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Abstract. We survey recent analytical approaches to studying the spatiotem-
poral dynamics of continuum neural fields. Neural fields model the large–scale
dynamics of spatially structured biological neural networks in terms of nonlinear
integrodifferential equations, whose associated integral kernels represent the spa-
tial distribution of neuronal synaptic connections. They provide an important
example of spatially extended excitable systems with nonlocal interactions, and
exhibit a wide range of spatially coherent dynamics, including traveling waves,
oscillations and Turing–like patterns.

PACS numbers: 87.19.lj,87.19.lp,87.19.lq,87.18.Hf

Contents

1 Introduction 2

2 From neural networks to neural fields 3
2.1 Conductance–based model of a neuron . . . . . . . . . . . . . . . . . . 3
2.2 Synaptic processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Dendritic filtering of synaptic inputs . . . . . . . . . . . . . . . . . . . 8
2.4 Rate-based neural network models . . . . . . . . . . . . . . . . . . . . 10
2.5 Spatially structured networks and neural fields . . . . . . . . . . . . . 14

3 Traveling waves 18
3.1 Traveling fronts in a scalar neural field . . . . . . . . . . . . . . . . . . 20
3.2 Wave stability and Evans functions . . . . . . . . . . . . . . . . . . . . 22
3.3 Traveling pulses in adaptive neural fields . . . . . . . . . . . . . . . . . 25

3.3.1 Exact traveling pulse solution. . . . . . . . . . . . . . . . . . . 26
3.3.2 Singularly-perturbed pulse solution. . . . . . . . . . . . . . . . 29

3.4 Adaptive neural field model of wave propagation during perceptual
switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Wave propagation failure in inhomogeneous neural fields . . . . . . . . 35
3.5.1 Homogenization theory. . . . . . . . . . . . . . . . . . . . . . . 35
3.5.2 Interfacial dynamics. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Spatially structured oscillations and spiral waves. . . . . . . . . . . . . 40

4 Persistent spatially localized activity states (bumps) 42
4.1 Exact bump solutions in a 1D neural field with lateral inhibition . . . 43
4.2 Exact bump solutions in a 2D neural field with lateral inhibition . . . 49
4.3 Stimulus–driven bumps . . . . . . . . . . . . . . . . . . . . . . . . . . 53



CONTENTS 2

5 Neural pattern formation 60
5.1 Turing mechanism for cortical pattern formation . . . . . . . . . . . . 61
5.2 Neural field model of primary visual cortex (V1) . . . . . . . . . . . . 64

5.2.1 Functional architecture of V1. . . . . . . . . . . . . . . . . . . . 64
5.2.2 Planar model of V1. . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.3 Coupled hypercolumn model of V1. . . . . . . . . . . . . . . . 69

5.3 Pattern formation in the ring model of a single hypercolumn . . . . . 71
5.4 Pattern formation in a coupled hypercolumn model . . . . . . . . . . . 75

5.4.1 Linear stability analysis. . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Marginal stability and doubly periodic planforms. . . . . . . . 77
5.4.3 Amplitude equation and Euclidean shift–twist symmetry. . . . 80
5.4.4 Selection and stability of patterns. . . . . . . . . . . . . . . . . 83

5.5 Geometric visual hallucinations . . . . . . . . . . . . . . . . . . . . . . 85

6 Stochastic neural field theory 87
6.1 Population density method and mean field theory . . . . . . . . . . . . 88
6.2 Stochastic rate–based models. . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Patterns and waves in stochastic neural fields . . . . . . . . . . . . . . 97

6.3.1 Pattern forming instabilities. . . . . . . . . . . . . . . . . . . . 98
6.3.2 Traveling waves. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Path integral representation of stochastic neural fields . . . . . . . . . 102

7 Discussion 107

1. Introduction

Analysis of the dynamical mechanisms underlying spatially structured activity states
in neural tissue is crucially important for understanding a wide range of neurobiological
phenomena, both naturally occurring and pathological. For example, neurological
disorders such as epilepsy are characterized by spatially localized oscillations and
waves propagating across the surface of the brain [1], whilst traveling waves can be
induced in vitro by electrically stimulating disinhibited cortical slices [2–5]. Spatially
coherent activity states are also prevalent during the normal functioning of the brain,
encoding local properties of visual stimuli [6], representing head direction [7], and
maintaining persistent activity states in short–term working memory [8,9]. One of the
major challenges in neurobiology is understanding the relationship between spatially
structured activity states and the underlying neural circuitry that supports them.
This has led to considerable recent interest in studying reduced continuum neural field
models in which the large–scale dynamics of spatially structured networks of neurons is
described in terms of nonlinear integrodifferential equations, whose associated integral
kernels represent the spatial distribution of neuronal synaptic connections. Such
models, which build upon the original work of Wilson, Cowan and Amari [10–12],
provide an important example of spatially extended excitable systems with nonlocal
interactions. As in the case of nonlinear partial differential equation (PDE) models
of diffusively coupled excitable systems [13, 14], neural field models can exhibit a
rich repertoire of spatiotemporal dynamics, including solitary traveling fronts and
pulses, stationary pulses and spatially localized oscillations (breathers), spiral waves,
and Turing–like patterns [15, 16]. In recent years, neural fields have been used to
model a wide range of neurobiological phenomena, including wave propagation in
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cortical slices [4, 17] and in vivo [18], geometric visual hallucinations [?, 19], EEG
rhythms [21–24], orientation tuning in primary visual cortex (V1) [25,26], short term
working memory [27,28], control of head direction [29], and motion perception [30].

In this review we present a detailed survey of the nonlinear dynamics of continuum
neural fields. In particular, we give a pedagogical account of analytical methods
for solving these integrodifferential equations, which are adapted from previous
studies of nonlinear PDEs. These include regular and singular perturbation methods,
weakly nonlinear analysis and pattern formation, symmetric bifurcation theory, Evans
functions and wave stability, homogenization theory and averaging, and stochastic
processes. We also consider exact methods of solution based on the use of Heaviside
nonlinearities. Although we mainly focus on dynamical aspects of neural fields, we also
highlight various neurobiological applications. The structure of the review is as follows.
We begin by describing the sequence of simplifying approximations that can be used
to derive continuum neural field equations starting from a conductance–based model
of a network of synaptically coupled spiking neurons (§2). This provides the necessary
background for understanding the biological basis of neural field equations and how
they relate to discrete neural network models. We then systematically cover three
distinct forms of spatiotemporal dynamics, traveling waves (§3), spatially localized
persistent activity states (§4), and neural pattern formation (§5). In the last case, we
focus on neural field models of primary visual cortex (V1), which is the first region of
the cerebral cortex to process visual information from the eyes. We end the review by
discussing some recent work on extending neural field equations to take into account
the effects of noise (§6).

2. From neural networks to neural fields

We begin by describing the basic biological components of synaptically coupled
networks of spiking neurons. We consider conductance–based models of action
potential generation (§2.1), synaptic processing (§2.2), and dendritic processing (§2.3).
We then highlight a sequence of approximations that can be made to reduce a
network of spiking neurons to an effective rate–based model, distinguishing between
voltage–based and activity–based versions along the lines of Ermentrout [15, 31].
This provides a biological perspective on well–known neural network models such
as Hopfield networks [32]. Finally, we consider spatially structured neural networks,
which are needed in order to represent the spatial organization of cerebral cortex, and
show how to derive from these various forms of neural field equations in the continuum
limit (§2.5). The advantage of a continuum rather than a discrete representation of
spatially structured networks is that various techniques from the analysis of PDEs
can be adapted to study the nonlinear dynamics of cortical patterns, oscillations and
waves, which will be explored in the remainder of the review.

2.1. Conductance–based model of a neuron

Cortical neurons typically consist of a cell body (or soma) where the nucleus containing
DNA is located, a branching output structure known as the axon and a branching
input structure known as the dendritic tree, see Fig. 1. Neurons mainly communicate
with each other by sending electrical impulses or spikes (action potentials) along their
axons. (Some neurons are also coupled diffusively via gap junctions [33]). These
axons make contacts on the dendrites of other neurons via microscopic junctions
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known as synapses. The arrival of an electrical spike at a synaptic junction leads
to the flow of electrical current along the dendritic tree of the stimulated neuron.
If the total synaptic current from all of the activated synapses forces the electrical
potential within the cell body to cross some threshold, then the neuron fires a spike.
The standard biophysical model for describing the dynamics of a single neuron with
somatic membrane potential V is based upon conservation of electric charge:

C
dV

dt
= −Icon + Isyn + Iext, (2.1)

where C is the cell capacitance, Icon is the membrane current, Isyn denotes the sum of
synaptic currents entering the cell and Iext describes any externally injected currents.
Ions can diffuse in and out of the cell through ion specific channels embedded in
the cell membrane. Ion pumps within the cell membrane maintain concentration
gradients, such that there is a higher concentration of Na+ and Ca2+ outside the cell
and a higher concentration of K+ inside the cell. The membrane current through a
specific channel varies approximately linearly with changes in the potential V relative
to some equilibrium or reversal potential, which is the potential at which there is a
balance between the opposing effects of diffusion and electrical forces. Summing over
all channel types, the total membrane current (flow of positive ions) leaving the cell
through the cell membrane is

Icon =
∑
s

gs(V − Vs), (2.2)

where gs is the conductance due to channels of type s and Vs is the corresponding
reversal potential.

The generation and propagation of an action potential arises from nonlinearities
associated with active membrane conductances. Recordings of the current flowing
through single channels indicate that channels fluctuate rapidly between open and
closed states in a stochastic fashion. Nevertheless, most models of a neuron use
deterministic descriptions of conductance changes, under the assumption that there
are a large number of approximately independent channels of each type. It then
follows from the law of large numbers that the fraction of channels open at any
given time is approximately equal to the probability that any one channel is in an
open state. The conductance gs for ion channels of type s is thus taken to be the
product gs = ḡsPs where ḡs is equal to the density of channels in the membrane
multiplied by the conductance of a single channel and Ps is the fraction of open
channels. The voltage-dependence of the probabilities Ps in the case of a delayed-
rectifier K+ current and a fast Na+ current were originally obtained by Hodgkin and
Huxley [34] as part of their Nobel prize winning work on the generation of action
potentials in the squid giant axon. The delayed-rectifier K+ current is responsible for
repolarizing a neuron after an action potential. One finds that opening of the K+

channel requires structural changes in 4 identical and independent subunits so that
PK = n4 where n is the probability that any one gate subunit has opened. In the
case of the fast Na+ current, which is responsible for the rapid depolarization of a cell
leading to action potential generation, the probability of an open channel takes the
form PNa = m3h where m3 is the probability that an activating gate is open and h is
the probability that an inactivating gate is open. Depolarization causes m to increase
and h to decrease, whereas hyperpolarization has the opposite effect. The dynamics of
the gating variables m,n, h are usually formulated in terms of a simple kinetic scheme
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Figure 1. Basic structure of a neuron. [Inset shows a synaptic connection
from an upstream or presynaptic neuron labeled j and a downstream or
postsynaptic neuron labeled i. wij denotes the weight or strength of the
synapse and Φ(t) is the time course of synaptic processing]. See text for
details.

that describes voltage-dependent transitions of each gating subunit between open and
closed states. More specifically, for each X ∈ {m,n, h}

dX

dt
= αX(V )(1−X)− βX(V )X, (2.3)

where αX(V ) is the rate of the transition closed → open and βX(V ) is the rate of
the reverse transition open → closed. The transition rates are typically bounded,
monotonic functions of the voltage V .

For the moment, let us ignore synaptic currents and consider what happens as
the external input Iext is increased. Experimentally it is found that most cortical
neurons switch from a resting state characterized by a low rate of (noise–driven)
spontaneous firing to an active state characterized by either tonic (regular, repetitive)
firing or bursting [35]. There has been considerable theoretical work on the transitions
from resting to active states in conductance-based models based on bifurcation theory,
see [31, 36] for excellent recent reviews. We will focus on tonic firing neurons, since
these comprise the majority of cells in cortical networks. In the case of constant input
Iext = I, the firing rate a (number of spikes per second) of the neuron is a nonlinear
function of the input:

a = F (I) (2.4)

with the form of F depending on the nature of the bifurcation to repetitive firing.
A common bifurcation scenario in conductance–based models of cortical neurons is a
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saddle node on an invariant circle [31, 36], so that close to the bifurcation point, see
Fig. 2, we have

F (I) = F0

√
I − Ic, (2.5)

where Ic is the critical current for onset of regular spiking. If one includes stochastic
effects arising from synaptic and membrane noise, for example, then the effective mean
firing rate becomes a smooth sigmoid–like function of injected current, which is often
modeled as

F (I) =
F0

1 + e−η(I−κ)
, (2.6)

where η is the gain and κ is the firing threshold. In the high–gain limit η → ∞, this
reduces to a Heaviside firing rate function

F (I) = F0H(I − κ) =

{
F0 if I > κ
0 if I < κ

(2.7)

Yet another commonly used firing rate function is the piecewise linear function

F (I) =

 0, I < κ,
η(u− κ), κ < I < κ+ η−1,

1, I > κ+ η−1.
(2.8)

This preserves the hard threshold of the saddle-node on a limit cycle bifurcation but
ensures that the firing rate staturates at high input currents.
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0
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Figure 2. Various forms of the nonlinear firing–rate function F (I). Sigmoid
function (black curve) and Heaviside function (dashed curve) have a
threshold κ = 0.3, whereas the square root function (gray curve) has a
critical current Ic = 0.05.

2.2. Synaptic processing

The basic stages of synaptic processing induced by the arrival of an action potential
at an axon terminal is as follows. (See [37] for a more detailed description). An
action potential arriving at the terminal of a presynaptic axon causes voltage-gated
Ca2+ channels within an active zone to open. The influx of Ca2+ produces a high
concentration of Ca2+ near the active zone [38, 39], which in turn causes vesicles
containing neurotransmitter to fuse with the presynaptic cell membrane and release
their contents into the synaptic cleft (a process known as exocytosis). The released
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neurotransmitter molecules then diffuse across the synaptic cleft and bind to specific
receptors on the post-synaptic membrane. These receptors cause ion channels to
open, thereby changing the membrane conductance and membrane potential of the
postsynaptic cell. A single synaptic event due to the arrival of an action potential at
time T induces a synaptic current of the form

Isyn(t) = gsyn(t− T )(Vsyn − V (t)), (2.9)

where V is the voltage of the postsynaptic neuron, Vsyn is the synaptic reversal
potential and gsyn(t) is the change in synaptic conductance with gsyn(t) = 0 for t < 0.
A typical form for gsyn(t) is the difference of exponentials

gsyn(t) = ḡ

(
1

τd
− 1

τr

)−1

(e−t/τd − e−t/τr )H(t), (2.10)

where H(t) is the Heaviside function, ḡ is a constant conductance and τr,d are time
constants determining the rise and fall of the synaptic response respectively. In the
limit τd → τr = α−1, equation (10) reduces to the so–called α function

gsyn(t) = ḡα(t), α(t) = α2te−αtH(t). (2.11)

In many cases, the rise time is much shorter than the fall time (τr � τd) so that we
have an exponential synapse with gsyn(t) = ḡe−t/τd . The sign of Vsyn relative to the
resting potential Vrest (typically Vrest ≈ −65 mV) determines whether the synapse is
excitatory (Vsyn > Vrest) or inhibitory (Vsyn < Vrest). For simplicity, it is often assumed
that a neuron spends most of its time close to rest such that Vsyn − V ≈ Vsyn − Vrest,
with the factor Vsyn−Vrest absorbed into gsyn. One is then effectively taking the arrival
of a spike as generating a synaptic current rather than a change in conductance.

A single synaptic event due to the arrival of an action potential at time T induces
a synaptic current of the form (9). As a crude approximation we might try summing
individual responses to model the synaptic current arising from a train of action
potentials arriving at times Tm, integer m:

Isyn(t) =
∑
m

gsyn(t− Tm)(Vsyn − V (t)). (2.12)

Note that this sum only includes spikes for which Tm < t since gsyn(t) = 0 for t < 0
(causality condition). For many synapses such a simple ansatz does not hold, since
some form of short-term synaptic depression causes the amplitude of the response to
depend on the previous history of presynaptic firing [40, 41]. One way to incorporate
this history–dependent effect is to take [42]

Isyn(t) =

[∑
m

q(Tm)gsyn(t− Tm)

]
(Vsyn − V (t)), (2.13)

where the factor q(Tm) reduces the response evoked by an action potential by
an amount that depends upon the details of the previous spike train data. One
interpretation of the factor q is that it represents a short-term (reversible) reduction
in the release probability for synaptic transmission due to a depletion in the number
of vesicles that can readily fuse with the cell membrane [43]. In certain cases, it is also
possible for a synapse to undergo a temporary facilitation in response to activation,
which may be due to the presence of residual calcium in the axonal terminal [43].

A common phenomenological model of synaptic depression is to assume that
between spikes q(t) relaxes at a rate τq to its steady state value of one, but that
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directly after the arrival of a spike it changes discontinuously, that is, q → γq with
γ < 1. The depression time constant τq can vary between around 100msecs and a few
seconds [41]. The model for synaptic depression may be written succinctly as

dq

dt
=

(1− q)
τq

− (1− γ)
∑
n

q(Tn)δ(t− Tn), q(0) = 1 (2.14)

which has the solution of the form

q(Tm) = 1− (1− γ)
∑
n<m

γ[m−n−1]βe−(Tm−Tn)/τq . (2.15)

Assuming a regular sequence of incoming spikes Tn−Tn−1 = ∆ for all n we find that
the asymptotic amplitude q∞(∆) ≡ limm→∞ q(Tm) is given by

q∞(∆) =
1− e−∆/τq

1− γe−∆/τq
. (2.16)

One possible computational role for synaptic depression is as a mechanism for cortical
gain control [41]. The basic idea can be understood from the dependence of the
asymptotic amplitude q∞(∆) on the stimulus frequency f = ∆−1. Assuming that
τq � ∆, we can Taylor expand q∞ in equation (16) to find that q∞(f) ≈ Γ/f , where
Γ = τq/(1−γ). The main point to note is that the postsynaptic response per unit time
is approximately independent of f (assuming that each spike elicits the same response
in the steady-state). This means that the synapse is very sensitive to changes in the
stimulus frequency. The instantaneous response to a rapid increase ∆f in the stimulus
rate is given by Γ∆f/f . In other words, the synapse responds to relative rather than
absolute changes in the rate of input stimulation.

2.3. Dendritic filtering of synaptic inputs

So far we have neglected the fact that the synapses of a neuron are spatially distributed
across the neuron’s dendritic tree. At the simplest level, the dendritic tree can be
treated as a passive electrical medium that filters incoming synaptic stimuli in a
diffusive manner. The current flow and potential changes along a branch of the tree
may be described with a second–order, linear PDE commonly known as the cable
equation [44, 45]. The cable equation is based on a number of approximations: (i)
magnetic fields due to the movement of electric charge can be neglected, (ii) changes
in ionic concentrations are sufficiently small so that Ohm’s law holds, (iii) radial

soma dendrite

Isyn(t)

V(t)
σ

synapse∆g(x,t)

v(x,t)

Figure 3. Schematic diagram of a neuron consisting of a soma resistively
coupled to one end of a dendritic cable. A synaptic conductance change
∆g(x, t) at position x on the cable induces a synaptic current into the soma
at x = 0.
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and angular components of voltage can be ignored so that the cable can be treated
as one-dimensional medium, and (iv) dendritic membrane properties are voltage-
independent, that is, there are no active elements. Given a distribution of synaptic
inputs innervating the dendritic tree, what is the net synaptic current Isyn entering
the soma or cell body of a neuron? In order to address this problem we consider,
for simplicity, a semi-infinite uniform dendritic cable, 0 ≤ x < ∞, with the soma
located at the end x = 0, see Fig. 3. We assume that the soma is passively coupled to
the dendritic cable via a resistor with conductance σ, so that the net synaptic input
flowing into the soma is

Isyn = σ(v(0, t)− V (t)) (2.17)

where v(x, t) is the membrane potential of the cable at position x. The dendritic
potential v(x, t) evolves according to the cable equation

τm
∂v(x, t)

∂t
= −v(x, t) + λ2 ∂

2v(x, t)

∂x2
+ rmI(x, t), (2.18)

where τm is the membrane time constant, rm is the membrane resistance, and λ is the
corresponding space constant, both of which are determined by the passive electrical
properties of the cable. Here I(x, t) is the synaptic current density at location x at
time t:

I(x, t) = ρ(x)
∑
m

gsyn(t− Tm(x))[Vsyn − v(x, t)], (2.19)

where ρ(x) is the density of synapses (assuming that they have identical properties)
and {Tm(x)} is the sequence of spikes arriving into the synapses located at x. In the
case of a discrete set of identical synapses at dendritic locations {xm,m = 1, . . . ,M},
we have ρ(x) =

∑
m δ(x− xm). It follows from current conservation that there is also

the boundary condition

−1

r

∂v

∂x
(0, t) = σ[v(0, t)− V (t)], (2.20)

where r is the intracellular resistance per unit length of cable.
We can formally solve the inhomogeneous boundary value problem for v(0, t)

using the Green’s function G for the semi-infinite cable with a closed boundary [46]:

v(0, t) = rm

∫ t

−∞

∫ ∞
0

G(0, x′, t− t′)I(x′, t′)dx′dt′

− σr
∫ t

−∞
G(0, 0, t− t′)[v(0, t′)− u(t′)]dt′, (2.21)

with

G(x, y, t) = G0(x− y, t) +G0(x+ y, t), (2.22)

and

G0(x, t) =
1

2λ
√
πtτm

e−t/τme−τmx
2/4λ2tH(t) (2.23)

is the Green’s function of the cable equation on an infinite domain. We see that the
effective synaptic current Isyn flowing into the soma will itself be affected by the cell
firing an action potential, due to the dependence of v(0, t) on V (t). However, if the
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second term on the r.h.s. of equation (21) is small compared to the first term arising
from synaptic inputs, then the total synaptic input into the soma reduces to

Isyn(t) = σrm

∫ t

−∞

∫ ∞
0

G(0, x′, t− t′)I(x′, t′)dx′dt′ − σV (t). (2.24)

Note that the term σV (t) can be absorbed into the ionic current Icon. A similar
analysis can also be carried out for more general dendritic topologies with the soma
coupled to one of the terminals of the tree. We conclude that under the given
approximations, the passive dendritic tree acts like a spatio-temporal linear filter
on incoming spike trains, whose properties are determined by the underlying Green’s
function on the tree. The effects of the dendritic filtering of synaptic inputs on network
dynamics is reviewed in some detail by Bressloff and Coombes [47].

2.4. Rate-based neural network models

Let us now consider a network of synaptically coupled cortical neurons labeled
i = 1, . . . , N . Denote the sequence of firing times of the jth neuron by {Tmj , m ∈ Z}.
The net synaptic current into postsynaptic neuron i due to innervation by the spike
train from presynaptic neuron j (see inset of Fig. 1) is taken to have the general form∑
m Φij(t−Tmj ), where Φij(t) represents the temporal filtering effects of synaptic and

dendritic processing. (For the moment we ignore short–term synaptic depression).
Assuming that all synaptic inputs sum linearly, we find that the total synaptic input
to the soma of the ith neuron, which we denote by ui(t), is

ui(t) =

N∑
j=1

∑
m

Φij(t− Tmj ) =

N∑
j=1

∫ t

−∞
Φij(t− t′)aj(t′)dt′, (2.25)

where we have set

aj(t) =
∑
m∈Z

δ(t− Tmj ). (2.26)

That is, aj(t) represents the output spike train of the jth neuron in terms of a sum
of Dirac delta functions. In order to obtain a closed set of equations, we have to
determine the firing times Tmi . This takes the form of a threshold condition

Tmi = inf{t, t > Tm−1
i |Vi(t) = κ, V̇i(t) > 0}, (2.27)

where κ is the firing threshold and the somatic membrane potential Vi(t) evolves
according to the conductance–based model

C
dVi
dt

= −Icon,i(Vi, . . .) + ui, (2.28)

supplemented by additional equations for the ionic gating variables. (For the moment
we are ignoring any external currents). In general, equations (25), (27) and (28) are
difficult to analyze, particularly when N is large. However, considerable simplification
can be obtained if the total synaptic current ui(t) is slowly varying compared to the
membrane potential dynamics given by equation (28). This would occur, for example,
if the network could be partitioned into multiple homogeneous subnetworks each of
which consisted of identical neurons firing asynchronously [48]. One is then essentially
reinterpreting the activity variables ai(t) and ui(t) as mean fields of local populations.
The issue of asynchronous states and mean field theory will be considered further in
§6.1. Alternatively, a slowly varying synaptic current would occur if the synapses
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are themselves sufficiently slow [49,50]. Under these simplifying assumptions, we can
carry out a short–term temporal averaging of equation (25) in which we approximate
the output spike train aj(t) by the instantaneous firing rate aj(t) = Fj(uj(t)) with
Fj the corresponding rate function. Equation (25) then forms the closed system of
integral equations

ui(t) =

∫ t

−∞

N∑
j=1

Φij(t− t′)Fj(uj(t′))dt′. (2.29)

Note that within the mean–field framework Fi would represent the population-
averaged rate function of a local homogeneous population of cells rather than a single
neuron response function. (In the case of a fully–connected or sparsely connected
integrate–and–fire network, which is introduced in §6.1, it is possible to calculate
Fi explicitly [51, 52]). In neural network models, Fi is usually approximated by the
sigmoid function (6).

As highlighted elsewhere [15, 31], equation (29) can be reduced to a system of
ordinary differential equations provided that we place rather mild restrictions on the
time dependence of Φij(t). First, suppose that Φij(t) = wijΦi(t) where wij denotes
the synaptic strength of the connection from neuron j to neuron i and Φi(t) determines
the time course of the input, which is assumed to depend only on properties of the
postsynaptic cell i. Furthermore, suppose that there exists a differential operator L̂i
such that

L̂iΦi(t) = δ(t). (2.30)

Applying the operator L̂i to both sides of equation (29) then leads to a system of
differential equations for the currents ui(t):

L̂iui(t) =

N∑
j=1

wijFj(uj(t)). (2.31)

Note that we could easily convert the total synaptic current ui(t) into an input voltage
vi(t) = ui(t)/σ using the input conductance σ of Fig. 3, for example. Thus equation
(31) is often referred to as a voltage equation and forms the basis of most classical
neural networks such as the Hopfield model [32]. On the other hand, if the time
course of the inputs depends only on presynaptic parameters, Φij(t) = wijΦj(t), with

Φj having inverse differential operator L̂j , then we obtain a system of differential
equations for the so–called synaptic drives

νi(t) =

∫ t

−∞
Φi(t− t′)Fi(ui(t′))dt′. (2.32)

That is, applying the differential operator L̂i to equation (32) and using ui(t) =∑N
j=1 wijνj(t) leads to the activity–based model

L̂iνi(t) = Fi

 N∑
j=1

wijνj(t)

 . (2.33)

The differential operator L̂i appearing in equations (31) and (33) is usually taken
to be first order in time:

L̂i =
∂

∂t
+

1

τi
, (2.34)
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with inverse kernel Φi(t) = H(t)e−t/τi . In order to relate the effective time constant
τi to membrane and synaptic time constants, let us assume for simplicity that all
synapses are sufficiently close to the soma so that the dendrite simply acts as a first
order low pass filter and set (with Vrest = 0)

Φij(t) = σirm,iVsyn,jḡijH(t)

∫ t

0

e−(t−s)/τm,ihj(s)ds, (2.35)

with

hj(s) =
τd,j

τd,j − τr,j
(e−s/τd,j − e−s/τr,j ). (2.36)

We have made explicit that the reversal potential Vsyn and synaptic rise/fall times
τr,d only depend on the particular class of synapses innervated by the presynaptic
neuron j, whereas the membrane time constant τm, resistance rm and conductance σ
are solely properties of the postsynaptic neuron i. Only the maximum conductance
ḡ is specific to the particular synapse j → i. The various constant factors can be
combined to define the synaptic weight wij . In particular, wij ∼ Vsyn,j so that the
sign of Vsyn,j (relative to the resting potential) determines whether the synapse is
excitatory or inhibitory. If τm � τr, τd then the time course is effectively independent
of the presynaptic label j and we have the voltage–based model (31) with first-order

operator L̂i and τi = τm. On the other hand, if τd � τm, τr then we obtain the
activity-based model with τi = τd.

Synaptic depression. It is relatively straightforward to incorporate synaptic
depression into the rate–based network models. Let qij(t) denote the depression
variable associated with synapse j → i. It is assumed to evolve according to an
equation of the form (14), which we write as

dqij
dt

=
1− qij
τq

− (1− γ)qij(t)aj(t), (2.37)

where aj(t) denotes the output of neuron j. Within the rate–based framework, we
take aj = Fj(uj) with uj satisfying the modified integral equation (cf. equation (25))

ui(t) =

N∑
j=1

∫ t

−∞
Φij(t− t′)qij(t′)aj(t′)dt′.

Since all depression variables {qij , i = 1, . . . , N} for fixed j have a common input drive
aj(t), it follows that

τq
d(qij − qi′j)

dt
= −[qij − qi′j ],

and thus qij(t)→ qi′j(t) = qj(t) for all i, i′ = 1, . . . , N . In other words, after an initial
transient of duration τq, we can identify all depression variables associated with a given
presynaptic neuron j. If we now assume that Φij(t) = wijΦj(t), we can introduce the
synaptic drives (32) and derive the modified activity–based model [53–56]

L̂iνi(t) = Fi

 N∑
j=1

wijqj(t)νj(t)

 , (2.38)
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with

dqi
dt

=
1− qi(t)

τq
− (1− γ)qi(t)Fi

 N∑
j=1

wijqj(t)νj(t)

 . (2.39)

Similarly, we can derive a corresponding voltage–based model when Φij(t) = wijΦi(t):

L̂iui(t) =

N∑
j=1

wijqj(t)Fj(uj(t)). (2.40)

with

dqi
dt

=
1− qi(t)

τq
− (1− γ)qi(t)Fi (ui(t)) . (2.41)

Axonal propagation delays. In the above derivation of rate–based models, we have
assumed that the spiking of a presynaptic neuron has an instantaneous effect on
downstream postsynaptic neurons. This neglects the fact that action potentials take
time to propagate along an axon to innervate a synaptic terminal. Let us denote the
corresponding axonal delay of synapse j → i by τij . The integral equation (25) is then
modified according to

ui(t) =

N∑
j=1

∫ t

−∞
Φij(t− t′)aj(t′ − τij)dt′. (2.42)

The corresponding voltage–based model then takes the form of a system of delay–
differential equations,

L̂iui(t) =

N∑
j=1

wijFj(uj(t− τij)), (2.43)

and similarly for the activity–based model.

Adaptive threshold dynamics. Another biophysical process that can be incorporated
into rate–based models is spike frequency adaptation. Spike frequency adaptation
causes a neuron’s firing rate to decay to a submaximal level and occurs when
a potassium current, presumably activated by elevated intracellular calcium,
hyperpolarizes the membrane voltage [57–59]. This so called afterhyperpolarization
current has a time constant ofaround 40-120 ms. Spike frequency adaptation can be
introduced as a negative current −ci on the right–hand side of the conductance–based
model equation (28). Assuming that ci(t) varies slowly relative to the voltage Vi(t),
it can be shown that ci effectively acts as an adaptive threshold that varies linearly
with the firing rate [57]. Thus, the voltage-based model becomes

L̂iui(t) =

N∑
j=1

wijFj(uj(t)− cj(t)). (2.44)

with

dci
dt

= −ci(t)
τc

+ γcFi(ui(t)− ci(t)). (2.45)
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2.5. Spatially structured networks and neural fields

So far we have not made any assumptions about the topology of the underlying neural
network, that is, the structure of the weight matrix W with components wij . If one
looks at a region of cortex such as primary visual cortex (V1), one finds that it has
a characteristic spatial structure, in which a high density of neurons (105 per mm3

in primates) are distributed according to an approximately two–dimensional (2D)
architecture. That is, the physical location of a vertical column of neurons within
the two–dimensional cortical sheet often reflects the specific information processing
role of that population of neurons. For example, in V1 there is an orderly retinotopic
mapping of the visual field onto the cortical surface, with left and right halves of
the visual field mapped onto right and left visual cortices respectively. Superimposed
upon this are additional two–dimensional maps reflecting the fact that neurons respond
preferentially to stimuli with particular features such as local orientation [60]. (A more
detailed description of the functional architecture of V1 is given in §5.2). This suggests
labeling neurons according to their spatial location in cortex. We now give a heuristic
argument for how such labeling leads to a continuum neural field model of cortex,
following along similar lines to Gerstner and Kistler [48].

For simplicity, consider a population of neurons distributed along a one–
dimensional axis. (Extensions to higher dimensions proceed in a similar fashion).
Suppose that we partition space into segments of length d such that the number
of neurons in segment [nd, (n + 1)d] is N = ρd where ρ is the cell density. We
treat neurons in that interval as a homogeneous population of cells (cortical column)
labeled by the integer n, and assume that synaptic interactions between the nth and
mth populations only depend on the discrete locations of the populations on the line.
Writing Φnm(t) = ρdΦ(nd,md, t) and un(t) = u(nd, t), equation (29) becomes

u(nd, t) = ρd
∑
m

∫ t

−∞
Φ(nd,md, t− t′)F (u(md, t′))dt′.

Taking the limit d→ 0, the summation on the right–hand side can be replaced by an
integral to give

u(x, t) =

∫ ∞
−∞

∫ t

−∞
Φ(x, y, t− t′)F (u(y, t′))dt′dy, (2.46)

where we have absorbed the factor ρ into Φ. Following our derivation of the discrete
voltage-based model (31), suppose that we can decompose the integral kernel as

Φ(x, y, t) = w(x, y)Φ(t), Φ(t) = e−t/τH(t).

That is, we assume that there is only one type of neuron so that the temporal kernel
Φ(t) is independent of the presynaptic label y and the postsynaptic label x. Applying
the differential operator L̂t = ∂t + τ−1 to the integral equation for u then leads to the
scalar neural field equation

∂

∂t
u(x, t) = −u(x, t)

τ
+

∫ ∞
−∞

w(x, y)F (u(y, t))dy. (2.47)

Alternatively, we could have applied the differential operator L̂t to the corresponding
synaptic drive ν(x, t) =

∫ t
−∞Φ(t− t′)F (u(x, t′))dt′ to obtain the activity–based neural

field model

∂

∂t
ν(x, t) = −ν(x, t)

τ
+ F

(∫ ∞
−∞

w(x, y)ν(y, t)dy

)
. (2.48)
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Following the same basic procedure, it is straightforward to incorporate into the
neural field equation (47) or (48) additional features such as synaptic depression
[61–63], adaptive thresholds [61, 64], and axonal propagation delays [22–24, 65–68].
For example, a voltage–based neural field equation with synaptic depression takes the
form

∂

∂t
u(x, t) = −u(x, t)

τ
+

∫ ∞
−∞

w(x, y)q(y, t)F (u(y, t))dy,

∂

dt
q(x, t) =

1− q(x, t)
τq

− βq(x, t)F (u(x, t)) , (2.49)

with β = 1 − γ. In the case of axonal delays, τij → τ(x, y) in the continuum limit.
Assuming that an action potential propagates with constant speed v along the axon,
then τ(x, y) = |x− y|/v so that the voltage-based equation (47) becomes

∂

∂t
u(x, t) = −u(x, t)

τ
+

∫ ∞
−∞

w(x, y)F (u(y, t− |x− y|/v))dy. (2.50)

Two–dimensional versions of these various models are obtained by taking x → x =
(x1, x2) and y → y = (y1, y2) with dy = dy1dy2.

Now suppose that there are M classes of neuron distributed along the line labeled
by the population index a = 1, . . .M . Equation (46) then generalizes to the multi-
population integral equation

ua(x, t) =

∫ ∞
−∞

∫ t

−∞

M∑
b=1

Φab(x, y, t− t′)Fb(ub(y, t′ − |x− y|/vab))dt′dy. (2.51)

We have included axonal delays with vab the conduction velocity along axonal
projections from neurons of type b to neurons of type a. Assuming that Φab(x, y, t) =
wab(x, y)Φ(t) with Φ(t) = e−t/τH(t), we obtain multi-population neural field
equations:

∂ua
∂t

= −ua(x, t)

τ
+

M∑
b=1

∫ ∞
−∞

wab(x, y)Fb(ub(y, t− |x− y|/vab))dy, (2.52)

and

∂νa
∂t

= −νa(x, t)

τ
+ Fb

(
M∑
b=1

∫ ∞
−∞

wab(x, y)νb(y, t− |x− y|/vab)dy

)
. (2.53)

The latter is a version of the Wilson–Cowan equations for cortical dynamics [10, 11].
Note that all synapses innervated by a particular type of neuron have the same sign.
That is, if type b neurons are excitatory (inhibitory) then wab(x, y) ≥ 0 (wab(x, y) ≤ 0)
for all a = 1, . . . ,M and (x, y). Thus, one of the major reasons for considering more
than one class of neuron is to incorporate both excitatory and inhibitory synapses. It
can be argued that since excitatory and inhibitory synapses tend to have different time
courses in response to action potentials, one should take Φab(x, y, t) = wab(x, y)Φb(t),
suggesting that the activity-based model (53) with τ → τa is more biologically
realistic than the voltage–based model, at least in the case of excitatory–inhibitory
networks [31]. However, in practice, both versions of the neural field equations are used
to model cortical dynamics. Since both versions exhibit very similar types of solution.
and since most analytical results have been obtained for voltage–based neural fields,
we will mainly focus our review on the latter.
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Under certain additional simplifying assumptions, it is possible to incorporate
inhibition into the scalar neural field equations (47) or (48) [69]. For example, consider
a two–population model (M = 2) of excitatory (a = E) and inhibitory (a = I) neurons
evolving according to the pair of equations

∂uE
∂t

= −uE(x, t)

τE
+

∫ ∞
−∞

wEE(x, y)FE(uE(y, t))dy +

∫ ∞
−∞

wEI(x, y)FI(uI(y, t))dy

(2.54)

and

∂uI
∂t

= −uI(x, t)
τI

+

∫ ∞
−∞

wIE(x, y)FE(uE(y, t))dy +

∫ ∞
−∞

wII(x, y)FI(uI(y, t))dy,

(2.55)

with wEE , wIE ≥ 0 and wEI , wII ≤ 0. Now suppose that wII ≡ 0, FI(uI) =
uI/τI and τI � τE . It follows that we can eliminate uI by setting uI(x) ∼
τI
∫∞
−∞ wIE(x, y)FE(uE(y, t))dy, which leads to a scalar equation for uE of the form

(47) with effective weight distribution

w(x, y) = wEE(x, y) +

∫ ∞
−∞

wEI(x, y
′)wIE(y′, y)dy′. (2.56)

It is then possible for w(x, y) to change sign as a function of x, y. (Often w is
modeled as a difference of Gaussians or exponentials - the so called Mexican hat
weight distribution). The reduced model can be used to investigate the effects of
inhibition on stationary solutions of neural field equations, see §4 and §5. However,
in contrast to the full two–population model, it does not support oscillatory solutions
(in the absence of axonal delays, higher order synapses or some form of adaptation
such as synaptic depression).

Some remarks

(i) There does not currently exist a multi–scale analysis of conductance-based neural
networks that provides a rigorous derivation of neural field equations, although
some progress has been made in this direction [65,70–72]. One crucial step in the
derivation of neural field equations presented here was the assumption of slowly
varying synaptic currents, which is related to the assumption that there is not
significant coherent activity at the level of individual spikes. This allowed us to
treat the output of a neuron (or population of neurons) as an instantaneous firing
rate. A more rigorous derivation would need to incorporate the mean field analysis
of local populations of stochastic spiking neurons into a larger scale cortical model,
and to carry out a systematic form of coarse graining or homogenization in order
to generate a continuum neural field model. Some of these issues will be discussed
in §6.

(ii) Nevertheless, the heuristic approach does provide a framework for relating
parameters of neural field equations to biophysical parameters such as
membrane/synaptic time constants and axonal delays, and also prescribes how
to incorporate additional physiological processes such as synaptic depression and
spike frequency adaptation. Moreover, neural field models make it possible to
explore the dependence of cortical dynamics on the detailed anatomy of local and
long range synaptic connections, as highlighted in §5.2.
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(iii) Neural field equations support various forms of spatially coherent population
activity [15, 64], including traveling waves (§3), spatially localized persistent
activity states or bumps (§4), and spatially periodic patterns (§5). As highlighted
in the introduction, neural fields have been used to model a wide range of
neurobiological phenomena. One of the major modeling issues is determining how
such phenomena depend on the synaptic weight distribution w, which represents
the underlying large–scale anatomy of cortex. It is usually assumed that w
depends on the Euclidean distance between interacting cells within the 2D cortical
sheet so that w(x,y) = w(|x − y|). However, this is an oversimplification of
the detailed architecture of cortex [73–77], as we discuss in §5.2. A related
simplification is to take axonal delays to depend on Euclidean distance according
to |x− y|/v, where v is the speed of propagation.

(iv) There are two main approaches to analyzing the spatiotemporal dynamics of
neural field equations. The first method is based on the original work of
Amari [12], in which one establishes the existence of nonlinear traveling wave
and stationary bump solutions by explicit construction, see §3 and §4 and the
review [16]. This is possible if one takes the firing rate function F in voltage–based
models to be the Heaviside (7). It is also possible to study the linear stability
of such solutions by constructing an associated Evans function, whose zeros
determine the spectrum of the resulting linear operator [78–80]. The constructive
approach of Amari [12] has been particularly useful in providing explicit insights
into how spatiotemporal network dynamics depends on the structure of the
synaptic weight kernel as well as various physiological parameters. Moreover,
in certain cases it is possible to use singular perturbation methods [17, 69] or
fixed point theorems [81, 82] to extend results for neural fields with Heaviside
nonlinearities to those with more realistic sigmoidal nonlinearities, see also [83].

(v) The second method is based on bifurcation theory, following the original work of
Ermentrout and Cowan [19], in which one investigates the emergence of spatially
periodic stationary and oscillatory patterns through a combination of linear
stability analysis, weakly nonlinear analysis, symmetric bifurcation theory, and
numerical simulations, see §5 and the review [84]. Rigorous functional analytical
techniques combined with numerical bifurcation schemes have also been used to
study the existence and (absolute) stability of stationary bump solutions for a
general class of neural field models with smooth firing rate functions [85,86].

(vi) In this review we will focus on analytical methods that are applied directly
to the integro-differential equations of neural field theory. We note, however,
that several groups have constructed equivalent PDE models for neural fields
with axonal propagation delays, which take the form of damped inhomogeneous
wave equations [21–24, 65]. The basic idea is to assume a particular form for
the synaptic weight distribution and to use Fourier transforms. Consider, for
example, a 2D version of the multi–population integral equation (51). Suppose
that Φab(x,y, t) = wab(|x− y|)Φ(t) and introduce the auxiliary field

Ψab(x, t) =

∫
R2

wab(|x− y|)Fb(y, t− |x− y|/vab)dy, (2.57)

where we have set Fb(y, t) = Fb(ub(y, t)). Fourier transforming this equation
with

Ψ̂ab(k, ω) =

∫
R2

∫ ∞
−∞

e−i(k·r+ωt)Ψab(x, t)dt dx, (2.58)
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and

wab(r) =
w0
ab

2π
e−r/σab , (2.59)

we find that

Ψ̂ab(k, ω) = w0
ab

Aab(ω)

(Aab(ω)2 + k2)3/2
F̂b(k, ω) (2.60)

withAab(ω) = 1/σab+iω/vab. If one now makes a long–wavelength approximation
by Taylor expanding the denominator of the above equation about k = 0 and
rearranging to give (Aab(ω)2 + 3k2/2)Ψ̂ab(k, ω) = F̂b(k, ω), one can then apply
the inverse Fourier transform to derive the damped wave equation[(

1

σab
+

1

vab
∂t

)2

− 3

2
∇2

]
Ψab(x, t) = w0

abFb(ub(x, t)). (2.61)

The current ua(x, t) is then related to the field Ψab(x, t) according to

ua(x, t) =

∫ t

−∞
Φ(t− t′)

∑
b

Ψab(x, t
′)dt′, (2.62)

which can itself be converted to a PDE by applying the inverse operator L̂t. There
have also been various extensions of the PDE theory including improvements
upon the long–wavelength approximation [87] and incorporation of network
inhomogeneities [77]. The damped wave equation (61) and its generalizations
have been used extensively to study EEG rhythms [21–24]. (PDE models have
also been used to study single and multi-bump stationary solutions of scalar neural
field equations, in which the time–independent equations reduce to fourth–order
differential equations with a Hamiltonian structure [28,88]).

(vii) In this review we focus on applications of non-local neural field equations to
dynamical phenomena that occur on spatial scales that do not extend beyond a
few centimeters, which holds for cortical slices and individual cortical areas such
as primary visual cortex. In such cases axonal propagation delays tend to be
relatively small and can be neglected. On the other hand, models of larger–scale
phenomena such as the EEG require the incorporation of propagation delays. In
this case, approximating the non-local neural field equation by a corresponding
brain–wave equation allows the development of efficient numerical schemes for
simulating large–scale cortical activity.

3. Traveling waves

A common in vitro method for studying the propagation of electrical activity
in networks of neurons is to remove a slice of brain tissue and bathe it in a
pharmacological medium that blocks the effects of inhibition. Synchronized discharges
can be evoked by a weak electrical stimulus to a local site on the slice and each
discharge propagates away from the stimulus at a characteristic speed of about 60−90
mm/s [2–4, 89]. This is illustrated in Fig. 4. The underlying mechanism for the
propagation of such waves appears to be synaptic in origin rather than diffusive,
in contrast to the much faster propagation of action potentials along the axons of
individual neurons. In certain cases, local stimulation of a disinhibited slice can induce
spatially localized oscillations in population activity at a frequency 1–10Hz, such that
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during each oscillation cycle the population emits elevated activity that propagates as a
traveling pulse [5,90] or even a spiral wave (in the case of tangential cortical slices) [18].
A variety of sensory stimuli have been linked to propagating waves in vivo. For
example, a number of studies of vertebrate and invertebrate olfactory bulbs have shown
odor stimuli can elicit oscillations and propagating waves [91, 92]. Similarly, a small
visual stimulus can evoke a propagating wave in visual cortex [93–96], and stimulating
a single whisker can trigger a wave in rat barrel cortex [97]. Evoked waves are not only
a neural correlate of sensory stimuli, but can occur during movement preparation and
execution [98]. Finally, spatially localized oscillations and traveling waves can also be
the signature of certain neurological diseases including epilepsy [1, 99].

Figs3/pinto-eps-converted-to.pdf

Figure 4. Propagating wave of activity in a brain slice preparation in which
inhibition has been blocked [3]. (a) Schematic of a slice removed from the
somatosensory cortex of the rat. The cortex is a thin (sub–millimeter)
layered sheet of neurons, see §5.2. A slice approximately 500 µm thickness
is obtained by cutting vertically through the cortical layers. (b) A multi–
electrode array placed into layers II/III of the slice records extracellularly
the propagation of a wave. (c) Pseudocolor plot of propagating activity.

Neural field models have played an important role in developing our understanding
of network–based mechanisms underlying propagating activity in normal and
pathological brain states. As in studies of reaction–diffusion systems, it is important
to distinguish between wave propagation in bistable, excitable, and oscillatory neural
media. In the first case, there exist two stable stationary homogeneous states and the
neural medium supports the propagation of traveling fronts. On the other hand,
an excitable neural medium has a single stable homogeneous state and supports
the propagation of traveling pulses. Finally, an oscillatory neural medium is one
in which the background state of all neurons is oscillatory - wave propagation is then
characterized by a spatially uniform gradient in the phase of the oscillations [100]. (An
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excitable medium can also act like an oscillatory medium if there exists a spatially
localized population of pacemaker cells). We will mainly focus on waves in non–
oscillatory neural media. We begin by showing how Amari’s constructive method
can be used to analyze the existence (§3.1) and stability (§3.2) of solitary traveling
fronts in a 1D scalar neural field. (Since there is strong vertical coupling between
layers of a cortical column, it is possible to treat a thin vertical cortical slice as an
effective 1D medium). In order to relate the models to experiments on disinhibited
cortical slices, we assume that the weight distribution is purely excitatory. This is also
motivated by the observation that epileptic seizures are often associated with greatly
enhanced levels of recurrent excitation [1]. In §3.3 we extend the analysis to the case of
traveling pulses, which requires the inclusion of some form of local negative feedback
mechanism such as synaptic depression or spike frequency adaptation. We also show
how singular perturbation methods can be used to analyze the existence of pulses
for smooth firing rate functions [17]. We then consider an application of adaptive
neural fields to modeling the propagation of visual perception waves (§3.4). In §3.5
we review two approaches to analyzing wave propagation failure in inhomogeneous
neural media, one based on homogenization theory [20,101] and the other on interfacial
dynamics [102]. Finally, in §3.6 we briefly describe a possible mechanism for generating
spiral waves in oscillatory neural media [62,103,104] .

∆

κ

ξ

U(ξ)

ξ

U(ξ)

κ

(a) (b)

Figure 5. Schematic illustration of 1D traveling wave solutions U(ξ), ξ =
x − ct with wavespeed c. (a) Traveling wavefront. (b) Traveling pulse of
width ∆. Dashed horizontal line indicates the threshold value κ

3.1. Traveling fronts in a scalar neural field

We begin by using Amari’s constructive method [12] to analyze the existence of
traveling front solutions of the scalar neural field equation (47). Similar analyses are
found in Refs. [17,79,105]. We assume a Heaviside rate function (7) and an excitatory
weight distribution of the form w(x, y) = w(x− y) with w(x) ≥ 0 and w(−x) = w(x).
We also assume that w(x) is a monotonically decreasing function of x for x ≥ 0. A
common choice is the exponential weight distribution

w(x) =
1

2σ
e−|x|/σ, (3.1)

where σ determines the range of synaptic connections. The latter tends to range from
100µ m to 1 mm. The resulting neural field equation is

∂u(x, t)

∂t
= − u(x, t) +

∫ ∞
−∞

w(x− x′)F (u(x′, t))dx′, (3.2)
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with F (u) = H(u − κ). We have fixed the units of time by setting τ = 1. If τ is
interpreted as a membrane time constant then τ ∼ 10msec. In order to construct a
traveling front solution of (2), we introduce the traveling wave coordinate ξ = x− ct,
where c denotes the wavespeed, and set u(x, t) = U(ξ) with limξ→−∞ U(ξ) = U+ > 0
and limξ→∞ U(ξ) = 0 such that U(ξ) only crosses the threshold κ once, see Fig.
5. Here U+ =

∫∞
−∞ w(y)dy is a spatially uniform fixed point solution of (2). Since

equation (2) is equivariant with respect to uniform translations, we are free to take
the threshold crossing point to be at the origin, U(0) = κ, so that U(ξ) < κ for ξ > 0
and U(ξ) > κ for ξ < 0. Substituting this traveling front solution into equation (2)
then gives

−cU ′(ξ) + U(ξ) =

∫ 0

−∞
w(ξ − ξ′)dξ′ =

∫ ∞
ξ

w(x)dx ≡W (ξ), (3.3)

where U ′(ξ) = dU/dξ. Multiplying both sides of the above equation by e−ξ/c and
integrating with respect to ξ leads to the solution

U(ξ) = eξ/c

[
κ− 1

c

∫ ξ

0

e−y/cW (y)dy

]
. (3.4)

Finally, requiring the solution to remain bounded as ξ →∞ (ξ → −∞) for c > 0 (for
c < 0) implies that κ must satisfy the condition

κ =
1

|c|

∫ ∞
0

e−y/|c|W (sign(c)y)dy. (3.5)

Thus, one of the useful aspects of the constructive method is that it allows us to derive
an explicit expression for the wavespeed as a function of physiological parameters such
as firing threshold and range of synaptic connections. In the case of the exponential
weight distribution (1), the relationship between wavespeed c and threshold κ is

c =
σ

2κ
[1− 2κ] (for κ < 0.5), c =

σ

2

1− 2κ

1− κ
(for 0.5 < κ < 1). (3.6)

This establishes the existence of a unique front solution for fixed κ, which travels to
the right (c > 0) when κ < 0.5 and travels to the left (c < 0) when κ > 0.5. As we
will show in §3.2, the traveling front is stable.

Given the existence of a traveling front solution for a Heaviside rate function, it is
possible to extend the analysis to a smooth sigmoid nonlinearity using a continuation
method [82]. We briefly summarize the main result. Consider the scalar neural
field equation (2) with F given by the sigmoid function (6), and W (x) non-negative
and symmetric with normalization

∫∞
−∞W (x)dx = 1. Suppose that the function

F̃ (u) = −u + F (u) has precisely three zeros at u = U±, U0 with U− < U0 < U+ and

F̃ ′(U±) < 0. It can then be shown that (modulo uniform translations) there exists a
unique traveling front solution u(x, t) = U(ξ), ξ = x− ct, with

−cU ′(ξ) + U(ξ) =

∫ ∞
−∞

w(ξ − ξ′)F (U(ξ′))dξ′, (3.7)

and U(ξ)→ U± as ξ → ∓∞ [82]. Moreover, the speed of the wave satisfies

c =
Γ∫∞

−∞ U ′(ξ)
2
F ′(U(ξ))dξ

, (3.8)
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where F ′(U) = dF/dU and

Γ =

∫ U+

U−

F̃ (U)dU. (3.9)

Since the denominator of equation (8) is positive definite, the sign of c is determined
by the sign of the coefficient Γ. In particular, if the threshold κ = 0.5 and the gain of
the sigrmoid η > 4, see equation (6), then there exists a pair of stable homogeneous
fixed points with U− = −U+, which in turn implies that Γ = 0 and the front solution
is stationary. Note that this analysis has been extended to a more general form of
nonlocal equations by Chen [106]

3.2. Wave stability and Evans functions

Suppose that the scalar neural field equation (2) has a traveling wave solution
u(x, t) = U(ξ), ξ = x − ct with c > 0. Following Coombes and Owen [79], it is
convenient to rewrite the neural field equation in the integral form

u(x, t) =

∫ ∞
−∞

∫ ∞
0

w(y)Φ(s)F (u(x− y, t− s))dsdy, (3.10)

with Φ(t) = e−tH(t). For this representation, the front solution satisfies

U(ξ) =

∫ ∞
−∞

∫ ∞
0

w(y)Φ(s)F (U(ξ − y + cs)dsdy. (3.11)

In order to determine the stability of the front solutions, we transform to traveling
wave coordinates by setting u(x, t) = U(ξ, t) = U(ξ) + ϕ(ξ, t), and Taylor expand to
first order in ϕ. This leads to the linear integral equation

ϕ(ξ, t) =

∫ ∞
−∞

∫ ∞
0

w(y)Φ(s)F ′(U(ξ − y + cs))ϕ(ξ − y + cs, t− s)dsdy. (3.12)

We now seek solutions of equation (12) of the form ϕ(ξ, t) = ϕ(ξ)eλt, λ ∈ C, which
leads to the eigenvalue equation ϕ = L(λ)ϕ. That is,

ϕ(ξ) =

∫ ∞
−∞

∫ ∞
ξ−y

w(y)Φ((s+ y − ξ)/c)e−λ(s+y−ξ)/cF ′(U(s))ϕ(s)
ds

c
dy, (3.13)

where we have performed the change of variables cs + ξ − y → s.The linear stability
of the traveling front can then be determined in terms of the spectrum σ(L) of L.

It is first useful to recall some basic definitions regarding the spectrum of a linear
operator [107]. Suppose that the eigenfunctions ϕ(ξ) belong to a Banach space B

(complete, normed vector space). In practice, we will simply require that ϕ(ξ) is a
bounded smooth function on R that decays exponentially at ξ → ±∞. Introduce
the so–called inverse or resolvent operator R(λ) = [L(λ) − I]−1, where I denotes
the identity operator. We can then decompose the spectrum σ(L) into the following
disjoint sets. λ is an element of the point or discrete spectrum if R(λ) does not exist; λ
is an element of the continuous spectrum if R(λ) exists, is defined on a dense subset of
B, but is not bounded; λ is an element of the residual spectrum if R(λ) exists but its
domain is not dense in B. We refer to elements of the discrete spectrum as eigenvalues
and the union of the continuous and residual spectra as the essential spectrum. Given
the spectrum of the linear operator defined by equation (13), the traveling wave is
said to be linearly stable if [108]

max{Re(λ) : λ ∈ σ(L), λ 6= 0} ≤ −K (3.14)
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for someK > 0, and λ = 0 is a simple eigenvalue of λ. The existence of at least one zero
eigenvalue is a consequence of translation invariance. Indeed, differentiating equation
(11) with respect to ξ shows that ϕ(ξ) = U ′(ξ) is an eigenfunction solution of equation
(13) with λ = 0. In the case of PDEs, it is known that the discrete spectrum of the
operator obtained by linearizing about a traveling wave solution may be associated
with the zeros of a complex analytic function known as the Evans function. Evans [109]
originally developed the formalism within the context of the stability of solitary pulses
in diffusive Hodgkin–Huxley type equations describing action potential propagation in
nerve axons. Since then the Evans function construction has been extended to a wide
range of PDEs, see the review [108]. It has also recently been applied to neural field
equations [78–80, 110–112] and more general nonlocal problems [113]. Moreover, for
neural fields with Heaviside firing rate functions, the Evans function can be calculated
explicitly. This was first carried out by Zhang [78] who applied the method of variation
of parameters to the linearized version of the integro-differential equation (2). Here
we will follow closely the more direct integral formulation of Coombes and Owen [79].

Setting F (U) = H(U − κ) in equation (12) and using the identity

H ′(U(ξ)− κ) = δ(U(ξ)− κ) =
δ(ξ)

|U ′(0)|
, (3.15)

gives

ϕ(ξ) =
ϕ(0)

c|U ′(0)|

∫ ∞
−∞

w(y)Φ((y − ξ)/c)e−λ(y−ξ)/cdy. (3.16)

In order to obtain a self–consistent solution at ξ = 0, we require that

ϕ(0) =
ϕ(0)

c|U ′(0)|

∫ ∞
0

w(y)Φ(y/c)e−λy/cdy, (3.17)

We have used the fact that Φ(y) = 0 for y < 0, which is a consequence of causality.
Hence, a nontrivial solution exists provided that E(λ) = 0, where

E(λ) = 1− 1

c|U ′(0)|

∫ ∞
0

w(y)Φ(y/c)e−λy/cdy. (3.18)

Equation (18) can be identified with the Evans function for the traveling front solution
of the scalar neural field equation (10). It is real–valued if λ is real. Furthermore,
(i) the complex number λ is an eigenvalue of the operator L if and only if E(λ) = 0,
and (ii) the algebraic multiplicity of an eigenvalue is equal to the order of the zero of
the Evan’s function [78–80]. We briefly indicate the proof of (i) for Φ(t) = e−tH(t).
Equation (16) becomes

ϕ(ξ) =
ϕ(0)

c|U ′(0)|
e(λ+1)ξ/c

∫ ∞
ξ

w(y)e−(λ+1)y/cdy,

= ϕ(0)

[
1− 1

c|U ′(0)|

∫ ξ

0

w(y)e−(λ+1)y/cdy

]
e(λ+1)ξ/c

which in the limit ξ →∞ gives

lim
ξ→∞

ϕ(ξ) = ϕ(0)E(λ) lim
ξ→∞

e(λ+1)ξ/c. (3.19)

Assuming that Reλ > −1 (which turns out to be to the right of the essential spectrum),
then ϕ(ξ) will be unbounded as ξ → ∞ unless E(λ) = 0. That is, if E(λ) = 0 then
ϕ(ξ) is normalizable, the resolvent operator is not invertible and λ is an eigenvalue.
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It is also straightforward to show that E(0) = 0, which we expect from translation
invariance. First, setting F (U) = H(U − κ) in equation (11) and differentiating with
respect to ξ shows that

U ′(ξ) = −1

c

∫ ∞
−∞

w(y)Φ((y − ξ)/c)dy. (3.20)

Thus, defining

H(λ) =

∫ ∞
0

w(y)Φ(y/c)e−λy/cdy (3.21)

we see that c|U ′(0)| = H(0) and, hence,

E(λ) = 1− H(λ)

H(0)
. (3.22)

It immediately follows that E(0) = 0.
In order to determine the essential spectrum, consider the inhomogeneous

equation

ϕ(ξ)− ϕ(0)

c|U ′(0)|

∫ ∞
−∞

w(y)Φ((y − ξ)/c)e−λ(y−ξ)/cdy = h(ξ) (3.23)

for some normalizable smooth function h on R. Assuming that λ does not belong to
the discrete spectrum, E(λ) 6= 0, we can expresses the constant ϕ(0) in terms of h(0)
by setting ξ = 0 in equation (23): ϕ(0) = h(0)/E(λ). Thus,

ϕ(ξ) = h(ξ) +
1

E(λ)

h(0)

c|U ′(0)|

∫ ∞
−∞

w(y)Φ((y − ξ)/c)e−λ(y−ξ)/cdy. (3.24)

Fourier transforming this equation using the convolution theorem gives

ϕ̂(k) = ĥ(k) +
1

E(λ)

h(0)

c|U ′(0)|
ω̂(k)Φ̂(kc+ iλ) (3.25)

where

ϕ̂(k) =

∫ ∞
−∞

ϕ(y)eikydy (3.26)

etc. Now suppose that for a given value of k there exists λ = λ(k) for which

[Φ̂(kc + iλ(k))]−1 = 0. It follows that the right–hand side of equation (25) blows
up if λ = λ(k), that is, the dispersion curve belongs to the essential spectrum.

For the sake of illustration, let us calculate the zeros of the Evans function
in the case of the exponential weight function (1). Substituting Φ(t) = e−t and
w(y) = e−|y|/σ/2σ in equation (21) gives

H(λ) =
1

2σ

1

σ−1 + λ/c+ 1/c
(3.27)

so that [79]

E(λ) =
λ

c/σ + 1 + λ
. (3.28)

It follows that λ = 0 is the only zero of the Evans function and it is a simple
root (since E ′(0) > 0). Furthermore, in the particular case Φ(t) = e−t, we have

[Φ̃(kc + iλ)]−1 = 1 − ikc + λ so that the essential spectrum is λ(k) = −1 + ikc, that
is, a vertical line in the complex plane at Reλ = −1. It follows that the corresponding
traveling front (it it exists) is stable.
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The above example illustrates one of the powerful features of the constructive
method based on Heavisides. Not only is it possible to construct exact traveling wave
solutions and derive formulae for the speed of the wave, but one can also explicitly
construct the Evans function that determines wave stability. The method extends
to multi-population neural field models, neural fields with axonal propagation delays,
and adaptive neural fields [79]. (Although taking the high–gain limit of a smooth
firing rate function is not very realistic from a biological perspective, one finds that
many of the basic features of traveling waves persist for finite gain). In the particular
case of axonal delays, it can be shown that delays reduce the speed of a wave but do
not affect its stability properties. For example, given a right moving traveling front
solution of the scalar neural field equation (50) with τ = 1 and exponential weights,
one finds that the speed of the wave is [66,79]

c = σ
1− 2κ

2κ+ σ(1− 2κ)/v
, (3.29)

where v is the propagation speed along an axon, and the Evans function is

E(λ) =
λ

c/σ + (1− c/v) + λ
. (3.30)

3.3. Traveling pulses in adaptive neural fields

Traveling fronts are not particularly realistic, since populations of cells do not stay in
the excited state forever. Hence, rather than a traveling front, propagating activity
in cortex is usually better described as a traveling pulse. (One example where fronts
rather than pulses occur is wave propagation during binocular rivalry [114–117], see
§3.3.3). One way to generate a traveling pulse is to include some form of synaptiic
inhibition, provided that it is not too strong [12]. However, even in the absence of
synaptic inhibition, most neurons possess intrinsic negative feedback mechanisms that
slowly bring the cell back to resting voltages after periods of high activity. Possible
nonlinear mechanisms include synaptic depression or spike frequency adaptation as
discussed in §2. However, most analytical studies of traveling pulses in neural field
models have been based on a simpler linear form of adaptation introduced by Pinto and
Ermentrout [17]. (For an analysis of waves in neural fields with nonlinear adaptation,
see for example [61,64]). The linear adaptation model is given by

∂u(x, t)

∂t
= − u(x, t) +

∫ ∞
−∞

w(x− x′)F (u(x′, t))dx′ − βq(x, t)

1

ε

∂q(x, t)

∂t
= − q(x, t) + u(x, t), (3.31)

where ε and β determine the rate and amplitude of linear adaptation. We first show
how to construct a traveling pulse solution of equation (31) in the case of a Heaviside
rate function F (u) = H(u − κ), following the particular formulation of [78, 112].
We then indicate how singular perturbation methods can be used to construct a
traveling pulse for smooth F , as carried out by Pinto and Ermentrout [17]. The
introduction of adaptation means that the neural field can act either as an excitable
medium or as a bistable medium, see Fig. 6, depending on parameter values. In the
former case, the neural field supports traveling pulses and in the latter case traveling
fronts. We will focus on the former here. Note, however, that linear (or nonlinear)
adaptation can have a nontrivial effect on the propagation of traveling fronts [105,118].
This is due to the occurrence of a symmetry breaking front bifurcation analogous to



CONTENTS 26

that found in reaction diffusion systems [119–122]. That is, a stationary front can
undergo a supercritical pitchfork bifurcation at a critical rate of adaptation, leading
to bidirectional front propagation. As in the case of reaction diffusion systems, the
front bifurcation acts as an organizing center for a variety of nontrivial dynamics
including the formation of oscillatory fronts or breathers. The latter can occur, for
example, through a Hopf bifurcation from a stationary front in the presence of a weak
stationary input inhomogeneity [105].
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Figure 6. Plot of nullclines for space–clamped planar system u̇ = −u +
F (u) − βu, ε−1q̇ = −q + u with F (u) = 1/(1 + e−η(u−κ)). Nullcline
q = −u + F (u)]/β for β = 1.0 (β = 2.5) intercepts straight nullcline
q = u at three fixed points (one fixed point) and the corresponding spatially
extended network acts as a bistable (excitable) medium. Other parameters
are η = 20, κ = 0.25.

3.3.1. Exact traveling pulse solution. Without loss of generality, let us consider a
right–moving traveling pulse solution of the form (u(x, t), q(x, t)) = (U(x− ct), Q(x−
ct)) with U(±∞), Q(±∞) = 0 and U(−∆) = U(0) = κ, see Fig. 5(b). Here c,∆
denote the speed and width of the wave, respectively. We also assume that U(ξ) > κ
for ξ ∈ (−∆, 0) and U(ξ) < κ for ξ < −∆ and ξ > 0. Substituting this solution into
equation (31) with ξ = x− ct then gives

−cU ′(ξ) + U(ξ) + βQ(ξ) =

∫ 0

−∆

w(ξ − ξ′)dξ′

−cQ′(ξ) + ε[Q(ξ)− U(ξ)] = 0. (3.32)

It is useful to rewrite equation (32) in the matrix form(
1 β
−ε ε

)(
U
Q

)
− c∂ξ

(
U
Q

)
= [W (ξ)−W (ξ + ∆)]

(
1
0

)
. (3.33)

with W (ξ) =
∫∞
ξ
w(x)dx. We proceed by diagonalizing the left–hand side of equation

(33) using the right eigenvectors v of the matrix

M =

(
1 β
−ε ε

)
. (3.34)

These are given by v± = (ε− λ±, ε)T with corresponding eigenvalues

λ± =
1

2

[
1 + ε±

√
(1 + ε)2 − 4ε(1 + β)

]
. (3.35)
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We will assume that ε is sufficiently small so that β < (1 − ε)2/4ε and consequently
λ± are real. (For a discussion of the effects of complex eigenvalues λ± see [104]).
Note that v±eλ±ξ/c are the corresponding null vectors of the linear operator on the
left–hand side of equation (33). Performing the transformation(

Ũ

Q̃

)
= T−1

(
U
Q

)
, T =

(
v+ v−

)
, (3.36)

then gives the pair of equations

−c∂ξŨ + λ+Ũ = η+[W (ξ)−W (ξ + ∆)]

−c∂ξQ̃+ λ−Q̃ = η−[W (ξ)−W (ξ + ∆)] (3.37)

with η± = ∓1/(λ+ − λ−). Integrating the equation for Ũ from −∆ to ∞, we have

Ũ(ξ) = eλ+ξ/c

[
Ũ(−∆)e∆λ+/c − η+

c

∫ ξ

−∆

e−λ+ξ
′/c[W (ξ′)−W (ξ′ + ∆)]dξ′

]
. (3.38)

Finiteness of Ũ in the limit ξ → ∞ requires the term in square brackets to cancel.
Hence, we can eliminate Ũ(−∆) to obtain the result

Ũ(ξ) =
η+

c

∫ ∞
0

e−λ+ξ
′/c[W (ξ′ + ξ)−W (ξ′ + ξ + ∆)]dξ′. (3.39)

Similarly,

Q̃(ξ) =
η−
c

∫ ∞
0

e−λ−ξ
′/c[W (ξ′ + ξ)−W (ξ′ + ξ + ∆)]dξ′. (3.40)

Performing the inverse transformation U = (ε− λ+)Ũ + (ε− λ−)Q̃ we have

U(ξ) =
1

c

∫ ∞
0

[
χ+e−λ+ξ

′/c + χ−e−λ−ξ
′/c
]

[W (ξ′ + ξ)−W (ξ′ + ξ + ∆)]dξ′, (3.41)

with χ± = (ε−λ±)η±. The threshold conditions U(−∆) = κ and U(0) = κ then yield
a pair of equations whose solutions determine existence curves relating the speed c
and width ∆ of a pulse to the threshold κ [17, 79,112].

For the sake of illustration, let w be given by the exponential function (1). In the
domain ξ > 0, there is a common factor of e−ξ/σ in the integrand of equation (41) so
that U(ξ) = κe−ξ/σ for ξ > 0 provided that

κ =
1

2

σ(c+ εσ)(1− e−∆/σ)

c2 + cσ(1 + ε) + σ2ε(1 + β)
. (3.42)

(Note that for zero negative feedback (β = 0), equation (42) reduces to the formula
for wavespeed of a front in the limit ∆ → ∞). On the other hand, when ξ < 0
one has to partition the integral of equation (41) into the separate domains ξ′ > |ξ|,
|ξ| − ∆ < ξ′ < |ξ| and ξ′ < |ξ| − ∆. This then determines the second threshold
condition as well as the asymptotic behavior of U(ξ) in the limit ξ → −∞:

U(ξ) = A+eλ+ξ/c +A−eλ−ξ/c +A0eσξ. (3.43)

where the amplitudes A± and A0 can be determined from matching conditions at the
threshold crossing points [17,112]. Note that the leading edge of the pulse is positive,
whereas the trailing edge is negative due to the effects of adaptation. One finds that
for sufficiently slow negative feedback (small ε) and large β there exist two pulse
solutions, one narrow and slow and the other wide and fast. This is illustrated in Fig.
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Figure 7. Existence of right–moving traveling pulses in the case of the
excitatory network (31) with linear adaptation for an exponential weight
distribution (1). Here σ = 1, ε = 0.01 and β = 2.5. (a) Plot of pulse width
∆ against threshold κ. (b) Plot of wave speed c against threshold κ. Stable
(unstable) branches indicated by black (gray) curves.

7. Note that a numerical value of c ∼ 1 in dimensionless units (σ = τ = 1) translates
into a physical speed of 60− 90mm/s if the membrane time constant τ = 10msec and
the range of synaptic connections is σ = 600− 900µm.

Numerically, the fast solution is found to be stable [17], and this can be confirmed
analytically using an Evans function construction [3, 79, 112]. First, write the neural
field equation (31) in the integral form

u(x, t) =

∫ ∞
−∞

∫ ∞
0

w(y)Φ(s)F (u(x− y, t− s))dsdy − β
∫ ∞

0

Ψ(s)u(x, t− s)ds, (3.44)

with Φ(t) = e−tH(t) and Ψ(t) =
∫ t

0
Φ(s)e−ε(t−s)ds. Linearizing about the pulse

solution by setting u(x, t) = U(ξ) + ϕ(ξ)eλt gives

ϕ(ξ) =

∫ ∞
−∞

∫ ∞
ξ−y

w(y)Φ((s+ y − ξ)/c)e−λ(s+y−ξ)/cF ′(U(s))ϕ(s)
ds

c
dy

− β
∫ ∞
ξ

Ψ((s− ξ)/c)e−λ(s−ξ)/cϕ(s)
ds

c
. (3.45)

Proceeding along similar lines to the analysis of front stability in §3.2, we set
F (U) = H(U − κ) and use the identity

H ′(U(ξ)− κ) = δ(U(ξ)− κ) =
δ(ξ)

|U ′(0)|
+
δ(ξ + ∆)

|U ′(−∆)|
. (3.46)

This gives

ϕ(ξ) + β

∫ ∞
ξ

Ψ((s− ξ)/c)e−λ(s−ξ)/cϕ(s)
ds

c
(3.47)

=
ϕ(0)

c|U ′(0)|
H(λ, ξ) +

ϕ(−∆)

c|U ′(−∆)|
H(λ, ξ + ∆)

where

H(λ, ξ) =

∫ ∞
ξ

w(y)Φ((y − ξ)/c)e−λ(y−ξ)/cdy. (3.48)
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Let Ĥ(λ, k) denote the Fourier transform of H(λ, ξ) and Ĝ(λ, k) denote the Fourier
transform of Ψ(ξ/c)e−ξ/c. Using Fourier transforms and the convolution theorem,
equation (47) can then be rewritten as

ϕ(ξ) =
ϕ(0)

c|U ′(0)|
B(λ, ξ) +

ϕ(−∆)

c|U ′(−∆)|
B(λ, ξ + ∆), (3.49)

with B(λ, ξ) the inverse transform of

B̂(λ, k) =
Ĥ(λ, k)

[1 + βĜ(λ,−k)/c]
. (3.50)

Finally, the eigenvalues λ are determined by setting ξ = 0,−∆ and solving the resulting
matrix equation f =M(λ)f with f = (ϕ(0), ϕ(−∆)) and

M(λ) =
1

c

( B(λ,0)
|U ′(ξ1)|

B(λ,∆)
|U ′(−∆)|

B(λ,−∆)
|U ′(0)|

B(λ,0)
|U ′(−∆)|

)
. (3.51)

It follows that the eigenvalues λ are zeros of the Evans function

E(λ) = Det[1−M(λ)], (3.52)

where 1 denotes the identity matrix.

3.3.2. Singularly-perturbed pulse solution. In the case of slow adaptation (ε � 1),
Pinto and Ermentrout [17] showed how to construct a traveling pulse solution of
equation (31) for a smooth firing rate function F by exploiting the existence of traveling
front solutions of the corresponding scalar equation (2). The method is analogous to
the construction of traveling pulses in reaction–diffusion systems [13]. The basic idea
is to analyze separately the fast and slow time behavior of solutions to equation (31)
expressed in traveling wave coordinates:

−c dU(ξ)

dξ
= −U(ξ)− βQ(ξ) +

∫ ∞
−∞

w(ξ − ξ′)F (U(ξ′))dξ′, (3.53)

−cdQ(ξ)

dξ
= ε[−Q(ξ) + U(ξ)]. (3.54)

We will assume the normalization
∫∞
−∞ w(y)dy = 1. In the case of fast time, the slow

adaptation is taken to be constant by setting ε = 0 so that we have the inner layer
equations

−c dU(ξ)

dξ
= −U − βQ0 +

∫ ∞
−∞

w(ξ − ξ′)F (U(ξ′))dξ′, (3.55)

−cdQ(ξ)

dξ
= 0. (3.56)

Since Q(ξ) = Q0 is a constant, the term βQ0 can be absorbed into the threshold of the
firing rate function F by making the shift U(ξ)→ U(ξ) +βQ0. Hence equation (3.55)
is equivalent to the scalar equation (7), which supports the propagation of traveling
fronts. In the case of slow time, we introduce the compressed variable ζ = εξ so that

−cε dU(ζ)

dζ
= −U(ζ)− βQ(ζ) +

1

ε

∫ ∞
−∞

w([ζ − ζ ′]/ε)F (U(ζ ′))dζ ′, (3.57)

−cdQ(ζ)

dζ
= −Q(ζ) + U(ζ). (3.58)
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In the limit ε→ 0, we have

1

ε
w([ζ − ζ ′]/ε)→ δ(ζ − ζ ′) (3.59)

so that first equation becomes

βQ(ζ) = −U(ζ) + F (U(ζ)) (3.60)

Inverting this equation yields two branches U = g±(Q). Hence we obtain a slow time
or outer layer equation on each branch, see Fig. 8

dQ

dζ
=

1

c
[Q− g±(Q)] (3.61)

u

Q

Q=Q1

Q=Q0

I

IIIII
IV

U=g-(Q)

U=g+(Q)

g+(Q0)

g+(Q1)

g-(Q1)

g-(Q0)
ξ

ξ1ξ0

II

I
III

IV

(a) (b)

Figure 8. Singular perturbation construction of a traveling pulse in (a) the
phase–plane and (b) traveling wave coordinates. See text for details.

The construction of the traveling pulse now proceeds by matching inner and
outer solutions [17]. This can be visualized by considering the nullclines of the space–
clamped version of equation (31), see Fig. 8. We assume that the gain of F and
the strength β of adaptation are such that there is only a single fixed point of the
space–clamped system.

I Starting at the unique fixed point, use the fast inner equations and the existence
results of [82] to construct a leading front solution at Q = Q0 with speed c0 and
matching conditions limξ±∞ U(ξ) = g±(Q0).

II Use the slow outer equations to determine dynamics of Q along upper branch
U = g+(Q)

III The solution leaves upper branch at some point Q1. Once again use the fast
inner equations and [82] to construct a trailing front solution with speed c1 and
matching conditions

lim
ξ±∞

U(ξ) = g∓(Q1)

IV Finally, use the slow outer equations to determine the return to the fixed point
along the lower branch.

In order to establish the existence of a traveling pulse solution, it remains to find a
value Q1 for which c1 = −c0 so that the leading and trailing edges of the pulse move
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at the same speed and thus the pulse maintains its shape as it propagates. (Since Q0

is known so is c0). Adapting the formula for the wave speed obtained in [82], we have

c1 = − Γ∫∞
−∞ U ′2(ξ)F ′(U(ξ))dξ

, Γ =

∫ g+(Q1)

g−(Q1)

[−U −Q1 + F (U)]dU. (3.62)

Unfortunately, it is not possible to derive a closed form expression for the wave speed.
However, the existence of a matching speed can be established provided that certain
additional assumptions are made regarding the shape of the firing rate function,
see [17] for more details.

3.4. Adaptive neural field model of wave propagation during perceptual switching.

A number of phenomena in visual perception involve the propagation of a traveling
front, in which a suppressed visual percept replaces a dominant percept within the
visual field of an observer. A classical example is the wave–like propagation of
perceptual dominance during binocular rivalry [114–116]. Binocular rivalry is the
phenomenon whereby perception switches back and forth between different images
presented to the two eyes. The resulting fluctuations in perceptual dominance and
suppression provide a basis for non-invasive studies of the human visual system and
the identification of possible neural mechanisms underlying conscious visual awareness
[123,124].

Figure 9. Schematic diagram of a neural field model of perceptual switching.
Each 1D neural field corresponds to a different visual percept, which could
represent distinct oriented stimuli presented to the two eyes during binocular
rivalry.

A simple neural field model for wave propagation during perceptual switching
is shown in Fig. 9, see [117]. It is assumed that the two competing visual
percepts are represented by the activity in two 1D neural fields. In the case of
binocular rivalry, these could represent networks stimulated by left and right eye
inputs, respectively. Recurrent connections within each 1D network are assumed to
be excitatory, whereas connections between the two networks are inhibitory (cross-
inhibition). Slow adaptation is incorporated into the model by taking the network
connections to exhibit synaptic depression. The combination of cross-inhibition paired
with a slow adaptive process forms the basis of most competitive network models of
binocular rivalry [114,125–129]. However, these studies neglect spatial effects or treat
them computationally. The advantage of a continuum neural field model is that it
provides an analytical framework for studying perceptual wave propagation [117]).
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Let u(x, t) and v(x, t) denote the activity of the two networks. The associated neural
field equations are a generalization of (49):

∂u(x, t)

∂t
= − u(x, t) +

∫ ∞
−∞

we(x− x′)qu(x′, t)F (u(x′, t)))dx′

−
∫ ∞
−∞

wi(x− x′)qv(x′, t)f(v(x′, t)))dx′ + Iu(x, t)

τq
∂qu(x, t)

∂t
= 1− qu(x, t)− βqu(x, t)F (u(x, t)), (3.63)

and
∂v(x, t)

∂t
= − v(x, t) +

∫ ∞
−∞

we(x− x′)qv(x′, t)F (v(x′, t)))dx′

−
∫ ∞
−∞

wi(x− x′)qu(x′, t)F (u(x′, t)))dx′ + Iv(x, t),

τq
∂qv(x, t)

∂t
= 1− qv(x, t)− βqv(x, t)f(v(x, t)). (3.64)

The distribution we of recurrent excitatory connections and the distribution of cross-
inhibitory connections are both taken to be Gaussians:

we(r) =
ae√
2πσ2

e

e
− r2

2σ2
e , wi(r) =

ai√
2πσ2

i

e
− r2

2σ2
i . (3.65)

Depressing synapses are incorporated into the model in the form of the presynaptic
scaling factors qu, qv. Finally, Iu, Iv represent the effective strength of the stimuli
representing the two percepts. We will assume that the unperturbed network has
Iu = Iv = I with I a constant input.

0.1 0.2 0.3
-0.4

-0.2

0

0.2

0.4
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u

WTA

fusion

rivalry

Off

Figure 10. Bifurcation diagram showing homogeneous solutions for the neural
field u as a function of the input amplitude I. Solid lines represent stable states,
whereas circles represent the maximum and minimum of perceptual switching
oscillations. It can be seen that there are regions of off/WTA bistability,
WTA/fusion bistability, and fusion/rivalry bistability. Parameters are τq = 500,
κ = 0.05, β = 5, ae = 0.4 and ai = −1.

In order to construct exact traveling front solutions, let F (u) = H(u − κ).
It is then straightforward to show that there exist four homogeneous fixed points
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(U∗, V ∗, Q∗u, Q
∗
v) corresponding to an off-state (U∗ < κ, V ∗ < κ), a fusion state

(U∗ > κ, V ∗ > κ), and two winner–take–all (WTA) states (either U∗ = U+ > κ, V ∗ =
V− < κ or U∗ = U− < κ, V ∗ = V+ > κ), and all are stable. It can also be shown
that equations (63) and (64) support homogeneous limit cycle oscillations in which
there is periodic switching between perceptual dominance consistent with binocular
rivalry, for example [128]. Since all the fixed points are stable, it follows that such
oscillations cannot arise via a standard Hopf bifurcation. Indeed, there exist bistable
regimes where a rivalry state coexists with a fusion state as illustrated in Fig. 10.
(Such behavior persists in the case of smooth sigmoid firing rate functions, at least
for sufficiently high gain [128]). Suppose that the full system given by equations (63)
and (64) is initially in a stable WTA state with the v–network dominant, and is then
perturbed away from this state by introducing a propagating front that generates
a perceptual dominance switch. (Such a switch can be induced experimentally by
temporarily introducing a spatially localized increase in the input to one of the
networks [114,116]). Furthermore, suppose that over a finite spatial domain of interest
the time taken for the wave front to propagate is much smaller than the relaxation
time τq of synaptic depression. To a first approximation we can then ignore the
dynamics of the depression variables and assume that they are constant, that is,
(qu(x, t), qv(x, t)) = (Qu, Qv) with Qu = 1 and Qv = (1 + β)−1. A similar adiabatic
approximation can also be made if the network is in an oscillatory state, provided
that (a) the duration of wave propagation is short compared to the natural switching
period and (b) the induction of the wave does not occur close to the point at which
spontaneous switching occurs. In this case Qu and Qv will not be given by the WTA
fixed point solution, but Qu 6= Qv.

Consider a traveling front solution of the form u(x, t) = U(x − ct), v(x, t) =
V (x − ct), where c is the wave speed and ξ = x − ct is a traveling wave coordinate.
Furthermore, (U(ξ), V (ξ)) → XL as ξ → −∞ and (U(ξ), V (ξ)) → XR , as ξ → ∞,
where XL = (Quae + I, I − Qvai), XR = (I − Quai, Qvae + I), and U(ξ) (V (ξ))
is a monotonically decreasing (increasing) function of ξ. It follows that if c > 0
then the wavefront represents a solution in which activity invades the supressed u-
network and retreats from the dominant v-network. Given the asymptotic behavior
of the solution and the requirements of monotonicity, it follows that U(ξ) and V (ξ)
each cross threshold at a single location, which may be different for the two eyes.
Exploiting translation invariance we take U(0) = κ and V (ξ0) = κ. Substituting the
traveling front solution into equations (63) and (64) gives (after integration)

U(ξ) =

∫ ∞
0

e−s

[
Qu

∫ ∞
ξ+cs

we(y)dy −Qv
∫ ξ−ξ0+cs

−∞
wi(y)dy

]
ds+ I (3.66)

V (ξ) =

∫ ∞
0

e−s

[
Qv

∫ ξ−ξ0+cs

−∞
we(y)dy −Qu

∫ ∞
ξ+cs

wi(y)dy

]
ds+ I. (3.67)

Finally, imposing the threshold crossing conditions gives the pair of equations

κ =

∫ ∞
0

e−sΨξ0(cs)ds+ I, κ =

∫ ∞
0

e−sΦξ0(−cs)ds+ I, (3.68)

with Ψ and Φ defined by

Ψξ0(z) = Qu

∫ ∞
z

we(y)dy −Qv
∫ z−ξ0

−∞
wi(y)dy. (3.69)
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Φξ0(z) = Qv

∫ ∞
z

we(y)dy −Qu
∫ z−ξ0

−∞
wi(y)dy. (3.70)

In order to establish the existence of a wave speed c and a threshold crossing
point ξ0, define the functions

F1(c, ξ0) =

∫ ∞
0

e−sΨξ0(cs)ds, F2(c, ξ0) =

∫ ∞
0

e−sΦξ0(−cs)ds. (3.71)

Taking the difference of the two threshold conditions (68) yields the implicit equation

F(c, ξ0) ≡ F1(c, ξ0)−F2(c, ξ0) = 0. (3.72)

It is straightforward to show that for fixed ξ0,

lim
c→∞

F(c, ξ0) > 0, lim
c→−∞

F(c, ξ0) < 0.

Hence, the intermediate value theorem guarantees at least one solution c = c(ξ0),
which is differentiable by the implicit function theorem. If Qu = Qv, then F1(0, ξ0) =
F2(0, ξ0) and the only point where F vanishes is at c = 0. On the other hand, if
Qv 6= Qu then F(0, ξ0) 6= 0 for all finite ξ0 so that c(ξ0) 6= 0. Given a solution
c = c(ξ0) of equation (72), the existence of a traveling wavefront solution reduces to
the single threshold condition

κ = F1(c(ξ0), ξ0) + I. (3.73)

Numerically solving this equations shows that there exists a unique traveling front
solution for a range of values of the threshold κ and input I, see Fig. 11. The model
wave speed is of the order c = 1 in dimensionless units, that is, c = σe/2τ where σe is
the range of excitation and τ is the membrane time constant. Taking σe to be of the
order 200µm and τ to be of the order 10 msec gives a wavespeed of 10mm/sec, which
is consistent with psychophysical experiments on binocular rivalry waves [114,116].
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Figure 11. (a) Plot of wave speed c as a function of the threshold κ. (b) Plot
of right–moving traveling front solution in which a high activity state invades
the suppressed u-network whilst retreating from the dominant v- network. The
default parameters are taken to be ai = 1, ae = 0.4, σi = 1, σe = 2, β = 5, κ =
0.05, I = 0.24, Qu = 0.42, Qv = 0.25 and the corresponding wave speed is c = 1.2.

The above model suggests that slow adaptation plays a crucial role in the
generation of perceptual waves. In the absence of any adaptation (qu = qv ≡ 1),
a traveling front solution does not exist, which is consistent with the observation that
if there is no cross-inhibition (wi ≡ 0) then the system reduces to two independent 1D
neural fields with excitatory connections. In order to construct a front solution that
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simultaneously invades one network whilst retreating from the other, a ID excitatory
neural field without adaptation would have to support a pair of counter-propagating
front solutions with speeds ±c, which is not possible (see §3.1 and [12]). Therefore,
some mechanism must be introduced that breaks the exchange symmetry of the two
1D networks. The above analysis shows that this can be achieved by including some
form of slow adaptation such as synaptic depression.

3.5. Wave propagation failure in inhomogeneous neural fields

Most studies of neural field theory assume that the synaptic weight distribution
only depends upon the distance between interacting populations, that is, w(x, y) =
w(|x − y|). This implies translation symmetry of the underlying integrodifferential
equations (in an unbounded or periodic domain). As we have reviewed in previous
sections, excitatory networks then support the propagation of solitary traveling waves.
However, if one looks more closely at the anatomy of cortex, it is clear that its detailed
microstructure is far from homogeneous. For example, to a first approximation,
primary visual cortex (V1) has a periodic–like microstructure on the millimeter length–
scale, reflecting the existence of various stimulus feature maps, see §5.2. This has
motivated a number of studies concerned with the effects of a periodically modulated
weight distribution on wave propagation in neural fields [74,101,102].

Consider for simplicity the 1D scalar neural field equation (47) with periodically
modulated weight distribution

w(x, y) = w(x− y)[1 + ρK(y/ε)], (3.74)

where ρ is the amplitude of the periodic modulation and ε is the period with
K(x) = K(x+ 1) for all x. (Note that in §3.3 we used ε (rather than ε) to denote the
slow rate of adaptation in the adaptive neural field model (31)). It will also be assumed
that if ρ = 0 (no periodic modulation), then the resulting homogeneous network
supports a traveling front solution of speed c0 as analyzed in §3.1. We will review two
alternative methods for analyzing the effects of periodic wave modulation, one based on
homogenization theory for small ε [20], and the other based on analyzing interfacial
dynamics [102]. Both approaches make use of the observation that for sufficiently
small ρ, numerical simulations of the inhomogeneous network show a front–like wave
separating high and low activity states. However, the wave does not propagate with
constant speed, but oscillates periodically in an appropriately chosen moving frame.
This pulsating front solution satisfies the periodicity condition u(x, t) = u(x+ε, t+T )
so that we can define the mean speed of the wave to be c = ε/T .

3.5.1. Homogenization theory. Suppose that the period ε of weight modulations is
much smaller than the range of synaptic interactions ε� σ. (We fix the length scales
by setting σ = 1). Substituting equation (74) into (47) and integrating by parts gives

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞
−∞

w(x− x′)F (u(x′, t))dx′ (3.75)

+ ε

∫ ∞
−∞

A(x′/ε)

[
w′(x− x′)F (u(x′, t))− w(x− x′)∂F (u(x′, t))

∂x′

]
dx′.

Here A′(x) = ρK(x) with A only having to be defined up to an arbitrary constant.
Motivated by the existence of pulsating front solutions, we perform the change of
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variables ξ = x− φ(t) and τ = t. Equation (75) becomes

∂u

∂τ
= −u(ξ, τ) +

∫ ∞
−∞

w(ξ − ξ′)F (u(ξ′, τ))dξ′ + φ′
∂u(ξ, τ)

∂ξ
(3.76)

+ ε

∫ ∞
−∞

A

(
ξ′ + φ

ε

)[
w′(ξ − ξ′)F (u(ξ′, τ))− w(ξ − ξ′)∂F (u(ξ′, τ))

∂ξ′

]
dξ′.

Next perform the perturbation expansions

u(ξ, τ) = U(ξ) + εu1(ξ, τ) + ε2u2(ξ, τ) + . . . , (3.77)

φ′(τ) = c0 + εφ′1(τ) (3.78)

where U(ξ) is the unique traveling wave solution of the corresponding homogeneous
equation (7) with unperturbed wavespeed c = c0. The first-order term u1 satisfies the
inhomogeneous linear equation

−∂u1(ξ, τ)

∂τ
+ Lu1(ξ, τ) = −φ′1(τ)U ′(ξ) + h1(ξ, φ/ε) (3.79)

where

Lu(ξ) = c0
du(ξ)

dξ
− u(ξ) +

∫ ∞
−∞

w(ξ − ξ′)F ′(U(ξ′))u(ξ′)dξ′ (3.80)

and

h1 =

∫ ∞
−∞

A

(
ξ′ + φ

ε

)[
−w′(ξ − ξ′)F (U(ξ′)) + w(ξ − ξ′)dF (U(ξ′))

dξ′

]
dξ′.

(3.81)

The linear operator L has a one-dimensional null-space spanned by U ′. The
existence of U ′ as a null-vector follows immediately from differentiating both sides of
equation (7) with respect to ξ, whereas its uniqueness can be shown using properties
of positive linear operators [82]. Therefore, a bounded solution of equation (79) with
respect to ξ and τ will only exist if the right-hand side of equation (79) is orthogonal
to all elements of the null-space of the adjoint operator L∗. The latter is defined with
respect to the inner product∫ ∞

−∞
u(ξ)Lv(ξ)dξ =

∫ ∞
−∞

[L∗u(ξ)] v(ξ)dξ (3.82)

where u(ξ) and v(ξ) are arbitrary integrable functions. Hence,

L∗u(ξ) = −cdu(ξ)

dξ
− u(ξ) + F ′(U(ξ))

∫ ∞
−∞

w(ξ − ξ′)u(ξ′)dξ′. (3.83)

It can be proven that L∗ also has a one-dimensional null-space [82], that is, it is
spanned by some function V (ξ). Equation (79) thus has a bounded solution if and
only if

B0φ
′
1(τ) =

∫ ∞
−∞

V (ξ)h1(ξ, φ/ε)dξ (3.84)

where

B0 =

∫ ∞
−∞

V (ξ)U ′(ξ)dξ. (3.85)
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Note that B0 is strictly positive since V and U ′ can be chosen to have the same
sign [82]. Substituting for h1 using equations (81) and (78) and performing an
integration by parts leads to a differential equation for the phase φ:

dφ

dτ
= c+ εΦ1

(
φ

ε

)
, (3.86)

where

Φ1

(
φ

ε

)
=

1

B0

∫ ∞
−∞

∫ ∞
−∞

w(ξ − ξ′)A
(
ξ′ + φ

ε

)
(3.87)

×
[
V ′(ξ)F (U(ξ′)) + V (ξ)

dF (U(ξ′))

dξ′

]
dξ′dξ.

The phase equation (86) is analogous to the one derived by Keener for a reaction-
diffusion model of calcium waves [130]. It implies that there are two distinct types
of behavior. If the right-hand side of equation (86) is strictly positive then there
exists a pulsating front of the approximate form U(x−φ(t)) and the average speed of
propagation is c = ε/T with

T =

∫ ε

0

dφ

c+ εΦ1

(
φ
ε

) . (3.88)

On the other hand, if the right-hand side of equation (86) vanishes for some φ then
there is wave propagation failure.

In the case of a Heaviside firing rate function F (u) = H(u− κ), it is possible to
derive an explicit expression for the wavespeed c [74]. The solution for the unperturbed
wavefront U(ξ) was derived in §3.1, so it is only necessary to determine the solution
V (ξ) of the adjoint equation (83), which becomes

cV ′(ξ) + V (ξ) = − δ(ξ)

U ′(0)

∫ ∞
−∞

w(ξ′)V (ξ′)dξ′. (3.89)

This can be integrated to give

V (ξ) = −Θ(ξ)e−ξ/c. (3.90)

Given the solutions for U(ξ) and V (ξ), it can then be shown that (87) reduces to the
form

B0Φ1

(
φ

ε

)
= W (0)A

(
φ

ε

)
+

∫ ∞
0

A

(
φ− ξ
ε

)[
W (ξ)

c
− w(ξ)

]
dξ, (3.91)

where

W (ξ) =

∫ ∞
0

e−y/c0w(y + ξ)dy ≡ −cU ′(ξ), (3.92)

and

B0 =
1

c0

∫ ∞
0

e−ξ/c0W (ξ)dξ. (3.93)

Keeping only the lowest order contribution to Φ1, equation (88) reduces to

T =

∫ ε

0

dφ

c0 + εΓ(c0)A
(
φ
ε

) (3.94)
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with Γ(c0) = W (0)/B0. For the sake of illustration, suppose that the periodic
modulation functions K and A are pure sinusoids . Setting A(x) = ρ sin(2πx)/(2π) in
equation (94) we find that

T =
ε√

c20 − ε2ρ2Γ(c0)2
(3.95)

and, hence,

c =
√
c20 − ε2ρ2Γ(c0)2/(2π)2. (3.96)

This establishes that a sinusoidally varying heterogeneous neural medium only
supports a propagating wave if the velocity c0 of the (unique) solution of the
corresponding homogeneous medium satisfies the inequality

c0 ≥ ερΓ(c0). (3.97)

For the particular example of an exponential distribution (1) with σ = 1, we have
c0 = (1− 2κ)/(2κ) and Γ(c0) = 1 + c0 so that

c = c0
√

1− γ0ρ2ε2, γ0 =
1

2π(2κ− 1)
. (3.98)

3.5.2. Interfacial dynamics. The homogenization method provides a reasonable
estimate for the mean wavespeed and the critical amplitude ρ for wave propagation
failure, provided that the spatial period ε� 1. As shown by Coombes and Laing [102]
in the case of a Heaviside firing rate function, a more accurate estimate for the
wavespeed for larger values of ε can be obtained by analyzing the dynamics of the
interface between high and low activity states, provided that the amplitude of perioidic
modulations is not too large [102]. The basic idea is to change to a co-moving frame of
the unperturbed system, u = u(ξ, t) with ξ = x− c0t such that equation (47) becomes

−c0uξ + ut = −u+

∫ ∞
−∞

w(ξ + c0t, y)F (u(y − c0t, t)dy, (3.99)

with w given by equation (74) and F (u) = H(u−κ). The moving interface (level set)
is then defined according to the threshold condition

u(ξ0(t), t) = κ. (3.100)

Differentiating with respect to t then determines the velocity of the interface in the
co–moving frame according to

dξ0
dt

= −ut(ξ0(t), t)

uξ(ξ0(t), t)
. (3.101)

As in the previous homogenization method, suppose that for ρ = 0 there exists a
traveling front solution U(ξ) of the homogeneous equation (7) with speed c0. Now
make the approximation uξ(ξ0(t), t) = U ′(0), which is based on the assumption that
for small amplitudes ρ, the slope of the traveling front varies sufficiently slowly. Setting
ξ = ξ0(t) in equation (99) and using equation (3), it is then straightforward to show
that [102]

dξ0
dt

= ρc0

∫ ∞
0

w(y)K(ξ0 + c0t− y)

κ−
∫ ∞

0

w(y)dy

. (3.102)
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In order to match up with the previous method, let K(x) = sin(2πx/ε) and w(x) =
e−|x|/2. Then c0 = (1− 2κ)/(2κ) and [102]

dξ0
dt

= c0ργ(ε) sin

[
2π

ε
(ξ0(t) + c0t) + φ0(ε)

]
, (3.103)

with

γ(ε) =
1

2κ− 1

1√
1 + (2π/ε)2

, tanφ0(ε) =
2π

ε
. (3.104)

The final step is to look for a T–periodic solution of equation (103) such that
ξ0(t) = ξ0(t+ T ). Setting x0 = ξ0 + c0t with x0 ∈ [0, ε] and integrating gives∫ x0

0

dx

1 + ργ sin(2πx/σ + φ)
= c0t. (3.105)

This may be evaluated using a half angle substitution,

c0t =
ε

π

1√
1− ρ2γ2

tan−1 z√
1− ρ2γ2

∣∣∣∣∣
z0(t)+ργ

z0(0)+ργ

, (3.106)

where z0(t) = tan[(2πx0(t)/ε+φ)/2] and x0(0) = 0. A self-consistent pulsating fronnt
solution is then obtained by imposing the condition ε = x0(T ), which then determines
the effective speed c = ε/T to be

c = c0
√

1− ρ2γ(ε)2. (3.107)

Note that on Taylor expanding γ(ε) to first order in ε, equation (107) recovers
the corresponding result (98) obtained using homogenization theory. However, the
expression derived using interfacial dynamics is more accurate when the period ε
increases, provided that the amplitude ρ does not become too large.
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Figure 12. Pulsating pulse solutions in a 1D excitatory neural field with linear
adaptation and Heaviside firing rate function, see equation (31). The threshold
κ = 0.2, strength of adaptation β = 2.0, and adaptation rate constant is ε = 0.04.
The weight distribution is given by w(x, y) = ρw(x−y) sin(2πx/ε) with 2πε = 0.3
and w(x) an exponential weight function. (a) Single bump solution for ρ = 0.3.
The interior of the pulse consists of non-propagating, transient ripples. (b) Multi–
bump solution for ρ = 0.8. The solitary pulse corresponds to the envelope of
a multiple bump solution, in which individual bumps are non-propagating and
transient. The disappearance of bumps at one end and the emergence of new
bumps at the other end generates the propagation of activity [101].

Both of the above methods can be extended to the case of periodically modulated
traveling pulses (pulsating pulses), see [101] for the homogenization case, in which
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there are two threshold crossing points. However, one simplifying assumption of
both approaches is that in the presence of periodically modulated weights additional
threshold crossing points do not occur. Numerical solutions of a neural field
equation with linear adaptation have shown that in the case of large amplitude
modulations, a puslating pulse can develop multiple threshold crossing points [101].
That is, the traveling wave represents the envelope of a multibump solution, in which
individual bumps are nonpropagating and transient, see Fig. 12. The appearance
(disappearance) of bumps at the leading (trailing) edge of the pulse generates the
coherent propagation of the pulse. Wave propagation failure occurs when activity
is insufficient to maintain bumps at the leading edge. It would be interesting to
extend the homogenization and interfacial methods to account for multiple threshold
crossings, as well as other types of inhomogenieties at various spatial scales, some of
which could be in the form of quenched disorder [131].

3.6. Spatially structured oscillations and spiral waves.

Spatially localized neural population oscillations arise both in vivo and in vitro and
may be observed experimentally using multi–electrode arrays or voltage–sensitive
dye imaging [5]. For example, when neocortical or hippocampal in vitro slices are
treated with an inhibitory neurotransmitter antagonist such as bicuculline, effectively
eliminating inhibition, a localized current stimulus evokes population activity. Such
activity may take the form of a spatially localized group of neurons whose population
activity oscillates around 1–10Hz [1, 90, 104]; during each oscillation cycle the
population may emit elevated activity that propagates as a traveling pulse [5, 90]
or a spiral wave [18, 132]. Spiral waves provide a mechanism for spatially organizing
extensive episodes of periodic activity, effectively reducing the dimensionality of the
dynamics [132]. A number of organizing mechanisms for such spatiotemporal activity
have been suggested [5, 100]. First, a spatially localized pacemaker oscillator could
excite successive neighbors in an excitable network. (One possible network mechanism
for generating a pacemaker oscillator in an excitable neural medium would be via an
instability of a spatially localized breather in the presence of input inhomegenities
[112, 133], see §4.3.3). Alternatively, gradual phase delays could propagate in space
across an oscillatory neural medium, see below. It follows that activity that propagates
away from a focused region of high frequency oscillations may either travel faster than
the characteristic time-scale set by the oscillating region, according to dynamics of
an excitable medium, or at a speed set by the period of the oscillating core if the
rest of the medium is oscillatory as well. Conceivably, this may establish a dynamical
systems explanation for the wide range in speed at which seizures spread across the
cortex, which can be anywhere from 0.05mm/s to 10cm/s [1].

Here we briefly highlight a network mechanism for generating spiral waves in
an oscillatory neural medium. Troy and Shusterman [103, 104] have shown how a
neural field model with strong linear adaptation, see equation (31), can act as an
oscillatory network that supports target patterns and spiral waves consistent with
experimental studies of tangential cortical slices [18]. (For the analysis of spiral waves
in the corresponding excitable regime, see [134]). However, since the linear form
of adaptation used in these studies is not directly related to physiological models
of adaptation, it is difficult to ascertain whether or not the strength of adaptation
required is biologically reasonable. This motivated a more recent study of spiral
waves in a 2D neural medium involving a nonlinear, physiologically based form of
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Figure 13. Limit cycle oscillations in the space–clamped system (109) for a
piecewise linear firing rate function (8) with threshold κ = 0.01, and gain γ = 4.
(a) Bifurcation diagram showing fixed points u of the system as a function of β
for τq = 80. (b) Corresponding phase–plane plot of q versus u (gray curve) for
β = 4, showing that the system supports a stable limit cycle [61].
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Figure 14. Target patterns in a 2D neural field with synaptic depression induced
by an initial conditiona stimulus specified by equation (110) at t = 0, where χ = 1
and ζ = 25. Initially, an activated state spreads radially outward, across the entire
medium as a traveling front. Then, the localized oscillating core of activity emits
a target wave with each oscillation cycle. Eventually, these target waves fill the
domain. Each target wave can be considered as a phase shift in space of the
oscillation throughout the medium; they travel with the same speed as the initial
front. Parameters are τq = 80, β = 4, σ = 4 and κ = 0.01 [62].

adaptation, namely, synaptic depression [62]. The latter model takes the form

∂u(r, t)

∂t
= −u(r, t) +

∫
w(|r− r′|)q(r′, t)F (u(r′, t))dr′

∂q(r, t)

∂t
=

1− q(r, t)
τq

− βq(r, t)F (u(r, t)). (3.108)

It can be shown that the space–clamped model

u̇(t) = −u(t) + q(t)F (u(t)), q̇(t) =
1− q(t)
τq

− βq(t)F (u(t)), (3.109)

supports limit cycle oscillations provided that the firing rate function has finite gain.
For example, in the case of the piecewise linear firing rate function (8), oscillations
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arise via a subcritical Hopf bifurcation of a high activity fixed point, see Fig. 13. One
then finds that the full network model (108) supports a spatially localized oscillating
core that periodically emits traveling pulses [62]. Such dynamics can be induced by
taking an initial condition of the form

(u(r, 0), q(r, 0)) = (χe−(x2+y2)/ζ2

, 1), (3.110)

where χ and ζ parameterize the amplitude and spatial constant of the initial state. An
example of a pulse-emitting core is shown in Fig. 14, which oscillates at a frequency
of roughly 3Hz. Pulses are emitted each cycle, and travel at a speed of roughly
30cm/s, which is determined by the period of the oscillations; the latter is set by
the time constant of synaptic depression. The initial emission of spreading activity
appears as a traveling front which propagates from the region activated by the input
current into the surrounding region of zero activity; it travels at the same speed as
the subsequent target waves. The front converts each region of the network into an
oscillatory state that is phase–shifted relative to the core, resulting in the appearance
of a radially symmetric target pattern. Spiral waves can also be induced by breaking
the rotational symmetry of pulse emitter solutions [62]. More specifically, if the target
pattern produced by the emitter has the top and bottom halves of its domain phase
shifted, then the dynamics evolves into two counter-rotating spirals on the left and
right halves of the domain. Closer inspection of one of these spirals reveals that it has
a fixed center about which activity rotates indefinitely as shown in Fig. 15.
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Figure 15. Spiral wave generated by shifting the phase of the top and bottom
halves of the target pattern shown in Fig. 14. The period of the spiral wave
oscillation is roughly the same as the period of the oscillation in the space-clamped
system. All patches of neurons are oscillating at the same frequency, but phase-
shifted as coordinates are rotated about the central phase singularity [62].

4. Persistent spatially localized activity states (bumps)

In §3 we considered traveling wave solutions of excitatory neural field equations. This
was partly motivated by experimental studies of traveling waves in disinhibited cortical
slices, as well as the fact that epileptic seizures are often associated with greatly
enhanced levels of recurrent excitation. Under normal operating conditions, cortical
circuits have significant levels of synaptic inhibition, which tends to preclude the
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propagation of excitable traveling waves. (Oscillatory phase waves can still occur,
however [100]). One new class of solution that emerges in the presence of nonlocal
synaptic inhibition (lateral inhibition) is a stationary pulse solution, also known as an
activity bump. Such bumps are typically coexistent with a stable low activity state
(bistability) so that an initial stimulus is needed in order to transition from the low
activity state to the bump. However, the bump persists after removal of the stimulus,
so that the bump represents a persistent spatially localized activity state [88].

One of the reasons why persistent activity bumps are of interest is that they are
thought to arise in cortical circuits performing certain spatial working memory tasks.
Working memory involves cortical “memory neurons” that establish a representation
of a stimulus that persists after the stimulus is removed. A typical experiment is a
delayed response task, in which a primate is required to retain information regarding
the location of a sensory cue across a delay period between the stimulus and behavioral
response. Physiological recordings in prefrontal cortex have shown that spatially
localized groups of neurons fire during the recall task and then stop firing once the
task has finished [8]. The stimulus response of a cell is characterized by a smooth
tuning curve that is peaked at a preferred spatial cue and varies from cell to cell. At
the network level the memory of cue location is stored as an activity bump. Persistent
activity bumps occur in a number of other systems that encode directional or spatial
information, including head direction cells in thalamus and basal ganglia [7] and place
cells in the hippocampus [135].

In the following we review some of the analytical methods that have been used to
study persistent localized activity states in neural fields. (A very different mechanism
for generating a spatially localized persistent state is via a Turing instability on a
compact domain, which will be discussed in §5). We begin in §4.1 by describing
Amari’s original construction of exact bump solution for a 1D scalar neural field
equation with Heaviside firing rate function [12]. We show how stable bumps can
occur in the case of a so–called Mexican hat weight function representing short–
range excitation and long–range lateral inhibition. The stability of the bump depends
on whether or not perturbations of the bump boundary (threshold crossing points)
grow or decay. In §4.2, we extend the analysis to the case of radially symmetric
2D bumps. Stability is now determined by the effects of perturbations on the circular
bump boundary, which can be analyzed using Fourier methods and properties of Bessel
functions [133,136]. We also briefly describe some of the more complex spatiotemporal
dynamics that can arise via instabilities of 2D bumps, including multibump solutions,
rotating waves and breathing pulses. In §4.3 we discuss various studies concerned with
how the location of an activity bump is affected by external stimuli, which is important
because bump location is thought to encode information about the stimulus.

4.1. Exact bump solutions in a 1D neural field with lateral inhibition

Existence of a 1D bump. Let us return to the scalar neural field equation (31) with
Heaviside rate function F (u) = H(u − κ). This equation was first analyzed in detail
by Amari [12], who showed that the network can support a stable stationary bump
solution when the weight distribution w(x) is given by a so–called Mexican hat function
with the following properties:

(i) w(x) > 0 for x ∈ [0, x0) with w(x0) = 0

(ii) w(x) < 0 for x ∈ (x0,∞)



CONTENTS 44

(iii) w(x) is decreasing on [0, x0]

(iv) w(x) has a unique minimum on R+ at x = x1 with x1 > x0 and w(x) strictly
increasing on (x1,∞).

A typical choice of function that satisfies these properties is the so–called Mexican hat
function, which is given by a difference–of–Gaussians or a difference of exponentials.
The latter takes the form

w(|x− x′|) = e−|x−x
′| −Ae−|x−x

′|/σ. (4.1)

The Mexican weight function is based on the assumption that there is short–range
excitation and longer–range inhibition. Whether or not a Mexican hat function is
realistic from the biological perspective depends on which classes of neurons are being
taken into account by the neural field model. For example, in visual cortex it is known
that excitatory pyramidal cells make both local synaptic contacts as well as longer–
range horizontal connections, see §5.2. However, the latter innervate both excitatory
and local inhibitory neurons so they could have a net inhibitory effect, thus providing
a possible source of long–range inhibition; whether long-range connections generate
net excitation or net inhibition also depends on stimulus conditions [137].
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Figure 16. Construction of a solitary pulse in the Amari model. (a) The
Mexican hat weight distribution w. (b) Integral W (x) of w(x). Horizontal
line shows the threshold value κ whose intersections with W (2∆) determine
the allowed stationary pulse solutions. (c) Unstable pulse (broken) acts as
a separatrix between the stable pulse and the rest state. (d) Unstable pulse
acts as a separatrix between a wavefront and the rest state.

Consider an equilibrium solution u(x, t) = U(x) satisfying

U(x) =

∫ ∞
−∞

w(x− x′)H[U(x′)− κ]dx′. (4.2)
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Let R[U ] = {x|U(x) > κ} be the region over which the field is excited (superthreshold).
Equation (2) can then be rewritten as

U(x) =

∫
R[U ]

w(x− x′)dx′. (4.3)

Exploiting the fact that any solution can be arbitrarily translated so that it is centered
at the origin, we define a stationary pulse solution of width ∆ to be one that is excited
over the interval (−∆,∆). Let

W (x) =

∫ x

0

w(y)dy, Wm = max
x>0

W (x), W∞ = lim
x→∞

W (x) (4.4)

such that W (0) = 0 and W (−x) = −W (x). For a bump of width ∆, equation (3)
reduces to the form

U(x) = W (x+ ∆)−W (x−∆). (4.5)

Since U(∆) = κ, we obtain the following necessary condition for the existence of a
bump:

W (2∆) = κ. (4.6)

(In order to complete the proof of existence, it is necessary to check that there are no
other threshold crossing points. This can be achieved in the case of a Mexican hat
weight distribution [12], and is straightforward to verify numerically). It can also be
shown that a bump is stable provided the condition W ′(2∆) < 0 is satisfied, see below.
The existence and stability of activity bumps for a given κ can thus be determined
graphically as illustrated in figure 16(b). For a certain range of values of κ > 0 one
finds bistability between a stable bump and a rest state for which R[U ] = ∅.

Stability of a 1D bump. The linear stability of a bump can be determined by setting
u(x, t) = U(x) + p(x)eλt and expanding to first order in p [69,79,133,138]. This leads
to the eigenvalue equation

(λ+ 1)p(x) =

∫ ∞
−∞

w(x− x′)δ(U(x′)− κ)p(x′)dx′. (4.7)

Using the identity

δ(U(x)− κ) =

(
δ(x−∆)

|U ′(∆)|
+
δ(x+ ∆)

|U ′(−∆)|

)
, (4.8)

and setting

|U ′(∆)| = |U ′(−∆)| ≡ γ−1 = w(0)− w(2∆), (4.9)

we have the eigenvalue equation

(λ+ 1)p(x) = Lp(x) ≡ γ (w(x−∆)p(∆) + w(x+ ∆)p(−∆)) . (4.10)

Following Guo and Chow [138], we now restrict x to the interval x ∈ [−∆,∆], so that
L becomes a compact linear operator acting on the space C[−∆,∆] of continuous,
integrable functions over [−∆,∆] (with an appropriately defined norm). The linear
problem thus reduces to finding the spectrum of L. Since L is compact, it can be
proven that the eigenvalues of L only have zero as an accumulation point [107],
implying that λ = −1 constitutes the essential spectrum. The discrete spectrum
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is obtained by setting x = ±∆ in the eigenvalue equation (10) to give the pair of
equations

(λ+ 1)p+ = γ (w(0)p+ + w(2∆)p−) (4.11)

(λ+ 1)p− = γ (w(−2∆)p+ + w(0)p−) , (4.12)

where p± = p(±∆). This has the solutions p− = ±p+ with corresponding eigenvalues

λ± = −1 + γ(w(0)± w(2∆)). (4.13)

Finally, using the fact that γ−1 = w(0) − w(2∆) we deduce that λ− = 0 (reflecting
the translation invariance of the system) and λ+ = γw(2∆). Thus the bump is stable
if w(2∆) = W ′(2∆) < 0.

Note that the discrete spectrum is determined completely in terms of the
perturbations p± = p(±∆). This explains why it is also possible to analyze the
stability of the bumps by restricting attention to the effects of perturbations at the
boundaries of the activity bump as originally formulated by Amari [12]. In particular,
if u(x, t) = U(x) + εp(x, t) = 0 at x = x±∆ + εa±(t) with ε� 1, then

0 = U(±∆ + εa±(t)) + εp(±∆ + εa±(t), t)

= U(±∆) + εU ′(±∆)a±(t) + εp(±∆, t) +O(ε2),

that is,

a±(t) = ±γp(±∆, t)

since U(±∆) = 0 and U ′(±∆) = ∓γ−1. It follows that p− = p+ generates a uniform
expansion of the bump (a− = −a+) and p− = −p+ generates a shift in the center of
the bump (a− = a+).

There have been various extensions of Amari’s original analysis of 1D bumps.
Kishimoto and Amari [81]) proved the existence of a solitary pulse for a smooth
sigmoidal nonlinearity F rather than a Heaviside using a fixed point theorem. Pinto
and Ermentrout used singular perturbation theory (see §3.3.2) to construct a pulse
solution for smooth F and slow linear adpatation [69]. More recently, Faugeras
et. al. [85, 86] have used a combination of local bifurcation theory, degree theory
and multiparameter continuation schemes to study the local and global structure of
stationary solutions to neural field equations with smooth F . Other extensions include
weight distributions that are not of the lateral inhibition type (for which multiple bump
states can arise) [28, 88], spiking rather than rate-based models [139, 140], weakly
interacting bumps [105], and bumps in adaptive neural fields [61,64,141]. In the latter
case, adaptation can induce a bump instability leading to the formation of a traveling
pulse.

Bumps in piecewise smooth neural fields. Considerable care must be taken when
analyzing the stability of bumps in Heaviside neural fields with a nonlinear form
of adaptation such as synaptic depression or spike frequency adaptation [63]. For
example, suppose that we set F (u) = H(u − κ) in equation (49). This results in
a piecewise–smooth neural field equation due to the fact that there is an exposed
Heaviside function in the dynamics of the depression variable. A stationary bump
solution (U(x), Q(x)) with associated excited region R[U ] = (−∆,∆) satisfies the pair
of equations

U(x) =

∫ ∆

−∆

Q(x′)w(x− x′)dx′,



CONTENTS 47

0 0.01 0.02 0.03
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

∆

κ = 0.7

κ = 0.1

x

 U(x)

Q(x)

β

Q+

Q-

(a) (b)

Figure 17. 1D bump in a Heaviside neural field with synaptic depression
and Mexican hat weight function (1). (a) Example of a bump profile showing
discontinuity in depression variable with Q+ = 1 and Q− = (1 + τqβ)−1. (b)
Existence curves relating bump width ∆ to amplitude of synaptic depression β
for different values of κ. Black (gray) portions of curves indicate bumps that
are numerically stable (unstable). Other parameter values are A = 0.6, σ = 4,
τq = 20. (b)

Q(x) = 1− τqβ

1 + τqβ
H(U(x)− κ).

Clearly the local stability of such a solution cannot be determined by linearizing
the Heaviside version of equation (49) due to the discontinuity in Q(x), see Fig.
17(a). Formally speaking, one could take F (u) to be a smooth sigmoid, carry out the
linearization about the bump solution and construct an associated Evans function.
The Evans function could then be evaluated analytically by taking the high–gain
limit of the sigmoid. However, such a limit is singular and incorrectly predicts that
the whole upper branch of each existence curve shown in Fig. 17 is stable. The
breakdown in linear stability analysis can also be seen by considering an arbitrarily
small perturbation of the bump that shifts the location of the bump boundary.
That is, suppose u(x, t) = U(x) + εψ(x, t) and q(x, t) = Q(x) + εϕ(x, t) such that
u(∆ + εa+(t), t) = κ = u(−∆ + εa−(t), t) with a± ≈ ±ψ(±∆, t)/|U ′(∆)|. A small
shift in the location of the bump boundary means that in an infinitesimal neighborhood
of the bump boundary the synaptic depression variable will start to switch its steady–
state value from Q+ = 1 to Q− = (1 + αβ)−1 or vice-versa according to equation (49
). That is, ϕ(x, t) will undergo O(1/ε) changes over a time-scale determined by τq.
However, this doesn’t necessarily imply that the bump solution is unstable, since the
region over which ϕ(x, t) = O(1/ε) may shrink to zero.

The above observation motivates the introduction of the nonlocal auxiliary field
Φ(x, t) [63],

Φ(x, t) =

∫ ∆+εa+(t)

−∆+εa−(t)

w(x− x′)ϕ(x′, t)dx′, (4.14)

which will remain O(1) provided that ϕ(x, t) is O(1/ε) over an an interval of O(ε).
Suppose that we now restrict the class of perturbations ψ(x, t) such that ψ(±∆, t) do
not change sign for any t. We can then derive a system of linear equations for the
fields ψ(x, t) and Φ(x, t) by substituting the solutions u(x, t) = U(x) + εψ(x, t) and
q(x, t) = Q(x) + εϕ(x, t) into equation (49) and expanding to first order in ε. Setting
ψ(x, t) = ψ(x)eλt and Φ(x, t) = Φ(x)eλt with λ real (so that ψ(±∆, t) do not change
sign) and solving for Φ(x) then leads to the eigenvalue equation [63]
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(λ+ 1)ψ(x) = γw(x+ ∆)ψ(−∆)G(ψ(−∆))

(
1− βH(ψ(−∆))

λ+ τ−1
q + β

)
+ γw(x−∆)ψ(∆)G(ψ(∆))

(
1− βH(ψ(∆))

λ+ τ−1
q + β

)
(4.15)

with

G(ψ) =

{
1 if ψ > 0

(1 + τqβ)−1 if ψ < 0
, γ−1 = |U ′(±∆)|. (4.16)

We can now determine the (real) discrete spectrum by setting x = ±∆ and specifying
the signs of ψ(±∆). We thus have three distinct cases as illustrated in Fig. 18: (i)
ψ(±∆) > 0 (expansions), (ii) ψ(±∆) < 0 (contractions), and (iii) ψ(±∆) having
opposite signs (shifts). The corresponding eigenvalue solutions as a function of the
strength of synaptic depression β are shown in Fig. 19. For a wide range of parameter
values, the nonzero eigenvalue branch associated with shift perturbations crosses zero
first, and thus induces a bump instability. (There is also a zero eigenvalue due to
translation symmetry). This can be confirmed numerically, whereby increasing β
destabilizes the bump leading to a traveling wave solution [63]. Note that since our
analysis is restricted to real eigenvalues, we can only derive sufficient conditions for
instability (rather than stability) of the bump. However, complex eigenvalues do not
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appear to contribute to instabilities, at least for the given neural field model with
synaptic depression.

4.2. Exact bump solutions in a 2D neural field with lateral inhibition

There have been relatively few studies regarding the existence and stability of bumps
in 2D neural fields. Laing and Troy [88] introduced PDE methods to study symmetry–
breaking of rotationally symmetric bumps and the formation of multiple bump
solutions. However, such PDE methods can only be applied to specific forms of weight
distribution. In particular, they break down if w has compact support. In terms of
the original integrodifferential equations, Taylor [142] and Werner and Richter [143]
classified some of the disc and annulus shaped solutions for Heaviside rate functions,
and analyzed their stability with respect to radial perturbations. However, as shown
by Folias and Bressloff [133,136] and Owen et. al. [144], in order to determine correctly
the linear stability of radially symmetric solutions, it is necessary to take into account
all possible perturbations of the circular boundary. The resulting spectral problem can
be solved using Fourier methods. (An analysis of 2D bumps also appears in a book
by Amari, but unfortunately the book has never been translated from the Japanese
[Amari private communication]).

Existence of a 2D bump. The starting point of the analysis of 2D bumps is the scalar
neural field

∂u(r, t)

∂t
= −u(r, t) +

∫
R2

w(|r− r′|)H(u(r′, t)− κ)dr′. (4.17)

Consider a circularly symmetric bump solution of radius ∆ such that u(r, t) = U(r)
with U(∆) = κ, U(r) ≷ κ for r ≶ ∆ and U(r) → 0 as r → ∞. Imposing such
constraints on a stationary solution of equation (17) gives

U(r) =

∫ 2π

0

∫ ∆

0

w(|r− r′|)r′dr′dφ′. (4.18)

The double integral in (18) can be calculated using the Fourier transforms and Bessel
function identities [133]. First, express w(r) as a 2D Fourier transform using polar
coordinates:

w(r) =
1

2π

∫
R2

ei(r·k)ŵ(k)dk =
1

2π

∫ ∞
0

(∫ 2π

0

eirρ cos(θ−φ)ŵ(ρ)dθ

)
ρdρ,

where ŵ denotes the Fourier transform of w and k = (ρ, θ). Using the integral
representation

1

2π

∫ 2π

0

eirρ cos(θ−φ)dθ = J0(ρr),

where J0 is the Bessel function of the first kind, we express w in terms of its Hankel
transform of order zero,

w(r) =

∫ ∞
0

ŵ(ρ)J0(ρr)ρdρ, (4.19)

which, when substituted into equation (18), gives

U(r) =

∫ 2π

0

∫ ∆

0

(∫ ∞
0

ŵ(ρ)J0(ρ|r− r′|)ρdρ
)
r′dr′dφ′.
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Reversing the order of integration and using the addition theorem

J0

(
ρ

√
r2 + r′2 − 2rr′ cosφ′

)
=

∞∑
m=0

εmJm(ρr)Jm(ρr′) cosmφ′ (4.20)

where ε0 = 1 and εn = 2 for n ≥ 1, we thus have

U(r) = 2π∆

∫ ∞
0

ŵ(ρ)J0(ρr)J1(ρ∆)dρ. (4.21)

We have used the identity J1(ρ∆)∆ = ρ
∫∆

0
J0(ρr′)r′dr′.
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Figure 20. Two–dimensional bumps. (a) Plots relating bump radius ∆ to
threshold κ for Mexican hat function (22). Black (grey) curves indicate stable
(unstable) branches. Weight parameters are A = 0.3, σ = 4. (b) Bump profile
when κ = 0.06 (indicated by dashed horizontal line).

For the sake of illustration consider a Mexican hat weight distribution given by
a combination of modified Bessel functions of the second kind

w(r) =
2

3π
(K0(r)−K0(2r)−A(K0(r/σ)−K0(2r/σ))) . (4.22)

Such a weight function is qualitatively similar to a difference of exponential weight
functions w(r) = (2π)−1(e−r −Ae−r/σ). Moreover, following previous studies of two–
dimensional neural field models, equation (17) can be transformed into a fourth order
PDE, which is computationally less expensive to solve numerically [62,88,133,134,144].
Using the fact that the corresponding Hankel transform of K0(sr) is H(ρ, s) =
(ρ2 + s2)−1, we have

ŵ(ρ) =
2

3π
(H(ρ, 1)−H(ρ, 2)−A(H(ρ, 1/σ)−H(ρ, 2/σ))). (4.23)

Thus, the integral (21) can be evaluated explicitly by substituting (23) into (21), and
using the identity∫ ∞

0

1

ρ2 + s2
J0(ρr)J1(ρ∆)dρ ≡ I(∆, r, s) =

{
1
sI1(s∆)K0(sr), r > ∆,

1
s2∆ −

1
sI0(sr)K1(s∆), r < ∆,

where Iν is the modified Bessel function of the first kind of order ν. Thus, the
stationary bump U(r) has the form

U(r) =
4∆

3
(I(∆, r, 1)− I(∆, r, 2)−A(I(∆, r, 1/σ)− I(∆, r, 2/σ))) . (4.24)



CONTENTS 51

The bump radius may then be computed by finding the roots ∆ of the equation
κ = U(∆) with

U(∆) =
4∆

3

(
I1(∆)K0(∆)− 1

2
I1(2∆)K0(2∆) (4.25)

−A(σI1(∆/σ)K0(∆/σ)− σ

2
I1(2∆/σ)K0(2∆/σ))

)
.

(Note that the threshold condition is a necessary but not sufficient condition for
proving existence of a 2D bump. One also has to check that there are no other
threshold crossing points; this can be established for a purely excitatory neural field
with monotonically decreasing weight function [133]). In the case of a Mexican hat
weight distribution, there is typically a maximum of two bump solutions as illustrated
in Fig. 20 for w given by equation (22). The narrower bump is always unstable
as found in 1D. However, the stable upper branch can develop instabilities as the
threshold is decreased leading to the formation of multiple bump solutions that break
the rotational symmetry [88,144], see below.

Stability of a 2D bump. In order to determine linear stability of a bump solution
U(r), substitute u(r, t) = U(r) + p(r)eλt into equation (17) and expand to first order
in p using equation (18). This gives the eigenvalue equation

(λ+ 1)p(r) =

∫
w(|r− r′|)δ(U(r′)− κ))p(r′)dr′

=
1

|U ′(∆)|

∫ ∞
0

∫ 2π

0

w(|r− r′|)δ(r′ − a)p(r′)dθ′r′dr′

=
∆

|U ′(∆)|

∫ 2π

0

w(|r− a′|)p(a, φ′)dφ′, (4.26)

where a′ = (a, φ′). We can now proceed along similar lines to the 1D case by
reformulating the problem in terms of finding the spectrum of a compact linear
operator acting on continuous, bounded functions ψ(r, φ) defined on the disc of radius
r ≤ ∆. One class of solution to equation (27) consists of functions p(r) that vanish on
the boundary, ψ(a, φ) = 0 for all φ, such that λ = −1. This belongs to the essential
spectrum, which does not contribute to any instabilities. The discrete spectrum is
determined by setting r = a ≡ (∆, φ) in equation (26):

(λ+ 1)p(∆, φ) =
∆

|U ′(∆)|

∫ 2π

0

w

(
2∆ sin

(
φ− φ′

2

))
p(∆, φ′)dφ′ (4.27)

where we have simplified the argument of w(r) using

|a− a′| =
√

2∆2 − 2∆2 cos(φ− φ′) = 2∆ sin

(
φ− φ′

2

)
.

Equation (27) can be solved in terms of Fourier eigenmodes, that is, p(∆, φ) = Pn(φ) =
cneinφ + cne−inφ with corresponding eigenvalue λn satisfying

λn = −1 +
∆

|U ′(∆)|

∫ 2π

0

w(2∆ sin(φ/2))e−inφdφ. (4.28)

Note that λn is real since (after rescaling φ)

Im{λn} = − 2∆

|U ′(∆)|

∫ π

0

w(2∆ sin(φ)) sin(2nφ)dφ = 0,
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i.e. the integrand is odd-symmetric about π/2. Hence,

λn = Re{λn} = −1 +
∆

|U ′(∆)|

∫ 2π

0

w(2∆ sin(φ/2)) cos(nφ)dφ, (4.29)

with the integrand even-symmetric about π/2. The Fourier eigenmodes Pn(φ) can be
related to perturbations of the bump boundary. That is, if u(r, t) = U(r)+εp(r, t) = 0
at r ≡ (r, φ) = (∆+εa(φ, t), φ), where εa(φ, t) with ε� 1 denotes a small perturbation
of the circular bump boundary at polar coordinate (∆, φ) at time t, then

κ = u(∆ + εa(φ, t), φ, t) = U(∆ + εa(φ, t)) + εp(∆ + εa(φ, t), φ, t),

≈ U(∆) + εU ′(∆)a(φ, t) + εp(∆, φ, t),

Since U(∆) = κ, it follows that

a(φ, t) ≈ p(∆, φ, t)

|U ′(∆)|
.

Thus, one can decompose time-dependent perturbations of the circular boundary
in terms of the Fourier modes [cneinφ + cne−inφ]eλt. Some examples of low–order
perturbations of the bump boundary shown in Fig. 21. It can be seen that the nth
order boundary perturbation has Dn symmetry, meaning the resulting solution has the
n reflectional and rotational symmetries of the dihedral group Dn. The perturbations
also have a simple geometric interpretation. For example n = 0 corresponds to a
uniform expansion or contraction of the bump, whereas n = 1 corresponds to a uniform
shift of the bump.

Figure 21. Low-order perturbations of a radially symmetric 2D bump exhibiting
Dn symmetry.

Since the n = 1 mode represents pure shifts of the bump solution, we expect
λ1 = 0 from translation symmetry. In order to verify this, we evaluate the integral
appearing in equation (29) using Bessel functions, along similar lines to the evaluation
of U(r), equation (21). That is,∫ 2π

0

w(|a− a′|) cos(nφ′)dφ′ =

∫ 2π

0

(∫ ∞
0

ŵ(ρ)J0(ρ|a− a′|)ρdρ
)

cosφ′dφ′

= 2π

∫ ∞
0

ŵ(ρ)Jm(ρ∆)Jm(ρ∆)ρdρ, (4.30)

after reversing the order of integration and using the addition theorem (20). Moreover,
differentiating equation (21) with respect to r gives

U ′(∆) = −2π∆

∫ ∞
0

ŵ(ρ)J1(∆ρ)J1(∆ρ)ρdρ. (4.31)
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Hence, the eigenvalue (29) can be rewrriten as

λn = −1 +

∫ ∞
0

ŵ(ρ)Jn(ρr)Jn(ρ∆)ρdρ∫ ∞
0

ŵ(ρ)J1(ρr)J1(ρ∆)ρdρ

. (4.32)

It immediately follows that λ1 = 0. Hence, the 2D bump is linearly stable if λn < 0
for all n 6= 1. In the particular case of an excitatory network (corresponding to setting
A = 0 in equation (22)), such that w(r) ≥ 0 for all r ≥ 0 , we have∫ 2π

0

w(2∆ sin(φ/2)) cos(nφ)dφ ≤
∫ 2π

0

w(2∆ sin(φ/2))| cos(nφ)|dφ

≤
∫ 2π

0

w(2∆ sin(φ/2))dφ,

so that λn ≤ λ0 for all n. Since λ1 = 0, it follows that λ0 ≥ 0 and, hence, an
excitatory neural field cannot support stable radially symmetric bumps. In general,
it is not possible to obtain analytical expressions for the eigenvalues. However, it
is straightforward to evaluate the integral expressions numerically, and one typically
finds that the low-order modes dominate. Using the Mexican hat function (22), Owen
et. al. [144] have shown how the upper branch of rotationally symmetric bumps (see
Fig. 20) can become unstable as the threshold is decreased towards zero, leading to
the formation of a stationary multibump solution that breaks continuous rotational
symmetry. The discrete rotational symmetry Dn of the resulting multibump solution
reflects the order n of the dominant eigenvalue λn at bifurcation. Interestingly, if
linear adapation is included in the neural field model, then these non–rotationally
symmetric solutions can undergo a secondary instability leading to the formation of
a rotating wave [88, 144]. Sufficiently strong adaptation can also destabilize a bump
leading to a traveling spot.

4.3. Stimulus–driven bumps

In many applications of neural field models, the spatial location of the peak of an
activity bump encodes information about a sensory stimulus or an item in working
memory or positional information, as in the head direction or oculomotor systems
[9, 145]. Hence, it is important to understand how the location of a bump is affected
by external stimuli. In this section we consider various studies regarding the effects of
external inputs on the location and stability of bumps.

Locking to a moving stimulus. Consider a scalar neural field with a time–dependent
input of the form I(x, t):

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞
−∞

w(x− x′)F (u(x′, t))dx′ + I(x, t), (4.33)

where w(x) is a Mexican hat function. First, suppose that the input is small and slowly
varying so we can write I(x, t) = δη(x, δt) for a small parameter δ. Furthermore,
assume that if δ = 0 then the network supports a stable bump solution U(x) centered
at x = 0. A simple perturbative argument can be used to determine how the bump
responds when 0 < δ � 1 [15]. That is, introduce the slow time variable τ = δt and
set u(x, t) = U(x + φ(τ)) + δu1(x, τ) where u1 is orthogonal to U ′(x). Substituting
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into equation (33), Taylor expanding to first order in δ and using the fact that U(x)
satisfies U(x) =

∫∞
−∞ w(x− x′)F (U(x′)dx′, we obtain the inhomogeneous equation

Lu1 ≡ −u1 +

∫ ∞
−∞

w(x− x′)F ′(U(x′ + φ))u1(x′, τ)

= U ′(x+ φ(τ))
dφ

dτ
− η(x, τ). (4.34)

Since the function u1(x) decays to zero as x → ±∞, we will assume that L acts on
the space L2(R) and introduce the generalized inner product

〈u|v〉 =

∫ ∞
−∞

F ′(U(x))u(x)v(x)dx (4.35)

for all u, v ∈ L2(R). With respect to this space, L is self-adjoint, since w(x) is assumed
to be an even function of x, and has a 1D null space spanned by U ′(x + φ). Hence,
taking the inner product of both sides of equation (34) with respect to U ′(x + φ)
and using the Fredholm alternative theorem shows that there only exists a bounded
solution for u1 if

dφ

dτ
=

∫
F ′(U(y + φ))U ′(y + φ)I(y, τ)dy∫
F ′(U(y + φ))U ′(y + φ)2dy

≡ F(φ, τ). (4.36)

It follows that the phase φ, which determines the location of the peak of the bump
will move so as to make F vanish. Since F ′ > 0 everywhere and U ′2 > 0 for all finite
y, the denominator of F is positive definite. Therefore, vanishing of F is equivalent
to the condition ∫

dF (U(y + φ))

dy
I(y, τ)dy = 0.

For a symmetric weight distribution, the bump solution U(x) is symmetric about
its peak at x = 0. This implies that F (U(y + φ)) is symmetric about y = −φ,
and dF/dy is anti-symmetric about y = −φ. In the simple case of a stationary
Gaussian input centered about x = x0, we see that the above integral vanishes if the
bump moves until its peak is located at φ = −x0. It also follows that the bump
can track the Gaussian input if it moves sufficiently slowly. In the special case of
a Gaussian stimulus moving with constant speed v, I(x, t) = I(x − vt), stimulus
locking can be analyzed by looking for traveling pulse solutions in the moving frame
ξ = x − vt. This particular problem has been addressed both for scalar neural fields
with Mexican hat weight distributions [146] and for purely excitatory neural fields
with linear adaptation [112,147], see below.

Neural field model for head–direction. Head direction cells in the brains of freely
moving rats represent the instantaneous head direction of the animal in the horizontal
plane irrespective of the animal’s location [7]. The internal representation of head
direction maintained by these cells is updated continually according to the head
movement of the animal, even in total darkness. A simple model for head–direction
was introduced by Zhang [29] in the form of a scalar neural field on a circular domain
with time–dependent weights (see also [148]). The basic equation takes the form

∂u

∂t
= −u(x, t) +

∫ 2π

0

W (x− y; t)F (u(x, t))dy, (4.37)
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with

W (x; t) = w(x) + γ(t)w′(x). (4.38)

Here w′(x) is the derivative of the weight function and γ(t) represents the effective
input to the system that causes head–direction shift. Suppose that there exists a
stable bump solution U(x) centered at x = 0 when γ(t) = 0. Since

U(x) =

∫ 2π

0

w(x− y)F (U(y))dy,

it immediately follows that equation (37) has the solution

u(x, t) = U

(
x+

∫ t

0

γ(s)ds

)
. (4.39)

Thus the location or phase X(t) of the activity peak moves with the integrated signal

X(t) = −
∫ t

0

γ(s)ds. (4.40)

The instantaneous angular velocity is −γ(t). We see that the bump only shifts whilst
the signal is on (due to the head direction changing), and the activity bump maintains
the current head direction once the signal is switched off. For example, a brief negative
input will shift the bump counterclockwise, while a brief positive input will shift it
clockwise. However, we expect the stimulus–locked bump to become unstable if the
angular velocity γ(t) becomes too large. One limitation of Zhang’s model is that it
makes use of instantaneous changes in synaptic strength, which is not biologically
very plausible. This has led to a modified version of the model involving two coupled
ring networks that receive differential velocity signals [149]. Interactions within a ring
and between rings are taken to be rotationally invariant but asymmetric due to the
introduction of constant phase offsets. When the inputs to the two rings are the same,
a stable stationary bump can be supported in both rings. However, a head velocity
signal breaks the symmetry between the inputs resulting in movement of the activity
bumps that integrates the velocity signal.

Finally note that there are two basic components shared by any neural field model
of the head–direction system. First, the network supports a continuous attractor, in
the sense that the peak of an activity bump can be located anywhere on the circle;
indeed, the location of the peak encodes the head direction. An immediate consequence
of this is that in the absence of an input, the resulting bump solution is marginally
stable, since arbitrarily small fluctuations can shift its center or peak around the
circle. The problem of noise is an issue in all applications of continuous attractor
networks [145], see below. The second component of the head–direction models is a
neural integrator, since the location of the bump is based on integrating the input
signal γ(t). A number of other neural systems involve a neural integrator, including
the oculomotor control system in the goldfish [150].

Stimulus–induced breathers. So far we have focused on activity bumps that persist in
the absence of external stimuli due to the combined action of local recurrent excitation
and lateral inhibition. We now describe some interesting instabilities that arise in the
case of non–persistent bumps. For the sake of illustration, consider a 2D excitatory
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neural field with linear adaptation and an external input I:

∂u(r, t)

∂t
= −u(r, t) +

∫
R2

w(|r− r′|)H(u(r′, t)− κ)dr′ − βq(r, t) + I(r)

1

ε

∂q(r, t)

∂t
= −q(r, t) + u(r, t). (4.41)

Suppose that the inhomogeneous input is a radially symmetric Gaussian centered
about the origin, I(r) = I0e−r

2/σ2
s . We know from §3.2, that in the absence of an

input, the resulting excitatory network supports traveling waves rather than stationary
bumps. On the other hand, for sufficiently strong input amplitude I0, the network
supports a radially symmetric bump centered about the input. Such a bump is not
persistent, since if the input is removed then the bump disappears as well. The basic
problem we want to address is what happens to the stability of the bump as the input
amplitude is slowly decreased.

The analysis of the existence and stability of radially symmetric 2D bumps
proceeds as in §4.2 with minor changes. First, the threshold condition for the existence
of a bump becomes (see equation (21))

κ = U(∆) = 2π∆

∫ ∞
0

ŵ(ρ)J0(ρ∆)J1(ρ∆)dρ+ I(∆). (4.42)

Second, the linear stability of the bump is determined by the pair of eigenvalues
λ = λ±n associated with the Fourier modes [cneinφ + cne−inφ]eλt, where [133]

λ±n =
1

2

[
−Λn ±

√
Λ2
n − 4ε(1 + β)(1− Γn)

]
, (4.43)

Λn = 1 + ε− Γn(1 + β), Γn =
µn(∆)

|U ′(∆)|(1 + β)
, (4.44)

and

µn(∆) = ∆

∫ 2π

0

w(2a sin(φ/2)) cos(nφ)dφ. (4.45)

It follows that stability of a radially symmetric bump require Λn > 0 and Γn < 1 for
all n ≥ 0. Given the form of Λn, this reduces to the following stability conditions:

ε > β : Γn < 1 for alln ≥ 0

ε < β : Γn <
1 + ε

1 + β
for alln ≥ 0.

(4.46)

If the first condition is violated as some parameter is varied then there is a saddle–node
bifurcation, whereas a breakdown of the second condition signals a Hopf bifurcation.
In the latter case the bump instability leads to the formation of a breather. In §4.2,
we showed that for an excitatory network, µn ≤ µ0 for all n ≥ 0, so that we expect
any instability to involve the growth of radially symmetric perturbations and, hence,
the resulting breather will be radially symmetric. On the other hand, if there is a
Mexican hat weight distribution then non–radially symmetric breather and rotating
waves can occur [136]. One way to induce a Hopf instability of a bump is to reduce
the amplitude I0 of the Gaussian input; this modifies both the pulse–width ∆ and
the slope of the bump at threshold, |U ′(∆)|. Interestingly, as the input amplitude is
further reduced, the breather can undergo a secondary instability such that it now
acts as an oscillating core that emits circular target waves. An example of such a
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periodic wave emitter is shown in Fig. 22. Thus, a spatially localized stationary
input provides a mechanism for the formation of a network pacemaker oscillator. The
mechanism differs from that discussed in §3.5, where the whole network acted as an
oscillatory medium. Note that in the case of 1D breathers, Folias [151] has recently
carried out a weakly nonlinear analysis of a stationary pulse undergoing a stimulus–
induced Hopf bifurcation in a neural field model with Mexican hat weight function
and a Heaviside nonlinearity. He shows that there are two spatial modes, that can
undergo a Hopf bifurcation, producing a periodic orbit that either expands/contracts
(breather) or moves side-to-side (slosher). Moreover, by calculating the critical third
order coefficient of the associated normal form, he determines when the bifurcation
switches from super- to subcritical. Given the normal form, it should be possible to
extend this analysis to the case of weakly interacting breathers, extending previous
work on weakly interacting bumps [152].

Figure 22. Sequence of snapshots of a 2D breather acting as a periodic pulse-
emitter in the case of a 2D excitatory neural field with linear adaptation and
exponential weight function. Parameters are β = 4, κ = 0.2, ε = 0.1 and I0 = 0.2.
Lighter colors indicate higher activity [133].

A stimulus–induced bump in an excitatory network with linear adaptation can
also follow a moving stimulus. This problem has been studied in 1D using both
the constructive method for Heaviside nonlinearities [112] and singular perturbation
methods for smooth F [147]. We discuss the former approach here. Since the network
supports natural traveling waves in the absence of inputs, we now expect stimulus–
locking to occur for a band of stimulus velocities v around the natural velocity vs of
stable pulses. Moreover, in light of the above analysis of stationary inputs, we expect
another band of stimulus-locked waves to exist for sufficiently small v, provided that
the stimulus amplitude is sufficiently large to maintain a stationary bump when v = 0.
This is indeed found to be the case, as illustrated in Fig. 23 for a Heaviside firing
rate function. Moreover, one finds that waves in the low velocity tongue can undergo
a Hopf instability resulting in either a traveling breather or a pulse emitter. These
results can be established by looking for a traveling pulse solution in the moving frame
of the input [112]. That is, set u(x, t) = U(ξ) and q(x, t) = Q(ξ), ξ = x − vt, such
that U(ξ) → 0 as ξ → ±∞. Furthermore, assume that U(ξ) crosses threshold at the
two points ξ1, ξ2 such that U(ξ) > κ for ξ ∈ (ξ1, ξ2) and U(ξ) < κ for ξ /∈ [ξ1, ξ2]. It
follows that

−cU ′(ξ) + U(ξ) + βQ(ξ) =

∫ ξ2

ξ1

w(ξ − ξ′)dξ′ + I(ξ)

−cQ′(ξ) + ε[Q(ξ)− U(ξ)] = 0. (4.47)
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Figure 23. Stimulus–locked traveling pulses in an excitatory 1D neural field
with linear adaptation and exponential weight function. Gaussian stimulus has
velocity v, amplitude I0 and width σs = 1.0. Other parameters are threshold
κ = 0.3, rate constant ε = 0.03, and amplitude of adaptation β = 2.5. Center:
Regions of existence of stimulus-locked traveling pulses in the (v, I0)-plane for a
1D excitatory neural field with linear adaptation . The left and right regions form
tongues that issue from the unstable vu and stable vs natural traveling pulses
of the homogeneous network, respectively. The Hopf curve within the left-hand
tongue is shown in gray. Stationary pulses correspond to the intersection of the
tongue and the line v = 0. Top row: Graphs of the zero sets of the real(dark
curves) and imaginary(light curves) parts of the Evans function determining the
stability of a stimulus–locked bump for I0 = 2.0 and a sequence of stimulus speeds
v; intersection points indicate eigenvalues. The vertical shaded region indicates
the essential spectrum. This sequence of plots indicates that two Hopf bifurcation
points occur, thus defining the boundary of the stable region within the left
tongue. Bottom row: Corresponding sequence of spacetime plots, illustrating the
transition from breather, to stimulus–locked pulse, to pulse–emitter as v increases
through the left–hand and right–hand branches of the Hopf curve [112].
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The existence of traveling pulse solutions can then be determined by solving this
pair of equations using variation-of-parameters along similar lines to §3.3.1. However,
in contrast to the case of a traveling pulse in a homogeneous neural field, we cannot
arbitrarily shift coordinates so that one of the threshold crossing points is at the origin.
Thus two conditions are needed in order to determine the two threshold crossing points
ξ1, ξ2 with ∆ = ξ2 − ξ2 the width of the pulse. On the other hand, the speed of the
pulse is already specified to be the speed v of the input. Wave stability can also
be determined by constructing the associated Evans function. Now stability requires
that there exists a positive number K such that Reλ < −K for all zeros of the Evans
function, that is, there no longer exists a zero eigenvalue arising from translation
symmetry.

Robustness to noise and bistability. In our discussion of stimulus–driven bumps,
we focused on how an external input can control the spatial location of a
bump. In applications to working memory, it is necessary that the bump persists
once the stimulus is removed. Moreover, there has to be some mechanism for
initiating/removing a bump so that new memories can be stored. It is typically
assumed that the network exhibits bistability, in which a stable homogeneous
resting state coexists with a marginally stable bump. Marginal stability reflects the
arbitrariness of bump location in the absence of inputs due to translation symmetry.
Clearly, a transition from the resting state to a bump can be initiated by an excitatory
stimulus of the form considered in §4.3. In principle, a transition back to the resting
state could be induced by a global inhibitory stimulus. An interesting alternative
mechanism was proposed by Gutkin et. al [153] (see also [139]). They carried out
computer simulations of a lateral inhibition network consisting of conductance–based
models of single neurons. They showed that a bump only persisted if the neurons
fired asynchronously, so that one way to destroy the bump was to use an excitatory
stimulus to induce transient synchrony.

Marginal stability of a persistent bump implies that arbitrarily small fluctuations
can shift its location, so that over time noise can wash out the information encoded
by the bump. One mechanism for enhancing the robustness of bumps to noise is to
introduce bistability at the cellular level [27, 154, 155]. The basic model of Camperi
and Wang [27] takes the form of an activity–based neural field equation on a ring:

∂

∂t
ν(x, t) = −K(ν(x, t)) + F

(∫ 2π

0

w(x− y)ν(y, t)dy + Iext(x, t)

)
, (4.48)

where the linear decay term is replaced by a cubic nonlinearity

K(ν) = c+ ν − aν2 + bν3. (4.49)

The parameters are chosen so that the single neuron model ν̇ = −K(ν) + F (Iext)
exhibits bistability when F is given by a linear threshold function, F (I) = IH(I).
That is, there are three fixed point solutions ν∗ = K−1 ◦ F (Iext), two of which are
stable. The spatially extended network with lateral inhibition then exhibits bistability
between a resting state and a marginally stable bump solution. Although this model
does generate bumps that are much more robust to external noise, the bistable regime
is rather sensitive to the range of parameters [154]. Recently, a biologically plausible
mechanism for generating cellular bistability has been proposed, based on intracellular
calcium Ca2+ [155]. The local function K(ν) is now taken to be monotonic whereas the
firing rate F is multiplied by a factor (1+[Ca2+]/C0) where [Ca2+] denotes intracellular
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calcium concentration within the cytosol of the neuron. The latter evolves dynamically
via IP3–modulated Ca2+-induced Ca2+ release from intracellular stores combined with
the action of ionic pumps and Ca2+ influx from synaptic activity as determined by F .
The calcium subsystem provides the source of cellular bistability.

5. Neural pattern formation

So far we have considered the spatiotemporal dynamics of neural fields based upon
constructing explicit solutions (or their approximations) in the fully nonlinear regime.
An alternative approach is to investigate the emergence of spatially periodic stationary
and oscillatory patterns through a combination of linear stability theory, weakly
nonlinear analysis, and numerical simulations. In cases where the period of the
pattern matches the size of the domain, this also provides a mechanism for the
formation of persistent bumps. Turing originally considered the problem of how
animal coat patterns develop, suggesting that chemical markers in the skin comprise
a system of diffusion-coupled chemical reactions among substances called morphogens
[156]. He showed that in a two-component reaction-diffusion system, a state of
uniform chemical concentration can undergo a diffusion-driven instability leading to
the formation of a spatially inhomogeneous state. Ever since the pioneering work of
Turing on morphogenesis [156], there has been a great deal of interest in spontaneous
pattern formation in physical and biological systems [157,158]. In the neural context,
Wilson and Cowan [11] proposed a non-local version of Turing’s diffusion–driven
mechanism, based on competition between short-range excitation and longer-range
inhibition. Here interactions are mediated, not by molecular diffusion, but by long-
range axonal connections. Since then, this neural version of the Turing instability
has been applied to a number of problems concerning cortical dynamics. Examples in
visual neuroscience include the ring model of orientation tuning [25, 26, 159], cortical
models of geometric visual hallucinations [19, 74, 160] and developmental models of
cortical maps [60]. (The latter involves pattern forming instabilities in the space of
synaptic weights rather than neuronal activity states). In most cases there exists
some underlying symmetry in the model that plays a crucial role in the selection and
stability of the resulting patterns.

In this section we review theoretical approaches to studying spontaneous pattern
formation in neural field models. Throughout we emphasize the important role that
symmetries play. In §5.1 we consider the basic neural mechanism for Turing–like
pattern formation developed by Wilson, Cowan and Ermentrout [11, 19]. We then
focus our discussion on activity–based patterns generated in primary visual cortex
(V1), which is the first cortical region to process visual information from the eyes. We
begin by constructing a neural field model of V1 that takes into account the functional
architecture of V1, in particular, its hypercolumnar structure (§5.2). We then analyze
pattern formation in a ring model of orientation tuning within a single hypercolumn
(§5.3), and then extend this to a coupled hypercolumn model of V1 (§5.4) [74]. We end
by relating cortical pattern formation to a theory of geometric visual hallucinations
(§5.5).
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5.1. Turing mechanism for cortical pattern formation

Let us return to a 2D version of the scalar neural field equation (2):

∂u(r, t)

∂t
= −u(r, t) +

∫
R2

w(r, r′)F (u(r′, t))dr′, (5.1)

with F given by a smooth sigmoid function (6). For the moment, we assume
w(r, r′) = w(|r − r′|) so that it is invariant with respect to the Euclidean group
E(2) of rigid body transformations in the plane. That is,

γ · w(r, r′) = w(γ−1 · r, γ−1 · r′) = w(r, r′)

for all γ ∈ E(2). The Euclidean group is composed of the (semi-direct) product of
O(2), the group of planar rotations r → Rϕr and reflections (x, y) → (x,−y), with
R2, the group of planar translations r→ r + s. Here

Rϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, ϕ ∈ [0, 2π). (5.2)

Most large–scale models of cortex assume Euclidean symmetric weights [15], but see
§5.2. Suppose that there exists a uniform fixed point solution u0 so that

u0 = ŵ0F (u0), ŵ0 =

∫
R2

w(r)dr. (5.3)

Linearizing equation (2) about the fixed point solution by writing u(r, t) = u0+p(r)eλt

then leads to the eigenvalue equation

λp(r) = µ

∫
R2

w(|r− r′|)p(r′)dr′, (5.4)

where µ = F ′(u0) represents the gain of the firing rate function in the rest state u0.
Thus changes in µ, which is treated as a bifurcation parameter, reflects changes in
the level of excitability of the network. The linear operator on the right–hand side
has a continuous spectrum generated by the solutions p(r) = eik·r, which leads to the
dispersion relation

λ = λ(k) ≡ −1 + µŵ(k), (5.5)

with ŵ(k) the Fourier transform of w(r) and k = |k|. It is now straightforward to
determine conditions under which the homogeneous state u0 loses stability leading to
the formation of spatially periodic patterns. The standard mechanism for such an
instability, which is the neural analog of the Turing instability in reaction-diffusion
equations, is a combination of short-range excitation and long-range inhibition, that
is, a Mexican hat function. Consider for example the difference-of-Gaussians (see Fig.
24(a)):

w(|r|) = e−r
2/2 −Ae−r

2/2σ2

, (5.6)

the Fourier transform of which is

ŵ(k) =
1

2
e−

1
4k

2

− Aσ2

2
e−

1
4σ

2k2

. (5.7)

Since ŵ(k) is a bounded function of k, it follows that for sufficiently small µ, Reλ < 0
for all k, and the fixed point k is stable. However, as µ increases, the dispersion curve
λ(k) passes through zero at the critical value µc = ŵ(kc)

−1 signaling the growth of
spatially periodic patterns with wavenumber kc, where ŵ(kc) = maxk{ŵ(k)}, see Fig.
24(b).
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Figure 24. Neural basis of the Turing mechanism. (a) Mexican
hat interaction function showing short-range excitation and long-range
inhibition. (b) Dispersion curves λ(k) = −1 + µŵ(k) for Mexican hat
function. If the excitability µ of the cortex is increased, the dispersion curve
is shifted upwards leading to a Turing instability at a critical parameter
µc = ŵ(kc)

−1 where ŵ(kc) = [maxk{ŵ(k)}]. For µc < µ < ∞ the
homogeneous fixed point is unstable.

Close to the bifurcation point these patterns can be represented as linear
combinations of plane waves

b(r) =
∑
n

(cneikn·r + c∗ne−ikn·r), (5.8)

where the sum is over all wave vectors with |kn| = kc. Rotation symmetry implies
that the space of such modes is infinite-dimensional. That is, all plane-waves with
wavevectors on the critical circle |k| = kc are allowed. However, one of the simplifying
features of many Turing–like patterns found in nature is that they tend to form a
regular tiling of the cortical plane, that is, they are doubly–periodic with respect
to some regular planar lattice (square, rhomboid or hexagonal). This is a common
property of pattern forming instabilities in systems with Euclidean symmetry that
are operating in the weakly nonlinear regime [157]. In the neural context, Euclidean
symmetry reflects the invariance of synaptic interactions with respect to rotations,
translations and reflections in the cortical plane. The emerging patterns spontaneously
break Euclidean symmetry down to the discrete symmetry group of the lattice, and
this allows techniques from bifurcation theory to be used to analyze the selection and
stability of the patterns. The global position and orientation of the patterns are still
arbitrary, however, reflecting the hidden Euclidean symmetry.

Hence, suppose that we restrict the space of solutions (8) to that of doubly-
periodic functions corresponding to regular tilings of the plane. That is, p(r+`) = p(r)
for all ` ∈ L where L is a regular square, rhomboid or hexagonal lattice. The sum over
n is now finite with N = 2 (square, rhomboid) or N = 3 (hexagonal) and, depending
on the boundary conditions, various patterns of stripes or spots can be obtained as
solutions. Amplitude equations for the coefficients cn can then be obtained using
perturbation methods [84]. However, their basic structure can be determined from
the underlying rotation and translation symmetries of the network model. In the case
of a square or rhombic lattice, we can take k1 = kc(1, 0) and k2 = kc(cosϕ, sinϕ) such
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that (to cubic order)

dcn
dt

= cn

µ− µc − Γ0|cn|2 − 2Γϕ
∑
m 6=n

|cm|2
 , n = 1, 2, (5.9)

where Γϕ depends on the angle ϕ. In the case of a hexagonal lattice we can take
kn = kc(cosϕn, sinϕn) with ϕ1 = 0, ϕ2 = 2π/3, ϕ3 = 4π/3 such that

dcn
dt

= cn
[
µ− µc − Γ0|cn|2 − ηc∗n−1c

∗
n+1

]
− 2Γϕ2

cn
(
|cn−1|2 + |c2n+1|

)
, (5.10)

where n = 1, 2, 3 (mod 3). These ordinary differential equations can then be analyzed
to determine which particular types of pattern are selected and to calculate their
stability [19, 20, 84]. The results can be summarized in a bifurcation diagram as
illustrated in Fig. 31(a) for the hexagonal lattice with h > 0 and 2Γϕ2

> Γ0.

Oscillatory patterns. In the above analysis, we incorporated both excitation and
inhibition into a one–population neural field model. However, as outlined in §2.5, this
is an approximation of a more realistic two–population model in which excitatory and
inhibitory neurons are modeled separately. In the case of stationary patterns, the one–
population model captures the basic pattern forming instability. However, the two–
population model supports a wider range of dynamics and, in particular, can undergo a
Turing–Hopf instability leading to the formation of oscillatory patterns [84, 160, 161].
Oscillatory patterns can also occur in a one–population model with adaptation or
axonal/dendritic delays. For example, suppose that the temporal kernel Φ(t) in the
integral version of the scalar neural field equation (10) is given by the Green’s function
of a semi–infinite dendritic cable, equation (22):

Φ(t) = G(0, ξ0, t) =
1√
πDt

e−t/τme−ξ
2
0/4DtH(t), (5.11)

where we have set λ2/τm = D. For the sake of illustration, all synaptic connections
are assumed to be at a fixed location ξ0 along the dendritic cable. Linearizing equation
(10) about a homogeneous fixed point solution u0 by writing u(x, t) = u0 + u1eλt+ikx

yields the eigenvalue equation

1 = µŵ(k)G(λ), (5.12)

where G(z) is the Laplace transform of Φ(t):

G(z) =

∫ ∞
0

e−ztΦ(t)dt =
1√
ε+ z

e−ξ0
√
ε+z, (5.13)

with ε = τ−1
m and D = 1. In order to determine conditions for a Turing–Hopf

bifurcation, set λ = iω in the eigenvalue equation and equate real and imaginary
parts using the fact that the Fourier transform ŵ(k) of the weight distribution is real.
Writing G(iω) = C(ω) + iS(ω), we obtain the pair of equations

1 = µŵ(k)C(ω), 0 = µŵ(k)S(ω) (5.14)

with

C(ω) =
1√

ε2 + ω2
e−A(ω)ξ0 [A(ω) cos (B(ω)ξ0)−B(ω) sin (B(ω)ξ0)] (5.15)

S(ω) =
1√

ε2 + ω2
e−A(ω)ξ0 [A(ω) sin (B(ω)ξ0) +B(ω) cos (B(ω)ξ0)] , (5.16)
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and
√
ε+ iω = A(ω) + iB(ω) where

A(ω) =

√
[
√
ε2 + ω2 + ε]/2, B(ω) =

√
[
√
ε2 + ω2 − ε]/2. (5.17)

The equation S(ω) = 0 has an infinite set of roots. However, we are only interested
in the root ωc that generates the largest value of |C(ω)|. The root corresponding to
the largest positive value of C(ω) is ω = 0 with C(0) = e−εξ0/

√
ε. On the other hand,

the root corresponding to the largest negative value of C(ω) (denoted by ω0) has to
be determined graphically. Finally, define

ŵ(k+) = max
k
{ŵ(k)} > 0, ŵ(k−) = min

k
{ŵ(k)} < 0.

It follows that if ŵ(k+)C(0) > ŵ(k−)C(ω0) and k+ 6= 0 then there is a standard
Turing instability at µc = [ŵ(k+)C(0)]−1 with critical wavenumber kc = k+. On the
other hand, if ŵ(k+)C(0) < ŵ(k−)C(ω0) and k− 6= 0, then there is a Turing–Hopf
instability at µc = [ŵ(k−)C(ω0)]−1 with critical wavenumber kc = k− and temporal
frequency ω0. It is clear that the Mexican hat function shown in Fig. 24 cannot
support oscillatory patterns, since k− = 0. However, an inverted Mexican hat function
representing short–range inhibition and long–range excitation can. See [47] for a fuller
discussion of the effects of dendritic processing on neural network dynamics.

5.2. Neural field model of primary visual cortex (V1)

In standard treatments of cortical pattern formation, the synaptic weights are assumed
to depend only on the Euclidean distance between points in cortex, that is, w(r, r′) =
w(|r− r′|). However, a closer look at the detailed structure of cortical circuits shows
that such an assumption is an oversimplification. We illustrate this by considering the
functional architecture of the best known cortical area, primary visual cortex (V1),
which is the first cortical region to process visual information from the eyes. This is
then used to construct a more detailed neural field model of V1.

5.2.1. Functional architecture of V1. V1 is the first cortical area to receive visual
information from the retina (see Fig. 25). The output from the retina is conveyed by
ganglion cells whose axons form the optic nerve. The optic nerve conducts the output
spike trains of the retinal ganglion cells to the lateral geniculate nucleus (LGN) of
the thalamus, which acts as a relay station between retina and primary visual cortex
(V1). Prior to arriving at the LGN, some ganglion cell axons cross the midline at
the optic chiasm. This allows the left and right sides of the visual fields from both
eyes to be represented on the right and left sides of the brain, respectively. Note that
signals from the left and right eyes are segregated in the LGN and in input layers of
V1. This means that the corresponding LGN and cortical neurons are monocular, in
the sense that they only respond to stimuli presented to one of the eyes but not the
other (ocular dominance).

Retinotopic map. One of the striking features of the visual system is that the visual
world is mapped onto the cortical surface in a topographic manner. This means that
neighboring points in a visual image evoke activity in neighboring regions of visual
cortex. Moreover, one finds that the central region of the visual field has a larger
representation in V1 than the periphery, partly due to a non–uniform distribution of
retinal ganglion cells. The retinotopic map is defined as the coordinate transformation
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Figure 25. (a) Visual pathways from the retina through the lateral
geniculate nucleus (LGN) of the thalamus to the primary visual cortex
(V1). (b) Schematic illustration of the complex logarithmic mapping from
retina to V1. Foveal region in retina is indicated by grey disc. Regions AR
and BR in the visual field are mapped to regions A and B in cortex.

from points in the visual world to locations on the cortical surface. In order to describe
this map, we first need to specify visual and cortical coordinate systems. Since objects
located a fixed distance from one eye lie on a sphere, we can introduce spherical
coordinates with the “north pole” of the sphere located at the fixation point, the
image point that focuses onto the fovea or center of the retina. In this system of
coordinates, the latitude angle is called the eccentricity ε and the longitudinal angle
measured from the horizontal meridian is called the azimuth ϕ. In most experiments
the image is on a flat screen such that, if we ignore the curvature of the sphere, the
pair (ε, ϕ) approximately coincides with polar coordinates on the screen. One can also
represent points on the screen using Cartesian coordinates (X,Y ). In primary visual
cortex the visual world is split in half with the region −90o ≤ ϕ ≤ 90o represented on
the left side of the brain, and the reflection of this region represented on the right side
brain. Note that the eccentricity ε and Cartesian coordinates (X,Y ) are all based on
measuring distance on the screen. However, it is customary to divide these distances
by the distance from the eye to the screen so that they are specified in terms of
angles. The structure of the retinotopic map is illustrated in Fig. 25(b). One finds
that away from the fovea concentric circles are approximately mapped to vertical lines
and radial lines to horizontal lines. More precisely, for eccentricities greater than 1o,
the retinotopic map can be approximated by a complex logarithm [162]. That is,
introducing the complex representations Z = (ε/ε0)e−iπϕ/180o and z = x + iy, where
(x, y) are Cartesian cortical coordinates, then z = λ logZ.

Feature maps. Superimposed upon the retinotopic map are additional maps reflecting
the fact that neurons respond preferentially to stimuli with particular features [60].
Neurons in the retina, LGN and primary visual cortex respond to light stimuli
in restricted regions of the visual field called their classical receptive fields (RFs).
Patterns of illumination outside the RF of a given neuron cannot generate a response
directly, although they can significantly modulate responses to stimuli within the RF
via long–range cortical interactions (see below). The RF is divided into distinct ON
and OFF regions. In an ON (OFF) region illumination that is higher (lower) than the
background light intensity enhances firing. The spatial arrangement of these regions
determines the selectivity of the neuron to different stimuli. For example, one finds
that the RFs of most V1 cells are elongated so that the cells respond preferentially to
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Figure 26. (a) Schematic illustration of an orientation tuning curve of a
V1 neuron. Average firing rate is plotted as a function of the orientation
of a bar stimulus that is moved back and forth within the receptive field
(RF) of the neuron. The peak of the orientation tuning curve corresponds
to the orientation preference of the cell. (b) Iso–orientation (light) and
ocular dominance (dark) contours in a region of primate V1. A cortical
hypercolumn consistis of two orientation singularities or pinwheels per
ocular dominance column. Reproduced with permission from Fig. 5A
of [163].

stimuli with certain preferred orientations (see Fig. 26). Similarly, the width of the ON
and OFF regions within the RF determines the optimal spacing of alternating light and
dark bars to elicit a response, that is, the cell’s spatial frequency preference. In recent
years much information has accumulated about the spatial distribution of orientation
selective cells in V1 [164]. One finds that orientation preferences rotate smoothly
over the surface of V1, so that approximately every 300µm the same preference
reappears, i.e. the distribution is π–periodic in the orientation preference angle. One
also finds that cells with similar feature preferences tend to arrange themselves in
vertical columns so that to a first approximation the layered structure of cortex can
be ignored. A more complete picture of the two–dimensional distribution of both
orientation preference and ocular dominance in layers 2/3 has been obtained using
optical imaging techniques [165–167]. The basic experimental procedure involves
shining light directly on to the surface of the cortex. The degree of light absorption
within each patch of cortex depends on the local level of activity. Thus, when an
oriented image is presented across a large part of the visual field, the regions of
cortex that are particularly sensitive to that stimulus will be differentiated. The
topography revealed by these methods has a number of characteristic features [163],
see Fig. 26(b): (i) Orientation preference changes continuously as a function of
cortical location, except at singularities or pinwheels. (ii) There exist linear zones,
approximately 750 × 750 µm2 in area (in primates), bounded by pinwheels, within
which iso–orientation regions form parallel slabs. (iii) Linear zones tend to cross the
borders of ocular dominance stripes at right angles; pinwheels tend to align with the
centers of ocular dominance stripes. These experimental findings suggest that there is
an underlying periodicity in the microstructure of V1 with a period of approximately
1 mm (in cats and primates). The fundamental domain of this approximate periodic
(or quasiperiodic) tiling of the cortical plane is the hypercolumn [168–170], which
contains two sets of orientation preferences θ ∈ [0, π) per eye, organized around a pair
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of singularities, see Fig. 26(b).

Long–range horizontal connections. Given the existence of a regularly repeating
set of feature preference maps, how does such a periodic structure manifest itself
anatomically? Two cortical circuits have been fairly well characterized: There is a
local circuit operating at sub–millimeter dimensions in which cells make connections
with most of their neighbors in a roughly isotropic fashion. It has been suggested that
such circuitry provides a substrate for the recurrent amplification and sharpening of
the tuned response of cells to local visual stimuli [25, 26], see §5.3. The other circuit
operates between hypercolumns, connecting cells separated by several millimetres of
cortical tissue. The axons of these connections make terminal arbors only every
0.7 mm or so along their tracks [171, 172], such that local populations of cells are
reciprocally connected in a patchy fashion to other cell populations. Optical imaging

hypercolumn

lateral connections

local connections

Figure 27. Schematic illustartion of anisotropic horizontal connections.
Orientation selective cells within a hypercolumn tend to connect to all neighbors
in a roughly isotropic fashion. On the other hand, longer range horizontal
connections link cells between hypercolumns with similar orientation preferences
along a particular visuotopic axis.

combined with labelling techniques has generated considerable information concerning
the pattern of these connections in superficial layers of V1 [173–175]. In particular,
one finds that the patchy horizontal connections tend to link cells with similar feature
preferences. Moreover, in certain animals such as tree shrew and cat there is a
pronounced anisotropy in the distribution of patchy connections, with differing iso–
orientation patches preferentially connecting to neighboring patches in such a way as
to form continuous contours following the topography of the retinotopic map [175].
This is illustrated schematically Fig. 27. That is, the major axis of the horizontal
connections tends to run parallel to the visuotopic axis of the connected cells’ common
orientation preference. There is also a clear anisotropy in the patchy connections of
primates [176, 177]. However, in these cases most of the anisotropy can be accounted
for by the fact that V1 is expanded in the direction orthogonal to ocular dominance
columns [177]. Neverteless, it is possible that when this expansion is factored out,
there remains a weak anisotropy correlated with orientation selectivity. Moreover,
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patchy feedback connections from higher-order visual areas in primates are strongly
anisotropic [177]. Stimulation of a hypercolumn via lateral connections modulates
rather than initiates spiking activity [178], suggesting that the long-range interactions
provide local cortical processes with contextual information about the global nature of
stimuli. As a consequence horizontal and feedback connections have been invoked to
explain a wide variety of context-dependent visual processing phenomena [177,179].

5.2.2. Planar model of V1. One of the immediate implications of the existence of
regularly repeating feature maps and patchy horizontal (or feedback) connections is
that we can no longer treat the weight distribution w in the neural field equation (1) as
Euclidean invariant. That is, we have to consider a more general weight distribution
of the form

w(r, r′) = w(|r− r′|) + ρw∆(F(r),F(r′)), (5.18)

where F(r) denotes a cortical feature map, w∆ represents the dependence of excitatory
horizontal connections on the feature preferences of the presynaptic and postsynaptic
neuron populations, and ρ is a positive coupling parameter. Since horizontal
connections modulate rather than drive a neuron’s response to a visual stimulus, we
can treat ρ as a small parameter. The local connections span a single hypercolumn,
whereas the patchy horizontal connections link cells with similar feature preferences
in distinct hypercolumns.

In the absence of long–range connections (ρ = 0), the resulting weight distribution
is invariant under the action of the Euclidean group. However, the long–range
connections break Euclidean symmetry due to correlations with the feature map F(r).
A certain degree of symmetry still remains under the approximation that the feature
map is periodic. For example, Fig. 26(b) suggests partitioning V1 into a set of
hypercolumns organized around a lattice of orientation pinwheels. Therefore, suppose
we treat the distribution of pinwheels as a regular planar lattice L. The resulting
weight distribution for ρ 6= 0 is then doubly periodic with respect to L:

w(r + `, r′ + `) = w(r, r′) (5.19)

for all ` ∈ L. Additional symmetries may also exist depending on the particular form
of w∆. There are number of distinct ways in which w∆ may depend on the underlying
feature map F . The first reflects the “patchiness” of the horizontal connections that
link cells with similar feature preferences. In the case of a periodic feature map, this
may be implemented by taking [75–77]

w∆(F(r),F(r′)) =
∑
`∈L

J`∆(r− r′ − `), (5.20)

where ∆(r) is some localized unimodal function that is maximal when r = 0, thus
ensuring that presynaptic and postsynaptic cells with similar feature preferences are
connected. The width of ∆ determines the size of the patches and J`, ` 6= 0 is
a monotonically decreasing function of `. In this particular example, the patchy
horizontal connections break continuous rotation symmetry down to the discrete
rotation symmetry of the lattice. On the other hand, continuous translation symmetry
(homogeneity) still holds, since w∆ only depends on the relative separation r − r′ in
cortex. However, if the anisotropy of horizontal connections is taken into account
(Fig. 27), then continuous translation symmetry is broken as well. That is, the
direction of anisotropy is correlated with the orientation preference map and thus
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rotates periodically across cortex [175]. Anisotropy can be incorporated into the model
by modifying the weight distribution w∆ along the following lines [20,180]:

w∆(F(r),F(r′)) =
∑
`∈L

J`AF(r′)(`)∆(r− r′ − `), (5.21)

with

AF(r)(`) =
1

4η(r)
(H[η(r)− | arg `− θ(r)|] +H[η(r)− | arg `− θ(r)− π|]) , (5.22)

where θ(r) denotes the orientation preference map. The second term takes account of
the fact that θ ∈ [0, π) whereas arg ` ∈ [0, 2π). The parameter η(r) determines the
degree of anisotropy, that is the angular spread of the horizontal connections around
the axis joining cells with similar orientation preferences. The degree of anisotropy is
also likely to depend on position r relative to pinwheels, since populations of cells
around pinwheels have zero average orientation preference so that we expect the
corresponding distribution of weights to be isotropic, in contrast to cells in the linear
zones of the orientation preference map, see Fig. 26.

We conclude that at the submillimeter length scale, there is an approximately
periodic modulation of the synaptic connections. We have already explored one
implication of this in a simple model of traveling waves, see §3.3, namely that it
can cause wave propagation failure [20, 101, 102]. Another consequence of such an
inhomogeneity is that it can lead to the pinning of a spatially periodic pattern to the
underlying lattice of pinwheels [75,76].

5.2.3. Coupled hypercolumn model of V1. Treating the distribution of pinwheels as
a regular lattice does not take into account the considerable degree of disorder in the
distribution of feature preferences across cortex. One way to avoid such complexity is
to collapse each hypercolumn into a single point (through some form of spatial coarse-
graining) and to treat V1 as a continuum of hypercolumns [20, 181]. Thus cortical
position r is replaced by the pair {r,F} with r ∈ R2 now labeling the hypercolumn at
(coarse-grained) position r and F labeling the feature preferences of neurons within
the hypercolumn. Let u(r,F , t) denote the activity of a neuronal population at (r,F),
and suppose that u evolves according to the neural field equation

∂u(r,F , t)
∂t

= − u(r,F , t) +

∫
R2

∫
w(r,F|r′,F ′)F (u(r′,F ′, t))DF ′dr′ (5.23)

with DF ′ an appropriately defined measure on feature space. We decompose w into
local and long-range parts by assuming that the local connections mediate interactions
within a hypercolumn whereas the patchy horizontal connections mediate interactions
between hypercolumns:

w(r,F|r′,F ′) = δ(r− r′)w(F ,F ′) + ρJ(|r− r′|)AF ′(r− r′)w∆(F ,F ′), (5.24)

where w(F ,F ′) and w∆(F ,F ′) represent the dependence of the local and long-range
interactions on the feature preferences of the pre– and post–synaptic cell populations,
and J(r) with J(0) = 0 is a positive function that determines the variation in
the strength of the long-range interactions with cortical distance. We have also
included the anisotropy factor AF of equation (22). The advantage of collapsing each
hypercolumn to a single point in the cortical plane is that a simpler representation of
the internal structure of a hypercolumn can be developed that captures the essential
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tuning properties of the cells as well as incorporating the modulatory effects of long–
range connections.

For the sake of illustration, suppose that we identify F in equations (23) and (24)
with the orientation preference θ ∈ [0, π) of cells within a hypercolumn. The weight
distribution (24) is taken to have the form [20]

w(r, θ|r′, θ′) = δ(r− r′)w(θ − θ′) (5.25)

+ ρJ(|r− r′|)P(arg(r− r′)− θ)w∆(θ − θ′)
with

P(ψ) =
1

4η
[H(η − |ψ|) +H(η − |ψ − π)|]. (5.26)

(Note that the direction arg(r− r′) can be taken to be correlated with either θ or θ′,
since w∆ is a sharply peaked function). The functions w(θ) and w∆(θ) are assumed
to be even, π-periodic functions of θ, with corresponding Fourier expansions

w(θ) = w0 + 2
∑
n≥1

wn cos 2nθ

w∆(θ) = w∆
0 + 2

∑
n≥1

w∆
n cos 2nθ. (5.27)

The distribution w∆(θ) is taken to be a positive, narrowly tuned distribution with
w∆(θ) = 0 for all |θ| > θc and θc � π/2; the long-range connections thus link cells
with similar orientation preferences. Equation (23) then describes a continuum of
coupled ring networks, each of which corresponds to a version of the so–called ring
model of orientation tuning [25,26,159].

If there is no orientation–dependent anisotropy then the weight distribution (25)
is invariant with respect to the symmetry group E(2)×O(2) where O(2) is the group
of rotations and reflections on the ring S1 and E(2) is the Euclidean group acting on
R2. The associated group action is

ζ · (r, θ) = (ζr, θ), ζ ∈ E(2)
ξ · (r, θ) = (r, θ + ξ)
κ · (r, θ) = (r,−θ).

(5.28)

Invariance of the weight distribution can be expressed as

γ · w(r, θ|r′, θ) = w(γ−1 · (r, θ)|γ−1 · (r′, θ′)) = w(r, θ|r′, θ′)
for all γ ∈ Γ where Γ = E(2) ×O(2). Anisotropy reduces the symmetry group Γ to
E(2) with the following shift–twist action on R2 × S1 [74, 181]:

s · (r, θ) = (r + s, θ)
ξ · (r, θ) = (Rξr, θ + ξ)
κ · (r, θ) = (Rκr,−θ)

(5.29)

where Rξ denotes the planar rotation through an angle ξ and Rκ denotes the reflection
(x1, x2) 7→ (x1,−x2). It can be seen that the discrete rotation operation comprises
a translation or shift of the orientation preference label θ to θ + ξ, together with a
rotation or twist of the position vector r by the angle ξ.

It is instructive to establish explicitly the invariance of anisotropic long–range
connections under shift–twist symmetry. Let us define

whoz(r, θ|r′, θ′) = J(|r− r′|)P(arg(r− r′)− θ)w∆(θ − θ′). (5.30)
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Translation invariance of whoz follows immediately from the spatial homogeneity of
the interactions, which implies that

whoz(r− s, θ|r′ − s, θ′) = whoz(r, θ|r′, θ′).
Invariance with respect to a rotation by ξ follows from

whoz(R−ξr, θ − ξ|R−ξr′, θ′ − ξ)
= J(|R−ξ(r− r′)|)P(arg[R−ξ(r− r′)]− θ + ξ)w∆(θ − ξ − θ′ + ξ)

= J(|r− r′|)P(arg(r− r′)− θ)w∆(θ − θ′)
= whoz(r, θ|r′, θ′).

We have used the conditions |Rξr| = |r| and arg(R−ξr) = arg(r) − ξ. Finally,
invariance under a reflection κ about the x-axis holds since

whoz(κr,−θ|κr′,−θ′) = J(|κ(r− r′)|)P(arg[κ(r− r′)] + θ)w∆(−θ + θ′)

= J(|r− r′|)P(− arg(r− r′) + θ)w∆(θ − θ′)
= whoz(r, θ|r′, θ′).

We have used the conditions arg(κr) = − arg(r), w∆(−θ) = w∆(θ), and P(−ψ) =
P(ψ). The fact that the weight distribution is invariant with respect to this shift–
twist action has important consequences for the global dynamics of V1 in the presence
of anisotropic horizontal connections.

5.3. Pattern formation in the ring model of a single hypercolumn

The analysis of pattern formation in the coupled hypercolumn model (23) differs
considerably from the standard planar model of §5.1. The first step is to consider
a Turing instability of a single hypercolumn in the absence of long–range horizontal
connections by setting ρ = 0. This is of interest in its own right, since the resulting
pattern consists of a stationary activity bump on a compact domain. In the case of
the ring model of a hypercolumn, the compact domain is the circle S1 and the bump
represents a spontaneously formed orientation tuning curve. If a weak orientation–
dependent stimulus is also presented to the network, then this fixes the location
of the peak of the bump. The Turing instability thus provides a mechanism for
amplifying a weak oriented stimulus [25, 26, 159]. For the sake of illustration, we
will focus on orientation tuning and the ring model of a hypercolumn. However, it
is also possible to incorporate additional feature preferences into a hypercolumnar
model with appropriate symmetries. Two examples are a spherical network model
of orientation and spatial frequncy tuning with O(3) symmetry [118], and a model
of texture processing where the associated network has a non–Euclidean hyperbolic
geometry [182]. Finally, note that one could also analyze orientation tuning curves
(bumps) on a circular domain by restricting the weights to low–order harmonics and
constructing an exact solution [141].

Ring model of orientation tuning. Suppose that we represent a hypercolumn by the
following one–population ring model:

∂u(θ, t)

∂t
= −u(θ, t) +

∫ π

0

dθ′

π
w(θ − θ′)F (u(θ′, t)) + h(θ, t), (5.31)

where u(θ, t) denotes the activity at time t of a local population of cells with orientation
preference θ ∈ [0, π), w(θ − θ′) is the strength of synaptic weights between cells with



CONTENTS 72

orientation preference θ′ and θ, and h(θ, t) is an external input expressed as a function
of θ. The weight distribution has the Fourier expansion (27). In the case of a constant
input h(θ, t) = h0 there exists at least one equilibrium solution of equation (31), which
satisfies u0 = w0F (u0) +h0 with w0 =

∫ π
0
w(θ)dθ/π. If h0 is sufficiently small relative

to the threshold κ of the neurons then the equilibrium is unique and stable. The
stability of the fixed point can be determined by setting u(θ, t) = u0 + u(θ)eλt and
linearizing about u0. This leads to the eigenvalue equation

λu(θ) = −u(θ) + µ

∫ π

0

w(θ − θ′)u(θ′)
dθ′

π
, (5.32)

where µ = F ′(u0). The linear operator on the right–hand side of equation (32) has a
discrete spectrum (since it is a compact operator) with eigenvalues

λn = −1 + µwn, n ∈ Z (5.33)

and corresponding eigenfunctions a(θ) = zn e2inθ + z∗n e−2inθ, where zn is a complex
amplitude with complex conjugate z∗n. It follows that for sufficiently small µ,
corresponding to a low activity state, λn < 0 for all n and the fixed point is stable.
However, as µ is increased beyond a critical value µc the fixed point becomes unstable
due to excitation of the eigenfunctions associated with the largest Fourier component
of w(θ), see equation (27). We refer to such eigenfunctions as excited modes.

Two examples of discrete Fourier spectra are shown in Fig. 28a. In the first case
w1 = maxm{wm} so that µc = 1/w1 and the excited modes are of the form

u(θ) = Z e2iθ + Z∗ e−2iθ = |Z| cos(2[θ − θ0]) (5.34)

with complex amplitude Z = |Z|e−2iθ0 . Since these modes have a single maximum
around the ring, the network supports an activity profile consisting of a tuning curve
centered about the point θ0. The location of this peak is arbitrary and depends only
on random initial conditions, reflecting the O(2) symmetry of the weight distribution
w. Such a symmetry is said to be spontaneously broken by the action of the pattern
forming instability. Since the dominant component is w1, the distribution w(θ) is
excitatory (inhibitory) for neurons with sufficiently similar (dissimilar) orientation
preferences. (This is analogous to the Mexican Hat function). The inclusion of
an additional small amplitude input ∆h(θ) ∼ cos[2(θ − Θ)] explicitly breaks O(2)
symmetry, and locks the peak of the tuning curve to the stimulus orientation, that
is, θ0 = Θ. As one moves further away from the point of instability, the amplitude
of the tuning curve increases and sharpening occurs due to the nonlinear effects of
the firing rate function (6). This is illustrated in Fig. 28b, where the input and
output (normalized) firing rate of the excitatory population of a single hypercolumn
are shown. Thus the local intracortical connections within a hypercolumn serve both
to amplify and sharpen a weakly oriented input signal from the LGN [25,26]. On the
other hand, if the local level of inhibition is reduced such that wn is a monotonically
decreasing function of |n| (see Fig. 28a), then the homogeneous fixed point undergoes
a bulk instability at µc = 1/w0, resulting in a broadening of the tuning curve. This
is consistent with experimental data demonstrating a loss of stable orientation tuning
in cats with blocking of intracortical inhibition [183].

Amplitude equation and O(2) symmetry. So far we used linear theory to show how
a hypercolumn can undergo a pattern forming instability through the spontaneous
breaking of O(2) symmetry, leading to the growth of an orientation tuning curve.
However, as the activity profile increases in amplitude the linear approximation breaks



CONTENTS 73

Bulk mode

1 2 3
n

wn

Tuning mode

-90 -45 0 45 90

0

0.2

0.4

0.6

0.8

1

orientation (deg)

input

output

firing
rate

(a) (b)

Figure 28. (a) Spectrum wn of local weight distribution with a maximum at
n = 1 (tuning mode) and a maximum at n = 0 (bulk mode). (b) Sharp orientation
tuning curve in a single hypercolumn. Local recurrent excitation and inhibition
amplifies a weakly modulated input from the LGN. Dotted line is the base–line
output without orientation tuning.

down and nonlinear theory is necessary in order to investigate whether or not a stable
pattern ultimately forms. Sufficiently close to the bifurcation point µ = µc where the
homogeneous state becomes unstable, we can treat µ−µc = ε∆µ as a small parameter
and carry out a perturbation expansion in powers of ε. The dominant temporal
behavior just beyond bifurcation is the slow growth of the excited mode at a rate
eε∆µt. This motivates the introduction of a slow time-scale τ = εt. Finally, assuming
that the input is only weakly orientation–dependent (and possibly slowly varying),
we write h(θ, t) = h0 + ε3/2∆h(θ, τ). Weakly nonlinear analysis then generates a
dynamical equation for the amplitude of the pattern that can be used to investigate
stability as well as the effects of a weakly biased external input [15, 84]. That is,
writing the amplitude of the excited mode (34) as Z = ε1/2z(τ) we find that (after
rescaling)

dz

dτ
= z(∆µ− Λ|z|2) + h1(τ), (5.35)

where h1 =
∫ π

0
e−2iθ∆h(θ, τ)dθ/π and

Λ = −3F ′′′(u0)− 2F ′′(u0)2

[
w2

1− µcw2
+

2w0

1− µcw0

]
. (5.36)

In the case of a uniform external input (∆h = 0), the phase of z is arbitrary (reflecting
a marginal state) whereas the amplitude is given by |z| =

√
|µ− µc|/Λ. It is clear

that a stable marginal state will bifurcate from the homogeneous state if and only
if Λ < 0. One finds that the bifurcation is indeed supercritical when the firing rate
function F is a sigmoid. Now suppose that there is a weakly biased, slowly rotating
input of the form ∆h(θ, τ) = C cos(2[θ−ωτ ]) with frequency ω. Then ∆h = Ce−2iωτ .
Writing z = ve−2i(φ+ωτ) (with the phase φ defined in a rotating frame) we obtain the
pair of equations

v̇ = v(∆µ− Λv2) + C cos 2φ, φ̇ = −ω − C

2v
sin(2φ). (5.37)

Thus, provided that ω is sufficiently small, equation (37) will have a stable fixed point
solution in which the peak θ of the pattern is entrained to the signal. Note that when
ω = 0 there also exists an unstable solution for which φ = π/2. This corresponds to
the so–called illusory tuning curve analyzed in some depth by Veltz and Faugeras [86].
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Considerable information about the basic structure of the amplitude equation
can be deduced from the underlying symmetries of the weight distribution w. Since
symmetric bifurcation theory proves an invaluable tool in analysing the coupled
hypercolumn model, we introduce some of the basic ideas here. The weight distribution
w(θ, θ′) = w(θ − θ′) is invariant with respect to the action of the group O(2) on S1:

γ · w(θ, θ′) = w(γ−1 · θ, γ−1 · θ′) = w(θ, θ′).

with γ ∈ {ξ, κ} such that ξ ·θ = θ+ξ (rotations) and κ ·θ = −θ (reflections). Consider
the corresponding action of γ on equation (31) for zero input h = 0:

∂u(γ−1θ, t)

∂t
= − u(γ−1θ, t) +

∫ π

0

w(γ−1θ, θ′)F [u(θ′, t)]
dθ′

π

= − u(γ−1θ, t) +

∫ π

0

w(θ, γθ′)F [u(θ′, t)]
dθ′

π

= − u(γ−1θ, t) +

∫ π

0

w(θ, θ′′)F [u(γ−1θ′′, t)]
dθ′′

π

since d[γ−1θ] = ±dθ and w is O(2) invariant. If we rewrite equation (31) as an
operator equation, namely,

F[u] ≡ du

dt
− G[u] = 0, (5.38)

then it follows that γF[u] = F[γu]. Thus F commutes with γ ∈ O(2) and F is said
to be equivariant with respect to the symmetry group O(2) [184]. The equivariance
of the operator F with respect to the action of O(2) has major implications for the
nature of solutions bifurcating from a uniform resting state u0. Sufficiently close to
the bifurcation point these states are characterized by (finite) linear combinations
of eigenfunctions of the linear operator L̂ = D0G obtained by linearizing equation
(31) about u0. (Since the linear operator commutes with the O(2) group action, the
eigenfunctions consist of irreducible representations of the group, that is, the Fourier
modes un(θ) = zne2inθ + z∗ne−2inθ). The original infinite–dimensional equation (31)
can then be projected on to this finite–dimensional space leading to a system of ODEs
that constitute the amplitude equation (the so–called center manifold reduction). The
major point to note is that the resulting amplitude equation for these modes is also
equivariant with respect to O(2) but with a different group action. For example,
suppose that there is a single bifurcating mode given by n = 1, see equation (34).
Under the action of O(2),

u1(θ + ξ) = ze2iξe2iθ + z∗e−2iξe−2iθ, u1(−θ) = ze−2iθ + z∗e2iθ.(5.39)

It follows that the action of O(2) on (z, z∗) is

ξ · (z, z∗) = (ze2iξ, z∗e−2iξ), κ · (z, z∗) = (z∗, z). (5.40)

Equivariance of the amplitude equation with respect to these transformations implies
that quadratic and quartic terms are excluded from equation (35) and the quintic term
is of the form z|z|4. Once the basic form of the amplitude equation has been obtained,
it still remains to determine the different types of patterns that are selected and their
stability. In the case of the cubic amplitude equation (35) for a single eigenmode this
is relatively straightforward. On the other hand, if more than one eigenmode is excited
above the bifurcation point (due to additional degeneracies), then finding solutions is
more involved. Again group theoretic methods can be used to identify the types of
solution that are expected to occur.
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5.4. Pattern formation in a coupled hypercolumn model

Now suppose that we switch on the horizontal connections by taking ρ > 0 in equation
(25). Since ρ is small, we expect any resulting pattern to involve a spatially periodic
modulation in the tuning curves of the individual hypercolumns. In order to show
this, consider the coupled hypercolumn model

∂u(r, θ, t)

∂t
= − u(r, θ, t) +

∫ π

0

w(θ − θ′)F (u(r, θ′, t))
dθ′

π
(5.41)

+ ρ

∫
R2

∫ π

0

whoz(r, θ|r′, θ′)F (u(r′, θ′, t))
dθ′

π
d2r′,

with whoz given by equation (30). Since we are interested in spontaneous pattern
formation, we ignore any external inputs. Following along similar lines to §5.3, it
is simple to establish that in the case of isotropic weights (η = π/2) the coupled
hypercolumn model (41) is equivariant with respect to the E(2)×O(2) group action
(28) and for anisotropic weights it is equivariant with respect to the Euclidean shift–
twist group action (29). We shall focus on the anisotropic case.

5.4.1. Linear stability analysis. Linearizing equation (41) about a uniform
equilibrium u0 leads to the eigenvalue equation

λu = L̂u ≡ −u+ µ(w ∗ u+ ρwhoz ◦ u). (5.42)

The convolution operation ∗ and ◦ are defined according to

w ∗ u(r, θ) =

∫ π

0

w(θ − θ′)u(r, θ′)
dθ′

π
, (5.43)

and

whoz ◦ u(r, θ) =

∫
R2

J(r− r′, θ)w∆ ∗ u(r′, θ)d2r′, (5.44)

with J(r, θ) = J(|r|)P(arg(r)−θ) and P given by equation (26). Translation symmetry
implies that in the case of an infinite domain, the eigenfunctions of equation (42) can
be expressed in the form

u(r, θ) = u(θ − ϕ)eik·r + c.c., (5.45)

with k = q(cosϕ, sinϕ) and

λu(θ) = − u(θ) + µ
[
w ∗ u(θ) + ρĴ(k, θ + ϕ)w∆ ∗ u(θ)

]
. (5.46)

Here Ĵ(k, θ) is the Fourier transform of J(r, θ),

Ĵ(k, θ) =

∫
R2

e−ik·rJ(r, θ)d2r. (5.47)

Invariance of the full weight distribution under the Euclidean group action (29)
restricts the structure of the solutions of the eigenvalue equation (46):

(i) The Fourier transform Ĵ(k, θ+ϕ) is independent of the direction ϕ = arg(k). This
is easy to establish as follows:

Ĵ(k, θ + ϕ) =

∫
R2

e−ik·rJ(r, θ + ϕ)d2r

=

∫ ∞
0

∫ π

−π
e−iqr cos(ψ−ϕ)J(r)P(ψ − θ − ϕ)dψrdr
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=

∫ ∞
0

∫ π

−π
e−iqr cos(ψ)J(r)P(ψ − θ)dψrdr

= Ĵ(q, θ). (5.48)

Therefore, λ and u(θ) only depend on the magnitude k = |k| of the wave vector k and
there is an infinite degeneracy due to rotational invariance. Note, however, that the
eigenfunction (45) depends on u(θ − ϕ), which reflects the shift–twist action of the
rotation group.

(ii) For each k the associated subspace of eigenfunctions

Vk = {u(θ − ϕ)eik·r + c.c} (5.49)

decomposes into two invariant subspaces

Vk = V +
k ⊕ V

−
k , (5.50)

corresponding to even and odd functions respectively

V +
k = {v ∈ Vk : u(−θ) = u(θ)}, V −k = {v ∈ Vk : u(−θ) = −u(θ)}. (5.51)

This is a consequence of reflection invariance, as we now indicate. That is, let κk
denote reflections about the wavevector k so that κkk = k. Then κku(r, θ) =
u(κkr, 2ϕ − θ) = u(ϕ − θ)eik·r + c.c. Since κk is a reflection, any space that it
acts on decomposes into two subspaces – one on which it acts as the identity I and
one on which it acts as −I. The even and odd functions correspond to scalar and
pseudoscalar representations of the Euclidean group studied in a more general context
by Bosch et al [185].

A further reduction of equation (46) can be achieved by expanding the π-periodic
function u(θ) as a Fourier series with respect to θ, u(θ) =

∑
n∈Z une2inθ. This then

leads to the matrix eigenvalue equation

λun = (−1 + µwn)un + ρ
∑
m∈Z

Ĵn−m(k)Pn−mw∆
mum, (5.52)

where a factor of µ has been absorbed into ρ and

Ĵn(k) =

∫ ∞
0

∫ π

−π
e−ikr cos(ψ)e−2inψJ(r)dψ rdr. (5.53)

We have used equation (48) together with the Fourier series expansions (27) and
P(ψ) =

∑
n∈Z e2inψPn. In the following we will take w∆(θ) = δ(θ) so that w∆

n = 1
for all n. Equation (26) implies that

Pn =
sin 4nη

4nη
. (5.54)

We now exploit the experimental observation that the long–range horizontal
connections appear to be weak relative to the local connections. Equation (52)
can then be solved by expanding as a power series in ρ and using Rayleigh–
Schrödinger perturbation theory. In the limiting case of zero horizontal interactions
we recover the eigenvalues of the ring model, see §5.3. In particular, suppose that
w1 = max{wn, n ∈ Z} > 0. The homogeneous fixed point is then stable for
sufficiently small µ, but becomes marginally stable at the critical point µc = 1/w1

due to the vanishing of the eigenvalue λ1. In this case both even and odd modes
cos(2φ) and sin(2φ) are marginally stable. Each hypercolumn spontaneously forms
an orientation tuning curve of the form u(r, θ) = A0 cos(2[θ − θ0(r)]) such that the
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preferred orientation θ0(r) is arbitrary at each point r. If we now switch on the
lateral connections, then there is a k–dependent splitting of the degenerate eigenvalue
λ1 that also separates out odd and even solutions. Denoting the characteristic size
of such a splitting by δλ = O(ρ), we impose the condition that δλ � µ∆w, where
∆w = min{w1 − wm,m 6= 1}. This ensures that the perturbation does not excite
states associated with other eigenvalues of the unperturbed problem. We can then
restrict ourselves to calculating perturbative corrections to the degenerate eigenvalue
λ1 and its associated eigenfunctions. Therefore, introduce the power series expansions

λ = −1 + µw1 + ρλ(1) + ρ2λ(2) + . . . (5.55)

and

Un = z±1δn,±1 + ρU (1)
n + ρ2U (2)

n + . . . (5.56)

where δn,m is the Kronecker delta function. Substitute these expansions into the
matrix eigenvalue equation (52) and systematically solve the resulting hierarchy of
equations to successive orders in ρ using (degenerate) perturbation theory. This
analysis leads to the following result valid to O(ρ) [74]: λ = λ±(k) for even (+)
and odd (−) solutions where

λ±(k) = −1 + µw1 + ρ
[
Ĵ0(k)± P2Ĵ2(k)

]
(5.57)

with corresponding eigenfunctions

u+(φ) = cos(2φ) + ρ
∑

m≥0,m 6=1

u+
m(k) cos(2mφ) (5.58)

u−(φ) = sin(2φ) + ρ
∑
m>1

u−m(k) sin(2mφ) (5.59)

with

u+
0 (k) =

P1Ĵ1(k)

w1 − w0
, u±m(k) =

Pm−1Ĵm−1(k)± Pm+1Ĵm+1(k)

w1 − wm
, m > 1. (5.60)

5.4.2. Marginal stability and doubly periodic planforms. Before using equation (57) to
determine how the horizontal interactions modify the condition for marginal stability,
we need to specify the form of the weight distribution J(r). From experimental data
based on tracer injections it appears that the patchy lateral connections extend several
mm on either side of a hypercolumn and the field of axon terminals within a patch
tends to diminish in size the further away it is from the injection site [171–174]. The
total extent of the connections depends on the particular species under study. In the
continuum hypercolumn model we assume that

J(r) = e−(r−r0)2/2ξ2

Θ(r − r0), (5.61)

where ξ determines the range and r0 the minimum distance of the (non-local)
horizontal connections. There is growing experimental evidence to suggest that
horizontal connections tend to have an inhibitory effect in the presence of high contrast
visual stimuli but an excitatory effect at low contrasts [179]. In light of this, we take
ρ < 0. An important point to note in the following is that it is possible to generate
a pattern forming instability using a purely inhibitory weight distribution with a gap
at the center. Thus it is not necessary to take J(r) to be the standard Mexican hat
function consisting of short–range excitation and longer range inhibition.
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Figure 29. (a) Plot of functions J−(k) (solid line) and J+(k) (dashed line) in
the case P2 = 1 (strong anisotropy) and J(r) defined by (61) for ξ = 1 and
r0 = 1. The critical wavenumber for spontaneous pattern formation is k−. The
marginally stable eigenmodes are odd functions of θ. (b) Same as (a) except that
P2 = sin 4η/4η with lateral spread of width η = π/3. The marginally stable
eigenmodes are now even functions of θ.

In Fig. 29 we plot J±(k) = Ĵ0(k) ± P2Ĵ2(k) as a function of wavenumber k for
the given weight distribution (61) and two values of P2. (a) Strong anisotropy: If
η < π/4 then J±(k) has a unique minimum at k = k± 6= 0 and J−(k−) < J+(k+).
This is shown in the limit η → 0 for which P2 = 1. If ρ < 0 then the homogeneous
state becomes marginally stable at the modified critical point µ′c = µc[1 − ρJ−(k−)].
The corresponding marginally stable modes are of the form

a(r, θ) =

N∑
j=1

zje
ikj .r sin(2[θ − ϕj ]) + c.c., (5.62)

where kj = k−(cosϕj , sinϕj) and zj is a complex amplitude. These modes will be
recognized as linear combinations of plane waves modulated by odd (phase-shifted)
π-periodic functions sin[2(θ − ϕj)]. The infinite degeneracy arising from rotation
invariance means that all modes lying on the circle |k| = k− become marginally
stable at the critical point. However, this can be reduced to a finite set of modes by
restricting solutions to be doubly periodic functions, see §5.4.2. (b) Weak anisotropy.
If η > π/4 then J+(k+) < J−(k−) as illustrated in Fig. 29b for η = π/3. It
follows that the homogeneous state now becomes marginally stable at the critical
point µ′c = µc[1− ρJ+(k+)] due to excitation of even modes given by

a(r, θ) =

N∑
j=1

zje
ikj .r cos(2[θ − ϕj ]) + c.c., (5.63)

where kj = k+(cos(ϕj), sin(ϕj)).
In the above analysis we assumed that each isolated hypercolumn spontaneously

forms an orientation tuning curve; the long–range horizontal connections than induce
correlations between the tuning curves across the cortex. Now suppose that each
hypercolumn undergoes a bulk instability for which w0 = maxn{wn}. Repeating the
above linear stability analysis, we find that there are only even eigenmodes, which are
θ-independent (to leading order), and take the form

a(r) =

N∑
j=1

[zje
ikj .r + c.c.]. (5.64)
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Figure 30. Three classes of rolls found in cortical pattern formation

The corresponding eigenvalue equation is

λ = −1 + µw0 + ρĴ0(k) +O(ρ2). (5.65)

Thus |kj | = k0 where k0 is the minimum of Ĵ0(k). It follows that there are three
classes of eigenmode that can bifurcate from the homogeneous fixed point. These
are represented, respectively, by linear combinations of one of the three classes of roll
pattern shown in Fig. 30. The n = 0 roll corresponds to modes of the form (64), and
consists of alternating regions of high and low cortical activity in which individual
hypercolumns do not amplify any particular orientation: the resulting patterns are
said to be non-contoured. The n = 1 rolls correspond to the odd and even oriented
modes of equations (62) and (63). These are constructed using a winner-take-all
rule in which only the orientation with maximal response is shown at each point
in the cortex (after some coarse-graining). The resulting patterns are said to be
contoured. To lowest order in ρ one finds that the preferred orientation alternates
between parallel and orthogonal directions relative to the stripe boundary in the case
of even modes, whereas the preferred orientation alternates between π/4 and −π/4
relative to the stripe boundary in the case of odd modes. (One would still obtain
stripes of alternating orientations θ0 and θ0 + π/2 in the case of isotropic horizontal
connections. However, the direction of preferred orientation θ0 relative to the stripe
boundaries would now be arbitrary so that the distinction between even and odd
modes would disappear). The particular class of mode that is selected depends on the
detailed structure of the local and horizontal weights. The n = 0 type will be selected
when the local inhibition within a hypercolumn is sufficiently weak, whereas the n = 1
type will occur when there is strong local inhibition, with the degree of anisotropy in
the horizontal connections determining whether the patterns are even or odd.

Doubly-periodic planforms. Rotation symmetry implies that in the case of non-zero
critical wavenumber kc, the space of marginally stable eigenfunctions is infinite–
dimensional, consisting of all solutions of the form u(θ−ϕ)eikϕ·r where u(θ) is either an
even or odd function of θ, kϕ = kc(cosϕ, sinϕ) and 0 ≤ ϕ < 2π. However, following
the analysis of the planar model, we restrict the space of solutions of the original
equation (41) to that of doubly–periodic functions. That is, we impose the condition
u(r+`, θ) = u(r, θ) for every ` ∈ L where L is a regular planar lattice (square, rhombic
or hexagonal). Restriction to double periodicity means that the original Euclidean
symmetry group is now restricted to the symmetry group of the lattice, Γ = Dn+̇T2,
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where Dn is the holohedry of the lattice, the subgroup of O(2) that preserves the
lattice, and T2 is the two torus of planar translations modulo the lattice. Thus, the
holohedry of the rhombic lattice is D2, the holohedry of the square lattice is D4 and
the holohedry of the hexagonal lattice is D6. There are only a finite number of shift-
twists and reflections to consider for each lattice (modulo an arbitrary rotation of the
whole plane). Consequently, a finite set of specific eigenfunctions can be identified as
candidate planforms, in the sense that they approximate time–independent solutions
of equation (41) sufficiently close to the critical point where the homogeneous state
loses stability.

Imposing double periodicity on the marginally stable eigenfunctions restricts the
critical wavevector k to lie on the dual lattice. Linear combinations of eigenfunctions
that generate doubly–periodic solutions corresponding to dual wave vectors of shortest
length are then given by

u(r, θ) =

N∑
j=1

zju(θ − ϕj)eikj ·r + c.c., (5.66)

where the zj are complex amplitudes. Here N = 2 for the square lattice with k1 = kc
and k2 = Rπ/2kc, where Rξ denotes rotation through an angle ξ. Similarly, N = 3
for the hexagonal lattice with k1 = kc, k2 = R2π/3kc and k3 = R4π/3kc = −k1 − k2.
It follows that the space of marginally stable eigenfunctions can be identified with the
N–dimensional complex vector space spanned by the vectors (z1, . . . , zN ) ∈ CN with
N = 2 for square or rhombic lattices and N = 3 for hexagonal lattices. It can be
shown that these form irreducible representations of the group Γ = Dn+̇T2 whose
action on CN is induced by the corresponding shift–twist action (29) of Γ on a(r, θ).
For example, on a hexagonal lattice, a translation a(r, θ) → a(r − s, θ) induces the
action

γ · (z1, z2, z3) = (z1e−iξ1 , z2e−iξ2 , z3ei(ξ1+ξ2)) (5.67)

with ξj = kj · s, a rotation a(r, θ)→ a(R−2π/3r, θ − 2π/3) induces the action

γ · (z1, z2, z3) = (z3, z1, z2), (5.68)

and a reflection across the x–axis (assuming kc = qc(1, 0)) induces the action

γ · (z1, z2, z3) = (z1, z3, z2). (5.69)

The full shift–twist action of Dn+̇T2 on CN for the various lattices has been calculated
elsewhere [74,181] and is given in Table 1.

5.4.3. Amplitude equation and Euclidean shift–twist symmetry. The next important
observation is that using weakly nonlinear analysis and perturbation methods, it is
possible to reduce the infinite–dimensional system (41) to a finite set of coupled ODEs
constituting an amplitude equation for z,

dzj
dt

= Fj(z), j = 1, . . . , N. (5.70)

This has been carried out explicitly to cubic order in [20], and leads to the cubic
amplitude equation (after appropriate rescalings)

dzl
dτ

= ∆µzl + γ2

N∑
i,j=1

z∗i z
∗
j δki+kj+kl,0

+ 3zl

γ3(0)|zl|2 + 2
∑
j 6=l

γ3(ϕj − ϕl)|zj |2
 , (5.71)
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D2 Action D4 Action D6 Action

1 (z1, z2) 1 (z1, z2) 1 (z1, z2, z3)
ξ (z∗1 , z

∗
2) ξ (z∗2 , z1) ξ (z∗2 , z

∗
3 , z
∗
1)

κη ε(z2, z1) ξ2 (z∗1 , z
∗
2) ξ2 (z3, z1, z2)

κηξ ε(z∗2 , z
∗
1) ξ3 (z2, z

∗
1) ξ3 (z∗1 , z

∗
2 , z
∗
3)

κ ε(z1, z
∗
2) ξ4 (z2, z3, z1)

κξ ε(z∗2 , z
∗
1) ξ5 (z∗3 , z

∗
1 , z
∗
2)

κξ2 ε(z∗1 , z2) κ ε(z1, z3, z2)
κξ3 ε(z2, z1) κξ ε(z∗2 , z

∗
1 , z
∗
3)

κξ2 ε(z3, z2, z1)
κξ3 ε(z∗1 , z

∗
3 , z
∗
2)

κξ4 ε(z2, z1, z3)
κξ5 ε(z∗3 , z

∗
2 , z
∗
1)

[θ1, θ2] (e−2πiθ1z1, e
−2πiθ2z2) (e−2πiθ1z1, e

−2πiθ2z2, e
2πi(θ1+θ2)z3)

Table 1. (Left) D2+̇T2 action on rhombic lattice; (Center) D4+̇T2 action
on square lattice; (Right) D6+̇T2 action on hexagonal lattice. For u(φ)
even, ε = +1; for u(φ) odd, ε = −1. In each case the generators of Dn

are a reflection and a rotation. For the square and hexagonal lattices,
the reflection is κ, the reflection across the x axis where r = (x, y). For
the rhombic lattice, the reflection is κη. The counterclockwise rotation ξ,
through angles π

2
, π

3
, and π, is the rotation generator for the three lattices.

with γ2 and γ3 given by

γ2 =

∫ π

0

u(θ)u(θ − 2π/3)u(θ + 2π/3)
dθ

π
(5.72)

and

γ3(ϕ) =

∫ π

0

u(θ − ϕ)2u(θ)2 dθ

π
. (5.73)

Note that for odd eigenmodes γ2 ≡ 0 whereas for even eigenmodes γ2 6= 0 so that there
is a quadratic term in the even mode amplitude equation in the case of a hexagonal
lattice.

As in the simpler case of the ring model (§5.3), the basic structure of the amplitude
equation (71) including higher order terms can be determined from its equivariance
under the shift–twist action of the symmetry group Γ = Dn+̇T2. This also allows us to
systematically explore the different classes of equilibrium solutions z = (z1, . . . , zN ) of
the amplitude equation (71) and their associated bifurcations. In order to understand
how this is carried out, it is first necessary to review some basic ideas from symmetric
bifurcation theory [184]. In the following we consider a general system of ODEs

ż = F (z), (5.74)

where z ∈ V with V = Rn or Cn and F is assumed to be equivariant with respect to
some symmetry group Γ acting on the vector space V . We also assume that F (0) = 0
so that the origin is an equilibrium that is invariant under the action of the full
symmetry group Γ.

Isotropy subgroups. The symmetries of any particular equilibrium solution z form a
subgroup called the isotropy subgroup of z defined by

Σz = {σ ∈ Γ : σz = z}. (5.75)
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More generally, we say that Σ is an isotropy subgroup of Γ if Σ = Σz for some z ∈ V .
Isotropy subgroups are defined up to some conjugacy. A group Σ is conjugate to a
group Σ̂ if there exists σ ∈ Γ such that Σ̂ = σ−1Σσ. The fixed-point subspace of an
isotropy subgroup Σ, denoted by Fix(Σ), is the set of points z ∈ V that are invariant
under the action of Σ,

Fix(Σ) = {z ∈ V : σz = z ∀ σ ∈ Σ}. (5.76)

Finally, the group orbit through a point z is

Γz = {σz : σ ∈ Γ}. (5.77)

If z is an equilibrium solution of equation (74) then so are all other points of the
group orbit (by equivariance). One can now adopt a strategy that restricts the search
for solutions of equation (74) to those that are fixed points of a particular isotropy
subgroup. In general, if a dynamical system is equivariant under some symmetry
group Γ and has a solution that is a fixed point of the full symmetry group then we
expect a loss of stability to occur upon variation of one or more system parameters.
Typically such a loss of stability will be associated with the occurrence of new solution
branches with isotropy subgroups Σ smaller than Γ. One says that the solution has
spontaneously broken symmetry from Γ to Σ. Instead of a unique solution with the
full set of symmetries Γ a set of symmetrically related solutions (orbits under Γ modulo
Σ) each with symmetry group (conjugate to) Σ is observed.

Equivariant branching lemma. Suppose that the system of equations (74) has a fixed
point of the full symmetry group Γ. The equivariant branching lemma [184] basically
states that generically there exists a (unique) equilibrium solution bifurcating from
the fixed point for each of the axial subgroups of Γ under the given group action—a
subgroup Σ ⊂ Γ is axial if dim Fix(Σ) = 1. The heuristic idea underlying this lemma
is as follows. Let Σ be an axial subgroup and z ∈ Fix(Σ). Equivariance of F then
implies that

σF (z) = F (σz) = F (z) (5.78)

for all σ ∈ Σ. Thus F (z) ∈ Fix(Σ) and the system of coupled ODEs (74) can be
reduced to a single equation in the fixed point space of Σ. Such an equation is expected
to support a codimension one bifurcation. Thus one can systematically identify the
various expected primary bifurcation branches by constructing the associated axial
subgroups and finding their fixed points.

Example. For the sake of illustration, consider the full symmetry group D3 of an
equilateral triangle acting on the plane. The action is generated by the matrices (in
an appropriately chosen ortonormal basis)

R =

(
1/2 −

√
3/2√

3/2 1/2

)
, S =

(
1 0
0 −1

)
. (5.79)

Here R is a rotation by π/3 and S is a reflection about the x-axis. Clearly, R fixes
only the origin, while S fixes any point (x, 0). We deduce that the isotropy subgroups
are as follows: (i) the full symmetry group D3 with single fixed point (0, 0); (ii) the
two–element group Z2(S) generated by S, which fixes the x-axis, and the groups that
are conjugate to Z2(S) by the rotations R and R2; (iii) the identity matrix forms a
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trivial group in which every point is a fixed point. The isotropy subgroups form the
hierarchy

{I} ⊂ Z2(S) ⊂ D3.

It follows that up to conjugacy the only axial subgroup is Z2(S). Thus we expect
the fixed point (0, 0) to undergo a symmetry breaking bifurcation to an equilibrium
that has reflection symmetry. Such an equilibrium will be given by one of the three
points {(x, 0), R(x, 0), R2(x, 0)} on the group orbit generated by discrete rotations.
Which of these states is selected will depend on initial conditions, that is, the broken
rotation symmetry is hidden. Note that a similar analysis can be carried out for the
symmetry group D4 of the square. Now, however, there are two distinct types of
reflection axes: those joining the middle of opposite edges and those joining opposite
vertices. Since these two types of reflections are not conjugate to each other, there are
now two distinct axial subgroups.

Let us return to the amplitude equation (71). Since it is equivariant with respect
to the shift-twist action of the group Dn+̇T2, it follows from the equivariant branching
lemma that the primary patterns (planforms) bifurcating from the homogeneous state
are expected to be fixed points of the corresponding axial subgroups. The calculation
of these subgroups is considerably more involved than the above example [20]. Here
we simply list the resulting even and odd planforms in Tables 2 and 3.

Lattice Name Planform Eigenfunction

square even square u(θ) cos x + u
(
θ − π

2

)
cos y

even roll u(θ) cos x

rhombic even rhombic u(θ) cos(k1 · `) + u(θ − η) cos(k2 · `)
even roll u(θ) cos(k1 · `)

hexagonal even hexagon (0) u(θ) cos(k1 · `) + u
(
θ + π

3

)
cos(k2 · `) + u

(
θ − π

3

)
cos(k3 · `)

even hexagon (π) u(θ) cos(k1 · `) + u
(
θ + π

3

)
cos(k2 · `) − u

(
θ − π

3

)
cos(k3 · `)

even roll u(θ) cos(k1 · `)

Table 2. Even planforms with u(−θ) = u(θ). The hexagon solutions
(0) and (π) have the same isotropy subgroup, but they are not conjugate
solutions.

Lattice Name Planform Eigenfunction

square odd square u(θ) cos x − u
(
θ − π

2

)
cos y

odd roll u(θ) cos x

rhombic odd rhombic u(θ) cos(k1 · `) + u(θ − η) cos(k2 · `)
odd roll u(θ) cos(k1 · `)

hexagonal odd hexagon u(θ) cos(k1 · `) + u
(
θ + π

3

)
cos(k2 · `)u

(
θ − π

3

)
cos(k3 · `)

triangle u(θ) sin(k1 · `) + u
(
θ + π

3

)
sin(k2 · `) + u

(
θ − π

3

)
sin(k3 · `)

patchwork quilt u
(
θ + π

3

)
cos(k2 · `) − u

(
θ − π

3

)
cos(k3 · `)

odd roll u(θ) cos(k1 · `)

Table 3. Odd planforms with u(−θ) = −u(θ).

5.4.4. Selection and stability of patterns. We now discuss solutions of the cubic
amplitude equation (71) for each of the basic lattices, supplementing our analysis
with additional information that can be gained using group theoretic arguments.

Square or rhombic lattice. First, consider planforms corresponding to a bimodal
structure of the square or rhombic type (N = 2). Take k1 = kc(1, 0) and k2 =
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kc(cos(ϕ), sin(ϕ)), with ϕ = π/2 for the square lattice and 0 < ϕ < π/2, ϕ 6= π/3 for
a rhombic lattice. The amplitudes evolve according to a pair of equations of the form

dz1

dτ
= z1

[
1− γ3(0)|z1|2 − 2γ3(ϕ)|z2|2

]
, (5.80)

dc2
dτ̂

= z2

[
1− γ3(0)|z2|2 − 2γ3(ϕ)|z1|2

]
. (5.81)

Since γ3(ϕ) > 0, three types of steady state are possible.

(i) The homogeneous state: z1 = z2 = 0.

(ii) Rolls: z1 =
√

1/γ3(0)eiψ1 , z2 = 0 or z1 = 0, z2 =
√

1/γ3(0)eiψ2 .

(iii) Squares or rhombics: zj =
√

1/[γ3(0) + 2γ3(ϕ)]eiψj , j = 1, 2.

for arbitrary phases ψ1, ψ2. A standard linear stability analysis shows that if
2γ3(ϕ) > γ3(0) then rolls are stable whereas the square or rhombic patterns are
unstable. The opposite holds if 2γ3(θ) < γ3(0). Note that here stability is defined
with respect to perturbations with the same lattice structure.

µc
µ

π-hexagons

0-hexagons

rolls

C

RA

µc
µ

R

C

PQ

H,T

(a) (b)

Figure 31. Bifurcation diagram showing the variation of the amplitude C with
the parameter µ for patterns on a hexagonal lattice. Solid and dashed curves
indicate stable and unstable solutions respectively. (a) Even patterns: Stable
hexagonal patterns are the first to appear (subcritically) beyond the bifurcation
point. Subsequently the stable hexagonal branch exchanges stability with an
unstable branch of roll patterns due to a secondary bifurcation that generates
rectangular patterns RA. Higher–order terms in the amplitude equation are
needed to determine its stability. (b) Odd patterns: Either hexagons (H) or
triangles (T) are stable (depending on higher–order terms in the amplitude
equation) whereas patchwork quilts (PQ) and rolls (R) are unstable. Secondary
bifurcations (not shown) may arise from higher–order terms.

Hexagonal lattice. Next consider planforms on a hexagonal lattice with N = 3,
ϕ1 = 0, ϕ2 = 2π/3, ϕ3 = −2π/3. The cubic amplitude equations take the form

dzj
dτ

= zj
[
1− γ3(0)|zj |2 − 2γ3(2π/3)(|zj+1|2 + |zj−1|2)

]
+ γ2z

∗
j+1z

∗
j−1. (5.82)

where j = 1, 2, 3 mod 3. Unfortunately, equation (82) is not sufficient to determine the
selection and stability of the steady-state solutions bifurcating from the homogeneous
state. One has to carry out an unfolding of the amplitude equation that includes
higher-order terms (quartic and quintic) in z, z̄. One can classify the bifurcating
solutions by finding the axial subgroups of the symmetry group of the lattice (up to
conjugacy) as explained in the previous section. Symmetry arguments can also be
used to determine the general form of higher-order contributions to the amplitude
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equation (82), and this leads to the bifurcation diagrams shown in Fig. 31 [74,181]. It
turns out that stability depends crucially on the sign of the coefficient 2γ(2π/3)−γ(0),
which is assumed to be positive in Fig. 31. The subcritical bifurcation to hexagonal
patterns in the case of even patterns is a consequence of an additional quadratic term
appearing on the right-hand side of equation (82).

5.5. Geometric visual hallucinations

Figure 32. Left: Periodic planar patterns representing alternating regions
of high and low activity in V1. Right: Corresponding hallucinatory images
generated using the inverse retinotopic map

One of the interesting applications of the mechanism of neural pattern formation
outlined above is that it provides an explanation for the occurrence of certain basic
types of geometric visual hallucinations. The idea was originally developed by
Ermentrout and Cowan [19] using neural field equations of the form (1) to represent
spontaneous population activity in V1. Under the action of hallucinogenic drugs on
the brain stem, they hypothesized that the level of excitability of V1 (or gain of F )
is increased leading to the spontaneous formation of spatially periodic patterns of
activity across V1. In Fig. 32 we show some examples of regular planar pattens that
are interpreted as alternating regions of low and high cortical activity that cover the
cortical plane in regular stripes, squares, rhomboids or hexagons. The corresponding
images that would be generated by mapping such activity patterns back into visual
field coordinates using the inverse of the retinotopic map shown in Fig. 25 are sketched
in Fig. 32. These images bear a striking resemblance to the non–contoured form
constants or basic hallucinations classified by the Chicago neurologist Kluver [186].
However, some of the form constants are better characterized as lattices of oriented
edges rather than alternating regions of light and dark shading. These contoured
images (as well as the non-contoured ones) can be reproduced by mapping back into
visual field coordinates the contoured (non-contoured) planforms generated by the
coupled hypercolumn model of §5.4, as detailed in [74]. Two examples of contoured
V1 planforms and their associated visual images are shown in Fig. 33.

The success of the coupled hypercolumn model in reproducing the various
hallucination form constants is quite striking. However, certain caution must be
exercised since there is a degree of ambiguity in how the cortical patterns should
be interpreted. A working assumption is that the basic visual hallucinations can
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be understood without the need to invoke higher-order processing from extrastriate
(higher-order) visual areas. Given this assumption, the interpretation of non–
contoured planforms is relatively straightforward, since to lowest order in ρ the
solutions are θ–independent and can thus be directly treated as activity patterns a(r)
with r ∈ R2. At the simplest level, such patterns can be represented as contrasting
regions of high and low activity depending on whether a(r) is above or below threshold.
These regions form square, triangular, or rhombic cells that tile the cortical plane as
illustrated in Fig. 32. When such patterns are mapped back to the visual field they
generate alternating light and dark contrast images. The case of contoured planforms
is more subtle. At a given location r in V1 we have a sum of two or three sinusoids
with different phases and amplitudes (see Tables 2 and 3), which can be written as
a(r, φ) = A(r) cos[2θ − 2θ0(r)] (to lowest order in ρ). The phase θ0(r) determines
the peak of the orientation tuning curve at r (see Fig. 28b). Hence the contoured
solutions generally consist of iso–orientation regions or patches over which θ0(r) is
constant but the amplitude A(r) varies. As in the non–contoured case these patches
are either square, triangular, or rhombic in shape. The contoured patterns in Fig. 33
are constructed by representing each patch by a locally oriented contour centered at
the point of maximal amplitude A(rmax) within the patch. Thus, a particular choice
has been made in how to sample and interpret the activity patterns. For example, each
patch contains a distribution of hypercolumns within the continuum model framework
so that picking out a single orientation preference corresponds to a discrete sampling
of the pattern. Additional difficulties arise when higher order terms in ρ are included,
since it is possible to have more than one preferred orientation within a patch [181].

(I) (II)

Figure 33. First row: (I) Hexagonal and (II) Square even contoured V1
planforms. Second row: Corresponding visual field images.

A very interesting recent addition to the theory of visual hallucinations has
been developed by Rule et al. [187], who present a model for flicker phosphenes, the
spontaneous appearance of geometric patterns in the visual field when a subject is
exposed to diffuse flickering light. The authors’ model suggests that the phenomenon
results from the interaction of cortical lateral inhibition with resonant periodic stimuli.
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They find that the best temporal frequency for eliciting phosphenes is a multiple of
intrinsic (damped) oscillatory rhythms in the cortex. Moreover, using a combination
of Floquet theory and the theory of pattern formation highlighted in this review, they
determine how the form of the phosphenes changes with the frequency of stimulation.
In particular, they show why low frequency flicker should produce hexagonal patterns
while high frequency produces pinwheels, targets, and spirals.

6. Stochastic neural field theory

Experimentally it has been found that the spike trains of individual cortical neurons
in vivo tend to be very noisy, having interspike interval (ISI) distributions that are
close to Poisson [188]. The main source of intrinsic fluctuations is channel noise
arising from the variability in the opening and closing of a finite number of ion
channels. The resulting conductance–based model of a neuron can be formulated as
a stochastic hybrid system, in which a continuous deterministic dynamics describing
the time evolution of the membrane potential is coupled to a jump Markov process
describing channel dynamics [189]. Extrinsic fluctuations in membrane voltage at the
single cell level are predominantly due to synaptic noise. That is, cortical neurons are
bombarded by thousands of synaptic inputs, many of which are not correlated with
a meaningful input and can thus be treated as background synaptic noise [190]. It is
not straightforward to determine how noise at the single cell level translates into noise
at the population or network level. One approach is to formulate the dynamics of a
population of spiking neurons in terms of the evolution of the probability density of
membrane potentials – the so–called population density method [51, 52, 70, 191–197].
Typically, a very simple model of a spiking neuron is used such as the integrate–and–
fire (IF) model [48] and the network topology is assumed to be either fully connected or
sparsely connected. It can then be shown that under certain conditions, even though
individual neurons exhibit Poisson–like statistics, the neurons fire asynchronously so
that the total population activity evolves according to a mean–field rate equation with
a characteristic activation or gain function. This gain firing rate function can then
be used to construct rate–based models along the lines of §2.4 and §2.5. Formally
speaking, the asynchronous state only exists in the thermodynamic limit N → ∞,
where N determines the size of the population. This then suggests a possible source
of intrinsic noise at the network level arises from fluctuations about the asynchronous
state due to finite size effects [198–202].

Recall from §2 that neural field equations can be derived under two
basic assumptions: (i) the spike trains of individual neurons are decorrelated
(asynchronuous) so that the total synaptic input to a neuron is slowly varying and
deterministic, and (ii) there exists a well–defined continuum limit of the resulting
network rate equations. So far there has been no rigorous proof that either of these
assumptions hold in large–scale spiking network models of cortex. In particular,
there has been no systematic scaling up of population density methods to derive
continuum neural field models that take proper account of noise–induced fluctuations
and statistical correlations between neurons at multiple spatial and temporal scales.
Consequently, current formulations of stochastic neural field theory tend to be
phenomenologically based. One approach is to consider a Langevin version of the
deterministic neural field equations involving some form of extrinsic spatiotemporal
white noise [72, 203], whereas another is to treat the neural field equations as the
thermodynamic limit of an underlying master equation [204–207]. In the latter case,
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a diffusion approximation leads to an effective Langevin equation with multiplicative
noise.

In this section we review the population density method for analyzing the
stochastic dynamics of a local population of IF neurons (§6.1), following along similar
lines to Gerstner and Kistler [48]. We then show in §6.2 how finite–size effects at the
level of local populations can be incorporated into stochastic versions of the rate–based
models derived in §2.4. Some applications of stochastic PDE methods to studying noise
in spatially extended neural fields are discussed in §6.3, and path integral methods are
reviewed in §6.4. For a recent survey of stochastic methods in neuroscience see [208].

6.1. Population density method and mean field theory

IF neuron models neglect details regarding the spike generation process by reducing
the latter to an all–or–nothing threshold event. That is, whenever the membrane
potential crosses a firing threshold, the neuron fires a spike, typically modeled as a
Dirac delta function, and the membrane potential is reset to some subthreshold value.
Although they are less realistic than conductance–based models, they have provided
a very useful platform for exploring probabilistic models of spiking neurons [48]. In
the case of the leaky integrate–and–fire (LIF) model, the conductance–based model
(1) simplifies to the form

C
dV

dt
= −V (t)

R
+ I(t) (6.1)

where C,R are the capacitance and resistance of the cell membrane and I(t) represents
the sum of synaptic and external currents. The form of the action potential is not
described explicitly. Spikes are formal events characterized by the ordered sequence
of firing times {Tm,m ∈ Z} determined by the threshold crossing conditions

Tm = inf{t, t > Tm−1|V (t) = κ, V̇ > 0}, (6.2)

where κ is the firing threshold. Immediately after firing, the potential is reset to a
value Vr < κ,

lim
t→Tm+

V (t) = Vr. (6.3)

For simplicity we set Vr = 0, CR = τ and absorb C into I(t). In the following we
review the population density method for analyzing stochastically driven IF neurons
[51,52,70,191–197]. We begin by considering a single IF neuron and then show how the
analysis can be extended to the population level as detailed in Ch. 6 of Gerstner and
Kistler [48]. When dealing with stochastic models we will use the standard convention
of distinguishing between a random variable and the particular value it takes by writing
the former as uppercase and the latter as lowercase.

Stochastically driven IF neuron. Suppose that an IF neuron receives a set of N input
spike trains generated byN background neurons. Denote the arrival times of the spikes
from the kth presynaptic neuron by {tnk , n ∈ Z} for k = 1, . . . , N . The membrane
potential evolves according to the equation

dV

dt
= −V

τ
+
∑
n∈Z

N∑
k=1

wkΦ(t− tnk ), (6.4)
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together with the reset condition that V (t+) = 0 whenever V (t) = κ. Here Φ(t)
represents a normalized synaptic kernel and wk is the strength or efficacy of the kth
synapse. As a further simplification, we will set Φ(t) = δ(t), where δ(t) is a Dirac
delta function. Each input spike from the kth neuron then generates a change in the
postsynaptic potential of the form

∆V (t) = wkh(t− tnk ), h(t) = e−t/τH(t),

where H(t) is the Heaviside function. Thus each spike induces a jump of size wk,
which represents the strength of the connection or synapse from the kth presynaptic
neuron, and then decays exponentially. Suppose that the spikes at synapse k are
generated by an inhomogenous Poisson process with arrival rate νk(t). This means
that in each small time interval [t, t + ∆t] the probability that a spike arrives on the
kth synapse is νk(t)∆t, and each spike is uncorrelated with any other. We will derive
a Fokker–Planck equation for the probability density p(v, t) for V evolving according
to the stochastic ODE (4), assuming that the neuron last fired at t = 0.

The probability that no spike arrives in a short time interval ∆t is

Prob{no spike in [t, t+ ∆t]} = 1−
∑
k

νk(t)∆t. (6.5)

If no spike arrives then the membrane potential changes from V (t) = v′ to V (t+∆t) =
v′e−∆t//τ . On the other hand, if a spike arrives at synapse k, the membrane changes
from v′ to v′e−∆t//τ +wk. Therefore, given a value v′ at time t, the probability density
of finding a membrane potential v at time t+ ∆t is

P (v, t+ ∆t|v′, t) =

[
1−∆t

∑
k

νk(t)

]
δ
(
v − v′e−∆t/τ

)
+ ∆t

∑
k

νk(t)δ
(
v − v′e−∆t/τ − wk

)
. (6.6)

Since the input spikes are generated by a Poisson process, it follows that the random
variable V (t) evolves according to a Markov process:

p(v, t+ ∆t) =

∫
P (v, t+ ∆t|v′, t)p(v′, t)dv′. (6.7)

Substituting for P using equation (6) shows that

p(v, t+ ∆) =

[
1−∆t

∑
k

νk(t)

]
e∆t/τp(e∆t/τv, t)

+ ∆t
∑
k

νk(t)e∆t/τp(e∆t/τv − wk, t). (6.8)

Rearranging and taking the limit ∆t→ 0 leads to the Chapman-Kolmogorov equation

∂p

∂t
=

1

τ

∂

∂v
[vp(v, t)] +

∑
k

νk(t)[p(v − wk, t)− p(v, t)]. (6.9)

If the jump amplitudes wk in equation (9) are sufficiently small, then we can
formally Taylor expand the right–hand side of the master equation as a series in wk
corresponding to the so–called Kramers–Moyall expansion [209,210]. Neglecting terms
of order w3

k then yields the Fokker–Planck equation

∂p

∂t
= − ∂

∂v

[
−v/τ +

∑
k

νk(t)wk

]
p(v, t) +

1

2

[∑
k

νk(t)w2
k

]
∂2

∂v2
p(v, t). (6.10)
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The Fokker-Planck equation determines the time evolution of the probability density
of a membrane potential evolving according to the equivalent stochastic differential
equation (Langevin equation)

dV = −V (t)

τ
dt+ µ(t)dt+ σ(t)dW (t). (6.11)

Here µ(t) is the mean background synaptic input

µ(t) =
∑
k

νk(t)wk, (6.12)

where W (t) is a Wiener process,

〈dW (t)〉 = 0, 〈dW (t)dW (t)〉 = dt (6.13)

and σ(t) determines the size of the membrane fluctuations,

σ2(t) =
∑
k

νk(t)w2
k. (6.14)

In the case of constant rates, the resulting Langevin equation describes the well
known Ornstein–Uhlenbeck process. Note that in the derivation of the Fokker–Planck
equation we have suppressed higher–order terms of the form

∞∑
n=3

(−1)n

n!
An(t)

∂n

∂un
p(u, t),

with An =
∑
k νk(t)wnk . This becomes exact in the so–called diffusion limit wk → 0

such that µ(t), σ2(t) are unchanged and An → 0 for n ≥ 3.
In our derivation of the Fokker–Planck equation we neglected the threshold κ.

This can be incorporated as an absorbing boundary condition

p(κ, t) ≡ 0 for all t. (6.15)

We can then look for the solution p = p(v, t|v0, 0) of the Fokker–Planck equation
assuming the initial condition p(v, 0|v0, 0) = δ(v − v0). At any time t > 0, the
probability that the neuron has not reached threshold is

S(v0, t) =

∫ κ

−∞
p(v, t|v0, 0)dv. (6.16)

Let ψ(v0, t)∆t be the probability that the neuron fires its next spike between t and
t+∆t. It follows that ψ(v0, t)∆t = S(v0, t)−S(v0, t+∆t) so that in the limit ∆t→ 0,

ψ(v0, t) = − d

dt

∫ κ

−∞
p(v, t|v0, 0)dv. (6.17)

The density ψ(v0, t) determines the distribution of first passage times. When this
is combined with the reset condition v0 = 0, we see that it also determines the
distribution of interspike intervals ∆n = Tn+1 − Tn. Unfortunately, no general
solution is known for the first passage time problem of the Ornstein–Uhlenbeck
process. However, in the case of constant inputs such that µ(t) = µ0 and σ(t) = σ0,
one can carry out a moment expansion of the first passage time distribution. In
particular, a closed form expression for the mean first passage time (MFPT) T can be
obtained [48,210]:

T =

∫ ∞
0

tψ(0, t)dt = τ
√
π

∫ (κ−τµ0)/
√
τσ0

−
√
τµ0/σ0

ev
2

(1 + erf(v))dv. (6.18)
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Note that various generalizations of equation (9) have been used to develop
numerical schemes for tracking the probability density of a population of synaptically
coupled spiking neurons [194, 195], which in the case of simple neuron models, can
be considerably more efficient than classical Monte Carlo simulations that follow the
states of each neuron in the network. On the other hand, as the complexity of the
individual neuron model increases, the gain in efficiency of the population density
method decreases, and this has motivated the development of a moment closure scheme
that leads to a Boltzmann–like kinetic theory of IF networks [70, 197]. However,
as recently shown by [196], considerable care must be taken when carrying out the
dimension reduction, since it can lead to an ill–posed problem over a wide range of
physiological parameters. That is, the truncated moment equations may not support
a steady-state solution even though a steady–state probability density exists for the
full system. Another approach is to extend the analysis of a single IF neuron using
mean field theory (see below).

Homogeneous population of IF neurons. Let us first consider a large population of
identical uncoupled IF neurons each being driven by a set of Poisson distributed spike
trains. We assume that the kth synapse of every neuron receives a Poisson spike train
with the same instantaneous rate νk(t), but that the spike trains across the population
are statistically independent. The derivation of the Fokker–Planck equation proceeds
along very similar lines to the single neuron case, and takes the form [48]

∂p

∂t
= − ∂

∂v

[
−v
τ

+ µ(t) + Iext(t)

]
p(v, t) +

σ2(t)

2

∂2

∂v2
p(v, t), (6.19)

with µ(t), σ(t) given by equations (12) and (14) and Iext(t) an external input. However,
there are a number of important differences between the single neuron and population
cases. First, p(v, t) is now interpreted as the probability density of membrane
potentials across the population of neurons. Consequently, the normalization is
different. In the case of a single neuron, the integrated density

∫ κ
−∞ p(v, t)dv ≤ 1

was interpreted as the probability that the neuron under consideration has not yet
fired, which changes over time. On the other hand, if a neuron in the population
fires, it remains part of the population so that we have the constant normalization∫ κ
−∞ p(v, t)dv = 1.

The second major difference is that we now have to incorporate the reset condition
explicitly in the evolution of the probability density. First, note that the Fokker–
Planck equation can be rewritten as a continuity equation reflecting conservation of
probability:

∂

∂t
p(v, t) = − ∂

∂v
J(v, t), for v 6= κ, 0, (6.20)

where

J(v, t) =
1

τ
[−v + µ(t) + Iext(t)] p(v, t)−

σ2(t)

2

∂

∂v
p(v, t). (6.21)

In a population of N neurons, the fraction of active neurons is calculated by counting
the number of output spikes n(t; t + ∆t) in a small time interval ∆t and dividing by
N . Further division by ∆t yields the population activity

a(t) = lim
∆t→0

1

∆t

n(t, t+ ∆t)

N
=

1

N

N∑
j=1

∑
m

δ(t− Tmj ). (6.22)
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The double sum runs over all firing times Tmj of all neurons in the population. The
fraction of neurons that flow across the threshold per unit time should then be equal to
the population averaged activity a(t), that is, a(t) = J(κ, t). Equation (21) together
with the absorbing boundary condition

p(κ, t) = 0 (6.23)

implies that

∂

∂v
p(κ, t) = −2a(t)

σ2(t)
. (6.24)

Due to the reset condition, the neurons that “disappear” across threshold are
reinjected at the reset potential v = 0, which implies that there is a discontinuity
in the flux at zero, J(0+, t)− J(0−, t) = a(t). Continuity of p,

p(0+, t) = p(0−, t), (6.25)

together with equation (21) then shows that there is a discontinuity in the first
derivative of p(v, t) at v = 0:

∂

∂v
p(0+, t)− ∂

∂v
p(0−, t) = −2a(t)

σ2(t)
. (6.26)

In summary, one has to solve the Fokker–Planck equation (19) together with the
boundary conditions (23), (24), (25) and (26).

Now suppose that the background rates νk and external input Iext are time–
independent so that the total mean input

I0 = Iext +
∑
k

νkwk (6.27)

is a constant. The steady–state Fokker–Planck equation implies that the flux

J(v) = (−v/τ + I0)p(v)− σ2
0

2

∂

∂v
p(v) (6.28)

is constant except at v = 0 where it jumps by an amount a0, which is the steady–state
population activity. Taking J(v) = 0 for v < 0 we can solve equation (28) to obtain
the Gaussian distribution

p0(v) =
c1
σ0

exp

[
− (v/τ − I0)2

σ2
0

]
, for v ≤ 0 (6.29)

for some constant c1. However, such a solution cannot be valid for v > 0, since it
does not satisfy the absorbing boundary condition p0(κ) = 0. It turns out that in this
domain the solution is of the form [48,51]

p0(v) =
c2
σ2

0

exp

[
− (v/τ − I0)2

σ2
0

] ∫ κ

v

exp

[
(x/τ − I0)2

σ2
0

]
dx, for 0 < v ≤ κ (6.30)

for some constant c2. Equation (28) shows that c2 = 2J(v) for 0 < v ≤ κ with
J(v) = a0. Continuity of the solution at u = 0 implies that

c1 =
c2
σ0

∫ κ

v

exp

[
(x/τ − I0)2

σ2
0

]
dx. (6.31)

Finally, the constant c2 is determined by the normalization condition for p. On setting
a0 = c2/2κ, one finds a firing rate that is consistent with the MFPT of equation (18):

a0 =

[
τ
√
π

∫ (κ−τI0)/
√
τσ0

−
√
τI0/σ0

ev
2

(1 + erf(v))dv

]−1

≡ F (I0), (6.32)

where F is the so–called gain function for the population [48,51,194].



CONTENTS 93

Asynchronous states in recurrent networks. The above analysis assumed that the
neurons were independent of each other so that the only synaptic inputs were from
some stochastic background. Now suppose that we have a fully connected network
such that there is an additional contribution to the synaptic input into each neuron
of the form

Irec(t) =
Γ0

N

N∑
j=1

∑
m

δ(t− Tmj ) = Γ0a(t), (6.33)

where Γ0/N is the strength of connection between any pair of neurons within the
population, and we have used the definition (22) of the population activity a(t).
Suppose that the neuronal population is in a macroscopic state with constant activity
a(t) = a0, which is referred to as a state of asynchronous firing. (Formally speaking,
such an asynchronuous state only makes sense in the thermodynamic limit N →∞).
The steady–state activity can then be determined self–consistently from equation (32)
by setting

I0 = Itext +

[∑
k

νkwk + Γ0a0

]
, (6.34)

which leads to an effective gain function. One can also determine the stability of the
asynchronous state by considering small perturbations of the steady–state probability
distribution. One finds that in the limit of low noise, the asynchronous state is
unstable and the neurons tend to split up into several synchronized groups that fire
alternately. The overall activity then oscillates several times faster than the individual
neurons [51,192,211]. One of the interesting properties of the asynchronous state from
a computational perspective is that the population activity can respond rapidly to a
step input [48]. The basic intuition behind this is that in the asynchronous state
there will always be a significant fraction of neurons that are sitting close to the firing
threshold so that as soon as a step increase in input current occurs they can respond
immediately. However, the size of the step has to be at least as large as the noise
amplitude σ, since the threshold acts as an absorbing boundary, that is, the density
of neurons vanishes as v → κ.

In the above example noise is added explicitly in the form of stochastic background
activity. It is also possible for a network of deterministic neurons with fixed random
connections to generate its own noise [51, 193, 212, 213]. In particular, suppose that
each neuron in the population of N neurons receives input from C randomly selected
neurons in the population with C � N . The assumption of sparse connectivity
means that two neurons share only a small number of common inputs. Hence, if
the presynaptic neurons fire stochastically then the input spike trains that arrive at
distinct postsynaptic neurons can be treated as statistically independent. Since the
presynaptic neurons belong to the same population, it follows that each neuron’s
output should itself be stochastic in the sense that it should have a sufficiently broad
distribution of interspike intervals. This will tend to occur if the neurons operate in a
subthreshold regime, that is, the mean total input is below threshold so that threshold
crossings are fluctuation driven.

6.2. Stochastic rate–based models.

Now suppose that a network of synaptically coupled spiking neurons is partitioned
into a set of P homogeneous populations with Nα = δαN neurons in each population,
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α = 1, . . . , P . Let p denote the population function that maps the single neuron
index i = 1, . . . , N to the population index α to which neuron i belongs: p(i) = α.
Furthermore, suppose the synaptic interactions between populations are the same for
all neuron pairs, so that Φij = Φαβ/Nβ for all i, j such that p(i) = α, p(j) = β.
(Relaxing this assumption can lead to additional sources of stochasticity as explored
in [72]; see also the discussion below). The synaptic current of equation (25) can then
be decomposed as

ui(t) =

∫ t

−∞

∑
β

Φαβ(t− t′) 1

Nβ

∑
j;p(j)=β

aj(t
′)dt′, for all p(i) = α. (6.35)

It follows that after transients have decayed away, ui(t) = Uα(t) with

Uα(t) =

P∑
β=1

∫ t

−∞
Φαβ(t− t′)Aβ(t′)dt′, (6.36)

and Aα(t) is the output activity of the αth population:

Aα(t) =
1

Nα

∑
j;p(j)=β

aj(t) (6.37)

If each local network is in an asynchronous state as outlined above, then we can set the
population activity Aα = Fα(Uα) with Fα identified with the population gain function
calculated in §6.1. The observation that finite–size effects provide an intrinsic source of
noise within a local population then suggests one way to incorporate noise into rate–
based models, namely, to take the relationship between population output activity
Aα(t) and effective synaptic current Uα(t) to be governed by a stochastic process.

The simplest approach is to assume that population activity is a stochastic
variable Aα(t) evolving according to a Langevin equation of the form

ταdAα(t) = [−Aα(t) + F (Uα(t))] dt+ σαdWα(t) (6.38)

with the stochastic current Uα(t) satisfying the integral equation (36). Here Wα(t),
α = 1, . . . . , P denotes a set of P independent Wiener processes with

〈dWα(t)〉 = 0, 〈dWα(t)dWβ(t)〉 = δα,βdt, (6.39)

and σα is the strength of noise in the αth population. In general, the resulting
stochastic model is non-Markovian. However, if we take Φαβ(t) = wαβΦ(t) with
Φ(t) = τ−1e−t/τH(t), then we can convert the latter equation to the form

τdUα(t) =

−Uα(t) +

P∑
β=1

wαβAβ(t)

 dt. (6.40)

It is important to note that the time constant τα cannot be identified directly with
membrane or synaptic time constants. Instead, it determines the relaxation rate of a
local population to the mean–field firing rate. In the limit τα → 0, equations (38) and
(40) reduce to a voltage–based rate model perturbed by additive noise:

τdUα(t) =

−Uα(t) +

P∑
β=1

wαβF (Uβ(t))

 dt+ dW̃α(t). (6.41)
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Here W̃α(t) =
∑P
β=1 wαβσβWβ(t) so that

〈dW̃α(t)〉 = 0, 〈dW̃α(t)dW̃β(t)〉 =

[∑
γ

wαγwβγσ
2
γ

]
dt. (6.42)

Thus eliminating the dynamics of the firing rate leads to spatially correlated noise for
the dynamics of Uα. On the other hand, in the limit τ → 0, we obtain a stochastic
activity–based model

ταdAα(t) =

−Aα(t) + F (
∑
β

wαβAα(t))

 dt+ σαdWα(t). (6.43)

Here the dynamical variable Aα represents the firing rate of a local population rather
than the synaptic drive as in equation (33). Finally, note that the reduction to a
stochastic population–based rate model is less straightforward if some form of local
adaptation such as synaptic depression is included (see §2.4). In the latter case,
equation (35) becomes

ui(t) =

∫ t

−∞

∑
β

Φαβ(t− t′) 1

Nβ

∑
j;p(j)=β

qjaj , for all p(i) = α. (6.44)

In order to write down a population model, it would be necessary to make an additional
mean–field approximation of the form

1

Nβ

∑
j;p(j)=β

qjaj =
1

Nβ

∑
j;p(j)=β

qj
1

Nβ

∑
j;p(j)=β

aj ≡ QβAβ . (6.45)

An alternative approach to incorporating noise into the population firing rate has
been developed in terms of a jump Markov process [204–207,214]. Such a description
is motivated by the idea that each local population consists of a discrete number
of spiking neurons, and that finite–size effects are a source of intrinsic rather than
extrinsic noise [201, 202]. The stochastic output activity of a local population of N
neurons is now expressed as Aα(t) = Nα(t)/(N∆t) where Nα(t) is the number of
neurons in the αth population that fired in the time interval [t−∆t, t], and ∆t is the
width of a sliding window that counts spikes. Suppose that the discrete stochastic
variables Nα(t) evolve according to a one–step jump Markov process:

Nα(t)→ Nα(t)± 1 : transition rate Ω±α (t), (6.46)

in which Ω±α (t) are functions of Nα(t) and Uα(t) with Uα(t) evolving according to the
integral equation (36) or its differential version (40). Thus, synaptic coupling between
populations occurs via the transition rates. The transition rates are chosen in order
to yield a deterministic rate–based model in the thermodynamic limit N → ∞. One
such choice is

Ω+
α (t) =

N∆t

τα
F (Uα(t)), Ω−α (t) =

Nα(t)

τα
. (6.47)

The resulting stochastic process defined by equations (46), (47) and (40) is an example
of a stochastic hybrid system based on a piecewise deterministic process. That is, the
transition rates Ω±α (t) depend on Uα(t), with the latter itself coupled to the associated
jump Markov according to equation (40), which is only defined between jumps,
during which Uα(t) evolves deterministically. (Stochastic hybrid systems also arise in
applications to genetic networks [215] and to excitable neuronal membranes [189,216]).
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A further simplification is obtained in the limit τ → 0, since the continuous variables
Uα(t) can be eliminated to give a pure birth–death process for the discrete variables
Nα(t). Let P (n, t) = Prob[N(t) = n] denote the probability that the network of
interacting populations has configuration n = (n1, n2, . . . , nP ) at time t, t > 0, given
some initial distribution P (n, 0). The probability distribution then evolves according
to the birth–death master equation

dP (n, t)

dt
=
∑
α

[
(Eα − 1)

(
Ω−α (n)P (n, t)

)
+ (E−1

α − 1)
(
Ω+
α (n)P (n, t)

)]
, (6.48)

where Ω±α (n) = Ω±α (t) with Nα(t) = nα and Uα(t) =
∑
β wαβnβ/(N∆t), and Eα is

a translation operator: E±1
α F (n) = F (nα±) for any function F with nα± denoting

the configuration with nα replaced by nα ± 1. Equation (48) is supplemented by
the boundary conditions P (n, t) ≡ 0 if nα = Nα + 1 or nα = −1 for some α. The
birth–death master equation (48) has been the starting point for a number of recent
studies of the effects of intrinsic noise on neural fields, which adapt various methods
from the analysis of chemical master equations including system size expansions and
path integral representations [204–206]. However, there are a number of potential
problems with the master equation formulation. First, there is no unique prescription
for choosing transition rates that yield a given rate–based model in the mean–field
limit. Moreover, depending on the choice of how the transition rates scale with the
system size N , the statistical nature of the dynamics can be Gaussian–like [206] or
Poisson–like [204, 205]. Second, the interpretation of Nα(t) as the number of spikes
in a sliding window of width ∆t implies that τ � ∆t so the physical justification for
taking the limit τ → 0 is not clear. Finally, for large N the master equation can be
approximated by a Langevin equation with multiplicative noise (in the sense of Ito),
and thus reduces to the previous class of stochastic neural field model [207].

In the above formulations, it was assumed that the main source of noise arises from
fluctuations about the asynchronous state in a local population of spiking neurons.
An alternative approach is to introduce noise at the single cell level. For example,
consider a stochastic version of a voltage–based model

τdUi(t) =

−Ui(t) +

Nβ∑
j=1

wijFj(Uj(t))

 dt+ σidWi(t). (6.49)

for p(i) = α. Suppose that the neurons are again partitioned into local populations
with wij = wαβ/Nβ , Fj = Fβ and σi = σβ for all i, j such that p(i) = α, p(j) = β. It
can then be proven that in the thermodynamic limit, N → ∞ for fixed δα = Nα/N ,
and provided the initial condition is drawn independently from the same distribution
for all neurons of each population, the solutions of the full stochastic equation converge
towards solutions Uα of the implicit population equations [217]

τdUα(t) =

−Uα(t) +

P∑
β=1

wαβE[Fβ(Uβ(t))]

 dt+ σαdWα(t). (6.50)

Although the implicit equation (50) is difficult to solve in general, it turns out that
solutions are Gaussian so that their moments satisfy a closed system of nonlinear
ODEs. One advantage of the given approach is that it utilizes powerful probabilistic
methods that provide a rigorous procedure to go from single neuron to population
level dynamics. The analysis can also be generalized to the case of quenched disorder
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in the weights between individual neurons [72, 218]. One possible limitation of the
approach, however, is that it rests on the assumption that the dynamics of individual
neurons can be expressed in terms of a rate model, whereas conversion to a rate model
might only be valid at the population level.

6.3. Patterns and waves in stochastic neural fields

In the previous section, we indicated how to incorporate noise into the rate equations
introduced in §2.4. The next step is to take an appropriate continuum limit in order
to obtain a corresponding stochastic neural field equation. For simplicity, we will
focus on the simplest rate model given by equations (38) and (40). The continuum
limit of equation (40) proceeds heuristically along similar lines to §2.5. That is, we
set Uα(t) = U(α∆d, t), Aα(t) = A(α∆d, t) and wαβ = ρ∆dw(α∆d, β∆d) where ρ
is a density and ∆d is an infinitesimal length scale. Taking the limit ∆d → 0 and
absorbing ρ into w gives

τdU(x, t) = [−U(x, t) +

∫
w(x− y)A(y)dy]dt. (6.51)

We also assume that the noise strength σα = σ/
√

∆d and define Wα(t)/
√

∆d =
W (α∆d, t). Taking the limit ∆d→ 0 with τα = τ̂ for all α gives

τ̂ dA(x, t) = [−A(x, t) + F (U(x, t))] dt+ σdW (x, t) (6.52)

with

〈dW (x, t)〉 = 0, 〈dW (x, t)dW (y, t)〉 = δ(x− y)dt. (6.53)

In the limit τ̂ → 0 we obtain a stochastic version of the scalar neural field equation
(31), namely,

τdU(x, t) = [−U(x, t) +

∫
w(x− y)F (U(y, t))dy]dt+σdW̃ (x, t)(6.54)

with

〈dW̃ (x, t)〉 = 0, 〈dW̃ (x, t)dW̃ (y, t)〉 = dt

∫
w(x− z)w(y − z)dz. (6.55)

Similarly, in the limit τ → 0 we have a stochastic version of an activity–based neural
field equation

τ̂ dA(x, t) =

[
−A(x, t) + F

(∫
w(x− y)A(y, t)

)
dy

]
dt+ dW (x, t). (6.56)

So far there has been very little work on the dynamics of stochastic neural fields.
From a numerical perspective, any computer simulation would involve rediscretizing
space and then solving a time–discretized version of the resulting stochastic ODE. On
the other hand, in order to investigate analytically the effects of noise on pattern
forming instabilities and traveling waves, it is more useful to work directly with
continuum neural fields. One can then adapt various PDE methods for studying noise
in spatially extended systems [219]. We briefly describe two applications of these
methods to a scalar neural field equation, one involving pattern–forming instabilities
and the other front propagation [220].
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6.3.1. Pattern forming instabilities. Consider the stochastic neural field equation
(54), which is conveniently rewritten in the form

τdV (x, t) = [−V (x, t) + F

(∫
w(x− y)V (y, t)dy

)
]dt+ dW (x, t), (6.57)

with U(x, t) =
∫
w(x− y)V (y, t). Following studies of pattern-forming instabilities in

PDE models such as Swift-Hohenberg [221], the effects of noise close to a bifurcation
can be determined by a linear stability analysis of a homogeneous solution v0 of the
deterministic neural field equation, where v0 = F (w0v0), w0 =

∫
w(y)dy. Linearizing

equation (57) about v0 gives

τdV (x, t) = [−V (x, t) + µ

∫
w(x− y)V (y, t)dy]dt+ σdW (x, t),(6.58)

where µ = F ′(w0v0). It is convenient to restrict x to a bounded domain, 0 ≤ x ≤ L
and to introduce the discrete Fourier series

V (x, t) =
1

L

∑
n

eiknxVn(t), W (x, t) =
1

L

∑
n

eiknxWn(t) (6.59)

with kn = 2πn/L and Wn(t) an independent Wiener process such that

〈dWn(t)〉 = 0, 〈dWn(t)dWm(t)〉 = Lδm+n,0dt. (6.60)

Fourier transforming equation (58) then gives

τdVn(t) = [−1 + µwn]Vn(t)dt+ σdWn(t). (6.61)

The corresponding Fokker–Planck equation for the probability density P [v, t], v =
{vn, n ∈ Z}, takes the form

∂P

∂t
= −

∑
n

∂

∂vn
[(−1 + µwn)vnP ] +

Lσ2

2

∑
n

∂2P

∂vn∂v−n
. (6.62)

The mean Fourier coefficient 〈Vn〉 evolves as

τ
d〈Vn〉
dt

= [−1 + µwn]〈Vn〉, (6.63)

so for sufficiently small µ such that µwn < 1 for all n, the average value of any
perturbation decays to zero, and the finite–time dynamics can be described in terms
of zero mean Gaussian fluctuations about the homogeneous state. (In the large–t limit
there can be noise–induced transitions to other stable attractors of the deterministic
system). However, a noisy precursor of a pattern–forming instability can be detected
by looking at the structure function Sn, which is the Fourier transform of the spatial
correlation function [221]

C(x, t) =
1

L

∫
〈V (y, t)V (x+ y, t)〉dy, (6.64)

that is

Sn =
1

L
〈VnV−n〉. (6.65)

The time evolution of Sn is

dSn
dt

=
1

L

∫
vnv−n

∂P

∂t

∏
m

dvm. (6.66)
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Substituting for ∂P/∂t using the Fokker–Planck equation (62) and integrating by parts
shows that

dSn
dt

= 2[−1 + µwn]Sn + σ2. (6.67)

Below the bifurcation point, we have a steady state solution for the structure function
given by (in the limit L→∞ with Sn → S(k))

S(k) =
σ2

µŵ(k)− 1
(6.68)

with ŵ(k) the Fourier transform of the weight distribution w(x), which is assumed to
be an even function of x. Hence, S(k) has a peak at the critical wavenumber kc where
ŵ(k) has its maximum, and is the critical wavenumber of Turing patterns that form
beyond the bifurcation point µc = 1/ŵ(kc) of the deterministic system.

When the homogeneous state becomes linearly unstable the combination of
additive noise and nonlinearities of the firing rate function can lead to additional
effects. This has recently been found using a stochastic center manifold reduction
that generates a stochastic amplitude equation in Fourier space [203]. It turns
out that in the case of spatially constant fluctuations, whereby dW (x, t) = dW (t)
for all x, the Turing bifurcation point µc is increased by an amount proportional
to the variance σ2; no such shift occurs for spatially uncorrelated noise. Another
well known mechanism for shifting a bifurcation point is multiplicative noise of the
Stratonovich form [219,221]. In order to illustrate this, suppose that the additive noise
term on the right–hand side of equation (58) is replaced by the multiplicative noise
term σg(V (x, t))dW (x, t). Fourier transforming the resulting Stratonovich Langevin
equation gives

τdVn(t) = [−1 + µwn]Vn(t)dt+ σ
∑
m

gn−m(t)dWm(t). (6.69)

The associated Stratonovich Fokker–Planck equation takes the form [221]

τ
∂P

∂t
= −

∑
l

∂

∂vl
[(−1 + µwl)vnP ] +

σ2

2L

∑
l,m,q

∂

∂vl
gl−q

∂

∂vm
gm+qP. (6.70)

Multiplying both sides of this equation by vn and integrating with respect to v leads
to the following evolution equation for the mean:

τ
d〈Vn〉
dt

= [−1 + µwn]〈Vn〉+
σ2

2L

∑
m,q

〈
∂gn−q
∂vm

gm+q

〉
. (6.71)

In the simple case that g(V ) = V , this reduces to

τ
d〈Vn〉
dt

= [−1 + µwn + σ2/(2∆x)]〈Vn〉. (6.72)

Note that one has to introduce a cut–off in the frequencies, which is equivalent to
introducing a fundamental lattice spacing of ∆x. (Alternatively, the multiplicative
noise can be taken to have a finite correlation length in space). In the continuum
limit, we obtain the modified bifurcation condition

µc =
1− σ2/(2∆x)

ŵ(kc)
. (6.73)

The multiplicative noise thus shifts the bifurcation point to a parameter regime where
patterns do not exist in the deterministic neural field equation. Finally, note that
such a shift would not occur in the case of the Ito form of multiplicative noise; the
latter would occur when carrying out a diffusion approximation of the master equation
formulation of stochastic neural fields [207].
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6.3.2. Traveling waves. Another well known result from the study of stochastic
PDEs is the non-trivial effects of multiplicative noise on front propagation in reaction–
diffusion systems [219,222]. This result carries over to the case of front propagation in
a stochastic neural field, which can be established by combining the front construction
carried out in §3.1 with the multi time scale analysis of [222]. For the sake of
illustration, consider a stochastic neural field equation with multiplicative noise under
the Stratonovich interpretation:

dU =

[
−U(x, t) +

∫ ∞
−∞

w(x− y)F (U(y, t))dy

]
dt+ ε1/2g(U(x, t))dW (x, t). (6.74)

We assume that dW (x, t) represents an independent Wiener process such that

〈dW (x, t)〉 = 0, 〈dW (x, t)dW (x′, t′)〉 = 2C([x− x′]/λ)δ(t− t′)dtdt′. (6.75)

Here λ is the spatial correlation length of the noise such that C(x/λ) → δ(x) in the
limit λ→ 0, and ε determines the strength of the noise, which is assumed to be weak.
The multiplicative factor g(U) could arise from some form of Langevin approximation
of a neural master equation, or reflect some form of parametric noise such as threshold
noise [223].

The Stratonovich version of multiplicative noise contributes to an effective shift
in the mean speed of a front (assuming that it exists when ε = 0) due to the fact
that 〈g(U)η〉 6= 0 even though 〈η〉 = 0. The former average can be calculated using
Novikov’s theorem [224]:

ε1/2〈g(U(x, t))η(x, t)〉 = εC(0)〈g′(U)g(U)〉. (6.76)

The above result can be derived by Fourier transforming (74) and evaluating averages
using the Fokker–Planck equation in Fourier space. This leads to an equation similar
to (71), which on applying the inverse transform gives the desired result. Note that in
the limit λ→ 0, C(0)→ 1/∆x where ∆x is a lattice cut–off. The method developed
in [222] is to construct an approximation scheme that separates out the diffusive effects
of noise from the mean drift. The first step is to rewrite the neural field equation (74)
as

dU(x, t) = [h(U(x, t)) +

∫ ∞
−∞

w(x− y)F (U(y, t))dy]dt+ ε1/2R(U, x, t), (6.77)

where

h(U) = −U + εC(0)g′(U)g(U) (6.78)

and

R(U, x, t) = g(U)η(x, t)− ε1/2C(0)g′(U)g(U). (6.79)

The stochastic process R has zero mean (so does not contribute to the effective drift)
and correlation

〈R(U, x, t)R(U, x′, t′)〉 = 〈g(U(x, t))η(x, t)g(U(x′, t′)η(x′, t′)〉+O(ε1/2). (6.80)

The next step in the analysis is to assume that the fluctuating term in equation
(77) generates two distinct phenomena that occur on different time–scales: a diffusive–
like displacement of the front from its uniformly translating position at long time
scales, and fluctuations in the front profile around its instantaneous position at short
time scales [219, 222]. In particular, following [222], we express the solution U of
equation (77) as a combination of a fixed wave profile U0 that is displaced by an
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amount ∆(t) from its uniformly translating mean position ξ = x − cεt, and a time–
dependent fluctuation Φ in the front shape about the instantaneous position of the
front:

U(x, t) = U0(ξ −∆(t)) + ε1/2Φ(ξ −∆(t), t). (6.81)

Here cε denotes the mean speed of the front. To a first approximation, the stochastic
variable ∆(t) undergoes Brownian motion with a diffusion coefficient D(ε) = O(ε)
(see below), which represents the effects of slow fluctuations, whereas Φ represents
the effects of fast fluctuations. Note that the expansion (81) is not equivalent to
a standard small–noise expansion, since the wave profile U0 implicitly depends on
ε. Substituting into equation (77) and taking averages generates to lowest order the
following deterministic equation for U0:

−veff(ε)
dU0

dξ
− h(U0(ξ)) =

∫ ∞
−∞

w(ξ − ξ′)F (U0(ξ′))dξ′. (6.82)

We will assume that there exists a traveling wave solution for U0. In the particular
case that g(U) = U , such a solution can be constructed explicitly using the methods
reviewed in §3.1. For example, taking the high–gain limit so that F (U) = H(U − κ),
the effective velocity is (see also equation (6))

veff =
σ

2κ
[1− 2κ(1− εC(0))], (6.83)

which implies that multiplicative noise increases the mean speed of front propagation.
Proceeding to the next order and imposing equation (82), we find that ∆(t) = O(ε1/2)
and

dΦ(ξ, t) = L̂ ◦ Φ(ξ, t)dt+ ε−1/2U ′0(ξ)d∆(t) + dR(U0, ξ, t) (6.84)

where L̂ is the non–self–adjoint linear operator

L̂ ◦A(ξ) = veff(ε)
dA(ξ)

dξ
+ h′(U0(ξ))A(ξ) +

∫ ∞
−∞

w(ξ − ξ′)F ′(U0(ξ′))A(ξ′)dξ′ (6.85)

for any function A(ξ) ∈ L2(R).
We can now proceed along similar lines to §3.4.1. The non-self-adjoint linear

operator L̂ has a 1D null space spanned by U ′0(ξ), which follows from differentiating
equation (82) with respect to ξ. We then have the solvability condition for the existence
of a nontrivial solution of equation (85), namely, that the inhomogeneous part is
orthogonal to the null space of the adjoint operator. Taking the latter to be spanned
by the function V(ξ), we have∫ ∞

−∞
V(ξ)

[
U ′0(ξ)d∆(t) + ε1/2dR(U0, ξ, t)

]
dξ = 0. (6.86)

Thus ∆(t) satisfies the stochastic ODE

d∆(t) = −ε1/2

∫ ∞
−∞
V(ξ)dR(U0, ξ, t)dξ∫ ∞
−∞
V(ξ)U ′0(ξ)dξ

. (6.87)

Using the lowest order approximation dR(U0, ξ, t) = g(U0(ξ))dW (ξ, t), we deduce that
(for ∆(0) = 0)

〈∆(t)〉 = 0, 〈∆(t)2〉 = 2D(ε)t (6.88)



CONTENTS 102

where D(ε) is the the effective diffusivity

D(ε) = ε〈d∆(t)d∆(t′)〉

= ε

∫ ∞
−∞

∫ ∞
−∞
V(ξ)V(ξ′)g(U0(x))g(U0(ξ′))〈dW (ξ, t)dW (ξ′, t′)〉dξdξ′[∫ ∞

−∞
V(ξ)U ′0(ξ)dξ

]2

= ε

∫ ∞
−∞
V(ξ)2g2(U0(ξ))dξ[∫ ∞
−∞
V(ξ)U ′0(ξ)dξ

]2 . (6.89)

Again, in the case g(U) = U and F (U) = H(U − κ), we can explicitly determine the
function V(ξ) and evaluate the integral expressions for D(ε), see §3.4.1. In Fig. 34
we show results of a numerical simulation, which establishes that both the mean and
variance of z(t) are linear functions of t with slopes corresponding to veff(ε) and D(ε),
respectively.
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Figure 34. Numerical simulation of wavefront propagation in the stochastic
scalar field equation (74) for Heaviside weight function F (U) = H(U − κ)
with κ = 0.35, exponential weight function w(x) = e−2|x| and multiplicative
noise g(U) = U . Noise strength ε = 0.005 and C(0) = 10. (a) Snapshot
of noisy traveling front. (b) Plot of var(z) (black curve) and mean z̄ (gray
curve) as a function of time t.

6.4. Path integral representation of stochastic neural fields

Recently, Buice and Cowan [204] have used path integral methods and renormalization
group theory to establish that a stochastic neural field model based on a continuum
version of a birth–death master equation belongs to the universality class of directed
percolation, and consequently exhibits power law behavior suggestive of many
measurements of spontaneous cortical activity in vitro and in vivo [225,226]. Although
the existence of power law behavior is still controversial [227], the application of path
integral methods provides yet another example of how analytical techniques familiar
in the study of PDEs are being adapted to studies of continuum neural fields. (For
reviews on path integral methods for stochastic differential equations see [228–230]).



CONTENTS 103

In this section, we indicate how a stochastic neural field can be reformulated as a path
integral.

Derivation of path integral representation. For simplicity, we consider a scalar neural
field with multiplicative white noise of the Ito form:

dU =

[
−U +

∫ ∞
−∞

w(x− y)F (U(y, t))dy

]
dt+ g(U)dW (x, t), (6.90)

for 0 ≤ t ≤ T and initial condition U(x, 0) = Φ(x) Discretizing both space and time
with Ui,m = u(m∆d, i∆t), Wi,m = ∆d−1/2W (m∆d, i∆t), ∆dwmn = w(m∆d, n∆d)
gives

Ui+1,m−Ui,m =

[
−Ui,m + ∆d

∑
n

wmnF (Ui,n)

]
∆t+

√
∆t√
∆d

g(Ui,m)dWi,m+Φmδi,0,(6.91)

with i = 0, 1, . . . , N , T = N∆t and

〈dWi,m〉 = 0, 〈dWi,mdWi′,m′〉 = δi,i′δm,m′ . (6.92)

Let U and W denote the vectors with components Ui,m and Wi,m respectively.
Formally, the conditional probability density function for U given a particular
realization of the stochastic process W (and initial condition Φ) is

P [U|W] =
∏
n

N∏
i=0

δ

(
Ui+1,m − Ui,m +

[
Ui,m −∆d

∑
n

wmnF (Ui,n)

]
∆t

−
√

∆t√
∆d

g(Ui,m)dWi,m − Φmδi,0

)
. (6.93)

Inserting the Fourier representation of the Dirac delta function,

δ(Ui,m) =
1

2π

∫
e−iŨi,mUi,mdŨi,m, (6.94)

gives

P [U|W] =

∫ ∏
n

N∏
j=0

dŨj,n
2π

e−i
∑
i,m Ũi,m(Ui+1,m−Ui,m+[Ui,m−∆d

∑
n wmnF (Ui,n)]∆t)

× e
i
∑
i,m Ũi,m

(√
∆t√
∆d
g(Ui,m)dWi,m+Φmδi,0

)
. (6.95)

For a Gaussian white noise process, Wi,n has the probability density function

P (Wi,m) = (2π)−1/2e−W
2
i,m/2. Hence, setting

P [U] =

∫
P [U|W]

∏
j,n

P (Wj,n)dWj,n

and performing the integration with respect to Wj,n by completing the square, we
obtain the result

P [U] =

∫ ∏
n

N∏
j=0

dŨj,n
2π

e−i
∑
i,m Ũi,m(Ui+1,m−Ui,m+[Ui,m−∆d

∑
n wmnF (Ui,n)]∆t)

× e
∑
i,m([iŨi,m]2g2(Ui,m) ∆t

2∆d+iŨi,mΦmδi,0). (6.96)
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Finally, taking the continuum limits ∆d → 0, and ∆t → 0, N → ∞ for fixed
T with Ui,m → U(x, t) and iŨi,m/∆d → Ũ(x, t) gives the following path integral
representation of a stochastic neural field:

P [U ] =

∫
DŨe−S[U,Ũ ] (6.97)

with

S[U, Ũ ] =

∫
dx

∫ T

0

dt Ũ(x, t)

[
Ut(x, t) + U(x, t)−

∫
w(x− y)F (U(y, t))dy

−Φ(x)δ(t)− 1

2
Ũ(x, t)g2(U(x, t))

]
. (6.98)

Generating functional. Given the probability functional P [U ], we can write down
path integral representations of various moments of the stochastic field U . For
example, the mean field is

〈〈U(x, t)〉〉 =

∫
DUDŨ U(x, t)e−S[U,Ũ ], (6.99)

whereas the two–point correlation is

〈〈U(x, t)U(x′, t′)〉〉 =

∫
DUDŨ U(x, t)U(x′, t′)e−S[U,Ũ ]. (6.100)

Another important characterization of the stochastic neural field is how the mean
activity (and other moments) respond to small external inputs (linear response
theory). First, suppose that we add a small external source term h(x, t) on to
the right–hand side of the deterministic version (g ≡ 0) of the field equation (90).
Linearizing about the time–dependent solution U(x, t) of the unperturbed equation
(h ≡ 0) leads to an inhomogeneous linear equation for the perturbed solution
ϕ(x, t) = Uh(x, t)− U(x, t):

∂ϕ

∂t
= −ϕ(x, t) +

∫ ∞
−∞

w(x− y)F ′(U(y, t))ϕ(y, t)dy + h(x, t). (6.101)

Introducing the deterministic Green’s function or propagator G0(x, t;x′, t′) according
to the adjoint equation

−∂G0

∂t′
= −G0(x, t;x′, t′) + F ′(U(x′, t))

∫ ∞
−∞

w(x′ − y)G0(x, t; y, t′)dy

+ δ(x− x′)δ(t− t′), (6.102)

with G0(x, t;x′, t′) = 0 for t ≤ t′ (causality), we can express the linear response as

ϕ(x, t) =

∫ ∞
−∞

dx′
∫ t

dt′G0(x, t;x′, t′)h(x′, t′). (6.103)

In other words, in terms of functional derivatives

δU(x, t)

δh(x′, t′)
= G0(x, t;x′, t′). (6.104)

Now suppose that we add a small source term within the path integral representation
(97). This corresponds to adding a term

∫
dx
∫
dt h(x, t)Ũ(x, t) to the action (98).

The associated Green’s function for the full stochastic model is defined according to

G(x, t;x′, t′) ≡ δ〈〈U(x, t)〉〉
δh(x′, t′)

= 〈〈U(x, t)Ũ(x′, t′)〉〉 (6.105)
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with

lim
t→t′+

G(x, t;x′, t′) = δ(x− x′)

and G(x, t;x′, t′) = 0 for t ≤ t′. The above analysis motivates the introduction of the
generating functional

Z[J, J̃ ] =

∫
DUDŨ e−S[U,Ũ ]e

∫
dx
∫ T
0
dt[Ũ(x,t)J(x,t)+J̃(x,t)U(x,t)]. (6.106)

Various moments of physical interest can then be obtained by taking functional
derivatives with respect to the “current sources” J , J̃ . For example,

〈〈U(x, t)〉〉 =
δ

δJ̃(x, t)
Z[J, J̃ ]

∣∣∣∣∣
J=J̃=0

(6.107)

〈〈U(x, t)U(x′, t′)〉〉 =
δ

δJ̃(x, t)

δ

δJ̃(x′, t′)
Z[J, J̃ ]

∣∣∣∣∣
J=J̃=0

(6.108)

〈〈U(x, t)Ũ(x′, t′)〉〉 =
δ

δJ̃(x, t)

δ

δJ(x′, t′)
Z[J, J̃ ]

∣∣∣∣∣
J=J̃=0

. (6.109)

Perturbation theory. Suppose for the moment that the firing–rate function is linear,
F (U) = µU , and consider the so–called free generating functional Z0[J, J̃ ] obtained
from equation (106) by taking the action S → S0 with

S0[U, Ũ ] =

∫
dx

∫ T

0

dt Ũ(x, t)

[
U̇(x, t) + U(x, t)− µ

∫
w(x− y)U(y, t)dy

]
=

∫
dx

∫
dx′
∫ T

0

dt

∫ T

0

dt′ Ũ(x, t)G−1
0 (x, t;x′, t′)U(x′, t′). (6.110)

Here G−1
0 is the inverse of the propagator G0(x, t;x′, t′) = G(x−x′, t− t′) with G(x, t)

satisfying the linear homogeneous equation (for F ′(U) = µ)

∂G

∂t
= −G(x, t) + β

∫ ∞
−∞

w(x− y)G(y, t)dy + δ(x)δ(t). (6.111)

The latter can be solved using Fourier transform to give

G(x, t) = H(t)

∫ ∞
−∞

eikxe−(1−µŵ(k))t dk

2π
, (6.112)

where ŵ(k) is the Fourier transform of the weight distribution w(x) and H(0) = 0 for
Ito calculus. Having expressed the free action S0 in terms of the inverse propagator,
the free functional can be calculated explicitly by completing the square:

Z0[J, J̃ ] = e
∫
dx
∫
dx′

∫ T
0
dt
∫ T
0
dt′[J̃(x,t)G(x−x′,t−t′)J(x′,t′)]. (6.113)

Finally, the full generating functional can be expressed in term of Z0 by decomposing
the full action as S = S0 + SI , where SI is the interacting part of the action that
includes the terms arising from initial conditions, multiplicative noise and nonlinear
contributions to the firing rate function. Then

Z[J, J̃ ] =

∫
DUDŨ

∞∑
n=0

(−SI [U, Ũ ])n

n!
e−S0[U,Ũ ]e

∫
dx
∫ T
0
dt[Ũ(x,t)J(x,t)+J̃(x,t)U(x,t)].

=

∞∑
n=0

(−SI [δ/δJ̃, δ/δJ ])n

n!
Z0[J, J̃ ]. (6.114)
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Assuming that SI is scaled by a small parameter, equation (114) is the starting point
for a diagrammatic perturbation expansion of the moments and propagators based on
Wicks theorem and Feynman graphs [228]. This has been developed in some detail
by Buice et al. [204, 205] within the context of a path integral representation of the
neural master equation (48), which generalizes previous work on reaction diffusion
systems [229, 231, 232]. One of the specific features assumed by Buice et. al. is that
the zero activity state is an absorbing state. Consequently, renormalization group
methods can be used to show that the associated stochastic neural field model belongs
to the universality class of directed percolation. However, the existence of an absorbing
state is not a general feature of stochastic neural field models such as equation (90),
for which g(U) > 0 for all U .

Weak–noise limit. Another form of perturbation expansion occurs in the weak noise
limit. Suppose that the multiplicative noise term g(U) → σg(U) with σ � 1. (In
the case of a Langevin approximation of the neural master equation (48), σ = 1/

√
N ,

where N is the size of each local population [206, 207]). Performing the rescalings

Ũ → Ũ/σ2 and J̃ → J̃/σ2, the generating functional (106) becomes

Z[J, J̃ ] =

∫
DUDŨ e−

1
σ2 S[U,Ũ ]e

1
σ2

∫
dx
∫ T
0
dt[Ũ(x,t)J(x,t)+J̃(x,t)U(x,t)]. (6.115)

In the limit σ → 0, the path integral is dominated by the “classical” solutions
u(x, t), ũ(x, t), which extremize the exponent of the generating functional:

δS[U, Ũ ]

δU(x, t)

∣∣∣∣∣
Ũ=ũ,U=u

= −J̃(x, t),
δS[U, Ũ ]

δŨ(x, t)

∣∣∣∣∣
Ũ=ũ,U=u

= −J(x, t). (6.116)

In the case of zero currents J = J̃ = 0, these equations reduce to

∂u(x, t)

∂t
=
δH[u, ũ)

δũ(x, t)
,

∂ũ(x, t)

∂t
= −δH[u, ũ)

δu(x, t)
, (6.117)

where we have set

S[U, Ũ ] =

∫
dx

∫ T

0

dt Ũ(x, t)U̇(x, t)−
∫ T

0

dtH[U, Ũ ]−
∫
dx Ũ(x, 0)Φ(x),

such that

H[U, Ũ ] =

∫
dx Ũ(x, t)

[
−U(x, t) +

∫
w(x− y)F (U(y, t))dy

+
1

2
Ũ(x, t)g2(U(x, t))

]
(6.118)

Equations (117) take the form of a Hamiltonian dynamical system in which u is a
“coordinate” variable, ũ is its “conjugate momentum” and H is the Hamiltonian.
It immediately follows from the form of H that one type of classical solution is the
mean–field solution ũ(x, t) ≡ 0, which implies that u(x, t) satisfies the scalar neural
field equation (2). Interestingly, there are also non–mean–field classical solutions,
ũ(x, t) 6= 0, which play an important role in determining large deviations or rare event
statistics in terms of optimal paths [207,233]. Finally, note that the path integral (115)
can be used to calculate “semi–classical” corrections to the deterministic neural field
equation in the weak noise limit by carrying out a perturbation expansion in σ and
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constructing the corresponding effective action [205, 228]. For example, the leading
order correction to equation (2) takes the form

∂ν

∂t
= −ν(x, t) +

∫
w(x− y)F (ν(y, t))dy

+
σ2

2

∫
w(x− y)C(y, y, t)F ′′(ν(y, t))dy +O(σ4), (6.119)

where C is the O(1) two-point correlation function

C(x, x′, t) =
1

σ2
〈〈U(x, t)U(x′, t)〉〉 − 〈〈U(x, t)〉〉〈〈U(x′, t)〉〉 (6.120)

It is also possible to derive a corresponding evolution equation for the correlation
function C [205,228].

7. Discussion

As we have highlighted in this review, neural field theory provides a mathematical
framework for developing large–scale population models of cortical dynamics. In
particular, a continuum description of spatially structured biological neural networks
allows many techniques from PDE theory to be adapted to the neural context.
Although neural field models neglect information at the level of individual spikes,
as well as the associated conductance–based mechanisms for generating such spikes,
they have been remarkably successful in describing a wide range of phenomena at the
population level. One of the outstanding challenges is determining to what extent the
various spatially coherent dynamical states supported by neural fields persist when
the discrete–like nature of spiking neurons is taken into account. In certain cases
coherent states have been shown to persist. For example, a 1D network of spiking
neurons can support a stable activity bump, although the bump can destabilize in
the case of sufficiently fast synapses, which is not seen in the corresponding rate
model [139, 140]. Spiking networks also support traveling pulses analogous to those
found in rate-based neural field models with adaptation [234,235]. Another important
issue concerns how to go beyond mean-field theories so that higher–order statistical
correlations between populations of neurons can also be determined. This in turn
raises a number of questions regarding the nature of stochasticity at the population
level (which we touched upon in §6), the role of statistical correlations in information
processing, and the spatial/temporal scale of such correlations.

Broadly speaking, current applications of neural fields can be divided into three
distinct problem domains. The first, as exemplified by the phenomena of population
tuning curves [26], geometric visual hallucinations [20] and binocular rivalry waves
[117], requires understanding the feature–based anatomy of cortical connections. That
is, in order to relate patterns of cortical activity predicted by neural field models
with visual psychophysics and neurophysiology, it is necessary to consider how the
spatial distribution of synaptic connections correlates with corresponding stimulus–
based feature maps; in general such connections will be heterogeneous. Extensions
to other sensory modalities such as audition also need to be developed. Another
important application domain concerns the use of neural fields in the forward modeling
of brain imaging data based on EEG and functional magnetic imaging (fMRI), for
example. One particularly interesting recent development is the use of brain–wave
equations [21–24,65] to relate co-registered imaging modalities that combine the spatial
resolution of EEG with the temporal resolution of fMRI [236]. Such forward modeling
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has to take into account the large–scale structural connectivity of the brain, the
geometry of the folded three–dimensional cortical sheet, and the coupling between
neural activity and blood flow (in order to determine the so–called fMRI BOLD
signal) [237–240]. Moreover, in order to take proper account of the effects of dendritic
filtering on the generation of extracellular electric fields and the EEG signal [241],
it will be necessary to incorporate dendritic structure into neural field models along
the lines outlined in [47]. The third problem domain involves more abstract neural
field representations of dynamic cognitive processes [242, 243]. Here one of the major
challenges is solving the associated inverse problem, that is, finding an appropriate
synaptic weight kernel that generates a given trajectory in cognitive space. Such an
inverse problem tends to be high–dimensional and ill–posed.

The last example suggests yet another interesting future direction of neural field
theory, namely, to build upon the early work of Amari and collaborators on self–
organizing neural fields [244, 245]. The basic idea is to combine the theory of bump
formation in a lateral inhibition network (cortical layer) with competitive Hebbian
learning dynamics on the feedforward weights from an input layer. It is found
numerically that starting from a crude topographic map between the input layer
and the cortical layer, the system evolves to a more refined continuous map that is
dynamically stable. In the simpler one–dimensional case, conditions for the existence
and stability of such a map can be derived analytically. Moreover, it can be shown
that under certain circumstances the continuous topographic map undergoes a pattern
forming instability that spontaneously breaks continuous translation symmetry, and
the map becomes partitioned into discretized blocks; it has been suggested that these
blocks could be a precursor for the columnar microstructure of cortex [244,245]. Given
that cortical columns tend to be associated with stimulus features such as ocular
dominance and orientation (see §5.2), this raises the interesting question whether
or not such features could also emerge through the spontaneous symmetry breaking
of self–organizing neural fields. This issue has recently been addressed in terms
of spontaneous symmetry breaking [246]. For example, it can be shown that a
binocular one–dimensional topographic map can undergo a pattern forming instability
that breaks the underlying Z2 symmetry between left and right eyes. This leads to
the spatial segregation of eye specific activity bumps consistent with the emergence
of ocular dominance columns. Moreover a two–dimensional isotropic topographic
map can undergo a pattern forming instability that breaks the underlying rotation
symmetry. This leads to the formation of elongated activity bumps consistent with
the emergence of orientation preference columns. A particularly interesting property
of the latter symmetry breaking mechanism is that the linear equations describing
the growth of the orientation columns exhibits a rotational shift–twist symmetry (see
§5.4), in which there is a coupling between orientation and topography. Such coupling
has been found in experimentally generated orientation preference maps.
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