillations in a sit-
uation where the deterministic system would re-
main quiescent. If the noise level is increased then
it tends to disrupt these oscillating cores, which
provides a symmetry breaking mechanism for the
generation of spiral waves as illustrated in Fig. 11.
Following induction of a spatially localized oscilla-
tion using a Gaussian stimulus of the form (4.3),
we find that the oscillating core begins to be bro-
ken up by the noise such that the two halves of
the core oscillate antisynchronously. A semi-ring
wave then propagates from the bottom to the top
of the domain (first three snapshots in Fig. 11),
and breaks up into two spiral waves as it reaches
the boundary of the core (fourth snapshot). Back-
ground oscillations absorb the two spiral waves and
the ring-wave is reinitiated (final two snapshots).
At even higher levels of noise any spatially struc-
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tured activity in the network is disrupted and the
entire network exhibits bulk oscillations. Indeed,
it has previously been shown that there can be an
optimal level of noise for the generation of spiral
waves in excitable media [25]. Note that an alterna-
tive mechanism to noise for generating spiral waves
is to introduce random network inhomogeneities
(quenched disorder), as shown in the case of a two–
dimensional integrate–and–fire network [39].

5 High-gain limit

In order to analyze the existence and stability of
spatially structured solutions in neuronal networks,
the high–gain limit of a sigmoid-like firing rate
function is often considered, whereby f reduces to
the Heaviside function (2.3) with a discontinuity
at the threshold u = θ [2, 42]. Although an excita-
tory neuronal network with synaptic depression as
given by equation (2.1) no longer supports oscil-
latory solutions in the high–gain limit, stationary
pulses (bumps) and target wave solutions can be
found. However, the presence of a Heaviside func-
tion in the dynamics of the synaptic depression
variable means that the resulting dynamical sys-
tem is piecewise smooth, which considerably com-
plicates the analysis of the stability of waves and
bumps. In this section, we carry out a phase–plane
analysis of the space–clamped system, show that
stable target wave solutions exist, and derive equa-
tions for the existence of stationary bumps. The
issue of stability will be addressed elsewhere (see
also [26]).

5.1 Phase-plane analysis

The space–clamped system with a Heaviside firing
rate function takes the form

u̇(t) = −u(t) + q(t)H(u(t)− θ),
αq̇(t) = 1− q(t)− αβq(t)H(u(t)− θ). (5.1)

In order to calculate equilibria of (5.1), we consider
the possible solutions on the two domains of the
step function H(u−θ). We find that there is always
a low activity or Down state on the lower domain
(u < θ) for θ > 0 such that (u, q) = (0, 1). The
stability of this Down state is determined by the
eigenvalues of the Jacobian

J (0, 1) =
(
−1 0
0 −1/α

)
(5.2)

and is therefore stable for all realistic parameters.
As stated in our analysis of the system with the

piecewise linear firing rate function, this stable Down
state indeed should exist for all systems possessing
an f with a hard threshold.
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Fig. 12 Phase plane plot of the space-clamped system

(5.1) fin the case θ < 1/(1 + αβ) for which there exist two
stable fixed points. Parameters are α = 50, β = 0.05, and

θ = 0.1.

In the upper domain (u > θ), an equilibrium is
given by the system

0 = −u+ q, (5.3)

0 = (1− q)/α− βq, (5.4)

implying a fixed point (u,q) = (1/(1 +αβ), 1/(1 +
αβ)) will exist, provided θ < 1/(1 + αβ). Its sta-
bility is determined by the eigenvalues of the Ja-
cobian

J (u, q, a) =
(
−1 1
0 −(1/α+ β)

)
, (5.5)

which guarantees that such an Up state is always
stable. Therefore, as stated, we have a bistable sys-
tem as long as θ < 1/(1 + αβ), as pictured in Fig.
12. Additive noise could then be a mechanism for
switching the system between its Up and Down
states. However, if θ > 1/(1 +αβ), only the Down
state exists, which physically means that in this
case synaptic depression curtails recurrent exci-
tation to the point that no sustained activity is
possible. In the special case θ = 1/(1 + αβ), an
equilibrium exists at u = q = θ, provided that
we take H(0) = 1. However, the piecewise smooth
nature of the dynamics needs to be taken into ac-
count in order to determine the stability of the
fixed point. That is, the fixed point is stable with
respect to perturbations δu > 0 but unstable with
respect to perturbations δu < 0. Thus stability
cannot be established simply by linearizing about
the fixed point. While this special case is non-
generic in the space–clamped system, it foreshad-
ows potential problems in the study of the stability
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Fig. 13 Snapshots of a solution u(x, y, t) to the fourth order PDE (4.1) showing a single outward propagating target wave,

following a stimulus specified by equation (4.3) at t = 0, where χ = 1 and ζ = 25. The firing rate function is taken to be a
Heaviside function, f(u) = H(u− θ). Parameters are α = 50, β = 0.4, and θ = 0.1.

of spatially structured solutions of the full system
(2.1). This is due to the fact that one has to con-
sider perturbations at threshold crossing points x
where u(x, t) = θ. We will discuss this issue fur-
ther, following a study of spatially structured so-
lutions.

5.2 Target waves

As shown by numerical simulations in the case of a
piecewise linear firing rate, spatially structured os-
cillations can generate expanding target waves via
propagating phase shifts in an oscillatory medium.
Here, we show that in the high–gain limit, target
waves arise in the context of an excitable medium.
We studied the existence of traveling pulses in a
one-dimensional excitatory network with synap-
tic depression in a previous study [26]. Traveling
pulses of this type represent a homoclinic orbit in
the projected space of the traveling wave coordi-
nate, rather than phase shifts of an existing limit
cycle, as in an oscillatory medium. Implications
of these two different dynamical systems scenar-
ios may be useful in determining the mechanism
that generates traveling waves in experiment. For
example, in studies of disinhibited cortical slice, lo-
calized stimuli may lead to either traveling plane
waves, which are transient, or spiral waves, which
are persistent [23].

We find that by simulating the two-dimensional
spatially extended system with the Heaviside step
firing rate function, a localized stimulus can lead
to outwardly propagating target waves. In Fig. 13,
we show snapshots of such a simulation where the
initial condition is taken to be a Gaussian stim-
ulus of the synaptic drive, as specified by equa-
tion (4.3). In the case of a piecewise linear firing
rate function, radially symmetric stimuli lead to
an oscillating core that recurrently generated tar-
get waves. Here, a single radially symmetric target
wave is generated, after which, the system returns
to a quiescent state. The structure of the solution
reflects the underlying symmetries of the weight
function (2.5) and the stimulus. Numerical simu-
lations suggest that these target waves are stable.

5.3 Standing bumps

Finally, we extend our previous analysis of bumps
in a one-dimensional network [26] in order to de-
rive conditions for the existence of standing bumps
in the two–dimensional network (2.1) with a Heav-
iside firing rate function. We can assume radially
symmetric bumps since the corresponding weight
distribution (2.5) is itself radially symmetric. Con-
sider a radially symmetric stationary bump solu-
tion of equation (2.1) such that u(r, t) = U(r),
q(r, t) = Q(r) and U(r) crosses the threshold θ at
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the unique radius r = a. The solution is taken to
be superthreshold within the domain r < a and
subthreshold otherwise, and a is identified as the
radial width of the bump. Given reasonable bound-
ary conditions, we thus have

U(r) ≷ θ, for r ≶ a, (5.6)

{U(r), Q(r))} → {0, 1} , as r →∞.(5.7)

Substituting such a solution into equation (2.1)
gives

U(r) =
∫
U
Q(r′)w(|r− r′|)dr′, (5.8)

Q(r) = (1 + αβΘ(a− r))−1, (5.9)

where U = {r = (r, θ) : r ≤ a} is the domain on
which the bump is superthreshold and

Θ(r) =
{

1, r ≥ 0,
0, r < 0.

(5.10)

If we express (5.9) as

Q(r) =

{
1

1 + αβ
, r ≤ a,

1, r > a,
(5.11)

then we can substitute (5.11) back into (5.8) to
yield

(1 + αβ)U(r) = Π(a, r), (5.12)

where

Π(a, r) =
∫ 2π

0

∫ a

0

w(|r− r′|)r′dr′dθ′. (5.13)

We can calculate the double integral in (5.13) using
Fourier transform and Bessel function identities, as
in a previous study [14]. Thus, we find that

Π(a, r) = 2πa
∫ ∞

0

ŵ(ρ)J0(rρ)J1(aρ)dρ, (5.14)

where ŵ(ρ) is the two–dimensional Fourier trans-
form of w, and Jν(z) is a Bessel function of the
first kind.

To illustrate the parameter dependence of sta-
tionary bumps, we consider the concrete exam-
ple of a weight function w given by the difference
of modified Bessel functions (2.5), which has the
Fourier transform (4.2). The integral (5.14) can
then be evaluated explicitly by substituting (4.2)
into (5.14), setting r = a, and using the identity

a

∫ ∞
0

1
ρ2 + s2

J0(aρ)J1(aρ)dρ =
a

s
I1(sa)K0(sa),

where Iν is the modified Bessel function of the first
kind. Thus, the condition for existence of a station-
ary bump of radius a is given by

(1 + αβ)θ = Π(a), (5.15)

with

Π(a) ≡ Π(a, a)

=
4
3

(
aI1(a)K0(a)− a

2
I1(2a)K0(2a)

)
.(5.16)

Relations between bump radius a and depression
strength β are shown in Fig. 14. Numerical simula-
tions suggest all such bumps are unstable, so that
some form of lateral inhibition is required in order
to stabilize the bumps. Alternatively bumps could
be stabilized by global divisive inhibition [61, 17]

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

7

8

 β

ra
d

iu
s 

a

κ = 0.05
κ = 0.1

κ = 0.2

Fig. 14 Bump radius a as a function of depression strength

β for different values of threshold θ, while α = 80.

While bump existence calculations are straight-
forward in the case of a Heaviside firing rate func-
tion, bump stability calculations are not, due to
the piecewise smooth nature of the depression dy-
namics. Following previous studies of bump stabil-
ity [43, 14, 40], one could formally linearize the
neural field equations. However, as we have re-
cently shown in the case of one–dimensional bumps
[26], considerable care has to be taken in evaluat-
ing terms arising from perturbations of the bump
boundary. It turns out one needs to keep track of
the sign of such perturbations, analogous to what
happens when θ = 1/(1+αβ) in the space-clamped
system. The details of this analysis will be pre-
sented elsewhere.

6 Discussion

In this paper, we analyzed the spatiotemporal dy-
namics of a two-dimensional excitatory neuronal
network with synaptic depression. We showed that
there is an extensive parameter range over which
spatially structured oscillations are supported. With
the inclusion of noise in the model this range is
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widened even further. We found that application
of a localized current input as an initial condi-
tion to the network leads to a localized region
of synchronous activity repeatedly emitting tar-
get waves. This type of activity has been linked to
epileptic seizures [8, 38], memory [27], and sensory
input [31, 32, 45, 51]. Additionally, breaking the
symmetry of target wave emitting solutions either
using external stimulation or noise generated spiral
waves. Disinhibited mammalian cortical slices also
support spiral waves, and it has been postulated
that such activity allows periodic activity to be or-
ganized in spatially extended populations of neu-
rons [23, 48]. Finally, we showed that in the high–
gain limit, the network acts like an excitable rather
than oscillatory neural medium in which solitary
target waves can propagate but stationary bumps
are unstable.

Although the effects of short–term depression
with and without noise have been studied in a va-
riety of contexts [1, 57, 35, 53, 4, 22], its role in
spatially structured networks has not previously
been considered. Just as synaptic depression pro-
vides a negative feedback mechanism for generat-
ing moderately fast wave (1-10 Hz) oscillations, it
is possible that synaptic facilitation of excitatory
to inhibitory synapses plays a role in producing
slow wave oscillations (0.1-1 Hz), as recently sug-
gested by a modeling study of a space–clamped
network [37]. We hope to pursue this in a future
study.

Acknowledgements

This publication was based on work supported in
part by the National Science Foundation (DMS-
0813677) and by Award No KUK-C1-013-4 made
by King Abdullah University of Science and Tech-
nology (KAUST). We would like to thank Carlo
Laing for helpful conversations regarding numer-
ical simulations. We also thank Bard Ermentrout
for highlighting issues regarding bump stability cal-
culations in the high–gain limit.

References

1. Abbott LF, Varela JA, Sen K, Nelson SB (1997)
Synaptic depression and cortical gain control.
Science 275: 220–224.

2. Amari S (1977) Dynamics of pattern formation
in lateral-inhibition type neural fields. Biol. Cy-
bern. 27: 77–87.

3. Bao S, Chang EF, Davis JD, Gobeske KT,
Merzenich MM (2003) Progressive degradation
and subsequent refinement of acoustic represen-
tations in the adult auditory cortex. J Neurosci.
23: 10765–10775.

4. Bart E, Bao S, Holcman D (2005) Modeling the
spontaneous activity of the auditory cortex. J
Comput. Neurosci. 19: 357–378.

5. Benda J, Herz AVM (2003). A universal model
for spike-frequency adaptation, Neural Comput.
15: 2523–2564.

6. Benucci A, Frazor RA, Carandini M (2007)
Standing waves and traveling waves distinguish
two circuits in visual cortex. Neuron 55: 103-117.

7. Buszaki G, Draguhn A (2004) Neuronal oscilla-
tion in cortical networks. Science 304: 1926–1929.

8. Buszaki G (2006) Rhythms of the brain. Oxford
University Press, Oxford.

9. Chervin RD, Pierce PA, Connors BW (1988)
Periodicity and directionality in the propagation
of epileptiform discharges across neocortex. J.
Neurophysiol. 60: 1695–1713.

10. Delaney K, Gelperin A, Fee M, Flores J, Ger-
vais R, Tank D (1994). Waves and stimulus-
modulated dynamics in an oscillating olfactory
network, Proc. Natl. Acad. Sci. USA 91: 669–73.

11. Dudek FE, Spitz M (1997) Hypothetical mech-
anisms for the cellular and neurophysiological
basis of secondary epileptogenesis: Proposed role
for synaptic reorganization. J. Clin. Neurophys-
iol. 14: 90–101.

12. Ermentrout GB (1998) Linearization of f-I
curves by adaptation. Neural Comput. 10: 1721–
1729.

13. Ermentrout GB, Kleinfeld D (2001) Traveling
electrical waves in cortex: insights from phase dy-
namics and speculation on a computational role.
Neuron 29: 33–44.

14. Folias SE, Bressloff PC (2004) Breathing
pulses in an excitatory neural network. SIAM J.
Appl. Dyn. Syst. 3: 378–407.

15. Folias SE, Bressloff PC (2005) Breathers in
two-dimensional neural media. Phys. Rev. Lett.
95: 208107.

16. Folias SE, Bressloff PC (2005) Stimulus-locked
traveling waves and breathers in an excitatory
neural network. SIAM J. Appl. Math. 65: 2067–
2092.

17. Fung CCA, Wong KYM, Wu S (2008) Dynam-
ics of neural networks with continuous attrac-
tors. EPL 84: 18002

18. Guo Y, Chow CC (2005) Existence and sta-
bility of standing pulses in neural networks: I.

15



Existence. SIAM J. Appl. Dyn. Syst. 4: 217–248.
19. Guo Y, Chow CC (2005) Existence and sta-

bility of standing pulses in neural networks: II.
Stability. SIAM J. Appl. Dyn. Syst. 4: 249–281.

20. Han F, Caporale N, Dan Y (2008). Reverber-
ation of recent visual experience in spontaneous
cortical waves, Neuron 60: 321–327.

21. Hansel D, Sompolinsky H (2001) Methods in
Neuronal Modeling, The MIT Press, 2nd ed.,
ch. 13. Modeling feature selectivity in local cor-
tical circuits: 499–568.

22. Holcman D, Tsodyks M (2006). The emer-
gence of Up and Down states in cortical net-
works. PLoS Computational Biology. 2:174–181.

23. Huang X, Troy WC, Yang Q, Ma H, Laing
CR, Schiff SJ, Wu JY (2004) Spiral waves in dis-
inhibited mammalian neocortex. J. Neurosci. 24:
9897–9902.

24. Hutt A, Longtin A, Schimansky-Geier L
(2008) Additive noise-induces Turing transitions
in spatial systems with application to neural
fields and the Swift-Hohenberg equation. Phys-
ica D 237: 755–773.

25. Jung P, Mayer-Kress G (1995). Spatiotempo-
ral stochastic resonance in excitable media Phys.
Rev. Let. 74: 2130 - 2133.

26. Kilpatrick ZP, Bressloff PC (2009) Effects
of adaptation and synaptic depression on spa-
tiotemporal dynamics of an excitatory neuronal
network. Physica D (in press).

27. Klimesch W (1999) EEG alpha and theta os-
cillations reflect cognitive and memory perfor-
mance: A review and analysis. Brain Res. Rev.
29: 169–195.

28. Laing CR, Troy WC (2003) PDE methods for
nonlocal models. SIAM J. Appl. Dyn. Syst. 2:
487–516.

29. Laing CR (2005) Spiral waves in nonlocal
equations. SIAM J Appl. Dyn. Syst. 4: 588–606.

30. Laing CR, Frewen TA, Kevrekidis IG (2007)
Coarse-grained dynamics of an activity bump in
a neural field model. Nonlinearity 20: 2127–2146.

31. Lakatos P, Chen CM, O’Connell MN, Mills A,
Schroeder CE (2007) Neuronal oscillations and
multisensory interaction in primary auditory cor-
tex. Neuron 53: 279–292.

32. Lam YW, Cohen LB, Wachowiak M, Zo-
chowski MR (2000) Odors elicit three different
oscillations in the turtle olfactory bulb. J Neu-
rosci. 20: 749–62.

33. Lee U, Kim S, Jung KY (2006) Classification
of epilepsy types through global network analysis
of scalp electroencephalograms. Phys. Rev. E 73:

041920.
34. Linder B, Garcia-Ojalvo, Neiman A,

Schimansky-Geier L (2004) Effects of noise
in excitable systems. Phys. Rep. 393: 321–424.

35. Matveev V, Wang XJ (2000) Implications of
all-or-none synaptic transmission and short-term
depression beyond vesicle depletion: a computa-
tional study. J Neurosci. 20: 1575–1588.

36. McNamara JO (1994) Cellular and molecular
basis of epilepsy. J. Neurosci. 14: 3412–3425.

37. Melamed O, Barak O, Silberberg G, Markram
H, Tsodyks M (2008) Slow oscillations in neural
networks with facilitating synapses, J. Comput.
Neurosci. 25:308-316.

38. Milton J, Jung P (2003) Epilepsy as a dynamic
disease, Springer, Berlin.

39. Milton J G, Chu P H, Cowan J D (1993) Spiral
waves in integrate-and-fire neural networks. In:
Advances in neural information processing sys-
tems (Hanson SJ, Cowan JD, Giles CL, eds), pp
1001-1007. San Mateo: Morgan Kaufmann.

40. Owen MR, Laing CR, Coombes S (2007)
Bumps and rings in a two-dimensional neural
field: splitting and rotational instabilities. New
Journal of Physics, 9: 378.

41. Petersen CCH, Grinvald A, Sakmann B
(2003). Spatiotemporal dynamics of sensory re-
sponses in layer 2/3 of rat barrel cortex mea-
sured in vivo by voltage-sensitive dye imaging
combined with whole-cell voltage recordings and
neuron reconstructions, J Neurosci. 23 (4) 1298–
1309.

42. Pinto DJ, Ermentrout GB (2001) Spatially
structured activity in synaptically coupled neu-
ronal networks: I. Traveling fronts and pulses.
SIAM J. Appl. Math. 62: 206–225.

43. Pinto DJ, Ermentrout GB (2001) Spatially
structured activity in synaptically coupled neu-
ronal networks: II. Lateral inhibition and stand-
ing pulses. SIAM J. Appl. Math. 62: 226–243.

44. Prechtl JC, Cohen LB, Pesaran B, Mitra PP,
Kleinfeld D (1997). Visual stimuli induce waves
of electrical activity in turtle cortex, Proc. Natl.
Acad. Sci. USA 94: 7621–7626.

45. Roelfsema PR, Engel AK, Konig P, Singer W
(1997) Visuomotor integration is associated with
zero time-lag synchronization among cortical ar-
eas. Nature 385: 1157–1161.

46. Rubin J, Bose A (2004) Localized activity pat-
terns in excitatory neuronal networks. Network
15: 133–158.

47. Schiff SJ, Sauer T, Kumar R, Weinstein SL
(2005) Neuronal spatiotemporal pattern discrim-

16



ination: The dynamical evolution of seizures
Neuroimage 28: 1043-1055.

48. Schiff SJ, Huang X, Wu JY (2007) Dynami-
cal evolution of spatiotemporal patterns in mam-
malian middle cortex. Phys. Rev. Lett. 98:
178102.

49. Sederberg PB, Kahana MJ, Howard MW,
Donner EJ, Madsen JR (2003) Theta and
gamma oscillations during encoding predict sub-
sequent recall. J. Neurosci. 23: 10809-10814.

50. Shusterman V, Troy WC (2008) From baseline
to epileptiform activity: a path to synchronized
rhythmicity in large-scale neural networks. Phys.
Rev. E 77: 061911.

51. Singer W, Gray CM (1995) Visual feature inte-
gration and the temporal correlation hypothesis.
Ann. Rev. Neurosci. 18: 555-586.

52. Stevens C, Wesseling J (1998). Activity-
dependent modulation of the rate at which
synaptic vesicles become available to undergo ex-
ocytosis, Neuron 21 415–424.

53. Tabak J, Senn W, O’Donovan MJ, Rinzel J
(2000) Modeling of spontaneous activity in de-
veloping spinal cord using activity-dependent de-
pression in an excitatory network. J Neurosci. 20:
3041–3056.

54. Troy WC, Shusterman V (2007) Patterns and
features of families of traveling waves in large-
scale neuronal networks. SIAM J. Appl. Dyn.
Syst., 6: 263–292.

55. Troy WC (2008) Traveling waves and syn-
chrony in an excitable large-scale neuronal net-
work with asymmetric connections. SIAM J.
Appl. Dyn. Syst., 7: 1247–1282.

56. Tsodyks MS, Markram H (1997) The neural
code between neocortical pyramidal neurons de-
pends on neurotransmitter release probability.
Proc. Natl. Acad. Sci. USA 94: 719–723.

57. Tsodyks MS, Pawelzik K, Markram H (1998)
Neural networks with dynamic synapses. Neural
Comput. 10: 821–835.

58. Wang XJ (1998) Calcium coding and adaptive
temporal computation in cortical pyramidal neu-
rons. J Neurophysiol. 79: 1549–1566.

59. Wang XJ (1999) Synaptic basis of cortical per-
sistent activity: the importance of NMDA recep-
tors to working memory. J. Neurosci. 19: 9587–
9603.

60. Wu JY, Guan L, Tsau , Propagating activa-
tion during oscillations and evoked responses in
neocortical slices. J Neurosci. 19: 5005–5015.

61. Wu S, Hamaguchi K, Amari S-I (2008) Dy-
namics and computation of continuous attrac-

tors. Neural Computation 20: 994–1025
62. Wu JY (2008) Propagating waves of activity

in the neocortex: what they are, what they do.
Neuroscientist 14: 487–502.

63. Xu W, Huang X, Takagaki K, Wu JY (2007)
Compression and reflection of visually evoked
cortical waves. Neuron 55: 119–129.

64. Zucker RS, Regehr WG (2002) Short–term
synaptic plasticity. Ann. Rev. Physiol. 64: 355–
405.

17


