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Abstract. We consider diffusion on a tree with nodes that randomly switch
between allowing and prohibiting particles to pass. We find exact expressions for
various splitting probabilities and mean first passage times for a single diffusing
particle and show how the many parameters in the problem, such as the node
gating statistics and tree topology, contribute to these exit statistics. We also
consider a concentration of particles that can always pass through interior branch
nodes and determine how an intermittent source at one end of the tree affects the
flux at the other end. The latter problem is motivated by applications to insect
respiration.
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1. Introduction

Biological systems often employ branched tree structures in order to distribute
nutrients from a single source to many destinations or to gather nutrients from
many sources. Examples include plant roots, river basins, neuronal dendrites, and
cardiovascular and tracheal systems. Motivated by such systems, a number of recent
works in theoretical biology study diffusion in a tree [1, 2, 3]. In this paper, we consider
diffusion in a tree with stochastically-gated nodes. We suppose that a Markov jump
process controls whether or not particles can pass through the nodes of the tree, and
we find exact expressions for various splitting probabilities and mean first passage
times (MFPTs) for a particle diffusing through the tree. Our exact calculations show
how the many parameters in the problem (node gating statistics, tree topology, tree
edge length, etc.) contribute to these exit statistics. We also consider a concentration
of particles diffusing in a tree. We suppose that particles can always pass through
interior branch nodes, but that they are intermittently supplied at one end of the
tree. In the case of nutrient transport through a tree, one would like to know how
much the flux at the opposite end of the tree decreases as a result of an intermittent
supply compared to a constant supply. We determine this decrease exactly and find
that it depends crucially on where the intermittent source is located.

One such example of diffusive flow from an intermittent source through a branched
network is insect respiration. Insects breathe through a branched network of tracheal
tubes that allows oxygen to diffuse to their cells [4]. Oxygen is intermittently supplied
to this network through valves (called spiracles) in the exoskeleton, which rapidly
open and close during the so-called flutter phase [5]. Determining how the opening
and closing decreases oxygen uptake would help sort out the competing hypotheses
for the purpose of this curious behavior [6]. A previous model that ignored tracheal
branching showed that rapid opening and closing of the spiracles allows the insect to
maintain high oxygen uptake during the flutter phase [7]. We show that this result
still holds in the more realistic case of a branching tracheal network. In fact, we
find that branching strengthens this result. That is, branching allows the insect to
maintain an even higher oxygen uptake during the flutter phase. Our work is also
motivated by medical applications. The state of the art in respiratory physiotherapy
includes various machines and devices, and almost all of them rely on supplying air
to a patient’s lungs intermittently at high frequency [8].

The paper is organized as follows. In section 2, we use the results of [9, 10] to
collect some facts on diffusion in an interval with switching boundaries. We then
use these results to study diffusion in an interval with switching at interior points
(section 3). There, we find the splitting probability that a diffusing particle will exit
out one end of the interval given a set of randomly opening and closing gates in the
interior. We also determine the mean first passage time (MFPT) to escape and find
a homogenized diffusion coefficient in the case of many gates that rapidly open and
close. Armed with these results, we move to the full problem of diffusion in a tree
with switching at the nodes in sections 4 and 5. In section 4 we find the splitting
probability that a diffusing particle will exit out any particular terminal node given
that all the nodes of the tree randomly open and close, and we also find the MFPT to
escape. In section 5, we consider an intermittent supply of a concentration of particles
diffusing through a tree. We conclude with a brief discussion.
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2. Boundary switching on an interval

In order to study the full problem of diffusion in a tree with stochastically-gated nodes,
we first consider diffusion in an interval with switching boundaries. We will formulate
the problem from the so-called particle perspective, in which the boundaries do not
physically change but their effective permeability depends on the conformational state
of the diffusing Brownian particle, see Fig. 1(a). The dynamics is described by
a stochastic differential equation (SDE) with switching boundaries. An alternative
formulation is the so-called gate perspective, in which each boundary switches between
a closed and open state, see Fig. 1(b). The dynamics is now represented by a partial
differential equation (PDE) with switching boundaries, namely, the diffusion equation
for particle concentration. The two perspectives are mathematically equivalent if and
only if all boundaries are perfectly correlated. We will focus mainly on the particle
perspective, but consider the gate perspective in section 5. Throughout the paper,
we refer to a switching boundary as a stochastic gate, irrespective of whether it is the
particle or boundary that physically switches.

Consider a Brownian particle diffusing in an interval [0, L] that switches
conformational state according to a continuous-time Markov jump process n(t) ∈
{0, 1} with fixed transition rates µ and ν

0
ν


µ

1 (2.1)

Suppose that both boundaries are absorbing when n(t) = 0 and reflecting otherwise.
Let Xt ∈ [0, L] denote the position of the particle at time t. Define p(x, t) to be the
probability density for the stochastic process Xt and set pn(x, t) = E[p(x, t)1n(t)=n].
The densities pn evolve according to the differential Chapman-Kolmogorov (CK)
equation

∂pn(x, t)

∂t
=
∂2pn(x, t)

∂x2
+
∑

m=0,1

Anmpm(x, t), (2.2)

with A the matrix

A =

(
−ν µ
ν −µ

)
. (2.3)

(b)

(a)

μ

μ

ν

ν

n(t) = 0 n(t) = 1

Figure 1: Switching barrier from (a) the particle perspective and (b) the gate
perspective.
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We have fixed units so that the diffusion coefficient is unity. Equation (2.2) is
supplemented by the boundary conditions

p0(0, t) = p0(L, t) = 0,
∂p1(x, t)

∂x

∣∣∣∣
x=0

=
∂p1(x, t)

∂x

∣∣∣∣
x=L

= 0,

and the initial condition

pn(x, 0) = δ(x− y)ρn,

where ρn is the stationary measure of the ergodic two-state Markov process generated
by the matrix A,

∑

m=0,1

Anmρm = 0, ρ0 =
µ

µ+ ν
, ρ1 =

ν

µ+ ν
. (2.4)

Following [9, 10] we now determine the splitting probability for being absorbed at
x = 0 rather than x = L, say, and the mean first passage time (MFPT) for being
absorbed at either end. Both quantities can be defined in terms of the stopping time‡

τ = inf
{
t ≥ 0 : {Xt ∈ {0, L}} ∩ {n(t) = 0}

}
.

2.1. Splitting probability

Define the splitting probability for escaping at the end x = 0 by

qn(x) := P(Xτ = 0 ∩ n(0) = n |X0 = x),

By constructing the backwards CK equation, it can be shown that qn satisfies the
ordinary differential equation (ODE)

(
0
0

)
= ∆

(
q0
q1

)
+

(
−ν µ
ν −µ

)(
q0
q1

)
,

where ∆ denotes the 1-D Laplacian d2/dx2 and the boundary conditions are

q0(0) = ρ0, q0(L) = 0,

q′1(0) = 0, q′1(L) = 0.

Adding the equations for q0 and q1, and setting q(x) = q0(x) + q1(x) gives

∆q(x) = 0, q(0) = ρ0 + q1(0), q(L) = q1(L). (2.5)

with q1(x) satisfying the equation

∆q1(x)− (µ+ ν)q(x) = −νq(x). (2.6)

It is straightforward to solve this boundary value problem (BVP) and obtain

q(x) := q0(x) + q1(x) =
ρ0ξ(L− x) + eξL(ρ0(Lξ − xξ − 1) + 1) + ρ0 − 1

ρ0(Lξ + 2) + eξL(ρ0(Lξ − 2) + 2)− 2
, (2.7)

where ξ =
√
µ+ ν.

Two related quantities will be needed in section 5. The first is the probability
of escape through the end x = L when the particle is in state i, given that x = L is
always open:

ri(x) = ri0(x) + ri1(x),

‡ A stopping time τ is a random variable whose value is interpreted as the time (finite or infinite)
at which a given stochastic process is terminated according to some stopping rule that depends on
current and past states. A classical example of a stopping time is a first passage time.
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where (
0
0

)
= ∆

(
ri0
ri1

)
+

(
−ν µ
ν −µ

)(
ri0
ri1

)
,

with boundary conditions

ri0(0) = ∂xr
i
1(0) = ri1−i(L) = 0, rii(L) = ρi.

We note that

r01(0) =
ρ1ρ0(sinh(Lξ)− Lξ)

Lρ0ξ cosh(Lξ) + ρ1 sinh(Lξ)
(2.8)

and r11(0) =
ρ1(ρ1 sinh(Lξ) + Lρ0ξ)

Lρ0ξ cosh(Lξ) + ρ1 sinh(Lξ)
. (2.9)

The second quantity is the probability that the particle is in state i when it first
reaches x = L assuming that x = 0 is always reflecting:

ai(x) = ai0(x) + ai1(x),

where (
0
0

)
= ∆

(
ai0
ai1

)
+

(
−ν µ
ν −µ

)(
ai0
ai1

)
,

with boundary conditions

∂xa
i
0(0) = ∂xa

i
1(0) = ai1−i(L) = 0, aii(L) = ρi.

We note that

a00(0) = ρ0(ρ0 + ρ1sech(Lξ)) (2.10)

a10(0) = a01(0) = ρ1ρ0(1− sech(Lξ)) (2.11)

and a11(0) = ρ1(ρ1 + ρ0sech(Lξ)). (2.12)

2.2. MFPTs

Defining the MFPT to escape at either end according to

vn(x) := E[τ1{n(0)=n} |X0 = x],

it can be shown that vn satisfies the ODE [10, 11]

−
(
ρ0
ρ1

)
= ∆

(
v0
v1

)
+

(
−ν µ
ν −µ

)(
v0
v1

)
,

with boundary conditions

v0(0) = 0, v0(L) = 0,

∂xv1(0) = 0, ∂xv1(L) = 0.

It is straightforward to solve this BVP and obtain

v(x) := v0(x) + v1(x) =
1

2

(
x(L− x) +

Lρ1 coth
(
Lξ
2

)

ρ0ξ

)
(2.13)

For later use, we note that if we replace L by 2L, then

v
(2)
0 (L) =

L
(
Lρ0ξ + 2ρ1 tanh

(
Lξ
2

))

2ξ
. (2.14)



Diffusion on a tree with stochastically gated nodes 6

Another useful quantity is the MFPT to escape from the end x = L, say, given that
the other end x = 0 is always closed:

u(x) := u0(x) + u1(x),

where

−
(
ρ0
ρ1

)
= ∆

(
u0
u1

)
+

(
−ν µ
ν −µ

)(
u0
u1

)
,

with boundary conditions

∂xu0(0) = 0, u0(L) = 0,

∂xu1(0) = ∂xu1(L) = 0.

We note that

u(x) =
1

2

(
L2 +

2Lρ1 coth (Lξ)

ρ0ξ
− x2

)
. (2.15)

3. Series of stochastic gates

Recently, the problem of diffusion through a 1-D domain with multiple switching gates
within the interior of the domain has been analyzed from the gate perspective [12]. In
this section, we formulate the corresponding steady-state particle perspective problem
in terms of splitting probabilities and mean first passage times, and use probabilistic
arguments to find the solutions. Consider a single particle diffusing in the interval
[0, NL] and suppose that it switches conformational state according to a continuous-
time Markov jump process n(t) ∈ {0, 1} with fixed transition rates µ and ν

0
ν


α

1.

Suppose that the particle can diffuse freely through the interval when n(t) = 0, but
cannot pass through x = lk := kL when n(t) = 1 for 1 ≤ k ≤ N − 1. (We could
equivalently have assumed that the gates switch states provided all the gates are
perfectly correlated.) We also assume that the particle can be absorbed at x = 0 and
x = L only when n(t) = 0, otherwise it is reflected.

k-1 k+1k
L x

u
(0

) 
=

 0

u
(N

L
) =

 0

N

μ ν

u
’(

0
) 

=
 0

u
’(N

L
) =

 0

XX

Figure 2: Series of stochastic gates in the particle perspective.



Diffusion on a tree with stochastically gated nodes 7

3.1. Splitting probabilities

Let Xt ∈ [0, NL] denote the position of the particle and define the stopping time

T = inf
{
t ≥ 0 : {Xt ∈ {0, NL}} ∩ {n(t) = 0}

}
. (3.1)

Assume P(n(0) = 0) = ρ0. For n ∈ {0, 1}, let

πn(x) = P(XT = 0 | {X0 = x} ∩ {n(0) = n}). (3.2)

One can show (see [9, 11]) that πn satisfies the ODEs
(

0
0

)
= ∆

(
π0
π1

)
+

(
−ν ν
µ −µ

)(
π0
π1

)
, (3.3)

with exterior boundary conditions

π0(0) = 1 π0(NL) = 0

π′1(0) = 0 π′1(NL) = 0,

and the interior boundary conditions at the k-th gate, lk := kL, are

π0(lk−) = π0(lk+),

π′0(lk−) = π′0(lk+),

π′1(lk−) = π′1(lk+) = 0.

A simple rescaling shows that

pn(x) := ρnπn(x) = P(XT = 0 ∩ n(0) = n |X0 = x) (3.4)

satisfies the ODEs(
0
0

)
= ∆

(
p0
p1

)
+

(
−ν µ
ν −µ

)(
p0
p1

)
, (3.5)

with exterior boundary conditions

p0(0) = ρ0, p0(NL) = 0,

p′1(0) = 0, p′1(NL) = 0,

and the same interior boundary conditions as πn.
By the definition of pn, we have that

p(x) := p0(x) + p1(x) = P(XT = 0 |X0 = x). (3.6)

By the strong Markov property§, if 0 ≤ k ≤ N − 1 and x ∈ (lk, lk+1), then

p(x) =
1

ρ0

(
q(s)p0(lk) + (1− q(s))p0(lk+1)

)
, (3.7)

where s = x− lk and

q(s) = P(Xτk = lk |X0 = s),

is given in (2.7) since all the cells have length L, and τk is the stopping time

τk = inf
{
t ≥ 0 : {Xt /∈ (lk, lk+1)} ∩ {n(t) = 0}

}
.

To see why (3.7) holds, let {Ft}t≥0 be the filtration generated by the strong Markov
process {(Xt, n(t))}t≥0. Let Ex denote the expectation conditioned on X0 = x and

§ Recall that a stochastic process has the Markov property if the conditional probability distribution
of future states of the process (conditional on both past and present states) depends only upon the
present state, not on the sequence of events that preceded it. The term strong Markov property is
similar to the Markov property, except that the “present” is defined in terms of a stopping time.
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P(n(0) = 0) = ρ0. Similarly, let Ex,n denote the expectation conditioned on X0 = x
and n(0) = n. Then, by the tower property of conditional expectation and the fact
that the random variable 1Xτk=lk is measurable with respect to Fτk , we have that

p(x) = Ex[1XT =0] = Ex
[
Ex[1XT =0|Fτk ]

]

= Ex
[
1Xτk=lkEx[1XT =0|Fτk ]

]
+ Ex

[
1Xτk=lk+1

Ex[1XT =0|Fτk ]
]
.

Applying the strong Markov property to both terms and using the linearity of
expectation yields

p(x) = Ex[1Xτk=lk ]Elk,0[1XT =0] + Ex[1Xτk=lk+1
]Elk+1,0[1XT =0]

= q(s)π0(lk) + (1− q(s))π0(lk+1).

Applying the definition of p0 in (3.4) gives (3.7).
Since

p0(l0) = ρ0, p0(NL) = 0, (3.8)

it follows that p(x) is determined by the remaining N − 1 constants

p0(l1), . . . , p0(lN−1).

As the cells are evenly spaced, we find that each of these constants is the average of
its neighbors

p0(lk) =
1

2

(
p0(lk−1) + p0(lk+1)

)
, (3.9)

for k = 1, . . . , N − 1. To see why (3.9) holds, define the stopping time

sk = inf
{
t ≥ 0 : {Xt /∈ (lk−1, lk+1)} ∩ {n(t) = 0}

}
. (3.10)

Observe that

π0(lk) = Elk,0[1XT =0] = Elk,0[Elk,0[1XT =0|Fsk ]]

= Elk,0[1Xsk=lk−1
Elk,0[1XT =0|Fsk ]] + Elk,0[1Xsk=lk+1

Elk,0[1XT =0|Fsk ]].

As above, the strong Markov property and linearity imply that π0(lk) is

Elk,0[1Xsk=lk−1
]Elk−1,0[1XT =0] + Elk,0[1Xsk=lk+1

]Elk+1,0[1XT =0]

= Elk,0[1Xsk=lk−1
]π0(lk−1) + Elk,0[1Xsk=lk+1

]π0(lk+1).

By symmetry, Elk,0[1Xsk=lk−1
] = Elk,0[1Xsk=lk+1

] = 1/2. Applying the definition of
p0 in (3.4) gives (3.9).

Rearranging (3.9), we see that the constants satisfy a discretized Laplace’s
equation

p0(lk−1)− 2p0(lk) + p0(lk+1) = 0, (3.11)

for k = 1, . . . , N − 1, with (3.8) serving as boundary conditions. Solving this system
and applying (3.7) and (2.7) yields p(x).

3.2. Mean first passage times

Consider the same diffusing particle scenario as in section 3.1 above, but now we
seek the expected absorption time (MFPT) of the particle to either of the switching
boundaries

wn(x) = Ex[T 1{n(0)=n}]. (3.12)
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One can show (see [9, 11]) that wn satisfies the ODEs

−
(
ρ0
ρ1

)
= ∆

(
w0

w1

)
+

(
−ν µ
ν −µ

)(
w0

w1

)
, (3.13)

with exterior boundary conditions

w0(0) = 0 w0(NL) = 0

w′1(0) = 0 w′1(NL) = 0,

and the same interior boundary conditions as πn.
By the definition of wn, we have that

w(x) := w0(x) + w1(x) = Ex[T ]. (3.14)

By the strong Markov property, if 0 ≤ k ≤ N − 1 and x ∈ (lk, lk+1), then

w(x) = v(s) +
1

ρ0

(
q(s)w0(lk) + (1− q(s))w0(lk+1)

)
, (3.15)

where s = x − lk, the exit time v(x) is given in (2.13), and the splitting probability
q(s) is given in (2.7). To see why (3.15) holds, observe that by the tower property
and the fact that the random variables 1Xτk=lk and τk are measurable with respect
to Fτk , we have

w(x) = Ex[T ] = Ex[τk] + Ex[Ex[T − τk|Fτk ]]

= Ex[τk] + Ex[1Xτk=lkEx[T − τk|Fτk ]] + Ex[1Xτk=lk+1
Ex[T − τk|Fτk ]].

Applying the strong Markov property to the last two terms and using the linearity of
expectation yields

w(x) = Ex[τk] + Ex[1Xτk=lk ]Elk,0[T ] + Ex[1Xτk=lk+1
]Elk+1,0[T ]

= v(s) + q(s)Elk,0[T ] + (1− q(s))Elk+1,0[T ].

Applying the definition of w0 in (3.12) gives (3.15).
Since w0(l0) = w0(NL) = 0, it remains to determine the N − 1 constants

w0(l1), . . . , w0(lN−1).

Since the cells are evenly spaced, we have that

w0(lk) = V +
1

2

(
w0(lk−1) + w0(lk+1)

)
, (3.16)

for k = 1, . . . , N − 1, where V = v
(2)
0 (L) is given in (2.14). To see why (3.16) holds,

observe that w0(lk) = ρ0Elk,0[T ] and thus

w0(lk)

ρ0
= Elk,0[sk] + Elk,0[1Xsk=lk−1

Elk,0[T − sk|Fsk ]]

+ Elk,0[1Xsk=lk+1
Elk,0[T − sk|Fsk ]].

As before, applying the strong Markov property to the second two terms and using
linearity gives

w0(lk)

ρ0
= Elk,0[sk] + Elk,0[1Xsk=lk−1

]Elk−1,0[T ]

+ Elk,0[1Xsk=lk+1
]Elk+1,0[T ]. (3.17)

By symmetry, Elk,0[1Xsk=lk−1
] = Elk,0[1Xsk=lk+1

] = 1/2. We further have that
ρ0Elk,0[sk] = V by the reflection principle for Brownian motion. Multiplying (3.17) by
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Figure 3: Homogenized diffusion. We plot the MFPT to escape from an interval with
many fast switching gates (w(x) in (3.14)) and the MFPT to escape an interval with
homogenized diffusion coefficient (3.20), which is w(x) in (3.19). The three pairs of
curves correspond to ρ0 = 1/4, 1/2, and 3/4, with higher curves corresponding to
lower values of ρ0. We note that w(x) has jump discontinuities at gates which we plot
as vertical lines. In all plots, we take the number of gates to be N = 15 and a = 1.
The w(x) and w(x) plots become indistinguishable for larger values of N .

ρ0 gives (3.16). Rearranging (3.16), we notice that these constants satisfy a discretized
Poisson equation

w0(lk−1)− 2w0(lk) + w0(lk+1) = −2V, (3.18)

for k = 1, . . . , N − 1, and w0(l0) = w0(NL) = 0 can be interpreted as boundary
conditions. Solving this system yields w(x).

3.3. Limit of many gates and fast switching

Let L = 1/N � 1 and ξ = 2N/a for some a > 0. From (3.18) and (2.14), we have

N2
(
w0(lk−1)− 2w0(lk) + w0(lk+1)

)
= −2N2V = −(ρ0 + ρ1a tanh(1/a)).

Taking the continuum limit of the left-hand side and noting that w1 ≈ (ρ1/ρ0)w0 for
fast switching, we have w(x) ≈ w(x) with w(x) the solution to the BVP

∆w(x) = −
(
1 + a tanh(1/a)

ν

µ

)
, w(0) = w(1) = 0. (3.19)

The latter yields the classical MFPT for a diffusing particle with diffusion coefficient
[
1 + a tanh(1/a)

ν

µ

]−1
. (3.20)

to escape from the interval (0, 1). We illustrate the accuracy of this approximation in
Fig. 3.
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4. Stochastic gates at the nodes of a tree

Consider a finite regular tree Γ consisting of Nv nodes or vertices and Ne line segments
or edges of length L (see Fig. 4a). The nodes α ∈ Γ of the network may be classified
as either branching or terminal (excluding the primary node). Let B denote the set of
branching nodes, and let O denote the set of terminal nodes. The first branch node
opposite the primary node is denoted by α0. For every other branching node α ∈ B
and terminal node α ∈ O there exists a unique direct path from α0 to α (one that
does not traverse any line segment more than once). We can label each node α 6= α0

uniquely by the index k of the final segment of the direct path from α0 to α so that
the branch node corresponding to a given segment label k can be written α(k). We

branch k

α(k)α(k)
J
α(k)

(b)

Gen 2

Gen 1
Gen 2

branch nodes

terminal nodes

primary node

(a)

Gen 0

_

Figure 4: Labeling scheme for a regular tree Γ with coordination number z = 3. (a)
Sketch of a tree with N = 3 generations (Gen) of branch nodes, a primary node,
and 2(N + 1) terminal nodes. (b) The branch node α(k) is shown in relation to the
neighboring branch node α(k) closest to the primary node. The branch segments
extending out from α(k) in the positive direction together comprise the set Jα(k).
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denote the other node of segment k by α(k). For example, α0 is the primary node. We
can also introduce a direction on each segment of the tree such that every direct path
from α0 always moves in the positive direction. Finally, we introduce the prameterised
local coordinate xk(s), s ∈ [0, L] for each segment k such that

lim
s→L

xk(s) = α(k), lim
s→0

xk(s) = α(k). (4.1)

Consider a single branching node α ∈ B and label the set of segments radiating from
it by Iα. Let Jα denote the set of line segments k ∈ Iα that radiate from α ∈ B in a
positive direction (see Fig. 4b). If we denote the total number of segments radiating
from any branch node α by the coordination number z, then the number of elements
of Jα is z − 1. (In this paper we take the coordination number of every branch point
to be the same. However, the analysis could be generalized to the case of a variable
coordination number. For the sake of illustration, we take the coordination number
of the tree to be z = 3 in Fig. 4.) Using these various definitions, we can introduce
the idea of a generation. Take α0 to be the zeroth generation. The first generation
then consists of the set of nodes (or corresponding edges) Σ1 = {α(k), k ∈ Jα0}, the
second generation is Σ2 = {α(l), l ∈ Jα, α ∈ Σ1} etc. Let N denote the generation of
the most downstream branch nodes, that is, N is the smallest integer for which ΣN+1

only includes terminal nodes.
We can now formulate the particle perspective problem on a tree. Consider a

single particle diffusing on the tree Γ and suppose that it switches conformational
state according to a continuous-time Markov jump process n(t) ∈ {0, 1} with fixed
transition rates µ and ν

0
ν


µ

1.

The particle can diffuse freely through the branch nodes α ∈ B when n(t) = 0, but
cannot pass through any of them when n(t) = 1. We also assume that the particle
can be absorbed at one of the terminal nodes α ∈ O only when n(t) = 0, otherwise it
is reflected. We will consider different boundary conditions for the primary node.

4.1. Splitting probability to escape through a specific terminal node

First, suppose that the primary node also acts as a switching boundary, that is, the
particle can be absorbed at α0 if n(t) = 0, otherwise it is reflected. Let Xt ∈ Γ denote
the position of the particle on Γ and define the stopping time

T = inf
{
t ≥ 0 : {Xt ∈ O ∪ {α0}} ∩ {n(t) = 0}

}
.

Assume P(n(0) = 0) = ρ0. For n ∈ {0, 1} and γ ∈ O, let

πγn(x) = P(XT = γ |X0 = x ∩ n(0) = n).

Generalizing the 1D case [9, 11], one can show that πγn satisfies
(

0
0

)
= ∆

(
πγ0
πγ1

)
+

(
−ν ν
µ −µ

)(
πγ0
πγ1

)
, (4.2)

with exterior boundary conditions

πγ0 (α) = δα,γ , ∂xπ
γ
1 (α) = 0, α ∈ O ∪ {α0}, (4.3a)

and interior boundary conditions at the branch points α(k) ∈ B. In particular, πγ0
satisfies the continuity conditions

πγ0 (xk(L)) = πγ0 (xj(0)), j ∈ Jα, (4.3b)
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and the flux conservation condition

∂xπ
γ
0 (xk(L)) +

∑

j∈Jα

∂xπ
γ
0 (xj(0)) = 0. (4.3c)

Note that for the upstream segment k the flux flows into the branch node, whereas
for the remaining z − 1 downstream segments j ∈ Jα the flux flows out of the branch
node. On the other hand, πγ1 satisfies the reflecting boundary conditions

∂xπ
γ
1 (xk(L)) = ∂xπ

γ
1 (xj(0)) = 0, j ∈ Jα (4.3d)

A simple rescaling shows that

pγn(x) := ρnπ
γ
n(x) = P(XT = γ ∩ n(0) = n |X0 = x) (4.4)

satisfies the ODEs(
0
0

)
= ∆

(
pγ0
pγ1

)
+

(
−ν µ
ν −µ

)(
pγ0
pγ1

)
, (4.5)

with exterior boundary conditions

pγ0(α) = ρ0δα,γ , ∂xp
γ
1(α) = 0, α ∈ O ∪ {α0}, (4.6)

and the same interior boundary conditions as πγn. By the definition of pγn, we have
that

pγ(x) := pγ0(x) + pγ1(x) = P(XT = γ |X0 = x).

As in (3.7), if x = xk(s), s ∈ (0, L), then by the strong Markov property

pγ(x) =
1

ρ0

(
q(s)pγ0(xk(0)) + (1− q(s))pγ0(xk(L))

)
, (4.7)

where

q(s) = P(Xτk = xk(0) |X0 = xk(s)),

is given in (2.7) since all the edges have length L, and τk is the stopping time

τk = inf
{
t ≥ 0 : {Xt ∈ {xk(0), xk(L)}} ∩ {n(t) = 0}

}
.

Introduce the set of constants evaluated at the nodes

Φγα(k) ≡ pγ0(xk(L)) = pγ0(xj(0)), j ∈ Jα. (4.8)

As in (3.9), we have that each of these constants is the average of its neighbors

Φγα(k) =
1

z


Φγα(k) +

∑

j∈Jα

Φγα(j)


 , k ∈

N
∪
j=0

Σj . (4.9)

Rearranging this equation, we see that the constants satisfy a discretized Laplace’s
equation on the tree

Φγα(k) − zΦγα(k) +
∑

j∈Jα

Φγα(j) = 0, k ∈
N
∪
j=0

Σj (4.10)

with boundary conditions determined by equation (4.6):

Φγα0
= 0, Φγα(j) = ρ0δα(j),γ , j ∈ ΣN+1. (4.11)

Our strategy for solving this set of iterative equations will be to start at the
final generation ΣN of branch nodes and work inward to the primary node solving
recursively. (An analogous iterative scheme was previously used to determine the
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γ

α(k
1

)

α(k
2

)

α(k
3

)

α
0

_

Φ = ρ0
Φ = 0

Figure 5: Direct path Aγ from terminal node γ to the primary node α0 (indicated
by blue). Here γ is the labelled node where the particle is absorbed. There are three
generations of branch nodes (N = 2). Also shown is a path (indicated by green) from
another terminal node that joins Aγ at α(k3), which means that r = 3.

Green’s function of the advection-diffusion equation on a tree [1].) Let {km, m =
1, 2, · · · , N + 1} be a sequence of segments starting at a node α(k1) ∈ ΣN and
proceeding along a direct path toward the primary node with α(kN+1) = α0. For
ease of notation, set Φj = Φγα(kj) and Φj = Φγα(kj).

First consider the case that γ ∈ Jα(k1) and denote the corresponding path to the
primary node by Aγ , see Fig. 5. Starting at the outer branch node α(k1) we have

Φ1 =
1

z
(ρ0 + Φ2) ,

which we can rewrite as

Φ1 =
ρ0

H1(z)
+

Φ1

H1(z)
, H1(z) = z. (4.12)

The next iteration is

Φ2 =
1

z

(
Φ1 + (z − 2)Φ̂1 + Φ3

)
,

where Φ̂1 is evaluated on any branch node α ∈ ΣN such that α 6= α(k1). It follows

that Φ̂1 = Φ2/z so that

Φ2 =
1

z

(
1

z
(ρ0 + Φ2) +

z − 2

z
Φ2 + Φ3

)
,
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which on rearranging gives

Φ2 =
ρ0

H1(z)H2(z)
+

Φ2

H2(z)
, H2(z) = H1(z)− z − 1

H1(z)
.

We can thus establish the general recurrence relation

Φm =
ρ0

Gm(z)
+

Φm
Hm(z)

, (4.13)

with the functions Hm(z) defined recursively:

Hm(z) = z − z − 1

Hm−1(z)
, m = 2, . . . , N + 1, (4.14)

and

Gm(z) =

m∏

j=1

Hj(z). (4.15)

Note that iterating equation (4.14) leads to a finite continued fraction. For example,
in the case of three generations (N = 3), we have

Hα0
(z) = z − z − 1

z − z − 1

z − z − 1

z

. (4.16)

One way to derive the general recurrence relation (4.13) is to use proof by
induction. That is, suppose equation (4.13) holds for m = n − 1 > 2. Use the
fact that

Φn =
1

z

(
Φn−1 + (z − 2)Φ̂n−1 + Φn+1

)
,

with the path from ΣN+1 to Φ̂n−1 not intersecting Aγ . It follows that Φ̂n−1 satisfies
equation (4.13) with ρ0 = 0. Hence,

zΦn =
ρ0

Gn−1(z)
+

Φn
Hn−1(z)

+ (z − 2)
Φn

Hn−1(z)
+ Φn+1,

Rearranging this equation yields equation (4.13) for m = n. It is also straightforward
to write down the modified recurrence relation starting from a terminal node for
which Φ = 0. Suppose γ /∈ Jα(k1) such that km /∈ Aγ for 0 < m < r and km ∈ Aγ
for r ≤ m ≤ N + 1 with 1 < r ≤ N + 1. (If r = 1 then we recover the path Aγ .) It
follows that

Φm =
Φm

Hm(z)
(0 < m < r), Φm =

ρ0
Gm(z)

+
Φm

Hm(z)
(r ≤ m ≤ N + 1). (4.17)

Given the recursive equations for Φm we can now start from the primary node α0

with ΦN+1 ≡ Φγα0
= 0, and iterate forwards along the tree using Φm−1 = Φm. Thus

ΦN+1 =
ρ0

GN+1(z)
.

Φm =
ρ0

Gm(z)
+

Φm+1

Hm(z)
, (r ≤ m ≤ N)

Φm =
Φm+1

Hm(z)
, (0 < m < r)
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If r = 1, then we have

Φm = ρ0

[
1

Gm(z)
+

1

Gm+1(z)Hm(z)
+

1

Gm+2(z)Hm(z)Hm+1(z)
+ . . .

+
1

GN+1(z)Hm(z)Hm+1(z) · · ·HN (z)

]
. (4.18)

for all 1 ≤ m ≤ N . Similarly, if r > 1 then Φm satisfies equation (4.18) for r ≤ m ≤ N
and

Φm =
Φr

Hr−1(z) · · ·Hm(z)
. (4.19)

for 0 < m < r. Finally, we can substitute our solution into equation (4.7) expressed
in the form

pγ(x) =
1

ρ0

(
q(s)Φk−1 + (1− q(s))Φk

)
, x = xk(s), s ∈ (0, L). (4.20)

4.2. MFPT to escape through a terminal node

We now seek the MFPT of the particle to be absorbed at any of the terminal nodes
α ∈ O, assuming the primary node is always closed. Define

wn(x) = E[T 1{n(0)=n} |X0 = x]. (4.21)

One can show (see [9, 11]) that wn satisfies

−
(
ρ0
ρ1

)
= ∆

(
w0

w1

)
+

(
−ν µ
ν −µ

)(
w0

w1

)
, (4.22)

with exterior boundary conditions

w0(α) = ∂xw1(α) = 0, α ∈ O,
∂xw0(α) = ∂xw1(α) = 0, α = α0,

and the same interior boundary conditions (4.3b)–(4.3d) as πn. By the definition of
wn, we have that

w(x) := w0(x) + w1(x) = E[T |X0 = x]. (4.23)

Suppose that the particle starts on a segment k (not the primary segment). As in
(3.15), if x = xk(s), s ∈ (0, L), then by the strong Markov property

w(x) = v(s) +
1

ρ0

(
q(s)w0(xk(0)) + (1− q(s))w0(xk(L))

)
, (4.24)

where the exit time v(s) is given in (2.13) and the splitting probability q(s) is given
in (2.7). On the other hand, if the particle starts on the primary segment, then it can
only exit via the branch point α0 so that

w(x) = u(s) +
w0(α0)

ρ0
, (4.25)

where u(s) is given in (2.15). Introducing the following set of constants evaluated at
the nodes

Ψα(k) ≡ w0(xk(L)) = w0(xj(0)), j ∈ Jα, (4.26)

we see that, as in equation (3.16),

Ψα(k) = V +
1

z


Ψα(k) +

∑

j∈Jα

Ψα(j)


 , k ∈

N
∪
j=0

Σj ,
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with V = v
(2)
0 (L) given by equation (2.14). Rearranging this equation, shows that the

constants satisfy a discretized Poisson equation on the tree

Ψα(k) − zΨα(k) +
∑

j∈Jα

Ψα(j) = −zV, k ∈
N
∪
j=0

Σj (4.27)

with boundary conditions

Ψα = 0, α ∈ O. (4.28)

From equation (4.25),

Ψα0
= u0(0) + Ψα0

. (4.29)

We can solve the discrete equation (4.27) using a similar recursive method to
the analysis of equation (4.10). Since Ψα = 0 for all α ∈ O, it follows from
symmetry that Ψα(k) only depends on the generation of the segment k. Thus, let
{km, m = 1, 2, · · · , N+1} be any sequence of segments starting at a node α(k1) ∈ ΣN
and proceeding along a direct path toward the primary node with α(kN+1) = α0. For
ease of notation, set Ψj = Ψα(kj) and Ψj = Ψα(kj). Starting from any terminal node
in ΣN+1, we see that

Ψ1 = V +
Ψ2

z
,

which we can rewrite as

Ψ1 = V +
Ψ1

H1(z)
, H1(z) = z. (4.30)

Then, as we continue inwards we find that

Ψm =
V

Fm(z)
+

Ψm

Hm(z)
, (4.31)

0 0.2 0.4 0.6 0.8 1
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Figure 6: Fast switching and increased coordination number z both decrease MFPT
to terminal nodes. We plot the MFPT w(α0) against the switching rate µ = ν.
Increasing the switching rate decreases the MFPT. Increasing the coordination number
z decreases the MFPT since more branching tends to push the particle towards the
terminal nodes. In all plots, N = 2 and L = 1.
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with

1

Fm(z)
= z

(
1

Hm(z)
+

z − 1

Hm(z)Hm−1(z)
+

(z − 1)2

Hm(z)Hm−1(z)Hm−2(z)
+ . . .

+
(z − 1)m−1

Hm(z)Hm−1(z) · · ·H1(z)

)
. (4.32)

We now move forward through the tree starting from the primary branch node α0

using Ψm = Ψm+1:

Ψm = V

[
1

Fm(z)
+

1

Fm+1(z)Hm(z)
+

1

Fm+2(z)Hm(z)Hm+1(z)
+ . . .

+
ΨN+1

Hm(z)Hm+1(z) · · ·HN (z)

]
. (4.33)

for all 1 ≤ m ≤ N . We can determine ΨN+1 by substituting ΨN+1 = u0(0) + ΨN+1

into equation (4.31) for m = N + 1, that is,

ΨN+1 =
V

FN+1(z)
+
u0(0) + ΨN+1

HN+1(z)
,

which can be rearranged to give

ΨN+1 =
1

HN+1(z)− 1

(
HN+1(z)V

FN+1(z)
+ u0(0)

)
. (4.34)

Finally, we substitute into equation (4.24), rewritten as

w(x) = v(s) +
1

ρ0

(
q(s)Ψk−1 + (1− q(s))Ψk

)
(4.35)

for x = xk(s), s ∈ (0, L). If x is on the primary segment, then

w(x) = u(s) +
ΨN+1

ρ0
. (4.36)

In Fig. 6, we plot the MFPT w(α0) as a function of the switching rate for
different values of the coordination number, z. It can be seen that increasing z
decreases the MFPT. This is because, as the analysis above shows, the symmetry in
the problem reduces it to a one-dimensional random walk on the generation number
with probability of hopping to a larger generation equal to (z − 1)/z and probability
of hopping to a smaller generation equal to z−1. Thus, increasing z tends to push the
particle towards terminal nodes. This is consistent with the well-known result that
for a discrete-time symmetric random walk on a tree, the distance from the primary
node is described by a random walk with a computable drift away from the primary
node for any coordination number z > 2.

5. Flux through a tree with stochastically-gated nodes

Driven by the biological applications described in the Introduction, we now take
the gate perspective and keep track of the concentration of particles diffusing in
a tree Γ with permanently open branch nodes and randomly switching primary or
terminal nodes. We begin in section 5.1 by calculating the flux without any switching
nodes, and quickly find the flux in the case that either the primary node or terminal
nodes switch between being a source (inhomogeneous Dirichlet condition) and a sink
(homogeneous Dirichlet condition). In section 5.2, we suppose that the primary node
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is an intermittent source (switches between an inhomogeneous Dirichlet condition and
a no flux Neumann condition) and calculate the flux through the terminal nodes.
In section 5.3, we consider the reverse situation in which the terminal nodes are
intermittent sources and find the flux through the primary node.

5.1. Non-switching case and intermittent sink/source

We first analyze the case without any switching nodes. Let η > 0 and consider the
concentration πη(x, t) of particles diffusing in a tree Γ satisfying

∂πη

∂t
= ∆πη, x ∈ Γ, t > 0, (5.1)

with exterior boundary conditions

πη(α, t) = η > 0, ∀α ∈ O, (5.2)

πη(α0, t) = 0, (5.3)

and interior boundary conditions

πη(xk(L)) = πη(xj(0)), j ∈ Jα, (5.4)

∂xπ
η(xk(L)) +

∑

j∈Jα

∂xπ
η(xj(0)) = 0. (5.5)

Defining the steady-state solution πη(x) ≡ limt→∞ πη(x, t) and introducing the
constants Θα(k) = πη(α(k)), we solve the steady-state diffusion equation on each
segment k according to

πη(xk(s)) =
s

L
[Θα(k) −Θα(k)] + Θα(k). (5.6)

We can solve for Θα(k) recursively by imposing current conservation at each branching
node, that is,

Θα(k) −Θα(k) −
∑

j∈Jα(k)

[Θα(j) −Θα(j)] = 0. (5.7)

The exit flux through the primary node per each terminal node source can then be
determined according to

Ĵ =
∂xπ

η(x)|x=α0

L(z − 1)N+1
=

Θα0

L(z − 1)N+1
,

where (z − 1)N+1 is the number of terminal nodes.
Since all terminal nodes satisfy the same boundary condition, it follows from

symmetry that Θα(k) only depends on the generation of the segment k. Thus, let
{km, m = 1, 2, · · · , N+1} be any sequence of segments starting at a node α(k1) ∈ ΣN
and proceeding along a direct path toward the primary node with α(kN+1) = α0.
For ease of notation, set Θj = Θα(kj) and Θj = Θj+1 = Θα(kj). Starting from any
terminal node in ΣN+1, current conservation implies that

Θ2 −Θ1 = (z − 1)(Θ1 − η),

which we can rewrite as

Θ1 =
Θ2 + (z − 1)η

z
. (5.8)
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Then, as we continue inwards we find that

Θm =
Θm

Hm(z)
+

(z − 1)mη

Gm(z)
(5.9)

with Hm and Gm defined according to equations (4.14) and (4.15). The final step is
to move forward through the tree starting from the primary branch node α0 using the
boundary condition θN+1 = 0. We thus find that the flux through the primary node
per each terminal node source is

Ĵ =
1

L

η

GN+1(z)
. (5.10)

Finally, setting η = 1 and π̃ = 1− π1, it follows that

J = −(z − 1)N+1∂xπ̃(α), α ∈ O, (5.11)

is the steady-state exit flux through the (z − 1)N+1 open terminal nodes given that
the boundary condition at the primary node is π̃(α0, t) = 1.

Now suppose that the boundary conditions at the terminal nodes switch between
a homogeneous and inhomogeneous Dirichlet conditions. That is, suppose u(x, t)
satisfies the PDE (5.1) with interior boundary conditions (5.4) and (5.5), boundary
condition at the primary node (5.3) and randomly switching boundary conditions at
terminal nodes

u(α, t) = 1 and u(α, t) = 0, ∀α ∈ O,
depending on whether n(t) = 0 or 1, respectively, where n(t) is as in (2.1). Following
[9], we introduce the first moment of the solution to the stochastic PDE according to

Vn(x, t) = E[u(x, t)1n(t)=n]. (5.12)

such that

∂V0
∂t

= ∆V0 − νV0 + µV1 (5.13a)

∂V1
∂t

= ∆V1 + νV0 − µV1 (5.13b)

with exterior boundary conditions

V0(α0, t) = V1(α0, t) = 0, V0(α, t) = ρ0, V1(α, t) = 0, ∀α ∈ O(5.14)

and the same interior boundary conditions as u.
We would like to calculate the steady-state solution of equations (5.13a) and

(5.13b). First, note that

E[u(x, t)] = V0(x, t) + V1(x, t). (5.15)

Since there exists a globally attracting steady-state, it follows that

lim
t→∞

E[u(x, t)] = V (x) ≡
∑

n=0,1

Vn(x), (5.16)

where Vn(x) ≡ limt→∞ Vn(x, t). Adding equations (5.13a) and (5.13b) then gives

∆V (x) = 0, x ∈ Γ (5.17)

with exterior boundary conditions

V (α0) = 0, V (α) = ρ0, ∀α ∈ O. (5.18)
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Thus, replacing η by ρ0 we see that V (x) is given by πρ0(x). In particular, replacing
η by ρ0 in (5.10) shows that switching between homogeneous and inhomogeneous
Dirichlet conditions at the terminal nodes reduces the flux to the primary node by
the proportion of time the condition is inhomogeneous. It is straightforward to check
that this same relation holds for the flux to the terminal nodes if we switch between
homogeneous and inhomogeneous Dirichlet conditions at the primary node. We will
see below in sections 5.2 and 5.3 that this simple relation no longer holds if we switch
between Dirichlet and Neumann conditions.

All of the above has a direct probabilistic interpretation from the particle
perspective. Let Xt denote the position of a particle diffusing on Γ that can freely
pass through all branch nodes and can be absorbed at any terminal node. Define the
absorption time

τ = inf
{
t ≥ 0 : Xt ∈ O ∪ {α0}

}
.

If η = 1, then the resulting BVP for π1(x) implies that π1(x) is the splitting probability

π1(x) = Px(Xτ ∈ O). (5.19)

And of course

π̃(x) := 1− π1(x) = Px(Xτ = α0) (5.20)

satisfies the same BVP as π1(x), but with the inhomogeneous condition at the primary
node. The case of switching inhomogeneous/homogeneous Dirichlet conditions at the
primary node is thus immediate. Further, the conservation equation (5.7) follows from
the same probabilistic argument that yielded (4.9). Finally, letting n(t) be as in (2.1)
we see that

V (x) = Px(Xτ ∈ O ∩ n(τ) = 0) = Px(Xτ ∈ O)Px(n(τ) = 0)

= ρ0π
1(x) = πρ0(x),

by independence. On the other hand (see below), if terminal nodes switch between
absorbing and reflecting boundary conditions, then Xt and n(t) are no longer
independent and the analysis is much more delicate.

5.2. Flux through a tree with a stochastically-gated primary node

In our next example, we assume that the primary node is an intermittent source
(switches between an inhomogeneous Dirichlet condition and a no flux Neumann
condition) and calculate the flux through the open terminal nodes. The particle
concentration u(x, t) satisfies the diffusion equation (5.1), interior boundary conditions
(5.4)-(5.5), boundary conditions at the terminal nodes

u(α, t) = 0 ∀α ∈ O,
and a boundary condition at the primary node that randomly switches between

u(α0, t) = 1 and ∂xu(α0, t) = 0,

depending on whether n(t) = 0 or 1, respectively, where n(t) is as in (2.1). As in the
previous example, section 5.1, Vn(x, t) is defined according to equation (5.12), which
satisfies (5.13a)-(5.13b) with modified exterior boundary conditions

V0(α0, t) = ρ0, ∂xV1(α0, t) = 0, V0(α, t) = V1(α, t) = 0, ∀α ∈ O (5.21)

and interior boundary conditions (5.4)-(5.5). Finding the expected value of u at large
time amounts to finding Vn(x) := limt→∞ Vn(x, t).



Diffusion on a tree with stochastically gated nodes 22

We will use the probabilistic arguments of previous sections to find Vn(x).
Consider a single particle diffusing on Γ that can always diffuse freely through branch
nodes and be absorbed at terminal nodes. Assume that the particle can be absorbed
at the primary node only when n(t) = 0, otherwise it is reflected. Let Xt ∈ Γ denote
the position of the particle at time t and define the absorption time

T = inf
{
t ≥ 0 : {Xt ∈ O} ∪

{
{Xt = α0} ∩ {n(t) = 0}

}}
,

so that Vn(x) has the probabilistic interpretation

Vn(x) = pn(x) := P({XT = α0} ∩ {n(0) = n} |X0 = x).

By the strong Markov property, or from the BVP satisfied by V (x), it follows that

p(x) := p0(x) + p1(x) = π̃(x)
(
ρ0 + p1(α0)

)
,

for x ∈ Γ, where π̃(x) is the splitting probability computed above in (5.20). From the
equivalent deterministic interpretation of π̃(x) in section 5.1, the expected flux to the
terminal nodes with an intermittent source at the primary node is thus reduced by
the factor

κ = ρ0 + p1(α0), (5.22)

compared to the case where the concentration at the primary node is always unity.
That is, the expected flux is

F := κJ, α ∈ O, (5.23)

where J is the flux with a constant source given in (5.11).
It thus remains to find p1(α0). We will proceed by solving for p0 and p1 evaluated

at all the nodes. First, from continuity, we introduce a constant vector for each segment
k of the form

χα(k) :=

(
p0(xk(L))
p1(xk(L))

)
=

(
p0(xj(0))
p1(xj(0))

)
, j ∈ Jα(k). (5.24)

By symmetry, χα(k) only depends on the generation of the segment k, so let {km :
m = 0, 1, . . . , N + 1} be any sequence of segments starting at a node α(k0) ∈ ΣN+1

and proceeding along a direct path toward the primary node with α(kN+1) = α0. For
ease, let χj = χα(kj) and χj = χα(kj) and denote the components of χj by (χ0

j , χ
1
j ).

Let Px,n denote the probability measure conditioned on X0 = x ∈ Γ and
n(0) = n ∈ {0, 1}. Define the stopping time

sm = inf
{
t ≥ 0 : {Xt = α(km−1)} ∪ {Xt = α(km+1)}

}
.

For n ∈ {0, 1} and m ∈ {1, . . . , N}, the strong Markov property shows that

χnm
ρn

= Pα(km),n(XT = α0)

= Pα(km−1),0(XT = α0)Pα(km),n(Xsm = α(km−1) ∩ n(sm) = 0)

+ Pα(km−1),1(XT = α0)Pα(km),n(Xsm = α(km−1) ∩ n(sm) = 1) (5.25)

+ Pα(km+1),0(XT = α0)Pα(km),n(Xsm = α(km+1) ∩ n(sm) = 0)

+ Pα(km+1),1(XT = α0)Pα(km),n(Xsm = α(km+1) ∩ n(sm) = 1).

By symmetry, we have that for i ∈ {0, 1}
Pα(km),n(Xsm = α(km±1) ∩ n(sm) = 1− i)
= Pα(km),n(Xsm = α(km±1))Pα(km),n(n(sm) = 1− i).
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Furthermore,

Pα(km),n(Xsm = α(km−1)) =
z − 1

z

and Pα(km),n(Xsm = α(km+1)) =
1

z
,

and

Pα(km),n(n(sm) = 1− i) =
a1−in

ρn
,

where a1−in is given in (2.10)-(2.12). Rewriting equation (5.25) in matrix notation
gives

χm = B
(1

z
χm +

z − 1

z
χm−1

)
, (5.26)

where B is the matrix

B =




a00(0)
ρ0

a10(0)
ρ1

a01(0)
ρ0

a11(0)
ρ1


 .

Using the fact that χ0 is the zero vector, we solve this system iteratively as in previous
sections and find that

χm =
(
Hm(z)

)−1
χm+1, (5.27)

with H1(z) = zB−1 and Hm(z) is defined recursively

Hm(z) = zB−1
[
I − z − 1

z
B
(
Hm−1(z)

)−1]
, m = 2, . . . , N + 1.

Note that Hm(z) reduces to (4.14) in the case that B is just the scalar 1.
Finally, it can be seen that χ0

N+1 = ρ0 and, by the strong Markov property,

χ1
N+1

ρ1
= Pα0,1(XT = α0)

= Pα0,1(Xs0 = α0) + Pα0,0(XT = α0)Pα0,1(Xs0 = α0 ∩ n(s0) = 0)

+ Pα0,1(XT = α0)Pα0,1(Xs0 = α0 ∩ n(s0) = 1), (5.28)

where s0 is the stopping time

s0 = inf
{
t ≥ 0 :

{
{Xt = α0} ∩ {n(t) = 0}

}
∪
{
Xt = α0

}}
.

Now,

Pα0,1(Xs0 = α0) = 1− (r01(0) + r11(0))

ρ1

Pα0,1(Xs0 = α0 ∩ n(s0) = 0) =
r01(0)

ρ1

Pα0,1(Xs0 = α0 ∩ n(s0) = 1) =
r11(0)

ρ1
.

where ri1 is given in (2.8)-(2.9). Equation (5.28) can be rewritten in matrix notation
as

χN+1 = c+ CχN+1, (5.29)
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with the vector c = (ρ0, ρ1 − r01(0)− r11(0)) and C is the matrix

C =




0 0

r01(0)
ρ0

r11(0)
ρ1


 .

Combining equations (5.26), (5.27), and (5.29), we find that

χN+1 =
[
I −

[
C[I − z − 1

z
B(HN (z))−1

]−1 1

z
B
]−1

c. (5.30)

The sum of the components of (5.30) give the flux reduction factor κ of
equation (5.22). In Figs. 7 and 8, we plot κ and the expected flux through the terminal
nodes F of equation (5.23). As expected, Fig. 7 shows that increasing the switching
rate µ = ν increases both κ and F . However, it is interesting that the tree topology
affects κ and F differently: if the coordination number z increases, then κ decreases
and F = κJ increases. We expect that increasing z increases J as this is analogous to
the fact that increasing z decreases the MFPT to a terminal node (see Fig. 6). The
fact that increasing z increases F , however, shows that even though more branching
decreases κ, the increase in J is great enough so that F = κJ increases. The situation
is reversed in section 5.3 below.

5.3. Flux through a tree with stochastically-gated terminal nodes

Finally, suppose that the intermittent sources are at the terminal nodes and consider
the flux to the primary node. The analysis is analogous to section 5.2 above, so we only
sketch it briefly. The particle concentration u(x, t) satisfies the diffusion equation (5.1),
interior boundary conditions (5.4)-(5.5), boundary conditions at the primary node

u(α0, t) = 0,
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Figure 7: The effect of tree topology on the flux reduction factor and the expected
flux for different placements of the intermittent source. We plot κ of (5.22) and κ̂ of

(5.31) in the left figure and we plot F of (5.23) and F̂ of (5.32) in the right figure,
all as functions of the switching rate µ = ν. In all cases, increasing the switching
rate µ = ν increases κ, F , κ̂, and F̂ (we note that κ and κ̂ both converge to 1
as µ = ν → ∞). However, increasing the coordination number z decreases κ and

increases F , and increases κ̂ and decreases F̂ . In all plots, N = 2 and L = 1.
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Figure 8: The effect of switching rate parameters, ρ1 = ν/(µ + ν) and ξ =
√
µ+ ν,

on the flux reduction factor and the expected flux for different placements of the
intermittent source. We plot κ of (5.22) and κ̂ of (5.31) in the left figure and we plot

F of (5.23) and F̂ of (5.32) in the right figure, all as functions of the proportion of
time in the closed state, ρ1 ∈ (0, 1). In all cases, increasing ξ and/or decreasing ρ1
increases κ, F , κ̂, and F̂ . We note that κ and κ̂ both converge to 1 as ξ →∞ for any
ρ1 ∈ (0, 1). Thus, the source can be closed almost all of the time, and yet the flux
reduction factor can be close to 1 if ξ is taken sufficiently large. In all plots, N = 2,
L = 1, and z = 3.

and a boundary condition at the terminal nodes that randomly switches between

u(α, t) = 1 and ∂xu(α, t) = 0 ∀α ∈ O,
depending on whether n(t) = 0 or 1, respectively, where n(t) is as in (2.1).

As above, we define Vn(x, t) according to (5.12) and use probabilistic arguments
to find Vn(x) := limt→∞ Vn(x, t). Consider a single particle diffusing on Γ that can
always diffuse freely through branch nodes and be absorbed at the primary node.
Assume that the particle can be absorbed at the terminal nodes only when n(t) = 0,
otherwise it is reflected. Let Xt ∈ Γ denote the position of the particle at time t and
define the absorption time

T = inf
{
t ≥ 0 : {Xt = α0} ∪

{
{Xt ∈ O} ∩ {n(t) = 0}

}}
.

so that

Vn(x) = pn(x) := P(XT 6= α0 ∩ n(0) = n |X0 = x).

By the strong Markov property, if x ∈ Γ, then

p(x) := p0(x) + p1(x) = π1(x)
(
ρ0 + p1(α)

)
, α ∈ O,

where π1(x) is the splitting probability computed above in (5.19). From the equivalent
deterministic interpretation of π1(x) in section 5.1, the expected flux to the primary
node with intermittent sources at the terminal nodes is reduced by the factor

κ̂ = ρ0 + p1(α), α ∈ O, (5.31)

compared to the case where the concentration at the terminal nodes α ∈ O is always
unity. That is, the expected flux (per each terminal node source) is

F̂ := κ̂Ĵ , (5.32)
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where Ĵ is the flux with a constant source given in (5.10).
To find p1(α) for α ∈ O, we define χα(k) by (5.24) and let {km : m =

0, 1, . . . , N + 1} be any sequence of segments starting at the primary branch node
α(k0) and proceeding along a direct path toward any terminal node α ∈ O. As above,
let χj = χα(kj) and χj = χα(kj) and denote the components of χj by (χ0

j , χ
1
j ). By the

same argument as in section 5.2, one finds that {χm}N+1
m=0 satisfy (5.26) with 1/z and

(z−1)/z swapped. Solving this system, establishes that if α ∈ O, then κ̂ = ρ0 +p1(α)
is given by the sum of the components of

[
I −

[
C[I − 1

z
B(JN (z))−1

]−1 z − 1

z
B
]−1

c,

where B, C, and c are as in section 5.2 and Jm(z) defined recursively

Jm(z) =
z

z − 1
B−1

[
I − 1

z
B
(
Jm−1(z)

)−1]
, m = 2, . . . , N + 1,

with J1(z) = z
z−1B−1.

In Figs. 7 and 8, we plot the flux reduction factor κ̂ of equation (5.31) and the

expected flux through the primary node F̂ of equation (5.32). In contrast to section 5.2
above, Fig. 7 shows that if the coordination number z increases, then κ̂ increases and
F̂ = κ̂Ĵ decreases.

6. Discussion

In this paper, we considered diffusion in a tree with stochastically-gated nodes. We
found exact expressions for various splitting probabilities and mean first passage times
(MFPTs) for a single particle diffusing through a tree. Prompted by applications
to respiration, we also considered a concentration of particles diffusing in a tree.
Supposing that particles can always pass through interior branch nodes but that they
are intermittently supplied at one end of the tree, we calculated the flux at the other
end of the tree. Our examples in section 5 extend the insect respiration model in
[7] which ignored tracheal branching. The model in [7] sought to explain the rapid
opening and closing of respiratory valves (spiracles) in an insect’s exoskeleton (see
Fig. 9) by showing that rapid opening and closing allows an insect to maintain high
oxygen uptake. Our work establishes that this result still holds in the more realistic
case of branching trachea. In fact, branching trachea allow the insect to maintain an
even higher level of oxygen uptake.

Future work will include comparing these model predictions with experimental
data. In order to make a closer comparison with such data, it will be necessary to
take account of the fact that the different levels of trachea and tracheoles have ever
decreasing diameters, so that our simplifying assumption of a homogeneous tree will
need to be modified. That is, we assumed throughout that all branches have the same
length L and the same diffusion coefficient D (which we set to unity). Here we briefly
sketch how to extend the analysis of section 5 in order to incorporate changes in branch
diameter. The first step is to note that the diffusion coefficient D becomes smaller
as the branch diameter decreases so that D will depend on the generation, D → Dm,
m = 0, . . . , N , where N is the number of generations excluding the primary branch.
(We still assume that all branches of a given generation are identical.) It follows that
the Laplacian in equation (5.1) must be multiplied by Dm for x = xk(s), 0 < s < L,
and k ∈ Σm (branch k belongs to the m-th generation). The only modification in the
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Figure 9: Sketch of a simple insect tracheal system. Insects use a different system for
respiration than vertebrates. Instead of lungs, they have a series of branching tubes
(trachea and tracheoles) through which oxygen flows from the atmosphere to individual
cells or small groups of cells. Carbon dioxide then travels back out along the same
tubes. Air enters the insect’s body through valve-like openings in the exoskeleton.
These openings (called spiracles) are located laterally along the thorax and abdomen
of most insects, usually one pair of spiracles per body segment.

steady-state equations of section 5.1 is that the current conservation equation (5.5)
becomes

Dm∂xπ
η(xk(L)) +Dm+1

∑

j∈Jα

∂xπ
η(xj(0)) = 0, k ∈ Σm,

which implies that the iterative equation (5.7) becomes

Θα(k) −Θα(k) − Cm
∑

j∈Jα(k)

[Θα(j) −Θα(j)] = 0, k ∈ Σm

with Cm = Dm+1/Dm. Solving this iterative equation will then require keeping track
of the coefficients Cm, and this will lead to more complicated expressions for the
generation-dependent functions Hm(x) and Gm(x). Turning to the more involved
examples of sections 5.2 and 5.3, the presence of r-dependent diffusion coefficients
means that one has to modify the symmetry conditions listed below equation (5.25),
resulting in a more complicated matrix equation than equation (5.26), for example.
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