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Abstract. Morphogen protein gradients play an important role in the spatial
regulation of patterning during embryonic development. The most commonly
accepted mechanism for gradient formation is diffusion from a source combined
with degradation. Recently, there has been growing interest in an alternative
mechanism, which is based on the direct delivery of morphogens along thin,
actin-rich cellular extensions known as cytonemes. In this paper, we develop a
bidirectional motor transport model for the flux of morphogens along cytonemes,
linking a source cell to a one-dimensional array of target cells. By solving the
steady-state transport equations, we show how a morphogen gradient can be
established, and explore how the mean velocity of the motors affects properties of
the morphogen gradient such as accumulation time and robustness. In particular,
our analysis suggests that in order to achieve robustness with respect to changes
in the rate of synthesis of morphogen, the mean velocity has to be negative,
that is, retrograde flow or treadmilling dominates. Thus the potential targeting
precision of cytonemes comes at an energy cost. We then study the effects of
non-uniformly allocating morphogens to the various cytonemes projecting from a
source cell. This competition for resources provides a potential regulatory control
mechanism not available in diffusion-based models.
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1. Introduction

It has been known for some time that protein (morphogen) concentration gradients
play a crucial role in the spatial regulation of patterning during development [38]. That
is, a spatially varying concentration of a morphogen protein drives a corresponding
spatial variation in gene expression through some form of concentration thresholding
mechanism. For example, in regions where the morphogen concentration exceeds a
particular threshold, a specific gene is activated (see Fig. 1a). Hence, a continuously
varying morphogen concentration can be converted into a discrete spatial pattern of
differentiated gene expression across a cell population. The most common mechanism
of morphogen gradient formation is thought to involve a localized source of protein
production within the embryo, combined with diffusion away from the source and
subsequent degradation [24, 1, 37, 22, 32, 34]. The latter can arise either from
degradation within the extracellular domain or by binding to membrane bound
receptors and subsequent removal from the diffusing pool by endocytosis (see Fig. 1b).
The rates of binding and internalization thus control the effective degradation rate.
The bound receptors can also initiate a signaling cascade resulting in the activation
or repression of one or more genes. Coupling these two processes then leads to
an effective degradation rate that depends on the local morphogen concentration.
For example, a morphogen may activate the expression of its cognate receptor, thus
increasing the morphogen degradation rate. This results in a faster degradation rate
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Figure 1. A schematic diagram illustrating how a morphogen gradient acts on
embryo cells. (a) Thresholding of the morphogen concentration gradient activate
different genes in cells at different locations (indicated by different colors). (b)
Morphogens act as signaling molecules that bind to cell receptors and initiate
signaling cascades that switch genes on or off. This may include genes responsible
for synthesis of the receptors (nonlinear feedback). (c) Morphogenesis has to
be robust to noise at different levels, including the morphogen production rate,
receptors and genes.
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in regions of high morphogen concentration [15]. It is also possible that morphogens
are transiently trapped by a cell. Indeed, transient trapping has been suggested as
an alternative transport mechanism for morphogens known as transcytosis, whereby
repeated rounds of endocytosis and exocytosis results in a dispersion of the molecules
within the tissue [21, 9]. In addition to the establishment of morphogen gradients,
another important issue concerns possible mechanisms for maintaining the robustness
of morphogen-based patterning with respect to changes in environmental conditions
such as the morphogen production rate, and stochastic process at the level of receptors
and gene circuits that interpret the signal [15, 8, 2, 23, 40, 26, 36], see Fig. 1c.
Robustness is related to the problem of morphogen gradient scaling, whereby the
gradient automatically adjusts to variations in the size of tissue [3, 4].

Recently, there has been growing interest in an alternative mechanism for
delivering morphogens to embryonic cells that employs so-called cytonemes [19, 20].
Cytonemes are thin, dynamic cellular extensions with a diameter of around 100 nm
and lengths that vary from 1 to 100 µm, see Fig. 2. Although these filaments are
observed in multiple biological systems, their precise function is still controversial.
Nevertheless, cytonemes are actin-rich structures that can extend and retract relatively
fast, and their tips have been seen to attach to other cells. It has thus been suggested
that morphogens can be actively transported between source and target cells along
actin filaments within a cytoneme via the action of myosin motors. One potential
advantage of this active transport mechanism is that it provides an adaptable and
precise form of cellular communication. Cytonemes have been most extensively
characterized in the wing imaginal disc of Drosophila and have been associated with
the transport of both morphogenetic protein Decapentaplegic (Dpp) and Hedgehog
(Hg) [28, 7, 18, 29, 14, 10]. Drosophila cytonemes either emanate from the receptor-
bearing target cells, transporting their receptors to the vicinity of source cells, or
extend from the morphogen-producing cells, transporting morphogens to target cells.
Increasing experimental evidence indicates that cytonemes also mediate morphogen
transport in vertebrates [16, 31]. Examples include sonic hedgehog (Shh) cell-to-cell
signaling in chicken limb buds [30] and Wnt signaling in zebrafish [33].

In contrast to diffusion-based mechanisms, there has been almost no
mathematical modeling of cytoneme-based morphogenesis. One notable exception
is a compartmental model due to Teimouri and Kolomeisky [34, 35]. These authors
consider a discrete set of N+1 cells arranged on a line. A source cell at one end makes
direct contact with each of the N target cells via a single cytoneme per cell. Assuming
that the rate wn of morphogen transport decreases with distance Ln between target
and source cells, they show how a steady-state morphogen gradient can be established.
Their model suggests that the direct delivery mechanism may be more robust than
diffusion, but comes at an energy cost.

In this paper, we extend the model of Teimouri and Kolomeisky [34] by explicitly
modeling the transport of morphogens along actin filaments. More specifically, we
consider a simple bidirectional motor transport model, in which active particles
carrying morphogens randomly switch between anterograde and retrograde transport.
A crucial aspect of our model is the choice of boundary conditions at the source and
target ends of each cytoneme. We take particles to be injected at a rate that is
proportional to the particle concentration in the source cell, whereas we impose an
absorbing boundary condition at the target end. A number of different features of
our model are explored. First, we obtain an analytical steady-state solution of the
transport equations, which enables us to identify the phenomenological rate wn of
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Ref. [34] with a biophysically derived expression. Interestingly, the energy cost in
our model arises from the presence of retrograde transport. Second, we calculate the
analog of the accumulation time considered in diffusion-based mechanisms [5, 6, 17].
This is important in order to check that the time to establish a morphogen gradient
is consistent with developmental stages. Finally, we investigate the robustness of the
model to fluctuations in the rate of morphogen production in the source cell.

2. Deterministic compartmental model

We begin by briefly reviewing the deterministic model of Ref. [34, 35]. Consider N+1
embryo cells arranged in a line, and introduce the cell label n = 0, 1, . . . , N , see Fig. 3.
Suppose that the cell n = 0 acts as the source cell and produces morphogens at a rate
Q. (In anticipation of the motor-transport flux model, we will take a single particle to
be a packet of signaling molecules that can be packed into a vesicle). The source cell
also projects N tubular cytonemes, each of which attaches to a unique downstream
cell. For simplicity, multiple contacts between the source cell and another cell are
ignored so that each cytoneme inherits the label n of its target cell, n = 1, . . . , N .
Morphogens are transported to the nth target cell via the nth cytoneme at an n-
dependent rate wn, n = 1, . . . , N . One interpretation of 1/wn is the mean arrival
time of signaling molecules to reach the target cell, assuming that this process has
reached a stationary state. Finally, once morphogens have been delivered to a cell,
they degrade at a rate k.

Let Pn(t) denote the density of signaling molecules at the nth cell at time t. The
corresponding evolution equations take the form [34]

dP0

dt
= Q−

N∑
n=1

wnP0(t), (2.1a)

Figure 2. Micrograph showing cytonemes extending from tracheal cells of a
Drosophila larva, which are marked with membrane-tethered mCherry fluorescent
protein. Some of the cytonemes contact the underlying wing imaginal disc and
transport the Dpp morphogen protein (marked with Green Fluorescent Protein)
to the tracheal cells. [Creative commons figure originally generated by Thomas
Korenberg.]
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Figure 3. Schematic diagram of the cytoneme-based transport model introduced
in Ref. [34]. A source cell (dark blue) generates morphogens at a rate Q, which
are then delivered to other cells (light blue) via a set of tubular cytonemes. It
is assumed that a single cytoneme links the source cell (labeled n = 0) to each
target cell (labeled n = 1, . . . , N), and transports morphogens (red dots) at a rate
wn.

dPn
dt

= wnP0(t)− kPn(t), n = 1, . . . , N. (2.1b)

Given the initial conditions Pn(0) = 0 for all n, these equations have the solution

P0(t) =
Q

η

[
1− e−ηt

]
, (2.2a)

Pn(t) =

[
Qwn

η(η − k)

]
e−ηt −

[
Qwn

k(η − k)

]
e−kt +

Qwn
ηk

, (2.2b)

for n = 1, . . . , N , where η =
∑N
n=1 wn and η 6= k. It follows that the stationary

solution (t→∞) is

P ∗n =
Q

kη
wn, P ∗0 =

Q

η
, (2.3)

In order to determine a spatial morphogen gradient, it is necessary to specify the
length Ln of the nth cytoneme and how wn depends on Ln. Two formulations are
considered in Ref. [34]. The first uses a statistical mechanical argument, whereby the
rate of transport along a cytoneme is determined by the free-energy difference ∆G(n)
arising from a morphogen being displaced from the source cell to the target cells:

wn = W e−∆G(n)/kBT ,

where W is the background rate when ∆G(n) = 0. Furthermore, the cytoneme length
is taken to be Ln = An and it is assumed that an amount of energy εkBT is spent
in transferring a signaling molecule a distance l (presumably by active motor-driven
transport). Hence,

∆G(n) =
Ln
l
εkBT =

nkBT

ξ
, ξ = l/Aε.

Finally, from equation (2.3) we have the stationary solution profile

P ∗n =
QW

kη
e−n/ξ, η =

e−1/ξ − e−(1+N)/ξ

1− e−1/ξ
. (2.4)
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This model thus predicts that the stationary distribution decays exponentially with
spatial variable n, and the length constant ξ is larger when the transport is more
efficient (smaller ε). The second model formulation treats each cytoneme as a one-
dimensional lattice and consider transport of morphogens as a totally asymmetric
exclusion process (TASEP), and identifies wn with the stationary particle flux through
the cytoneme to the nth target, see [34] for more details.

One of the potential limitations of the above model is that it ignores the dynamics
of the transport process along the cytonemes, in the sense that wn is determined from
a stationary process. However, since the flux through the cytoneme couples to the
dynamically varying concentration P0(t), we expect wn also to be time-dependent.
Although this would not affect the stationary-state, it could influence the approach
to stationarity.

3. Bidirectional transport model

Consider a single cytoneme of length L linking a source cell to a single target cell,
see Fig. 4. We now explicitly model the transport of morphogen containing vesicles
by treating the cytoneme as a one-dimensional domain of length L and denote the
density of motor-cargo complexes at x ∈ [0, L] along the cytoneme by u(x, t). We
assume that the complexes can be partitioned into anterograde (+) and retrograde (−)
subpopulations labeled by u+(x, t) and u−(x, t), respectively. (In the case of myosin
transport along actin filaments, the retrograde flow would be due to treadmilling
[39, 25]. For recent evidence of mysosin motor-based transport of puncta along
cytonemes within the Drosophila wing imaginal disc, see [14]).) The corresponding
differential Chapman-Kolmogorov equation takes the form

∂u+

∂t
= −v+

∂u+

∂x
+ αu− − βu+ (3.1a)

∂u−
∂t

= v−
∂u−
∂x
− αu− + βu+, (3.1b)

where v± are the speeds of the ± states, α is the rate of switching from the retrograde
to the anterograde state, and β is the switching rate from anterograde to retrograde.

Q

x = 0 x = L

actin filament

v+
v-

Figure 4. Bidirectional transport model of a single cytoneme.



Bidirectional transport model of morphogen gradient formation via cytonemes 7

10

Time t [100 sec]

0

2

4

6

8

10
C

o
n

c
e

n
tr

a
ti
o

n

P0(t)

P1(t)

10
0

0.2

0.4

0.6

0.8

1

F
lu

x
/Q

J(0,t)

J(L,t)

2 4 6 80

Time t [100 sec]

2 4 6 80

(a) (b)

Figure 5. Numerical solutions of the transport model for s single cytoneme. (a)
Plots of morphogen concentrations P0(t), P1(t) in the source and target cells as a
function of time. (b) Corresponding plots of fluxes J(0, t) and J(L, t) at the two
ends of the cytoneme. Morphogen is generated in source cell, P0(t), enters into
cytoneme. Parameter values are as follows: v+ = 0.2µm s−1, v− = 0.1µm s−1,
α = 0.1 s−1, β = 0.1 s−1, Q = 0.1 s−1, κ = 0.01 s−1, k= 0.05 s−1, L = 10 µ m
s−1. It follows that γ = −0.5µm−1.

Equations (3.1a) and (3.1b) are supplemented by the boundary conditions

u+(0, t) = κP0(t), u−(L, t) = 0, (3.2)

where P0(t) is the density of vesicles in the source cell and κ is an injection rate. We
assume that initially there are no particles within the cytonemes so u±(x, 0) = 0 for all
0 ≤ x ≤ L. The transport component of the model couples to the number of vesicles
in the source and target cells according to

dP0

dt
= Q− J(0, t),

dP1

dt
= J(L, t)− kP1(t), (3.3)

where Q is the particle production rate in the source cell and J(x, t) is particle flux
at position x at time t,

J(x, t) = v+u+(x, t)− v−u−(x, t). (3.4)

Example numerical solutions of the full system of equations are shown in Fig. 5.
It can be seen that the morphogen concentrations in the source and target cells
aproach steady-state values as t → ∞. (In all figures we take the concentration
to be dimensionless by defining a baseline concentration Pbase := Q/α and setting
Pbase = 1.)

3.1. Stationary solution

We now calculate the steady-state solution P ∗0 , P
∗
1 as a function of cytoneme length.

Setting time derivatives to zero and adding equations (3.1a) and (3.1b) gives

d

dx
(v+u+(x)− v−u−(x)) = 0.
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Figure 6. Transport rate w(L) plotted as a function of cytoneme length L. (a)
γ > 0 so that v < 0 and the flux decays asymptotically to zero. (b) γ < 0 so that
v > 0 and the asymptote is non-zero. Same parameter values as Fig. 5 except for
v− and hence γ. (Units of γ are µm−1.)

It follows that there is a stationary flux J(x) = J0. Setting dPn/dt = 0 in equation
(3.3) implies that J0 = J(0) = Q and P ∗1 = Q/k. Using these results to eliminate u−
from equation (3.1a), we have

du+

dx
+ γu+ = − αQ

v+v−
, γ =

βv− − αv+

v+v−

This has the solution (after imposing the boundary condition at x = 0)

u+(x) = κP ∗0 e−γx − αQ

γv+v−

[
1− e−γx

]
. (3.5)

(In the non-generic case that γ = 0, the concentration decreases linearly with x.)
Finally, imposing the absorbing boundary condition at x = L, we can determine P ∗0 .
We thus obtain the results

P ∗0 =
Q

w(L)
, P ∗1 =

Q

k
, (3.6)

where

w(L) =
κv+e−γL

1 + α [1− e−γL] /γv−
. (3.7)

Note that w(L) > 0, since e−γL − 1 has the same sign as γ. An important quantity,
which generalizes to the multi-cell case, is the ratio of the target and source densities,

P ∗1
P ∗0

=
w(L)

k
. (3.8)

The length-dependence of this ratio is determined by the function w(L), which we
identify as an effective cytoneme “conductance.”

Two results follow from this. First, from (3.7), bidirectional transport can lead
to a stationary flux that is an exponentially decaying function of cytoneme length
provided that

v =
αv+ − βv−
α+ β

< 0,
α

γv−
� 1 (3.9)
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where v is the mean velocity of a motor-cargo complex. That is, in our dynamical
transport model, spending sufficient time in the retrograde state effectively provides
a free energy cost for transporting morphogens from the source cell to the target cell.
Second, the asymptotic value limL→∞ w(L) depends on the sign of v, see Fig. 6. If
v < 0, then w(L) decays to zero as cytoneme length tends to infinity. On the other
hand, if v > 0, then the anterograde transport state is dominant and one finds that

lim
L→∞

w(L) = κv+

(
1− βv−

αv+

)
, (3.10)

Interestingly, a recent study of cytonmeme-based transport in the wing imaginal
disc of Drosophila provides evidence for a significant retrograde component of motor-
based transport [14]. They observed puncta moving at similar anterograde and
retrograde speeds of around 0.4µm/s. This does not necessarily imply that γ = 0,
since the switching rates α and β could differ. Thus, rather than taking v− < v+ and
α = β, we could obtain a non-zero γ by taking v+ = v− and α 6= β. In ref. [14], periods
between switching had an upper bound of 40s, which implies that α, β > 0.02s−1. (It
would be straightforward to modify our choice of units so that our chosen parameters
are comparable to Ref. [14], namely by taking the unit of time to be 10 seconds rather
than 1 second. This would not affect any of our conclusions.)

3.2. Multiple target cells

One can extend the single cytoneme model to multiple cytonemes of length Ln linking
a source cell to multiple target cells, n = 1, . . . , N . We now have to specify the relative
probability fn that a morphogen is injected into the nth cytoneme, see Fig. 7. Let
un+(x, t) and un−(x, t) be anterograde and retrograde subpopulations in the cytoneme
contacting the n-th target cell. Then the bidirectional model for un± takes the same
form as equations (3.1a) and (3.1b) on x ∈ (0, Ln),

∂un+
∂t

= −v+
∂un+
∂x

+ αun− − βun+ (3.11a)

∂un−
∂t

= v−
∂un−
∂x
− αun− + βun+, (3.11b)

with the modified boundary conditions

un+(0, t) = κfnP0(t), un−(Ln, t) = 0. (3.12)

Extending (3.3) to the case of multiple target cells yields

dP0

dt
= Q−

N∑
m=1

Jm(0, t),
dPn
dt

= Jn(Ln, t)− kPn (3.13)

where

Jn(x, t) = v+u
n
+(x, t)− v−un−(x, t).

Solving the steady-state equations shows that

v+u
n
+(x)− v−un−(x) = J∗n, (3.14)

where J∗n is the stationary flux reaching the n-th target cell, and

un+(x) = κfnP
∗
0 e−γx − αJ∗n

γv+v−

[
1− e−γx

]
. (3.15)
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Figure 7. Allocation of resources in a source cell. (a) Uniform distribution of
morphogens across N = 3 cytonemes. (b) Nonuniform distribution of morphogens
across N = 3 cytonemes.

Imposing the absorbing boundary condition at x = Ln implies that J∗n = fnP
∗
0w(Ln),

with w(L) given by equation (3.7). Finally, the stationary versions of equations (3.12)
show that

P ∗0 =
Q∑N

m=1 wm
, P ∗n =

Q

k

wn∑N
m=1 wm

=
wn
k
P ∗0 , (3.16)

where wn = fnw(Ln). We thus recover the stationary solution of the compartmental
model given by equations (2.3), except now wn is derived explicitly from our transport
model. It should also be noted that one cannot identify the time-dependent equations
(3.13) with (3.3), since the flux rate wnP0(t) 6= Jn(Ln, t) for finite t.

For the sake of illustration, we take fn = f(Ln) and consider three different
choices for f : the uniform distribution

fU (Ln) = 1/N, (3.17)
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Figure 8. Steady-state morphogen gradients for various choices of injection
distribution fn = f(Ln) with N = 10 and Ln = n. (a) Three different injection
distributions: a uniform distribution fU , a monotone increasing distribution fI
and a monotone decreasing distribution fD. (b) Corresponding steady-state
morphogen gradients P ∗

n = P ∗(Ln). Other parameter values are as Fig. 5.
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and the monotone increasing/decreasing distributions

fI(Ln) =
1

N1

[
e(Ln−L1)/4 + 1

]
, fD(Ln) =

1

N2

[
e(LN−Ln) + 1

]
, (3.18)

where N1 and N2 are normalization constants such that
∑N
n=1 f(Ln) = 1. Since

each distribution can be re-expressed as a function of cytoneme length, fn = f(Ln),
it follows that we can use equation (3.16) to determine the steady-state morphogen
concentration P ∗n = P ∗(Ln). The results are shown in Fig. 8. Note, in particular,
that allocating resources to longer cytonemes can actually reverse the gradient so that
the concentration increases with distance of a target cell from the source cell. This
suggests that one possible advantage of cytoneme-based rather than diffusion-based
morphogen gradient formation is that the former has an additional mechanism of
regulatory control, namely, determining how morphogenic resources are allocated to
the various cytonemes projecting from a source cell. We model this in terms of a
nonuniform injection probability distribution fn. One physical mechanism underlying
a non-uniform distribution could be variations in the number of cytonemes per target
cell.

4. Properties of cytoneme-based morphogen gradient

4.1. Accumulation time

So far we have only considered the steady-state solution of the cytoneme-based model
of morphogen gradient formation. As in the case of diffusion-based models, it is also
important to consider the dynamics of gradient formation. In particular, we need to
address the question of whether or not the time to form the morphogen gradient is
small compared to the time of cell differentiation. The latter process involves surface
receptors measuring the local value of the extracellular morphogen concentration
and translating this information into a corresponding change in the activation of its
signaling pathways and gene expression. If gradient formation is relatively fast, then
cell fate is determined by the steady-state value of the local morphogen concentration,
otherwise the cell has to interpret a time-varying morphogen concentration.

In order to characterize the time-dependent approach to steady-state, we follow
recent studies of diffusion-based models by considering the accumulation time [5, 6, 17]
. First, we introduce the function

Rn(t) = 1− Pn(t)

P ∗n
,

which represents the fractional deviation of the concentration from the steady-state
P ∗n . Assuming that Rn(t) is smooth enough and Pn(0) = 0, then 1 − Rn(t) is the
fraction of the steady-state concentration that has accumulated by time t. The
accumulation time is then defined by analogy with mean first passage times. That is,
we average the time with respect to the accumulation time density according to

τn =

∫ ∞
0

t
∂

∂t
(1−Rn(t)) dt =

∫ ∞
0

Rn(t)dt. (4.1)

The accumulation time can be calculated using Laplace transforms. That is, defining

R̂n(s) =

∫ ∞
0

Rn(t)e−stdt,
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we have τn = lims→0 R̂(s). Integration by parts proves that lims→0 sP̂n(s) = P ∗n .
Hence,

τn = lim
s→0

1

s

(
1− sP̂n(s)

P ∗n

)
= − 1

P ∗n

d

ds
sP̂n(s)

∣∣∣
s=0

. (4.2)

The next step is to evaluate P̂n(s). Taking Laplace transforms of the second
equation in (3.13) yields

sP̂n(s) =
v+

s+ k
· sûn+(Ln, s),

where we have used the initial condition un±(L, 0) = 0. Substituting this and equation
(3.16) into (4.2) and using

lim
s→0

sûn+(Ln, s) = u+(Ln,∞) =
1

v+
Jn(Ln,∞) =

k

v+
P ∗n ,

we have

τn =
1

k
−
v+

∑
m wm

Qwn

d

ds
sûn+(Ln, s)

∣∣
s=0

(4.3)

Now we want to find ûn+(x, s). Introduce the operators L+ = 1
α (∂t + v+∂x + β),

L− = 1
β (∂t − v−∂x +α)u− and L = L−L+. We can then rewrite equations (3.1a) and

(3.1b) for un± on x ∈ [0, Ln] as

L+u
n
+ = un−, L−un− = un+ (4.4)

Since L+ and L− commute, it follows that Lun± = un±, which is a version of the
Telegrapher’s equation. Imposing the initial conditions un±(x, 0) = 0 for x ∈ [0, Ln],
and taking Laplace transforms yields

∂2
xû

n
±(x, s)− 2

(
sδ − γ

2

)
∂xû

n
±(x, s)− s(s+ α+ β)

v+v−
ûn±(x, s) = 0,

where 2δ = 1/v− − 1/v+. The corresponding general solution is given by

ûn±(x, s) =
[
An±(s)ef(s)x +Bn±(s)e−f(s)x

]
e(sδ−γ/2)x (4.5)

where the coefficients A(s), B(s) are determined by the corresponding boundary
conditions (3.12), and

4f2(s) =

(
1

v+
+

1

v−

)2

s2 + 2

(
1

v+
+

1

v−

)(
β

v+
+

α

v−

)
s+ γ2.

Taking the time derivative of the boundary condition at x = 0, we have

∂tu
n
+(0, t) = fnκ∂tP0(t) = fnκ[Q−

∑
m

(v+u
m
+ (0, t)− v−um− (0, t))].

Laplace transforming this equation then yields

s

fnκ
(An+(s) +Bn+(s)) + v+

N∑
m=1

(Am+ (s) +Bm+ (s)) = v−

N∑
m=1

(Am− (s) +Bm− (s)) +
Q

s
.(4.6)

Similarly, Laplace transforming the remaining boundary condition at x = Ln gives

An−(s)eLnf(s) +Bn−(s)e−Lnf(s) = 0. (4.7)
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We still need to generate two more equations for the four unknown coefficients An±(s)
and Bn±(s) for fixed s and n. This can be achieved by Laplace transforming the first
equation of (4.4),

(s+ v+∂x + β)ûn+(x, s) = αûn−(x, s),

substituting for ûn± using (4.5), and comparing coefficients. We thus find that

g(s)An+(s) = αAn−(s), h(s)Bn+(s) = αBn−(s), (4.8)

where

g(s) = (1 + v+δ)s+
(
β − v+γ

2

)
+ v+f(s),

h(s) = (1 + v+δ)s+
(
β − v+γ

2

)
− v+f(s).

Substituting equations (4.7) and (4.8) into (4.6) generates the following equation
for the coefficients An+:

s
(
h(s)− g(s)e2Lnf(s)

)
An+ =

κfnQh(s)

s
+ κfn(v+ − v−h(s)/α)g(s)

N∑
m=1

Am+ e2Lmf(s)

− κfn(v+ − v−g(s)/α)h(s)

N∑
m=1

Am+ .

Rearranging we have

An+ =
κfnG(s)

san(s)
e−Lnf(s), (4.9)

with

an(s) = h(s)e−Lnf(s) − g(s)eLnf(s), (4.10a)

G(s) =
Qh(s)

s
+ (v+ − v−h(s)/α)g(s)A1 − (v+ − v−g(s)/α)h(s))A0 (4.10b)

and

A0 =

N∑
m=1

Am+ , A1 =

N∑
m=1

Am+ e2Lmf(s). (4.10c)

Substituting equation (4.9) into equations (4.10c) shows that

A0 = κG(s)

N∑
m=1

fm
am(s)

e−Lmf(s), A1 = κG(s)

N∑
m=1

fm
am(s)

eLmf(s) (4.11)

Substituting these equations into (4.10b) and rearranging yields

G(s) =
Qh(s)

sq(s)
(4.12)

with

q(s) = s+ κv+ −
κv−
α

g(s)h(s)

N∑
m=1

[
e−Lmf(s) − eLmf(s)

] fm
am(s)

. (4.13)
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Combining equations (4.7), (4.8), (4.9) and (4.12) gives

An+(s) = h(s)e−Lnf(s) · κQ
s
· fn
an(s)

· 1

q(s)

Bn+(s) = −g(s)eLnf(s) · κQ
s
· fn
an(s)

· 1

q(s)
.

and hence

s · ûn+(Ln, s) = −2v+κQfn ·
f(s)

an(s)q(s)
· e(δs−γ/2)Ln ,

Substituting the above equation into (4.2) finally yields

τn =
1

k
+ 2κv2

+

N∑
m=1

wm · e−γLn/2
fn
wn
· d
ds

esδLnf(s)

an(s)q(s)

∣∣∣∣
s=0

. (4.14)

From equation (4.14), we can compute the accumulation time τn for the various
injection distributions of equations (3.17) and (3.18). The results are depicted in Figs.
9 and 10. In order to set the baseline, we first consider a single cytoneme and target
cell (N = 1) and plot the variation of accumulation time τ1 with the cytoneme length
L1 = L, see Fig. 9. It can be seen that τ1 is an increasing function of cytoneme length
and also increases with γ. The latter means that increasing the level of retrograde
flow increases the accumulation time. In the multi-cell case, we set τn = τK(Ln)
for fn = fK(Ln), K = U, I,D, and plot the resulting accumulation times τK as a
function of length, see Fig. 10(a). (In contrast to the single-cell model, the lengths of
the cytonemes are fixed and L = n identifies the length of the nth cytoneme.) One
interesting result is that for each choice of injection distribution fJ there is crossover
between the accumulation time curve τ1(L) of a single target cell and the corresponding
multi-cell accumulation time curve τK(L). This can be understood by taking a closer
look at equation (4.14).

First, combining equations (3.13) and (4.1) shows that

τn =

∫ ∞
0

t

kP ∗n
[Jn(Ln, t)− Ṗn]dt.
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Using the fact that kP ∗n = J∗n, and performing an integration by parts gives

τn =
1

k
+ Tn(Ln), (4.15)

where Tn(x) is the accumulation time of Jn(x, t),

Tn(x) =

∫ ∞
0

t
∂

∂t

(
Jn(x, t)

J∗n

)
dt. (4.16)

Second, adding equations (3.11a) and (3.11b) and integrating with respect to x on
[0, Ln] yields

∂

∂t
Vn(Ln, t) = Jn(0, t)− Jn(Ln, t), (4.17)

where

Vn(Ln, t) =

∫ Ln

0

[un+(x, t) + un−(x, t)]dx.

Recall that the stationary flux at x = 0 and x = Ln are the same. Hence,
differentiating both sides of (4.17) with respect to t and multiplying by t/J∗n gives

t

J∗n

∂2

∂t2
Vn(Ln, t) =

t

J∗n

∂Jn(0, t)

∂t
− t

J∗n

∂Jn(Ln, t)

∂t
,

Performing an integration by parts then shows that∫ ∞
0

t
∂

∂t

(
Jn(Ln, t)

J∗n

)
dt =

∫ ∞
0

t
∂

∂t

(
Jn(0, t)

J∗n

)
dt+

Vn(Ln,∞)

J∗n
,
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that is,

Tn(Ln) = Tn(0) +
Vn(Ln,∞)

J∗n
. (4.18)

From equations (4.15) and (4.18), one thus has

τn = Tn(0) +
Vn(Ln,∞)

J∗n
+

1

k
. (4.19)

It follows that the accumulation time of the n-th target cell is the sum of the
accumulation time Tn(0) of Jn(0, t), and two terms that are independent of the number
of cytonemes N . In order to establish that Vn(Ln,∞)/J∗n is independent of N , we
substitute for un−(x) using the steady-state flux condition (3.14) gives

Vn(Ln,∞) =

∫ Ln

0

[(
1 +

v+

v−

)
un+(x)− J∗n

v−

]
dx.

Now substituting for un+(x) using equation (3.15) yields

Vn(Ln,∞) =

(
1 +

v+

v−

)(
κfnP

∗
0 +

αJ∗n
γv+v−

)
1− e−γLn

γ

− LnJ∗n
((

1 +
v+

v−

)
α

γv+v−
+

1

v−

)
.

Dividing through by J∗n and using equation (3.6), we have

Vn(Ln,∞)

J∗n
=

(
1 +

v+

v−

)(
κ

w(Ln)
+

α

γv+v−

)
1− e−γLn

γ

− Ln
((

1 +
v+

v−

)
α

γv+v−
+

1

v−

)
:= V (Ln). (4.20)

This establishes that the contribution Vn/J
∗
n is the same function of length for the

single target cell and multiple cell cases. Thus, equation (4.19) implies that the
difference between the accumulation time curve τ1(L) of a single target cell and the
corresponding accumulation time curve τK(L) of the multiple cell case arises from the
term Tn(0). Since Jn(0, t) = v+κP0(t)− v−u−(0, t), it follows that Tn(0) depends on
the time to reach the steady-state concentration of the source cell, P ∗0 . In particular,
higher P ∗0 implies larger Tn(0). This suggests that the crossover in Fig. 10(a) can be
understood by comparing the steady-state concentration P ∗0 of the multi-cell model
with P ∗0 for a single cytoneme of length L = n, see Fig. 10(b).

4.2. Robustness of morphogen gradient

A major focus of research on morphogen gradients is the robustness of patterning based
on morphogen gradient with respect to changes in environmental conditions such as
the morphogen production rate Q [15]. Following previous studies of diffused-based
morphogenesis, we will characterize the sensitivity of the cytoneme-based morphogen
gradient to fluctuations in Q by considering the corresponding induced spatial shift
in morphogen concentration. For analytical convenience, we replace the discrete set
of target cells n = 1, . . . , N by a continuum of target cells distributed uniformly on
the domain y ∈ [0,L] such that Pn(t) → P (y, t) and Jn(t) → J(y, t). The source
cell is treated as a single compartment with particle density P0(t). Equations (3.1a)
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and (3.1b) still hold with un±(x, t) → u±(x, y, t), while the boundary conditions (3.2)
become

u+(0, y, t) = κf(y)P0(t), u−(L(y), t) = 0. (4.21)

Here L(y) is the length of cytonemes contacting cells at y and f(y) is the probability
density of particles being injected into these cytonemes such that∫ L

0

f(y)dy = 1.

Finally, the transport component of the model couples to the distributions of particles
in the source and target cells according to

dP0

dt
= Q−

∫ L

0

J(0, y, t)dy,
∂P (y, t)

dt
= J(L(y), y, t)−kP (y, t), (4.22)

where J(x, y, t) is the particle flux at position x at time t through the cytonemes
linking the source cell to cells at y:

J(x, y, t) = v+u+(x, y, t)− v−u−(x, y, t). (4.23)

We assume that both f(y) and L(y) are smooth functions of y. As a further
simplification, we set L(y) = y so L = L.

For fixed y, the steady-state solution of the transport equations (3.1a) and (3.1b)
can be solved as before. We thus obtain the steady-state solutions

P ∗0 =
Q∫ L

0
f(y)w(y)dy

, P ∗(y) =
Q

k
· f(y)w(y)∫ L

0
f(y)w(y)dy

. (4.24)

Consider some threshold morphogen concentration Pc and denote the cellular position
where this threshold occurs by yc, that is,

P ∗(yc) = Pc. (4.25)
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We wish to determine the shift in threshold position yc → yc + ∆yc in response to a

shift in the production rate, Q → Q + ∆Q. Since Γ :=
∫ L

0
f(y)w(y)dy is fixed, we

have

Qf(y)w(y) = (Q+ ∆Q)f(y + ∆y)w(y + ∆y)

= (Q+ ∆Q)f(y)w(y) +Q(f ′(y)w(y) + f(y)w′(y))∆y.

Rearranging and taking the limits ∆Q,∆y → 0 yields the sensitivity

dy

dQ

∣∣∣∣
y=yc

= − f(yc)w(yc)

Q[f ′(yc)w(yc) + f(yc)w′(yc)]
. (4.26)

For example, assuming uniform injection probability f(y) = 1/L gives

dy

dQ

∣∣∣∣
y=yc

= − w(yc)

Qw′(yc)
=

1

Qγ
· v−γ + α(1− e−γyc)

v−γ + α
, (4.27)

where we have used equation (3.7).
The sensitivity with respect to Q has different behavior depending on the sign of

γ. This is illustrated in Fig. 11 for f = fU (y) = 1/L. If γ > 0, so that the mean
velocity of motor-cargo complex satisfies v < 0, then 0 < e−γyc ≤ 1. Hence,

0 <
dy

dQ

∣∣∣∣
y=y0

<
1

Qγ
, (4.28)

and the sensitivity with respect to fluctuations in Q is bounded regardless of the size
of yc. On the other hand, if γ < 0 with v > 0, then e−γyc ≥ 1. It follows that

dy

dQ

∣∣∣∣
y=y0

=
1

Q|γ|

[
1

1− |γ|v−/α
e|γ|yc − 1

]
> 0. (4.29)

Therefore, the sensitivity is always positive and increases exponentially with respect
to yc. Our analysis strongly suggests that in order to ensure that the morphogen
gradient is not exponentially sensitive to fluctuations in the production rate, it is
necessary that v < 0. This reinforces the observation of Ref. [34] that robustness
comes at the expense of an energy cost, in this case a strong retrograde flow.

To see how robustness depends on the choice of the distribution f(y) we consider
continuum versions of equations (3.18),

fI(y) =
ey/4 + 1

N3
, fD(y) =

e(L−y)/4 + 1

N4
, (4.30)

where N3 and N4 are normalization constants such that
∫ L

0
f(y)dy. The resulting

sensitivity curves are shown in Fig. 12.

5. Discussion

In this paper, we considered a simple bidirectional motor transport model for the flux
of morphogens along a set of cytonemes, which link a source cell to a one-dimensional
array of target cells. We obtained an analytical steady-state solution of the transport
equations, which enabled us to identify the phenomenological transport rate of Ref.
[34] with a biophysically derived expression. In particular, we related the energy
cost of cytoneme-based morphogenesis with the degree of retrograde transport. We
then investigated various properties of the resulting morphogen gradient, including
its accumulation time, and its robustness to fluctuations in the rate of morphogen
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production in the source cell. One important parameter that emerged from our
analysis is

γ =
βv− − αv+

v+v−
= −v̄ α+ β

v+v−
,

where v̄ is the mean motor velocity, v± are the anterograde and retrograde speeds,
and α, β are the velocity switching rates. First, the rate of decay of the morphogen
gradient depends on |γ|. Second, the sign of γ determines the asymptotic behavior
of the morphogen concentration for long cytonemes. We found that the asymptotic
behavior was consistent with diffusion-based mechanisms if γ > 0, which implies that
v̄ < 0 and retrograde flow dominates. More significantly, in order to obtain a bounded
sensitivity to fluctuations in the morphogen production rate Q, it was necessary for
γ > 0. A recent experimental study is at least consistent with the idea that there
is significant retrograde flow [14]. Another finding of the latter study is that puncta
along a cytoneme can undergo periods of stalling. It would be straightforward to
add a stalled state into our transport model. However, it would not affect the main
conclusion of our work.

Another interesting feature of our transport model, which is absent in diffusion-
based models, is that morphogenic resources can be non-uniformly allocated to the
various cytonemes projecting from a source cell, which could reflect variations in the
number of cytonemes per target cell, for example. This competition for resources
provides a potential substrate for regulatory control, which could lead to a variety of
possible morphogen concentration profiles, including those that are non-monotonic.

One of the major simplifying assumptions of our cytoneme-based transport model
is that each cytoneme projecting from a source cell is attached to its target cell for
significant periods. However, it has been found experimentally that cytonemes do
not remain permanently attached, undergoing alternating periods of retraction and
growth [19, 14, 10]. This needn’t be inconsistent with our model because all we
require is that there is cytoneme-mediated contact between the source and target
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cells for a sufficient time - presumably consistent with the accumulation time. Hence,
this could be maintained by a population of cytonemes, whose individual members
are dynamic. It should also be noted that there is evidence that cytonemes can
be stabilized by their targets [10]. Nevertheless the dynamic nature of cytonemes
raises two interesting issues that we hope to explore in future work. First, one
could model dynamic interactions between the cytoneme tip and the target cell as a
stochastic process, which then couples to the transport model as a switching boundary
condition at the target end of the cytoneme. It should then be possible to analyze
the resulting stochastic transport model along analogous lines to recent studies of
advection-diffusion equations in domains with randomly switching boundaries [12, 13].
Second, cytonemes also need to find their target cells in the first place. It has
been suggested that this could occur either via a random search process based on
retraction and growth, or via some chemoattractant [19]. There are certain parallels
with microtubules of the mitotic spindle searching for kinetochores prior to separation
of cytochrome pairs [11], although it is important to note that cytonemes are actin-
based. Finally, it would also be interesting to explore to what extent direct contacts via
cytonemes play a role in other types of cellular self-organization that are traditionally
based on diffusive transport, such as Turing pattern formation. This will also require
understanding within the context of morphogenesis the interplay between cytonemes
that transport receptors to source cells and those that transport ligands to target cells;
we focused on the latter in this paper.
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