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Abstract. Following recent advances in imaging techniques and methods of
dendritic stimulation, active voltage spikes have been observed in thin dendritic
branches of excitatory pyramidal neurons, where the majority of synapses occur.
The generation of these dendritic spikes involves both Na+ ion channels and
M-methyl-D-aspartate receptor (NMDAR) channels. During strong stimulation
of a thin dendrite, the resulting high levels of glutamate, the main excitatory
neurotransmitter in the central nervous system and an NMDA agonist, modify
the current-voltage (I-V) characteristics of an NMDAR so that it behaves like a
voltage-gated Na+ channel. Hence, the NMDARs can fire a regenerative dendritic
spike, just as Na+ channels support the initiation of an action potential following
membrane depolarization. However, the duration of the dendritic spike is of the
order 100 ms rather than 1 ms, since it involves slow unbinding of glutamate from
NMDARs rather than activation of hyperpolarizing K+ channels. It has been
suggested that dendritic NMDA spikes may play an important role in dendritic
computations and provide a cellular substrate for short-term memory. In this
paper, we consider a stochastic, conductance-based model of dendritic NMDA
spikes, in which the noise originates from the stochastic opening and closing of
a finite number of Na+ and NMDA receptor ion channels. The resulting model
takes the form of a stochastic hybrid system, in which membrane voltage evolves
according to a piecewise deterministic dynamics that is coupled to a jump Markov
process describing the opening and closing of the ion channels. We formulate
the noise-induced initiation and termination of a dendritic spike in terms of a
first-passage time problem, under the assumption that glutamate unbinding is
negligible, which we then solve using a combination of WKB methods and singular
perturbation theory. Using a stochastic phase-plane analysis we then extend our
analysis to take proper account of the combined effects of glutamate unbinding
and noise on the termination of a spike.
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1. Introduction

It has been known for more than twenty years that the dendrites of cortical
neurons do not simply act as passive electrical cables but also support a variety of
active physiological processes [1]. For example, thick apical dendrites of pyramidal
neurons express voltage-gated Na+, K+ and Ca2+ channels, which support the back-
propagation of action potentials (APs) from the soma into the dendritic tree [2, 3];
back-propagating APs are thought to play an important role in spike-timing dependent
synaptic plasticity (STDP) [4]. In addition, sufficient local stimulation of active
apical dendrites can initiate regenerative membrane depolarizations known as dendritic
spikes [5,6]. Some dendritic spikes are restricted to the local initiation zone rather than
invading the cell body, and are thus well placed to mediate the long-term potentiation
of synaptic inputs in the absence of output spiking of the neuron [7]. On the other
hand, Ca2+ action potentials initiated in apical dendrites can propagate towards the
soma, which provides a mechanism for actively amplifying the effects of distal synapses
on AP generation in the cell body [8]. Following advances in imaging techniques and
methods of dendritic stimulation, Schiller et al. [9] established in vitro that active
processes can also occur in thin basal and apical dendritic branches of pyramidal
neurons, where the majority of synapses occur, see Fig. 1(a). In particular, they
found stimulus-evoked dendritic spikes whose major ionic component involved ligand-
gated and voltage-gated M-methyl-D-aspartate receptor (NMDAR) channels, see also
[10–12] and the review [13]. When glutamate (the main excitatory neurotransmitter
in the central nervous system) binds to an NMDAR, it modifies the voltage sensitivity
of the corresponding ion channel current, which develops a negative slope conductance
due to removal of a magnesium block [14,15]. This means that in the presence of high
levels of glutamate, the current-voltage (I-V) characteristics of an NMDAR channel
are very similar to the voltage-gated Na+ channel. Hence, during strong stimulation of
a thin dendrite due to the local uncaging of glutamate or high frequency stimulation
of a cluster of synapses, the NMDARs can fire a regenerative dendritic spike, just
as Na+ channels support the initiation of an action potential following membrane
depolarization. However, the duration of the dendritic spike is of the order 100 ms
rather than 1 ms.

A schematic illustration of a typical dendritic spike is shown in Fig. 1(b), which
consists of a long-lasting plateau potential together with fast onset and termination.
The underlying NMDA spike is revealed by blocking Na+ and Ca2+ channels. How
the level of glutamate affects the current-voltage (I-V) curves of dendritic membrane
is illustrated in Fig. 2. Immediately following strong stimulation, the maximum
conductance of the NMDARs is high so that the N-shaped I-V curve has only a stable
depolarized fixed point corresponding to a self-triggering plateau potential. However,
as glutamate starts to unbind, the maximum conductance decreases and two additional
fixed points arise via a saddle-node bifurcation: a stable resting state and unstable
threshold state. The dendritic membrane is now in a bistable regime, although it
remains in the depolarized state in the absence of a hyperpolarizing stimulus. Finally,
as the maximum conductance is further reduced, the unstable and depolarized fixed
points annihilate in a second saddle-node bifurcation, resulting in a rapid return to
the resting state. The I-V curve remains non-ohmic, that is, the current is boosted by
active ion channels.

It should be emphasized that dendritic NMDA spikes have not yet been observed
in vivo, although NMDA-dependent plateau potentials have been demonstrated in
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Figure 1. (a) Schematic illustration of a pyramidal neuron showing the thick
apical dendrite and various thin dendrites. The latter support the initiation
of dendritic NMDA spikes. (b) Typical waveform of a dendritic NMDA spike.
Weak glutamatergic inputs generate EPSP-like (subthreshold) depolarizations.
A stronger input can trigger a dendritic plateau potential, consisiting of a
rapid onset that is often associated with a Na+ spikelet, a long-lasting plateau
phase that can have a duration of several hundred ms, and a sudden collapse
at the end of the plateau phase. The plateau potential consists of several
dendritic conductances, the most predominant being due to NDMAR channels.
Pharmacologically blocking Na+ and Ca2+ channels reveals the pure dendritic
NMDA spike [9].

various cells of the spinal cord and brain stem during locomotion [16]. Nevertheless,
there have been a number of suggestions regarding the functional role of dendritic
NMDA spikes [13]. First, the local nature of the spikes provides a possible mechanism
for parallel processing in different branches of the basal dendritic tree. Second,
the prolonged duration of NMDA spikes provides a potential cellular substrate for
short-term working memory [17, 18] and could also enable neurons to act as “neural
integrators” similar to those found in the oculomotor system [19]. Interestingly, the
duration of a plateau potential is proportional to the strength of stimulation. Finally,
dendritic spikes close to the soma could help to regulate cortical UP states, which
are periods of high synchronous activity that alternate with periods of quiescence
during sleep. It has been found in acute brain slice preparations that glutamate-
evoked plateau potentials generate sustained depolarizations in the soma of pyramidal
neurons, which resemble cortical UP states [13,20].

There have been a number of computational studies of the voltage dependence
of NMDA conductances at the macroscopic level, based on Hodgkin-Huxley-like
dynamics [21–24]. Although some of these works explore the contribution of NMDA
conductances to bistable membranes, none of them explicitly address the initiation
and termination of dendritic NMDA spikes. They also assume that the number
of ion channels is sufficiently large so that fluctuations in the opening and closing
of the channels due to thermal noise can be ignored. In this paper, we consider
a stochastic conductance-based model of active dendritic membrane containing a
mixture of glutamate-bound NMDARs and voltage-dependent Na+ channels, in which
the effects of channel fluctuations are taken into account. (For simplicity, we ignore
additional voltage-dependent ion channels such as Ca2+). As with other recent
conductance-based models of stochastic ion channels [25–28], our model takes the form
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Figure 2. Sketch of current-voltage curves for a dendritic membrane in the
presence of glutamate-bound NMDA receptors. The slope of each curve indicates
the total voltage-dependent conductance. As the maximum conductance gmax of
the NMDA channels is increased a family of N-shaped I-V curves is generated
with different fixed points. For relatively small gmax, the conductance is non-
ohmic (boosting regime) but there is only a single fixed point corresponding to the
resting state. As gmax is increased there is a saddle-node bifurcation resulting in a
bistable membrane with a stable resting state and a stable active state separated
by an unstable fixed point. For sufficiently large gmax, the resting state and
unstable fixed point annihilate in a second saddle-node bifurcation resulting in a
self-triggering state.

of a stochastic hybrid system, in which a piecewise deterministic dynamics describing
the time evolution of the membrane potential is coupled to a jump Markov process
describing the opening and closing of a finite number of ion channels [26–30]. We
focus on the role of ion channel noise on the initiation and termination
of spontaneous dendritic spikes, both of which are formulated in terms of
an escape problem. One approach to analyzing escape problems for such a system
would be to carry out a perturbation analysis in the small parameter 1/N , assuming
that the number of ion channels of each type isO(N). One can then adapt perturbative
methods for solving noise-induced escape problems in jump Markov processes, which
involve finding quasistationary solutions of the associated master equation using a
mixture of WKB methods and matched asymptotics [31]. Here, however, we will
develop the WKB method based on a perturbation expansion in a small parameter ε,
under the assumption that the transition rates of the opening and closing of the ion
channels are O(1/ε) whereas all other characteristic times in the system are O(1) (on
an appropriately chosen time-scale). Such an approach has recently been applied
to a variety of stochastic hybrid systems, including spontaneous action potential
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generation in conductance-based neurons [28], gene networks [32] and bistable neural
networks [33]. In all of these examples, the calculation of the quasistationary solution
is considerably more involved than standard jump Markov processes, see also [34,35].
It should also be noted that a separation of time-scales was previously used
by Chow and White [36] in their study of spontaneous action potentials in
the Hodgkin-Huxley model with stochastic ion channels. However, they
combined this with a diffusion approximation of the voltage dynamics
based on a system-size expansion in ε = 1/N . One limitation of the
diffusion approximation is that it can lead to exponentially large errors
when solving escape problems. This is a consequence of the fact that the
(quasi)-stationary probability density for the membrane voltage v takes
the large deviation form p(v) ∼ e−Ψ(v)/ε where Ψ(v) is the so-called quasi-
potential. The quasi-potential obtained using a diffusion approximation
differs from that obtained using the more accurate WKB methods adopted
in the current paper, resulting in exponentially large errors when dealing
with rare events such as escape from a metastable resting state.

The model of dendritic NMDA spikes has another level of complexity compared
to previous models, namely, the maximal conductance of the NMDARs is an
exponentially decaying function of time due to the slow unbinding of glutamate, and
this plays a crucial role in the termination of spikes. We show how the perturbation
analysis of stochastic hybrid systems can be extended to the time-dependent case using
a separation of time-scales. We assume that the initial maximum conductance of the
NMDARs is sufficiently large so that the membrane is in a bistable regime. For fixed
maximum conductance, we first calculate the mean time to escape from the resting
state to the depolarized state or vice versa, see Fig. 2. We then show how to modify the
calculation in the presence of a slow exponential decay in the maximum-conductance
(due to the slow unbinding of glutamate from NMDARs). Once in the depolarized
state, the dendritic spike will terminate in the absence of noise when the membrane
loses bistability via a saddle-node bifurcation. We show that in the presence of noise,
termination of the dendritic spike can occur before the saddle-node bifurcation, and
we calculate the mean time of termination. We also demonstrate that our analytical
results agree very well with Monte Carlo simulations of the full model.

The structure of the paper is as follows. We construct our stochastic model of
dendritic NMDA spikes in §2 and show how to recover a deterministic conductance-
based model in the limit ε→ 0. We then formulate the first passage time problem for
initiation and termination of spikes in §3, under the simplifying assumption that the
maximal NMDAR conductance is fixed. We then describe the general mathematical
framework for calculating the MFPT based on the construction of a quasistationary
density using WKB methods (§4) and matched asymptotics (§5). Note that our
analysis is an extension of the theory developed in [28], since we need to take into
account two different types of ion channel. Finally, in §6 we use our analytical
expression for the MFPT to determine the mean time for termination of an NMDA
spike in the presence of a slowly decaying maximal NMDAR conductance. We proceed
using a stochastic phase-plane analysis based on the study of excitable systems. We
also compare the analytical expression for the mean termination time with Monte-
Carlo simulations of the full system.
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2. Stochastic model of NMDA and Na+ channels

Let v(t) denote the voltage of a local patch of dendritic membrane containing a mixture
of glutamate-bound NMDAR channels and voltage-gated Na+ channels. Suppose that
v evolves according to a deterministic equation of the form

C
dv

dt
= gx(t)ax(v)(Vx − v) + ḡyay(v)(Vy − v) + ḡL(VL − v), (2.1)

where x, y label NMDA and Na+ channels, respectively, and C is the membrane
capacitance. The third term on the right-hand side is an ohmic leak current with
maximal conductance ḡL and membrane reversal potential VL. The glutamate-
bound NMDA receptors act like sodium channels, both having a non-ohmic voltage-
dependent conductance such that

ar(v) =
1

1 + e−γr(v−κr)
, r = x, y. (2.2)

Here ar(v) represents the fraction of open ion channels of type r in the limit of fast
channel kinetics, see below. The time-dependent deactivation of the NMDA channels
following the binding of glutamate is incorporated by taking the maximal conductance
of the NMDA receptors to be a slowly decaying function of time t:

gx(t) = ḡxe−t/τ , (2.3)

where all NMDA receptors are assumed to be glutamate-bound at t = 0, and
τ � τx, τy, τL with τr = C/ḡr, r = x, y, L. For fixed gx(t), the right-hand side of
(2.1) behaves like one of the I-V cuves shown in Fig. 2. Suppose that the maximal
NMDA conductance has a value for which the membrane is in a bistable regime. If
the deterministic system is in the resting state, then some depolarizing stimulus is
needed to switch it to the active state corresponding to a plateau potential, and a
subsequent hyperpolarizing stimulus is needed to return the system to the resting
state. In practice, termination will occur when the maximal NMDA conductance has
reduced sufficiently so that the membrane is no longer bistable.

In this paper, we are interested in how ion channel fluctuations can spontaneously
switch the system between the resting and active states, and how this is affected by a
slowly changing maximal NMDA conductance. For simplicity, we will initially develop
the stochastic analysis in the case of a fixed maximal NMDAR conductance ḡx, and
then show how to extend the analysis to the case of a slowly varying conductance for
which ḡx → gx(t) = ḡxe−t/τ . Suppose that each ion channel of type r, r = x, y, can
exist in either a closed state (Cr) or an open state (Or). Transitions between the two
states are governed by a continuous-time jump Markov process

Cr(closed)
αr(v)


βr

Or(open). (2.4)

with voltage–dependent transition rate αr(v). Note that the two-state model is
a simplification of more detailed ion channel models, in which there can
exist inactivated states and multiple subunits [37]. For example, the Na+

channel inactivates as well as activates, and consists of multiple subunits,
each of which can be in an open state; the channel only conducts when
all subunits are open. In order to develop the basic theory, we focus on
the simpler two-state model. However, it should be possible to extend the
methods presented in this paper to these more complex models, although
we do not expect the basic results of the paper to be altered significantly.
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Assume for the moment that v is fixed, let Zr(t) be a discrete random variable
taking values Zr ∈ {Cr, Or}, and set P rz (t) = Prob [Zr(t) = z]. From conservation of
probability,

P rC(t) + P rO(t) = 1.

The transition rates then determine the probability of jumping from one state to the
other in a small interval ∆t such that

P rC(t+ ∆t) = P rC(t)− αrP rC(t)∆t+ βrP
r
O(t)∆t.

Writing down a similar equation for the open state, dividing by ∆t, and taking the
limit ∆t→ 0 leads to the pair of equations

dP rC
dt

= −αrP rC + βrP
r
O (2.5)

dP rO
dt

= αrP
r
C − βrP rO. (2.6)

Now suppose that there are N identical, independent two-state ion channels of each
type. (It is straightforward to generalize to the case where the total number of
NMDAR and Na+ channels differ). In the limit N → ∞ we can reinterpret P rC
and P rO as the mean fraction of closed and open ion channels within the population,
and fluctuations can be neglected. After setting P rO = sr and P rC = 1− sr, we obtain
the kinetic equation

dsr
dt

= αr(1− sr)− βrsr. (2.7)

It turns out the kinetics of glutamate-bound NMDAR channels and Na+ channels are
fast compared to any membrane time constants τr. Experimentally, one finds that
the time constants for channel kinetics are in the range 100µs− 1ms (with
activation faster than inactivation), whereas membrane time constants are
of the order 1 − 10ms [38]. This suggests taking ε ≈ 0.1 (although we will
find good agreement between theory and numerics even when ε is around
one, see Sec. 6). Thus, fixing the time units such that the membrane time constants
τr = O(1), we rescale the transition rates such that

αr, βr → αr/ε, βr/ε

for r = x, y and some small parameter ε � 1. (We take the ε-scaling
of both glutamate-bound NMDAR and Na+ channels to be the same,
which is consistent with physiological findings. It would be interesting
mathematically to explore the effects of differences in scaling between the
two types of channel, but do not consider this issue further here.) It follows
that in the limit ε→∞, we can make the quasi-steady-state approximation

sr(t)→ ar(v) ≡ αr(v)

αr(v) + βr
, r = x, y. (2.8)

Comparison with (2.2) implies that

αr(v) = βre
γr(v−κj). (2.9)

For ε > 0 and a finite number of ion channels, it is necessary to take into account
fluctuations in the opening and closing of the ion channels. Suppose that at time t,
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there are nj(t) open ion channels of type j with the remaining N − nj(t) channels
closed. Equation (2.1) becomes the piecewise deterministic equation

C
dV

dt
= ḡx

nx(t)

N
(Vx − V ) + ḡy

ny(t)

N
(Vy − V ) + ḡL(VL − V ), (2.10)

which only holds between jumps in the discrete random variables nx, ny. The latter
are given by the birth-death processes

nr →
ωr

+(nr,V )/ε
nr + 1, nr →

ωr
−(nr)/ε

nr − 1. (2.11)

The transition rates are

ωr+(nr, V ) = αr(V )(N − nr), ωr−(nr) = βrnr, (2.12)

after rescaling αj , βj by a factor 1/ε. The associated probability density

p(v, nx, ny, t)dv = P[v ≤ V (t) ≤ v + dv, nx(t) = nx, ny(t) = ny],

given an initial condition V (0) = v0, nr(0) = n̄r, satisfies the differential Chapman-
Kolmogorov (CK) equation (for fixed maximal NMDAR conductance)

∂p

∂t
= − ∂

∂v
[I(v, nx, ny)p(v, nx, ny, t)] +

1

ε
Lp(v, nx, ny, t),

(2.13)

where L = Lx + Ly,

Lr = (E+
r − 1)ωr−(nr) + (E−r − 1)ωr+(nr, V ). (2.14)

and the E±r are ladder operators defined according to E±r F (nr) = F (nr±1). The drift
term takes the form

I(v, nx, ny) =
nx
N
fx(v) +

ny
N
fy(v)− g(v), (2.15)

with fx(v) = ḡx[Vx − v]/C, fy(v) = ḡy[Vy − v]/C, g(v) = −ḡL[VL − V ]/C. (In the case
of a slowly decaying maximal NMDAR conductance, ḡx → gx(t)).

It is convenient to rewrite equation (2.13) in the form

∂p

∂t
= − ∂

∂v
[I(v,n)p(v,n, t)] +

1

ε

∑
m

A(n,m; v)p(v,m), (2.16)

where n = (nx, ny) and the matrix A has the non–zero entries

A(nx, ny, nx − 1, ny; v) = ωx+(nx − 1, v),

A(nx, ny, nx, ny − 1; v) = ωy+(ny − 1, v),

A(nx, ny, nx + 1, ny; v) = ωx−(nx + 1),

A(nx, ny, nx, ny + 1; v) = ωy−(ny + 1),

A(nx, ny, nx, ny; v) = −
[
ωx−(nx) + ωy−(ny) + ωx+(nx, v) + ωy+(ny, v)

]
.

Note that
∑

m ≡
∑N
mx=0

∑N
my=0. For fixed v, A is equivalent to a transition matrix.

That is, A is irreducible and has a simple zero eigenvalue with left eigenvector 1 and
right eigenvector ρ. That is,∑

n

A(n,m; v) = 0,
∑
m

A(n,m; v)ρ(v,m) = 0. (2.17)
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The Perron-Frobenius Theorem then ensures that all other eigenvalues of A(v) are
negative definite. It follows that, for fixed v, the continuous-time Markov process,

dp(v,n, t)

dt
=

1

ε

∑
m

A(n,m; v)p(v,m, t),

has a globally attracting steady-state ρ(v,n) with p(v,n, t)→ ρ(v,n) as t→∞. The
steady-state density ρ can be calculated explicitly using generating functions:

ρ(v, nx, ny) =
∏
r=x,y

N !

(N − nr)!nr!
ar(v)nrbr(v)N−nr (2.18)

with

ar(v) =
αr(v)

αr(v) + βr
, br(v) =

βr
αr(v) + βr

. (2.19)

Using regular perturbation theory, it can be shown that in the limit ε → 0, the
probability density p(v,n, t)→ C(v, t)ρ(v,n) where

ρ(v,n)
∂C

∂t
= − ∂

∂v
[ρ(v,n)I(v,n)C(v, t)] , (2.20)

Summing both sides with respect to nx and ny yields the Liouville equation

∂C

∂t
= − ∂

∂v
[F (v)C(v, t)] , (2.21)

where

F (v) =
∑
n

ρ(v,n)I(v,n) =
n̄x
N
fx(v) +

n̄y
N
fy(v)− g(v), (2.22)

and n̄r is the mean number of open channels,

n̄r =

N∑
nx=1

N∑
ny=1

nrρ(v, nx, ny) = Nar(v). (2.23)

It follows that in the limit ε → 0 we recover the deterministic voltage equation (see
(2.1))

dv

dt
= F (v) = ax(v)fx(v) + ay(v)fy(v)− g(v) ≡ −dΨ

dv
. (2.24)

Here Ψ(v) is an effective potential whose minima and maxima correspond to the stable
and unstable fixed points of the I-V curves shown schematically in Fig. 2. Note that
the convergence of a stochastic hybrid system to a deterministic system
in the ε → 0 limit has been analyzed from a mathematical viewpoint by a
number of authors [26,27,29,30,39]

3. First passage time (FPT) problem and the quasistationary
approximation

In this section we will assume that the mean-field equation operates in a bistable
regime for the given value of ḡx, with a pair of stable fixed points v± and an unstable
fixed point v0, v− < v0 < v+. In order to estimate the exponentially small transition
rate from the left to right well (for small ε), we place an absorbing boundary at the
unstable fixed point v0 and assume that the system starts in the resting state v−. (The
subsequent time to travel from v0 to the depolarized state v+ is insignificant, and can
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be neglected). The resulting FPT problem determines the mean time for initiation
of a spike (in the absence of an external stimulus). The same analysis can be used
to calculate the mean time for termination of a spike (in the absence of glutamate
unbinding) by taking the system to start in the right-hand well at v+. Once we have
solved the given FPT problem, we will use stochastic phase-plane analysis in order
to determine how a time-dependent NMDAR conductance gx(t) due to glutamate
unbinding combined with noise generates more realistic termination times (see §6).

In light of the above, the CK equation (2.16) is supplemented by the absorbing
boundary conditions

p(v0,n, t) = 0, n ∈M, (3.1)

where M is the set of integers (nx, ny) for which I(v0,n) < 0. Let the total number
of such elements be k = |M|. The initial condition is taken to be

p(v,n, 0) = δ(v − v−)δn,n0
. (3.2)

Note that typical values for the reversal potentials are VL = −60 mV, VNa = 60 mV
and VNMDA = 0 mV. Thus, VL < Vx < Vy. From the form of the CK equation (2.16),
it follows that if va < V (0) < vb with va = VL and vb = Vy, then va < V (t) < vb for
all t ≥ 0. In the absence of a leak current (ḡL = 0), this result holds for va = Vy and
vb = Vx. In the following we assume that p(v, nx, ny, t) = 0 for all v /∈ (va, vb). Let T
denote the (stochastic) first passage time for which the system first reaches v0, given
that it started at v−. The distribution of first passage times is related to the survival
probability that the system hasn’t yet reached v0:

S(t) ≡
∑
n

∫ v0

va

p(v,n, t)dv. (3.3)

That is, Prob{t > T} = S(t) and the first passage time density is

f(t) = −dS
dt

= −
∑
n

∫ v0

va

∂p

∂t
(v,n, t)dv. (3.4)

Substituting for ∂p/∂t using the CK equation (2.16) shows that

f(t) =
∑
n

∫ v0

va

∂[I(v,n)p(v,n, t)]

∂v
dv =

∑
n

I(v0,n)p(v0,n, t). (3.5)

We have used the fact that
∑

nA(n,m; v) = 0 and p(va,n, t) = 0. The first passage
time density can thus be interpreted as the probability flux J(v0, t) at the absorbing
boundary, since we have the conservation law∑

n

∂p(v,n, t)

∂t
= −∂J

∂v
, J(v, t) =

∑
n

I(v,n)p(v,n, t). (3.6)

The first passage time problem in the weak noise limit (ε � 1) has been well
studied in the case of Fokker–Planck (FP) equations and master equations, see for
example [31, 40–45]. (Typically, ε would represent the noise amplitude in the case of
a FP equation, whereas ε = 1/N in the case of a master equation with N the number
of discrete states). One of the characteristic features of the weak noise limit is that
the flux through the absorbing boundary and the inverse of the mean first passage
time (MFPT) 〈T 〉 are exponentially small, that is, 〈T 〉 ∼ e−C/ε for some constant C.
This means that standard singular perturbation theory cannot be used to solve the
resulting boundary value problem, in which one matches inner and outer solutions
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of a boundary layer around the point v = v0. Instead, one proceeds by finding a
quasistationary solution using a Wentzel-Kramers-Brillouin (WKB) approximation.
Recently, the WKB method has been extended to a variety of stochastic hybrid
systems [28, 32, 33, 46] using a so-called projection method [47]. Here we will use
this method to analyze the FPT problem for dendritic spikes.

In order to apply the projection method, it is necessary to assume certain
properties of the non self-adjoint linear operator −L̂ on the right-hand side of (2.16)
with respect to the Hilbert space of functions h(v,n) with v ∈ [va, v0] and inner
product defined according to

〈h, g〉 =
∑
n

∫ v0

va

h(v,n)g(v,n)dv. (3.7)

(i) L̂ has a complete set of eigenfunctions φr, r = 0, 1, . . . N̂ − 1 with N̂ = (N + 1)2,
and

L̂φr(v,n) ≡ d

dv
(I(v,n)φr(v,n))− 1

ε

∑
m

A(n,m; v)φr(v,m)

= λrφr(v,n), (3.8)

together with the boundary conditions

φr(v0,n) = 0, forn /∈M. (3.9)

(ii) The real part of the eigenvalues λr is positive definite and the smallest eigenvalue λ0

is real and simple. Thus we can introduce the ordering 0 < λ0 < Re[λ1] ≤ Re[λ2] ≤ . . ..

(iii) λ0 is exponentially small, λ0 ∼ e−C/ε, whereas Re[λr] = O(1) for r ≥ 1. In
particular, limε→0 λ0 = 0 and limε→0 φ0(v,n) = ρ(v,n).

Under the above assumptions, we can introduce the eigenfunction expansion

p(v,n, t) =

N̂−1∑
r=0

Cre
−λrtφr(v,n), (3.10)

with λ0 � Re[λr] for all r ≥ 1. Thus, at large times we have the quasistationary
approximation

p(v,n, t) ∼ C0e−λ0tφ0(v,n). (3.11)

Substituting such an approximation into equation (3.5) gives

f(t) ∼ C0e−λ0t
∑
n

I(v0,n)φ0(v0∗,n), Re[λ1]t� 1, (3.12)

Equation (3.8) implies that∑
n

∫ v0

va

L̂φ0(v,n)dv ≡
∑
n

I(v0,n)φ0(v0,n, t)

= λ0

∞∑
n

φ0(v,n)dv.

In other words,

λ0 =

∑
n I(v0,n)φ0(v0,n)

〈1, φ0〉
. (3.13)
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Combining equations (3.13) and the quasistationary approximation (3.12) shows that
the (normalized) first passage time density reduces to

f(t) ∼ λ0e−λ0t (3.14)

and, hence, 〈T 〉 =
∫∞

0
tf(t)dt ∼ 1/λ0.

It remains to obtain an approximation φε of the principal eigenfunction φ0,
which can be achieved using the WKB method as described in §3.2. This yields a
quasistationary density that approximates φ0 up to exponentially small terms at the
boundary, that is,

L̂φε = 0, φε(v0,n) = O(e−C/ε). (3.15)

In order to express λ0 in terms of the quasistationary density φε, we consider the
eigenfunctions of the adjoint operator, which satisfy the equation

L̂∗ξs(v,n) ≡ I(v,n)
dξs(v,n)

dv
− 1

ε

∑
m

A(m,n; v)ξs(v,m)

= λsξs(v,n) (3.16)

and the boundary conditions

ξs(v0,n) = 0, n 6=M. (3.17)

Given our assumptions regarding the spectral properties of L̂, the two sets of
eigenfunctions form a biorthonormal set with

〈φr, ξs〉 = δr,s. (3.18)

Now consider the identity

〈φε, L̂∗ξ0〉 = λ0〈φε, ξ0〉. (3.19)

Integrating by parts the left-hand side of equation (3.19) picks up a boundary term
so that

λ0 = −
∑

n φε(v0,n)I(v0,n)ξ0(v0,n)

〈φε, ξ0〉
. (3.20)

The calculation of the principal eigenvalue λ0 thus reduces to the problem of
determining the quasistationary density φε and the adjoint eigenfunction ξ0 using
perturbation methods (see below). Once λ0 has been evaluated, we can then identify
the mean first passage time 〈T 〉 with λ−1

0 .

4. WKB method and the quasistationary density

We now use the Wentzel-Kramers-Brillouin (WKB) method [31, 42–45] to compute
the quasistationary density φε. We thus seek a solution of the form

φε(v,n) = R(v,n) exp

(
−Φ(v)

ε

)
, (4.1)

where Φ(v) is the quasi-potential. Substituting into the equation L̂φε = 0, we have∑
m

(A(nm; v) + Φ′(v)δn,mI(v,m))R(v,m) = ε
dI(v,n)R(v,n)

dv
, (4.2)
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where Φ′ = dΦ/dv. Introducing the asymptotic expansions R ∼ R(0) + εR(1) and
Φ ∼ Φ0 + εΦ1, the leading order equation is∑

m

A(n,m; v)R(0)(v,m) = −Φ′0(v)I(v,n)R(0)(v,n). (4.3)

(Note that since I(v,n) is non-zero almost everywhere for v ∈ [va, v0], we can identify

−Φ′0 and R(0) as an eigenpair of the matrix operator Â(n,m; v) = A(n,m; v)/I(v,n)
for fixed v). Positivity of the probability density φε requires positivity of the
corresponding solution R(0). One positive solution is R(0) = ρ, for which Φ′0 = 0.
However, such a solution is not admissible since Φ0 = constant. It can be proven
using linear algebra (see Theorem 3.1 of [34]), that since I(v,n) for fixed v ∈ [va, v0]
changes sign as nx, ny increase from zero, there exists one other positive solution,
such that Φ′0(v) has the correct sign and vanishes at the fixed points. Hence, it can
be identified as the appropriate WKB solution.

Proceeding to the next order in the asymptotic expansion of equation (4.2),∑
m

(A(n,m; v) + Φ′0(v)δn,mI(v,m))R(1)(v,m)

=
d[I(v,n)R(0)(v,n)]

dv
− Φ′1(v)I(v,n)R(0)(v,n). (4.4)

For fixed v, the matrix operator

Ā(n,m; v) = A(n,m; v) + Φ′0(v)δn,mI(v,m) (4.5)

on the left-hand side of this equation has a one-dimensional null space spanned by the
positive WKB solution R(0). The Fredholm Alternative Theorem then implies that
the right-hand side of (4.4) is orthogonal to the left null vector S of Ā. That is, we
have the solvability condition∑

n

S(v,n)

[
dI(v,n)R(0)(v,n)

dv
− Φ′1(v)I(v,n)R(0)(v,n)

]
= 0, (4.6)

with S satisfying∑
n

S(v,n) (A(n,m; v) + Φ′0(v)δn,mI(v,m)) = 0. (4.7)

Given R(0), S and Φ0, the solvability condition yields the following equation for Φ1:

Φ′1(v) =

∑
n S(v,n)[I(v,n)R(0)(v,n)]′∑∞
n S(v,n)I(v,n)R(0)(v,n)

. (4.8)

Combining the various results, and defining

k(v) = exp

(
−
∫ v

v−

Φ′1(y)dy

)
, (4.9)

gives to leading order in ε,

φε(v,n) ∼ Ak(v) exp

(
−Φ0(v)

ε

)
R(0)(v,n), (4.10)

where we choose
∑

nR
(0)(v,n) = 1 for all u and N is the normalization factor,

A =

[∫ v0

va

k(v) exp

(
−Φ0(v)

ε

)]−1

. (4.11)

The latter can be approximated using Laplace’s method to give

A ∼ 1

k(v−)

√
|Φ′′0(v−)|

2πε
exp

(
Φ0(v−)

ε

)
. (4.12)
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4.1. Calculation of Φ0

Setting R(0)(v,n) = ψ(v, nx, ny) and µ = −Φ′0(v), the eigenvalue equation (4.3) can
be written as

(N − nx + 1)αx(v)ψ(nx − 1, ny) + (N − ny + 1)αy(v)ψ(v, nx, ny − 1)

+ (nx + 1)βxψ(v, nx + 1, ny) + (ny + 1)βyψ(v, nx, ny + 1)

− [nxβx + nyβy + (N − nx)αx(v) + (N − ny)αy(v)]ψ(v, nx, ny) +

= µ
(nx
N
fx(v) +

ny
N
fy(v)− g(v)

)
ψ1(v, nx, ny) (4.13)

Try a normalized positive solution of the form

ψ(v, nx, ny) =
1

[1 + Λx(v)]N
1

[1 + Λy(v)]N
N ![Λx(v)]nx

(N − nx)!nx!
· N ![Λy(v)]ny

(N − ny)!ny!
, (4.14)

with
∑
nx,ny

ψ1(v, nx, ny) = 1 for all v. This yields the following equation relating
Λx,Λy and µ1: ∑

p=x,y

[
npαp
Λp

+ Λpβp(N − np)− npβp − (N − np)αp
]

= µ
(nx
N
fx +

ny
N
fy − g

)
.

Requiring that terms linear in nx, ny vanish yields the pair of equations

αx

[
1

Λx
+ 1

]
− βx(Λx + 1) =

µfx
N

, αy

[
1

Λy
+ 1

]
− βy(Λy + 1) =

µfy
N

,

(4.15)

and the remaining terms independent of nx, ny give

gµ = N
∑
p=x,y

[αp − βpΛx]. (4.16)

Equations (4.15) imply that

fy
Λx

(αx − βxΛx)(Λx + 1) =
fx
Λy

(αy − βyΛy)(Λy + 1) (4.17)

In order to simplify the analysis we set g = 0 so that

(αx − βxΛx) = −(αy − βyΛy),

that is,

Λy =
αx + αy − βxΛx

βy
(4.18)

Substituting into (4.17) yields a cubic equation for Λx:

[fxβyΛx + (αx + αy − βxΛx)(Λx(fx + fy) + fy)] (αx − βxΛx) = 0 (4.19)

One solution to equations (4.19) and (4.18) is Λx = αx/βx,Λy = αy/βy, which
reproduces the steady state density ρ corresponding to the zero eigenvalue µ0. It
is also straightforward to check that µ = 0 and Λp = αp/βp, p = x, y is doubly
degenerate at the fixed points v = v0, v−, for which

(αy(v) + βy)αx(v)fx(v) + (αx(v) + βx(v))αy(v)fy(v) = 0. (4.20)
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In order to determine the positive solution for all v, va < v < v0, we rewrite the
quadratic part of (4.19) as

aΛ2
x + bΛx + c = 0 (4.21)

with

a = βx(fx + fy)

b = − (αx + αy)(fx + fy) + βxfy − fxβy
c = − (αx + αy)fy

The roots are Λx = Λ±x with

Λ±x = − b

2a
±
√
b2 − 4ac

2a
. (4.22)

In the given voltage domain, fx(v) < 0, fy(v) > 0 so that the positive root will depend
on the sign of fx(v) + fy(v). For a given voltage v, there exists a unique positive
solution ψ given by (4.14) with Λx,y = Λ+

x,y or Λx,y = Λ−x,y Finally, the eigenvalue µ
(and hence Φ0) can be obtained by substituting for Λx back into equation (4.15).

4.2. Calculation of Φ1

Expand out equation (4.7) according to

(N − nx)αx(v)η(v, nx + 1, ny) + (N − ny)αy(v)S(v, nx, ny + 1)

+ nxβxS(v, nx − 1, ny) + nyβyS(v, nx, ny − 1)

− [nxβx + nyβy + (N − nx)αx(v) + (N − ny)αy(v)]S(v, nx, ny)

= µ1(v)
(nx
N
fx(v) +

ny
N
fy(v)− g(v)

)
S(v, nx, ny). (4.23)

Trying a solution of the form

S(v, nx, ny) = [Γx(v)]nx [Γy(v)]ny (4.24)

yields

(N − nx)αxΓx + (N − ny)αyΓy + nxβxΓ−1
x + nyβyΓ−1

y

− [(N − nx)αx + (N − ny)αy + nxβx + nyβy)]

= µ
(nx
N
fx +

ny
N
fy − g

)
. (4.25)

Γx and Γy are then determined by canceling terms linear in nx and ny, and terms
independent of (nx, ny). This gives

βx

[
1

Γx
− 1

]
− αx(Γx − 1) =

µfx
N

(4.26)

βy

[
1

Γy
− 1

]
− αy(Γy − 1) =

µfy
N

(4.27)

Nαx(Γx − 1) +Nαy(Γy − 1) = − gµ (4.28)

Equations (4.26) and (4.27) imply that

fy

(
βx

[
1

Γx
− 1

]
− αx(Γx − 1)

)
= fx

(
βy

[
1

Γy
− 1

]
− αy(Γy − 1)

)
(4.29)

Again let us set g = 0 so that

Γy =
(αx + αy)− αxΓx

αy
(4.30)



Stochastic hybrid model of spontaneous dendritic NMDA spikes 16

Substituting for Γy into (4.29) gives a cubic for Γx:

[(fyβx + Γxαx(fx + fy))(αx(1− Γx) + αy) + fxβyαxΓx)] (1− Γx) = 0. (4.31)

The root Γx = 1,Γy = 1 corresponds to the solution S(v,n) ≡ 1 associated with the
zero eigenvalue µ = 0. We also require that µ = 0 and S = 1 at a fixed point for
which (4.20) holds. Imposing the fixed point condition, equation (4.31) reduces to

(fyβx + Γxαx(fx + fy))αx(1− Γx)2 = 0. (4.32)

which confirms the existence of a double root. For general v, the quadratic factor in
equation (4.31) takes the form

aΓ2
x + bΓx + c = 0, (4.33)

with

a = α2
x(fx + fy),

b = fyαxβx − fxαxβy − αx(αx + αy)(fx + fy),

c = − (αx + αy)βyfx.

Again, only one of the two remaining solutions has positive Γx, assuming that
fx < 0, fy > 0 and fx + fy > 0.

5. Calculation of principal eigenvalue using matched asymptotics

In order to evaluate the principal eigenvalue using equation (3.20), we need both the
quasistationary density φε(v,n) and the adjoint eigenfunction ξ0(v,n). The latter
can be determined using singular perturbation methods [28, 34, 46]. Since λ0 is
exponentially small in ε, equation (3.16) yields the leading order equation

εI(u, n)
dξ0(v,n)

dv
+
∑
m

A(m,n; v)ξ0(v,m) = 0, (5.1)

supplemented by the absorbing boundary condition

ξ0(v0,n) = 0, n /∈M. (5.2)

A first attempt at obtaining an approximate solution that also satisfies the boundary
conditions is to construct a boundary layer in a neighborhood of the unstable fixed
point v0 by performing the change of variables v = v0 − εz and setting Q(z,n) =
ξ0(v0 − εz). Equation (5.1) then becomes

I(v0,n)
dQ(z,n)

dz
+
∑
m

A(m,n; v0)Q(z,m) = 0. (5.3)

This inner solution has to be matched with the outer solution ξ0(v,n) = 1, which
means that

lim
z→∞

Q(z,n) = 1 (5.4)

for all n. Consider the eigenvalue equation∑
n

(A(n,m; v)− µr(v)δn,mI(v,m))Sr(v,n) = 0, (5.5)
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We take S0(v,n) = 1 so that µ0 = 0 and set S1(v,n) = S(v,n), µ1(v) = −Φ′0(v),
where S satisfies equation (4.7). We then introduce the eigenfunction expansion

Q(z,n) = c0 +

N̂−1∑
r=1

crSr(v0,n)e−µr(v0)z. (5.6)

In order that the solution remains bounded as z → ∞ we require that cr = 0 if
µr(v0) > 0. The boundary conditions (5.2) generate a system of N̂−k linear equations

for N̂ unknown coefficients cr. One of the unknowns in determined by matching the
outer solution, which suggests that there are k−1 eigenvalues with negative real part.
The eigenvalues are ordered so that Re[µr(v0)] < 0 for r = N̂ − k + 1, . . . , N̂ − 1 and

Re[µr(v0)] ≥ 0 for r = 0, . . . , N̂ − k.
There is, however, one problem with the above eigenfunction expansion, namely,

that µ1(v0) = 0 so that the zero eigenvalue is degenerate. (The vanishing of µ1 = −Φ′0
at fixed points follows from Theorem 3.1 of [34]). Hence, the solution needs to include

a secular term involving the generalized eigenvector Ŝ,∑
n

A(n,m; v0)Ŝ(v0,n) = −I(v0,m). (5.7)

The Fredholm Alternative Theorem ensures that Ŝ exists and is unique, since the
stationary density ρ(v0,m) is the right null vector of A(n,m; v0), and∑

n

ρ(v0,n)I(v0,n) ≡ F (v0) = 0.

In component form with (ζ0)j = ζ(nx, ny),

(N − nx)αx(v0)ζ(nx + 1, ny) + nxβxζ(nx − 1, ny) (5.8)

+ (N − ny)αy(v0)ζ(nx, ny + 1) + nyβyζ(nx, ny − 1)

− ((N − nx)αx(v0) + nxβx + (N − ny)αy(v0) + nyβy) ζ(nx, ny)

= g(v0)− nx
N
fx(v0)− ny

N
fy(v0).

Try a solution of the form

ζn = Anx +Bny. (5.9)

Equating terms linear in nx, ny and terms independent of nx, ny gives

Aαx +Bαy =
g

N

A(αx + βx) =
fx
N
, B(αy + βy) =

fy
N
.

Using the fixed point equation shows that

ζ(nx, ny) =
fx

αx + βx

nx
N

+
fy

αy + βy

ny
N
. (5.10)

The solution for Q(z,n) is now

Q(z,n) = c0 + c1(Ŝ(v0,n)− z) +

N̂−k∑
r=2

crSr(v0,n)e−µr(v0)z. (5.11)

The presence of the secular term means that the solution is unbounded in the limit
z → ∞, which means that the inner solution cannot be matched with the outer



Stochastic hybrid model of spontaneous dendritic NMDA spikes 18

solution. One way to remedy this situation is to introduce an alternative scaling in
the boundary layer of the form v = v0 − ε1/2z, as detailed in Ref. [46]. One can then
eliminate the secular term −c1z and show that

c1 ∼
√

2|Φ′′0(v0)|
π

+O(ε1/2), cr = O(ε1/2) for r ≥ 2. (5.12)

It turns out that we only require the first coefficient c1 in order to evaluate
the principal eigenvalue λ0 using equation (3.20). This follows from equations
(4.3) and (5.5), and the observation that the left and right eigenvectors of the

matrix Â(n,m; v) = A(n,m; v)/I(v,n) are biorthogonal. In particular, since the
quasistationary approximation φε is proportional to R(0), see equation (4.10), it follows
that φε is orthogonal to all eigenvectors Sr, r 6= 1. Simplifying the denominator of
equation (3.20) by using the outer solution ξ0 ∼ 1, we obtain

λ0 ∼ −
∑

n ξ0(v0,n)I(v0,n)φε(v0,n)

〈φε, 1〉

∼ c1
k(v0)B(v0)

k(v−)

√
|Φ′′(v−)|

2π
exp

(
−Φ0(v0)− Φ0(v−)

ε

)
, (5.13)

with

B(v0) = −
∑
n

Ŝ(v0,n)v(v0,n)ρ(v0,n) (5.14)

Substituting for c1, we obtain our final result

λ0 ∼
1

π

k(v0)B(v0)

k(v−)

√
Φ′′0(v−)|Φ′′0(v0)| exp

(
−Φ0(v0)− Φ0(v−)

ε

)
. (5.15)

Repeating the analysis for transition from the depolarized state to the resting state
gives

λ0 ∼
1

π

k(v0)B(v0)

k(v+)

√
Φ′′0(v+)|Φ′′0(v0)| exp

(
−Φ0(v0)− Φ0(v+)

ε

)
. (5.16)

6. Stochastic phase-plane analysis

In the above analysis of dendritic NMDA spikes, the maximal NMDA conductance
was held fixed at ḡx. However, following stimulation at time t = 0, the maximal
conductance slowly decays according to equation (2.3). Thus, the deterministic model
becomes the planar dynamical system

dv

dt
= hax(v)(Vx − v)/τx + ay(v)(Vy − v)/τy + (VL − v)/τL (6.1)

≡ J(v, h),

dh

dt
= −h

τ
, h(0) = 1. (6.2)

We will assume a separation of time-scales for which τj � τ , that is, the membrane
time constants are smaller than the decay time due to the unbinding of glutamate from
NMDARs. If the variation in the maximal NMDAR conductance is included, then the
membrane acts like an excitable system rather than a bistable system on long time-
scales. For there is now only a single fixed point, which is given by the resting state.
Since the resting state is hyperpolarized, we expect most of the NMDAR channels to
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v0(h)
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Figure 3. Sketch of nullclines in the deterministic planar dendritic spike model
with v denoting membrane potential and h keeping track of the fraction of
glutamate-bound NMDARs. The v nullcline is cubic-like with three branches
v±(h) and v0(h). In the given diagram there is a single, stable fixed point on
the left-hand branch. In the stochastic version of the model, a dendritic spike
is initiated by stimulus-induced jump to the right-hand branch v+(h). This is
followed by a stochastic trajectory in which the slow variable h moves down the
nullcline until it undergoes a noise-induced transition back to the left-hand branch
v−(h) before the knee at h = h∗. In the deterministic case, the return transition
occurs at the knee (dashed curve).

be blocked by Mg2+ even when bound to glutamate. Thus, Na+ channels play the
major role in the initiation of a dendritic spike, so the analysis of previous sections
still holds. On the other hand, the decay of h is expected to play an important role
in the termination of the spike. Following along analogous lines to the analysis of
Ca2+ sparks by Hinch [48], we can analyze spike termination by combining the theory
of stochastic transitions with the classical phase-plane analysis of slow-fast excitable
systems.

In Fig. 3 we sketch the nullclines of the deterministic system in a parameter
regime where there is a single, stable fixed point (v∗, 0). The fast variable v has a
cubic-like nullcline (along which v̇ = 0) and the slow variable h has the axis h = 0
as its nullcline (along which ḣ = 0). We assume that the nullclines have a single
intersection point at (v∗, 0). This corresponds to a fixed point of the system, which
we identify with the resting state. For a finite range of values of h, there exist three
solutions of the equation J(v, h) = 0, which we denote by v−(h), v0(h) and v+(h).
Whenever these solutions coexist, we choose the ordering v−(h) ≤ v0(h) ≤ v+(h).
Let h∗ denote the minimal value of h for which v+(h) exists, and let h∗ denote the
maximal value of h for which v−(h) exists. Suppose that at t = 0, the NMDARs have
their maximal conductance (h = 1) and a dendritic spike is initiated by an external
stimulus (point O in Fig. 3). This induces a fast transition from the left-hand to the
right-hand v-nullcline according to v−(1)→ v+(1). The system then moves down the
right-hand nullcline v+(h) with h(t) = e−t/τ . In the absence of noise, there is a return
transition to the left-hand branch at the knee where h = h∗. On the other hand,
in the full stochastic model we expect there to be a noise-induced transition back to
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v−(h) before reaching the knee. Suppose that at time t the dendritic spike has not
yet terminated and set v±(t) = v±(h(t)). Using a separation of time-scales, we can
estimate the rate of transition v+(t)→ v−(t) for fixed t using our solution (5.16):

λ0(t) ∼ 1

π

k(v0(t), t)

k(v+(t), t)
B(v0(t), t)

√
Φ′′0(v+(t), t)|Φ0(v0(t), t)|

× exp

(
− [Φ0(v0(t), t)− Φ0(v+(t), t)]

ε

)
, (6.3)

Here the time-dependent functions Φ0(v, t), k(v, t) and B(v, t) are obtained by making
the replacemet fx(v)→ fx(v, t) ≡ ḡxh(t)[Vx−v]/C in the various results derived in §4
and §5. In Fig. 4 we plot the analytically determined potential Φ(v, t) as a function
of voltage v for various times t. It can be seen that for sufficiently small t, Φ is a
double-well potential consistent with the initial condition that the system is bistable
for fixed h = 1. However, as t increases (so h decreases), the potential undergoes a
bifurcation to become monostable, reflecting the existence of only a resting state when
h = 0.

We can now calculate the distribution of dendritic spike durations T . Let
P (s) = P(T > s) and introduce the spike duration probability density

p(s) = −dP
ds
.

The probability that a spike terminates in an infinitesimal time interval δs is λ0(s)δs,
so that

P (s+ δs) = P (s)(1− λ0(s)δs).

Figure 4. The effective potential Φ(v, t) plotted as a function of voltage v
for different times t, showing the effect of glutamate slowly unbinding from
NMDA receptors. At t/τ ≈ 0.45, a bifurction occurs, where the right well
vanishes. For t/τ > 0.45 the system is monostable, and as t → ∞ the voltage
returns to the resting state. Parameter values are N = 5, βx = βy = 1ms−1,
C = 0.8mF , gx = 0.12mΩ−1, gy = 0.2mΩ−1, gL = 0, vx = 80mV , vy = −40mV ,
γx = 0.25mV −1, κx = 8mV , γy = 0.03mV −1, and κy = 30mV .



Stochastic hybrid model of spontaneous dendritic NMDA spikes 21

Figure 5. The first passage time density function p(t) for different values of ε.
Parameter values are the same as Fig. 4

Figure 6. The mean first passage time for the system to leave the active state
and return to the resting state plotted as a function of ε. Solid curves show
the quasi-stationary approximation for τ = 103 (black curve) and τ = 104 (gray
curve). The corresponding results from 20 averaged Monte-Carlo simulations are
indicated by ∗ and ◦, respectively. Other parameter values are the same as in
Fig. 4.

Taking the limit δs→ 0 and integrating gives P (s) = exp
(
−
∫ s

0
λ0(t)dt

)
, and hence

p(s) = λ0(s) exp

(
−
∫ s

0

λ0(t)dt

)
. (6.4)

In Fig. 5 we plot the first passage time density p as a function of time for various
ε. It can be seen that as ε decreases, so that the rate at which the NMDA and
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Na+ channels open and close becomes faster, the mean termination time increases.
This is consistent with the stochastic phase-plane analysis shown in Fig. 3 and the
observation that we recover the determistic model in the limit ε→ 0. Also note that
after time averaging λ0(t), the MFPT is comparable to the decay time τ , indicative
of the crucial role of glutamate unbinding in spike termination. In Fig. 6 we compare
our analytical results for the mean termination time T with Monte-Carlo simulations
of the full stochastic model. (Details of how we perform the simulations can be found
in [28]). It can be seen that there is good agreement between theory and numerics
even when the perturbation parameter ε = 1. There are two factors contributing to
the accuracy of our calculation: the level of noise ε and the value of τ . Clearly, our
perturbation analysis will break down when ε becomes too large. The dependence on τ
reflects the fact that the approximation (6.4) in the case of a time-dependent eigenvalue
λ0(t) breaks down if the survival probability P (t) remains large at the saddle-node
bifurcation point. This can occur for sufficiently small ε and τ , as illustrated in Fig.
7. Finally, note that we choose parameter values such that the time constants τx, τy
are around 1ms and τ = 103 is around 100 ms, which is consistent with physiological
measurements [9].

7. Discussion

In recent years there has been growing interest in understanding how fluctuations in
the opening and closing of ion channels affects classical conductance-based models
of neural excitability. Almost all of this work has focused on the dynamics of Na+

and K+ channels involved in the generation of action potentials. In this paper, we
considered another important example of neural excitability, namely, the occurrence
of spikes in thin dendrites mediated by Na+ and glutamatergic NMDA channels.
Although the initiation of such a spike has certain similarities with standard action

ε = 0.2

ε = 1.0

Figure 7. The survival probability P (t) for two different values of ε with τ = 103

(black curves) and τ = 104 (gray curves). Other parameter values are the same
as in Fig. 4. It can be seen that P (t) for fixed t decreases as τ or ε decreases.
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potentials, the mechanism of termination is very different, involving the slow unbinding
of glutamate from NMDA receptors rather than the activation of K+ channels (and
deactivation of Na+ channels). We extended previous work on the quasistationary
(multiple time scale) analysis of membrane voltage fluctuations in the presence of
channel noise in order to take into account glutamate unbinding. This required an
additional separation of time scales and the use of stochastic phase-plane analysis.
We calculated the mean termination time of a spike under physiologically reasonable
conditions and established that our analysis agrees well with numerical simulations of
the full stochastic model.

What are the possible biological implications of our work from the
perspective of dendritic spikes? One general result is that it is not
necessary for the number of ion channels N to be large in order to
analyze the effects of channel noise (using a system-size expansion, say),
provided that there is some form of separation of time scales. This
could be particularly important in the case of dendritic spikes, since
they occur in thin dendrites where the density of ion channels could be
quite low. Another aspect of our work is that we identify an explicit
mechanism for termination of a dendritic spike based on a combination
of slow/fast analysis and channel fluctuations. In addition to addressing the
particular biophysical phenomenon of dendritic spikes, our work further demonstrates
the applicability of WKB methods and quasistationary analysis to stochastic hybrid
systems. There is a rapidly expanding list of biological phenomena for which a
continuous process couples to a discrete Markov process, including neural excitability
(membrane voltage/ion channel gating), calcium sparks (calcium concentration/ion
channel gating), gene networks (protein concentration/promoters), and stochastic
neural networks (population synaptic currents/spiking activity). All of these systems
exhibit bistability and thus require the use of methods similar to those presented here.

We conclude by noting that there is an important connection between
WKB methods and large deviation theory [49, 50]. That is, it has
been established within the context of chemical master equations and
stochastic differential equations that the quasi-potential obtained using
the WKB method can be interpreted as an effective action evaluated
along a path of maximum likelihood for the underlying stochastic
process. This is particularly important when considering escape problems
in higher-dimensional systems. A mathematical formulation of large
deviation theory has recently been developed for a stochastic hybrid
system [39]. It would be interesting in future work to develop the
connection with our WKB analysis. One possible approach would be to
construct a path-integral representation of solutions to the corresponding
Chapman-Kolmogorov equation by analogy with the Doi-Peliti path-
integral developed for chemical master equations [51–53]
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