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Abstract.
In this paper, we use probabilistic methods to determine the mean first

passage time (MFPT) for a two-state piecewise deterministic Markov process
(PDMP), also known as a dichotomous noise process, to escape from a finite
interval. In particular, we consider the case where the set of functions generating
the piecewise deterministic dynamics have one or more critical points. In order to
solve this type of problem, we partition the domain into a set of subintervals that
contain no critical points and impose conditions at the critical points separating
these regions. Our analysis exploits the fact that a PDMP satisfies the strong
Markov property. We prove that in the absence of common critical points, the
MFPT is finite. Through specific examples, we also explore how the MFPT
depends on the number of critical points and prove that the MFPT can be infinite
if there are common critical points.
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1. Introduction

Piecewise deterministic Markov processes (PDMPs) [9] are stochastic hybrid systems
that couple a continuous stochastic process X(t) ∈ Σ ⊂ R (or Rd) with a discrete
Markov chain N(t) ∈ {0, 1, . . . , N −1} according to piecewise deterministic dynamics:
if N(t) = n then X(t) = x(t) with ẋ = Fn(x) and {Fn(x), n ∈ Γ} a set of
continuous functions. Such processes are finding an increasing number of applications
in biophysics, ranging from gene networks to ion channels to motor-driven intracellular
transport [3]. One important feature of a PDMP is that the existence and singularity
structure of a stationary density depends on the presence or otherwise of critical points
of the functions Fn(x), that is points where one or more of the functions vanish. This
particular issue has been explored extensively in the case of two-state PDMPs (N = 2),
which are also known as dichotomous noise processes in the physics literature [2].

In this paper, we use probabilistic methods previously developed for analyzing
Brownian motion in switching environments [4, 5, 6, 8], to determine the mean first
passage time (MFPT) for a two-state PDMP to escape from a finite interval with
one or more critical points. In order to solve this type of problem, we partition the
domain into a set of subintervals that contain no critical points and impose conditions
at the critical points separating these regions. Our analysis exploits the fact that a
PDMP satisfies the strong Markov property [10], which allows us to calculate various
conditional expectations. Recall that a stochastic process is said to have the Markov
property if the conditional probability distribution of future states of the process
(conditional on both past and present states) depends only upon the present state,
not on the sequence of events that preceded it. Similarly, it has the strong Markov
property if the same conditions hold, except that the meaning of “present” is defined
in terms of a stopping time. A stopping time S for a continuous stochastic process X
is a time that depends on the path {X(t), t ∈ R+}, and is thus a random variable. A
defining feature of a stopping time is that one knows at time t whether or not S ≤ t,
that is, knowledge of the sample path {X(s), s ≤ t} is sufficient to determine whether
or not S ≤ t. It immediately follows that a first passage time is a stopping time. Given
any stopping time S with respect toX, if the stochastic process Y (t) = X(t+S)−X(S)
is independent of {X(s), s < S} then X is said to satisfy the strong Markov property.

The structure of the paper is as follows. In section 2 we describe some of the basic
features of two-state PDMPs, including the effect of critical points on the existence of
a stationary density. We also derive the MFPT equations in the case of escape from
a bounded interval in the absence of critical points. In section 3 we use probabilistic
methods based on the strong Markov property and conditional expectations to extend
the analysis of MFPTs to the case of one or more critical points. An important step
in this analysis is a proof that the MFPTs are finite. Some explicit examples are
presented in section 4, which illustrate how the MFPT depends on the number of
critical points. We also prove that the MFPT can be infinite if there are common
critical points (regardless of initial condition).

2. Two-state PDMP: dichotomous noise processes

Consider a system the states of which are described by a pair (x, n) ∈ Σ×{0, 1}, where
x is a continuous variable in Σ ⊂ R and n is a discrete stochastic variable taking values
in the finite set Γ ≡ {0, 1}. When the internal state is n, the system evolves according
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to the ordinary differential equation (ODE)

ẋ = Fn(x), (2.1)

where Fn : Σ → R is a continuous function. The discrete state N(t) ∈ {0, 1} evolves
according to a two-state Markov chain with x-independent matrix generator

A =

(
−β α
β −α

)
. (2.2)

Let X(t) and N(t) denote the stochastic continuous and discrete variables,
respectively, at time t > 0, given the initial conditions X(0) = x0, N(0) = n0.
Introduce the probability density pn(x, t|x0, n0, 0) with

P{X(t) ∈ (x, x+ dx), N(t) = n|x0, n0} = pn(x, t|x0, n0, 0)dx.

It follows that p evolves according to the forward differential Chapman-Kolmogorov
(CK) equation [12, 3] (commonly termed the master equation)

∂pn
∂t

= Lpn, (2.3)

with the operator L (dropping the explicit dependence on initial conditions) defined
according to

Lpn(x, t) = −∂Fn(x)pn(x, t)

∂x
+
∑

m=0,1

Anmpm(x, t). (2.4)

The first term on the right-hand side represents the probability flow associated with
the piecewise deterministic dynamics for a given n, whereas the second term represents
jumps in the discrete state n.

Now define the averaged function F : R→ R by

F (x) =
∑
n=0,1

ρnFn(x),

where ρ0,1 are the two components of the stationary distribution of the generator A:

ρ0 =
α

α+ β
, ρ1 =

β

α+ β
. (2.5)

That is,
∑

m=0,1Anm(x)ρm = 0 for n = 0, 1 and fixed x. Intuitively speaking,
one would expect the stochastic hybrid system (2.1) to reduce to the deterministic
dynamical system{

ẋ(t) = F (X(t))
X(0) = x0

(2.6)

in the fast switching limit α, β →∞ for all x ∈ Σ. The Markov chain then undergoes
many jumps over a small time interval ∆t during which ∆x ≈ 0, and thus the relative
frequency of each discrete state n is approximately ρn. This can be made precise in
terms of a law of large numbers for PDMPs proven in [14, 11].

It is useful to write the CK equation (2.3) in the component form

∂p0

∂t
= − ∂

∂x
(F0(x)p0(x, t))− βp0(x, t) + αp1(x, t) (2.7a)

∂p1

∂t
= − ∂

∂x
(F1(x)p1(x, t)) + βp0(x, t)− αp1(x, t). (2.7b)

Adding this pair of equations and setting p = p0 + p1 yields the conservation equation

∂p(x, t)

∂t
= −∂J(x, t)

∂x
(2.8)

with flux

J(x, t) = F0(x)p0(x, t) + F1(x)p1(x, t). (2.9)



First passage times for PDMPs 4

2.1. Stationary density

The existence of solutions and the form of the boundary conditions depends crucially
on the signs of the functions Fn(x), n = 0, 1. In order to illustrate this, consider the
bounded interval Σ = [0, L]. First, suppose that F0(x) > 0 and F1(x) < 0 for all
x ∈ [0, L]. We can then impose reflecting boundary conditions at both ends by setting
J(0, t) = J(L, t) = 0. (Since pn, n = 0, 1, are positive functions, the flux J can only
vanish for non-zero densities if the functions Fn have opposite signs at the boundaries.)
In this case, a unique stationary solution can be constructed as follows. Setting time
derivatives to zero and adding the pair of equations (2.7a) and (2.7b) yields

∂

∂x
(F0(x)p0(x)) +

∂

∂x
(F1(x)p1(x)) = 0, (2.10)

that is,

F0(x)p0(x) + F1(x)p1(x) = c,

for some constant c. The reflecting boundary conditions imply that c = 0. Since
Fn(x) is non-zero for all x ∈ Σ, we can express p1(x) in terms of p0(x):

p1(x) = −F0(x)p0(x)

F1(x)
. (2.11)

Substituting into Eq. (2.7a) gives

0 =
∂

∂x
(F0(x)p0(x)) +

(
α

F1(x)
+

β

F0(x)

)
F0(x)p0(x). (2.12)

This yields the solutions

pn(x) =
1

Z|Fn(x)| exp

(
−
∫ x

0

(
α

F1(y)
+

β

F0(y)

)
dy

)
,

with the constant Z obtained by imposing the normalization
∫ L

0
p(x)dx = 1, assuming

the latter is finite. (A similar analysis would also hold if the rates α, β were x-
dependent.)

The analysis is more subtle if the functions have critical points within the domain
[0, L], as highlighted in the review by Bena [2]. First, suppose that Fn(x) has a stable

F0(x)

F1(x)

x0

x1
x = 0 x = L

trapping region

Figure 1: Trapping region of a one-dimensional PDMP when Fn(x) has a single critical
point at x = xn with F ′(xn) < 0.
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critical point at xn ∈ [0, L] with F ′(xn) < 0, n = 0, 1, and x0 < x1, see Fig. 1. It
follows that F0(x) < 0 and F1(x) > 0 in the open interval (x0, x1), which acts as a
trapping region. One can extend the above construction of the steady-state density by
restricting x to the sub-interval (x0, x1) and imposing reflecting boundary conditions
at x = x0, x1. One finds that there are removable singularities in the densities at the
boundaries. Note that the function Fn(x) cannot have more than one stable critical
point, since this would mean that it also has at least one unstable critical point xc
for which F ′n(xc) > 0. It is then no longer possible to construct a stationary density
on the interval [0, L]. However, one can consider two-state PDMPs with unstable
critical points by taking periodic boundary conditions. One then finds that for certain
periodic dichotomous flows F0,1(x), the asymptotic state is characterized by a nonzero
stationary flux through the system [2].

2.2. First passage times in the absence of critical points

Now suppose that there is a reflecting boundary condition at x = 0 and an absorbing
boundary condition at x = L:

J(0, t) = 0, p0(L, t) = 0, (2.13)

with J(x, t) given by equation (2.9). For the moment, assume that F0(x) < 0 and
F1(x) > 0 for all x ∈ [0, L] so there are no critical points. (These conditions will be
relaxed in sections 3 and 4.) A natural quantity of interest for the associated PDMP
is the first passage time, defined according to

T = inf{t > 0 : X(t) > L}. (2.14)

Let τm(x) be the mean first passage time (MFPT) to be absorbed at L given given
X(0) = x and N(0) = m:

τm(x) = E[T |X(0) = x,N(0) = m] = Ex,m[T ], (2.15)

where T is the FPT (2.14) and Ex,m denotes expectation conditioned on X(0) =
x,N(0) = m. (We now use x′ to denote the final position X(t) and x to denote the
initial position X(0).) There are two alternative methods for calculating the MFPT,
one based on Laplace transforming the forward CK equation (2.3), and the other based
on solving the corresponding backward equation. We will follow the latter here.

Setting qm(x, t) =
∑

n=0,1 pn(x′, t|x,m, 0), the backward CK equation takes the
form

∂q0(x, t)

∂t
= F0(x)

∂

∂x
q0(x, t)− βq0(x, t) + βq1(x, t) (2.16a)

∂q1(x, t)

∂t
= F1(x)

∂

∂x
q1(x, t) + αq0(x, t)− αq1(x, t), x ∈ (0, L). (2.16b)

The associated boundary conditions are

q0(0, t) = q1(0, t), q1(L, t) = 0.

Let Pm(x, t) be the survival probability density that the particle hasn’t yet been
absorbed at x′ = 0 up to time t, given that it started at x in state m. That is,

Pm(x, t) =

∫ L

0

∑
n=0,1

pn(x′, t, 0|x,m, 0)dx′. (2.17)
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Differentiating with respect to t, and using the backward CK equations (2.16a) and
(2.16b) yields

∂P0(x, t)

∂t
= F0(x)

∂

∂x
P0(x, t)− βP0(x, t) + βP1(x, t) (2.18a)

∂P1(x, t)

∂t
= F1(x)

∂

∂x
P1(x, t) + αP0(x, t)− αP1(x, t), y ∈ (0, L). (2.18b)

The MFPT is related to the survival probability density according to

τm(x) = −
∫ ∞

0

t∂tPm(x, t)dt =

∫ ∞
0

Pm(x, t)dt (2.19)

after integration by parts. It follows that τm evolves according to the equations

−1 = F0(x)
∂

∂x
τ0(y)− βτ0(x) + βτ1(x) (2.20a)

−1 = F1(x)
∂

∂x
τ1(y) + ατ0(x)− ατ1(x), x ∈ (0, L), (2.20b)

supplemented by the boundary conditions

τ0(0) = τ1(0), τ1(L) = 0.

Now suppose that there exists an absorbing boundary at both ends, and introduce
the FPT

T̂ = inf{t > 0 : X(t) /∈ (0, L)}. (2.21)

The corresponding MFPT, τ̂n(x) = Ex,n[T̂ ], still satisfies equations of the form (2.20a)
and (2.20b), except the boundary conditions become

τ̂0(0) = 0, τ̂1(L) = 0.

The splitting probability for which side of (0, L) thatX(t) exits can also be determined.
In particular, using the backward CK equation one can show that the splitting
probability to exit at 0,

πn(x) = Px,n[X(T̂ ) = 0],

satisfies

0 = F0(x)
∂

∂x
π0(x)− βπ0(x) + βπ1(x) (2.22a)

0 = F1(x)
∂

∂x
π1(x) + απ0(x)− απ1(x), x ∈ (0, L), (2.22b)

supplemented by the boundary conditions

π0(0) = 1, π1(L) = 0.

3. MFPT for a two-state PDMP with critical points on an interval

Suppose that we now allow for F0(x) and F1(x) to have critical points in [0, L]. We
first consider the case that both F0(0) ≥ 0 and F1(0) ≥ 0 so that X(t) can only escape
through x = L. (We will consider the general case in which escape is possible through
both x = 0 and x = L in section 3.3 below.) In order to ensure that X(t) eventually
reaches x = L we make the following assumption.

Assumption 1. There are no points x1 ≤ x2 ∈ [0, L] such that

F0(x1), F1(x1) ≥ 0, F0(x2), F1(x2) ≤ 0.
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z0 = 0 z1 z2 z3 z4 z5 = L

F0(x)

F1(x)

Figure 2: Example illustrating labeling of boundaries and critical points.

If Assumption 1 is violated, then X(t) will never reach L if x1 ≤ X(0) ≤ x2 (nor 0
in the case of escape from either end). We note that this assumption excludes the
possibility of a common critical point, z ∈ [0, L] such that F0(z) = F1(z) = 0. Of
course, if a common critical point z ∈ [0, L] exists and X(0) = z, then X(t) = z for
all t ≥ 0.

3.1. Finite MFPT

Before calculating the MFPT, we first prove in this section that it is finite under
Assumption 1. This preliminary step is more than a technicality. Indeed, we later
demonstrate in Example 4.2 that the MFPT can be infinite if Assumption 1 is violated,
even if the FPT is finite with positive probability. That is, an infinite MFPT can occur
in situations other than the trivial case where the particle is confined to a trapping
region. Furthermore, when we calculate the MFPT in section 3.2 below, we will derive
formulas that are not a priori clear to be nonsingular. Hence, our work in this section
relieves us from the need to check that these general formulas are devoid of singularities
(though we check this for the examples in section 4).

In addition to Assumption 1, we assume that F0(x) and F1(x) are continuous and
have finitely many critical points in [0, L]. That is, if

Z :=
{
z ∈ [0, L] : {F0(z) = 0} ∪ {F1(z) = 0}

}
, (3.1)

then |Z| <∞. Assigning labels to the critical points and {0, L}, we let

0 = z0 < z1 < . . . < zK−1 < zK = L (3.2)

be such that ∪Kk=0{zk} = Z ∪ {0, L}, see Fig. 2
Let T denote the first time X(t) is larger that x = L, see equation (2.14). The

following theorem asserts that T has finite expectation.

Theorem 1. Suppose Assumption 1 holds and F0(0) ≥ 0 and F1(0) ≥ 0. If x ∈ [0, L]
and n ∈ {0, 1}, then Ex,n[T ] <∞.

Proof. Fix n ∈ {0, 1}. It is immediate that for any x ∈ [0, L],

Ex,n[T ] ≤ E0,0[T ] + E0,1[T ], (3.3)

so it suffices to prove E0,n[T ] <∞. Define the first time X(t) reaches x = zk,

tk := inf{t > 0 : X(t) > zk}, k ∈ {0, . . . ,K}. (3.4)

Observe that the time to reach x = z2 starting from x = 0 is simply the time to reach
x = z1 starting from x = 0 plus the time to reach x = z2 starting from x = z1. More
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(c)

zk zk+1xm

v0min v1min

(d)

zk x x′ zk+1

−v0min

v1min

(a)

z0 = 0 z1 = L

F0(x)
F1(x)vmin

(b)

zk zk+1

v1min

Figure 3: Some possible cases for signs of F0(x) (blue, solid) and F1(x) (red, dashed)
on (zk, zk+1).

precisely,

E0,n[t2] = E0,n[t1] + E0,n

[
E0,n[t2 − t1|F(t1)]

]
= E0,n[t1] + E0,n

[
EX(t1),N(t1)[t2]

]
≤ E0,n[t1] + Ez1,0[t2] + Ez1,1[t2]. (3.5)

The first line of equation (3.5) follows from the definition of conditional expectation,
the second line uses the strong Markov property and the fact that t1 is finite almost
surely by Lemma 1 below, and the last line holds since X(t1) = z1 almost surely,
N(t1) ∈ {0, 1} almost surely, and t2 ≥ 0 almost surely. Combining the upper bound
in (3.5) with Lemma 1 yields that

E0,n[t2] <∞. (3.6)

Having established (3.6), one can then use the same argument as in equation (3.5) to
prove that E0,n[t3] < ∞. Continuing in this manner, it follows that E0,n[tK ] < ∞.
Since T = tK almost surely, the proof is complete.

Lemma 1. If k ∈ {0, . . . ,K − 1} and n ∈ {0, 1}, then Ezk,n[tk+1] <∞.

Proof. The proof proceeds by considering the various possible cases for the signs and
critical points of F0, F1 on [zk, zk+1]. By Assumption 1, there are three possible cases.
Case (a). First, suppose that F0, F1 are both nonzero on [zk, zk+1], which is only
possible if [zk, zk+1] = [0, L] and F0 > 0, F1 > 0 on [0, L]. Observe that the minimum
velocity of X(t),

vmin := inf
x∈[0,L],n∈{0,1}

Fn(x) > 0,

is strictly positive (see Fig. 3(a)). Thus, X(t) must reach x = L if N(t) ever has a
holding time larger than L/vmin. Defining the fastest possible switching rate

λmax := max{α, β} <∞,
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it follows that the probability that a given holding time of N(t) is larger than L/vmin

is bounded below by

p := exp(−λmaxL/vmin) > 0.

Thus, the expected number of times that N(t) switches before X(t) reaches x = L is
bounded above by 1+1/p, which is one plus the expected value of a geometric random
variable with parameter p. Defining the slowest possible switching rate,

λmin := min{α, β} > 0,

it follows that

Ezk,n[tk+1] < (1 + 1/p)/(pλmin) <∞.
Case (b). Next, suppose that exactly one of the functions, F0, F1 has either one or two
critical points on [zk, zk+1]. Without loss of generality, suppose that F0(zk)F0(zk+1) =
0. In this case, we must have that F1 > 0 on [zk, zk+1] by Assumption 1. Observe
that the minimum velocity of X(t) when N(t) = 1,

v1
min := inf

x∈[zk,zk+1]
F1(x) > 0,

is strictly positive (see Fig. 3(b)). Thus, X(t) must reach zk+1 if N(t) is ever in state
1 for longer than time L/v1

min. Proceeding along similar lines as in Case (a) above, it
follows that Ezk,n[tk+1] <∞.

Case (c). Finally, suppose that each of the functions F0, F1 has exactly one critical
point on [zk, zk+1]. By Assumption 1, we must have that F0 > 0, F1 > 0 on (zk, zk+1).
Without loss of generality, suppose F1(zk) = F0(zk+1) = 0. Let xm ∈ (zk, zk+1) and
define the first time X(t) reaches x = xm,

sxm
:= inf{t > 0 : X(t) = xm}.

Observe that the minimum velocity of X(t) when X(t) ∈ [zk, xm] and N(t) = 0,

inf
x∈[zk,xm]

F0(x) > 0,

is strictly positive (see Fig. 3(c)). Hence, proceeding along similar lines as in Case (a)
above, it follows that Ezk,n[sxm

] <∞. Thus, using the strong Markov property in an
argument analogous to that in (3.5), we have

Ezk,n[tk+1] ≤ Ezk,n[sxm ] + Exm,0[tk+1] + Exm,1[tk+1]. (3.7)

Next, observe that the minimum velocity of X(t) when X(t) ∈ [xm, zk+1] and
N(t) = 1,

inf
x∈[xm,zk+1]

F1(x) > 0,

is strictly positive. Hence, proceeding along similar lines as in Case (a) above, it
follows that Exm,n′ [tk+1] <∞ for n′ ∈ {0, 1}. By (3.7), the proof is complete.
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3.2. Calculating the MFPT

Given the FPT T to escape [0, L], see equation (2.14), we define the MFPT conditioned
on X(0) = x and N(0) = n

τn(x) := Ex,n[T ].

Theorem 1 ensures that τn(x) <∞ for all x ∈ [0, L] and n ∈ {0, 1}. If ρn = P[N(0) =
n], then the MFPT conditioned on X(0) = x is given by

τ(x) = ρ0τ0(x) + ρ1τ1(x). (3.8)

Away from critical points of F0, F1, the MFPT τn(x) satisfies equations (2.20a)
and (2.20b). It is convenient to work with the following sums and differences

S := τ0 + τ1, ∆ := τ0 − τ1.
In these variables, equations (2.20a) and (2.20b) become

d

dx
∆ − Γ+(x)∆ = −γ−(x), (3.9a)

d

dx
S − Γ−(x)∆ = −γ+(x), x ∈ ∪K−1

k=0 (zk, zk+1), (3.9b)

where

Γ±(x) :=
βF1(x)± αF0(x)

F1(x)F0(x)
, γ±(x) :=

F1(x)± F0(x)

F1(x)F0(x)
.

Solving equations (3.9a) and (3.9b) on each subinterval, (zk, zk+1), we have that

∆(x) = ∆(zk)ψ∆(x) + η∆(x), (3.10a)

S(x) = ∆(zk)ψS(x) + ηS(x) + S(zk), (3.10b)

where

zk :=
zk + zk+1

2
,

and for x ∈ (zk, zk+1) we define

ψ∆(x) := exp
(∫ x

zk

Γ+(x′) dx′
)
, (3.11)

η∆(x) := −
∫ x

zk

γ−(x′) exp
( ∫ x

x′
Γ+(x′′) dx′′

)
dx′, (3.12)

ψS(x) :=

∫ x

zk

Γ−(x′)ψ∆(x′) dx′, (3.13)

ηS(x) :=

∫ x

zk

(
Γ−(x′)η∆(x′)− γ+(x′)

)
dx′. (3.14)

We have chosen zk as the lower limit of integration in (3.11)-(3.14) so that
ψ∆, η∆, ψS , ηS are well-defined away from the set of critical points, Z ⊂ [0, L]. It
thus remains to determine the constants ∆(zk) and S(zk) in (3.10a)-(3.10b) and to
determine the values of ∆ and S on Z.

The constants are determined by imposing conditions at each x = zk. Fix
n ∈ {0, 1}. By Assumption 1, there are three cases.

Case 1. If Fn(zk+1) > 0, then X(t) will immediately pass x = zk+1 if X(0) = zk+1−
and N(0) = n. Thus, we have the continuity condition

τn(zk+1−) = τn(zk+1+), (3.15)
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where f(z±) denotes the limit from the right or left, limx→z± f(x).
Case 2. Instead, if Fn(zk+1) = 0 and Fn > 0 on (zk, zk+1), and if X(0) = zk+1− and
N(0) = n, then X(t) will be stationary until N(t) switches. Since N(t) switches at
a time that is exponentially distributed with rate α if n = 1 and β if n = 0, we thus
obtain the condition

τn(zk+1−) = nα−1 + (1− n)β−1 + τ1−n(zk+1−). (3.16)

Case 3. Finally, if Fn(zk+1) = 0 and Fn < 0 on (zk, zk+1), then Assumption 1 ensures
that Fn(zk) = 0. Hence, if X(0) = zk+ and N(0) = n then X(t) will be stationary
until N(t) switches. We thus obtain the condition

τn(zk+) = nα−1 + (1− n)β−1 + τ1−n(zk+). (3.17)

It is clear that for fixed n ∈ {0, 1}, each of the K points, {zk+1}K−1
k=0 , falls into exactly

one of these 3 cases. Hence, we obtain 2K conditions to determine the 2K constants,
{∆(zk), S(zk)}K−1

k=0 .
We now determine values of ∆ and S at critical points. By the reasoning of Case 1

above, if Fn(zk) 6= 0, then τn is continuous at zk,

τn(zk) = τn(zk−) = τn(zk+).

Further, by the reasoning of Case 2 above, if Fn(zk) = 0, then

τn(zk) = nα−1 + (1− n)β−1 + τ1−n(zk).

3.3. Escape through x = 0 or x = L

We now relax the assumption that F0(0) ≥ 0 and F1(0) ≥ 0 so that X(t) may now
escape [0, L] through either x = 0 or x = L. In making this generalization, the first
thing to notice is that X(t) can only pass through a given critical point of Fn in one
direction, see Fig. 4. That is, recall (3.2) and partition the critical points into the
following two sets,

Zl :=
{
k : {F0(zk) + F1(zk) < 0} ∩ {F0(zk)F1(zk) = 0}

}
,

Zr :=
{
k : {F0(zk) + F1(zk) > 0} ∩ {F0(zk)F1(zk) = 0}

}
.

Then, if k ∈ Zl and X(0) ≤ zk, then X(t) ≤ zk for all t ≥ 0. Similarly, if k ∈ Zr

and X(0) ≥ zk, then X(t) ≥ zk for all t ≥ 0. Therefore, Assumption 1 implies that if
kl ∈ Zl and kr ∈ Zr, then kl < kr. Thus, defining the index

K ′ := max
{
k : {k ∈ Zl} ∪ {−1}

}
∈ {−1, 0, . . . ,K},

we have that

F0(zk) + F1(zk) < 0, if k ≤ K ′ and F0(zk)F1(zk) = 0,

F0(zk) + F1(zk) > 0, if k > K ′ and F0(zk)F1(zk) = 0.

Therefore, if X(0) ≥ zK′+1, then X(t) can only exit through x = L and the problem
reduces to that considered in section 3.2. Similarly, if X(0) ≤ zK′ , then X(t) can only
exit through x = 0 and the problem reduces to that considered in section 3.2.

Thus, we need only to consider the MFPT to escape [0, L] when X(0) ∈
(zK′ , zK′+1) with K ′ ∈ {0, 1, . . . ,K − 1}. Before computing this MFPT, we first
prove that it is finite.
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z0 = 0 z1 z2 z3 z4 z5 z6 z7 = L

F0(x)

F1(x)

Figure 4: In this example, if X(0) ≤ z4, then X(t) will exit through x = 0. Similarly,
if X(0) ≥ z5, then X(t) will exit through x = L. Hence, K ′ = 4 and if X(0) /∈ (z4, z5),
then the problem reduces to that considered in section 3.2.

Theorem 2. Suppose Assumption 1 holds. If x ∈ [0, L] and n ∈ {0, 1}, then
Ex,n[T ] <∞.

Proof. As described above, we need only to consider the case that X(0) = x ∈
(zK′ , zK′+1) with K ′ ∈ {0, 1, . . . ,K − 1}. Define the first time X(t) escapes
(zK′ , zK′+1),

T̂ := inf{t > 0 : X(t) /∈ (zK′ , zK′+1)}. (3.18)

If Ex,n[T̂ ] <∞, then by the strong Markov property and Theorem 1,

Ex,n[T ] ≤ Ex,n[T̂ ] +
∑

y=zK′ ,zK′+1

∑
n=0,1

Ey,n[T ] <∞.

Hence, it remains only to show that Ex,n[T̂ ] <∞
Without loss of generality, suppose that F1(zK′) = F0(zK′+1) = 0. The main

difficulty in the proof is that we cannot bound |F0| or |F1| away from zero on
(zK′ , zK′+1). To ameliorate this problem, fix x < x′ satisfying

zK′ < x < x′ < zK′+1.

Let s0 = 0 and define the sequence of stopping times

sm := min
{
T̂ , inf

{
t > sm−1 : {X(t) ∈ Y

}
∩
{
X(t) 6= X(sm−1)}

}}
,

where

Y := {zK′ , x, x′, zK′+1}.
Observe that {sm}∞m=1 is the sequence of times before T̂ in which X(t) hits zK′ , x,
x′, or zK′+1.

Observe that the minimum speed of X(t) when X(t) ∈ [zK′ , x′] and N(t) = 0,

inf
x∈[zK′ ,x′]

|F0(x)| > 0,

is strictly positive (see Fig. 3(d)). Hence, proceeding along the same lines as in the
proof of Theorem 1, it follows that

Ex,n[s1] <∞.
Continuing in this manner, it follows that

Ex,n[sm] <∞, m ≥ 0.
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Now, define a discrete time Markov chain, {(Ym, Jm)}∞m=0, by

(Ym, Jm) = (X(sm), n(sm)), m ≥ 0,

on the finite state space Y × {0, 1}. The fact that (X(t), N(t)) is a strong Markov
process ensures that (Ym, Jm) is indeed a Markov chain. By the assumptions on the
signs of F0, F1 on [zk, zk+1], it is immediate that the only absorbing states for (Ym, Jm)
are (zK′ , 0) and (zK′+1, 1). Let M be the number of discrete time steps that (Ym, Jm)
takes before reaching one of these absorbing states. Since (Ym, Jm) has a finite state
space, M has finite expectation and is therefore finite almost surely. Hence,

T̂ = sM =

M∑
m=1

(sm − sm−1) almost surely.

Taking expectation yields

Ex,n[T̂ ] =

∞∑
i=0

i∑
m=1

Ex,n[(sm − sm−1)1M=i]. (3.19)

Since sm − sm−1 has finite expectation, we have that

Ex,n[(sm − sm−1)1M=i]

= Ex,n

[
1M=iEx,n

[
sm − sm−1|σ(M,Ym, Ym−1, Jm, Jm−1))

]]
, (3.20)

where σ(Z1, . . . , Zp) denotes the σ-algebra [10] generated by random variables
Z1, . . . , Zp. Now by the strong Markov property, we have that for m ∈ {1, . . . , i}

Ex,n[sm − sm−1|σ(M,Ym, Ym−1, Jm, Jm−1)] (3.21)

= Ey,j [s1|Y1 = y′, J1 = j′], if Ym−1 = y, Ym = y′, Jm−1 = j, Jm = j.

Proceeding along the same lines as in the proof of Theorem 1, it follows that

Ey,j [s1|Y1 = y′, J1 = j′] <∞, if (y, y′) ∈ Y2, (j, j′) ∈ {0, 1}2.
Since Y2 × {0, 1}2 is finite, we thus have

C := max
(y,y′)∈Y2,(j,j′)∈{0,1}2

Ey,j [s1|Y1 = y′, J1 = j′] <∞. (3.22)

Therefore, combining (3.19)-(3.22) yields

Ex,n[T̂ ] ≤ C
∞∑
i=0

i∑
m=1

Px,n(M = i) = CEx,n[M ] <∞.

We now calculate the MFPT for an initial condition X(0) = x ∈ (zK′ , zK′+1)
with K ′ ∈ {0, 1, . . . ,K − 1}. Without loss of generality, suppose that F1(zK′) =
F0(zK′+1) = 0 and, hence, F0(x) < 0, F1(x) > 0 in (zK′ , zK′+1). Observe that by the
strong Markov property we have that

τn(x) = τ̂n(x) + πn(x)τ0(zK′) + (1− πn(x))τ1(zK′+1), (3.23)

where τ̂n(x) is the MFPT to escape (zK′ , zK′+1),

τ̂n(x) = Ex,n[T̂ ],
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and πn(x) is the splitting probability for which side of (zK′ , zK′+1) that X(t) exits
through,

πn(x) = Px,n[X(T̂ ) = zK′ ].

In (3.23), we have used the fact that N(T̂ ) = 0 if X(T̂ ) = zK′ , and N(T̂ ) = 1 if

X(T̂ ) = zK′+1. One can show that τ̂n satisfies equations (2.20a) and (2.20b), and
therefore

τ̂n =
1

2
(S + (−1)n∆),

where S and ∆ are given by (3.10a)-(3.10b) and the constants S(zK′),∆(zK′) are
chosen to satisfy the boundary conditions

τ̂0(zK′+) = τ̂1(zK′+1−) = 0.

Similarly, one can show that πn satisfies equations (2.22a) and (2.22b), and therefore

πn = 1/2(S + (−1)n∆),

where S and ∆ are given by (3.10a)-(3.10b) with γ± ≡ 0. The constants
S(zK′),∆(zK′) are chosen to satisfy the boundary conditions

π0(zK′+) = 1, π1(zK′+1−) = 0.

4. Examples

Having developed the general theory, we now apply it to four examples. The first two
examples illustrate the behavior of the MFPT as a function of the starting position
for the case of a single critical point, while the last two examples examine the MFPT
as a function of the number of critical points.

Example 4.1. Suppose that

F1(x) > 0, x ∈ [0, L],

F0(x) < 0, x ∈ (0, L], F0(0) = 0.

The MFPT for X(t) to reach escape [0, L] given that X(0) = x is determined by the
functions ∆(x) and S(x) which are given by (3.10a)-(3.10b). Further, we have that
the constants S(L/2),∆(L/2) must satisfy (3.15) with n = 1 and (3.17) with n = 0,
which in this case become

∆(L/2)ψS(L) + ηS(L) + S(L/2)−∆(L/2)ψ∆(L)− η∆(L)

= π1
0(L)

(
∆(L/2)ψS(L) + ηS(L) + S(L/2) + ∆(L/2)ψ∆(L) + η∆(L)

)
,

∆(L/2)ψS(0) + ηS(0) + S(L/2) + ∆(L/2)ψ∆(0) + η∆(0)

= 2/β + ∆(L/2)ψS(0) + ηS(0) + S(L/2)−∆(L/2)ψ∆(0)− η∆(0).

Solving this linear system yields

∆(L/2) =
c22d1

c11c22
, S(L/2) =

c11d2 − c21d1

c11c22
,

where

c11 := 2ψ∆(0),

c21 := (1− π1
0(L))ψS(L)− (1 + π1

0(L))ψ∆(L), c22 := 1− π1
0(L),

d1 := 1/β − 2η∆(0),

d2 := −(1− π1
0(L))ηS(L) + (1 + π1

0(L))η∆(L).
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Figure 5: MFPT to escape [0, 1] as a function of starting location for Example 4.1
with F0(x) = −x and F1(x) = 1.

Fig. 5 plots τ(x) defined by equation (3.8) as a function of x for the particular
case that F0(x) = −x, Fx(x) = 1, and L = 1, for various choices of switching rates,
α = β. From this plot, one notices that τ(x) increases as the switching rate increases
for x near 0, while τ(x) decreases as the switching rate increases for x near L. This
non-monotonic behavior can be understood as follows. If X(t) starts near the critical
point x = 0, then a faster switching rate makes it more difficult to get away from
x = 0 since the holding times of N(t) in state 1 are shorter. By similar reasoning, if
X(t) starts near the absorbing boundary x = L, then a faster switching rate makes it
more difficult to get away from x = L, and hence the MFPT to reach x = L decreases.

Example 4.2. In this example, we show that the MFPT can be infinite if
Assumption 1 is violated, even when there is a positive probability that the FPT
is finite. That is, the MFPT can be infinite even if the particle is not confined to a
trapping region. Let

F0(x) = −2x, F1(x) = x, α = β = 2, and L = 2.

This example is very similar to Example 4.1 above, except that F1(0) = 0 here, while
F1(0) > 0 in Example 4.1. Observe that Assumption 1 is violated in this example
since x = 0 is a common critical point, F0(0) = F1(0) = 0.

For simplicity, we assume that X(0) = 1 and N(0) = 0. The MFPT to escape
[0, 2] has a positive probability of being finite. To see this, let {sk}∞k=1 be the sequence
of holding times of N(t) and observe that they are independent and exponentially
distributed with rate α = β = 2. Therefore, X(t) is essentially just products of either

exp(−2s2k) and exp(s2k−1).

Hence, we see that the probability that the FPT is, for example, less than one is

P1,0(T < 1) ≥ P(s1 < 0.1 ∩ s2 > 0.9) = (1− exp(−0.2)) exp(−0.9) > 0.07,

since X(s1 + s2) > exp(0.9) exp(−0.2) > 2 if s1 < 0.1 and s2 > 0.9.
Though the particle has a positive probability of escaping [0, L] in finite time,

we now show that its MFPT to escape is infinite. Define the discrete time process
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{Yn}∞n=0 by

Yn := X
( 2n∑

k=1

sk

)
= exp

( n∑
k=1

(s2k − 2s2k−1)
)
.

Observe that {Yn}∞n=0 is a martingale since [10]

E[Yn+1|σ(Y0, . . . , Yn)] = E[exp(s2(n+1) − s2(n+1)−1)Yn|σ(Y0, . . . , Yn)]

= YnE[exp(s2(n+1) − s2(n+1)−1)] = Yn,

where we have used that

E[exp(s2(n+1) − s2(n+1)−1)] =
α

α− 1

α

α+ 2
= 1, (4.1)

since α = 2. By Doob’s martingale inequality [10], we then have that

P1,0

(
sup

0≤n≤M
Yn ≥ 2

)
≤ E1,0[YM ]

2
=

1

2
, M ∈ N.

Furthermore, observe that if

t ∈
[ 2n∑
k=1

sk,

2(n+m)∑
k=1

sk

]
,

then

X(t) ≤ sup
n≤k≤n+m

Yk. (4.2)

Taking M →∞ in (4.1) and using (4.2), we find that

P1,0

(
sup
t≥0

X(t) ≥ 2
)
≤ 1

2
.

Therefore, the MFPT to escape [0, 2] is certainly infinite since the FPT is infinite with
positive probability.

Investigating this example further, we note that {s2k − 2s2k−1}∞k=1 are
independent and identically distributed with a negative mean,

E[s2k − 2s2k−1] = −1/α = −1/2 < 0.

Hence, the strong law of large numbers ensures that Yn → 0 almost surely as n→∞.
Therefore, X(t)→ 0 almost surely as t→∞ by (4.2). Thus, while X(t) has a positive
probability of escaping any given finite interval, it will nonetheless converge to 0 with
probability one as t → ∞. That is, though X(t) is never confined to the trapping
“region”, x = 0, we have that X(t) approaches this “region” as t→∞.

Example 4.3. Suppose that

F0(x) = sin(xKπ), F1(x) = v1 > 0,

for K ∈ N, see Fig. 6. Observe that since F0(0) = 0, F1(0) > 0, X(t) must exit
through x = L. Further, observe that F0 has K + 1 critical points, zk = k/K, for
k ∈ {0, 1, . . . ,K}.

The MFPT forX(t) to reach L given thatX(0) = x is determined by the functions
∆(x) and S(x) which are given by (3.10a)-(3.10b) on each subinterval (zk, zk+1).
Further, the constants S(zk),∆(zk) must satisfy (3.15) with n = 1 and either (3.16)
or (3.17) with n = 0, depending if k is even or odd.
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Solving this system, in Fig. 7 we plot the MFPT for X(t) to reach x = L as
a function of the number of critical points, K + 1. In this example, we see that the
MFPT approaches a finite, nonzero limit as the number of critical points increases. To
understand this, observe that as the number of critical points grows, X(t) approaches
the process that is fixed in space when N(t) = 0, and this process clearly has a finite
MFPT to reach x = L. In particular, using the approximation, F0(x) = 0, we solve
(2.20a)-(2.20b) and find the large K approximation,

τ(x) ≈ α/β

α+ β
+
α+ β

β

L− x
v1

. (4.3)

Fig. 7 verifies that the actual MFPT approaches (4.3) for large K. Furthermore, from
Fig. 7 we notice that the MFPT is non-monotonic in the switching rates, α = β, when
the number of critical points is not too large (less than about 50 in this example).

Example 4.4. Suppose that

F0(x) = sin(xMπ) + 1/2, F1(x) = sin(xMπ + π) + 1/2,

for M ∈ Z, see Fig. 8. Observe that since F0(0) > 0, F1(0) > 0, X(t) must exit
through x = L. Further, observe that if M is even, then F0 and F1 each have M
critical points, while if M is odd, then F0 has M − 1 critical points if M and F1 has
M + 1 critical points. These critical points are given by z0 = 0, z1 = 1/(6M),

zk = zk−1 +
2

3M
, if k is even and k < 2M + 1,

zk = zk−1 +
1

3M
, if k is odd and k < 2M + 1,

and z2M+1 = 1.
The MFPT for X(t) to reach escape [0, L] given that X(0) = x is determined by

the functions ∆(x) and S(x) which are given by (3.10a)-(3.10b) on each subinterval
(zk, zk+1). Further, the constants S(zk),∆(zk) must satisfy (3.15) with n = 0 and
(3.16) with n = 1 if k = 0. These constants must satisfy (3.15) with n = 0 and (3.17)
with n = 1 if k = 2. Continuing in this manner yields a system that these constants
must satisfy.

Solving this system, in the left panel of Figure 9 we plot the MFPT for X(t) to
reach x = L conditioned on X(0) = 0 as a function of the number of critical points,

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

F0(x)

F1(x)

Figure 6: Example 4.3 with F0(x) = sin(6πx) and F1(x) = 1.
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Figure 7: MFPT to escape [0, 1] with F0(x) = sin(Kπx) and F1(x) = 1 (Example 4.3)
with X(0) = 0, as a function of the number of critical points, K+1 for various choices
of the switching rates, α, β. The dots at K + 1 = 100 are the large K approximation
in (4.3).
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Figure 8: Example 4.4 with F0(x) = sin(6xπ) + 1/2 and F1(x) = sin(6xπ + π) + 1/2.

2M . In this example, we see that the MFPT increases linearly in the number of critical
points. From the right panel of Fig. 9, we see that this MFPT, τ(0), is approximately

τ(0) ≈M/α if M/α� 1.

One can understand this approximate formula as follows. The distance between critical
points is proportional to 1/M , so the time it takes X(t) to go from one critical point
to the next is negligible compared to the time it takes for N(t) to switch if M/α� 1.
Hence, the MFPT will approximately be the number of critical points that X(t) gets
“stuck” at (which is approximately M since each Fn has approximately M critical
points) multiplied by the time it takes for N(t) to switch (which is 1/α = 1/β).

5. Discussion

In this paper we have used probabilistic methods based on conditional expectations
and the strong Markov property to analyze the MFPT for a two-state PDMP to escape
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Figure 9: MFPT to escape [0, 1] with F0(x) = sin(Mxπ) + 1/2 and F1(x) =
sin(Mxπ + π) + 1/2 (Example 4.4) increases linearly in the number of critical points,
2M .

from a finite interval. The complicating factor is the presence of critical points of the
functions generating the underlying piecewise deterministic dynamics. Although it is
well known that such critical points lead to singularities in the stationary density (if
it exists), the effect on the MFPT has not previously been explored in any detail. In
principle, it would be possible to extend our analysis to multi-state PDMPs (N > 2)
and higher spatial dimensions. However, it is notoriously difficult to find explicit
solutions for the stationary density [1], even in cases where it is known to exist,
suggesting that the corresponding MFPT equations will be equally hard to solve.

Another possible extension of our work would be to consider functionals of the
continuous process X(s), 0 ∈ [0, t], which take the form

T :=

∫ t

0

U(X(s))ds, (5.1)

where U(x) is some prescribed function or distribution such that T has positive
support. One example is the so-called residence or occupation time in an interval
(a, b) ⊂ Σ:

T :=

∫ t

0

I(a,b)(X(s))ds, (5.2)

where 1V(x) denotes the indicator function of the set V, that is, 1V(x) = 1 if x ∈ V
and is zero otherwise. Since X(t), t ≥ 0, is a stochastic process, it follows that each
realization of the PDMP will typically yield a different value of T , which means that T
will be distributed according to some probability density P (T , t|x0, 0) for X(0) = x0.
If X(s) is taken to be a Brownian motion, rather than the continuous part of a PDMP,
then T in equation (5.1) is known as a Brownian functional. Brownian functionals
are finding an increasing number of applications in physics, biology and computing
[15]. In particular, the statistical properties of a Brownian functional can be analyzed
using path integrals, resulting in the classical Feynman-Kac formula [13]. Recently,
one of us has derived an analogous Feynman-Kac formula for PDMP functionals of
the form (5.1) [7]. Now suppose that the upper limit of the integral (5.1) is taken to
be a stopping time such as the FPT to escape some bounded interval. In contrast to
Brownian motion, the continuous component of a PDMP is not a Markov process on its
own (even in the weak sense), whereas the full system {X(t), N(t)} satisfies the strong
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Markov property. One way to handle this issue is to use conditional expectations and
probabilistic methods along the lines outlined in our paper.
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