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Abstract. We analyze a piecewise deterministic PDE consisting of the diffusion
equation on a finite interval Ω with randomly switching boundary conditions
and diffusion coefficient. We proceed by spatially discretizing the diffusion
equation using finite differences and constructing the Chapman-Kolmogorov (CK)
equation for the resulting finite-dimensional stochastic hybrid system. We show
how the CK equation can be used to generate a hierarchy of equations for
the rth moments of the stochastic field, which take the form of r-dimensional
parabolic PDEs on Ωr that couple to lower order moments at the boundaries.
We explicitly solve the first and second order moment equations (r = 2). We
then describe how the rth moment of the stochastic PDE can be interpreted in
terms of the splitting probability that r non-interacting Brownian particles all
exit at the same boundary; although the particles are non-interacting, statistical
correlations arise due to the fact that they all move in the same randomly
switching environment. Hence the stochastic diffusion equation describes two
levels of randomness; Brownian motion at the individual particle level and a
randomly switching environment. Finally, in the limit of fast switching, we use a
quasi-steady state approximation to reduce the piecewise deterministic PDE to an
SPDE with multiplicative Gaussian noise in the bulk and a stochastically-driven
boundary.
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1. Introduction

There are a growing number of problems in biology that involve the coupling between
a piecewise deterministic dynamical system in Rd and a time-homogeneous Markov
chain on some discrete space Γ, resulting in a stochastic hybrid system [1], also known
as a piecewise deterministic Markov process (PDMP) [2]. One simple example concerns
the intermittent dynamics of a molecular motor moving along a cytoskeletal filament,
with the continuous variable representing spatial position along the filament and the
discrete variable denoting the motile state of the motor [3, 4, 5, 6, 7, 8, 9]; the latter
could determine whether the motor is moving to the left or to the right, see Fig. 1(a).
Another example is a macromolecule diffusing in some bounded intracellular domain,
which contains a narrow channel within the boundary of the domain. One obtains a
hybrid system if the channel is controlled by a stochastic gate that switches between
an open and closed state (see Fig. 1(b)) or if the molecule switches between different
conformational states, only some of which allow the molecule to pass through the
channel [10]. In contrast to the previous example, the continuous dynamics now evolve
according to a stochastic differential equation (SDE). A third important example is
the membrane voltage fluctuations of a single neuron due to the stochastic opening
and closing of ion channels [11, 12, 13, 14, 15, 16, 17, 18, 19], see Fig. 1(c). Here
the discrete states of the ion channels evolve according to a continuous-time Markov
process with voltage-dependent transition rates and, in-between discrete jumps in the
ion channel states, the membrane voltage evolves according to a deterministic equation
that depends on the current state of the ion channels. In the limit that the number
of ion channels goes to infinity, one can apply the law of large numbers and recover
classical Hodgkin-Huxley type equations. However, finite-size effects can result in the
noise-induced spontaneous firing of a neuron due to channel fluctuations. Stochastic
hybrid systems also arise in neural networks [21] and gene networks [22, 23].

In all of the above examples, one can describe the evolution of the system in
terms of a forward differential Chapman-Kolmogorov (CK) equation, which takes the
form of a deterministic partial differential equation for the indexed set of probability
densities pn(x, t) with x ∈ Ω ⊂ Rd and n ∈ Γ. The CK equation is the starting
point for various approximation schemes. For example, in the case of sufficiently fast
switching between the discrete states, one can use a quasi-steady-state approximation
to reduce the CK equation to a Fokker-Planck equation [3, 24, 8]. Furthermore, when
considering escape problems that are dominated by rare events (for which the diffusion
approximation breaks down), one can use WKB methods and matched asymptotics
[13, 18, 19] or large deviation theory [25, 26, 20].

In this paper, we consider a higher level of stochastic hybrid system, in which
the piecewise deterministic dynamics itself evolves according to a partial differential
equation. For concreteness, we focus on the diffusion equation on a finite interval
with randomly switching boundary conditions. One can view it as a macroscopic
model of many Brownian particles that all diffuse in the same randomly switching
environment, which is a one-dimensional version of example (b) in Fig. 1. This
type of piecewise deterministic PDE has recently been analyzed by Lawley et al. [27]
using the theory of random iterative systems. These authors assumed that the left-
hand boundary is Dirichlet, and the right-hand boundary switches randomly between
inhomogeneous Dirichlet and either Neumann or Dirichlet. In both cases they showed
that the solution of the stochastic PDE converges in distribution to a random variable
whose expectation satisfies a deterministic system of PDEs whose solution is a linear
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Figure 1: Examples of stochastic hybrid systems for ODEs. (a) Intermittent motion
of a molecular motor. (b) Stochastically-gated Brownian motion. (c) Neuron with
voltage-gated ion channels.

function of x. They also found that the gradient of the solution is a much more
complicated function of parameters in the case of the Dirichlet-Neumann switching
problem. Note that the switching boundary problem is distinct from stochastic PDEs
driven by additive space-time Gaussian noise [28, 29, 30, 31], since the former tends
to induce stronger correlations at fine spatial scales.

We will address two important issues raised by the study of Lawley et al. [27].
First, can one derive deterministic PDEs for higher moments of the random field
and how do they couple to lower moments? Second, does the resulting hierarchy
of deterministic PDEs (assuming it exists) have an interpretation in terms of the
dynamics of individual Brownian particles? We will tackle both issues by developing an
alternative approach to analyzing piecewise deterministic PDEs, based on discretizing
space and constructing the Chapman-Kolmogorov (CK) equation for the resulting
finite-dimensional stochastic hybrid system. We show how the CK equation can
be used to determine the dynamics of the expectation of the stochastic field, thus
recovering the results of Lawley et al. [27] in a simpler fashion. This construction is
then extended to generate a hierarchy of equations for the rth moments, which take
the form of r-dimensional parabolic PDEs on Ωr that couple to lower order moments
at the boundaries. We explicitly solve the second order moment equations (r = 2).
Finally, we describe how the rth moment of the stochastic PDE can be interpreted in
terms of the splitting probability that r non-interacting Brownian particles all exit at
the same boundary; although the particles are non-interacting, statistical correlations
arise due to the fact that they all move in the same randomly switching environment.
Hence the stochastic diffusion equation describes two levels of randomness; Brownian
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motion at the individual particle level and a randomly switching environment.
The paper is organized as follows. In section 2, we briefly summarize some aspects

of piecewise deterministic ODEs. We then introduce our piecewise deterministic PDE
in section 3, and determine the CK equation for the corresponding ODE obtained
using finite differences. The moment equations for Dirichlet-Dirichlet and Dirichlet-
Neumann switching boundaries are constructed and analyzed in sections 4 and 5,
respectively. The relationship between the moment equations and single Brownian
particle dynamics is established in section 6. Finally, in section 7 we use formal
perturbation methods to approximate the piecewise deterministic PDE in the limit
of fast switching by an SPDE with multiplicative Gaussian noise in the bulk of the
domain and a stochastically-driven boundary.

2. Piecewise deterministic ODE

Before proceeding to analyze a piecewise deterministic PDE, it is useful to recall some
basic features of piecewise deterministic ODEs. The reasons are twofold: first, we will
analyze the stochastic PDE by discretizing space, which yields a finite-dimensional
stochastic hybrid system evolving according to a piecewise ODE. Second, we wish to
relate the deterministic PDEs obtained by taking moments of the full stochastic PDE
to the CK equations for system of Brownian particles. For the sake of illustration,
consider a one-dimensional stochastic hybrid system whose states are described by
a pair (x, n) ∈ Ω × {0, · · · ,K − 1}, where x is a continuous variable in an interval
Ω = [0, L] and n a discrete internal state variable taking values in Γ ≡ {0, · · · ,K− 1}.
(Note that one could easily extend the model to higher-dimensions, x ∈ Rd. In this
case Ω is taken to be a connected, bounded domain with a regular boundary ∂Ω.)
When the internal state is n, the system evolves according to the ODE

ẋ = Fn(x)/τ, (2.1)

where the vector field Fn : R→ R is a continuous function, locally Lipschitz. That is,
given a compact subset K of Ω, there exists a positive constant Kn such that

|Fn(x)− Fn(y)| ≤ An|x− y|, ∀x, y ∈ Ω (2.2)

for some constant An. Here τ is a fixed positive time constant that characterizes the
relaxation rate of the x-dynamics. For the moment we do not specify what happens
to the particle on the boundary ∂Ω, see below

In order to specify how the system jumps from one internal state to the other
for each n ∈ Γ, we consider the positive time constant τn and the function Wnn′(x)
defined on Γ × Γ × R with Wnn(x) = 0 and

∑
m∈ΓWmn(x) = 1 for all x, n. The

hybrid evolution of the system can be described as follows. Suppose the system starts
at time zero in the state (x0, n0). Call x0(t) the solution of (2.1) with n = n0 such
that x0(0) = x0. Let θ1 be the random variable such that

P(θ1 > t) = exp

(
− t

τn0

)
.

Then in the random time interval [0, θ1) the state of the system is (x0(s), n0). We
draw a value of θ1 from the corresponding probability density

p(t) =
1

τn0

exp

(
− t

τn0

)
.
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If θ1 = ∞ then we are done, otherwise we choose an internal state n1 ∈ Γ with
probability Wn1n0

(x0(θ1)) and call x1(t) the solution of the following Cauchy problem
on [θ1,∞):  ẋ1(t) = Fn1

(x1(t))/τ, t ≥ θ1

x1(θ1) = x0(θ1)

Iterating this procedure, we construct a sequence of increasing jumping times (θk)k≥0

(setting θ0 = 0) and a corresponding sequence of internal states (nk)k≥0. The evolution
(x(t), n(t)) is then defined as

(x(t), n(t)) = (xk(t), nk) if θk ≤ t < θk+1. (2.3)

Note that the path x(t) is continuous and piecewise C1. Moreover, although the
evolution of the continuous variable X(t) or the discrete variable N(t) is non-
Markovian, it can be proven that the joint evolution (X(t), N(t)) is a strong Markov
process [2].

Given the iterative definition of the stochastic hybrid process, let X(t) and N(t)
denote the stochastic continuous and discrete variables, respectively, at time t, t > 0,
given the initial conditions X(0) = x0, N(0) = n0. Introduce the probability density
pn(x, t) = p(x, n, t|x0, n0, 0) with

P{X(t) ∈ (x, x+ dx), N(t) = n|x0, n0} = p(x, n, t|x0, n0, 0)dx.

We also fix the units of time by setting τ = 1 and introducing the scaling Wmn →
Wmn/τn. It follows that pn evolves according to the forward differential Chapman-
Kolmogorov (CK) equation [32, 1]

∂pn
∂t

= − ∂

∂x
[Fn(x)pn(x, t)] +

∑
m∈Γ

Anm(x)pm(x, t), (2.4)

with

Anm = Wnm − δn,m
∑
k∈Γ

Wkm. (2.5)

Note that
∑K−1
n=0 Anm = 0 ∀m ∈ Γ. It remains to specify boundary conditions for

the CK equation (2.4). A natural choice is an absorbing or reflecting boundary at
each end. Thus, at x = 0 we would have either

pn(0, t) = 0 ∀n such that Fn(0) < 0 (absorbing)

or
K−1∑
n=0

Fn(0)pn(0, t) = 0 (reflecting),

and similarly at x = L. Hence, a particle that hits the first boundary condition is
trapped (absorbed) there for all future time, while a particle that hits the second
boundary condition is reflected back into the interior of the domain.

A simple example of a stochastic hybrid system is a molecular motor moving along
a filament track of length L. Suppose that the motor exists in two states: moving to
the right with speed v (n = 0) or moving to the left with velocity −v (n = 1). Assume
that transitions between the two states are given by the two-state Markov process,
n = 0, 1

0
β


α

1, (2.6)
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Given the fixed transition rates α, β, the CK equation takes the simple form

∂p0

∂t
= −v ∂p0

∂x
− βp0 + αp1 (2.7a)

∂p1

∂t
= v

∂p1

∂x
+ βp0 − αp1 (2.7b)

At x = 0 the absorbing and reflecting boundary conditions are p1(0, t) = 0 and
p0(0, t) = p1(0, t), respectively.

So far we have assumed that the continuous process is piecewise deterministic.
However, it is straightforward to extend to the case where the continuous process is a
piecewise SDE. That is, consider the piecewise Ito SDE

dX(t) = Fn(X) +
√

2Dn(X)dW (t), (2.8)

where n ∈ Γ and W (t) is a Wiener process. The drift term Fn(X) and diffusion
term Dn(X) are both taken to be Lipschitz. When the SDE is coupled to the
discrete process on Γ, the stochastic dynamics can again be described by a differential
Chapman-Kolmogorov equation, except now there is an additional diffusion term:

∂pn(x, t)

∂t
= − ∂

∂x
[Fn(x)pn(x, t)] +

∂2

∂x2
[Dn(x)pn(x, t)] +

∑
m

Anm(x)pm(x, t). (2.9)

Equation needs to be supplemented by boundary conditions at x = 0, L. For example,
for each discrete state n one could impose an absorbing or reflecting boundary
condition at each end. Hence for each n we would impose

pn(0, t) = 0 (absorbing) or Fn(0)pn(0, t)− ∂Dn(x)pn(x, t)

∂x

∣∣∣∣
x=0

= 0 (reflecting).

In the special case of a pure Brownian particle existing in two states (n = 0, 1) with
spatially uniform diffusion coefficients D0, D1 and transition rates α, β, we have

∂p0

∂t
= D0

∂2p0

∂x2
− βp0 + αp1 (2.10a)

∂p1

∂t
= D1

∂2p1

∂x2
+ βp0 − αp1 (2.10b)

with pn(x, t) = 0 or ∂xpn(x, t) = 0 at x = 0, L.

3. Piecewise deterministic PDE

We now turn to a piecewise deterministic PDE with switching boundaries. Consider
the indexed diffusion equation

∂u

∂t
= Dn

∂2u

∂x2
, x ∈ [0, L], t > 0 (3.1a)

with u satisfying the boundary conditions

Bn(u(0, t), u′(0, t)) = 0, Cn(u(L, t), u′(L, t)) = 0 (3.1b)

and n ∈ I ⊆ Z is a discrete internal state variable. We assume that the latter evolves
according to a jump Markov process m→ n with u-independent transition rates Wnm.
The jump propagator Wnmdt is the probability that the system switches from the
discrete internal state m at time t to the discrete state n at time t+ dt. The resulting
stochastic process is an example of a piecewise deterministic PDE, in which u(x, t)
evolves deterministically between jumps in the discrete variable n. When n switches,
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both the diffusion coefficient and the boundary conditions change. In order to develop
the basic theory, we will focus on the two-state Markov process (2.6) and consider two
cases for the possible boundary conditions. We take the boundary conditions to be

u(0, t) = 0, u(L, t) = η > 0 for n = 0, u(L, t) = 0 for n = 1. (3.2)

or

u(0, t) = 0, u(L, t) = η > 0 for n = 0, ∂xu(L, t) = 0 for n = 1.(3.3)

Thus, the left-hand boundary condition is Dirichlet and in the case of equation (3.2)
the right-hand boundary randomly switches between inhomogeneous Dirichlet and
homogeneous Dirichlet. In equation (3.3) the right-hand boundary randomly switches
between inhomogeneous Dirichlet and homogeneous Neumann. Both of these
particular cases with D0 = D1 were previously analyzed by Lawley et al. [27] using
the theory of random iterative systems. In particular, these authors showed that in
either case u(x, t) converges in distribution to a random variable whose expectation is
a linear function of x.

In this paper, we develop an alternative approach to analyzing piecewise
deterministic PDEs of the form (3.1a) by discretizing space and constructing the
Chapman-Kolmogorov (CK) equation for the resulting finite-dimensional stochastic
hybrid system. The first step is to spatially discretize the piecewise deterministic PDE
(3.1a) using a finite-difference scheme. One of the nice features of this discretization is
that we can incorporate the boundary conditions into the resulting discrete Laplacian.
Introduce the lattice spacing a such that (N + 1)a = L for integer N , and let
uj = u(aj), j = 0, . . . , N + 1. Then

dui
dt

=

N∑
j=1

∆n
ijuj + ηaδi,Nδn,0, i = 1, . . . , N, ηa =

ηD0

a2
(3.4)

for n = 0, 1. Away from the boundaries (i 6= 1, N), ∆n
ij is given by the discrete

Laplacian

∆n
ij =

Dn

a2
[δi,j+1 + δi,j−1 − 2δi,j ]. (3.5a)

On the left-hand absorbing boundary we have u0 = 0, whereas on the right-
hand boundary we have in the case of Dirichlet-Dirichlet switching described in
equation (3.2) that

uN+1 = η for n = 0, uN+1 = 0 for n = 1,

and we have in the case of Dirichlet-Neumann switching described in equation (3.3)

uN+1 = η for n = 0, uN+1 − uN−1 = 0 for n = 1.

These can be implemented by taking

∆0
1j =

D0

a2
[δj,2 − 2δj,1], ∆0

Nj =
D0

a2
[δN−1,j − 2δN,j ], ∆1

1j =
D1

a2
[δj,2 − 2δj,1] (3.5b)

and

∆1
Nj =

D1

a2
[δN−1,j − 2δN,j ] or ∆1

Nj =
2D1

a2
[δN−1,j − δN,j ], (3.5c)

depending on if we are considering Dirichlet-Dirichlet or Dirichlet-Neumann switching.
Let u(t) = (u1(t), . . . , uN (t)) and introduce the probability density

Prob{u(t) ∈ (u,u + du), n(t) = n} = pn(u, t)du, (3.6)
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where we have dropped the explicit dependence on initial conditions. Following our
analysis of piecewise deterministic ODEs in section 2, see equation (2.4), the Chapman-
Kolmogorov equation for the stochastic hybrid system (3.4) is

∂pn
∂t

= −
N∑
i=1

∂

∂ui

 N∑
j=1

∆n
ijuj + ηaδi,Nδn,0

 pn(u, t)

+
∑
m=0,1

Anmpm(u, t), (3.7)

where A is the matrix

A =

[
−β α
β −α

]
. (3.8)

The left nullspace of the matrix A is spanned by the vector

ψ =

(
1
1

)
, (3.9)

and the right nullspace is spanned by

ρ ≡
(
ρ0

ρ1

)
=

1

α+ β

(
α
β

)
. (3.10)

A simple application of the Perron-Frobenius theorem shows that the two state Markov
process with master equation

dPn(t)

∂t
=
∑
m=0,1

AnmPm(t) (3.11)

is ergodic with limt→∞ Pn(t) = ρn.

4. Moment equations: Dirichlet-Dirichlet case

In this section, we consider the Dirichlet-Dirichlet switching of equation (3.2). Since
the drift terms in the CK equation are linear in the uj , it follows that we can obtain a
closed set of equations for the moment hierarchy. Since the process switches between
boundary conditions of the same type, the analysis of these moments equations is much
simpler than the Dirichlet-Neumann switching of equation (3.3) that we consider in
section 5. We will proceed by determining equations for the first and second moments.

4.1. First-order moments

Let

vn,k(t) = E[uk(t)1n(t)=n] =

∫
pn(u, t)uk(t)du. (4.1)

Multiplying both sides of the CK equation (3.7) by uk(t) and integrating with respect
to u gives (after integrating by parts and using that pn(u, t) → 0 as u → ∞ by the
maximum principle)

dvn,k
dt

=

N∑
j=1

∆n
kjvn,j + ηaρ0δk,Nδn,0 +

∑
m=0,1

Anmvm,k. (4.2)

We have assumed that the initial discrete state is distributed according to the
stationary distribution ρn so that∫

pn(u, t)du = ρn.
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If we now retake the continuum limit a→ 0, we obtain parabolic equations for

Vn(x, t) = E[u(x, t)1n(t)=n]. (4.3)

That is,

∂V0

∂t
= D0

∂2V0

∂x2
− βV0 + αV1 (4.4a)

∂V1

∂t
= D1

∂2V1

∂x2
+ βV0 − αV1 (4.4b)

with

V0(0, t) = V1(0, t) = 0, V0(L, t) = ρ0η > 0, V1(L, t) = 0. (4.5)

It is now straightforward to recover the result of Lawley et al. [27] by determining the
steady-state solution of equations (4.4a) and (4.4b) for D0 = D1 = 1. First, note that

E[u(x, t)] = V0(x, t) + V1(x, t). (4.6)

Since equations (4.4a) and (4.4b) have a globally attracting steady-state, it follows
that

lim
t→∞

E[u(x, t)] = V (x) ≡
∑
n=0,1

Vn(x), (4.7)

where Vn(x) ≡ limt→∞ Vn(x, t). Setting D0 = D1 = 1 and adding equations (4.4a)
and (4.4b) gives

d2V

dx2
= 0, V (0) = 0, V (L) = ρ0η. (4.8)

Hence,

V (x) =
x

L
ρ0η.

Setting ξ =
√
α+ β, it is also straightforward to obtain that

V0(x) = ρ0η
(
ρ1

sinh(ξx)

sinh(ξL)
+
ρ0

L
x
)

and V1(x) = ρ0ρ1η
( x
L
− sinh(ξx)

sinh(ξL)

)
.

4.2. Second-order moments

Let

vn,kl(t) = E[uk(t)ul(t)1n(t)=n] =

∫
pn(u, t)uk(t)ul(t)du. (4.9)

Multiplying both sides of the CK equation (3.7) by uk(t)ul(t) and integrating with
respect to u gives (after integration by parts)

dvn,kl
dt

=

N∑
j=1

[
∆n
kjvn,jl + ∆n

ljvn,jk
]
+ηaδn,0 [vn,kδl,N + vn,lδk,N ]+

∑
m=0,1

Anmvm,kl.(4.10)

If we now retake the continuum limit a→ 0, we obtain a system of parabolic equations
for the equal-time two-point correlations

Cn(x, y, t) = E[u(x, t)u(y, t)1n(t)=n], (4.11)
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given by

∂C0

∂t
= D0

∂2C0

∂x2
+D0

∂2C0

∂y2
− βC0 + αC1 (4.12a)

∂C1

∂t
= D1

∂2C1

∂x2
+D1

∂2C1

∂y2
+ βC0 − αC1. (4.12b)

The two-point correlations couple to the first-order moments via the boundary
conditions:

C0(0, y, t) = C0(x, 0, t) = C1(x, 0, t) = C1(0, y, t) = 0 (4.13a)

and

C0(L, y, t) = ηV0(y, t), C0(x, L, t) = ηV0(x, t), C1(L, y, t) = C1(x, L, t) = 0.(4.13b)

To see why these are the correct boundary conditions, note that if n(t) = 0 and x = L,
then u(x, t) = η with probability one, and thus

C0(L, y, t) = E[u(L, t)u(y, t)1n(t)=0] = ηE[u(y, t)1n(t)=0] = ηV0(y, t).

Deriving the other boundary conditions is similar.
As in the case of the first-moment equations, we can solve for the steady-state

correlations explicitly. Again, for simplicity, set D0 = D1 = 1 and define

lim
t→∞

E[u(x, t)u(y, t)] = C(x, y) ≡
∑
n=0,1

Cn(x, y),

where Cn(x, y) ≡ limt→∞ Cn(x, y, t). Adding the pair of equations (4.2a,b) gives

∂2C

∂x2
+
∂2C

∂y2
= 0, (4.14)

with boundary conditions

C(0, y) = C(x, 0) = 0, C(L, y) = ηV0(y) C(x, L) = ηV0(x). (4.15)

Using separation of variables, we find that

C(x, y) =
∑
n>0

An[sinh(nπx/L) sin(nπy/L) + sin(nπx/L) sinh(nπy/L)], (4.16)

where

An =
2η

sinh(nπ)L

∫ L

0

V0(z) sin(nπz/L) dz

=
2η2ρ0

sinh(nπ)L

(−1)n+1(nπ/L+ ρ0Lξ
2/(nπ))

(nπ/L)2 + ξ2
.

In Figure 2 we plot the truncated Fourier series of C.

4.3. Higher-order moments

Equations for rth order moments r > 2 can be obtained in a similar fashion. Let

v
(r)
n,k1...kr

(t) = E[uk1(t) . . . ukr (t)1n(t)=n] =

∫
pn(u, t)uk1(t) . . . ukr (t)du. (4.17)
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Multiplying both sides of the CK equation (3.7) by uk1(t) . . . ukr (t) and integrating
with respect to u gives (after integration by parts)

dv
(r)
n,k1...kr

dt
=

r∑
l=1

N∑
j=1

∆n
klj
v

(r)
n,k1...kl−1jkl+1...kr

+ ηaδn,0

r∑
l=1

v
(r−1)
n,k1...kl−1kl+1...kr

δkl,N

+
∑
m=0,1

Anmv
(r)
m,k1...kr

.

If we now retake the continuum limit a→ 0, we obtain a system of parabolic equations
for the equal-time r-point correlations

C(r)
n (x, y) = E[u(x1, t)u(x2, t) . . . u(xr, t)1n(t)=n], (4.18)

given by

∂C
(r)
0

∂t
= D0

r∑
l=1

∂2C
(r)
0

∂x2
l

− βC(r)
0 + αC

(r)
1 (4.19a)

∂C
(r)
1

∂t
= D1

r∑
l=1

∂2C
(r)
0

∂x2
l

+ βC
(r)
0 − αC(r)

1 (4.19b)

The r-point correlations couple to the (r − 1)-order moments via the boundary
conditions:

C
(r)
0 (x1, . . . , xr, t)

∣∣∣
xl=0

= C
(r)
1 (x1, . . . , xr, t)

∣∣∣
xl=0

= C
(r)
1 (x1, . . . , xr, t)

∣∣∣
xl=L

= 0, (4.20a)

and

C
(r)
0 (x1, . . . , xr, t)

∣∣∣
xl=L

= ηC
(r−1)
0 (x1, . . . , xl−1, xl+1 . . . , xr, t), (4.20b)

for l = 1, . . . , r.

5. Moment equations: Dirichlet-Neumann case

In this section, we consider the Dirichlet-Neumann switching of equation (3.3). As
before, we will obtain a closed set of equations for the moment hierarchy. Since the
process now switches between boundary conditions of different types, the analysis
of these moments equations is much more complicated than the Dirichlet-Dirichlet
switching of equation (3.3) that we considered above in section 4. Nevertheless, we
will be able to solve for the first and second moments.

5.1. First-order moments

As in section 4, we define

Vn(x, t) = E[u(x, t)1n(t)=n], (5.1)

and obtain the parabolic equations

∂V0

∂t
= D0

∂2V0

∂x2
− βV0 + αV1 (5.2a)

∂V1

∂t
= D1

∂2V1

∂x2
+ βV0 − αV1 (5.2b)

with

V0(0, t) = V1(0, t) = 0, V0(L, t) = ρ0η > 0, ∂xV1(L, t) = 0. (5.3)
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To see why these are the correct boundary conditions, note that if n(t) = 0 and x = L,
then u(x, t) = η with probability one, and thus

V0(L, t) = E[u(L, t)1n(t)=0] = ηP(n(t) = 0) = ηρ0.

Deriving the other boundary conditions is similar.
It is now straightforward to recover the result of Lawley et al. [27] by determining

the steady-state solution of equations (5.2a) and (5.2b) for D0 = D1 = 1. First, note
that

E[u(x, t)] = V0(x, t) + V1(x, t), (5.4)

Since equations equations (5.2a) and (5.2b) have a globally attracting steady-state, it
follows that

lim
t→∞

E[u(x, t)] = V (x) ≡
∑
n=0,1

Vn(x), (5.5)

where Vn(x) ≡ limt→∞ Vn(x, t). Adding equations (5.2a) and (5.2b) and using the
boundary conditions in equation (5.3) gives

d2V

dx2
= 0, V (0) = 0, V (L) = ρ0η + κ, (5.6)

and κ = V1(L). Hence,

V (x) =
x

L
[ρ0η + κ],

with

d2V1

dx2
− (α+ β)V1 = −β

L
x(ρ0η + κ) (5.7)

and V1(0) = 0, ∂xV1(L) = 0. It follows that

V1(x) = ae−ξx + beξx +
ρ1

L
(ρ0η + κ)x,

with ξ =
√
α+ β. The boundary conditions imply that

a = −b, 2ξa cosh(ξL) =
ρ1

L
(ρ0η + κ),

which yields the solution

V1(x) = ρ1(ρ0η + κ)

[
− 1

ξL

sinh(ξx)

cosh(ξL)
+
x

L

]
. (5.8)

Finally, we obtain κ by setting x = L:

κ = ρ1(ρ0η + κ)
[
1− (ξL)−1 tanh(ξL)

]
,

which can be rearranged to yield

κ = ρ1ρ0η
1− (ξL)−1 tanh(ξL)

ρ0 + ρ1(ξL)−1 tanh(ξL)

and thus [27]

V (x) =
x

L

η

1 + (ρ1/ρ0)(ξL)−1 tanh(ξL)
. (5.9)

In the limit ξ →∞ (fast switching),

V (x) =
x

L
η.

In section 6 we relate these first moments to a certain hitting probability for a particle
diffusing in a random environment.
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5.2. Second-order moments

As in section 4, we define

Cn(x, y, t) = E[u(x, t)u(y, t)1n(t)=n], (5.10)

and obtain the parabolic equations

∂C0

∂t
= D0

∂2C0

∂x2
+D0

∂2C0

∂y2
− βC0 + αC1 (5.11a)

∂C1

∂t
= D1

∂2C1

∂x2
+D1

∂2C1

∂y2
+ βC0 − αC1 (5.11b)

The two-point correlations couple to the first-order moments via the boundary
conditions:

C0(0, y, t) = C0(x, 0, t) = C1(x, 0, t) = C1(0, y, t) = 0 (5.12a)

and

C0(L, y, t) = ηV0(y, t), C0(x, L, t) = ηV0(x, t), ∂xC1(L, y, t) = ∂yC1(x, L, t) = 0.(5.12b)

As in the case of the first-moment equations, we can solve for the steady-state
correlations explicitly. Again, for simplicity, set D0 = D1 = 1 and add the pair of
equations (5.11a) and (5.11b). Define

lim
t→∞

E[u(x, t)u(y, t)] = C(x, y) ≡
∑
n=0,1

Cn(x, y),

where Cn(x, y) = limt→∞ Cn(x, y, t). Then we have

∂2C

∂x2
+
∂2C

∂y2
= 0, (5.13)

with boundary conditions

C(0, y) = C(x, 0) = 0 (5.14a)

and

C(L, y) = ηV0(y) + C1(L, y), C(x, L) = ηV0(x) + C1(x, L). (5.14b)

Using separation of variables, we have C(x, y) = f(x)g(y) with

f ′′(x)

f(x)
= −g

′′(y)

g(y)
= ±µ2

for a constant µ. The general solution is

C(x, y) =
A0

L2
xy +

∑
n>0

An[sinh(nπx/L) sin(nπy/L) + sin(nπx/L) sinh(nπy/L)]. (5.15)

Note that

C(L, y) = A0
y

L
+
∑
n

An sinh(nπ) sin(nπy/L) (5.16a)

and

∂xC(L, y) =
A0

L2
y +

∑
n

nπ

L
An[cosh(nπ) sin(nπy/L) + (−1)n sinh(nπy/L)]. (5.16b)

It follows from equations (5.8) and (5.9) that

V0(y) = (ρ0η + κ)

[
ρ1

ξL

sinh(ξy)

cosh(ξL)
+ ρ0

y

L

]
.
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Moreover, C1 satisfies the equation

∂2C1

∂x2
+
∂2C1

∂y2
− (α+ β)C1(x, y) = −βC(x, y) (5.17)

with

C1(x, 0) = C1(0, y) = 0, ∂xC1(L, y) = ∂yC1(x, L) = 0.

The general solution of C1 is

C1(x, y) = ρ1C(x, y) +B0 [y sinh(ξx) + x sinh(ξy)] (5.18)

+
∑
n>0

Bn sinh(
√

(nπ/L)2 + ξ2x) sin(nπy/L)

+
∑
n>0

Bn sin(nπx/L) sinh(
√

(nπ/L)2 + ξ2y),

From the boundary conditions (5.14b),

ρ0C(L, y) = ηV0(y) +B0 [y sinh(ξL) + L sinh(ξy)]

+
∑
n>0

Bn sinh(
√

(nπ/L)2 + ξ2L) sin(nπy/L).

Equating terms on the two sides of this equation shows that

ρ0A0 = ηρ0(ρ0η + κ) +B0L sinh(ξL), (5.19a)

η(ρ0η + κ)
ρ1

ξL cosh(ξL)
+B0L = 0, (5.19b)

and

ρ0An sinh(nπ) = Bn sinh(
√

(nπ/L)2 + ξ2L), n > 0. (5.19c)

The first two equations determine A0, B0 and the remaining equations determine Bn
in terms of An.

The final step is to determine the coefficients An, n > 0 using the other boundary
condition ∂xC1(L, y) = 0. (By symmetry the boundary conditions at y = L are
automatically satisfied.) We thus require

−ρ1∂xC(L, y) = B0[(ξy) cosh(ξL) + sinh(ξy)]

+
∑
n>0

√
(nπ/L)2 + ξ2Bn cosh(

√
(nπ/L)2 + ξ2L) sin(nπy/L)

+
∑
n>0

(nπ/L)(−1)nBn sinh(
√

(nπ/L)2 + ξ2y)

Using equation (5.16b) and rearranging gives

−
∑
n>0

γnAn sin(nπy/L) = (B0ξ cosh(ξL) + ρ1A0/L
2)y +B0 sinh(ξy) (5.20)

+
∑
n>0

nπ

L
(−1)n

[
ρ1An sinh(nπy/L) +Bn sinh(

√
(nπ/L)2 + ξ2y)

]
= (B0ξ cosh(ξL) + ρ1A0/L

2)y +B0 sinh(ξy)

+
∑
n>0

nπ

L
(−1)n

[
ρ1 sinh(nπy/L) + ρ0 sinh(nπ)

sinh(
√

(nπ/L)2 + ξ2y)

sinh(
√

(nπ/L)2 + ξ2L)

]
An
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where

γnAn = ρ1
nπ

L
cosh(nπ)An +

√
(nπ/L)2 + ξ2Bn cosh(

√
(nπ/L)2 + ξ2L) (5.21)

=
[
ρ1
nπ

L
cosh(nπ) + ρ0

√
(nπ/L)2 + ξ2 sinh(nπ)cotanh(

√
(nπ/L)2 + ξ2L)

]
An

Multiplying both sides of equation (5.20) by sin(mπy/L) and integrating with respect
to y yields

L

2
γmAm +

∑
n>0

ΓmnAn = −Λm, m > 0 (5.22)

where

Λm =

∫ L

0

sin(mπy/L)
[
(B0ξ cosh(ξL) + ρ1A0/L

2)y +B0 sinh(ξy)
]
dy (5.23)

and

Γmn =
nπ

L
(−1)n

∫ L

0

[
ρ1 sinh(nπy/L) + ρ0 sinh(nπ)

sinh(
√

(nπ/L)2 + ξ2y)

sinh(
√

(nπ/L)2 + ξ2L)

]
× sin(mπy/L)dy. (5.24)

Using the integral formula∫ L

0

sinh(ξy) sin(mπy/L)dy =
1

4i

∫ L

0

[
e(ξ+imπ/L)y − e(ξ−imπ/L)y

]
dy − (ξ → −ξ),

=
1

4i

e(ξ+imπ/L)L − 1

ξ + imπ/L
− 1

4i

e(ξ−imπ/L)L − 1

ξ − imπ/L
− (ξ → −ξ)

=
1

2

1

ξ2 + (mπ/L)2

[mπ
L
− mπ

L
cos(mπ)eξL

]
− (ξ → −ξ),

= (−1)m+1 mπ/L

ξ2 + (mπ/L)2
sinh(ξL),

it follows that

Γmn =
nmπ2

L2
(−1)n+m+1

[
ρ1

sinh(nπ)

(nπ/L)2 + (mπ/L)2
+ ρ0

sinh(nπ)

(nπ/L)2 + ξ2 + (mπ/L)2

]
.

Similarly,

Λm = (B0ξ cosh(ξL) + ρ1A0/L
2)
L2

mπ
(−1)m+1 + (−1)m+1B0

mπ/L

ξ2 + (mπ/L)2
sinh(ξL).

Introducing the change of coefficients (for n > 0)

Ân = sinh(nπ)An,

equation (5.22) can be rewritten as

γ̂mÂm +
∑
n>0

(−1)n+m+1
[ ρ1n

n2 +m2
+

ρ0n

n2 + (ξL/π)2 +m2

]
Ân = −Λm

m
, (5.25)

where

γ̂m =
1

2

[
ρ1πcoth(mπ) + ρ0

√
π2 + (ξL/m)2cotanh(

√
(mπ)2 + (ξL)2)

]
.

If we assume that the infinite-dimensional matrix equation (5.25) has a unique solution,

then taking the limit m → ∞ shows that Âm ∼ 1/m2 for large m and thus
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Am ∼ e−mπ/m2 for large m. In Figure 2 we plot estimates of C(x, x) by truncating
its Fourier series expansion in equation (5.15), where the coefficients are estimated by
solving a truncated version of equation (5.25). We find that the numerical solution
converges to a unique solution, except for a small boundary layer around x = L,
which shrinks as more terms in our numerical approximation scheme are included.
As a further consistency check, we note that the Dirichlet-Dirichelt and Dirichlet-
Neumann numerical solutions match in the limit α � β (ρ0 ≈ 1), which is to be
expected since both systems spend most of the time in the state corresponding to the
inhomogeneous Dirichlet condition at x = L.

Figure 2: Plots of C(x, x) for Dirichlet-Dirichlet switching on the left and Dirichlet-
Neumann switching on the right. The parameters are L = η = 1, ξ = 10, and
either ρ0 = 0.75, 0.5, or 0.25. In each figure, the Fourier series is truncated after
200 terms. For the Dirichlet-Neumann switching, a 50,000-dimensional version of the
infinite dimensional system found in equation (5.25) is solved to estimate the Fourier
coefficients.

5.3. Higher-order moments

Analogous to section 4.3, one can show that the equal-time r-point correlations

C(r)
n (x1, x2, . . . , xr) = E[u(x1, t)u(x2, t) . . . u(xr, t)1n(t)=n], (5.26)

for the Dirichlet-Neumann problem satisfy the system of PDEs in equation (4.3)
subject to the boundary conditions in equation (4.20b) and

C
(r)
0 (x1, . . . , xr, t)

∣∣∣
xl=0

= C
(r)
1 (x1, . . . , xr, t)

∣∣∣
xl=0

= ∂xl
C

(r)
1 (x1, . . . , xr, t)

∣∣∣
xl=L

= 0,

(5.27)

for l = 1, . . . , r.

6. Particle perspective

The representation of solutions to certain second-order linear PDEs as statistics of
solutions to associated stochastic differential equations is well established [32]. In this
section, we relate the rth moments of the random PDEs considered above to statistics
of Brownian particles diffusing in a randomly switching environment. We find that
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after a simple rescaling, the rth moment of the random PDE is the probability that
r non-interacting Brownian particles all exit at the same boundary. Although the
particles are non-interacting, statistical correlations arise due to the fact that they all
move in the same randomly switching environment. Hence the stochastic diffusion
equation describes two levels of randomness; Brownian motion at the individual
particle level and a randomly switching environment. In section 6.1, we consider the
Brownian particle situation corresponding to the Dirichlet-Neumann switching PDE
of section 5. The particle situation corresponding to the Dirichlet-Dirichlet switching
PDE of section 4 is similar and is explained briefly in section 6.2

6.1. Hitting probability: Dirichlet-Neumann case

The first-moment equations (5.2a) and (5.2b) are identical in form to the Chapman-
Kolmogorov equation describing a single particle switching between two discrete
internal states with distinct diffusion coefficients D0, D1 and boundary conditions.
The one major difference is that within the single particle perspective, all boundary
conditions are homogeneous. For example, suppose that there is an absorbing
boundary at x = 0, whereas the boundary at x = L is absorbing (reflecting) when the
particle is in state n = 0 (n = 1)

∂p0

∂t
= D0

∂2p0

∂x2
− βp0 + αp1 (6.1a)

∂p1

∂t
= D1

∂2p1

∂x2
+ βp0 − αp1 (6.1b)

with

p0(0, t) = p1(0, t) = 0, p0(L, t) = 0, ∂xp1(L, t) = 0. (6.2)

Here pn(x, t) = p(x, n, t|y,m, 0) for y,m fixed is the probability density of finding the
particle in discrete state n and position x at time t. For this example there is no
non-trivial steady-state solution.

At the single particle level one is often interested in solving first passage problems.
Quantities of particular interest are the splitting probability of exiting one end rather
than the other, and the associated conditional mean first-passage time. One way to
determine these quantities is to consider the corresponding backward CK equation for
qm(y, t) = p(x, n, t|y,m, 0) with x, n fixed:

∂q0

∂t
= D0

∂2q0

∂y2
− β[q0 − q1], (6.3a)

∂q1

∂t
= D1

∂2q1

∂y2
+ α[q0 − q1]. (6.3b)

Let γm(y, t) be the total probability that the particle is absorbed at the end x = L,
say, after time t given that it started at y in state m. That is,

γm(y, t) = −D0

∫ ∞
t

∂p(L, 0, t′|y,m, 0)

∂x
dt′ (6.4)

Differentiating equations (6.3a) and (6.3b) with respect to x and integrating with
respect to t, we find that

∂γ0

∂t
= D0

∂2γ0

∂y2
− β[γ0 − γ1], (6.5a)

∂γ1

∂t
= D1

∂2γ1

∂y2
+ α[γ0 − γ1]. (6.5b)
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The probability γm(y, t) can be used to define two important quantities. The first is
the hitting probability

πm(y) = γm(y, 0) (6.6)

and the second is the conditional mean first passage time Tm(y),

Tm(y) = −
∫ ∞

0

t
∂tγm(y, t)

γm(y, 0)
dt =

∫∞
0
γm(y, t)dt

γm(y, 0)
(6.7)

after integration by parts. Setting t = 0 in equations (6.5a) and (6.5b), and using
∂tγm(y, 0) = 0 for all y 6= L shows that

0 = D0
∂2π0

∂y2
− β[π0 − π1], (6.8a)

0 = D1
∂2π1

∂y2
+ α[π0 − π1] (6.8b)

with boundary conditions

π0(0) = π1(0) = 0, π0(L) = 1, ∂yπ1(L) = 0.

This hitting probability is closely related to the first moments of the piecewise
deterministic PDE considered in section 5. Specifically, it is easy to check that

πn(x) =
1

ρnη
Vn(x).

This equation can be thought of as a type of Feynman-Kac formula for relating
diffusion in a random environment to a piecewise deterministic PDE. Furthermore,
let πrn(x1, . . . , xr) be the probability that r Brownian particles all exit at x = L given
that the initial positions of the Brownian particles are x1, . . . , xr and n(0) = n. Then

πrn(x1, . . . , xr) =
1

ρnηr
lim
t→∞

C(r)
n (x1, . . . , xr, t), (6.9)

where C
(r)
n is the rth moment defined in equation (5.26). Though the particles are

non-interacting, the probability that all r particles exit at x = L is not the product
of the probabilities of each particle exiting at x = L because the particles are all
diffusing in the same randomly switching environment. Equation (6.9) follows from
writing down the backward equation for the joint probability density for r particles,
and then constructing the multi-particle version of equation (6.4). The crucial step
is determining the appropriate inhomogeneous boundary condition for the resulting
r-dimensional time-independent PDE that determines the splitting probability. The
boundary condition takes the form

π
(r)
0 (x1, . . . , xr)

∣∣∣
xl=L

= π
(r−1)
0 (x1, . . . , xl−1, xl+1 . . . , xr), (6.10)

for l = 1, . . . , r. This ensures that if one of the particles starts on the right-hand
boundary when the latter is in the state n = 0, then the particle is immediately
removed and thus one just has to determine the splitting probability that the r − 1
remaining particles also exit at the right-hand boundary. Finally, performing a similar
scaling to the first-moments yields the desired result.

Finally, we remark that the relationship found in this section between hitting
probabilities of Brownian particles and moments for a related piecewise deterministic
PDE can be generalized to systems with more than two boundary states. First,
note that the forward equation, equation (6.1), was used to find moments of the
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piecewise deterministic PDE and the backward equation, equation (6.1), was used to
find splitting probabilities for Brownian particles. Further, observe that when the
forward equations and backward equations are viewed as matrix equations, then the
matrix appearing in the backward equation is just the transpose of the matrix in the
forward equation, and the matrix appearing in the backward equation is the generator
for the Markov jump process controlling the boundary switching. This simple relation
holds because the Markov jump process controlling the boundary switching has only
two states and therefore must be reversible. If one considers more than two possible
states for the boundary, one has to reverse the time of the Markov jump process
controlling the switching to go between the particle perspective of this section (in
which we study the backward equation) and the PDE perspective of the rest of this
paper (in which we study the forward equation).

6.2. Hitting probability: Dirichlet-Dirichlet case

Consider r Brownian particles diffusing in the interval [0, L] with absorbing boundary
conditions at both endpoints. Let n(t) be an independent Markov jump process and
πrn(x1, . . . , xr) be the probability that all r particles exit at x = L at times when
n(t) = 0 given that the initial positions of the Brownian particles are x1, . . . , xr and
n(0) = n. Then

πrn(x1, . . . , xr) =
1

ρnηr
lim
t→∞

C(r)
n (x1, . . . , xr, t), (6.11)

where C
(r)
n is the rth moment of the Dirichlet-Dirichlet switching PDE defined in

equation (4.18). This follows from an argument similar to the argument above in
section 6.1.

7. Quasi-steady state approximation

So far we have used finite differences and the continuum limit to derive exact equations
for the moments of the piecewise deterministic PDE (3.1a). In this final section we
use formal perturbation methods to derive an approximation of the PDE in the limit
that the switching rates α, β → ∞, which takes the form of an SPDE with Gaussian
spatiotemporal noise (when D0 6= D1) and a randomly perturbed boundary condition.
We will assume that the limit of the lattice spacing, a → 0, and the limit of the
switching rates, α, β → 0, commute, so that we can first carry out the quasi-steady
state approximation of the spatially discrete process and then take the continuum
limit.

First, introducing a small parameter, ε, and performing the rescalings α → α/ε
and β → β/ε, the CK equation (3.7) of the spatially discretized process can be written
in the form

∂pn
∂t

= −
N∑
i=1

∂

∂ui
[Hn

i (u)pn(u, t)] +
1

ε

∑
m=0,1

Anmpm(u, t), (7.1)

with

Hn
i (u) =

N∑
j=1

∆n
ijuj + ηaδi,Nδn,0. (7.2)
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In the limit ε → 0, one can show that pn(u, t) → ρnφ(u, t) [26] with φ satisfying the
Liouville equation

∂φ

∂t
= −

N∑
i=1

∂

∂ui
Hi(u)φ(u, t),

where

Hi(u) =
∑
n=0,1

Hn
i (u)ρn. (7.3)

Assuming deterministic initial conditions, the Liouiville equation is equivalent to the
deterministic mean-field equation

dui
dt

= Hi(u). (7.4)

Taking the continuum limit of this equation using the discrete Laplacian given by
equations (3.5a)-(3.5c) gives the deterministic diffusion equation

∂u

∂t
= D

∂2u

∂x2
(7.5a)

with D =
∑
n=0,1Dnρn and the boundary conditions

u(0, t) = 0, u(L, t) = η. (7.5b)

This follows from the definition of Hi(u). Note that in the fast switching limit, the
right-hand boundary condition reduces to inhomogeneous Dirichlet alone, that is, we
do not obtain a Robin boundary condition that mixes Dirichlet and Neumann. First,
this is consistent with the steady-state solution for the first moment, see equation
(5.9). It is also consistent with the known relationship between random walks and
diffusion equations in bounded domains. More specifically, in order to obtain a
diffusion equation with a Robin boundary condition in the continuum limit of a random
walk with a partially absorbing boundary, it is necessary to take the probability of
absorption for a random walker to be O(a), where a is the lattice spacing [33]. This
is clearly not the case here.

In the regime 0 < ε� 1, there are typically a large number of transitions between
the discrete states n = 0, 1 while u hardly change at all. This suggests that the
system rapidly converges to the above quasi steady state solution, which will then
be perturbed as u slowly evolves. The resulting perturbations can be analyzed using
a quasi-steady-state (QSS) diffusion or adiabatic approximation, in which the CK
equation (7.1) is approximated by a Fokker-Planck (FP) equation for the total density
φ(u, t) =

∑
n pn(u, t). The QSS approximation was first developed from a probabilistic

perspective by Papanicolaou [34], see also [32]. It has subsequently been applied to
a wide range of problems in biology, including bacterial chemotaxis [35], wave-like
behavior in models of slow axonal transport [3, 4], and molecular motor-based models
of random intermittent search [8, 9]. The first step in the QSS reduction is to introduce
the decomposition

pn(u, t) = φ(u, t)ρn + εwn(u, t), (7.6)

with

φ(u, t) =
∑
n

pn(u, t),
∑
n

wn(u, t) = 0.
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Substituting into equations (5.2a) and (5.2b) yields

∂φ(u, t)

∂t
ρn + ε

∂wn(u, t)

∂t
= −

N∑
i=1

∂

∂ui
(Hn

i (u)[φ(u, t)ρn + εwn(u, t)])

+
1

ε

∑
m=0,1

Anm[φ(u, t)ρm + εwm(u, t)] (7.7)

Summing both sides of equation (7.7) with respect to n then gives

∂φ(u, t)

∂t
= −

N∑
i=1

∂

∂ui

(
Hi(u)φ(u, t)

)
− ε

N∑
i=1

∂

∂ui

( ∑
n=0,1

Hn
i (u)wn(u, t)

)
. (7.8)

Substituting equation (7.8) into (7.7) then gives

ε
∂wn(u, t)

∂t
= −ρn

N∑
i=1

∂

∂ui

(
[Hn

i (u)−Hi(u)]φ(u, t)
)

+
∑
m=0,1

Anmwm(u, t)

− ε
N∑
i=1

∂

∂ui
(Hn

i (u)wn(u, t)) + ερn

N∑
i=1

∂

∂ui

( ∑
m=0,1

Hm
i (u)wm(u, t)

)
.

Introduce the asymptotic expansion

wn ∼ w0
n + εw1

n + ε2w2
n + . . .

and collect O(1) terms:

N∑
m=1

Anmwm(x, t) = ρn

N∑
i=1

∂

∂ui

(
[Hn

i (u)−Hi(u)]φ(u, t)
)
, (7.9)

where we have dropped the superscript on w0
n. The Fredholm alternative theorem

shows that this has a solution, which is unique on imposing the condition∑
n wn(x, t) = 0. More explicitly, using the fact that w0 = −w1, we find that

w0 = − ρ0

(α+ β)

N∑
i=1

∂

∂ui

(
[H0

i (u)−Hi(u)]φ(u, t)
)
.

Finally, substituting this back into equation (7.8) and using w0 = −w1 yields the FP
equation

∂φ(u, t)

∂t
= −

N∑
i=1

∂

∂ui

(
Hi(u)φ(u, t)

)
(7.10)

+ ε
ρ0ρ1

(α+ β)

N∑
i,j=1

∂

∂ui
[H0

i (u)−H1
i (u)]

∂

∂uj
[H0

j (u)−H1
j (u)]φ(u, t), (7.11)

which is of the Stratonovich form [32]. The corresponding SDE or Langevin equation
is

dUi = Hi(u)dt+

√
2ε

ρ0ρ1

(α+ β)
[H0

i (u)−H1
i (u)]dW (t), (7.12)

where W (t) is a Wiener process with

〈dW (t)〉 = 0, 〈dW (t)dW (t)〉 = δ(t− t′)dt dt′.
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It remains to determine the resulting SPDE in the continuum limit a→ 0, where a
is the lattice spacing of the discretization scheme, see section 3. This is straightforward
to determine since, the Wiener process is space-independent, reflecting that switching
between the discrete states n = 0, 1 applies globally. Thus, we obtain the SPDE
(defined in the sense of Stratonovich)

dU(x, t) = D
∂2U

∂x2
dt+

√
2ε

ρ0ρ1

(α+ β)

[
(D0 −D1)

∂2u

∂x2

]
dW (t) (7.13a)

with the boundary conditions

u(0, t) = 0, u(L, t)dt = ηdt+ η

√
2ε

β

α(α+ β)
dW (t). (7.13b)

We have thus established that in the limit of fast switching, there is space-independent
multiplicative noise in the bulk of the domain when switching in the diffusion
coefficient occurs (D0 6= D1) together with a randomly driven boundary condition
at x = L.

8. Discussion

In this paper we have studied the one-dimensional diffusion equation with randomly
switching boundary conditions and diffusion coefficient. To analyze this stochastic
process, we discretized spaced and constructed the Chapman Kolmogorov equation for
the resulting finite-dimensional stochastic hybrid system. By retaking the continuum
limit, we have derived boundary value problems that the moments of the process
satisfy. In the case of the steady state first moment, the boundary value problem
is a system of two ordinary differential equations which we solved to quickly recover
results in [27]. Furthermore, we found Fourier series representations for the steady
state second moment. We carry out these calculations in the case of switching between
two Dirichlet boundary conditions and switching between a Dirichlet and a Neumann
condition, noting that the analysis of the Dirichlet-Neumann case is significantly more
complicated. Finally, we relate these piecewise deterministic PDEs to statistics for
particles diffusing in a random environment, which can be interpreted as types of
Feynman-Kac formula.

For pedagogical reasons, we have focused on the specific example of the one
dimensional diffusion equation on a finite interval with two diffusion coefficients and
two possible states for the boundary condition on one end of the interval. However, one
can derive analogous moment equations for much more general piecewise deterministic
PDE. One can consider general parabolic equations in higher dimensions while allowing
both the boundary conditions and the elliptic operator on the right-hand side of the
PDE to randomly switch between arbitrarily many discrete states.

Of course, if the piecewise deterministic PDE under consideration is more
complicated, then the resulting moment equations are more difficult to solve.
Nevertheless, there are many examples for which the moment equations are explicitly
solvable. For example, if we consider parabolic equations in one spatial dimension with
N possible discrete states, then the resulting steady state first moment equations are
simply a linear system of N ordinary differential equations.
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