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Abstract. We consider a diffusing particle that randomly switches conforma-
tional state. Motivated by various scenarios in cell biology, we suppose that (a)
the diffusion coefficient depends on the conformational state and/or (b) the parti-
cle can only pass through a series of gates in the domain when it is in a particular
conformational state. We develop probabilistic methods to analyze this case of
diffusion with temporal heterogeneity, and use these methods to calculate the
expected residence time in portions of the domain before absorption at a bound-
ary. We find several new phenomena not seen in recent studies of diffusion with
spatial heterogeneity, some of which are counterintuitive. In particular, the ex-
pected residence times can be non-monotonic functions of (i) the initial distance
from the absorbing boundary and (ii) the diffusion coefficients. We focus on one-
dimensional intervals, but show how the analysis can be extended to spherically
symmetric d-dimensional domains.
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1. Introduction

A fundamental quantity in the mathematical theory of random walks and diffusion
processes is the occupation time [18, 16], which was originally defined as the time spent
by a Brownian particle in R+ = [0,∞) within a time window of size t. That is, given
the Brownian motion X(t) ∈ R, the occupation time T is

T :=

∫ t

0

Θ(X(τ))dτ, (1.1)

where Θ(X) denotes the Heaviside function. The residence time T is an example
of a Brownian functional. Since X(t), t ≥ 0, is a Wiener process, it follows that
each realization of a Brownian path will typically yield a different value of T , which
means that T will be distributed according to some probability density P (T, t|x0, 0)
for X(0) = x0. The statistical properties of a Brownian functional can be analyzed
using path integrals, and leads to the well-known Feynman-Kac formula [17]. For
a general review of Brownian functionals and their applications, see Ref. [19]. An
immediate generalization of equation (1.1) is to take

T :=

∫ t

0

IV (X(τ)))dτ, (1.2)

where X(t) ∈ Rd is a continuous stochastic process and IV (x) denotes the indicator
function of the set V ⊂ Rd, that is, IV (x) = 1 if x ∈ V and is zero otherwise. (Note
that for one-dimensional (1D) motion, Θ(x) = IR+(x).) More recently, occupation
times have figured prominently in a variety of physical applications under the
alternative name of residence times. Examples include the non-equilibrium dynamics
of coarsening systems [11, 20], ergodicity properties of anomalous diffusion [10, 21],
simple models of blinking quantum dots [22], fluorescent imaging [1], and branching
processes [12]. Since a residence time concerns the amount of time that a Brownian
particle spends in some bounded or partially bounded domain M ⊂ Rd, a natural
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Figure 1: Schematic diagram of two possible trajectories for a Brownian particle that
randomly switches between two conformational states n = 0, 1 according to a two-
state Markov chain with transition rates α, β (temporal heterogeneity). (a) Switching
between different diffusion coefficients D0, D1. (b) Brownian particle can only pass
through a pore when in the state n = 0.
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extension is to replace the upper limit t by a stopping time such as the first passage
time (FPT) to reach a section of the boundary ∂M. This type of residence time
has recently played an important role in the calculation of mean first-passage times
(MFPTs) in spatially heterogeneous media [9, 23, 24].

In this paper we use probabilistic methods (conditional expectations and the
strong Markov property) to determine the stopped residence times of a Brownian
particle in a bounded domain with temporal rather than spatial heterogeneity. The
introduction of temporal heterogeneity is motivated by the idea that macromolecules
in cell biology often switch between different conformational states [2]. For simplicity,
we will assume that a particle can randomly switch between two conformational
states labeled n = 0, 1 and that this switch has two possible effects: (i) the diffusion
coefficient depends on the state n and (ii) there are pores separating different spatial
domains and the particle can only pass through a pore when in the state n = 0, say.
Thus the pore acts like a stochastic gap junction [6, 7]. These two cases are illustrated
in Fig. 1. The analysis of residence times with a switching diffusion coefficient is
presented in section 2, and the extension to stochastically-gated residence times is
presented in section 3. In particular, we show how temporal heterogeneity can lead
to counterintuitive behaviors, such as the non-monotonic dependence of expected
residence times on the initial distance from an absorbing boundary and on the diffusion
coefficient.

2. Residence times without gating

2.1. Brownian particle with temporal heterogeneity

Consider a Brownian particle diffusing in the one-dimensional (1D) domain of length
L shown in Fig. 2. The domain is partitioned into cells of size l, ml = L, with a pore
or gate at each junction x = kl, k = 1, . . . (m − 1)l. Suppose that particle switches
between two conformational states labelled n = 0, 1 such that n(t) ∈ {0, 1} evolves

according to a two-state Markov chain, 0
β


α

1, with the matrix generator

A =

(
−β α
β −α

)
. (2.1)

We assume that the two conformational states have distinct diffusion coefficients Dn,
n = 0, 1 as illustrated in Fig. 1(a). We then distinguish between two scenarios.
(i) Ungated: the particle can pass through the pores in both conformational states so
the cell junctions have no effect.

x=kl x=(k+1)lx=(k-1)lx=0 x=ml

Figure 2: One-dimensional domain of length L partitioned into m cells of size l with
gap junctions at the interior points x = ak = kl, k = 1,m− 1.
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(ii) Gated: the particle can only pass through a pore in conformational state n = 0,
see Fig. 1(b).
In this section we focus on the ungated case, and consider the effects of gating in
section 3. Let X(t) be the position of the particle at time t, which evolves according
to the piecewise stochastic differential equation (SDE)

dX(t) =
√

2Dn dW (t), (2.2)

when n(t) = n ∈ {0, 1}. Here W (t) is a Wiener process with 〈dW (t)〉 = 0 and
〈dW (t)dW (t′)〉 = δ(t− t′)dtdt′.

Assuming the initial conditions X(0) = x0, n(0) = n0, we introduce the
probability density pn(x, t|x0, n0, 0) with

P{X(t) ∈ (x, x+ dx), n(t) = n|x0, n0} = pn(x, t|x0, n0, 0)dx.

It follows that pn evolves according to the forward differential CK equation (dropping
the explicit dependence on initial conditions) [14, 2]

∂pn
∂t

= Dn
∂2pn(x, t)

∂x2
+
∑
m=0,1

Anmpm(x, t), n = 0, 1 (2.3)

Now suppose that there is an absorbing boundary condition at x = 0 and a reflecting
boundary condition at x = L:

pn(0, t) = 0,
∂pn(L, t)

∂x
= 0. (2.4)

Given the first passage time

T := inf{t > 0 : X(t) = 0}, (2.5)

we define the (stopped) residence time in the interval (ak, ak+1) according to

Tk :=

∫ T
0

I(ak,ak+1)(X(t)))dt, k = 0, . . . ,m− 1. (2.6)

Note that
∑m−1
k=0 Tk = T almost surely.

In this paper we are interested in calculating the mean residence times τmk (x0),
where

τmk (x0) = Ex0,m[Tk], (2.7)

with Tk the residence time in the interval (ak, ak+1) and Ex0,m denotes expectation
with respect to the stochastic process conditioned on X(0) = x0 and n(0) = m. Given
the solution pn(x, t|x0,m, 0) to the CK equation (2.3), we have

τmk (x0) =
∑
n=0,1

∫ ak+1

ak

dx

∫ ∞
0

dt pn(x, t|x0,m, 0). (2.8)

Setting qm(x0, t) =
∑
n=0,1 pn(x, t|x0,m, 0), the backward CK equation takes the form

∂qm
∂t

= Dm
∂2qm(x0, t)

∂x2
0

+
∑
n=0,1

A>mnqn(x0, t). (2.9)

The associated boundary conditions are

qm(0, t) = 0,
∂qm(L, t)

∂x0
= 0.
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It follows that τmk evolves according to

Dm
∂2τmk (x0)

∂x2
0

+
∑
n=0,1

A>mnτn(x0) = −I(ak,ak+1)(x), (2.10)

supplemented by the boundary conditions

τmk (0) = 0, τmk
′(L) = 0.

2.2. Probabilistic formulation

One could determine the mean residence times τmk by explicitly solving the piecewise
differential equations (2.10). However, this becomes considerably more involved in
the gated case, see section 3. Therefore, we will consider an alternative, probabilistic
formulation of the above process, which will allow us to apply methods developed in
previous work to the analysis of gated residence times [7]. In addition to simplifying
the analysis, our approach has a number of other advantages. First, it provides insights
into the nature of sample paths that contribute to the residence times. Second, the
method can be extended to Brownian particles moving in a potential V , for which
equation (2.2) becomes dX(t) = V (X)dt +

√
2Dn dW (t). Although the resulting

Chapman-Kolmogorov equation cannot be solved exactly, except for special choices
of V , qualitative aspects of the dynamics can be obtained using the probabilistic
approach, see for example [4, 5].

For ease of notation we drop the subscript on the initial position x0. Before
proceeding, it is useful to recall a few basic definitions from probability theory.

Conditional expectations and the tower property. Consider a sample space Ω with
σ-algebra F and probability measure P. In the case of two random variables on the
probability space (Ω,F ,P), we define the conditional expectation of Y given X by

E(Y |X) =

∫
yρ(y|X)dy,

where ρ(y|X) is the conditional probability density with respect to X. This definition
can be generalized to conditional expectation with respect to a σ-algebra (instead of
with respect to a random variable), see [13, 15]. The conditional expectation satisfies

E(E(Y |X)) ≡
∫ ∫

yρ(y|x)ρ(x)dydx =

∫
yρ2(y, x)dydx = E(Y ),

where ρ2 is a joint probability density. Using a similar argument, one can also derive
the tower property

E(E(Y |X1, X2)|X1) = E(Y |X1).

Stopping times and the strong Markov property. Let X = {X(t), t ∈ R+} be a
continuous stochastic process defined on (Ω,F ,P). The σ-algebra generated by the
stochastic process X up to time t then corresponds to sets of sample paths, realizations
or trajectories {X(s), 0 ≤ s ≤ t}. A stopping time T is a time that depends on the
path {X(t), t ∈ R+}, and is thus a random variable. A defining feature of a stopping
time is that one knows at time t whether or not T ≤ t, that is, knowledge of the sample
path {X(s), s ≤ t} is sufficient to determine whether or not T ≤ t. It immediately
follows that the first passage time (2.5) is a stopping time. Given any stopping time
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T with respect to X, if the stochastic process Y (t) = X(t+T )−X(T ) is independent
of {X(s), s < T } then X is said to satisfy the strong Markov property.

We will make repeated use of the strong Markov property and conditional
expectations in the following. Define the first time the particle reaches position
y ∈ [a0, am] when the jump process is in state n ∈ {0, 1},

sny := inf
{
t > 0 : {X(t) = y} ∩ {n(t) = n}

}
. (2.11)

For any stopping time S, we denote the σ-algebra generated by the process
{(X(t), n(t))}St=0 until time S by F(S). If x ∈ [a0, ak], then by the tower property of
conditional expectation and the strong Markov property, we have that

τnk (x) = Ex,n[Tk1s0ak
<T 1s0ak

<s1ak
] + Ex,n[Tk1s1ak

<T 1s1ak
<s0ak

]

= Ex,n[1s0ak
<T 1s0ak

<s1ak
Ex,n[Tk|F(s0

ak
)]]

+ Ex,n[1s1ak
<T 1s1ak

<s0ak
Ex,n[Tk|F(s1

ak
)]]

= Px,n({s0
ak
< T } ∩ {s0

ak
< s1

ak
})τ0

k (ak)

+ Px,n({s1
ak
< T } ∩ {s1

ak
< s0

ak
})τ1

k (ak). (2.12)

Since we will be using similar arguments throughout the paper, it is worthwhile
deconstructing this result. The first equality simply states that conditioning the
residence time Tk on the particle entering the interval [ak, ak+1] is trivial when
x < ak, since Tk = 0 otherwise. The second equality is an application of the tower
property, whereas the third uses the strong Markov property and the fact that there
is no contribution to the residence time prior to first entering the interval [ak, ak+1].
Similarly, if x ∈ [ak+1, am], then

τnk (x) = Ex,n[Tk1s0ak+1
<s1ak+1

] + Ex,n[Tk1s1ak+1
<s0ak+1

]

= Px,n(s0
ak+1

< s1
ak+1

)τ0
k (ak+1)

+
(
1− Px,n(s0

ak+1
< s1

ak+1
)
)
τ1
k (ak+1). (2.13)

In order to use (2.12) and (2.13) to calculate τk, we will obtain explicit expressions
for the splitting probabilities

pnk (x) := Px,n({s0
ak
< T } ∩ {s0

ak
< s1

ak
}), x ∈ [0, ak]

p̃nk (x) := Px,n({s1
ak
< T } ∩ {s1

ak
< s0

ak
}), x ∈ [0, ak]

qnk (x) := Px,n(s0
ak+1

< s1
ak+1

), x ∈ [ak+1, am].

We will find it convenient to work with the following sums and differences

Sτ := τ0
k + τ1

k , ∆τ := τ0
k − τ1

k ,

with Sp, ∆p, Sp̃, ∆p̃, and Sq, ∆q defined analogously. In these new variables, (2.12)
and (2.13) become

Sτ (x) =


1
2 (Sp(x) + Sp̃(x))Sτ (ak) + 1

2 (Sp(x)− Sp̃(x))∆τ (ak), x ∈ [0, ak]

Sτ (ak+1) + (Sq(x)− 1)∆τ (ak+1), x ∈ [ak+1, am]

(2.14)

and

∆τ (x) =


1
2 (∆p(x) + ∆p̃(x))Sτ (ak) + 1

2 (∆p(x)−∆p̃(x))∆τ (ak), x ∈ [0, ak]

∆q(x)∆τ (ak+1), x ∈ [ak+1, am]

(2.15)
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Following our previous work [3, 4, 7] one can show that ∆p and Sp satisfy the
following ODEs on (a0, ak)

L∆p − Γ+∆p = 0, (2.16a)

LSp − Γ−∆p = 0, , (2.16b)

where

L :=
d2

dx2
, Γ± :=

D1β ±D0α

D1D0
, (2.17)

with boundary conditions

∆p(a0) = Sp(a0) = 0, ∆p(ak) = Sp(ak) = 1. (2.18)

Further, ∆p̃ and Sp̃ satisfy (2.16a)-(2.16b) and (2.18), except the boundary condition
for ∆p̃ at x = ak is ∆p̃(ak) = −1. It follows that

∆p̃ = −∆p, (2.19)

and thus

L(Sp + Sp̃) = 0 (2.20a)

L(Sp − Sp̃)− 2Γ−∆p = 0, (2.20b)

with boundary conditions

(Sp + Sp̃)(a0) = 0, (Sp + Sp̃)(ak) = 2

(Sp − Sp̃)(a0) = 0, (Sp − Sp̃)(ak) = 0.

Similarly, ∆q and Sq satisfy (2.16a)-(2.16b) on (ak+1, am) with boundary conditions

∆q(ak+1) = Sq(ak+1) = 1

∆′q(am) = S′q(am) = 0.

We can now solve these boundary value problems explicitly and obtain exact
expressions for ∆p, Sp + Sp̃, Sp − Sp̃, ∆q, and Sq. Setting aj = jl for each
j ∈ {0, 1, . . . ,m}, we have

∆p(x) = csch(
√

Γ+kl) sinh(
√

Γ+x),

(Sp + Sp̃)(x) = 2x/(kl),

(Sp − Sp̃)(x) =
2Γ−

[
kl sinh(

√
Γ+x)csch(

√
Γ+kl)− x

]
Γ+kl

,

∆q(x) = sech
(√

Γ+(m− (k + 1))l
)

cosh
(√

Γ+(ml − x)
)
,

Sq(x) =
Γ−
Γ+

(∆q(x)− 1) + 1.

It remains to determine ∆τ and Sτ on [ak, ak+1]. Again, following our previous
work [3, 4, 7] one can show that ∆τ and Sτ satisfy the following ODEs on (ak, ak+1)

L∆τ − Γ+∆τ = −γ− (2.21a)

LSτ − Γ−∆τ = −γ+, (2.21b)

where

γ± :=
D1 ±D0

D1D0
.
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Differentiating (2.14) and (2.15) and imposing continuity yields the boundary
conditions

S′τ (ak) =
1

2
(S′p(ak) + S′p̃(ak))Sτ (ak) +

1

2
(S′p(ak)− S′p̃(ak))∆τ (ak)

∆′τ (ak) = ∆′p(ak)∆τ (ak) (2.22)

S′τ (ak+1) = S′q(ak+1)∆τ (ak+1)

∆′τ (ak+1) = ∆′q(ak+1)∆τ (ak+1). (2.23)

We have used (2.19) in (2.22) and (2.23). Again we can solve this boundary value
problem explicitly and obtain explicit expressions for Sτ and ∆τ . In particular, with
aj = jl for each j ∈ {0, 1, . . . ,m}, we have that

∆τ (x) =
γ−
Γ+
− γ−

2Γ+
sech

(√
Γ+ml

)[
cosh

(√
Γ+((k + 1−m)l − x)

)
+ cosh

(√
Γ+((k +m)l − x)

)
+ cosh

(√
Γ+((k −m)l + x)

)
− cosh

(√
Γ+((k + 1−m)l + x)

)]
,

Sτ (x) =
e−
√

Γ+(2kl+l+x)

4Γ2
+

[
2e
√

Γ+(2kl+l+x)
(
γ−Γ−

(
Γ+

(
k2l2 − 2(k + 1)lx+ x2

)
+ 2
)

− γ+Γ2
+

(
k2l2 − 2(k + 1)lx+ x2

))
+ γ−Γ−(e

√
Γ+l − 1)e

√
Γ+kl

(
(e
√

Γ+(2kl+l) + e2
√

Γ+x − 1) tanh(
√

Γ+ml)

+ sech(
√

Γ+ml)e
√

Γ+(2kl−lm+l+2x) − 1
)

− γ−Γ−
(
e
√

Γ+(kl+2x) + e
√

Γ+(kl+l+2x) + e
√

Γ+(3kl+l) + e
√

Γ+(3k+2)l
)]
.

2.3. Results

In applications, one is not typically interested in the initial discrete state n(0).
Therefore, in the following we will assume that n(t) starts in its invariant measure,

P(n(t) = 0) = ρ0 :=
α

α+ β
, P(n(t) = 1) = ρ1 :=

β

α+ β
.

and set τk = ρ0τ
0
k + ρ1τ

1
k . Thus all of our numerical results will be in terms of τk

rather than the components τmk . We fix the units of length by setting l = 1 and taking
a baseline switching rate to be α = β = 1. Within the context of cell biology we would
typically have l = 1µm and α = 1s−1 so that D varies between 0.01− 10µm2s−1.

Plotting the various explicit formulae reveals that diffusion with temporal disorder
exhibits some qualitative behavior not seen in diffusion with spatial disorder [9, 23, 24].
In particular, Fig. 3 shows that τk(x) (the expected residence time in [ak, ak+1] before
absorption at a0 given initial position x) is not monotonically increasing in x. For
diffusion without temporal disorder, τk(x) is monotonically increasing in x because
starting further away from a0 increases the first passage time to a0 and therefore can
only increase the time spent in [ak, ak+1]. However, this line of reasoning is violated
if the diffusion coefficient changes in time. To see this, suppose D1 � 1 so that the
particle is absorbed at a0 almost immediately once the diffusion coefficient becomes
D1. Hence, the only appreciable residence time in [ak, ak+1] is accumulated when
the diffusion coefficient is D0. Further, suppose that D0 � 1 so that the particle
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α = β =1

α = β =2

α = β = 4

Figure 3: Expected residence time is non-monotonic in starting position. Here,
D0 = 0.01, D1 = 10, a0 = 0, l = 1, and am = 3. The monotonically increasing
green dashed curve is with D0 = D1 = 1

2 (0.01) + 1
2 (10) and thus with no temporal

heterogeneity.

α = β =1

α = β =2

α = β = 4

Figure 4: Increasing the diffusion coefficient can increase the expected residence time.
The ratio of τ1(x; 5D0) to τ1(x;D0) is plotted as a function of initial condition x.
τ1(x,D0) is the expected residence time in [a1, a2] with diffusion coefficient D0 = 0.01
when n(t) = 0 and diffusion coefficient D1 = 100 when n(t) = 1. τ1(x, 5D0) is the
same expected residence time except the diffusion coefficient is 5 times larger when
n(t) = 0. Notably, this ratio is greater than one for most initial conditions. Here,
a0 = 0, l = 1, and am = 3.
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is unlikely to move very far from its initial position before the diffusion coefficient
becomes D1. Thus, if the initial condition is outside of [ak, ak+1] (or inside [ak, ak+1]
but near ak or ak+1), then τk(x) will be much less than if x was closer to the center
of [ak, ak+1].

In addition, Fig. 4 shows that increasing the diffusion coefficient can actually
increase the expected residence time. To see how temporal disorder can yield this
counterintuitive result, suppose that D0 � 1, D1 � 1, and x /∈ [ak, ak+1]. Thus, the
particle will not accumulate much residence time in [ak, ak+1] before absorption at a0

because it is unlikely to enter [ak, ak+1] when the diffusion coefficient is D0 (because
x /∈ [ak, ak+1] and D0 � 1), and the particle will be absorbed almost immediately
once the diffusion coefficient becomes D1 (because D1 � 1). However, increasing D0

increases the probability that the particle will enter [ak, ak+1] and thereby increases
the expected residence time in [ak, ak+1] before absorption at a0.

We now investigate how τk(x) depends on the switching rate α + β. In the slow
switching limit (α+ β � 1), the diffusion coefficient is very unlikely to switch before
the particle is absorbed, so the expected residence time is simply the average

τk(x) ≈ ρ0T (x;D0) + ρ1T (x;D1), (2.24)

where T (x;D) is the expected residence time given that the diffusion coefficient is
always D, which is of course a classical object. On the other hand, in the fast switching
limit (α+ β � 1), switching between diffusion coefficients D0 and D1 averages to an
effective diffusion coefficient ρ0D0 +ρ1D1 (see [8]) so that the expected residence time
becomes

τk(x) ≈ T (x; ρ0D0 + ρ1D1). (2.25)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

x

τ 1
(x
)

slow switching limit
slow switching
fast switching
fast switching limit

Figure 5: Expected residence time τk(x) as a function of initial condition, x, for various
switching rates, α+ β. Here, D0 = 1, D1 = 10, a0 = 0, l = 1, and am = 3. The green
curve has α = 0.1, β = 0.2. The red curve has α = 0.4, β = 0.8. The black curve is
(2.24) and the blue curve is (2.25).
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Fig. 5 shows that τk(x) decreases from (2.24) to (2.25) as the switching rate α + β
increases.

2.4. Higher spatial dimensions

The above analysis of residence times can be extended to higher spatial dimensions.
Following [24], consider a Brownian particle diffusing in a spherically symmetric
domain with an absorbing inner boundary at radius a0 and a reflecting outer boundary
at radius am. Thus, the radial position of the particleX(t) ∈ [a0, am] evolves according
to the SDE

dX(t) = Dn
d− 1

X(t)
dt+

√
2Dn dW (t), (2.26)

when n(t) = n ∈ {0, 1}. As in section 2.2, we would like to compute the expected
value of Tk as a function of starting position with Tk the residence time in the interval
[ak, ak+1]. The analysis is almost identical except that the differential operator L of
equation (2.17) becomes

L :=
d− 1

x

d

dx
+

d2

dx2
, Γ± :=

D1β ±D0α

D1D0
, (2.27)

The resulting analytical expressions are considerably more complicated, and require
the use of a symbolic package such as Mathematica. For the sake of illustration, the
relevant expressions in the two-dimensional case are given in the appendix.

In Fig. 6 we illustrate how the expected residence time in the k-th interval,
[ak, ak+1], grows as a function of k for different spatial dimensions, d ∈ {1, 2, 3}.
We find that this expected residence time grows like kd−1, which is the size of the

1D

2D

3D

Figure 6: Expected residence time in the k-th interval grows like kd−1 in spatial
dimension d. The ratio τk(a1)/Sk(d) is plotted as a function of k, where Sk(d) is the
size of the d-dimensional annular region defined by a radius between ak and ak+1,
defined in (2.28a)-(2.28c). Here, D0 = 3, D1 = 50, α = 1, β = 1, a0 = 0.05, l = 1,
and am = 100.
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d-dimensional annular region defined by a radius between ak and ak+1. That is, let
Sk(d) denote the size of this k-th region in dimension d. Hence,

Sk(1) = (k + 1)l − kl = l (2.28a)

Sk(2) = π(a0 + (k + 1)l)2 − π(a0 + kl)2 ≈ k (2.28b)

Sk(3) =
4

3
π(a0 + (k + 1)l)3 − 4

3
π(a0 + kl)3 ≈ k2. (2.28c)

Fig. 6 shows that the ratio τk(a1)/Sk(d) is constant for large k.

3. Gated residence times

Now, suppose that each internal boundary at x = ak is stochastically-gated. That is,
there is a Markov jump process n(t) ∈ {0, 1},

0
β


α

1,

so that the particle cannot pass through x = ak if n(t) = 1 (see Fig. 1(b)). Moreover,
we take the diffusion coefficient to depend on the conformational state, n(t), as in
section 2. Of course, if we want to consider the effects of the gating only (and not the
switching diffusion coefficient), we can take D0 = D1. For the sake of simplicity, we
focus on the 1D problem.

Following section 2, we would like to compute the expected value of Tk as a
function of starting position, so we again decompose τk = ρ0τ

0
k + ρ1τ

1
k with

τnk (x) = Ex,n[Tk].

Define the splitting probability rnk by

rnk (x) = Px,n(s0
ak
< T ),

where s0
ak

is as in (2.11). If x ∈ [0, ak), then by the tower property of conditional
expectation and the strong Markov property, we have that

τnk (x) = Ex,n[Tk1s0ak
<T ] = Ex,n[1s0ak

<T Ex,n[Tk|F(s0
ak

)]]

= Px,n(s0
ak
< T )Eak,0[Tk]

= rnk (x)τ0
k (ak). (3.1)

Further, if x > ak+1 then

τnk (x) = Ex,n[Ex,n[Tk|F(s0
ak+1

)]] = Eak+1,0[Tk]

= τ0
k (ak+1). (3.2)

Thus, we now need to determine the splitting probability r0
k(x) in order to determine

τk(x). We will do this three steps.
First, we show that if x ∈ (aj , aj+1), then rnk (x) is an average of r0

k(aj) and
r0
k(aj+1). By the strong Markov property,

rnk (x) = Px,n(s0
ak
< T | s0

aj < s0
aj+1

)Px,n(s0
aj < s0

aj+1
)

+ Px,n(s0
ak
< T | s0

aj > s0
aj+1

)Px,n(s0
aj > s0

aj+1
)

= Paj ,0(s0
ak
< T )Px,n(s0

aj < s0
aj+1

)

+ Paj+1,0(s0
ak
< T )Px,n(s0

aj > s0
aj+1

)

= r0
k(aj)[1− pnj (x)] + r0

k(aj+1)pnj (x),
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where pnj (x) := Px,n(s0
aj > s0

aj+1
). Following our previous work [3, 4, 7] one can show

that pnj satisfies the following ODEs on (aj , aj+1)

D0Lp0
j + β(p1

j − p0
j ) = 0, (3.3a)

D1Lp1
j + α(p0

j − p1
j ) = 0, (3.3b)

where L is the differential operator defined in (2.17), with boundary conditions

p0
j (aj) =

d

dx
p1
j (aj) =

d

dx
p1
j (aj+1) = 0, and p0

j (aj+1) = 1.

One can solve this boundary value problem explicitly and obtain explicit expressions
for pnj . In dimension d = 1:

p0
j (x) =

βD
3/2
1

(
sinh ((−jl + l/2 + x)Λ) + sinh

(
l
2Λ
))

2βD
3/2
1 sinh

(
l
2Λ
)

+ αl
√
D0(αD0 + βD1) cosh

(
l
2Λ
)

+
α(−jl + l + x)

√
D0(αD0 + βD1) cosh

(
l
2Λ
)

2βD
3/2
1 sinh

(
l
2Λ
)

+ αl
√
D0(αD0 + βD1) cosh

(
l
2Λ
) ,

(3.4)

p1
j (x) =

√
D1

(
βD1 sinh

(
l
2Λ
)
− αD0 sinh ((−jl + l/2 + x)Λ)

)
2βD

3/2
1 sinh

(
l
2Λ
)

+ αl
√
D0(αD0 + βD1) cosh

(
l
2Λ
)

+
α(−jl + l + x)

√
D0(αD0 + βD1) cosh

(
l
2Λ
)

2βD
3/2
1 sinh

(
l
2Λ
)

+ αl
√
D0(αD0 + βD1) cosh

(
l
2Λ
) ,

(3.5)

where

Λ =

√
α

D1
+

β

D0
. (3.6)

Finally, to determine r0
k it remains to find the k − 1 constants, {r0

k(aj)}k−1
j=1 .

Similar to the argument above, one can show that if 1 ≤ j ≤ k, then r0
k(aj) is an

average of its neighbors, r0
k(aj−1) and r0

k(aj+1),

r0
k(aj) = (1−Qj)r0

x(aj−1) +Qjr
0
x(aj+1), (3.7)

where Qj is found by solving a certain boundary value problem. In particular,
Qj = q0

j (aj) where qnj (x) satisfies

D0Lq0
j + β(q1

j − q0
j ) = 0, x ∈ (aj−1, aj) ∪ (aj , aj+1),

D1Lq1
j + α(q0

j − q1
j ) = 0, x ∈ (aj−1, aj) ∪ (aj , aj+1),

with boundary conditions

q0
j (aj−1) =

d

dx
q1
j (aj−1) =

d

dx
q1
j (aj) =

d

dx
q1
j (aj) =

d

dx
q1
j (aj+1) = 0, q0

j (aj+1) = 1,

and continuity conditions

q0
j (0−) = q0

j (0+), and
d

dx−
q0
j (aj) =

d

dx+
q0
j (aj).

In the case of uniform spacing, ak = kl, and one space dimension d = 1, symmetry
ensures that Qj = 1/2. Thus in this case, rearranging (3.7) yields that the constants
{r0
k(aj)}kj=1 satisfy a discretized Laplace equation

r0
k(aj−1)− 2r0

k(aj) + r0
k(aj+1) = 0,
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with boundary conditions r0
k(a0) = 0 and r0

k(ak) = 1. Thus,

r0
k(aj) =

j

k
.

Putting this together, we have that

d

dx
r0
k(ak) =

1

k

d

dx
p0
k(ak).

Now, with this explicit value of rnk , we can find an explicit formula for τk =
ρ0τ

0
k + ρ1τ

1
k . In particular, following our previous work [3, 4, 7] one can show that τnk

satisfies the following ODEs on (ak, ak+1)

D0Lτ0
k + β(τ1

k − τ0
k ) = −1 (3.8a)

D1Lτ1
k + α(τ0

k − τ1
k ) = −1. (3.8b)

Differentiating (3.1) and (3.2) and imposing continuity yields the boundary conditions

d

dx
τ0
k (ak) = τ0

k (ak)
d

dx
r0
k(ak) = τ0

k (ak)
1

k

d

dx
p0
k(ak), (3.8c)

d

dx
τ1
k (ak) = 0, (3.8d)

d

dx
τnk (ak+1) = 0. (3.8e)

We have used that d
dxr

1
k(ak) = 0 to obtain the no flux boundary conditions for τ1

k .
Solving this boundary value problem explicitly, we find that the expected residence
time in the k-th interval, τk(x) = ρ0τ

0
k (x) + ρ1τ

1
k (x), is

τk(x) =
1

2AαD0(α+ β)(αD0 + βD1)2

[
2Aβl(α+ β)

√
D0D1(αD0 + βD1)(

α(D0 −D1)csch(lΛ) cosh
([

(k + 1)l − x
]
Λ
)

+D1(α+ β) coth(lΛ)
)
− (αD0 + βD1)(

AαD0

(
α2(kl − x)((k + 2)l − x) + 2β(α(kl − x)((k + 2)l − x)−D0 +D1)

+ β2(kl − x)((k + 2)l − x)
)
− 2l(α+ β)2(αD0 + βD1)

)]
,

where A = 1
k
d
dxp

0
k(ak) and p0

k is in (3.4).
In Fig. 7, we investigate how the expected residence time τk(x) depends on the

switching rate α+β. As in section 2, we find that the expected residence time decreases
as the switching rate increases. We further find that the gates have no effect on the
particle in the fast switching limit. We have observed this phenomenon in other works
([3, 4, 7]), and there are multiple ways to understand it. The simplest explanation
follows from the behavior of Brownian motion at fine spatial scales; namely, any time
a Brownian particle hits a boundary, it hits it infinitely often. Thus, even if n(t) = 1
when the particle hits x = ak, the particle will hit x = ak many times shortly after
the first hit, and n(t) must be equal to zero at one of those times if it is switching
at a sufficiently high frequency. Indeed, if a Brownian particle starts on a boundary
that switches between reflecting and absorbing, then the expected absorption time
vanishes as the switching rate increases [4, 5].
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Figure 7: Gated expected residence time τk(x) as a function of initial condition, x, for
various switching rates, α+ β. We see that the gates have no effect on the particle in
the fast switching limit. Here, D0 = D1 = 10, a0 = 0, l = 1, am = 3, and the spatial
dimension is d = 1. The black curve has α = β = 0.1, the green curve has α = β = 1,
the red curve has α = β = 100.

4. Discussion

In this paper, we considered diffusion in a spherically symmetric d-dimensional domain
and assumed that the particle randomly switches conformational state according to
a Markov jump process. Motivated by various scenarios in cell biology, we supposed
that (a) the diffusion coefficient depended on the conformational state and/or (b) the
particle can only pass through a series of gates in the domain when it is in a particular
conformational state. We calculated the expected residence time in certain portions
of the domain before absorption at a boundary.

Our work can be viewed as a temporal analog of the work on diffusion in spatially
heterogeneous media [9, 23, 24]. That is, while these previous studies supposed that
the properties of the diffusing molecule change in space, we allowed the properties to
change in time. In order to study this case of temporal heterogeneity, we developed
probabilistic methods to analyze the problem. We found several new phenomena not
seen in diffusion with only spatial heterogeneity, some of which are counterintuitive.

There are a number of possible extensions of our work. One is is to allow the rate
at which the conformational state switches to depend on the position of the particle,
thus resulting in a certain mix of spatial and temporal heterogeneity. This extension
is natural because in cell biology, the change in conformational state of a molecule is
often governed by binding or unbinding to a different molecule whose concentration
varies across the cell. Another extension would be to consider a diffusion coefficient
that depends on space (as in [24]) in the presence of stochastic gates. We expect that
this analysis will depend crucially on whether one chooses the Ito, Stratonovich, or
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kinetic interpretations of the stochastic integral.

Appendix

In this appendix, we collect some explicit formulas from section 2 for the two-dimensional case. Let
In and Kn denote modified Bessel functions of the first and second kinds, respectively, and introduce
the set of functions

fmn(x, y) = In(
√

Γ+x)Kn(
√

Γ+y).

We then have the following expressions for the various functions used to determine the residence time
in (ak, ak+1):

∆p(x) =
f00(x, a0) − f00(a0, x)

f00(ak, a0) − f00(a0, ak)

(Sp + Sp̃)(x) =
2 log

(a0
x

)
log
(
a0
ak

)
(Sp − Sp̃)(x) = −

2Γ−
(

log
(
x
a0

)
f00(a0, ak) + log

(
a0
ak

)
f00(a0, x) + log

(
ak
a0

)
f00(x, a0) + log

(a0
x

)
f00(ak, a0)

)
Γ+ log

(
a0
ak

)
(f00(ak, a0) − f00(a0, ak))

∆q(x) =
f10(am, x) + f01(x, am)

f10(am, ak+1) + f01(ak+1, am)

Sq(x) =
(Γ+ − Γ−)[f10(am, ak+1) + f01(ak+1, am)] + Γ−[f10(am, x) + f01(x, am)]

Γ+[f10(am, ak+1) + f01(ak+1, am)]

∆τ (x) =

√
Γ+

[
Fk(x) + F̃k(x) −Gk(x) − G̃k(x)

]
+ γ−[f10(am, a0) + f01(a0, am)]

Γ+[f10(am, a0) + f01(a0, am)]
,

where

Fk(x) = γ−f10(am, x)[ak+1f01(a0, ak+1) − akf01(a0, ak)]

F̃k(x) = γ−f01(x, am)[ak+1f10(ak+1, a0) − akf10(ak, a0)]

Gk(x) = γ−f10(am, a0) [akf10(ak, x) + ak+1f01(x, ak+1)]

G̃k(x) = γ−f01(a0, am) [akf01(x, ak) + ak+1f10(ak+1, x)] .

and

Sτ (x) =

(
[f01(a0, am) + f10(am, a0)][Hk(x) + 4akγ−Γ−(f10(ak, ak) + f01(ak, ak))]

+4Γ−
[
Fk(x) + F̃k(x) −Gk(x) − G̃k(x)

])(
4Γ

3/2
+ (f10(am, a0) + f01(a0, am))

)−1

,

where

Hk(x) =

(
−2a2kγ−Γ−

√
Γ+ log

(
a0

ak

)
+ 2a2kγ+Γ

3/2
+ log

(
a0

ak

)
+ 2a2k+1γ−Γ−

√
Γ+ log

(
a0

ak

)
−2a2k+1γ+Γ

3/2
+ log

(
a0

ak

)
− a2kγ−Γ−

√
Γ+ + a2kγ+Γ

3/2
+ + 2a2k+1γ−Γ−

√
Γ+ log(ak) − 2a2k+1γ+Γ

3/2
+ log(ak)

−2a2k+1γ−Γ−
√

Γ+ log(x) + 2a2k+1γ+Γ
3/2
+ log(x) + γ−Γ−

√
Γ+x

2 − γ+Γ
3/2
+ x2

)
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