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Abstract

We analyze a one-dimensional PDE-ODE system representing the diffusion of
signaling molecules between two cells coupled by a stochastically-gated gap junc-
tion. We assume that signaling molecules diffuse within the cytoplasm of each
cell and then either bind to some active region of the cell’s membrane (treated
as a well-mixed compartment) or pass through the gap junction to the inte-
rior of the other cell. We treat the gap junction as a randomly fluctuating
gate that switches between an open and a closed state according to a two-state
Markov process. This means that the resulting PDE-ODE is stochastic due to
the presence of a randomly switching boundary in the interior of the domain.
It is assumed that each membrane compartment acts as a conditional oscilla-
tor, that is, it sits below a supercritical Hopf bifurcation. In the ungated case
(gap junction always open), the system supports diffusion-induced oscillations,
in which the concentration of signaling molecules within the two compartments
are either in-phase or anti-phase. The presence of a reflection symmetry (for
identical cells) means that the stochastic gate only affects the existence of anti-
phase oscillations. In particular, there exist parameter choices where the gated
system supports oscillations but the ungated system does not, and vice-versa.
The existence of oscillations is investigated by solving a spectral problem ob-
tained by averaging over realizations of the stochastic gate.

Keywords: gap junctions, diffusion, piecewise deterministic PDEs, channel
permeability

1. Introduction

An important problem in cell biology is understanding intracellular and in-
tercellular communication [2]. This typically involves a signaling molecule that
diffuses in the cytoplasm (aqueous interior) of an individual cell or in the inter-
cellular space between cells, and subsequently binds to a receptor on the plasma
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Figure 1: Two forms of intercellular communication. (a) A schematic illustration of quorum
sensing at the single-cell level. (b) Schematic diagram of gap junction coupling between two
cells. [Public domain figure downloaded from Wikimedia Commons.]

membrane of a cell, triggering a signaling cascade. One example of an intercel-
lular signaling mechanism is bacterial quorum sensing [32, 38], see Fig. 1(a).
Quorum sensing involves the production and extracellular secretion of certain
signaling molecules known as autoinducers. Each cell has receptors that can
specifically detect the signaling molecule and subsequently activate the tran-
scription of certain genes, including those for inducer synthesis. However, since
there is a low likelihood of an individual bacterium detecting its own secreted
inducer, the cell must encounter signaling molecules secreted by other cells in
its environment in order for gene transcription to be activated. This in turn
requires the cell density to be sufficiently high. That is, as the cell population
grows, the concentration of the inducer passes a threshold, causing more in-
ducer to be synthesized. This generates a positive feedback loop that induces
the up-regulation of other specific genes. Hence, all of the cells initiate tran-
scription at approximately the same time, resulting in some form of coordinated
behavior such as synchronized oscillations. It should be noted, however, that
most models of bacterial quorum sensing are based on deterministic ordinary
differential equations (ODEs), in which both the individual cells and the extra-
cellular medium are treated as well-mixed compartments (fast diffusion limit)
[26, 9]. (For a discussion of spatial models that take into account bulk diffusion
of the autoinducer in the extracellular domain see Refs. [33, 34])

Another form of intercellular communication is via gap junctions [17, 36, 20],
see Fig. 1(b). These are arrays of transmembrane channels that connect the
cytoplasm of two neighboring cells and thus provide a direct diffusion pathway
between the cells. Cells sharing a gap junction channel each provide a hemichan-
nel (also known as a connexon) that connect head-to-head. The physiological
properties of a gap junction, including its permeability and gating character-
istics, are determined by the particular connexins forming the channel. Gap
junctions have been found in almost all animal organs and tissues, and allow
for direct electrical and chemical communication between cells [12, 25]. Direct
chemical communication between cells occurs through the transmission of small
second messengers, such as inositol triphosphate (IP3) and calcium (Ca2+) that
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can then trigger self-sustained intercellular oscillations and waves through pro-
cesses such as calcium-induced-calcium-release.

Both of the examples above involve the coupling between bulk diffusion of a
signaling molecule and biochemical processes occurring within a more restricted
domain such as the membrane of a cell or some intracellular organelle. Often
the latter can be treated as a well-mixed (non-spatial) compartment. This type
of coupling has recently been investigated in a series of papers by Gou et al
[21, 22, 23, 24], see also Sancho et al. [19]. In particular Gou et al. have
analyzed the synchronization of two or more biological oscillators coupled by
bulk diffusion. Each oscillator is treated as a well-mixed compartment that
can exchange signaling molecules with the bulk domain. The concentration of
signaling molecules within each compartment is modeled by a system of nonlin-
ear ODEs while the concentration in the bulk medium is modeled by a partial
differential equation (PDE) for diffusion and degradation. Gou et al. assume
that each isolated compartment is a conditional oscillator. That is, in isolation
a compartment’s dynamics is at a stable fixed point, but can exhibit sustained
oscillations in a different parameter regime. Using spectral theory and a wind-
ing number analysis, the authors showed that in the case of a pair of active
compartments, diffusive coupling can induce in-phase or anti-phase oscillations.
This analysis has also been extended to the case of diffusively coupled delay-
differential equations (DDEs) [40].

In this paper, we combine the analysis of PDE-ODE systems with our own
recent work on diffusion in cells with stochastically-gated gap junctions [7, 8].
We assume that signaling molecules diffuse within the cytoplasm of each cell
and then either bind to some active region of the cell’s membrane (treated as a
well-mixed compartment) or pass through the gap junction to the interior of the
other cell. Just as with the opening and closing of ion channels, gap junctions
can be gated by both voltage and chemical agents, both of which can fluctuate.
Therefore, following [7, 8], we treat the gap junction as a randomly fluctuating
gate that switches between an open and a closed state according to a two-state
Markov process. This means that the resulting PDE-ODE is stochastic due to
the presence of a randomly switching boundary in the interior of the domain.
For simplicity, we consider a one-dimensional (1D) domain of length 2L, with L
the length of each cell. The switching gate is placed at the center of the domain
(x = L), whilst the active compartments are placed at the ends (x = 0, 2L).
Deterministic boundary conditions at the two ends represent the exchange of
signaling molecules between the bulk and the active compartments, whereas the
boundary condition at the midline randomly switches between open and closed.

One of the particular features of the stochastically-gated model is that it has
a deterministic steady-state solution that is symmetric about the midline x = L,
which is identical to the steady-state solution considered by Gou et al [21, 22].
Linearizing about this steady-state solution generates a stochastic linear PDE-
ODE for pertubations about the steady state. We analyze the latter by extend-
ing our recent work on diffusion in bounded domains with randomly switching
boundaries [27, 3, 7, 8]. That is, we spatially discretize the stochastic diffusion
equation using finite differences and construct the Chapman-Kolmogorov (CK)
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equation for the resulting finite-dimensional piecewise deterministic ODE, also
known as a stochastic hybrid system [2]. This allows us to derive a deterministic
equation for the first-order moments of the stochastic concentrations with re-
spect to realizations of the stochastic gate (after re-taking the continuum limit),
which take the form of a deterministic linear PDE-ODE. We then solve the re-
sulting spectral problem following along analogous lines to Gou et al. [21, 22].
This yields a restricted stability criterion, namely, that the resulting spectrum
has to lie in the left-half complex plane. We emphasize that it is restricted
because we are using the first moments of a linearization to predict the behav-
ior of a stochastic nonlinear system. Nevertheless, predictions of this restricted
theory are consistent with numerical simulations of the full nonlinear stochastic
system.

These numerically-confirmed predictions are the following: First, as in the
ungated case considered by Gou et al [21, 22], oscillations occur over a finite
range of diffusivities that excludes the origin, indicative of diffusion-induced
oscillations. Second, the existence of in-phase oscillations is not affected by the
presence of a stochastic gate because the flux through the midline x = L is zero.
However, the existence of anti-phase oscillations is affected. In particular, we
find that if switching is sufficiently fast or the gate is mainly open, then the anti-
phase existence region of the gated system approaches the corresponding region
of the ungated system. On the other hand, if the gate is mainly closed, then
the anti-phase region of the gated system approaches the in-phase region. For
intermediate switching rates, the anti-phase region of the gated system seems to
interpolate between the anti-phase and in-phase regions of the ungated system.
In that case, there exist parameter choices where the gated system supports
oscillations, but the ungated system does not, and there exists parameter choices
where the converse holds.

2. A pair of active compartments coupled by a stochastically-gated
gap junction

Consider a simple 1D model that describes the diffusion and degradation
of a signaling molecule that can pass between two cells of length L via a
stochastically-gated gap junction, see Fig. 2. Let u(x, t) denote the bulk con-
centration of the signaling molecules at time t with x ∈ [0, 2L]. Two identical
active compartments are introduced at the distal ends of the cells, x = 0, 2L.
We assume that the interior boundary between the two cells at x = L randomly
switches between an open and a closed state. Let n(t) denote the discrete state
of the gate at time t with n(t) = 0 if the gate is open and n(t) = 1 if it is closed.
Assume that transitions between the two states n = 0, 1 are described by the
two-state Markov process,

0
β


α

1,
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Figure 2: Pair of cells of length L that are coupled by a stochastically-gated gap junction
at x = L, which stochastically switches between an open and a closed state according to a
two-state Markov process with transition rates α, β.

The random opening and closing of the gate means that particles diffuse in a
random environment according to the piecewise deterministic equation

∂u

∂t
= D

∂2u

∂x2
− γu(x, t) (2.1a)

where D is the diffusion coefficient and γ the degradation rate. The concentra-
tion u(x, t) satisfies the exterior boundary conditions

−Dux(0, t) = κ(V0(t)− u(0, t)), Dux(2L, t) = κ(V1(t)− u(2L, t)), (2.1b)

where Vr(t), r = 0, 1, are the concentrations of the particle in the two end
compartments. For simplicity, we assume that the flux of particles out of each
compartment is proportional to the difference between the concentration inside
each compartment and the local bulk concentration. Finally, there is an n(t)-
dependent boundary condition on the interior boundary at x = L:

u(L−, t) = u(L+, t), ∂xu(L−, t) = ∂xu(L+, t) for n(t) = 0, (2.1c)

and
∂xu(L−, t) = 0 = ∂xu(L+, t) for n(t) = 1, (2.1d)

where we use f(y±) to denote the limit from the left or right, limx→y± f(x).
That is, when the gate is open there is continuity of the concentration and the
flux across x = L, whereas when the gate is closed the right-hand boundary
of the first cell and the left-hand boundary of the second cell are reflecting.
For simplicity, we assume that the diffusion coefficient is the same in both
compartments so that the piecewise differentiable nature of the solution is
solely due to the switching gate.

The dynamics governing the time evolution of the concentration Vr(t) cou-
ples the concentration with another variable Wr(t) according to the following
system of nonlinear ODEs:

dVr
dt

= F (Vr,Wr) + κ[u(2Lr, t)− Vr(t)],
dWr

dt
= G(Vr,Wr). (2.2)

Following Gou et al [21, 22], we assume that the intrinsic dynamics and the
diffusive coupling term are identical for the two compartments. Furthermore,
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both compartments are taken to act as conditional limit cycle oscillators. That
is, there exists a parameter regime for each isolated compartment (β = 0) for
which the second-order nonlinear ODE V̇ = F (V,W ), Ẇ = G(V,W ) supports
limit cycle oscillations. However, we assume that each isolated compartment
is outside this parameter regime, and has a unique stable fixed point. We are
interested in determining conditions under which the coupled system supports
stochastic oscillations.

2.1. Symmetric steady-state solution

One of the particular features of the stochastically-gated model is that it has
a deterministic steady-state solution that is symmetric about the midline x = L,
which is identical to the steady-state solution considered by Gou et al [21, 22]
(we are considering only symmetric steady-states, though asymmetric steady
states can exist in certain situations, see equations (3.27)-(3.29) of [22]). That
is, we impose the condition ∂xu(L) = 0 independently of n, so that equation
(2.1a) reduces to the deterministic, time-independent equation

D
d2U ss

dx2
− γU ss = 0, (2.3)

for x ∈ [0, L] with boundary conditions

−D dU ss

dx

∣∣∣∣
x=0

= κ(V ss − U ss(0)),
dU ss

dx

∣∣∣∣
x=L

= 0, (2.4)

and
F (V ss,W ss) + κ(U ss(0)− V ss) = 0, G(V ss,W ss) = 0. (2.5)

As in Refs. [21, 22], we will make our analysis more concrete by using the
Sel’kov model for which

F (V,W ) = lW +WV 2 − V, G(V,W ) = ε[µ− (lW +WV 2)]. (2.6)

A similar analysis could be carried out for other choices of nonlinear kinetics,
such as a Fitzhugh-Nagumo system. The uncoupled system V̇ = F (V,W ),
Ẇ = G(V,W ) then has the unique steady-state V ∗ = µ, W ∗ = µ/(l + µ2),
and equation (2.5) has the unique solution

V ss =
µ

1 + κ
+
κU ss(0)

1 + κ
, W ss =

µ

l + (V ss)2
. (2.7)

Finally, solving for U ss(x) we have

U ss(x) = U∗
cosh(ω(L− x))

cosh(ωL)
, U∗ =

κµ

κ+Dω(1 + κ) tanh(ωL)
, ω =

√
γ

D
.

(2.8)
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2.2. Linearization

In order to analyze the linear stability of the symmetric steady-state solution,
we introduce the (stochastic) perturbations

u(x, t) = U ss(x) + c(x, t), Vr(t) = V ss + ϕr(t), Wr(t) = W ss + φr(t).

Substituting into the full system given by equations (2.1) and (2.2), and lin-
earizing about the steady-state solution leads to the following system of linear
equations:

∂c

∂t
= D

d2c

dx2
− γc (2.9a)

for x ∈ [0, 2L] with exterior boundary conditions

−Dcx(0, t) = κ(ϕ0(t)− c(0, t)), Dcx(2L, t) = κ(ϕ1(t)− c(2L, t)), (2.9b)

and n(t)-dependent boundary conditions on the interior boundary at x = L:

c(L−, t) = c(L+, t), ∂xc(L
−, t) = ∂xc(L

+, t) for n(t) = 0, (2.9c)

∂xc(L
−, t) = 0 = ∂xc(L

+, t) for n(t) = 1. (2.9d)

Here ϕr, φr satisfy the equations

dϕr
dt

= F ss
V ϕr + F ss

Wφr + κ[cr(2Lr, t)− ϕr], (2.10a)

dφr
dt

= Gss
V ϕr +Gss

Wφr (2.10b)

for r = 0, 1. We have defined F ss
V = FV (V ss,W ss) etc. Note that these linear

equations differ in two respects from the corresponding equations of Gou et al
[21, 22]. First, they are stochastic due to the presence of a stochastic gate at
x = L. Second, the presence of the gate means that we cannot impose on the
perturbations some form of symmetry condition about the midline.

3. Linear stability analysis of symmetric steady state

We would like to determine the stability of the symmetric steady-state solu-
tion in terms of whether or not the linear perturbations c(x, t), ϕr(t), φr(t) grow
in time. However, we have to deal with the fact that the linearized equations
are stochastic. In fact equations (2.9a)–(2.10b) form a piecewise deterministic
PDE-ODE system, that is, between switches in the state of the gate at x = L,
the PDE-ODE system evolves deterministically. This motivates us to introduce
the first moments

Cn(x, t) = E[c(x, t)1n(t)=n], Xn,r(t) = E[ϕr(t)1n(t)=n], Yn,r(t) = E[φr(t)1n(t)=n].
(3.1)

7



We will then investigate a restricted form of stability based on solutions of
the resulting first-order moment equations. We derive the latter by extending
the recent analysis of 1D diffusion in domains with switching boundaries [27,
3]. In particular, we derive the moment equations by discretizing space and
constructing the Chapman-Kolmogorov (CK) equation for the resulting finite-
dimensional stochastic hybrid system. (For an alternative method based on
probabilistic methods see Ref. [29].) The first step is to spatially discretize
the piecewise deterministic PDE (2.9) using a finite-difference scheme. One
advantageous feature of this discretization is that the boundary conditions can
be incorporated into the resulting discrete Laplacian. Introduce the lattice
spacing a such that (M − 1)a = L−, (M + 1)a = L+ for some integer M . Set
cj(t) = c(aj, t), j = 0, . . . , 2M + 1. Then

dci
dt

=

M−1∑
j=1

∆n
ijcj +

2M∑
j=M+1

∆n
ijcj + η0δi,1 + η1δi,N − γci, (3.2)

for i = 1, . . . ,M − 1,M + 1, . . . , 2M and n = 0, 1. The constants η0, η1 are
determined below. Away from the boundaries (i 6= 1,M ± 1, 2M), ∆n

ij is given
by the discrete Laplacian

∆n
ij =

D

a2
[δi,j+1 + δi,j−1 − 2δi,j ]. (3.3)

On the left-hand and right-hand exterior boundaries we have

−D
2a

(c2 − c0) = κ(ϕ0 − c1),
D

2a
(c2M+1 − c2M−1) = κ(ϕ1 − c2M ),

with ϕ0,1 evolving according to the system of ODEs

dϕr
dt

= F ss
V ϕr + F ss

Wφr + κ[c[2M−1]i+1(t)− ϕr(t)], (3.4a)

dφr
dt

= Gss
V ϕr +Gss

Wφr. (3.4b)

The exterior boundary conditions can be implemented by taking

∆n
1j =

D

a2

[(
1 +

D

D + 2κa

)
δj,2 − 2δj,1

]
(3.5a)

∆n
2M,j =

D

a2

[(
1 +

D

D + 2κa

)
δj,2M−1 − 2δj,2M

]
, (3.5b)

and

η0 =
D

a2

2κa

D + 2κa
ϕ0, η1 =

D

a2

2κa

D + 2κa
ϕ1. (3.5c)

On the interior boundary,

cM−2 − c−M = c+M − cM+2, c+M = c−M , if n = 0,
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and
cM−2 − c−M = 0, cM+2 − c+M = 0, if n = 1.

(Recall that we are taking c−M to be cM−1 and c+M to be cM+1.) These can be
implemented by taking

∆n
1j =

D

a2
[δj,2 − 2δj,1], ∆n

Qj =
D

a2
[δQ−1,j − 2δQ,j ], n = 0, 1, (3.6a)

∆0
M−1,j =

D

a2
[δM−2,j + (δM−2,j + δM+2,j)/2− 2δM−1,j ], (3.6b)

∆0
M+1,j =

D

a2
[δM+2,j + (δM−2,j + δM+2,j)/2− 2δM+1,j ], (3.6c)

and

∆1
M±1,j =

2D

a2
[δM±2,j − δM±1,j ]. (3.6d)

Note that when n = 1 the system of equations in the two compartments decouple
(as expected for a closed gate).

Our spatial discretization scheme has reduced the system to a piecewise
deterministic ODE known as a stochastic hybrid system [2]. Let

c(t) = (c1(t), . . . , cM−1(t), cM+1(t), . . . , c2M (t)), X(t) = (ϕ0(t), ϕ1(t), φ0(t), φ1(t))

and introduce the probability density

Prob{c(t) ∈ (c, c+dc),X(t) ∈ (X,X+dX, n(t) = n} = pn(c,X, t)dc dX, (3.7)

where we have dropped the explicit dependence on initial conditions. The prob-
ability density evolves according to the differential Chapman-Kolmogorov (CK)
equation [18, 2]

∂pn
∂t

= −
2M∑
i=1

∂

∂ci

 2M∑
j=1,j 6=M

∆n
ijcj − γci + η0δi,1 + η1δi,2M

 pn


−
∑
r=0,1

∂

∂ϕr

[(
F ss
V ϕr + F ss

Wφr + κ[c(2M−1)r+1 − ϕr]
)
pn
]
(3.8)

−
∑
r=0,1

∂

∂φr
[(Gss

V ϕr +Gss
Wφr) pn] +

∑
m=0,1

Anmpm,

where A is the matrix

A =

[
−β α
β −α

]
. (3.9)

The right-hand side consists of an advection term representing the deterministic
evolution of the system in between jumps of the discrete variable, with the latter
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represented by the matrix A. (The transpose A> is the generator of the Markov
process.) The left nullspace of A is spanned by the vector

ψ =

(
1
1

)
, (3.10)

and the right nullspace is spanned by

ρ ≡
(
ρ0

ρ1

)
=

1

α+ β

(
α
β

)
. (3.11)

A simple application of the Perron-Frobenius theorem shows that the two state
Markov process with master equation

dPn(t)

∂t
=
∑
m=0,1

AnmPm(t) (3.12)

is ergodic with limt→∞ Pn(t) = ρn.
Having derived the CK equation for the spatially discretized system, we can

now derive equations for the first-order moments

Cn,k(t) = E[ck(t)1n(t)=n] =

∫
pn(c,X, t)ck(t)dc dX, (3.13)

Xn,r(t) = E[ϕr(t)1n(t)=n] =

∫
pn(c,X, t)ϕr(t)dc dX, r = 0, 1, (3.14)

and

Yn,r(t) = E[φr(t)1n(t)=n] =

∫
pn(c,X, t)φr(t)dc dX, r = 0, 1. (3.15)

First, multiplying both sides of the CK equation (3.8) by ck(t) and integrating
with respect to c,X gives (after integration by parts)

dCn,k
dt

=

2M∑
j=1,j 6=M

∆n
kjCn,j − γCn,k + E[η0(t)1n(t)=n]δi,1 + E[η1(t)1n(t)=n]δi,2M

+
∑
m=0,1

AnmCm,k.

with η0,1 defined by equations (3.5c). Similarly, multiplying both sides of the
CK equation (3.8) by ϕr(t) and integrating with respect to c,X gives (after
integration by parts)

dXn,r

dt
= F ss

V Xn,r + F ss
WYn,r + κ[Cn,(2M−1)r+1 −Xn,r],

dYn,r
dt

= Gss
VXn,r +Gss

WYn,r, r = 0, 1.
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If we now take the continuum limit, a → 0,M → ∞ such that aM = L,
then we obtain the system of equations for the first-order moments (3.1)

∂C0

∂t
= D

∂2C0

∂x2
− γC0 − βC0 + αC1 (3.16a)

∂C1

∂t
= D

∂2C1

∂x2
− γC1 + βC0 − αC1 (3.16b)

for x ∈ [0, 2L] with exterior boundary conditions

−D∂xCn(0, t) = κ(Xn,0(t)− Cn(0, t)), D∂xCn(2L, t) = κ(Xn,1(t)− Cn(2L, t)),
(3.16c)

and interior boundary conditions

C0(L−, t) = C0(L+, t), ∂xC0(L−, t) = ∂xC0(L+, t),

∂xC1(L−, t) = 0 = ∂xC1(L+, t). (3.16d)

Moreover,

dXn,r

dt
= F ss

V Xn,r + F ss
WYn,r + κ[Cn(2Lr, t)−Xn,r], (3.17a)

dYn,r
dt

= Gss
VXn,r +Gss

WYn,r, r = 0, 1, n = 0, 1. (3.17b)

We note that these first-order moment equations and boundary conditions,
(3.16a)-(3.17b), can be obtained through a separate argument using probabilistic
methods [29].

3.1. Spectral problem

In order to investigate stability of the steady-state solution with respect to
first-order moments of the perturbations, we take

Cn(x, t) = eλtCn(x), Xn,r(t) = eλtXn,r, Yn,r(t) = eλtYn,r. (3.18)

We then obtain the following system of time-independent equations:

λC0 = D
d2C0

dx2
− γC0 − βC0 + αC1 (3.19a)

λC1 = D
d2C1

dx2
− γC1 + βC0 − αC1 (3.19b)

for x ∈ [0, 2L] with exterior boundary conditions

−D∂xCn(0) = κ(Xn,0 − Cn(0)), D∂xCn(2L) = κ(Xn,1 − Cn(2L)), (3.19c)

and interior boundary conditions

C0(L−) = C0(L+), ∂xC0(L−) = ∂xC0(L+), ∂xC1(L−) = 0 = ∂xC1(L+).
(3.19d)
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Moreover,

λXn,r = F ss
V Xn,r + F ss

WYn,r + κ[Cn(2Lr)−Xn,r], (3.20a)

λYn,r = Gss
VXn,r +Gss

WYn,r, r = 0, 1, n = 0, 1. (3.20b)

From the interior boundary conditions (3.19d), we set

−D∂xC0(L−) = −D∂xC0(L+) = J0,

with J0 to be determined later by imposing C0(L−) = C0(L+). Adding equa-
tions (3.19a) and (3.19b) then gives

D
d2C

dx2
− (γ + λ)C = 0, x ∈ [0, L), (3.21a)

−D∂xC(0) = κ(X0 − C(0)), −D∂xC(L−) = J0, (3.21b)

and

d2C

dx2
− (γ + λ)C = 0, x ∈ (L, 2L], (3.22a)

−D∂xC(L+) = J0, D∂xC(2L) = κ(X1 − C(2L)). (3.22b)

We have set
C(x) = C0(x) + C1(x), Xr = X0,r +X1,r,

so that C(x) is the mean cytosolic concentration and Xr is the mean concen-
tration at the end r = 1, 2 irrespective of the state of the gate. We obtain the
piecewise solution

C(x) =

{
C−(x) x ∈ [0, L)
C+(x) x ∈ (L, 2L]

(3.23a)

with

C−(x) =
κ(X0 + J0(λ))

κ+Dωλ tanh(ωλL)

cosh(ωλ(L− x))

cosh(ωλL)
− J0(λ) cosh(ωλx), (3.23b)

and

C+(x) =
κ(X1 − J0(λ))

κ+Dωλ tanh(ωλL)

cosh(ωλ(L− x))

cosh(ωλL)
+ J0(λ) cosh(ωλ(2L− x)).

(3.23c)

Here

J0(λ) =
J0

Dωλ sinh(ωλL)
, ωλ =

√
λ+ γ

D
. (3.24)

We note that we need the principal branch for ωλ, which has a branch cut on
portions of the negative real axis as a function of λ.
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Since C0 = C − C1, we can rewrite equation (3.19b) as

D
d2C1

dx2
− (α+ β + γ + λ)C1(x) = −βC(x) (3.25)

with

−D∂xC1(0) = κ(X1,0 − C1(0)), D∂xC1(2L) = κ(X1,1 − C1(2L)),

and
∂xC1(L−) = 0 = ∂xC1(L+).

Substituting for C(x) using equation (3.23a) we obtain a piecewise solution of
the form

C1(x) =

{
C−1 (x) x ∈ [0, L)
C+

1 (x) x ∈ (L, 2L]
(3.26a)

with

C−1 (x) = ρ1C
−(x) +

κ [X1,0 − ρ1X0 −A]

κ+DΩλ tanh(ΩλL)

cosh(Ωλ(L− x))

cosh(ΩλL)
+A cosh(Ωλx),

(3.26b)

C+
1 (x) = ρ1C

+(x)+
κ [X1,1 − ρ1X1 − B]

κ+DΩλ tanh(ΩλL)

cosh(Ωλ(L− x))

cosh(ΩλL)
+B cosh(Ωλ[2L−x])

(3.26c)
with

Ωλ =

√
λ+ γ + α+ β

D
.

As above, we need the principal branch for Ωλ, which has a branch cut on
portions of the negative real axis as a function of λ. We have imposed the
exterior boundary conditions. The interior boundary conditions for C1 then
determine the coefficients A,B in terms of J0:

A =
ρ1J0

DΩλ sinh(ΩλL)
= −B. (3.27)

Finally, we determine the unknown J0 by requiring that C0(x) is continuous
across x = L. However, we will not need the explicit expression for J0.

Next we write equations (3.20a) and (3.20b) in the matrix form

(J− λI)
(
Xn,r

Yn,r

)
= κ [Xn,r − Cn(2Lr)]

(
1
0

)
,

where

J =

(
F ss
V F ss

W

Gss
V Gss

W

)
. (3.28)

Using the fact that the first entry of the vector (J− λI)
(

1
0

)
is

(J− λI)−1

(
1
0

)∣∣∣∣
1

= Θ(λ) ≡ Gss
W − λ

det[J− λI]
,

13



we obtain the system of self-consistency conditions

Xn,r = κΘ(λ) [Xn,r − Cn(2Lr)] , n, r = 0, 1. (3.29)

We thus expect to obtain four branches of solutions for λ, in contrast to the
single branch obtained by Gou et al [21, 22] (our additional branches stem from
the stochastic gate). Summing equation (3.29) with respect to r and setting
Sn = Xn,0 +Xn,1 yields the pair of closed equations

S0 = κΘ(λ)[S0 − C0(0)− C0(2L)], S1 = κΘ(λ)[S1 − C1(0)− C1(2L)].

Substituting for Cn(0) + Cn(2L) using equations (3.23) and (3.26), and noting
that all terms involving J0 cancel, we find that

S0 = κΘ(λ)[S0 − ρ0Γ(ωλ)S + Γ(Ωλ)(S1 − ρ1S)], (3.30a)

S1 = κΘ(λ)[S1 − ρ1Γ(ωλ)S − Γ(Ωλ)(S1 − ρ1S)], (3.30b)

where
Γ(ω) =

κ

κ+Dω tanh(ωL)
.

Here S = X0 + X1 = X0 + X1. This pair of equations can be decoupled by
considering the linear combinations S = S0 + S1 and Ŝ = ρ1S0 − ρ0S1 to yield
the following characteristic equations for λ:

(1− κΘ(λ)[1− Γ(ωλ)])S = 0, (3.31a)

(1− κΘ(λ)[1− Γ(Ωλ)]) Ŝ = 0. (3.31b)

In order to obtain the other pair of closed equations, introduce the new
variables

Tn = Xn,0 −Xn,1 =⇒ X0 −X1 = T0 + T1 ≡ T,
For each n = 0, 1 subtract the pair of equations in (3.29) corresponding to
r = 0, 1. this yields

T0 = κΘ(λ)[T0 − C0(0) + C0(2L)], T1 = κΘ(λ)[T1 − C1(0) + C1(2L)].

Substituting for Cn(0)− Cn(2L) using equations (3.23) and (3.26) gives

T0 = κΘ(λ)
[
T0 − (ρ0Γ(ωλ) + ρ1Γ(Ωλ))T + Γ(Ωλ)T1

+ 2(1− Γ(Ωλ))A+ 2ρ0(1− Γ(ωλ))J0(λ)
]
,

T1 = κΘ(λ)
[
T1 − (ρ1Γ(ωλ)− ρ1Γ(Ωλ))T − Γ(Ωλ)T1

− 2(1− Γ(Ωλ))A+ 2ρ1(1− Γ(ωλ))J0(λ)
]
.

This pair of equations can be rewritten in terms of the linear combinations
T = T0 + T1 and T̂ = ρ1T0 − ρ0T1 as follows:

T = κΘ(λ)[1− Γ(ωλ)](T + 2J0(λ))

T̂ = κΘ(λ)[1− Γ(Ωλ)](T̂ + 2A).
(3.32)
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Note that J0(λ) and A both depend on J0 which in turn depends on T and

T̂ . In particular, by setting C0(L−) = C0(L+) and using equations (3.26) and
(3.23), we can solve for J0 which allows us to obtain

2J0(λ) = ξλ
[
q11
λ T + q12

λ T̂
]

and 2A = ξλ
[
q21
λ T + q22

λ T̂
]
,

where

1

ξλ
= ρ0Ωλ coth(ωλL) + ρ1ωλ coth(ΩλL)

− 2ρ0ΩλΓ(ωλ)csch(2ωλL)− 2ρ1ωλΓ(Ωλ)csch(2ΩλL),

and

q11
λ = 2ρ0ΩλΓ(ωλ)csch(2ωλL), q12

λ = ΩλΓ(Ωλ)csch(ωλL)sech(ΩλL)

q21
λ = ρ0ρ1ωλΓ(ωλ)csch(ΩλL)sech(ωλL), q22

λ = 2ρ1ωλΓ(Ωλ)csch(2ΩλL)

Equations (3.31) and (3.32) can now be used to investigate conditions on
λ with respect to excitation of different eigenmodes corresponding to different
linear combinations of Xn,r, n, r = 0, 1.

1. In-phase mode: For S 6= 0, Ŝ = T = T̂ = 0 we have the in-phase state
X0 = X1 where the two ends are symmetric for both n = 0, 1, that is,

X0,0 = X0,1, X1,0 = X1,1.

The corresponding spectral condition is

1− κΘ(λ)[1− Γ(ωλ)] = 0,

which, on rearranging yields the equation

Fs(λ) ≡ 1

s(λ)
− Gss

W − λ
det[J− λI]

= 0, (3.33a)

with

s(λ) =
κDωλ tanh(ωλL)

κ+Dωλ tanh(ωλL)
. (3.33b)

2. Null-mode: For Ŝ 6= 0, S = T = T̂ = 0 we have the null mode X0 =
X1 = 0 with

X0,0 = −X1,0 = −X1,1 = X0,1 6= 0.

We now have
1− κΘ(λ)[1− Γ(Ωλ)] = 0,

which, on rearranging yields the equation

F̂s(λ) ≡ 1

ŝ(λ)
− Gss

W − λ
det[J− λI]

= 0, (3.34a)

with

ŝ(λ) =
κDΩλ tanh(ΩλL)

κ+DΩλ tanh(ΩλL)
. (3.34b)
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3. Anti-phase mixed modes: For Ŝ = S = 0 we have an anti-phase state
X0 = −X1 with the additional condition that

X0,0 +X0,1 =
ρ0

ρ1
(X1.0 +X1,1).

The conditions (3.32) can be written in the form

T = κΘ(λ)
[
1− Γ(ωλ)

](
(1 + ξλq

11
λ )T + ξλq

12
λ T̂

)
T̂ = κΘ(λ)

[
1− Γ(Ωλ)

](
ξλq

21
λ T + (1 + ξλq

22
λ )T̂

)
.

We note that T 6= 0 if and only if T̂ 6= 0. Importantly, we also note that in
the fast switching limit we have T̂ → 0, and the condition for T recovers
the spectrum obtained by Gou et al [21, 22] in the absence of a gate and
for anti-phase perturbations. To see this, we fix ρ0 and take α + β → ∞
(and thus Ωλ →∞) to obtain

lim
Ωλ→∞

ξλq
ij
λ = 0, for i 6= 1 or j 6= 1,

lim
Ωλ→∞

ξλq
11
λ =

2κ csch(2ωλL)

Dωλ + κ tanh(ωλL)
.

(3.35)

Then,

[
1− Γ(ωλ)

](
1 +

2κ csch(2ωλL)

Dωλ + κ tanh(ωλL)

)
= 1− κ

κ+Dωλ coth(ωλL)
,

(3.36)

which, upon plugging into the T equation above, yields the spectrum
obtained by Gou et al [21, 22] in the absence of a gate for anti-phase
perturbations.

For finite switching rates, we will have two anti-phase modes in which the re-
lationship between the open and closed states at each end is determined by
S = Ŝ = 0 and the solutions, T and T̂ , of the equation[(

χ1(λ) 0
0 χ2(λ)

)
(ξλQ(λ) + I)− I

](
T

T̂

)
= 0, (3.37)

where

χ1(λ) = κΘ(λ)
[
1− Γ(ωλ)

]
, χ2(λ) = κΘ(λ)

[
1− Γ(Ωλ)

]
, (3.38)

Qij(λ) = qijλ , and I is the identity matrix.
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3.2. Winding number analysis

We now investigate equation (3.37) to determine the parameter regimes in
which the nonlinear stochastic PDE-ODE system in (2.1) supports stochastic
anti-phase oscillations (case 3 above). We focus on this case of anti-phase os-
cillations because the perturbations in cases 1 and 2 are symmetric about the
midline, x = L, and are therefore unaffected by the stochastic gate.

Equation (3.37) has a nontrivial solution, T and T̂ , if and only if the corre-
sponding determinant is zero:

G(λ) :=
[
χ1(λ)ξλq

11
λ + χ1(λ)− 1

][
χ2(λ)ξλq

22
λ + χ2(λ)− 1

]
− (ξλ)2χ1(λ)χ2(λ)q12

λ q
21
λ .

(3.39)

Following [24], we determine the number of roots of G(λ) in Re(λ) > 0 using the
argument principle of complex analysis. To do this, we compute the winding
number of G(λ) over the contour consisting of the semi-circle, |λ| = R, with
Re(λ) > 0, denoted by ΓR, and the imaginary axis, Γ+ ∪ Γ−, where Γ+ = iλI
and Γ− = −iλI for 0 ≤ λI ≤ R. Assuming there are no pure imaginary roots
of G(λ) = 0, we have by the argument principle that the number of roots, N , of
G(λ) in Re(λ) > 0 is

N =
1

2π

(
lim
R→∞

[arg G]ΓR + lim
R→∞

[arg G]Γ+
+ lim
R→∞

[arg G]Γ−

)
+ P,

where [arg G]Γ denotes the change in the argument of G over the contour Γ
oriented in the counterclockwise direction, and P is the number of poles of G(λ)
in Re(λ) > 0 counted according to their multiplicity.

It is straightforward to check that the only poles of G(λ) in Re(λ) > 0 occur
in the χ1(λ) and χ2(λ) terms when Θ(λ) has a pole because det[J − λI] = 0.
By the particular form of J, we see that Θ(λ) has 2 poles in Re(λ) > 0 if the
trace of J is positive and 0 poles if the trace of J is negative. Since G contains
products of χ1 and χ2 and poles are counted by multiplicity, we have that

P =

{
0, if tr(J) < 0,

4, if tr(J) > 0.
(3.40)

Next, it is straightforward to check that

lim
|λ|→∞

G(λ) = 1, if Re(λ) ≥ 0.

Thus, limR→∞[arg G]ΓR = 0. Furthermore, G(λ) = G(λ), and thus [arg G]Γ+ =
[arg G]Γ− . Therefore, in order to findN it remains only to calculate limR→∞[arg G]Γ+ .
Since G(0) > 0 and limR→∞ G(iR) = 1 > 0, the change in the argument of G
over Γ+ can only be an integer multiple of 2π. Putting this together, we conclude
that

N = 2m+ P,
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where m is the winding number of G over the contour Γ+, and P is given by
(3.40).

The winding number, m, can be calculated numerically from equation (3.39).
This is illustrated in Fig. 3, where we plot in the complex plane the path of
G(iR) as R ranges from a large positive value to zero for two particular param-
eter sets. For one of the parameter sets (D = 0.65 and κ = 0.5), the curve
(Re (G(iR)), Im (G(iR))) wraps around the origin once in the complex plane in
the clockwise direction. Hence, m = −1. For this parameter set, tr(J) > 0, so
P = 4, and thus N = 2. We note that plotting G(R) for a large range of positive
R values allows one to check that G(R) > 0 for R > 0, and thus the roots of
G(λ) in Re(λ) > 0 are complex, and hence the corresponding instability of (2.1)
is oscillatory. For the other parameter set considered in Fig. 3, m = −2, P = 4,
and thus N = 0.

3.3. Phase diagrams and stochastic simulations of the full system

By computing the m and P for different parameter values, we can determine
the parameter curves along which the first-moment equations (3.16a)-(3.17b)
undergo a Hopf bifurcation. However, linear stability analysis alone cannot
establish whether or not a Hopf bifurcation is supercritical, that is, whether or
not the emerging limit cycle is stable. The analysis is further complicated by
the fact that, as in the ungated system [21, 22], the Hopf curves for in-phase and
anti-phase solutions can intersect, resulting in a change of stability of in-phase
or anti-phase solutions due to the existence of a torus bifurcation. The Hopf
curves thus determine regions where limit cycles are expected to occur but their
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Figure 3: Path of (Re (G(iR)), Im (G(iR))) in the complex plane as R ranges from a large
positive value to zero. (a) From the left plot, we see that both curves wrap around the origin
at least once. (b) Zooming in, the right plot shows that the blue curve wraps around the
origin once, and the red curve wraps around the origin twice. For the blue curve, D = 0.65
and κ = 0.4, and for the red curve, D = 0.4 and κ = 0.485. For both the red and the blue
curve, α = 1, β = 10, µ = 2, l = 0.9, ε = 0.15, and κ = γ = L = 1.
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stability has to be checked numerically. One additional note of caution is that
we are considering bifurcations of the symmetric steady state with respect to
perturbations that are averaged with respect to realizations of the stochastic
gate. Since we find numerically that higher-order fluctuations are unimportant
for the given system, we will assume that the existence regions for oscillatory
solutions of the first-moment equations also hold for the full stochastic system
given by equations (2.1) and (2.2). We check this explicitly below.

Fig. 4 plots phase diagrams for several choices of the switching rates, α and
β, of the stochastic gate and compares them to the phase diagrams obtained by
Gou et al. in [24] for the ungated system. As noted before, the stochastic gate is
irrelevant for in-phase oscillations (and thus the region of parameter space sup-
porting in-phase oscillations is unchanged by the stochastic gate). However, for
anti-phase oscillations we see that the stochastic gate alters the phase diagram.
There are several interesting regimes of the switching rates to consider. In the
following, we refer to the region of parameter space for which a system supports
anti-phase (or in-phase) oscillations as the anti-phase (or in-phase) region.

First, if α/β � 1, then the gate is open most of the time. As expected,
in this limit the anti-phase region of the gated system in (2.1) approaches the
anti-phase region of the ungated system considered in [22] (see the orange curve
in Fig. 4). Similarly, for any fixed ratio α/β, the anti-phase region of the gated
system approaches the anti-phase region of the ungated system if we take α+β
sufficiently large (see the blue curve in Fig. 4). That is, even if the gate is closed
most of the time (α/β small), the gate essentially has no effect if it opens and
closes at sufficiently high frequency (which agrees with our analysis in equations
(3.35)-(3.36)). This phenomenon has been explored in several other works (see
[27, 3, 28, 7, 29, 30]), and there are multiple ways to understand it. Perhaps
the simplest explanation follows from the behavior of a Brownian particle at
fine spatial scales; namely, any time a Brownian particle hits a boundary, it hits
it infinitely often. Thus, even if the gate is closed when a particle hits it, the
particle will hit the gate many times shortly after the first hit, and the gate must
be open at one of those times if it’s opening and closing at a sufficiently high
frequency. Indeed, if a Brownian particle starts on a boundary that switches
between reflecting and absorbing, then the mean absorption time vanishes as
the switching rate increases [5, 6].

Next, if α/β � 1 for fixed α + β, then the gate is closed most of the time
and the anti-phase region of the gated system approaches the in-phase region
of the ungated system (see the green curve in Fig. 4). The reason for this
is the following. From the perspective of the solution restricted to [0, L] (or
[L, 2L]), a closed gate at x = L is equivalent to a solution that is symmetric
about x = L. Hence, the system with a gate that is (almost) always closed will
support anti-phase oscillations (or oscillations with any given phase relationship)
if the ungated system supports in-phase oscillations.

Finally, the most interesting regime is that of intermediate values of the
switching rates, α and β (see the red curve in Fig. 4). In this non limiting case,
the gated system exhibits behavior not seen in the ungated system. Indeed,
there exists parameter regimes where the gated system exhibits oscillations, but
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Figure 4: Phase diagram in the (D,κ) plane for the ungated system and several choices of
the switching rates of the stochastically gated system. Other parameters are given in the
caption of Fig. 3. The black dashed (respectively, dotted) curve encloses the set of (D,κ)
values for which the ungated system supports anti-phase (respectively, in-phase) oscillations.
The colored solid curves enclose the set of (D,κ) values for which the gated system supports
anti-phase oscillations for various choices of the switching rates. As described in the text,
if α/β � 1 (orange curve) or α + β � 1 (blue curve), the anti-phase region of the gated
system approaches the anti-phase region of the ungated systen. Further, if α/β � 1 (green
curve), then the anti-phase region of the gated system approaches the in-phase region of the
gated system. For intermediate values of α and β (red curve), the anti-phase region of the
gated system seems to interpolate the anti-phase and in-phase regions of the ungated system.
Importantly, for intermediate values of α and β, there exists parameter choices (red circle)
where the gated system supports oscillations, but the ungated system does not, and there
exists parameter choices (black circle) where the ungated system supports oscillations, but
the gated system does not. These are confirmed by simulations of the full system in Figs. 5
and 6. As described in the text, the set of (D,κ) values for which the gated system supports
in-phase oscillations is the same as for the ungated system.

the ungated system does not. Conversely, there exists parameter regimes where
the ungated system exhibits oscillations, but the gated system does not. For
example, Fig. 4 shows that if α = 1, β = 10, D = 0.65, and κ = 0.5, then the
gated system supports only anti-phase oscillations, but the ungated system does
not support any oscillations. On the other hand, if α = 1, β = 10, D = 0.4, and
κ = 0.485, then the ungated system supports only anti-phase oscillations, but
the gated system does not support any oscillations.

The predictions of our analysis agree with stochastic simulations of the full
nonlinear coupled PDE-ODE system in (2.1). In Fig. 5, we plot a simulation of
a single realization of the stochastically gated system with α = 1, β = 10, D =
0.65, and κ = 0.5, along with a simulation of the ungated system for the same
parameters. We see that the stochastic system exhibits anti-phase stochastic
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Figure 5: Simulations of the full nonlinear coupled PDE-ODE system: There exists parameter
choices where the ungated system does not support oscillations, but the stochastically gated
system does. Here, D = 0.65 and κ = 0.5, and other parameters are as in the caption of Fig. 3.
Given a small perturbation about the steady state at t = 0, the upper left panel shows that
the ungated system decays to a steady state, but the right panel shows that the stochastically
gated system oscillates. Zooming in on this realization of the stochastic system, the bottom
left panel reveals that these stochastic oscillations are indeed anti-phase. The bottom right
panel plots u(x, t) for the gated system over a set of large times.

oscillations, but the ungated system decays to a steady state. Conversely, in
Fig. 6, we plot a simulation of a single realization of the stochastically gated
system with α = 1, β = 10, D = 0.4, and κ = 0.485, along with a simulation of
the ungated system for the same parameters. There, we see that the stochastic
system decays to a steady state, but the ungated system exhibits anti-phase
oscillations.

Finally, we describe our numerical implementation of the full nonlinear cou-
pled PDE-ODE stochastic system. For a given stochastic simulation, we first
generated the sequence of holding times of the Markov process, n(t). That is, to
simulate the system until some given terminal time Tend (in the case of Figs. 5
and 6, the terminal time was Tend = 1000), we first generated a sequence of inde-
pendent and identically distributed exponential random variables, {τ0, τk1 }Kk=1,
with τk0 and τk1 having rate parameters β and α, and the random variable K is
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Figure 6: Simulations of the full nonlinear coupled PDE-ODE system: There exists parameter
choices where the stochastically gated system does not support oscillations, but the ungated
system does. Here, D = 0.4 and κ = 0.485, and other parameters are as in the caption of
Fig. 3. Given a small perturbation about the steady state at t = 0, the upper left panel
shows that the stochastically gated system decays to a steady state, but the right panel shows
that the ungated system oscillates. Zooming in on this realization of the ungated system,
the bottom left panel reveals that these oscillations are indeed anti-phase. The bottom right
panel plots u(x, t) for the ungated system over a set of large times.

K = inf{k′ :
∑k′

k=1(τk0 + τk1 ) > Tend}. Hence, the statistics of the jump times
of n(t) are exact. To simulate the evolution of the system between jumps of
n(t), we discretized the spatial domain [0, 2L] and used the method of lines.
The details of this method are given above in our derivation of the first moment
equations (3.16a)-(3.16b), though we applied this method to the full nonlinear
system (not the linearized version considered above). We used 100 spatial grid
points (a finer spatial discretization yielded the same qualitative results). To
solve the resulting system of ODEs (an ODE for each spatial grid point and
ODEs for Vr,Wr), we used stiff ODE solvers that were built-in to MATLAB
[31], having set the maximum allowable time step to be 0.1 (smaller maximum
time steps yielded the same qualitative results).
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4. Discussion

In this paper, we combined work on diffusion in domains with randomly
switching boundaries [27, 3, 7, 8] and studies of diffusively-coupled active bio-
chemical oscillators [21, 22]. This was motivated by the particular problem of a
pair of cells with active membranes coupled via a stochastically-gated gap junc-
tion. The resulting system is described by a stochastic (piecewise-deterministic)
PDE-ODE. Linearizing about a deterministic steady-state solution, we investi-
gated the existence of in-phase and anti-phase oscillations by solving the spec-
tral problem for a linear operator obtained by averaging over realizations of the
stochastic gate. We thus showed how the gate has a non-trivial effect on the
existence of the anti-phase solution.

It is important to point out that the amplitudes of the oscillations in Figs.
5 and 6 are small. However, in this paper we are mainly interested in establish-
ing the principle of noise-induced or noise-suppressed oscillations. In order to
determine whether or not such phenomena could be observed in the real noisy
environment of cells, one would require a more extensive parameter search using
a variety of different ODE models. In particular, it is known that certain bio-
chemical networks exhibit ultrasensitivity to inputs [9], whereby small changes
in input lead to large changes in response. It would be interesting to deter-
mine whether or not such an amplification mechanism could enhance the effects
identified in our paper.

As far as we are aware, there are currently no experimental studies exploring
the combined effects of bulk diffusion and stochastic gap junctions on coupled
biochemical oscillators. In particular, it is not known whether the resulting
oscillations are in-phase or anti-phase. However, there is an interesting example
of anti-phase oscillations, which occurs during cell polarization in fission yeast.
Fission yeast is a rod-shaped cell consisting of two hemispheres of constant
radius that cap a cylinder of increasing length. There are two distinct stages
of axial cell growth: immediately following cell division, the cell initially grows
at one end only, namely, the “old end” of the previous cell cycle (monopolar
growth). However, at a critical length, the cell also starts growing from the
new end (bipolar growth), in a process known as “new end take off” (NETO)
[14]. It has been found experimentally that the signaling molecule Rho GTPase
Cdc42, which plays an important role in regulating cell polarization, exhibits
oscillations with an average period of 5 min [13]. Moreover, oscillations occur
at both ends of the cell and are anti–phase. In the case of longer cells exhibiting
bipolar growth, the mean amplitude of the oscillations were the same at both
ends (symmetric, anti-phase oscillations). On the other hand, for shorter, less
mature cells exhibiting monopolar growth, the amplitude was significantly larger
at the growing end (asymmetric, anti-phase oscillations). These experimental
observations have recently been reproduced in a mathematical model in the
form of a PDE-DDE system on a growing domain [39].

More broadly, our work contributes to the analysis of piecewise deterministic
Markov processes (PDMPs), which are also known as dichotomous noise pro-
cesses in the physics literature [1]. Such processes are finding an increasing num-
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ber of applications in biology, including to gene networks, neuroscience, chemo-
taxis, ion channels, and motor-driven intracellular transport [2, 10, 15, 16, 35].
A distinguishing feature of the present work is that our system evolves according
to a PDE in between jumps of the Markov process, whereas the vast majority of
previous work on PDMPs has tended to consider only ODE evolution between
Markov jumps.

There are a number of possible extensions of our work. First, we could derive
linear PDE-ODEs for second-order (and higher-order) moments of the stochastic
perturbations. These would be obtained by multiplying the CK equation (3.8)
by products of the concentrations, performing integration by parts, and then
retaking the continuum limit. In the case of second-order moments we would
obtain dynamical equations for the two-point, equal-time correlations

Λccn (x, y, t) = E[c(x, t)c(y, t)1n(t)=n], Λcϕn,r(x, t) = E[ϕr(t)c(x, t)1n(t)=n],

Λcφn,r(x, t) = E[φr(t)c(x, t)1n(t)=n], Λϕϕn,rs(x, t) = E[ϕr(t)ϕs(t)1n(t)=n],

Λφφn,rs(t) = E[φr(t)φs(t)1n(t)=n], Λϕφn,rs(t) = E[ϕr(t)φs(t)1n(t)=n]

Note, in particular, that Λccn (x, y, t) would satisfy a two-dimensional parabolic
PDE. However, the resulting spectral problem rapidly becomes analytically in-
tractable so one would need to develop efficient numerical schemes. At least
for the parameter values considered in this paper, higher-order moments do not
appear to blow-up, suggesting that the first-moment spectral problem is a good
predictor of the existence of diffusion-induced oscillations. We hope to develop
a more rigorous analysis of stability in future work.

More theoretical extensions would be to investigate some of the subtle math-
ematical questions raised by this study. First, while our restricted stability
criterion was confirmed by numerics, there is the question of its rigorous justifi-
cation. Second, it would be useful to develop our stochastic averaging approach
for nonlinear PDE. In particular, we had to first linearize the system in order
to find first moment equations. Third, there is the question of a detailed inves-
tigation into the types of PDEs that are amenable to the spatial discretization
approach that we used in section 3 to derive the first moment system. Fourth,
one would like to extend our methods to allow the opening and closing rates, α
and β, to depend on the concentrations of diffusing molecules. Of course, this is
more than a mathematical curiosity, since channel gating is voltage dependent
[11].

One final extension would be to take into account the fact that gap junc-
tions tend to have a finite permeability [25]. This would mean that at the
intercellular boundary x = L, the concentration of the signaling molecule is
discontinuous. Conservation of diffusive flux across the boundary would imply
that the boundary condition (2.1c) for n(t) = 0 would become

−D∂u(L−, t)

∂x
= −D∂u(L+, t)

∂x
= µ[u(L−, t)− u(L+, t)].

However, it could be argued that at least a partial contribution to the effective
permeability arises from the random opening and closing of the gap junction.
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Yet another extension would be to consider more general geometric configura-
tions of cells. For example, Keener and Sneyd [25] have previously considered
a line of two-dimensional cells with gap-junctional openings in the connecting
edges. Using symmetry arguments, they showed how the gap junctions along
an edge can be lumped into a single effective junction at the center of each
edge. Incorporating such a configuration into our framework would require un-
derstanding how the membrane of a two-dimensional (or three-dimensional) cell
is partitioned into active membrane domains and gap junctions.
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