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Abstract.
We develop a mathematical model of the motor-based transport and delivery

of vesicles to synaptic targets of an axon. Our model incorporates the “stop-and-
go” nature of bidirectional motor transport (which can be modeled in terms of
advection-diffusion) and the reversible exchange of vesicles between motors and
targets, both of which have been observed experimentally. Since motor-target
interactions are reversible, it is necessary to keep track of the cluster size of vesicles
bound to each motor-complex. This naturally leads to a modified version of the
Becker-Doring model of aggregation-fragmentation processes. We analyze steady-
state solutions of the transport model and obtain an explicit solution that supports
a uniform distribution of synaptic resources along an axon. We thus establish a
possible mechanism for the democratic distribution of synaptic resources along
the length of an axon, based on reversible motor-target interactions. In the
irreversible case, one finds that the motor-driven transport of newly synthesized
proteins from the soma to presynaptic targets along the axon tends to favor the
delivery of resources to more proximal synapses.
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1. Introduction

Neurons are highly polarized cells with extensively branched input dendrites and a
single long output axon [1]. Communication between neurons is primarily mediated
by highly regulated, protein-rich subcellular compartments known as synapses. Each
synapse consists of a presynaptic active zone located either at an axon terminal or
partway along an axon (en passant synapse), which is apposed to a postsynaptic
density located on a dendritic branch. The active zone is the site of neurotransmitter
release, whereas the postsynaptic density contains receptors to which neurotransmitter
binds, resulting in local changes in the membrane voltage of the postsynaptic cell.
The formation of new synapses (synaptogenesis) and the modification of existing
synapses (synaptic plasticity) in response to synaptic activity from other neurons,
requires the transport of newly synthesized proteins along the axon and dendrites. The
long distances between the soma and distal synapses means that diffusion is too slow
and thus necessitates the packaging of proteins into vesicles, which are then actively
transported by molecular motors along microtubular filament tracks. Microtubules
are directionally polarized polymeric filaments with biophysically distinct (+) and
(−) ends, and this polarity determines the preferred direction in which an individual
molecular motor moves. For example, kinesin moves towards the (+) end, whereas
dynein moves towards the (−) end [2]. Since microtubules tend to be aligned with
the same polarity along axons and distal regions of dendrites, it follows that kinesin
(dynein) transports cargo from (towards) the cell body, that is, in the anterograde
(retrograde) direction.

In experiments where fluorescent labeling and live-cell imaging have been used
to track the position of vesicular cargo, the movement along a dendrite or axon is
typically seen to randomly pause and switch direction [3–5]. The random switching
between different motile states can be explained using a biophysical model of the cargo
and microtubule interacting via multiple molecular motors [6]. The motors interact
through the forces they each place on the cargo. If the set of motors transporting
a cargo is comprised of motors with opposing directional preference then they may
compete in a tug-of-war [6,7]. (Alternatively, there is some signaling mechanism that
switches between kinesin-based and dynein-based transport.) Movement of the cargo
is then ultimately determined by the random binding and unbinding of the motors to
the microtubule. The unbinding rate depends on the force applied to the motor. If a
force is applied opposite to the preferred direction of a motor, then it is more likely
to unbind from the microtubule. One can consider all of the motors attached to a
cargo as a motor-complex such that the different motile states of the motor-complex
represent different configurations of bound and unbound motors.

A major challenge for a neuron is to ensure an even distribution of synaptic
material among neighboring synapses. Experimental studies in drosophila and C
elegans indicate that one mechanism for achieving “synaptic democracy” is to combine
bidirectional transport with inefficient (reversible) capture of mobile vesicles by
synapses, in order to prevent excessive aggregation at any particular synapse [8–11].
For example, in the case of the transport of synaptic vesicle precursors in axons,
motor-cargo complexes make frequent stops at potential synaptic sites where certain
GTPases such as ARL-8 regulate the kinetics of association and dissociation [9].
Recently, we developed a mathematical model of motor-driven vesicular transport and
showed quantitatively that a combination of “stop-and-go” transport and reversible
interactions between motors and targets provides a biophysically plausible mechanism
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for the democratic distribution of molecular cargo among synapses [12]. In particular,
we considered a pair of advection-diffusion equations for the concentration of motor-
complexes with or without a vesicle, which included kinetic mass-action terms that
represented the reversible exchange of a vesicle with synaptic targets. However, one
major simplification of our previous model was to assume that each motor-complex
could only carry at most one vesicle. In this paper, we extend our model by allowing
motor-complexes to carry an arbitrary number of vesicles. We show that the kinetic
part of the equations become a modified version of the Becker-Doring equations for
aggregation-fragmentation processes [13–17]. We exploit this connection to analyze the
existence of steady-state solutions, and derive conditions for the uniform distribution
of synaptic resources along an axon. In particular, the rate of exchange of vesicles
between motors and targets has to be sufficiently fast.

2. Vesicular transport model

In order to highlight the basic problem we wish to solve, consider a population of
motor-complexes moving bidirectionally along a semi-infinite axonal domain, see Fig.
1. Suppose that there is a uniform, continuous distribution of presynaptic targets
along the axon, and that each motor-complex can irreversibly deliver its cargo to
a presynaptic target at a uniform rate k. Let u(x, t) denote the density of motor-
complexes carrying a vesicle at position x at time t. Neglecting any interactions
between distinct complexes, we take u(x, t) to evolve according to the advection-
diffusion equation

∂u

∂t
= −v ∂u

∂x
+D

∂2u

∂x2
− ku, x > 0, (2.1)

where v is the mean speed of the complex and D is an effective diffusivity.
This transport equation can be derived from more detailed biophysical models of
bidirectional motor transport under the assumption that the rates at which motor-
complexes switch between different motile states are relatively fast [12, 19], see also
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Figure 1. Schematic diagram of the motor transport and irreversible delivery
of vesicles to presynaptic targets along an axon (not to scale). Bidirectional
transport is modeled in terms of an advection-diffusion equation with mean speed
v and diffusivity D. For ease of visualization, we represent each motor-complex
by a single motor in this and subsequent figures. However, in order to undergo
bidirectional transport, a complex will typically consist of several kinesin and
dynein motors.
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the appendix. The mean speed will depend on the relative times that the complex
spends in different anterograde and retrograde states, whereas the diffusivity D reflects
the underlying stochasticity of the motion. Suppose that there is a constant flux of
complexes injected at the end x = 0, so that Eq. (2.1) is supplemented by the
boundary condition

−D∂u(0, t)

∂x
+ vu(0, t) = κ. (2.2)

Let c(x, t) denote the density of vesicles delivered to the presynaptic targets, with

∂c

∂t
= ku(x, t)− γcc(x, t). (2.3)

Here γc is the rate of vesicle degradation within a presynaptic target. (If we were
to neglect degradation of vesicles, then it would be necessary to impose by hand a
maximum capacity of presynaptic targets, otherwise c(x, t) could become unbounded.)
A basic limitation of this model follows from the observation that the steady-state
distribution of vesicles decays exponentially with respect to distance from the soma
with a correlation length ξ. That is,

c(x) =
k

γc

J1e−x/ξ

D/ξ + v
, ξ =

2D

−v +
√
v2 + 4Dk

. (2.4)

Taking the typical values D = 0.1µm s−1 for cytoplasmic diffusion and v = 0.1−1µm
s−1 for motor transport [2], and assuming that k � 1 sec−1, we see that ξ ≈ (v/k)µm.
Thus, in order to have correlation lengths comparable to axonal lengths of several
millimeters, we would require delivery rates of the order k ∼ 10−5 sec−1, whereas
measured rates tend to be of the order of a few per minute [20, 21]. This simple
calculation establishes that injecting motor-complexes from the somatic end of the
axon leads to an exponentially decaying distribution of synaptic resources along the
axon.

Recently we showed that a more uniform distribution of presynaptic vesicles
can be achieved by taking the synaptic delivery of vesicles to be reversible [12], as
has been observed experimentally [8, 10], see Fig. 2. This requires generalizing the
above advection-diffusion equation in order to keep track of the number of vesicles the
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Figure 2. Schematic diagram of reversible vesicular transport model. Each
motor-complex can reversibly exchange a vesicle with a synaptic target, and there
is clustering of vesicles bound to motors and bound to targets.
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motor-complexes are carrying. In our previous model we restricted each complex to
carry at most one vesicle, whereas here we relax this assumption and show how the
resulting model is described by a modified version of the Becker-Doring equations for
aggregation–fragmentation [13–17]. Let un(x, t), n = 0, 1, .., denote the concentration
of motor complexes at position x at time t that are carrying n vesicles. It is
mathematically convenient to assume that there is no upper bound for the carrying
capacity of a motor-complex - this is not a major issue since, as we shall show in
section 3, the steady-state solution satisfies limn→∞ un = 0. Our next assumption is
that motor-complexes can only exchange one vesicle at a time with synaptic targets.
We thus have the following reaction scheme

X + Un →
an
Un+1, Un →

bn
X + Un−1, n ≥ 1 (2.5)

and

X + U0 →
a0
U1, (2.6)

Here X denotes a membrane bound vesicle, Un denotes a motor-complex with n
vesicles, bn is the rate at which a vesicle is transferred from the complex to a synaptic
target, and an is the rate of the reverse process. Next, we model the one-dimensional
bidirectional transport of the population of motor-complexes with n vesicles in terms
of an advection-diffusion equation with an effective diffusivity Dn and mean velocity
vn; we are allowing for the possibility that the mean speed and diffusivity of a motor-
complex depends on the number of vesicles it is carrying. This is based on the idea
that motors carrying more vesicles tend to move more slowly due to the increased
load. (In the appendix, we use a quasi-steady-state (QSS) diffusion approximation
to derive the advection-diffusion equation from a more detailed biophysical model of
active motor transport.) When this is combined with the exchange of vesicles with
synaptic targets, we obtain the following system of equations

∂un
∂t

= Dn
∂2un
∂x2

− vn
∂un
∂x

+ bn+1un+1 + an−1c un−1 − [bn + anc]un, n ≥ 1. (2.7)

and

∂u0
∂t

= D0
∂2u0
∂x2

− v0
∂u0
∂x

+ b1u1 − a0cu0. (2.8)

For the moment, suppose that there are reflecting boundary conditions at x = 0, L:

In(0, t) = In(L, t) = 0, In(x, t) ≡ −Dn
∂un
∂t

+ vnun, (2.9)

with In(x, t) denoting the flux of complexes carrying n vesicles. Ignoring any
degradation of vesicles, we have

∂c

∂t
=
∑
n≥0

[bnun(x, t)− anc(x, t)un(x, t)] (2.10)

with b0 ≡ 0. Note that we are keeping track of the discrete number of vesicles attached
to a motor-complex, but treating the vesicles incorporated into synaptic targets as a
continuous density.
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3. Analysis of non-spatial model

In order to gain insights into the behavior of the full model, we first focus on the
kinetic part of the equations by assuming we have a well-mixed 1D domain, so that all
concentrations are independent of x. This situation could occur if there is initially a
uniform distribution of membrane-bound vesicles and motor-complexes, and the axon
or dendrites of a neuron are globally activated. The latter could be implemented by
bathing the neuron in potassium chloride, for example. Equations (2.7), (2.8) and
(2.10) then reduce to the system of ODEs

dun
∂t

= Jn−1 − Jn, n ≥ 1 (3.1a)

du0
∂t

= −J0 (3.1b)

dc

dt
= −

∑
n≥0

Jn, (3.1c)

where we have introduced the vesicle fluxes

Jn = ancun − bn+1un+1. (3.2)

The system of equations (3.1a)-(3.1c) is a modified version of the Becker-Doring
equations for aggregation-fragmentation processes. The latter equations were
originally proposed as a model for nucleation [13], in which clusters form by individual
particles (monomers) colliding with each other then grow via subsequent collisions
between clusters and monomers. The main simplifying assumption is that interactions
between clusters are ignored, which is reasonable when the cluster density is relatively
small. If ûn, n ≥ 2 denotes the concentration of clusters of size n and û1 denotes the
concentration of monomers then the Becker-Doring equations take the form

dûn
∂t

= Ĵn−1 − Ĵn, n ≥ 2 (3.3a)

dû1
∂t

= −Ĵ1 −
∑
n≥1

Ĵn, (3.3b)

with

Ĵn = anû1ûn − bn+1ûn+1. (3.4)

Now an and bn denote the rates of aggregation and partial fragmentation of a cluster of
size n. More precisely, equations (3.3a) and (3.3b) are a slightly modified version of the
original Becker-Doring equations whereby the total mass of the system is conserved [15]
- the original model took the monomer concentration û1 to be fixed [13].

In our transport model, membrane bound vesicles play the role of monomers
and motor-complexes play the role of clusters, with n now labeling the number of
motor-bound vesicles rather than cluster size. Another major difference between our
transport model and cluster formation models is that the fastest diffusing element in
the latter is a monomer, whereas in our model the “monomer” is membrane bound and
does not diffuse. In recent years the Becker-Doring equations (3.3a) and (3.3b) have
been applied to a wide range of chemical and biological processes including micelle and
vesicle formation [22,23], viral capsid assembly [24], and robust protein concentration
gradient formation [25]. There have also been several mathematical studies of the
existence and uniqueness of steady-state solutions and large-time asymptotics [14–17].
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In the following we will adapt these analytical results to our model of vesicular
transport.

First, adding equations (3.1a)-(3.1c) shows that the total concentration of motor-
complexes U =

∑
n≥0 un is conserved:

dU

dt
=
∑
n≥0

dun
dt

= −J0 + (J0 − J1) + (J1 − J2) + . . . = 0. (3.5)

This yields the motor conservation condition

M =
∑
n≥0

un(t). (3.6)

Furthermore,

d

dt

∑
n≥0

nun =
∑
n≥1

n(Jn−1 − Jn)

= J0 − J1 + 2(J1 − J2) + 3(J2 − J3) + . . .

= J0 + J1 + J2 + . . .

=
∑
n≥0

Jn.

Hence the total number of vesicles is conserved:

ρ = c(t) +
∑
n≥1

nun(t). (3.7)

One subtlety regarding the above derivation of the conservation equations is that we
have assumed that we can reverse the order of infinite summation and differentiation.
It turns out that for certain choices of the n-dependent transition rates an, bn,
reversibility breaks down, reflecting the fact that a steady-state solution no longer
exists [14,15]. However, we will not consider such possibilities here.

Therefore, we now look for steady-state solutions Jn(t) = J for all n ≥ 0. In the
absence of vesicle degradation, the only physical solution is the equilibrium solution
J = 0, since dc/dt→∞ otherwise. Hence

bn+1un+1 = ancun,

which on rearranging and iterating gives

un = Qnc
nu0, Qn =

an−1an−2 . . . a0
bnbn−1 . . . b1

. (3.8)

The conservation equations (3.6) and (3.7) then yield the results

M = u0

1 +
∑
n≥1

Qnc
n

 ≡ u0(1 + F0(c)), (3.9)

and

ρ = c+

∑
n≥1

nQnc
n

u0 = c+
F1(c)

1 + F0(c)
M, (3.10)

where

F0(c) =
∑
n≥1

Qnc
n, F1(c) ≡ cF ′0(c) =

∑
n≥1

nQnc
n. (3.11)
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We will assume that for a given choice of an and bn the infinite series defining F1(c) has
a finite radius of convergence c = z - the corresponding series expansion of F0(z) also
then converges. There will then exist a steady-state solution provided that equation
(3.10) has a solution for which c ≤ z.

The approach to equilibrium can be established by constructing an appropriate
Liapunov function. Adapting the analysis of Penrose [15], consider the function

L̂ =

∞∑
n=0

un [log(un/Qnc
n)− 1] , (3.12)

with Q0 = 1. One finds that

dL̂

dt
=
∑
n≥0

dun
dt

log(un/Qnc
n)−

∑
n≥1

nun
c

dc

dt
. (3.13)

Now we have

first term on rhs = −J0 log u0 +
∑
n≥1

(Jn−1 − Jn) log(un/Qnc
n)

= −J0 log u0 + J0 log(u1/Q1c) + J1 log(u2/Q2c)− J1 log(u1/Q1c) + . . .

= −J0 log u0 + J0 log(u1b1/a0c) + J1 log(u2Q1/u1Q2c) + . . .

= J0 log(u1b1/a0cu0) + J1 log(u2b2/u1a1c) + . . .

= J0 log(u1b1/a0cu0) +
∑
n≥1

(ancun − bn+1un+1) log(bn+1un+1/ancun) ≤ 0,

and

second term on rhs = −
∑
n≥1

nun
c

dc

dt
= −ρ− c

c

dc

dt
,

= − d

dt
[ρ log c− c] .

The above suggests considering the modified Liapunov function

L = L̂+ ρ log c− c (3.14)

=

∞∑
n=0

un [log(un/Qnc
n)− 1] + ρ log c− c

=

∞∑
n=0

un [log(un/Qn)− 1]− (log c)

∞∑
n=0

nun + ρ log c− c (3.15)

=

∞∑
n=0

un [log(un/Qn)− 1] + c log c− c (3.16)

≡ L0 + c log c− c (3.17)

It immediately follows that

dL

dt
=
∑
n≥0

(ancun − bn+1un+1) log(bn+1un+1/ancun) ≤ 0. (3.18)

Again, following along analogous lines to [15], we can also establish that L0 is bounded
below, and, hence that L is bounded below. First note that each term

f(un) ≡ un [log(un/Qn)− 1]
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is a convex function of un so that at an arbitrary value u∗n,

f(un)− f(u∗n) ≥ f ′(u∗n)[un − u∗n],

which implies that

L0 ≥
∑
n≥0

(u∗n[log(u∗n/Qn)− 1] + (un − u∗n) log(u∗n/Qn)) .

Let us choose u∗n = Qnz
n so that

L0 ≥
∑
n≥0

(nun log z −Qnzn)

= (ρ− c) log z −
∑
n≥0

Qnz
n

= (ρ− c) log z − F0(z) > −∞.
We have now established that L must approach a limit as t → ∞ such that

dL/dt → 0. Since every term on the right-hand side of Eq. (3.18) is non-positive, it
follows that the individual terms approach zero:

Jn ≡ ancun − bn+1un+1 → 0 as t→∞, n ≥ 0.

Therefore,

un −Qncnu0 → 0 as t→∞, n ≥ 1 (3.19)

However, we still need to determine how u0 and c behave as t → ∞. From the
conservation equations, we have

lim
t→∞

∑
n≥0

un(t) = M, (3.20)

and

lim
t→∞

∑
n≥1

nun(t) + lim
t→∞

c(t) = ρ. (3.21)

On the other hand, Eq. (3.19) tells us that∑
n≥0

lim
t→∞

un(t) = lim
t→∞

u0(t) +
∑
n≥1

Qn

[
lim
t→∞

u0(t)c(t)n
]
, (3.22)

and ∑
n≥1

lim
t→∞

nun(t) =
∑
n≥1

nQn

[
lim
t→∞

u0(t)c(t)n
]
. (3.23)

If we can interchange the two limit operations t→∞ and n→∞, then we obtain the
asymptotic results

lim
t→∞

c(t) = c, lim
t→∞

u0(t) = u0, (3.24)

with u0, c satisfying equations (3.9) and (3.10).
As a simple example, suppose that an = a, bn = b for all n, that is, the exchange

rates of vesicles between motor-complexes and synaptic targets are independent of the
cluster size n. Then Qn = (a/b)n and

F0(c) =
ac/b

1− ac/b
, F1(c) =

ac/b

(1− ac/b)2
(3.25)
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Figure 3. Graphical construction of rescaled steady-state density C = ac/b. For
given M,ρ, C is determined by the intercept of the straight line aρ/b − C with
the function f(C) = (aM/b)C/(1 − C2).

provided that ac/b < 1. That is, F1(c) has the radius of convergence c = (b/a)−,
which means that there is an upper bound to the steady-state membrane-bound vesicle
concentration. Moreover, for all finite M (total density of motor-complexes) and ρ
(total density of motor-bound vesicles) the steady-state concentration c is given by
the unique solution to equation (3.10), which becomes

ρ = c+
ac/b

1− (ac/b)2
M.

Existence of a unique solution can be demonstrated graphically, as illustrated in Fig.
3. Note that for fixed M , we have ρ→∞ as c→ b/a. On the other hand, increasing
M for fixed ρ decreases the steady-state concentration.

4. Effects of advection-diffusion

There has been relatively little rigorous work on aggregation-fragmentation models
with diffusion. Most studies have considered convergence to partially uniform steady-
state solutions, see for example [26–30]. Here we will proceed formally by summing
the full equations over n, under the assumption that we can reverse the operations
of differentiation and infinite summation. Therefore, let us return to the full model
equations given by (2.7) and (2.8). For simplicity, we assume that Dn = D and vn = v
and take bn = b, an = a for all n ≥ 0:

∂un
∂t

= D
∂2un
∂x2

− v ∂un
∂x

+ bun+1 + ac un−1 − [b+ ac]un − γun, n ≥ 1. (4.1)

and

∂u0
∂t

= D
∂2u0
∂x2

− v ∂u0
∂x

+ bu1 − acu0 − γu0. (4.2)
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We have also included degradation terms, which takes into account the fact that
motors can be removed from active transport and recycled to the soma. We impose
reflecting boundary conditions at x = L and constant flux conditions at x = 0,

J(un(0, t)) = κn, J(un(L, t)) = 0, n ≥ 0,

where J(u) = −D∂xu + vu. It is important to emphasize that the injected motor-
complexes are not necessarily newly synthesized from the cell body. For it has been
found experimentally that motor-complexes recycle between the distal and somatic
ends of the soma [8, 10]. In the case of a finite axon, we could model recycling by
imposing an absorbing boundary condition at the distal end and reinjecting the distal
flux into the somatic end. If the axon is much longer than the range of vesicular
delivery necessary to supply synapses, then the effects of the absorbing boundary can
be ignored and we can treat the axon as semi-infinite.

The concentration of vesicles in presynaptic targets evolves as

∂c

∂t
=
∑
n≥0

[bun(x, t)[1− δn,0]− ac(x, t)un(x, t)]

= bu(x, t)− aU(x, t)c(x, t), (4.3)

where

u(x, t) =
∑
n≥1

un(x, t), U(x, t) =
∑
n≥0

un(x, t) = u(x, t) + u0(x, t). (4.4)

Following the analysis of section 3, we assume that we can reverse the operations of
differentiation and infinite summation for n-independent exchange rates. Summing
both sides of equations (4.1) with respect to n and adding equation (4.2) then yields
the following equation for U(x, t):

∂U

∂t
= D

∂2U

∂x2
− v ∂U

∂x
− γU, U = u+ u0 (4.5)

with J(U(0, t)) = κ ≡
∑
n κn and J(U(L, t)) = 0. Similarly, multiplying both sides of

equation (4.1) by n and then summing over n, n ≥ 1 gives

∂n

∂t
= D

∂2n

∂x2
− v ∂n

∂x
− γn− bu(x, t) + aU(x, t)c(x, t), (4.6)

where

n(x, t) =
∑
n≥1

nun(x, t), (4.7)

and J(n(0, t)) =
∑
n nκn, J(n(L, t)) = 0.

Note from equations (4.3), (4.5) and (4.6) that we recover the spatially uniform
conservation conditions (3.6) and (3.7) when γ = 0 and κ = 0. Unfortunately, the
system of equations (4.3), (4.5) and (4.6) for U(x, t), c(x, t), n̄(x, t) is not closed, since
one needs to determine u0(x, t) (in order to obtain u(x, t) = U(x, t)− u0(x, t)), which
means that we have to solve the full hierarchy of equations (4.1) and (4.2). In the
case of spatially uniform steady-state solutions with γ = κn = 0 for all n, we can
proceed iteratively, as shown in section 3. It turns out that for a special choice of the
boundary fluxes κn, we can also construct a non-spatially uniform steady-state solution
of equations (4.1) and (4.2) that supports a uniform distribution of membrane-bound
vesicles. First, setting c(x, t) = c0 in equation (4.3) yields the steady-state condition

u(x) =
c0a

b
U(x), (4.8)
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where U(x) is the steady-state solution of equation (4.5):

D
∂2U

∂x2
− v ∂U

∂x
− γU = 0, (4.9)

with J(U(0)) = κ and J(U(L)) = 0. This is identical to the steady-state version of
equation (2.1) with the delivery rate k replaced by the degradation rate γ. Hence,
U(x) decays exponentially with respect to distance from the soma with a modified
correlation length ξ (assuming a semi-infinite cable):

U(x) =
κe−x/ξ

D/ξ + v
, ξ =

2D

−v +
√
v2 + 4Dγ

. (4.10)

Since the rate of exchange of vesicles between motors and targets is typically much
faster than the degradation or removal rate of motors from the axon (γ � k), it
follows that the new model greatly increases the correlation length of the motor-
complex concentration. Moreover, as we now demonstrate, for a particular choice
of boundary fluxes κn, an exponentially decaying concentration of motor-complexes
can support a spatially uniform concentration of membrane-bound vesicles. First, it
immediately follows from equation (4.8) that

u0(x) =
(

1− c0a

b

)
U(x).

Substituting this solution into equation (4.2) and using equation (4.9) shows that

u1(x) =
c0a

b

(
1− c0a

b

)
U(x).

Similarly substituting for u1(x) into equation (4.1) for n = 1 and iterating shows that

un(x) =
(c0a
b

)n (
1− c0a

b

)
U(x). (4.11)

It remains to impose the boundary conditions on the fluxes at the ends x = 0, L.
Self-consistency yields the following condition on κn:

κn =
(c0a
b

)n (
1− c0a

b

)
κ, n ≥ 0. (4.12)

This has the unique solution

κn =
(c0a
b

)n
, n ≥ 0, κ =

∑
n≥0

κn =
(

1− c0a

b

)−1
(4.13)

provided that c0 < b/a. In conclusion, in the special case that the constant flux of
motor-complexes carrying n vesicles is of the form κn = Γn, 0 < Γ < 1, the steady-
state concentration of membrane-bound vesicles is spatially uniform with c0 = bΓ/a.

Of course, the specific form of the fluxes κn assumed in the above construction
is non-generic. Nevertheless, it is a “proof of principle” that incorporating reversible
interactions between motors and targets, which has been observed experimentally,
provides a possible mechanism for a more democratic distribution of synaptic resources
along the axon or dendrite of a neuron. It is consistent with the more analytically
tractable case considered in our previous work [12], where we restricted each motor-
complex to carry at most one vesicle.
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5. Discussion

In this paper, we introduced a new application of aggregation-fragmentation models of
the Becker-Doring (BD) form, namely, to molecular motor-driven vesicular transport
in axons and dendrites of neurons. This type of model naturally arises when the
delivery of vesicles to synaptic targets is reversible, which has been observed in a
number of experiments. That is, one has to keep track of the cluster size of vesicles
bound to each motor-complex. By adapting methods for analyzing the Becker-Doring
equations, we determined steady-state solutions of our transport model and found an
explicit solution for which there is a uniform distribution of synaptic resources along
an axon. Note, however, that there are some significant differences between our model
and the standard BD model. In the latter model monomers are simply identified as
clusters of size n = 1, whereas in our model monomers correspond to membrane-bound
vesicles that are distinct from n-clusters of motor-bound vesicles. It also follows that
there can exist a cluster of size zero (motor-complex with no cargo). There are number
of possible extensions of our model, which we hope to explore in future work:

1. One simplification of our model concerns the kinetic interactions between motors
and targets; we used simple first-order kinetics, neglected the range of interactions,
and assumed that only single vesicles are exchanged. Unfortunately, there is very little
known experimentally regarding the interactions between motors and targets, other
than the identity of important molecular players such as ARL-8 [9]. Therefore, we will
investigate a variety of possible models regarding the association and dissociation of
vesicles at synaptic targets. A related issue concerns the simplifying assumption that
the capacity of each motor-complex is unbounded so that it can carry an arbitrary
number of vesicles n. In the case of n-independent exchange rates, an = a, bn = b,
this was not a severe approximation, since the stationary motor-complex densities in
the non-spatial model rapidly decrease with n, that is, un ∼ (ac/b)n with ac/b < 1.
However, this result could break down when more complicated forms of motor-target
kinetics are considered, in which case we would need to impose an explicit upper
bound on motor capacity. Yet another extension would be to take Dn and vn to be
n-dependent in the full model equation (4.1), rather than Dn = D and vn = v for all
n.

2. Another simplification of our model is that it ignores the discrete and
inhomogeneous nature of the distribution of synaptic targets - we simply treated
the target concentration c as continuous and assumed vertical interactions between
motors and targets. One method for handling the discrete nature of synaptic targets
is homogenization theory, which we have previously used to analyze the diffusive
transport of signaling molecules along spiny dendrites [31]. It should be possible to
extend this approach to the more complex advection-diffusion model. There is also
heterogeneity at a longer spatial scale, since certain regions of an axon do not have
any synaptic targets. Following [10], this can be handled by partitioning the axon into
compartments.

3. The advection-diffusion model given by equations (4.1) and (4.2) is deterministic.
There are two levels of stochasticity that could be introduced. First, rather than
approximating bidirectional motor transport in terms of advection-diffusion equations,
we could consider a more detailed biophysical model that keeps track of different motile
states and the switching between them. This was illustrated in the appendix using a
simple 3-state model of bidirectional motion. A second source of stochasticity would
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arise when the number of motors is sufficiently small, resulting in demographic noise.
One would then have to develop a master equation description that tracks transitions
between different motile states and sizes of aggregates.

Appendix

In this appendix, we consider a more biophysically detailed model of motor transport,
in which a motor-cargo complex executes bidirectional transport by switching between
different motile states. Using a quasi-steady-state (QSS) diffusion approximation, we
will show will how the transport model can be reduced to a system of advection-
diffusion equations of the form (2.7). For the sake of illustration, consider a simple
3-state transport model of a single motor-complex moving on a semi-infinite 1D track
as shown in Fig. 4. (Although we represent the complex in terms of a single motor, in
practice bidirectional transport is mediated by several molecular motors attached to
the same cargo.) The motor complex is taken to be in one of three motile states labeled
by j = 0,±: stationary or slowly diffusing (j = 0), moving to the right (anterograde)
with speed v+ (j = +), or moving to the left (retrograde) with speed −v− (j = −);
transitions between the three states are governed by a discrete Markov process. In
addition, the motor complex can carry a variable number of vesicles n, which can
be reversibly exchanged with membrane-bound synaptic targets when in the state
j = 0. Let pnj(x, t) denote the probability density that at time t the complex is at
position x, x ∈ (0,∞), is in motile state j, and is carrying n vesicles. The evolution
of the probability density is described by the following system of partial differential
equations:

∂pn±
∂t

= ∓vn±
∂pn±
∂x

− βpn± + αpn0 (5.1a)

∂pn0
∂t

= Dn0
∂2pn0
∂x2

+ βpn+ + βpn− − 2αpn0

axon

presynaptic targets

vn+vn-

β
α β

α

j = − 

j = 0

j = + 

Figure 4. Three-state model of the bidirectional transport of a motor-cargo
complex. The particle switches between an anterograde state (j = +) of speed
v+, a stationary or slowly diffusing state (j = 0), and a retrograde state (j = −)
of speed v−. The motor-complex can only exchange vesicles with presynaptic
targets when in the state j = 0.
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+ bn+1pn+1,0 + an−1c pn−1,0 − [bn + anc]pn0. (5.1b)

For concreteness, we take the end x = 0 to be reflecting so that vn+pn+(0, t) =
vn−pn−(0, t). Here α, β are the transition rates between the slowly diffusing and
ballistic states, and Dn0 is the diffusivity in the state j = 0. As in the model of
section 2, we are assuming that there is a continuous distribution c of presynaptic
targets along the axon, which can exchange vesicles with the motor-complex at the
rates an, bn. (Note that a−1 = b0 = 0.)

For intracellular transport, one finds that the transition rates α, β are fast
compared to the exchange rates an, bn, and the effective displacement rate vn±/l,
where l is a fundamental microscopic length-scale such as the size of a synaptic target
(l ∼ 1µm). One can then use a QSS diffusion approximation to derive an advection-
diffusion equation for the total probability density

pn(x, t) =
∑
j=0,±

pnj(x, t). (5.2)

This involves a relatively straightforward extension of our previous analysis of a 3-state
molecular motor model with irreversible target delivery [12,18,19]. That is,

∂pn
∂t

= −vn
∂pn
∂x

+Dn
∂2pn
∂x2

+ bn+1pn+1 + an−1c pn−1 − [bn + anc]pn (5.3)

with mean velocity vn = (vn+ − vn−)ρ+, effective diffusivity Dn given by

Dn = Dn0ρ0 +
α

β(2α+ β)

(
(vn+ − vn)2 + (vn− + vn)2

)
,

and the rescaled exchange rates an, bn → ρ0an, ρ0bn. Here

ρ0 =
β

2α+ β
, ρ± =

α

2α+ β
(5.4)

are the stationary probabilities of the 3-state Markov process describing transitions
between the motile states j = 0 and j = ±, respectively. The basic idea of the QSS
reduction is to fix units so that vn±, an, bn = O(1) and α, β = O(1/ε) with 0 < ε� 1.
In this regime, there are typically a large number of transitions between different
motor-complex states j while the position x and number of vesicles n don’t change.
Therefore, we expect the 3-state Markov process to rapidly converge to the steady-
state ρn, which is then perturbed as x, n slowly evolve. This motivates decomposing
the probability densities as pnj(x, t) = pn(x, t)ρj + εwnj(x, t) with

∑
j wnj(x, t) = 0.

Substituting such a solution into equations (5.1a) and (5.1b), and performing an
asymptotic expansion in wnj then yields equation (5.3) to leading order in ε. In
particular, Dn −Dn0ρ0 = O(ε).
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