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Abstract 

River monitoring and discharge estimation are crucial to developing mitigation measures for 

weather and climate extremes. This study demonstrates the potential of non-contact, low-cost, 

bespoke lidar sensors for monitoring river levels and proposes a methodology for estimating 

discharge using river stage data from such sensor networks. Firstly, using different laboratory 

and field experiments, this study evaluates the sensor performance as a function of 

measurement distance, surface roughness, air temperature, water turbidity, and measurement 

angle to monitor river levels. To enable the computational experiments that underpin my 

scientific enquiry and part of discharge estimation methodology development, I developed a 

Python application to calibrate hydraulic models under homogenous and heterogenous 

Manning’s n assumptions, perform uncertainty and sensitivity analysis of unsteady flow 

parameters, and perform probabilistic flood inundation analysis in HEC-RAS. Then, using 

synchronous measurements of stage data from a network of sensors, a novel method for 

estimating the dynamic river discharge has been developed. This methodology has been tested 

on idealised rivers with varying channels and flow conditions, as well as on the Wandle River 

in the UK. After testing the developed discharge estimation method, two approaches for 

optimising a sensor network, that is the sensor position, number, and spacing, have been 

developed and assessed for various case studies. The laboratory experiments demonstrate that 

the sensors can take measurements under all tested conditions, up to an incidence angle of ∼ 

40° and within a relative error of 0.1%. The test results show that the developed discharge 

estimation method can be successfully applied to both prismatic and natural channels with or 

without lateral flow. Moreover, unlike previous studies, this method does not require an initial 

discharge value. The optimisation results show that, compared to three sensors, using four 

sensors placed closer to the downstream boundary improves parameter calibration and 

discharge estimation. 
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1 Introduction  

A long series of river discharge data is essential to develop improved river and water 

management strategies and to cope with water-related hazards such as floods and droughts. 

However, continuous measurement of river discharge using direct methods, e.g., salt dilution, 

is practically infeasible. Therefore, in practice, indirect methods that measure proxy variables, 

especially river geometry, river stage, and flow velocity, that can be used to calculate discharge 

are usually used (Costa et al., 2006). The indirect methods can be divided into two groups 1) 

contact methods, and 2) non-contact methods. In contact methods, the device which measures 

the variables for discharge estimation is in direct contact with water. As the measurement 

device must be in the water, contact methods are not suitable to measure high flows due to 

safety concerns for the operators and the instruments. Furthermore, this method is labour-

intensive, and the devices used in contact methods are difficult to maintain and are prone to 

damage (Yang et al., 2014; Spada et al., 2017b). Therefore, at many gauging sites around the 

world, non-contact methods of discharge estimation are used. 

The most common indirect, non-contact method for estimating river discharge is the use of an 

empirical stage-discharge relationship or rating curve. In this method, the river stage is 

measured as a proxy for river discharge. The underlying assumption behind the usage of a 

rating curve is that there is a one-to-one relationship between a stage and a discharge value; 

therefore, a pre-established rating curve at a gauging site can be used to measure a discharge 

for any stage in the river. However, this assumption is only valid when the river flow has a 

distinct kinematic behaviour, i.e., when river flow is governed by gravitational force (riverbed 

slope > 10−3). Therefore, the use of a rating curve is fraught with uncertainties, including (a) 

the hysteresis effect during unsteady flow; (b) extrapolation error during high flows; and (c) 

the need for regular updating due to changes in hydraulic resistance and changes in channel 

geometry (Perumal et al., 2007a; Aricò, Nasello & Tucciarelli, 2009; Dottori, Martina & 

Todini, 2009; Lee, Firoozfar & Muste, 2017; Harlan et al., 2021). 
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To partially overcome the limitations of steady flow rating curves and to estimate the unsteady 

flow discharge, recent studies, for example (Perumal et al., 2007a, 2007b; Aricò, Nasello & 

Tucciarelli, 2009; Dottori, Martina & Todini, 2009; Sahoo et al., 2014; Spada et al., 2017b; 

Muste, Bacotiu & Thomas, 2019; Harlan et al., 2021), have developed dynamic discharge 

estimation methods. These methods are based on the measurement of stage data from two to 

three water level sensors located at the ends of a selected river reach and the application of 

unsteady flow hydraulic modelling (solves governing equations or shallow water equations 

(SWE) of river flow). However, these methods (a) solve SWE in conservative form (i.e., one 

or more terms, such as acceleration and or pressure force terms, are removed from the 

momentum equation when solving the SWE), (b) are most suitable for prismatic channels with 

no lateral flow, thus reducing the possibilities for operational applications, (c) require one flow 

value, and (d) assume channel roughness or calibrate it by using observed stage data from two 

or three gauging locations. Although stage data from two or three gauging locations is 

theoretically adequate to calibrate channel roughness, error margins are still high in practice 

due to the suboptimal positioning of gauging stations and the coarse temporal resolution of 

existing measurement networks. 

Therefore, this study hypothesises that a larger network of high-frequency, non-contact water 

level sensors along a river reach, as shown in Figure 1.1, allows for 1) better river stage 

monitoring; 2) better calibration of Manning’s roughness coefficient and initial flow of a 

hydraulic model of a river; and 3) dynamic and more accurate estimation of unsteady flow 

discharge. 

This research focuses on the development of a non-contact, robust, and cost-effective approach 

for dynamic river discharge estimation. Here, I demonstrate the use of bespoke lidar sensors 

(Paul, Buytaert & Sah, 2020) to monitor the river stage at high resolutions (1-minute). Further, 

I propose a methodology to calibrate the channel roughness and initial flow of a river reach, 

which is required to get a unique solution to SWE, by using only stage data from a network of 

such sensors (refer to Figure 1.1) and estimate unsteady flow river discharge dynamically. 

Additionally, I propose and demonstrate methods to optimise the configuration, especially 

location, number, and spacing, of such sensor networks to improve the accuracy of the river 

discharge estimates. Lastly, I extend the methods developed in this research to develop a 

Python application that can 1) calibrate hydraulic models under homogenous and heterogenous 
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Manning's n assumptions, 2) perform uncertainty and sensitivity analysis of unsteady flow 

parameters, and 3) perform probabilistic flood inundation analysis in HEC-RAS. 

 

Figure 1.1: Schematic of a sensor network along a river reach 

 

1.1 Research aim and objectives 

The overall aim of this research is to test the potential of low-cost sensors and sensors network 

in river monitoring and indirect river discharge estimation. The objectives of this study are 

therefore to:  

1) test the potential of lidar sensors for river monitoring  

2) develop and test a methodology for dynamic river discharge estimation using only stage 

data from a network of sensors 

3) design a method for optimising sensor network configuration (location, number, and 

spacing) for river discharge estimation 

4) outline the additional uses (with examples) of the developed discharge estimating 

methodology, such as calibration and sensitivity analysis of unsteady flow parameters 
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1.2 Thesis structure 

In the second chapter, I provide a review of the existing literature on various river monitoring 

sensors and existing discharge estimation methods. In the third chapter, I provide a summary 

of the characteristics of the lidar sensor used in this study and discuss the laboratory and field 

experiments carried out to test the potential of this sensor in monitoring the river stage. Then, 

with examples, I present Python scripts developed for the calibration of unsteady flow 

parameters, sensitivity analysis, and probabilistic flood inundation in HEC-RAS as a precursor 

to methodology development for next chapter. In chapter 5, I describe the methodology 

developed for dynamic discharge estimation and discuss the results from the test application of 

the methodology on idealised and natural rivers in the fourth chapter. Lastly, I propose and test 

approaches to optimising the configuration of the sensor network and analyse and discuss the 

results from various case studies.  
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2 Literature review 

This chapter presents a literature review on the subjects relevant to the scope of this study. This 

review includes the importance of river monitoring, sensors for monitoring rivers, existing river 

discharge estimation methods, unsteady river flow simulation in HEC-RAS, and the Monte 

Carlo method. A more specific literature review is included in the introduction of each chapter. 

2.1 River monitoring  

The river level, or stage, is the selected reference height for the water's surface. River level 

monitoring is an important component of hydrometry because it can indirectly reflect important 

but relatively difficult to measure parameters such as discharge. The river level is traditionally 

measured using reference gauges, such as staff gauges, inclined gauges, and float-tape gauges 

(Herschy, 2008). Frequent measurements of river stages and corresponding discharges at a 

gauge station are used to develop a rating curve (Herschy, 2008). A continuous and long series 

of river stage data aids in water resource management, resulting in economic and societal 

benefits. Additionally, the understanding of discharge leads to more direct progress in many 

areas compared to the stage, including flood forecasting and mitigation, water supply 

management, agriculture, hydropower generation, drought response, and other hydrological 

applications (Villarini & Strong, 2014; Pan, Wang & Xi, 2016). Yet, despite improvements in 

technology, both the quality and quantity of water level data are in decline globally 

(Shiklomanov, Lammers & Vörösmarty, 2002; Hannah et al., 2011). From 1987 to 2007, there 

has been a decrease in the number of hydrometric gauging stations in Canada because of their 

environmental impacts and high demands for maintenance. Other countries, such as North 

America and developing nations, have shown similar trends (Hannah et al., 2011). Increased 

public concern about environmental issues and reduced funding are the two main reasons for 

decreasing stage data (Fekete & Vörösmarty, 2007). The closure of the various gauging stations 
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has led to a decrease in the spatial and temporal resolution of data. Additionally, where data is 

available, restricted access to data as a result of data owner policies and transboundary and 

national policies has a negative impact on data collection (Gerlak, Lautze & Giordano, 2011). 

Faced with such difficulties in collecting stage data, the introduction of new technology and 

the development of low-cost sensors is a way to prevent the continuation of such tendencies. 

In recent years, the use of new types of in-situ sensors has been growing in environmental 

monitoring and hydrological decision-making processes. Applications include flood warning 

(Cheng et al., 2018; Tang et al., 2018), agriculture systems (for example Gutierrez et al. (2014), 

Montesano et al. (2018), Soulis & Elmaloglou (2018)), sanitation distribution systems 

(Nasirudin, Za’bah & Sidek, 2011), and soil moisture sensing for drip irrigation scheduling 

(Soulis & Elmaloglou (2018) ). 

These emerging technologies have the potential to create a more effective water level 

monitoring system. From a technical standpoint, new technologies have the potential to 

improve sensing parameters such as spatial and temporal resolution than conventional methods 

(i.e., reference gauges), robustness, and accuracy. In addition, the development of wireless 

sensor networks enables real-time data transmission and more flexible and intelligent sampling 

procedures. 

The second type of advantage relates to economic concerns. These low-cost, simple-to-use 

sensors can aid in enhancing access to sensing equipment and lower the threshold for data 

collection. This has the potential to increase the inclusiveness of water resource management, 

particularly in developing nations. Typically, these sensors are easier to operate, so there is no 

need to hire experienced technicians. In addition, an emerging method known as "citizen 

science" enables non-scientists to provide immediate and accurate data. In conjunction with 

technologies for inexpensive sensors, they have the potential to enhance the data collection, 

interpretation, and analysis processes (Bhusal et al., 2017; Assumpção et al., 2018). There are 

already excellent examples of citizen science applications in precipitation, river water, and soil 

moisture measurement (Buytaert et al., 2014; Paul et al., 2020). These various methods can 

result in greater spatial coverage of hydrometric networks. 

2.1.1 River monitoring sensors 

Table 2.1 provides a summary of various sensors commonly used to monitor river levels.  
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Table 2.1: A summary of water level monitoring sensing technologies 

Technique Description Merits Demerits 

Ultrasonic 

Level Sensor 

Ultrasonic level instruments operate according to the time-of-flight principle, which 

states that sending a sound wave from a piezoelectric transducer to the contents of the 

vessel, which may contain liquid, solid, or slurries, will determine the level of the 

contents. The sensor consists of two components: an electronic transceiver and a 

relatively efficient transducer. In the case of a liquid level controller, the fluid level 

can be determined by measuring the trip time difference between an ultrasonic pulse 

that has been transmitted and an echo that has been reflected. 

Good accuracy, no 

moving parts, 

compact, reliable, not 

affected by media 

properties 

Expensive, performance 

can be affected by 

various elements in the 

environment, limited 

range (6-10m) 

Radar Level 

Sensor 

The radar level measurement system is based on the measurement of the time 

required for the microwave pulse and its reflected echo to make a full return trip 

between the non-contacting transducer and the liquid level being measured. The 

transceiver then converts this electrical signal into distance/level information and 

outputs it as an analogue and/or digital signal. 

Very accurate, no 

calibration required, 

multiple output options 

Expensive, can be 

affected by the 

environment, limited 

detection range, very 

sensitive to the build-up 

on the sensor surface. 

Optical 

Level 

Sensors 

An infrared LED and a light receiver constitute the optical sensor. The LED emits 

light that is directed towards a prism that forms the level sensor's tip. If there is no 

liquid in the tank, the LED light is reflected by the prism and receiver. When the 

liquid level rises and submerges the sensing prism, the light is refracted into the 

liquid, leaving the receiver with minimal or no light.  

Compact, no moving 

parts, high pressure, 

and temperature 

capability, can detect 

tiny amounts of liquids 

High cost of installation, 

invasive as the sensor 

requires contact with the 

liquid, requires power, 

certain thick substances 
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Technique Description Merits Demerits 

The receiver activates electronic switching within the level unit to operate an external 

alarm or control circuit upon detecting this change. 

can cause coating on the 

prism. 

Pressure 

Transducers 

The river depth is determined by converting the pressure exerted on the sensor by the 

head of water above the sensor. A pressure sensor measures the combined 

atmospheric and water pressure exerted on it. A vented pressure sensor, on the other 

hand, automatically adjusts for changes in barometric pressure and therefore does not 

require a barometer. For each of these types, the sensor is mounted below the 

anticipated minimum water level, and a cable carrying the sensor signals is connected 

to a data logger. 

Relatively cost-

effective to install and 

maintain 

Vulnerable to debris 

during high water flows 

and water pollution. 

Bubblers 

Sensors 

Bubblers sensors measure the water level by detecting the pressure required to force 

an air bubble through a submerged tube. The pressure is proportional to the water 

level. A bubble tube connects a shore-mounted air compressor or air tank to an 

opening in the stream's surface water. The orifice is positioned below the anticipated 

minimum water level and diffuses the air bubble into the water. 

Damage from debris 

and floods is minimal 

as the bubble tubing 

and orifice are 

inexpensive; offer high 

accuracy and do not 

drift over time. 

Not ideal for sites with 

migrating or shallow 

channel; system requires 

more power to operate 

compressor. 

Source: summarised from various literature (Herschy, 2008; Simon, Tormos & Danis, 2015; Moore et al., 2016; Stevens water monitoring systems 

Inc., 2017; YSI Incorporated, 2017; Process Sensing Technologies, 2017; Wai-Lok Lai, Dérobert & Annan, 2018; OTT HydroMet, 2018) 
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2.1.2 Why low-cost sensor networks? 

Traditional hydrometric methods rely strongly on in-stream infrastructure such as weirs and 

flumes, which are intrusive and costly to install and maintain. Additionally, these in situ 

monitoring stations have limited spatial coverage and temporal resolution. Although alternative 

methods for automated river monitoring have been developed (e.g., ultrasonic time-of-flight 

and electromagnetic gauging), these remain niche applications because of practical and 

theoretical limitations (Herschy, 2008; Environment Agency (UK), 2018). Hence, there is an 

urgent need to develop novel approaches to river gauging, distributed in space-time, as cost-

effective as possible, and with minimal impact on the river’s eco-hydrology, in order to support 

directly urgent societal challenges such as global water resources management, flood and 

prediction and mitigation, and climate impact assessment. 

Advances in sensing technology and ICT (Information and Communication Technology) for 

data processing, storage, and transmission are yielding a new generation of distributed sensor 

network technologies (Hart & Martinez, 2006). This is part of a larger evolution towards 

pervasive interconnectedness of appliances, commonly referred to as the Internet of Things 

(Gubbi et al., 2013), which holds great promise to improve data collection, transmission, and 

curation in a water resources context. Recent studies (Zhang et al., 2017; Mao et al., 2018)  

have identified large potential for robust, cost-effective, and pervasive monitoring networks to 

complement current hydrometrical monitoring networks. The low-cost sensor networks have 

the following specific advantages: 

▪ Reduction in component costs makes it possible to employ sensors in much larger 

quantities than was previously possible, which increases the flexibility in design of 

sensor networks. It allows for optimising the balance between spatial coverage, the 

cost/quality ratio of individual sensors, and network redundancy 

▪ Improved data storage and transmission capacities make it possible to monitor at much 

higher temporal resolution than is current practice. Measuring at time steps of minutes 

or even seconds within a sensor network would make it possible to measure hydraulic 

characteristics such as the energy gradient or the flood wave celerity 

▪ Monitoring unobtrusively in environmentally fragile, remote, or hazardous 

environments, where the implementation of hard and/or expensive infrastructure is not 

recommended, such as developing regions and regions of conflict. 
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▪ Monitoring under extreme conditions (low flows and flooding) when most methods are 

typically more prone to errors and practical difficulties. 

2.2 River discharge estimation methods 

The discharge of a river is the total volume of water flowing through a river channel cross 

section per unit time at any given point. There are numerous methods for calculating river 

discharge, and new methods are constantly being developed to improve the accuracy of 

discharge estimation. The existing methods of discharge estimation are categorised into direct 

and indirect methods and are shown in Figure 2.1 (Morlock, 1996; Fenton & Keller, 2001; 

Mueller, 2003; Costa et al., 2006; Perumal et al., 2007a; Herschy, 2008; Nihei & Kimizu, 2008; 

Smith & Pavelsky, 2008; Dottori, Martina & Todini, 2009; Aricò, Nasello & Tucciarelli, 2009; 

Pan, 2013; Wolfs & Willems, 2014; Chacon-Hurtado, Alfonso & Solomatine, 2017; Dobriyal 

et al., 2017; Prudhomme et al., 2017; Tauro, Piscopia & Grimaldi, 2017; Bjerklie et al., 2018; 

Eltner, Sardemann & Grundmann, 2019; Muste, Bacotiu & Thomas, 2019; Harlan et al., 2021).  

Direct methods of river discharge estimation do not require river geometry or velocity 

information, for example, dilution gauging. However, direct methods are not suitable for 

continuous river discharge estimation. Therefore, in the field, indirect methods are used. In the 

indirect methods river stage, river geometry, roughness, and average velocity of a river in a 

cross-section are utilized to estimate river discharge.  

Depending on whether the instrument used to measure river stage or velocity is in direct contact 

with the water surface or not, the discharge estimation method can be classified into contact 

and non-contact methods, respectively.  

However, several of the parameters required for the indirect methods, such as flow velocity, 

are not suitable for continuous river discharge estimation either. As a potential alternative, 

dynamic discharge estimation techniques can be used. The dynamic discharge estimation 

methods are based on flood or channel routing concepts and estimate the unsteady flow river 

discharge. In flood routing, river stage data from two or more sensors are used to solve a 

diffusion or dynamic wave model of unsteady flow and estimate river discharge. The need for 

dynamic discharge estimation techniques, their concept, and a critical literature review of past 

studies are discussed in detail in chapter 5. 
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2.2.1 Timed volume method 

This technique is used for streams in which the entire flow converges into a single descent. The 

time required to fill a container with a known volume is recorded and later utilised to determine 

the average flow rate (Lawson, 1995). For reliable and accurate results, the container must be 

large, the flow rate must be measured at least five times, and the stream width and depth must 

be recorded in more than three replicates (Pfeffer & Wagenet, 2012). 

2.2.2 Dilution gauging method 

Dilution gauging measures streamflow based on the rate of diffusion of a tracer, which can be 

a chemical or radio isotope (Comina et al., 2014). The rate of diffusion of a tracer such as table 

salt is measured using an electrical conductivity (EC) metre and analysed to estimate average 

flow velocity. This method is economical. It is an absolute method because only volume and 

time are used to calculate the discharge (Herschy, 2008). It is most useful during turbulent flow 

conditions, as conventional methods are difficult to apply (Gordon et al., 2004). However, the 

method can produce erroneous results due to tracer loss and incomplete mixing caused by the 

velocity difference between the upper and lower stream surfaces. Furthermore, trained officials 

are required to implement this method in the field. 

2.2.3 Velocity area method 

The discharge is estimated by multiplying the flow area of water in a river cross-section by the 

average velocity of water in that cross-section (Herschy, 2008). In this method, current meters 

are employed to determine the average velocity of water in a cross-section. This is one of the 

most accurate indirect methods, and most of the river discharge estimation methods are based 

on the velocity–area principle. 

2.2.4 Acoustic doppler current profiler (ADCP) 

The acoustic doppler current profiler method (ADCP) emits sound waves into the water and 

receives echoes from particles suspended in the river. The difference in frequency between the 

transmitted sound and the echoes is used to calculate the velocities of the suspended particles 

and water (Doppler effect) (Costa et al., 2000, 2006). The ADCP is mounted on a motorised 
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boat that traverses the river against the flow. It measures boat speed and direction by following 

the riverbed and the internal software compensates for the boat's movement and calculates the 

water velocities (Oberg & Mueller, 2007). The ADCP can therefore be viewed as a velocity–

area method providing a single discharge value. ADCPs measure a significantly larger portion 

of the water column, allowing for faster and more accurate river discharge measurements 

(Mueller & Wagner, 2009). The ADCP method is non-invasive, but expensive and requires 

trained personnel to measure the river discharge.  

2.2.5 Radar method 

The radar method is also based on the velocity-area principle. Here, radar sensors are used to 

estimate average water velocity (Costa et al., 2006; Alimenti et al., 2020). Radar sensors emit 

radio waves that are reflected by floating debris and received by the sensor. This information 

is used to measure the surface velocity. 

2.2.6 Particle image velocimetry method 

The particle image velocimetry (PIV) method is based on the velocity-area principle. In this 

method, tracer particles are introduced into the river, and, for sufficiently small particles, it is 

assumed that the flow dynamics are valid. The water with suspended particles is illuminated in 

the images. The movement of the illuminated particles, using either an Eulerian or Lagrangian 

approach, in the subsequent images is used to estimate the surface velocity of the water (Tauro, 

Piscopia & Grimaldi, 2017). With additional processing and assumptions, the surface velocity 

is used to estimate the average velocity. Then, the river discharge is obtained using the velocity-

area principle. Using the right tracers, lighting conditions, and image-processing procedures is 

important for image-based methods to give accurate quantitative information (Fujita, Muste & 

Kruger, 1998; Jodeau et al., 2008). These constraints limit the application of the above 

approaches to niche users. 

2.2.7 Remote sensing method 

Remotely sensed hydraulic information such as water surface elevation and channel widths are 

coupled with channel slope and roughness data to estimate river discharge. The remote sensing 
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method mostly utilises Manning's equation or kinematic wave model for river discharge 

estimation (Durand et al., 2016; Bjerklie et al., 2018).  

2.2.8 Continuous slope-area method 

The conventional slope area method is used to estimate peak discharges based on high 

watermarks after large flood events, as such events are typically uncommon and present a 

measurement challenge for obtaining reliable sample data. The obtained data is then used to 

extend the upper limit of the stage-discharge rating curve, which provides a crucial foundation 

for timely flood management decisions. The method estimates peak discharge (single value) 

by measuring water level drops between upstream and downstream flood marks (e.g., typically 

high watermarks on bridge piers and flood embankments). The drop in water surface elevations 

for a uniform channel reach represents energy losses caused by bed roughness. The peak 

discharge is indirectly estimated using Manning's equation, measured cross sections, estimated 

channel roughness coefficients, and friction slopes, that is, channel bed slopes for a uniform 

reach (Herschy, 2008). 

The continuous slope area (CSA) method works on the same physical principle as the 

conventional slope area method, but it uses at least two upstream and downstream water level 

sensors to continuously measure drops in water surface elevations rather than high watermarks. 

This allows us to estimate stream/river discharges continuously during a hydrologic event (Lee, 

Firoozfar & Muste, 2017; Muste, Bacotiu & Thomas, 2019). 

2.2.9 Dense arrays of pressure transducers (DAPT) method 

To estimate river discharge, DAPT employs a Bayesian-AMHG-Manning (BAM) algorithm 

developed for the forthcoming Surface Water Ocean Topography satellite (SWOT) 

(Hagemann, Gleason & Durand, 2017). BAM is one of several SWOT-related discharge 

algorithms that estimate discharge based on anticipated river width, height, and slope 

measurements (Durand et al., 2014; Garambois & Monnier, 2015; Oubanas et al., 2018; 

Andreadis, Brinkerhoff & Gleason, 2020). BAM is an algorithm for mass-conserving flow-law 

inversion (Gleason, Garambois & Durand, 2018). BAM employs two different flow laws to 

estimate discharge: AMHG (at-many-stations hydraulic geometry), which uses width alone, 

and Manning's equation, which uses river width, slope, and cross-sectional area. The array of 
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pressure transducers is used to calculate the dynamic river water surface slope (or slope), which 

is then utilised in Manning's equation to estimate the river discharge. 

2.3 Shallow water equations (SWE) 

The shallow water equations (SWE) or Saint Venant equations are governing equations of 

gradually varied unsteady river flows (Venant, 1871).  

𝜕𝑄

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 0 

(2.1) 

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝑄2

𝐴
) + 𝑔𝐴

𝜕𝑦

𝜕𝑥
+ 𝑔𝐴(𝑆𝑓 − 𝑆0) = 0 

(2.2) 

Where 𝑄 [L3T-1] is discharge, 𝐴 [L2] is area of cross-section, 𝑥 is flow direction, 𝑡 [T] is time, 

𝑆𝑓 is the friction slope, 𝑆0 is bed slope and 𝑦 [L] is flow depth.  

Equation 2.1 is known as the “continuity equation” and equation 2.2 represents the 

“conservation of momentum”. Equation 2.2 contains the following components: 

− 𝑔𝐴(𝑆𝑓 − 𝑆0) is the force due to gravity and friction.  

− 𝑔𝐴
𝜕𝑦

𝜕𝑥
 is pressure force.  

− 
𝜕𝑄

𝜕𝑡
 is local acceleration and  

𝜕

𝜕𝑥
(

𝑄2

𝐴
) is convective acceleration.               

The SWE have the following assumptions (Strelkoff, 1969; Yen, 1973):  

− Flow is one-dimensional and the distribution of velocity along a channel section is 

uniform 

− The pressure distribution is hydrostatic 

− The bed slope, 𝜃, is small enough to satisfy tan 𝜃 ≈  sin 𝜃. Therefore, the flow depth 

measured vertically is regarded as equal to that measured perpendicular to the channel 

bottom 

− The water density is constant 
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Unsteady-flow equations are typically not amenable to analytical, closed-form solutions due to 

their complexity. To solve these equations, numerical methods are required. Since the early 

1960s, researchers have developed various efficient solution methods for unsteady-flow 

equations, and excellent reviews of these methods can be found in the scientific literature (for 

example, Lai, 1986). The various numerical methods can be classified broadly as finite 

difference or finite element methods. 

2.3.1 Kinematic, diffusion and dynamic wave model 

If only the gravity and friction force of the momentum equation is considered to simulate the 

unsteady river flow, the resulting flow model is called as kinematic wave model (Equation 2.4):  

i.e., 𝑔𝐴(𝑆𝑓 − 𝑆0) = 0 (2.3) 

𝑆0 =  𝑆𝑓 (2.4) 

The kinematic wave model is most suitable for gradually varied flow in channels with steeper 

slopes. This model assumes that the wave moves only in the downstream direction and thus it 

neglects backwater effects. Further, the kinematic wave cannot disperse because the 

wavelength of a flood hydrograph does not change with time. Additionally, the flood peak 

cannot reduce or increase except due to changes in slope, cross-section shape or due to lateral 

inflow or outflow (Lai, 1986; Akan, 2006).  

If both forces due to gravity and friction and the pressure of the momentum equation are 

considered, then the resulting unsteady flow model is called as diffusion wave model (Equation 

2.5):  

𝑔𝐴
𝜕𝑦

𝜕𝑥
+ 𝑔𝐴(𝑆𝑓 − 𝑆0) = 0 

(2.5) 

The diffusion wave equation causes a diffusion of the modelled flood wave so that the flood 

peak generally becomes smaller as it moves downstream. The diffusion wave is most suitable 

for gradually varied flow in channels with milder slopes. Because the pressure force term is 

included, backwater effects can be represented.  



35 

 

When all the terms of equation 2.2 are considered, the resulting unsteady model is known as 

the dynamic wave model. The dynamic wave model provides a good representation of the 

backwater flows and is usually needed where wave fronts are steep.  

2.4 HEC-RAS 

HEC-RAS (Hydrologic Engineering Centre-River Analysis System), developed and 

maintained by the Hydrologic Engineering Centre (HEC) of the U.S. Army Corps of Engineers 

(USACE), is one of the most widely used hydraulic engineering analysis software (Goodell, 

2014). It has been extensively used for the hydraulic modelling of open channel systems to 

simulate water surface profiles for flood studies (di Baldassarre & Montanari, 2009; 

Timbadiya, Patel & Porey, 2011; Sönmez & Doğan, 2016; Husain, 2017; Vojtek et al., 2019), 

dam break analysis (Xiong, 2011; Balaji & Kumar, 2018; Shahrim & Ros, 2020; Bharath et al., 

2021), sediment transport (Crawford, 1991; Joshi et al., 2019; Sisinggih et al., 2020), and 

hydraulic structures including culverts, bridges, and weirs, as well as flood protection dikes 

(Lee, Ho & Chyan, 2006; Brunner et al., 2016). Furthermore, it has also been widely used to 

calibrate channel roughness and develop rating curves (Parhi, Sankhua & Roy, 2012; Lacasta 

et al., 2017; Wara et al., 2019; Timbadiya, Patel & Porey, 2011). The model can be used for 

both 1D and 2D modelling (Brunner et al., 2016; Brunner, 2016a, 2016b). 

In this study, HEC-RAS is utilised because:  

i. the model solves the full SWE of mass and momentum conservation; the model can 

therefore account for backwater flow 

ii. the numerical scheme used to solve the SWE is non-dissipative and stable in a semi-implicit 

form (weighting factor of 0.6) under unsteady flow conditions 

iii. the model can handle transitions between subcritical and supercritical flow conditions 

iv. the model is configurable for various hydraulic structures, including culverts, bridges, gated 

spillways, overflow weirs, weirs (sluice or radial, broad, ogee or acute crested), and drop 

structures 

v. most importantly, the model is freely available, and its API (Application Program Interface) 

is openly accessible, thereby providing opportunities to couple HEC-RAS with other 

software and automating river flow simulations 
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vi. it is continually upgraded to improve the accuracy of the solutions and adds new features 

for river flow simulations 

The purpose of this work is to develop open-access tools and scripts for automated river reach 

calibration and discharge estimation. Therefore, other models that can be used to implement 

the methodology developed in this study, such as MIKE 11, which was not freely available, 

were not considered for this study. 

2.4.1 Numerical solution of SWE 

 

Figure 2.2: Computational grid [adapted from (Akan, 2006; Brunner et al., 2016)] 

 

The vertical lines of the computational grid shown in Figure 2.2 represent different cross-

sections or locations (x) along the channel, and the horizontal lines correspond to the discrete 

times (t) at which we seek a numerical solution. ∆x and ∆t are increments in space and time. 

The horizontal line marked ‘t=0’ represents the initial time, and the initial flow conditions. The 

vertical line labelled as 1 represents the upstream end of the channel, and that labelled N 

represents the downstream end. The boundary conditions apply to the nodes on these lines. 
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 HEC-RAS uses the four-point implicit finite difference scheme (also called as Preissman 

method) to compute unknown Q and y at each node (Brunner, 2016a).  In the implicit finite 

difference scheme, the values at time stage n+1 as well as stage n are used to approximate the 

spatial and time derivates and the dependent variables of the Saint-Venant equations. This 

formulation leads to a set of algebraic, non-linear equations. These equations are solved 

simultaneously to obtain the results at stage n+1.  

Continuity equation in finite difference form is written as (Akan, 2006):  

 

(𝐴𝑖+1
𝑛+1 + 𝐴𝑖

𝑛+1) − (𝐴𝑖+1
𝑛 + 𝐴𝑖

𝑛) 

2∆𝑡
+

𝜃(𝑄𝑖+1
𝑛+1 − 𝑄𝑖

𝑛+1) + (1 − 𝜃)(𝑄𝑖+1
𝑛 + 𝑄𝑖

𝑛)

∆𝑥
= 0 

 

(2.6) 

Similarly, the momentum equation in finite difference form is written as (Akan, 2006):  

 

(𝑄𝑖+1
𝑛+1 + 𝑄𝑖

𝑛+1) − (𝑄𝑖+1
𝑛 + 𝑄𝑖

𝑛)

2∆𝑡
+ 𝜃

{[
(𝑄𝑖+1

𝑛+1)2

𝐴𝑖+1
𝑛+1 ] − [

(𝑄𝑖
𝑛+1)2

𝐴𝑖
𝑛+1 ]}

∆𝑥

+ (1 − 𝜃)
{[

(𝑄𝑖+1
𝑛 )2

𝐴𝑖+1
𝑛 ] − [

(𝑄𝑖
𝑛)2

𝐴𝑖
𝑛 ]}

∆𝑥
+ 𝑔𝜃

(𝐴𝑖+1
𝑛+1 + 𝐴𝑖

𝑛+1)

2

(ℎ𝑖+1
𝑛+1 − ℎ𝑖

𝑛+1)

∆𝑥

+ 𝑔(1 − 𝜃)
(𝐴𝑖+1

𝑛 + 𝐴𝑖
𝑛)

2

(ℎ𝑖+1
𝑛 − ℎ𝑖

𝑛)

∆𝑥

+ 𝑔𝜃
(𝐴𝑖+1

𝑛+1 + 𝐴𝑖
𝑛+1)

2

(𝑆𝑓)
𝑖+1

𝑛+1
+ (𝑆𝑓)

𝑖

𝑛+1

2

+ 𝑔(1 − 𝜃)
(𝐴𝑖+1

𝑛 + 𝐴𝑖
𝑛)

2

(𝑆𝑓)
𝑖+1

𝑛
+ (𝑆𝑓)

𝑖

𝑛

2
= 0 

 

(2.7) 

Where, ℎ = elevation of water surface; 𝜃 = weighting factor, which lies between 0 and 1. A 

weighting factor of 𝜃 = 1 yields a fully implicit scheme. This four-point implicit scheme is 

unconditionally stable for  0.5 ≤ 𝜃 ≤ 1, conditionally s     for 𝜃 = 0.5 and unstable for  𝜃 ≤

0.5. The accuracy of a numerical solution increases if 𝜃 approaches to 0.5 (Fread, 1974; Liggett 

& Cunge, 1975).  
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2.4.2 Model accuracy  

Model accuracy is defined as the degree of closeness of the numerical solution to the true 

solution or the analytical solution of the SWE. It mainly depends on the assumption of the 

model structure (for example, a 1D model), the accuracy of the river geometry data, the 

accuracy of the flow/stage/rating curve data, and boundary conditions, and the numerical 

accuracy of the solution scheme (because finite difference solutions are approximate). 

2.4.3 Model stability 

When a particular numerical error increases, the solution begins to oscillate. If the error is very 

large, the computation may stop. This results in the instability of the model. When modelling 

unsteady flows in HEC-RAS, the following factors typically influence the model's stability and 

accuracy. 

2.4.3.1 Cross-section spacing 

▪ Should be placed at representative locations which describe changes in geometry 

▪ Steeper slopes require more cross-sections  

▪ Streams flowing at high velocity require cross-sections on the order of 30 meters or less  

▪ Too far apart cross-sections; will cause additional numerical diffusion, due to the derivates 

w.r.t distance being averaged over too long of a distance. It might also cause the Courant 

number to go below 1.0, which will cause instability in the model.  

2.4.3.2 Computational time step  

The computation time step, ∆𝑡, should be selected such that it satisfies the Courant condition 

(Courant, Friedrichs & Lewy, 1928):  

𝐶𝑟 =  𝑉𝑤  
∆𝑡

∆𝑥
 ≤ 1.0 (2.8) 

For  𝐶𝑟 = 1;       (2.9) 
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∆𝑡 ≤   
∆𝑥

𝑉𝑤
 

where 𝑉𝑤 = flood wave speed, which is normally greater than the average velocity; 𝐶𝑟 = Courant 

number.  A value of 1.0 is optimal; ∆𝑥 = distance between the cross-sections 

For most rivers the flood wave speed can be calculated as:  

𝑉𝑤 =  
𝑑𝑄

𝑑𝐴
 (2.10) 

However, an approximate way of calculating flood wave speed is to multiply the average 

velocity by a factor (summarised in Table 2.2).  

Table 2.2: Factors for computing wave speed from average velocity (Brunner, 2016a) 

Channel Shape Ratio (𝑽𝒘/𝑽) 

Wide rectangular 1.67 

Wide parabolic 1.44 

Triangular 1.33 

Natural Channel 1.5 

In the numerical solution of SWE, discharge, and flow depth derivatives with respect to 

distance and time are calculated. When the hydraulic properties of a flood wave at a given 

cross-section change rapidly with respect to time, the program may become unstable if a larger 

than necessary computation time step is selected. If a smaller time step is selected, then the 

leading edge of the flood wave may become steeper and cause model instability. Therefore, the 

computation time must be equal to or less than the time required for a flood wave to travel from 

one cross-section to the next. 

2.4.3.3 Theta weighting factor 

Theta is a weighting that is applied to the finite difference approximation when solving the 

equations for unsteady flow. Theta can theoretically range from 0.5 to 1.0. However, an 

acceptable range is between 0.6 and 1.0. A value of Theta of 1.0 offers the most stability, but 

less numerical accuracy. A value of 0.6 for Theta provides the greatest accuracy, but less 

numerical stability. 
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When selecting theta, one must find a balance between accuracy and computational robustness. 

Greater values of theta produce more robust solutions. Although smaller values of theta are 

more accurate, they tend to cause oscillations in the solution, which are amplified when a large 

number of internal boundary conditions are present (Brunner, 2016a). 

2.4.3.4 Bad downstream boundary condition 

If the downstream boundary condition causes abrupt jumps in the water surface or water 

surface elevations that are too low (approaching or falling below the critical depth), this can 

cause oscillations in the solution, which may result in the solution becoming unstable and 

stopping. For example, rating curves with insufficient points or too few stages, and normal 

depth boundary conditions with excessive friction slope or bed slope (Brunner, 2016b). 

Other factors, such as hydraulic structures and the slope of riverbed profiles, can contribute to 

model instability; however, they are beyond the scope of this study. 

2.5 HECRAS Controller 

HECRAS Controller is an application programming interface (API) component of the HEC-

RAS. It is a collection of programming tools, including classes, sub-routines, and functions. 

This API allows access to the HEC-RAS elements as a Component Object Module (COM). 

HEC-RAS computations may be controlled by any program able to interact with the COM 

DLL (Dynamic-Link Library). As HEC-RAS is developed using VBA, the most convenient 

method is to use Visual Basic in any form, i.e., as a separate suite for developers or linked to 

another application, such as Microsoft Excel.  

This API’s primary capabilities include running HEC-RAS and specific HEC-RAS editors, 

executing computation plans, reading flow simulation results, etc. The ability to manipulate 

roughness coefficients is a very interesting feature provided by this API. Numerous researchers 

have studied the impact of the roughness coefficient on river flow simulation (Yang et al., 

2014; Lacasta et al., 2017; Li, Geng & Mao, 2020). 

However, HECRAS Controller is still limited in its capabilities. Even the primary author 

advocating for the use of this programming tool, Goodell (2014), recommends manipulating 

HEC-RAS data files in ASCII format. The use of Visual Basic/VBA also presents a problem 
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because of its reduced use. Python and its extension ArcPy have replaced VBA in ArcGIS, for 

instance. Consequently, HECRAS Controller is being implemented with other languages, such 

as MATLAB (Leon & Goodell, 2016a) and Python (Dysarz, 2018). 

A detailed description of the above-mentioned collection of programming tools is presented in 

Goodell (2014).  

2.6 Why the Monte Carlo method? 

In this study, the Manning's roughness coefficient and initial flow of a hydraulic model of a 

river reach are calibrated to estimate unsteady flow river discharge. To calibrate the hydraulic 

model, the governing equations of the river flow (or SWE) are used as the optimisation 

function. During the calibration process, optimal values of parameters, such as Manning's 

roughness coefficient and initial flow, that minimise the difference between the simulated and 

observed stages at the downstream of the hydraulic model are searched (Lacasta et al., 2017). 

This search can be done using different techniques. They are usually classified into two main 

groups: gradient-based and gradient-free (Chaparro et al., 2008). Gradient-based methods, such 

as adjoint formulation, necessitate evaluating the gradient as a guide when searching for the 

optimum. This is very efficient when dealing with convex problems. Gradient-free methods, 

such as Monte Carlo (MC), perform the operation over the whole domain, and they are very 

convenient when multi-modal and noisy functions need to be minimised. These methods offer 

a suitable technique to cover the domain where the variable to be calibrated can be found 

(Cervantes, 1972). 

Both the gradient-based method (Sanders & Katopodes, 2000; Piasecki & Sanders, 2002; Ding 

& Wang, 2006) and the gradient-free method (Fread & Smith, 1978; Wasantha Lal, 1995; 

Pappenberger et al., 2005a) have been applied in the calibration of the hydraulic model, 

especially Manning's roughness coefficient. However, compared to gradient-free methods, 

gradient-based methods require more computational capacity. In addition, gradient-free 

methods are used to solve global optimisation problems using heuristic and stochastic 

algorithms. Adaptive stochastic methods such as Monte Carlo inspired approaches are among 

these methods. They search for the answer by random sampling. Instead of locating the optimal 

value using the information in the gradient, it is possible to search for the minimum and 

recursively shrink the domain to find the minimum. This reduction occurs once the best 
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solutions among all those assessed have been determined (Lacasta et al., 2017). Atanassov & 

Dimov (2008) provide an engaging discussion of MC techniques. Typically, these stochastic 

methods are referred to as nondeterministic, and the MC method is among the most prominent. 

Moreover, the Monte Carlo method enables for the observed variability in important inputs to 

be accounted for and seeks to simulate reality by randomly selecting from a range of potential 

inputs. When more than two variables must be accounted for in a modelling analysis, Monte 

Carlo modelling is typically the only feasible method (Babister et al., 2016a). 

There has been a significant growth in the application of Monte Carlo techniques for flood 

estimation and hydraulic model calibration (Hoang et al., 1999; Rahman et al., 2002; 

Weinmann et al., 2002; Li, Geng & Mao, 2020; Timbadiya, Patel & Porey, 2011). Therefore, 

in this study, the Monte Carlo method has been used for the calibration of the hydraulic model. 

Furthermore, the developers of HEC-RAS have been planning to implement the Monte Carlo 

method within the HEC-RAS GUI for performing uncertainty and sensitivity analysis of 

unsteady flow parameters (Goodell, 2014). However, it has not yet been done. Therefore, this 

study also aimed to develop a Python application to implement the Monte Carlo framework for 

carrying out calibration and uncertainty and sensitivity analysis for river flow simulations in 

HEC-RAS. 

2.6.1 Monte Carlo (MC) method 

The MC method is a class of probabilistic computing algorithms that compute their results by 

repeatedly sampling random variables of interest from a pool of random variables (von 

Neumann, 1951; O’Connor & Kleyner, 2011). The underlying concept is to employ 

randomness to solve problems that are in principle deterministic (Anon, 2016). It is best suited 

for simulating phenomena in which the inputs are subject to high uncertainty. The MC method 

is frequently used in physical and mathematical problems and is particularly useful when 

alternative approaches are difficult or unattainable (Signoret & Leroy, 2021). MC methods are 

primarily used to solve three types of problems: optimization, numerical integration, and 

drawing random numbers from a probability distribution. For example, reliability analysis, risk 

propagation, random process simulation, probabilistic design, and so on. 
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2.6.1.1 Advantages of the MC method 

▪ In the MC simulation, the most probable events occur first, thus it is self-approximating 

▪ It is advantageous for modelling phenomena with considerable uncertainty in the inputs, 

and it always works regardless of the model's complexity 

▪ In contrast to other numerical methods, MC is simple and easy to implement 

▪ It does not require specific knowledge of the form of the solution or its analytic properties 

▪ It does not constrain what form the distributions take, and the distributions need not 

necessarily even have a mathematical representation  

▪ It is widely used to answer ‘What-if’ scenarios, the sensitivity of the outputs to input and 

uncertainty analysis (Beven & Binley, 1992) 

2.6.1.2 Disadvantages of the MC method 

▪ MC method is computation intensive, especially with complex models requiring a large 

number of simulations runs. However, with increasing computational efficiency and 

capabilities it is less of a problem nowadays 

▪ MC implicitly assumes that all the parameters are independent, which may not be the case, 

especially with complex models 

▪ It is difficult to estimate an error as there are no hard bounds on the error in the computed 

results.  

2.6.1.3 Monte Carlo method implementation 

The basic steps for performing MC simulations are summarized below (von Neumann, 1951; 

O’Connor & Kleyner, 2011; Lacasta et al., 2017) :  

i. Define the problem and the objective of the study. Evaluate the existing data and the 

anticipated conclusion 

ii. Define the system and develop a parametric model e.g., 𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 

iii. Design simulation: define the number of parameters/inputs to be simulated, determine 

the probability distributions for each of the inputs and the number of simulations runs. 

It should be noted that the number of simulations runs (say m) is affected by the 

complexity of the model and the desired accuracy of the results 

iv. Generate a set of random inputs from the chosen probability distribution function  

v. Run the deterministic system model with the set of random inputs 



44 

 

vi. Evaluate the model and store the results as 𝑦𝑖 

vii. Repeat steps iv, v and vi for 𝑖 = 1 𝑡𝑜 𝑚 

viii. Analyse the results  

2.7 River types and flow conditions 

There are various types of rivers and river systems around the world. Based on permanence of 

flow, rivers are categorized as perennial, intermittent and ephemeral rivers. Perennial rivers 

have continuous flow of water (e.g., Amazon, Nile, Koshi) throughout the year, it gets water 

from range of sources, including snow melt and rainfall. Unlike, perennial rivers, intermittent 

rivers flow seasonally due to seasonal weather patterns. These rivers are found mainly in dry 

and semi-dry areas (e.g., Ugab river in Namibia). These rivers are fed by a mixture of runoff 

from rainfall and groundwater. Ephemeral rivers are characterised by a temporary rapid flow 

resulting from abnormally strong rainfall or rapid snowmelt. The bed of these rivers is dry for 

most of the year because the water table lies well below the surface and there is no base flow 

(Gordon et al., 2004; Chow, 2006).  

These rivers have different flow regimes or conditions which may remain constant or vary 

throughout the year. River flow dynamics is influenced by friction, channel topography and 

channel shape. Based on different criteria, rivers flow is categorized into different types. For 

example, depending on effect of viscosity of water relative to inertia of flow, river flow is 

categorized as laminar, turbulent, and transitional flow. Similarly, depending on whether depth 

of flow of river is changing with time or not, river flow is distinguished as steady or unsteady 

flow respectively. (Chow, 2006) provides detailed discussion on types of river flows. River 

flow conditions is also influence by geological properties of different catchments, particularly 

their permeability, have a significant impact on river flow patterns. For instance, under 

identical climatic conditions, the flow regime sustained by discharges from the underlying 

Chalk is significantly more stable than that of impermeable clay catchment, allowing for a 

quicker response to precipitation events (e.g., Lambourn and Ock catchments in the UK) .  

The low-cost water level sensors used in this study were tested in rivers of Nepal and the UK. 

Table 2.3 provides a summary of rivers of Nepal and the UK. 
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Table 2.3: Summary of rivers in the UK and Nepal (Water and Energy Commission Secretariat (WECS), 2011; NRFA, 2022) 

Rivers in the UK Rivers in the Nepal 

▪ UK has around 1500 discrete river systems, comprising over 

200,000 km of watercourses. However, in comparison to rivers 

in the world they are considered as streams because the rivers 

are short, shallow, and subject to considerable man-made 

structures. 

▪ Rivers range from mountain torrents draining headwaters 

receiving up to five metres of rain per year, to much more placid 

groundwater-fed streams in parts of the southern and eastern 

England where rainfall per year is less. River flows can typically 

range through several orders of magnitude and low flows tend to 

be very modest in most river basins. For this reason, rivers are 

sensitive to regime changes – e.g., heavy abstraction rates and 

major land use change. 

▪ Relative to most parts of the world, UK river flow patterns are 

less dominatingly influenced by seasonal contrasts in rainfall or 

melt-water contributions. UK rainfall is, on average, fairly 

evenly distributed throughout the year with a modest tendency 

▪ There are about 6000 rivers in Nepal with a total drainage area of 194,471 sq. km. 

Out of this, 74 % lies within the country, 33 of these rivers have a drainage area 

that exceeds 1000 sq. km.  

▪ Based on the origin or source of the river and discharge, Nepal has four main river 

systems. They are Mahakali, Karnali, Gandaki and the Koshi river systems. They 

originate in the Himalaya and carry snowfed flows with significant discharge even 

in the dry season. These rivers are perennial and have tremendous potential as a 

source of irrigation and hydropower development. The Babai, West Rapti, 

Bagmati, Kamala, Kankai and the Mechi are medium rivers. These rivers originate 

in the Midlands or the Mahabharat Range and are fed by precipitation as well as 

groundwater regeneration (including springs). These rivers too are perennial but 

are commonly characterized by a wide seasonal fluctuation in discharge. In 

addition to these large and medium river systems, there are a large number of small 

rivers in the Terai which mostly originate in the Siwalik Range. 

▪ The rivers in Nepal are characterized by wide, seasonal fluctuation of flow. The 

monthly flows generally reach their maximum in July-August and decline to their 

minimum in February-March. About 80% of the total flow occurs during five 

months (June - October) and the rest during the remaining months. It can be 
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Rivers in the UK Rivers in the Nepal 

towards an autumn/winter maximum, particularly in western 

catchments. 

▪ Seasonal variations in temperature and sunshine amounts ensure 

that evaporation losses are heavily concentrated in the summer 

half-year (April-September).  In turn, this imposes a marked 

seasonality on river flows with maximum flows normally in the 

winter and minimum flows normally occurring in the summer or 

autumn. In winter, the UK is affected by cyclones, resulting in 

more than usual rainfall. 

generalized that the smaller the size of the river catchment area, the wider is the 

range of flow fluctuation. 

▪ The temporal and spatial variations of river flows are mainly due to the 

physiographic and climatic characteristics of the country resulting in time and 

space distribution of rainfall. Although Nepal lies near the northern limit of the 

tropics, there is a very wide range of climate from the summer tropical heat and 

humidity of the Terai to the colder, dry continental and alpine winter climate 

through the middle and the northern mountainous sections. The amount of 

precipitation and the range of temperature vary considerably because of the 

exceptionally rugged terrain. Nepal has two rainy seasons. The more prominent of 

the two lasts from June to September when the south-west monsoon brings about 

80% of the total rainfall. The other, which accounts for 20% of the total annual 

rainfall, occurs during the winter. The eastern part of the country experiences more 

rain than the western part. The downpour is maximum in the hilly regions of the 

central part of the country. This is mainly due to the highly spatially varying 

topography resulting in varying orographic effects in the country. In both spring 

and autumn, Nepal can be affected by the tail of cyclones generated over the Indian 

Ocean and which reach the country through the Bay of Bengal. These can give 

several days of heavy rain. The other pre- and post-monsoon rains occur during 

unsettled climatic conditions just before and after the monsoon. 
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3 A technical evaluation of lidar-based 

measurement of river water levels 

For many applications, including discharge estimation and flood prediction, measuring river 

water level (stage) is essential. There are many in situ and non-contact methods available, but 

there is a pressing need for new, more practical ones. The development of time-of-flight 

distance sensors and the use of non-contact techniques have accelerated due to rapid 

technological advancement. Because of its low-cost, high-energy efficiency, and small 

measurement footprint, the use of lidar for distance measurement is among the techniques that 

show promise. However, measuring water levels with lidar hasn't been done very often. In this 

chapter, a near-infrared lidar sensor (905 nm) is evaluated to determine if it can accurately 

measure stages in a variety of environmental conditions. Using various laboratory and field 

experiments, the lidar sensor performance is evaluated as a function of measurement distance, 

surface roughness, air temperature, water turbidity, and measurement angle. 

3.1 Introduction 

3.1.1 Non-contact methods to measure river stage 

Accurate monitoring of water levels is an integral part of hydrological practise, informing, for 

example, flood-risk management systems, groundwater resource planning, and irrigation 

control systems. Nevertheless, despite the vast array of available methods, the global density 

of river gauging stations is still well below the operational optimum, even in densely gauged 

nations. Numerous existing records are fragmented, and inconsistencies in format and a lack 

of metadata are pervasive issues in numerous locations (Hannah et al., 2011). Although there 

are numerous obstacles to river gauging, technological advancements may help to reduce the 

number of resources required to obtain accurate measurements, thereby increasing the density 
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of the river gauging network. This is especially important in locations with limited data 

(Alabyan et al., 2016; Hund, Johnson & Keddie, 2016; Paul et al., 2018). There, enhancements 

to the cost, accessibility, and automation of monitoring technology could result in a significant 

increase in data collection. 

Increasingly, non-contact methods for monitoring river levels (stages) are being implemented. 

In contrast to the susceptibility of in situ methods, such as pressure transducers, to fouling and 

damage from extreme events, noncontact methods offer greater installation flexibility in safer 

and more convenient locations. Diverse technologies are employed for such ground-based 

water level sensing, but most operational systems today are based on measuring the time of 

flight of ultrasonic and radar wave pulses reflected on the water surface. Ultrasonic systems 

emit acoustic waves (typically 20–200 kHz) from a transducer that also measures reflections, 

whereas radar sensors emit a stream of microwave spectrum pulses (1–100 GHz). In both cases, 

the recorded transmission time is converted to a distance within a few millimetres of accuracy 

(e.g., Boon & Brubaker, 2008). Approximately 5% of the U.K. Environment Agency's National 

River Flow Archive stations measure river levels at 15-minute intervals using ultrasonic or, 

more recently, radar sensors (Environment Agency (UK), 2018). 

3.1.2 Lidar distance sensing (ranging) 

Lidar-based distance sensing is a frequently used technique, for example in digital terrain 

mapping (Liu, Peterson & Zhang, 2005; Höfle et al., 2009; Ozcan & Unsalan, 2017). The 

principle of lidar distance measurement depends on the roughness of the reflective surface to 

generate non-specular reflection (i.e., scattering) of the incoming laser beam. Similar to radar, 

lidar range measurement utilises higher frequency waves with greater pulse intensities to 

calculate flight time. Near-infrared (NIR) light is typically used for this purpose, typically over 

wavelengths of 900–1,100 nm (270–330 THz) due to the low cost of lasers operating in this 

wavelength range and lower energy density compared to the visible spectrum (Smart, Bind & 

Duncan, 2009; Fernandez-Diaz et al., 2014). 

Two technical characteristics determine the accuracy of lidar distance sensing: pulse width and 

the accuracy of the method used to measure the time of flight. Reducing the pulse width 

improves accuracy but necessitates a higher pulse power and, consequently, a more powerful 

laser. Currently available systems employ 0.5 µs pulse widths with a 50% duty cycle (i.e., when 

the system is active 50% of the time: Garmin, 2016). Similarly, measurement precision can be 
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improved by increasing the pulse power, narrowing the pulse width, and expanding the 

receiver's bandwidth, which allows the receiver channel to respond to the laser pulse with full 

amplitude and reduced noise. 

The precision of the time-of-flight measurement is determined by the internal timer, which 

measures the interval between laser pulse emission and reception (Kilpelä, Pennala & 

Kostamovaara, 2001). With advances in the sophistication of micro-oscillators and time-to-

digital converters, the precision of timers has increased from 10 nanoseconds in 2001 to 

picoseconds more recently (i.e., an improvement of up to 104: Kilpelä, Pennala & 

Kostamovaara, 2001; Coddington et al., 2009). In modern time-of-flight ranging systems, 

atomic clocks of well-defined radiofrequency standards, such as rubidium, with femtosecond 

precision are frequently employed (e.g., Lee et al., 2010). 

However, lidar's use as a static, in-situ method for observing water level is relatively little 

explored. Tamari & Guerrero-Meza (2016) report a proof-of-concept but provide few technical 

details. The major difference between marine and terrestrial lidar applications is the lower 

infrared reflectivity of water surfaces compared to solid objects. A surface of still water may 

behave as a pure specular surface, which produces reflections rather than dispersing incoming 

energy. This implies that the reflected beams frequently miss the receiver, particularly in 

longer-distance airborne surveys, unless observed from normal incidence (Liu, Peterson & 

Zhang, 2005; Allouis, Bailly & Feurer, 2012; Fernandez-Diaz et al., 2014). In practise, a flat, 

mirror-like river surface still reflects ~2–3% of an incident beam of infrared radiation, with the 

remainder passing through the water (Figure 3.1a; Guenther, 1986; Milan et al., 2010). 

Additionally, under most conditions, the roughness of a water's surface will increase its 

reflectivity. This may allow lidar to be used as a method for measuring water levels and their 

variations. 

According to Allouis, Bailly & Feurer (2012) and Pfeifer et al. (2008), the laser power received 

from the water surface as a function of time 𝑡, 𝑃𝑟(𝑡), is as follows: 

𝑃𝑟(𝑡) =
𝜌. 𝑃𝑇(𝑡). 𝑇𝑎𝑡𝑚

2 . 𝜂𝑟 . 𝜂𝑡. 𝐴𝑟 . cos2(𝜃0)

𝜋𝐿2
 (3.1) 
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where 𝜌 is the reflectance at the air/water interface; 𝑃𝑇(𝑡) is the power of the transmitted laser 

pulse; 𝑇𝑎𝑡𝑚
2  is the transmission coefficient of the atmosphere; 𝜂𝑡 and 𝜂𝑟 are the optical 

transmission and reception efficiencies, respectively; 𝐴𝑟 is the area of the receptor; 𝜃0 is the 

incidence angle of the sensor; L is the distance of the sensor from the water surface.   

The water surface reflectance can be calculated using equation 3.1 (Pfeifer et al., 2008). This 

method was used by Milan et al. (2010) to generate reflectance curves as a function of laser 

light wavelength for various concentrations of suspended sediment (Figure 3.1b). Reflectance 

is less than 10% at 905 nm, the wavelength of many rangefinders that are sold commercially, 

but it rises as a function of the amount of suspended sediment present. 

 

Figure 3.1: (a) Spectral character of clear still water as a function of laser wavelength (Milan et al., 

2010; Lednev et al., 2013). (b) Influence of suspended sediment concentration (curves: units of mg 

L−1) in river upon reflectance (after Milan et al., 2010) 
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In this chapter, laboratory and field tests are used to evaluate the performance of lidar and its 

potential as a hydrometric technique under various environmental conditions. For the tests, a 

commercially available system operating in the NIR spectrum (905 nm), which is 

representative of the systems in use today, was utilised (section 3.2). In section 3.3, the results 

of laboratory testing as well as field experiments on the river Thames and other rivers in and 

around London, UK, are presented.  

3.2 Methodology 

The laboratory and field tests in this study were conducted with a Garmin Lidar Lite 

rangefinder sensor (Garmin, 2016), operating at 905 nm, which was connected to a self-built 

data logger. The rangefinder has an internal measurement frequency of 10–20 kHz; peak laser 

power is 1.3 W, and the energy per measurement pulse is <280 nJ. Full specifications are given 

in Table 3.1. The rangefinder sensor is available for ∼ £120 (US $130). The sensor uses the 

time-of-flight principle described above: it sends out pulses with a coded signature and searches 

for a matching signature in the returned pulses. The time measurement is carried out using an 

integrated time-to-digital converter with a resolution of 50 ps. The sensor then performs 

internal averaging over all signature-matching acquisitions until the signal peak in the 

correlation record reaches a maximum value. If this does not happen or if the signal peak is 

below a threshold (calculated from the level of ambient noise), then the sensor does not return 

a measurement (Garmin, 2016). These measurements can be repeated with a typical frequency 

of 50 Hz and up to 500 Hz. The sensor was connected to an Arduino-based datalogger (for 

further details see supporting information of Paul, Buytaert & Sah (2020).  

The logger was programmed to record 10 successive readings over a time interval of 5 ms. 

These were averaged to create time series that could be repeated every second to assess the 

effects of various environmental factors. The measurements were saved to an SD card. In all 

the test cases, the data obtained from the sensor was compared to observed values to obtain the 

bias between the measured and observed data. In some tests, e.g., the inclination test, the 

turbidity test, and the effect of distance from water, the sensor was measuring a known distance; 

therefore, the known distance was the observed value. The observed water level of the river 

Thames was obtained from the Environment Agency (Environment Agency, 2021a), and the 

data of the tidal wave at Battersea was obtained from the British Oceanographic Data Centre 

(British Oceanographic Data Centre (BODC), n.d.), for the rugosity test. The observed distance 
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to the water surface for River Lea and Serpentine Lake was measured using a measuring staff. 

It should be noted that the water level in Serpentine Lake and River Lea did not change during 

the experiment. A waterproof box with a transparent polycarbonate lid contained the lidar and 

logger. The setup impeded us from measuring NIR light absorption because polycarbonate is 

largely transparent to NIR (transmission coefficient of 905 nm light ~ 0.90: Wydeven, 1977). 

A typical outdoor experimental setup is depicted in Figure 3.2. 

Table 3.1: Specifications of Garmin Lidar Lite laser (Garmin, 2016) 

Specification Measurement 

Wavelength 905 nm 

Total laser power (peak) 1.3 W 

Energy per pulse < 280 nJ 

Mode of operation Pulsed (256 pulses per train) 

Pulse width 0.5 µs (50 % duty cycle) 

Pulse train repetition frequency 10 – 20 kHZ 

Beam divergence 8 mRad (~ 0.46°) 

 

 

Figure 3.2: Schematic of lidar prototype experiment, where it is clamped to the underside of a bridge 

to measure river stage 
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The following tests were carried out:  

1. Effect of sample size 

To eliminate the potential impact of measurement autocorrelation, the first test was carried out 

to identify the minimum number of measurements needed to take an average with the least 

amount of bias. For this test, we measured a known distance of 2 m. The sensor was operated 

at a frequency of 250 Hz. 

2. Effect of distance from water  

The purpose of this test (Figure 3.3) was to determine the maximum and minimum distances 

that the custom-built lidar sensor could measure from the water's surface. To conduct this test, 

we elevated the sensor vertically along a metal pole above a tank with relatively smooth water 

(eye-estimated rugosity of < 1 cm) and took measurements at 1-m intervals for the range of 0–

10 and 5-m intervals for the range of 10–40 m. 

 

Figure 3.3: a) Laboratory setup for range test. Distance from the sensor to water surface is changed by 

adjusting the metal pole, b) Connection of computer, through which the settings (e.g., measurement 

frequency) of the sensor system was changed.  
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3. Effect of water turbidity 

According to the specifications of the lidar sensor (Garmin, 2016) employed in this study, 

turbidity should be considered when measuring distances to water surface. Because of the 

suspended particles, turbidity can either help or hinder measurement efforts. According to 

Bhargava & Mariam (1991), small, suspended solids that are afloat on the water's surface can 

affect laser reflection and reduce the sensor's accuracy. Rivers usually have high turbidity, and 

since previous experiments were completed using clear water, which does not accurately reflect 

practical conditions. This test was carried out to analyse the impact of turbidity on water level 

measurement. 

a b) 

 

Figure 3.4: Turbidity test carried out in Imperial College London laboratory: a) Sensor measuring a 

known distance of 2m, and b) Clay used for the test 

We infused the water with various concentrations of kaolin and montmorillonite clay 

(Bhargava & Mariam, 1990) and measured the turbidity of the solution with the self-built 

Secchi disk shown in Figure 3.4. Then, for different turbidity level, a known water level ranging 

from 2-10 meters were measured. Table 3.2 provides a summary of the clay's physical 

characteristics. We calculated the standard deviation and measurement bias (e.g., Bhargava & 

Mariam, 1991) between the actual and measured distances. 
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Table 3.2: Physical characteristics of the clay 

Clay  Specific gravity pH Organic content (%) 

Montmorillonite 2.72 7.91 5.59 

Kaolin 2.56 9.05 3.63 

4. Effect of inclination 

To assess the effect of the inclination of the sensor on measurement, we measured the known 

distance between the sensor and the water surface in the laboratory and field. From zero degrees 

(i.e., normal incidence) to a maximum of 60 degrees, the angle at which the sensor was 

measuring the water surface was changed in steps of 10 degrees (Figure 3.5a). The 

measurement was carried out for an hour for each inclination angle. In the laboratory, the 

vertical distance to the water surface was 2 m (Figure 3.5b). In the field test, the distance 

between the sensor and the water surface was held constant at 6.3 m as the sensor inclination 

was varied. For each angle of inclination, the bias and data variance were calculated to find the 

maximum inclination of the sensor and to determine the effect of inclination on the measured 

distances. 

 

Figure 3.5: a) Laboratory setup for changing incidence angle of sensor – each hole in the metal plate 

represents 5°. b) Schematic of inclination tests. Distance to the surface was maintained at 2m (for this 

case); the position of the sensor and bucket was changed, as indicated by the arrows.  
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5. Effect of ambient temperature 

The impact of temperature on measured distances was determined through a series of 

laboratory experiments. During this test, the sensor was alternately heated by hot air from an 

industrial welding unit and cooled in a refrigerator or freezer and allowed to return to room 

temperature. We heated the sensor with hot air to temperatures of ∼ 90 °C (greater than the 

maximum operating temperature of most electronic components, which is 85 °C) and cooled it 

down to −20 °C in a freezer. We recorded both the measured distance and temperature while 

the data logger readjusted to room temperature so that we could gain a comprehensive 

understanding of the temperature range. 

6. Effect of water surface rugosity 

The water surface roughness or rugosity is also a consideration when measuring water level 

because it may influence the NIR energy reflected from the water surface. The sensor was 

tested at four outdoor locations in Greater London (i.e., the River Lea at Tottenham, the 

Serpentine Lake in Hyde Park, and the River Thames at Battersea and Teddington Lock) 

(Figure 3.6). In all the cases, the sensor was attached to a bridge wall to measure the water 

level. In each location, rugosity (i.e., surface wave amplitude) was estimated by eye (wave 

heights were measured by measuring the height of wave splashing on the boundary wall using 

a measuring scale). Wave height measurement and influence of tidal wave on river Thames at 

Battersea is shown in Figure 3.7.  

 

Figure 3.6: Roughness test in field: a) River lea, b) Serpentine Lake and c) River Thames at Battersea.  
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Figure 3.7: Series of photos taken at different times, indicating the water level change of River Thames 

on 12/07/18. The maximum water level (i.e., high tide) was reached at around 14:30. Wave height was 

measured by measuring the height of splashing wave on the side wall of the stairs.  

3.3 Results and discussion 

3.3.1 Sample size and auto-correlation  

To reduce the impact of autocorrelation on measurement bias, we first calculated the necessary 

sample size. The deployed sensor is equipped with an inbuilt receiver bias correction mode. 

Enabling the bias correction mode results in slower measurements. However, when the receiver 

bias correction mode is enabled, the bias quickly converges to a value within the sensor's 

specification (1%; Figure 3.8). With bias correction mode disabled, convergence is slower but 

within specifications for all but the smallest number of measurements. These findings imply 

that there was no instrumental drift during the test. Additionally, they imply that a sample size 
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of much less than 100 measurements, with a relative measurement error of 0.3%, is acceptable 

for operational practise. 

 

Figure 3.8: Variation of relative measurement error with number of measurements in sample. The 

distance from the sensor to target was 2.0 m: measurement frequency ~ 250 Hz.  

3.3.2 Measured distance 

Figure 3.9 suggests that the absolute measurement bias of the evaluated sensor increases with 

distance (especially beyond 15–20 m). However, the percentage error remains roughly 

constant, indicating a 0.1% proportional error (i.e., between the mean measurement and the 

real distance). This implies that the device has a negligible amount of inherent systematic bias. 

The specifications for the sensor state that the accuracy is ± 2.5 cm for measurements of less 

than 5 m and ± 10 cm for measurements of greater than 5 m. The results from our experiments 

show that they are within these specifications (Garmin, 2016). At 40 m and beyond, no 

measurements were returned (i.e., no reflections were received). The accuracy is approximately 

1 cm for measurement distances of up to 10 m and within 3 cm for measurement distances of 

up to 30 m (i.e., relative error of <0.1 percent). 
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Figure 3.9: Measured versus actual distance. Minor ticks either side of each y-axis, major tick = ±1 cm 

measured distance, corresponding to vertical scale of box plots. Whiskers span entire range of dataset. 

Each box plot represents 500 readings. 
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3.3.3 Turbidity 

 

Figure 3.10: Results of turbidity tests using (a) montmorillonite and (b) kaolin. Box plots show 

measurement bias (from a vertical distance of 2 m) as a function of clay concentration. Whiskers span 

entire range of dataset.  

Bhargava and Mariam (1990) and (1991) investigated the relationship between reflectance and 

water turbidity using kaolin and montmorillonite clay, finding that reflectance increases 

linearly with turbidity for both materials within a range of incident light wavelengths of 500 to 

1,000 nm. However, we found no effect of water turbidity on the measurement bias and 

variance (refer to Figure 3.10). This indicates that the receptor is sensitive enough to take 

accurate measurements under conditions of low reflectance and that a higher reflectance does 

not improve the reading. 



61 

 

3.3.4 Rugosity 

The roughness (rugosity) of the water surface has a theoretical effect on the intensity and 

number of light waves (or lidar) returned from the air-water interface (e.g., Allouis et al., 2007; 

Bhargava & Mariam, 1990). To test the effect of surface rugosity under field conditions, we 

selected four sites with varying rugosities, which were estimated visually. Our installations 

were temporary (<12-hour measurements). Therefore, problems that could come up with 

permanent or long-term installations, such as interference from dust, plants, insects, or weather 

conditions like fog or strong winds, are not considered here. 

 

Figure 3.11: Effect of water surface rugosity on measurement bias at four locations in Greater London, 

UK: (a) River Lea, Tottenham (distance from sensor to water surface = 3.6 m; rugosity = ∼0.5 cm); (b) 

Teddington Lock, River Thames (distance = 4.2–8.3 m; rugosity = ∼1–1.5 cm); (c) Serpentine Lake, 

Hyde Park (distance = 6.2 m; rugosity = ∼2.5 cm); (d) River Thames, Battersea (distance = 5.4–10.2 

m; rugosity = ∼5–5.5 cm). Note clear relationship between data variance and rugosity and low 

measurement bias in all tests. Whiskers of box plots span entire range of dataset. 

The test results indicate that a rougher water surface reduces the measurement variance (Figure 

3.11). The variance at the less turbulent River Lea (rugosity of <1 cm) is 8.2 cm (Figure 3.11a), 

whereas it is only 1.7 cm at the more turbulent River Thames (rugosity of ~5 cm; Figure 3.11d). 

When the sensor is inclined, a diffuse surface will cause incipient laser energy to disperse 

uniformly, whereas a smooth, specular surface will mainly reflect energy. In this instance, 

however, the laser beam is perpendicular to the water surface. Because of this, it is more likely 
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that more of the radiation that hits more specular water surfaces will be absorbed by (and 

transmitted through) the water instead of being reflected back to the sensor (see Figure 3.2). 

Therefore, the sensor receives more dispersed radiation when the water surface is rougher. In 

each of the four field deployments, the median value of measurement bias, averaged over the 

duration of the recording, is <1.5 cm (Figure 3.11). 

3.3.5 Inclination  

 

Figure 3.12: Illustrations of lidar tests (a) at normal incidence (𝜃 = 0°) and (b) when inclined (𝜃 >
0°). For this lidar sensor, beam dispersion 𝛼 = 8 mRad (∼ 0.46°: Table 1; Garmin, 2016). r = normal 

distance from sensor to water surface. 

A proxy for beam divergence is the path difference between the laser cone's outer edges, (𝑑1 −

𝑑3), which depends on the inclination angle (𝜃) as shown in Figure 3.12: 

𝑑1 − 𝑑3 =  
𝑟

cos (𝜃 +
𝛼
2

) 
− 

𝑟

cos (𝜃 −
𝛼
2

) 
  (3.2) 

where 𝑟 is the normal distance from sensor to water surface and 𝑑1 , 𝑑3, and 𝑑2 are the distances 

travelled by the outer edges and midpoint of the laser cone, respectively. Because of the beam 

divergence (i.e., 𝑑1 − 𝑑3), the theoretical measurement bias and variance increase with 

increasing incidence angle. These theoretical and calculated relationships are depicted in 

Figure 3.13, which demonstrates a high degree of congruence. As expected, the increase is 

greater under conditions of greater surface roughness, as divergence and wave motion reinforce 
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one another (variations in path length due to water surface waves are not considered here). 

However, the increase is limited to a few centimetres in all conditions, which may be acceptable 

in a variety of operational conditions. 

 

Figure 3.13: Effect of incidence angle on measurement bias and variance (0° = vertical). Box plots = 

lidar data (left-hand axis); thick black line = predicted beam divergence (i.e., d1–d3 on Figure 3.12: 

right-hand axis). (a) Laboratory test: initial vertical distance from sensor to water surface = 2.0 m. (b) 

Outdoor test: distance = 6.3 m. (c) Test on River Thames at Battersea: initial distance = 8.0 m. Whiskers 

of box plots span entire range of dataset. 

This opens up new opportunities for the use of lidar in situations where vertical measurement 

is not possible, such as for rivers whose width varies seasonally or whose banks are too unstable 

to allow sensor installation above the water.  

Guenther (1986) emphasises the significance of water surface roughness to dispersion when 

imaging at non-normal incidence (“off-nadir geometry”). This roughness manifests as small 

wavelets or capillary waves with tiny facets perpendicular to the inclined laser beam, allowing 

energy to be reflected and an interface return to reach the transceiver. However, increasing the 
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incidence angle has the opposite effect of increasing surface rugosity as laser beam dispersion 

must be considered. 

3.3.6 Temperature 

 

Figure 3.14: Effect of temperature on measurement bias. Actual distance = 2.5 m; graph shows the 

average bias for 100 tests. 

The effect of air temperature on the laser's flight time is insignificant. Nonetheless, a number 

of electronic components, including the clock and the laser emitter, may be affected by changes 

in ambient temperature. The resultant slight increase in injection current to the laser diode 

causes the light intensity and wavelength of any lidar sensor to increase with temperature. 

However, slow temperature changes do not significantly impact the measured distance value 

(Jensen et al., 2009). Typical rates of increase have been reported as ~0.04 and ~0.09 nm/°C 

for lasers with nominal operating wavelengths of 1,062.3 (NIR) and 531 nm (green), 

respectively (Kikuta, Iwata & Nagata, 1986; Jensen et al., 2009). For different lasers, these 

values vary slightly. 

Figure 3.14 indicates that both heating and cooling produced a positive measurement bias of 

up to ~9 cm in maximum magnitude. This high sensitivity to ambient temperature may be the 

result of insufficient temperature compensation within the electronics. Alhashimi, Varagnolo 

& Gustafsson (2015) note that temperature fluctuations increase the degree of oscillation 

between laser light's different wavelength modes. This has a significant effect on the accuracy 

of time-of-flight ranging systems: at extreme temperatures, the laser pulse's actual wavelength 

is much different from its nominal value (Alhashimi, Varagnolo & Gustafsson, 2015). These 
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results suggest that, in the field, the sensor should be installed in a location that is shielded from 

high temperature fluctuations, such as direct sunlight. 

Table 3.3 provides a comparison of lidar sensor with other sensors available in the market.  

Table 3.3: Comparison of lidar sensor with other sensors available in the market 

 Lidar (Garmin 

Lidarlite 3HP) 

Ultrasound 

(Maxbotix 

MB7389) 

Pressure 

transducer 

(Onset HOBO) 

Radar 

(Campbell 

CS475a) 

Range (m) 2-40 0.3 - 5m Up to 30 m 

(water depth) 

0.05 - 30m 

Resolution (mm) ± 10 ± 1 ± 1 ±1 

Accuracy (mm) ± 20 ± 5 ± 10 (0.1%) ± 2 

Cost (£) 250 - 300 200 - 250 800 ~2000-3000 

Installation  Non-contact Non-contact  Contact  Non-contact 

Can be inclined 

or not 

Yes No No  No 

3.4 Conclusions 

The findings indicate that time-of-flight lidar can be utilised to measure water levels with a 

high temporal resolution. Devices employing this method could be advantageous in regions 

where establishing a monitoring network is prohibitively costly or inaccessible. The 

experiments indicate that to improve current hydrometric practise, lidar could be particularly 

effective when applied to stage measurement, for instance as part of an early-warning system 

for flooding. Sensors could be mounted under bridges or attached to the bank at an angle. 

During our tests, we didn't find any evidence that the instruments were drifting. With the right 

correction algorithm, as few as ~10 measurements may be enough to get a good average 

distance. 

The results demonstrate that, despite the low reflectivity of the air-water interface to NIR 

radiation, a lidar prototype can take measurements under a variety of environmental conditions 

and at an angle of no more than ~40°. The accuracy of the sensor is ~1 cm at measurement 

distances less than ~10 m, while the maximum detectable range is 30–35 m, which is 

significantly greater than that of existing ultrasonic water-level sensors. The sensor's precision 

decreases with increasing measured distance and improves with increasing surface roughness. 

There is no discernible effect of water turbidity on our measurements. Temperature changes 
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outside of normal operational conditions (i.e., 10–30 °C) result in a systematic increase in 

measurement bias. 

The findings imply that lidar may be a viable method for water level sensing, which has 

significant and far-reaching implications for hydrometry. Lidar has the potential to be utilised 

in data-scarce regions where precise measurements of water level (e.g., river stage and 

groundwater) are essential for flood risk management. It would be useful to determine whether 

our findings could be generalised to sensors other than the one we used (e.g., lasers of different 

wavelengths, power, and pulse width). The technique is cost-effective, energy-efficient, and 

has a small measurement footprint (relative to ultrasound systems; Figure 3.12); it could be 

utilised to increase the global density of river gauging stations, which is currently suboptimal. 
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4 A Python application to implement Monte 

Carlo simulations in HEC-RAS 

The Hydrologic Engineering Center's River Analysis System (HEC-RAS) is a widely utilised 

software application for 1D and 2D steady and unsteady flow river analysis, sediment transport 

modelling, and water quality analysis. However, the graphical user interface of HEC-RAS only 

offers a one-click-one-run option, so it does not always provide users with the required 

capabilities for advanced analyses. For example, users often require automating river flow 

simulations to conduct probabilistic flood inundation analysis, uncertainty and sensitivity 

analysis, hydraulic structure optimisation, and so on. In this chapter, I present Python scripts 

for controlling and automating river flow simulations in HEC-RAS and demonstrate their usage 

with three examples. Here, the developed scripts are tested on both an idealised river case and 

a real river, the River Brent in London. The examples illustrate the use of Python applications 

for 1) calibrating hydraulic models under homogenous and heterogenous Manning's roughness 

coefficient assumptions, 2) performing uncertainty and sensitivity analyses of unsteady flow 

parameters, and 3) conducting probabilistic flood inundation analyses in HEC-RAS. The 

purpose of this chapter is to provide the technical basis to implement the discharge estimation 

methodology in Chapter 5. 

4.1 Introduction 

HEC-RAS (Hydrologic Engineering Centre-River Analysis System), developed and 

maintained by the Hydrologic Engineering Centre (HEC) of the U.S. Army Corps of Engineers 

(USACE), is one of the most widely used hydraulic engineering analysis software (Goodell, 

2014). It is used for a variety of purposes, including one- and two-dimensional steady and 
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unsteady river flow hydraulic analyses, sediment transport analyses, water quality modelling, 

and flood control channel hydraulic design (Brunner et al., 2016; Brunner, 2016a, 2016b). 

While HEC-RAS is one of the best tools available for hydraulic engineering analysis, the 

software does not always provide users with the capabilities that are needed for more advanced 

analyses. For example, users of HEC-RAS often require performing Monte Carlo (MC) 

simulations (Goodell, 2014), a commonly used method for approximating solution outcomes 

when the inputs have a high degree of uncertainty (O’Connor & Kleyner, 2011; von Neumann, 

1951), for modelling the uncertainty associated with river processes. Modelling the 

uncertainties of river processes is crucial for model calibration (Pappenberger et al., 2005b; 

Vansteenkiste et al., 2014), flood inundation mapping (Vansteenkiste et al., 2014), and 

sediment transportation (Shrestha et al., 2016). 

In many instances, MC simulations, in which a model is run for many iterations have been used 

to address the uncertainties in river flow modelling, e.g., (Aronica, Hankin & Beven, 1998; 

Beven & Binley, 1992; Bozzi et al., 2015; Huang & Qin, 2014; Jung & Merwade, 2012; Liu, 

2009; Pappenberger et al., 2004, 2005b; Vrugt & ter Braak, 2011). However, the HEC-RAS 

graphical user interface (GUI) only provides a one-click-one-run option. Therefore, to use MC 

simulations, for instance running 5000 realisations of a model for uncertainty analysis, one 

needs to control and automate HEC-RAS simulations with other tools or programming 

languages. 

HEC has developed an open API (application programming interface) that enables users to 

develop custom applications that leverage HEC-RAS to solve unique hydraulic engineering 

problems. This API is referred to as the HEC-RAS Controller (or HECRASController). The 

API is already available to anyone who has downloaded and installed HEC-RAS version 3.1 

or later (Goodell, 2014). The HEC-RAS Controller includes a plethora of procedures that 

enable external manipulation of HEC-RAS by setting input data, retrieving input or output data, 

and performing common functions such as opening and closing HEC-RAS, changing plans, 

running HEC-RAS, and plotting output. Goodell (2014) provides a detailed description of all 

the functions, classes, and sub-routines available in the HEC-RAS Controller with example 

applications. The HEC-RAS Controller can also be used to integrate HEC-RAS into third-party 

software to perform system analysis such as flood risk analysis, optimization of flooding 

structures under uncertainty, and multi-objective reservoir operation under uncertainty. The 

HEC-RAS API is available as a component object model (COM) dynamic link library (DLL). 
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Therefore, the HEC-RAS Controller can be used in conjunction with any programming 

language that can call a COM DLL. This chapter demonstrates how to use Python to control 

HEC-RAS simulations and describes scripts with examples for performing MC simulations for 

a variety of purposes, including calibrating unsteady river flow models, and conducting 

sensitivity and uncertainty analysis. 

The ability to control river flow simulations via external programming languages opens several 

new possibilities in the fields of flood hazard assessment, water management, and river 

hydraulics (Dysarz, 2018). However, until now, there have been very limited studies in this 

area. For example, Leon & Goodell (2016) have demonstrated manipulating input files such as 

geometry files (.g##, .hdf), unsteady flow files (.u##), extracting output variables, performing 

parallel computation and visualisation in MATLAB, and Dysarz (2018) has demonstrated 

controlling and automating HEC-RAS for steady flow simulation, steady flow calibration, and 

sediment simulation using Python. It should be noted that these studies have focused mainly 

on steady flows, and the availability of existing codes and software packages for carrying out 

MC simulations is limited (Vojtek et al., 2019). To my knowledge, there is no freely available 

software or script that can be used to implement MC simulations in HEC-RAS. 

In this chapter, I present and discuss Python scripts to perform unsteady flow simulations, work 

with different types of input and output file types (e.g., dss, ASCII) to manipulate boundary 

conditions, and perform MC simulations to calibrate an unsteady flow model for different 

scenarios. Additionally, I demonstrate other applications of the scripts, such as probabilistic 

flood inundation analysis and sensitivity analysis (Babister et al., 2016b; Vojtek et al., 2019). 

This chapter also lists the technical and common errors encountered during the study period 

and the solutions adopted to rectify them. 

4.2 Monte Carlo simulations implementation 

First, an unsteady flow hydraulic model was set up in HEC-RAS. Then a Python script is 

developed to control and automate the HEC-RAS run and perform Monte Carlo (MC) 

simulations of different unsteady flow parameters. A typical analysis workflow is presented in 

Figure 4.1. 
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Figure 4.1: Flow chart for performing Monte Carlo simulations 

To evaluate the MC simulations, a set of performance evaluation metrics calculation routines 

is implemented:  

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐾𝑙𝑖𝑛𝑔 − 𝐺𝑢𝑝𝑡𝑎 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐾𝐺𝐸)

= 1 −  √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 

𝑟 (𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) =  
𝑐𝑜𝑣 (𝑍𝑖

𝑠, 𝑍𝑖
𝑜)

𝜎 (𝑍𝑖
𝑠) ∗  𝜎 (𝑍𝑖

𝑜)
 

𝛽 (𝐵𝑖𝑎𝑠 𝑟𝑎𝑡𝑖𝑜) =  
𝜇 (𝑍𝑖

𝑠)

𝜇 (𝑍𝑖
𝑜)

 

(4.1) 

1. Model setup in HEC-RAS

Define parameter/s for MC 

simulation

Define parameter/s statistical 

distribution

Randomly sample input 

parameter/s for MC simulation

3. Replace the model input 

parameters with randomly sampled 

one

4. Run the HEC-RAS model

5. Save the outputs

2. Monte Carlo simulation steps 

6. Run the model for desired number 

of times
7. Analyse the results
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𝛾 (𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜) =  
𝐶𝑉 (𝑍𝑖

𝑠)

𝐶𝑉 (𝑍𝑖
𝑜)

=  (
𝜎 (𝑍𝑖

𝑠)

𝜇 (𝑍𝑖
𝑠)

) (
𝜎 (𝑍𝑖

𝑜)

𝜇 (𝑍𝑖
𝑜)

)⁄  

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑍𝑝 [%] =  
𝑍𝑚𝑎𝑥

𝑠 − 𝑍𝑚𝑎𝑥
𝑜

𝑍𝑚𝑎𝑥
𝑜 ∗ 100 

(4.2) 

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑇𝑝 [𝑚𝑖𝑛] =  𝑡𝑚𝑎𝑥
𝑠 −  𝑡𝑚𝑎𝑥

𝑜  (4.3) 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟: 𝑅𝑀𝑆𝐸 = √
∑ (𝑍𝑖

𝑠 − 𝑍𝑖
𝑜)2𝑁

𝑖=1

𝑁
 

(4.4) 

where, 𝑍𝑝 is error in peak stage or depth, 𝑍𝑠 is simulated stage, 𝑍𝑜 is observed stage, 𝑍𝑚𝑎𝑥 is 

peak stage, 𝑡𝑚𝑎𝑥
𝑠   and 𝑡𝑚𝑎𝑥

𝑜  is time (in minutes) at which the simulated and observed peak 

reaches the gauging station, 𝜇, 𝜎 is mean and standard deviation, 𝑐𝑜𝑣 is covariance, and 𝐶𝑉 is 

coefficient of variation.  

The modified KGE is used as a performance measure for parameters calibration as it provides 

an optimal solution which is simultaneously good for bias, variability, and correlation (Knoben, 

Freer & Woods, 2019).  

4.3 Example applications 

4.3.1 Case overview 

Two unsteady flow models, called Model-1 and Model-2, were used to test the applications of 

the MC method/simulations in different contexts.  

In recent years, significant advancements have been made in low-cost sensing technology and 

the Internet of Things (IoT) to collect river stage data (Paul, Buytaert & Sah, 2020). 

Additionally, there are studies that demonstrate the utility of stage data for a variety of 

purposes, including estimating river discharge (Harlan et al., 2021; Durand et al., 2014). 

Therefore, the examples discussed here illustrate the use of stage data, to calibrate river channel 

parameters and estimate river discharge at an ungauged location (example 1). 
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Model-1:  

Model-1 is a simple prismatic model of an idealised river channel of length 10 km and width 

50 m. The depth of the river is assumed to be 10 m. This river reach is assumed to have a 

constant bed slope (𝑆𝑜) of 1 in 10000. A stage, or discharge hydrograph, was used as an 

upstream boundary in different examples. The discharge hydrograph was obtained by using 

equation 4.5 (Dottori, Martina & Todini, 2009).  

𝑄 (𝑡) =  𝑄𝑏 + (𝑄𝑝 − 𝑄𝑏) [
𝑡

𝑇𝑝
𝑒𝑥𝑝 (1 −

𝑡

𝑇𝑝
)]

𝛾

 (4.5) 

where, 𝑄𝑏 = base flow, 𝑄𝑝 = peak flow, 𝑇𝑝 = Time to peak, 𝑡 = time instances  and 𝛾 = 

coefficient =16. 

For all examples involving the Model-1, 𝑄𝑏 was set to 100 m3/s, 𝑄𝑝 to 900 m3/s, and 𝑇𝑝  to 24 

hours.  

Model-1 was first run with a "true or observed" discharge hydrograph and other known input 

parameters to generate the stage hydrograph for use as an upstream boundary condition. Rather 

than using an equation, for example, Perumal et al. (2007), HEC-RAS was used to generate a 

stage hydrograph because the equation can be used only in the case of a prismatic channel, 

whereas a model can be used for both natural and prismatic channels. Furthermore, it can help 

us detect systematic model bias. 

Normal depth, a Manning’s equation approximation which needs an initial guess of the friction 

slope (average riverbed slope applied), was used as the downstream boundary condition in all 

the Model-1 examples. The simulation time was set at 60 seconds in accordance with Courant’s 

condition to satisfy the stability and accuracy of the model (Brunner, 2016b). 

Model-2:  

Model-2 represents a short reach of the river Brent in London, UK. The river reach between 

Costons Lane (upstream) and Hanwell (downstream) is selected because both the boundaries 

of the reach have Environment Agency gauging stations (refer to Figure 4.2). The gauging 

station descriptions are provided in Table 4.1 and the gauged parameters, discharge, and stage, 

are shown in Figure 4.3 and Figure 4.4 (Environment Agency, 2021a) respectively.  
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Figure 4.2: River Brent represented in 1m lidar DEM 

Stage and discharge data from 30/09/2019 to 08/10/2019 were used for the examples because 

this selection of data captures the full profile of the stage and flow in the river. Both stage and 

discharge data are at a 15-minute time interval. The geometry data for the river Brent model 

was extracted from a 1m resolution LIDAR digital elevation model (DEM) (Environment 

Agency, 2021b) using RiverGIS (Pasiok & Dębek, 2015) and QGIS (Anon, 2021). 

Table 4.1: Gauging stations description 

Station name (ID) mASD (mAOD) 

Coordinates 

Latitude (°) Longitude (°) 

Brent at Costons Lane Greenford* 

(ID: 3870TH) 
12.895 51.527366 -0.344873 

Brent at Hanwell**  

(ID: 3880TH) 
7.75 51.508638 -0.342569 

* https://environment.data.gov.uk/flood-monitoring/id/stations/3870TH.html 

**https://environment.data.gov.uk/flood-monitoring/id/stations/3880TH.html 
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A total of forty cross-sections were extracted between the two stations, and twenty-eight cross-

sections were linearly interpolated using the functions available in the HEC-RAS. The 

upstream and downstream cross-sections are shown in Figure 4.5. Normal depth, calculated by 

taking the average slope of the riverbed at its downstream, was used as the downstream 

boundary condition in all the Model-2 examples. Also here, the simulation time was set at 60 

seconds following Courant’s condition to satisfy the stability and accuracy of the model 

(Brunner, 2016b). Other model details are presented in Table 4.2. 

 

Figure 4.3: Observed stage at Costons Lane and Hanwell station 

 

Figure 4.4: Observed discharge at Costons Lane 
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Figure 4.5: Upstream and downstream cross-sections of river Brent hydraulic model 

 

Table 4.2: Details of the 2 model setups 

Model Inputs Model-1 (prismatic channel) Model-2 (natural channel) 

Channel Geometry Rectangular (width = 50 m, 

depth = 10 m) 

River Brent (average width = 24.32 

m, average depth = 2.5 m) 

River reach length 10.0 km 3.342 km 

Riverbed slope (𝑆0) 0.0001 0.0012 

Manning’s n  [s/m(1/3] 0.035 (assumed as True value) Assumed as 0.052  as the river 

reach has stones and weeds with 

deep pools (Chow, 2006) 

Number of cross-

sections (Xs) 

67 at a uniform spacing of 150 m 68 (40 Xs were extracted from 1m 

LIDAR DEM, the rest were linearly 

interpolated in the HEC-RAS) 

Upstream boundary Discharge/stage hydrograph Discharge/stage hydrograph 

Downstream boundary Normal depth (𝑆0) Normal depth 

Initial flow (𝑄𝑖) [m
3/s] 100 2 (assumed) 

Simulation time [s] 60 (based on Courant’s criteria) 30 (based on Courant’s criteria) 
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4.3.2 Example 1 – Unsteady flow model calibration 

Example 1 demonstrates the use of a Python script to calibrate Manning’s n and the initial flow 

of an unsteady flow model. HEC-RAS has an inbuilt unsteady flow calibration functionality. 

However, it works only when flow data for upstream boundary conditions are available 

(Brunner, 2016b). Therefore, HEC-RAS inbuilt functionality cannot be used for calibrating 

ungauged river sections. This example demonstrates a Python script which can be used to 

calibrate an unsteady flow model with both stage and flow data. This example also includes 

the calibration of the initial flow, which was usually assumed in previous studies (Aricò, 

Nasello & Tucciarelli, 2009; Barbetta, Moramarco & Perumal, 2017; Perumal et al., 2007b). 

Two instances of Manning's n variability along the channel reach are illustrated in this example. 

In one case, Manning's n of the channel reach is assumed to be homogeneous, that is, constant 

across all cross-sections; in the other, it is assumed to be heterogeneous. The two cases are 

illustrated in Scripts 1 and 2 respectively. 

To calibrate the initial flow and Manning’s n of the channel, it is presumed that at least for one 

flood event, a simultaneous record of stage hydrograph is available at the downstream and 

upstream sites of the river. The upstream stage is routed with a set of different initial flows and 

Manning’s n several times (number of MC simulations). Then the resulting routed stages at 

downstream are compared with the observed stage using performance measures (refer to 

equation 4.1-4.4). The initial flow and Manning’s n for which the modified KGE is the highest, 

are chosen as the calibrated values.  

However, before proceeding to the calibration process, it is prudent to run a simplified version 

of the unsteady flow model to save variables for use in the calibration process. Therefore, the 

first part of this example shows a script to run an unsteady flow model. 

Two different versions of Model-2, namely Brent_base and Brent_mc, are used in this example. 

The Brent_base model is used to show a simple case of running an unsteady flow model, saving 

the outputs, and plotting water surface profiles and hydrographs, and the Brent_mc model is 

used to demonstrate Manning’s n calibration and initial flow calibration.  

The difference between the Brent_base and Brent_mc unsteady flow hydraulic models is that 

the Brent_base has the discharge hydrograph as the upstream boundary condition, whereas the 

Brent_mc has a stage hydrograph. Because Brent_base has discharge data as the upstream 
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boundary, it does not require an initial condition. The model uses the first value of the discharge 

time series as the initial condition. A flow value is assumed as the initial condition for the 

Brent_mc model. 

The code for running an unsteady flow model and calibrating Manning’s n and initial flow is 

presented in Script 1.  

Script 1: Calibrating Manning’s n and initial flow of an unsteady hydraulic model 

1. """ 

2. author: Neeraj Sah (n.sah18@imperial.ac.uk) 

3.   
4. """ 

5.   

6. import win32com.client 

7. import os 

8. import numpy as np 

9. import math 

10. import pandas as pd 

11. import scipy as sc 

12. from scipy.stats import pearsonr 
13. from datetime import datetime 

14.   

15. start = datetime.now () 

16.   

17.   

18. # ========================================================== 

19. # Section 1: Initialization 

20. # ========================================================== 

21.   

22. # Initiate the RAS Controller class 

23. # TODO: Change the version of RAS as appropriate (e.g., if you're using v5.0.6, 

24. # Change the prefix of HECRASController to RAS506) 

25.   

26. hec = win32com.client.Dispatch ("RAS507.HECRASController") # Dispatch imports all the sub-

routines and functions of HEC-RAS to python 

27. hec.ShowRas ()        # show HEC-RAS window (comment this line if you don't want to see the 

hec-ras GUI) 

28.   

29. # ========================================================== 

30. # Section 2: Running an unsteady flow model and saving required  

31. # variables/parameters for Monte Carlo simulations 

32. # ========================================================== 

33.   

34. """ 

35. A pre-setup unsteady flow hydraulic model of river Brent (let's call it - Brent_base) is run to 

extract parameters/variables required for Monte Carlo simulations. 

36. This model has an assumed Manning's coefficient (from literature, geology of the area, aerial 

photographs of the reach (Chow, 2006) for the banks and channels, unsteady boundary 

condition (stage hydrograph), a downstream boundary condition 

37. (Normal depth) and an assumed initial condition (basically a flow value) 

38.   

39. """ 

40. # TODO: Change this to match the path on your PC 

41.   

42. RASProject = os.path.join (os.getcwd (), r'Brent_base\brent_base_EA_data_pris.prj') 

43.   

44. hec.Project_Open (RASProject)  # Opens the pre-setup hydraulic model 

45.   

46. # ID numbers of the river and the reach (user defined) 

47.   
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48. RivID, RchID = 1, 1 

49.   

50. # To get the name of River in the model 

51.   

52. NRiver, TabRiver = None, None 

53.   

54. NRiver, TabRiver = hec.Geometry_GetRivers (NRiver,TabRiver) 

55.   

56. # To get the name of Reach for the user defined river ID 

57.   

58. NReach, TabReach = None, None 

59.   

60. [_, NReach, TabReach] = hec.Geometry_GetReaches(RivID, NReach, TabReach) 
61.   

62. # To get the number of nodes, list of River stations (RS) and node types (e.g., simple cross- 

sections, bridge, storage area etc.) 

63.   

64. NNod, TabRS, TabNTyp = None, None, None 

65.   

66. [_, _, NNod, TabRS, TabNTyp] = hec.Geometry_GetNodes (RivID, RchID, NNod, TabRS, 

TabNTyp) 

67.   

68. # To get all the water surface profiles 
69.   

70. NProfile, TabProfile = None, None 

71.   
72. NProfile, TabProfile= hec.Output_GetProfiles (NProfile, TabProfile) 

73.   

74. """ 

75. It has been observed that when we interpolate cross-sections (Xs) between 2Xs, the Manning's 

n values for banks and the channel get interchanged for interpolated cross-sections.  

76. Therefore, it is prudent to check Manning's n value after interpolating the Xs.  

77. An easier way to avoid this problem is to set the Manning's n using the below function from the 

HECRAS Controller. 

78. """ 

79.   

80. nLOB = 0.05  # TODO: User-defined nLOB/nROB fixed (for now) 

81. nROB = 0.05  # TODO: User-defined 

82. nCh = 0.0348   # TODO: User-defined. This will change in MC run 

83.   

84. for j in range (NNod):  # Apply new Manning's n values to all cross-sections 

85.     ErrMsg = None 

86.     [_, _, _, _, _, _, _, ErrMsg] = hec.Geometry_SetMann_LChR (TabRiver [0],TabReach [0], 

TabRS [j], nLOB, nCh, nROB, ErrMsg) 

87.      
88. hec.Project_Save ()     # Saving the project after applying Manning’s n  

89.   

90. # Run the desired plan 

91.   

92. NMsg, TabMsg, block = None, None, True 

93.   

94. [_, NMsg, TabMsg, _] = hec.Compute_CurrentPlan (NMsg, TabMsg, block)   

95.   

96. # Saving water level (W.S. Elev) and discharge (Q Total) data of all cross-sections for all time 

steps  

97.   

98. # IDs of output variables are taken from the Appendix E of Goodell (2014): WSE, Total flow in a 

cross-section 

99.   

100. WSE_id, Flow_id = 2, 9 

101.   

102. OutBase_WSE = np.zeros ([NProfile-1, NNod], dtype=float)    # NumPy array for WSE 

103.   

104. OutBase_Flow = np.zeros ([NProfile-1, NNod], dtype=float)    # NumPy array for Total Flow 

105.   

106. for i in range (0, NNod):         # reading over nodes 

107.     if TabNTyp [i] == "":        # An empty string "" denotes a cross-section 
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108.         for j in range (0, NProfile-1): # Reading over profiles # Not saving the max WS profile 

109.             #Reading WSE 

110.             [OutBase_WSE[j,i], _, _, _, _, _, _] = hec.Output_NodeOutput ( 

111.                     RivID, RchID, i+1, 0, j+2, WSE_id 

112.                     ) 

113.   

114.             # Reading Total flow 

115.             [OutBase_Flow [j,i], _, _, _, _, _, _] = hec.Output_NodeOutput ( 

116.                     RivID, RchID, i+1, 0, j+2, Flow_id 

117.                     ) 

118. hec.Project_Close () 

119. hec.QuitRas () 

120.   
121. # Profile plot and stage and flow hydrographs at downstream cross-section  

122.  

123. hec = win32com.client.Dispatch ("RAS507.HECRASController") 

124.  

125. RASProject = os.path.join (os.getcwd (), r'Brent_base\brent_base_EA_data_pris.prj') 

126.  

127. hec.Project_Open (RASProject)   

128.  

129. hec.PlotPF(TabRiver,TabReach) 

130.  
131. hec.PlotStageFlow (TabRiver,TabReach,TabRS[-1])  # TODO: Change TabRS to plot at other 

cross-section  

132.  
133. # ======================================================== 

134. # Section 3: Read observed data (stage/discharge) 

135. # ======================================================== 

136.   

137. Observed_WSE_US = pd.read_csv (os.path.join(os.getcwd (), 

r'brent_costons_lane_hecras.csv'), usecols= ['Stage (ftAOD)']).to_numpy ()  

138.   

139. Observed_WSE_DS = pd.read_csv (os.path.join(os.getcwd (), 

r'brent_hanwell_hecras.csv'),usecols= ['Stage (ftAOD)']).to_numpy ()  

140.   

141. Observed_flow_US = pd.read_csv (os.path.join(os.getcwd (), 

r'discharge_cl_EA_rating_curve.csv'),usecols= ['Discharge (ft3/s)']).to_numpy () 

142.   

143. # ======================================================== 

144. # Section 4: Monte Carlo (MC) simulations initialization 

145. # ======================================================== 

146.   

147. #  # Step-4.1: Defining parameters/variables for MC simulation 

148.   
149. Sim_Q_i = np.array ([], dtype=float)   # Numpy array for simulated initial flow for MC runs. 

150. Sim_nCh = np.array ([], dtype=float)  # Numpy array for Simulated Manning's n for MC runs. 

151.    

152. OutMC_WSE_stable = []            # Empty list to store WSE during each MC run 

153. OutMC_Flow_stable = []           # Empty list to store discharge during each MC run 

154.   

155. Stable_Run = np.array([], dtype=int) # Numpy array to store stable runs 

156.   

157. NMCRuns = 0   

158. StableRuns = 0 

159.   

160. # ======================================================== 

161. # Section 5: Monte Carlo Simulations  

162. # ======================================================== 

163.   

164. while StableRuns < 1000:      # TODO: Define desired number of stable MC simulations 

165.   

166.     # ==================== 

167.     # # Step-5.1: Generate random sample for initial flow and Manning's n 

168.     # ==================== 

169.      

170.     # It is assumed that the initial flow has a uniform distribution 
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171.      

172.     Run_Sim_Q_i = np.random.uniform (70.63, 176.57,1)  # TODO: Initial flow ranges from 

[2.0, 5.0] m3/s. Change accordingly  

173.         

174.     # It is assumed that the Manning's n has a uniform distribution 

175.      

176.     Run_Sim_nCh = np.random.uniform (0.008, 0.045,1) # TODO: Manning's n ranges from 

[0.012, 0.067] s.m^(-1/3). Change range of n as per (Chow, 2006) 

177.      

178.     # Save the base flow and Manning's n for future reference 

179.      

180.     Sim_Q_i = np.append (Sim_Q_i,Run_Sim_Q_i) 

181.      
182.     Sim_nCh = np.append (Sim_nCh,Run_Sim_nCh) 

183.      

184.     # ==================== 

185.     # Step 5.2: Initial condition manipulation at U/S Boundary in each MC simulation 

186.     # ==================== 

187.      

188.     # access and replace initial condition in the flow file (text file: has .u## extension)  

189.         

190.     with open (r'Brent_mc\brent_mc_EA_data_pr.u01', 'r') as f:    # TODO: Change the folder 

and name of unsteady flow file  
191.         filedata = f.readlines() 

192.      

193.     filedata[3] = 'Initial Flow Loc=Brent           ,CL-Han          ,10964.57,' + str(Run_Sim_Q_i 
[0]) +'\n'  # TODO: Change RS when there is change in reach 

194.      

195.     with open (r'Brent_mc\brent_mc_EA_data_pr.u01', 'w') as f:   # TODO: change the folder 

and name of unsteady flow file 

196.         for line in filedata: 

197.             f.write (line) 

198.   

199.     # ==================== 

200.     # Step 5.3: Changing the Manning's n in the HEC-RAS project (here it’s named as  

Brent_mc) 

201.     # ==================== 

202.      

203.     hec = win32com.client.Dispatch ("RAS507.HECRASController")  

204.  

205.     # TODO: Change the path of the model as on your PC 

206.   

207.     RASProject_MC = os.path.join (os.getcwd (), r'Brent_mc\brent_mc_EA_data_pr.prj') 

208.   

209.     hec.ShowRas () 
210.   

211.     # Open HEC-RAS 

212.   

213.     hec.Project_Open (RASProject_MC) 

214.   

215.     nLOB = 0.05     # TODO: User-defined nLOB/nROB fixed (for now) 

216.     nROB = 0.05     # TODO: User-defined 

217.   

218.     # Change Manning's n values of channel at all cross-sections 

219.      

220.     for j in range (NNod): # apply new Manning's n values to all cross-sections 

221.         ErrMsg = None 

222.         [_, _, _, _, _, _, _, ErrMsg] = hec.Geometry_SetMann_LChR (TabRiver [0], TabReach 

[0], TabRS [j], nLOB, Run_Sim_nCh [0], nROB, ErrMsg) 

223.      

224.     # Save the project with the new Manning's n values 

225.   

226.     hec.Project_Save () 

227.   

228.     # ==================== 

229.     # Step 5.4: Running the HEC-RAS MC model 

230.     # ==================== 



81 

 

231.   

232.     hec.Compute_HideComputationWindow () # TODO: 

hec.Compute_ShowComputationWindow() to see computation window. Note that hiding 

computation window reduces run time 

233.   

234.     [NMsg_MC, TabMsg_MC, block] = None, None, True 

235.   

236.     [_, NMsg_MC, TabMsg_MC, _] = hec.Compute_CurrentPlan (NMsg_MC, TabMsg_MC, block) 

237.   

238.     # ==================== 

239.     # Step 5.5: Saving the water level and discharge data for all cross-sections for all time 

steps for stable runs 

240.     # ==================== 
241.     

242.     ## IDs of output variables: WSE, Total flow in a cross-section 

243.     

244.     WSE_id, Flow_id = 2, 9 

245.   

246.     TabWSE_MC = np.zeros([NProfile-1, NNod], dtype=float)    # NumPy array for WSE 

247.      

248.     TabFlow_MC = np.zeros([NProfile-1, NNod], dtype=float)    # NumPy array for Total Flow 

249.   

250.     for i in range (0, NNod):         # reading over nodes 
251.         if TabNTyp [i] == "":        # An empty string "" denotes a cross-section 

252.             for j in range (0, NProfile-1): # reading over profiles # we are not taking the max WS 

profile 
253.                 #Reading WSE 

254.                 [TabWSE_MC [j,i], _, _, _, _, _, _] = hec.Output_NodeOutput ( 

255.                         RivID, RchID, i+1, 0, j+2, WSE_id 

256.                         ) 

257.   

258.                 # Reading Total flow 

259.                 [TabFlow_MC [j,i], _, _, _, _, _, _] = hec.Output_NodeOutput ( 

260.                         RivID, RchID, i+1, 0, j+2, Flow_id 

261.                         ) 

262.   

263.   

264.     # Checking whether the model is stable or not. If modified KGE is >=0, then the model is 

considered to be stable else unstable.  

265.     # Calculating modified KGE by using computed stage/discharge hydrograph and observed 

stage/discharge hydrograph at the downstream boundary        

266.      

267.     mod_kge = 1- (math.sqrt ((pearsonr (TabWSE_MC[:,-1], Observed_WSE_DS [:,0])[0]-

1)**2 + (np.divide (sc.stats.variation (TabWSE_MC[:,-1]),sc.stats.variation 

(Observed_WSE_DS [:,0]))-1)**2 +\ 
268.                         (np.divide (np.mean (TabWSE_MC [:,-1]),np.mean (Observed_WSE_DS 

[:,0]))-1)**2)) 

269.      

270.     if mod_kge>= 0:  # Stable run 

271.      

272.         StableRuns = StableRuns+1 

273.          

274.         OutMC_WSE_stable.append (TabWSE_MC) 

275.      

276.         OutMC_Flow_stable.append (TabFlow_MC) 

277.          

278.         Stable_Run = np.append (Stable_Run, NMCRuns)  # Saving the index of stable runs 

279.         

280.     hec.Project_Close () 

281.     hec.QuitRas () 

282.      

283.     del hec 

284.     del TabWSE_MC 

285.     del TabFlow_MC     

286.      

287.     print ("number of stable runs=", StableRuns) 

288.      
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289.     NMCRuns = NMCRuns + 1 

290.   

291. Run_time = datetime.now () - start 

292. print ("number of MC runs=", NMCRuns) 

293. print ('Run time (hh:mm:ss) =', Run_time) 

294.   

295. # ************************************************************************* 

296. # End of Monte-Carlo Simulations  

297. # ************************************************************************* 

The program presented in Script 1 is divided into five sections. Each section has comments and 

explanations to guide the reader and describe the program in an orderly manner. Additionally, 

the program has "TODO" comments to inform the reader that they can/should edit the 

commented or following line of code. Due to space limitations, the program presented in Script 

1 is not discussed line-by-line. Dysarz (2018) has provided a good description of the Python 

scripting technique, highlighting the differences between VBA (HEC-RAS is VBA-based) and 

Python scripting, the advantages of Python scripting over other languages to control and 

automate HEC-RAS, and has shown three examples of controlling and automating HEC-RAS 

using Python. Therefore, readers are referred to Dysarz (2018) for an in-depth discussion of 

Python scripting. The subroutines and functions of HEC-RAS used in this chapter are well 

documented in Goodell (2014). 

The first section of the script (lines 6-13) imports all the sub-routines and functions of the HEC-

RAS into Python using the Dispatch function of win32com.client module. The second section 

of the script runs a pre-setup unsteady flow hydraulic model (i.e., Brent_base), saves the output 

stage (lines 110–112) and flow (lines 115–117) at all the cross-sections, and plots the water 

surface profiles (line 129) and stage and flow hydrographs (line 131) at the downstream cross-

sections (i.e., River Brent at Hanwell). The plots from the HEC-RAS model run are shown in 

Figures 4.6 and 4.7, respectively. In this example, only the stage and flow outputs have been 

saved. However, the HEC-RAS controller provides access to various other outputs, such as 

average flow velocity, maximum channel depth, and so on. Any of these outputs from the 

model run can be saved similarly by using the RAS ID number from Appendix E of Goodell 

(2014). 
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Figure 4.6:  Water surface profiles (initial and maximum water surfaces) 

 

Figure 4.7: Modelled stage and flow hydrographs at the downstream cross-section 
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The observed stage and flow data of the Brent River are loaded as described in section three of 

the script (lines 137 - 141). The observed data is used to evaluate the performance of 

Brent_base and Brent_mc unsteady flow models. For example, the output or (modelled) stage 

of the Brent_base unsteady flow model is shown in Figure 4.8, along with the observed stage 

at Hanwell. As can be seen, the modelled stage is significantly underestimated. This could be 

due to i) assuming a large value of Manning's n for the reach and ii) assuming a constant value 

of Manning's n for the entire reach.  

 

Figure 4.8: Observed and modelled stages at Hanwell from the Brent_base unsteady flow model  

In Section 4 of Script 1, the MC simulation is initialized. Here, parameters for MC simulations, 

in this example, initial flow and Manning’s n, are defined. Additionally, variables for the total 

number of MC simulations and the total number of stable runs are also defined.  

In Section 5, the statistical distribution of the MC parameters is defined (refer to Step 2 of 

Figure 4.1). For this example, it is assumed that both initial flow and Manning’s n have a 

uniform distribution. A uniform distribution is selected because it does not make any 

assumptions about prior parameter distribution other than specifying a feasible range and scale 

(Freer, Beven & Ambroise, 1996). However, users can assume any other distribution as per 

their requirements. Then, in each MC simulation, an initial flow and Manning’s n value are 

randomly sampled (refer to Step 5.1). Then the randomly sampled parameters are updated in 

subsequent steps. The unsteady flow file of Brent_mc is edited to update the initial flow (refer 
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to Step 5.2). The unsteady flow file of the HEC-RAS is a text file (ASCII). The code presented 

in Step 5.2 is a simple way of reading and writing text files in Python and can be used to change 

the boundary condition of the unsteady flow model as well. After the initial flow has been 

updated in the unsteady flow file, the HEC-RAS project (or Brent_mc model) is opened and 

the randomly sampled Manning’s n is applied to all the cross-sections using the 

Geometry_SetMann_LChR function (refer to Step 5.3). It should be noted that, in this example, 

it is assumed that Manning’s n is spatially constant. Once the randomly sampled initial flow 

and Manning’s n are updated in the Brent_mc model, the model is saved and then run (refer to 

Step 5.4). Here, the computation window of the HEC-RAS is hidden (line 232) because it was 

observed that hiding the computational window reduced the run time by half. This is very 

important because more than a thousand runs were implemented during MC simulations. The 

output stage and flow of each MC simulation are saved for model performance analysis (as 

discussed in heading 2). It was observed that model runs having a negative value of KGE were 

generally the results of unstable runs. Therefore, a criterion of stability was applied to save 

only those outputs where modified KGE at the downstream end is greater than equal to zero. 

The stability criterion saves computational space and time. Once all the MC simulation runs 

are completed, the outputs are saved, and the MC simulation is terminated. It should be noted 

that due to an internal bug in HEC-RAS version 5.0.7 and older, certain functionality of HEC-

RAS, e.g., working with DSS files, did not work when the project was in the SI system of units 

(Kleinschmidt, 2019). Therefore, all the HEC-RAS simulations were carried out in US 

customary units and later converted to SI units.  

In this example, the model is run until 1000 stable runs are obtained (as defined in line 164), 

i.e., runs having a KGE greater than or equal to zero. It is important to note that, if the 

parameters are randomly sampled from a uniform distribution, there are no clear guidelines for 

the minimum number of necessary runs or a stopping criterion (Pappenberger et al., 2005a). 

The minimum number of runs is dependent on the number of parameters varied and the 

parameter ranges chosen. In addition, the minimum number of runs required should be able to 

adequately sample the parameter space, which is difficult to determine a priori. However, when 

the parameters are normally distributed, a stopping criterion defined by the mean of the 

sampled parameter space can be used to terminate the MC simulation (for example, Dottori, 

Martina & Todini, 2009; Goodell, 2014).  
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After the MC simulation was completed, the results were analysed using the performance 

criterion. The set of Manning’s n and initial flow for which the KGE was highest was chosen 

as the calibrated values. All the sampled Manning’s n and initial flow were plotted against the 

modified KGE, shown in Figures 4.9 and 4.10. The calibrated values of Manning’s n and initial 

flow are shown by the red line in Figures 4.9 and 4.10. Figure 4.11 shows all the simulated 

stage hydrographs from MC simulations (grey line), the observed stage hydrograph (blue line) 

and the stage hydrograph corresponding to the calibrated values or maximum KGE at the 

downstream of the river Brent (i.e., at Hanwell station).  

 

Figure 4.9: Modified KGE for different Manning’s n (assumed constant throughout the channel reach 

length) for the river Brent.  

From Figure 4.11, it can be inferred that the calibrated values of Manning’s n and initial flow 

are not able to simulate the peaks of the observed stage hydrograph, as there is a significant 

difference in the peaks of the observed and simulated stage hydrographs (see red and blue 

lines). Another thing to note is that most of the simulated stage hydrographs are far below the 

observed stage hydrograph (i.e., underestimating the observed stage). This can be due to 

different initial flow conditions in different MC runs, misrepresentation of channel geometry, 

or because of constant Manning's n assumption since the channel reach is greater than 3 

kilometres. Upon investigation, it was found that the separation was caused by Manning's n 
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assumption that it was constant throughout the channel reach. This is discussed in detail in 

Script 2, where the spatial variation of Manning's n along the channel reach is considered.  

 

Figure 4.10: Modified KGE for different Initial flow for the river Brent 

 

Figure 4.11: Observed (blue), all simulated stages (grey) and simulated stage for maximum KGE value 
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Script 2: Calibrating Manning’s n (heterogenous) and initial flow of an unsteady 

hydraulic model  

1. # ========================================================== 

2. # Section 4: Monte Carlo (MC) simulations initialization 

3. # ========================================================== 

4.   

5. #  # Step-4.1: Defining variables 

6.   

7. Sim_Q_b = np.array ([],dtype=float) # Numpy array for Simulated Baseflow/Initial flow for MC 

Runs. 

8. Sim_nCh = np.array ([],dtype=float) # Numpy array for Simulated Manning's n for MC Runs. 

9. Sim_nCh1 = np.array([],dtype=float) # Numpy array for Simulated Manning's n for MC Runs. 

10.   

11. OutMC_WSE_stable = []   # Empty list to store WSE during each MC run 

12. OutMC_Flow_stable = []  # Empty list to store Flow during each MC run 

13.   

14. Stable_Run = np.array ([],dtype=int)  # Numpy array to store stable runs 
15.   

16.   

17. NMCRuns=0   
18. StableRuns = 0 

19.   

20. # ========================================================== 

21. # Section 5: Monte Carlo Simulations  

22. # ========================================================== 

23.   

24. while StableRuns < 1000:      # TODO: Define number of stable runs required 

25.   

26.     # ==================== 

27.     # # Step-5.1: Generate sample for Initialflow and Manning's n 

28.     # ==================== 

29.      

30.     Run_Sim_Q_b = np.random.uniform(17.657,105.94,1)  # TODO: [0.5, 3.0]: m3/s in CFS    

31.      

32.         

33.     Run_Sim_nCh = np.random.uniform(0.008,0.045,1) # TODO: Change range of n if needed , 

Creating Simulated Manning's n for MC Runs. 

34.     Run_Sim_nCh1 = np.random.uniform(0.008,0.045,1) # TODO: Change range of n if needed , 

Creating Simulated Manning's n for MC Runs. 

35.      

36.     ''' Uniformly distributed Manning's n with lower limit = 0.02 and upper limit = 0.035 (user 

defined)''' 

37.      

38.      

39.     # Save the base flow and Manning's n for future reference 

40.      

41.     Sim_Q_b = np.append(Sim_Q_b,Run_Sim_Q_b) 

42.     Sim_nCh = np.append(Sim_nCh,Run_Sim_nCh) 

43.     Sim_nCh1 = np.append(Sim_nCh1,Run_Sim_nCh1) 
44.      

45.    # ==================== 

46.     # Step 5.2: Initial condition manipulation at U/S Boundary in each MC run 

47.     # ==================== 

48.  

49.     # Same as Script 1 

50.    

51.  

52.     # ==================== 

53.     # Step 5.3: Changing the Manning's n in the HEC-RAS project: MC model - 1 

54.     # ==================== 

55.      

56. hec = win32com.client.Dispatch ("RAS507.HECRASController") # Dispatch imports all the sub-

routines and functions of hec-ras to python     

57.     

58.     # TODO: Change the path of the MC_model_1 as on your PC 



89 

 

59.   

60.     RASProject_MC = os.path.join(os.getcwd(),r'Brent_mc\brent_mc_EA_data_pr.prj') 

61.   

62.     hec.ShowRas() 

63.   

64.     # Open HEC-RAS 

65.   

66.     hec.Project_Open(RASProject_MC) 

67.   

68.    

69.     nLOB = 0.05 # TODO: User-defined nLOB/nROB fixed (for now) 

70.     nROB = 0.05 # TODO: User-defined 

71.   
72.  # Apply new Manning's n values to all cross-sections in first half of the reach 

73.  

74.     for j in range(int(NNod/2+1)):  

75.         ErrMsg = None 

76.         [_, _, _, _, _, _, _, ErrMsg] = hec.Geometry_SetMann_LChR(TabRiver[0],TabReach[0], 

TabRS[j], nLOB, Run_Sim_nCh[0], nROB, ErrMsg) 

77.      

78.  # Apply new Manning's n values to all cross-sections in second half of the reach 

79.  

80.     for j in range (int (NNod/2),NNod):  
81.         ErrMsg = None 

82.         [_, _, _, _, _, _, _, ErrMsg] = hec.Geometry_SetMann_LChR(TabRiver[0],TabReach[0], 

TabRS[j], nLOB, Run_Sim_nCh1[0], nROB, ErrMsg) 
83.      

84.   

85.     # Save the project with the new Manning's n values 

86.   

87.     hec.Project_Save () 

88.   

Script 2 is the same as script 1, except it allows Manning’s n to vary across the channel. In this 

example, it is assumed that the first half of the channel (i.e., from upstream to mid-stream) has 

one value of Manning’s n (the river reach passes through a park and an undeveloped area) and 

that the second half of the channel (i.e., from mid-stream to downstream) has another value of 

Manning’s n (the river reach is in an urban area). It should be noted that the method presented 

in this script can be used to apply different Manning’s n values to different cross-sections as 

well. However, such high variability in Manning’s n rarely occurs in nature. Furthermore, it is 

impractical to vary Manning's n with adjacent cross-sections. Therefore, it is not presented 

here. 

There are only a few new lines of code in section 4 (line 9) and section 5 (lines 34, 43, 72–83), 

which are used to vary Manning’s n values along two halves of the channel reach. Once the 

MC simulations were completed, the results were analysed using the performance criterion and 

a similar analysis was carried out to find the calibrated values of Manning’s n and initial flow. 

Figure 4.12 shows, that the first half of the river Brent reach (i.e., upstream to mid-stream) has 

a higher value of Manning’s n than that of the second half of the reach. The calibrated values 
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of Manning’s n for the sub-reaches are 0.0368 and 0.0621 s.m(-1/3) for the first and second 

halves respectively and the calibrated value of initial flow is 2.64 m3/s (refer to Figure 4.13). 

 

Figure 4.12: Modified KGE for different Manning’s n for the river Brent; LHS) upstream to mid-stream 

and RHS) mid-stream to downstream. 

Figure 4.14 depicts all the simulated stage hydrographs from MC simulations (grey line), the 

observed stage hydrograph (blue line), and the stage hydrograph corresponding to the 

calibrated values (or maximum KGE) at the river Brent's downstream (i.e., at Hanwell station). 

Notably, when two distinct sets of Manning's are assumed for the channel reach, the simulated 

stage hydrograph (red line in Figure 4.14) corresponding to calibrated Manning's n and initial 

flow closely matches the observed stage hydrograph downstream station of the river Brent (i.e., 

at Hanwell station).  
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Figure 4.13: Modified KGE for different Initial flow for the river Brent 

 

 

Figure 4.14: Observed (blue), all simulated stages (grey) and simulated stage for maximum KGE value 
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4.3.3 Example 2 – Scenario analysis 

By randomly sampling from a set of possible inputs, the MC simulations account for the 

observed variability in critical inputs and attempts to replicate reality. This example illustrates 

how to use MC simulations to generate multiple flood depth scenarios by creating an ensemble 

of upstream stage or flow inputs. This is advantageous for flood mitigation studies because it 

enables the identification of all possible flood inundation scenarios through the generation of 

thousands of plausible synthetic events (or inputs) (Babister et al., 2016a).  

Model-1 is used in this example. A flow hydrograph, generated using equation 4.5, is used as 

the upstream boundary condition. An ensemble of upstream boundary flow hydrographs is then 

created by perturbing these upstream boundary conditions, to generate all plausible flood 

depths at the downstream boundary. The ensemble of upstream flow hydrographs is created by 

changing the values of peak flow (𝑄𝑝) and base flow (𝑄𝑏) in equation 4.5. Here, as in Example 

1, it is assumed that peak flow and base flow have a uniform distribution. It should be noted 

that the time to peak, in equation 4.5, can also be varied to increase upstream flow hydrograph 

samples. However, to save computational time and space, the time to peak is kept constant for 

this example. After an upstream flow hydrograph is generated, it is then updated in the 

hydraulic model flow file (.u##) during each MC simulation (lines 39-57).  

HEC-RAS provides two file types to store hydraulic model flow files. One is an ASCII file 

type, as shown in Example 1 to calibrate the initial flow, and the other one is a DSS (Data 

Storage System) file type. DSS (or HEC-DSS) is a database system that is typically used to 

store and retrieve sequential scientific data, such as time series data, curve data, spatially 

oriented gridded data, and so on (USACE, 2009). The system was designed to make data 

retrieval and storage simple for users and application programs. In this example, the DSS file 

type is used to input the upstream boundary as this file type can handle large volumes of data 

and can be manipulated using Python. Manipulation of the DSS file type using Python has not 

been discussed in any of the previous studies (Dysarz, 2018; Leon & Goodell, 2016b). Here, I 

have used Pydsstools (Basyal et al., 2019) and HEC-DSSvue (USACE, 2009) to manipulate 

the DSS file type. It should be noted that due to an internal bug in HEC-RAS version 5.0.7 and 

older, working with DSS files, did not work when the project was in the SI system of units. 

Therefore, US customary units were used while setting up the unsteady flow model.  
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Script 3: Flood depths scenario analysis 

1. # ========================================================== 

2. # Section 1: Generating multiple upstream flow boundary Conditions to be used in MC 

simulations 

3. # ========================================================== 

4.   

5. NMCRuns = 4000    # TODO: User defined 

6.   

7. # # Step-1.1: Generate MC samples for Base Flow and Peak flow 

8.   

9. Sim_Q_b = np.random.uniform(1765.75,8828.75, NMCRuns)  # TODO: [50, 250] m3/s in CFS   

# True base flow = 100 m3/s 

10. Sim_Q_p = np.random.uniform(26486.25,35315.0, NMCRuns)  # TODO: [750, 1000] m3/s in 

CFS  # True peak flow = 900 m3/s 

11.   
12. ''' Uniformly distributed Base flow with lower limit = 1765.75 and upper limit = 8828.75 (user 

defined)''' 

13. ''' Uniformly distributed Peak flow with lower limit = 26486.25 and upper limit = 35315.0 (user 
defined)''' 

14. ''' 

15. Q (t) = Qb + (Qp - Qb) * [(t/Tp)* exp {1-(t/Tp)}]**16 

16.   

17. ''' 

18.   

19. # Time step for flow hydrograph. To be consistent with the one used in Base model run 

20.   

21. T_p = 24   # TODO: Time to peak (hour); change this as per required 

22. t_int = 5 # TODO: time interval of hydrograph (min); change as required according to Base 

model 

23. t_min = np.arange (0,T_p *3*60 + t_int, t_int) # time in minute 

24. t_hr = np.divide (t_min, 60) 

25.   

26. Sim_Q = np.zeros((len(t_hr),NMCRuns), dtype=float) 

27. Sim_WSE_US = np.zeros((len(t_hr),NMCRuns), dtype=float)    # NumPy array for U/S WSE 

28. Sim_WSE_DS = np.zeros((len(t_hr),NMCRuns), dtype=float)    # NumPy array for D/S WSE 

29.   

30.   

31.   

32. for mc in range (NMCRuns): 

33.   

34. # # Step-1.2: Generate U/S flow hydrograph for MC runs 

35.   

36.     for i in range(len(t_hr)): 

37.         Sim_Q[i,mc] = Sim_Q_b[mc] + (Sim_Q_p[mc] - Sim_Q_b[mc]) * ((np.divide(t_hr[i], 

T_p)) * math.exp (1-(np.divide(t_hr[i],T_p))))**16 

38.   

39. # # Step-1.3: DSS Manipulation for changing U/S boundary flow hydrograph 

40.   

41.     dss_file = "US_flow_hyd_fps_model_1.dss" 

42.   

43.   

44.     pathname = "/RIVER-1/REACH-1/FLOW HYDROGRAPH/" + TabProfile[1][:-5] + "/5MIN/" + 

TabRS[0] + "/" # TODO: change time interval 

45.     tsc = TimeSeriesContainer() 

46.     tsc.pathname = pathname 

47.     tsc.startDateTime = TabProfile[1] 

48.     tsc.numberValues = NProfile-1 

49.     tsc.units = "CFS" 

50.     tsc.type = "INST" 

51.     tsc.interval = 5                     # TODO: 1 = 1 hour interval hydrograph, change to 5 for 5 min 

and so on  

52.     tsc.values = Sim_Q[:,mc] 

53.     fid = HecDss.Open(dss_file) 

54.     fid.deletePathname(tsc.pathname) 

55.     fid.put_ts(tsc) 
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56.     ts = fid.read_ts(pathname) 

57.     fid.close() 

58.   

59.  # # Step-1.4: Run HEC-RAS model and save outputs. Here, U/S and D/S stage hydrographs 

are saved 

60.   

61.     RASProject_BCK = os.path.join (os.getcwd (),r'Model-1\model_1_fps.prj') 

62.   

63.     hec.ShowRas () 

64.   

65.     hec.Project_Open (RASProject_BCK) 

66.   

67.     hec.Compute_HideComputationWindow () 
68.   

69.     [NMsg, TabMsg, block] = None, None, True 

70.   

71.     [_, NMsg, TabMsg, _] = hec.Compute_CurrentPlan (NMsg, TabMsg, block) 

72.   

73.   

74.     for j in range (0, NProfile-1): # reading over profiles # we are not taking the max WS profile 

75.          

76.         #Reading D/S WSE 

77.         [Sim_WSE_DS[j,mc], _, _, _, _, _, _] = hec.Output_NodeOutput (RivID, RchID, NNod, 0, 
j+2, WSE_id) 

78.   

79.   
80.     hec.Project_Close () 

81.     print (mc) 

82. hec.QuitRas () 

83.   

 

Flood depths or stage hydrographs corresponding to all the upstream flow hydrograph is saved 

in each MC simulation. Figure 4.15 shows all the possible flood depths at downstream of 

Model-1. These flood depths can be used to prepare probabilistic flood inundation maps.  

It is important to note that using the DSS file type has additional benefits, for example, 

including, and updating internal boundary conditions, which is difficult with the ASCII file 

type. In HEC-RAS, a known stage hydrograph and/or a flow hydrograph can be used as an 

internal boundary condition to force a known stage and/or flow for part or all of the simulation. 

Furthermore, the DSS file type will be easy to handle if any user seeks to explore the impact 

of error in upstream and/or internal boundary conditions on downstream flow depths or overall 

model performance following the approach illustrated in Example 2. 
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Figure 4.15: Plausible flood depths at the downstream boundary 

4.3.4 Example 3 – Sensitivity and uncertainty analysis 

Different river flow models represent the modelled system from a variety of perspectives and, 

inevitably, are imprecise representations of reality (Loucks & van Beek, 2017). Regardless of 

the model chosen, the primary source of error in any river modelling is the uncertainty 

associated with determining model parameters (e.g., Manning’s n, channel geometry 

approximation)  due to a mismatch between model complexity and available data (Devak & 

Dhanya, 2017; dos Reis et al., 2020).  

Sensitivity analysis techniques aid in identifying parameters that have a significant effect on 

the model outputs and thus on the model response, while uncertainty analysis techniques aid in 

quantifying the output variability caused by input variability (Loucks & van Beek, 2017). 

Various methods are available to perform sensitivity and uncertainty analysis of river flow 

modelling processes. MC simulation is a widely used method for the same. Here, an additional 

example is not shown, rather results from Example 1 are interpreted to explain sensitivity and 

uncertainty analysis as the approach is similar.  

Let us suppose that we want to see the impact of uncertainties in initial flow and Manning’s n 

on model output (output stage evaluated with a modified KGE performance measure). From 
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Figures 4.10 and 4.13, we can infer that model output (or output stage) is not sensitive to initial 

flow as there is no visible pattern between sampled initial flows and the output stage in these 

plots. However, Figures 4.9 and 4.12 show that model output is  sensitive to Manning’s n as 

there is a clear visible pattern between KGE and Manning’s n samples.  

 

Figure 4.16: Change in root mean square error of river depth at downstream boundary with varying 

channel Manning’s roughness coefficient. LHS) upstream to mid-stream and RHS) mid-stream to 

downstream. 

In Figure 4.9 and LHS of 4.12, KGE increases with an increase of Manning’s n value and then 

decreases after reaching an optimal point, which is similar to the result obtained by 

Pappenberger et al. (2005b). However, in the RHS of Figure 4.12, KGE increases with an 

increase in Manning’s n value, showing the variability of Manning’s n along the channel reach. 

Figure 4.16 shows the effect of channel Manning’s roughness coefficient on the error in river 

depth at the downstream boundary. It can be seen that in the case of upstream-midstream river 

reach, the error in channel depth is increasing with the increase in Manning’s roughness 

coefficient. However, in the case of the mid-stream to downstream river reach, the error in 

channel depth is decreasing with an increase in Manning’s roughness coefficient. This result 

can be used to quantify the uncertainty in Manning’s roughness on output channel depth in 

both the river reaches.  
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4.4 Common errors encountered 

a)  

 

b) 

Figure 4.17: Errors encountered while running Monte-Carlo simulations. a) System out of memory 

exception, and b) No more threads can be created in the system  

Errors shown in Figure 4.17 (a) and (b) relate to excessive consumption of computational 

resources when HEC-RAS is run for a long duration during Monte-Carlo simulation (e.g., >10 

days). Both errors can be overcome by deleting and initializing the dispatch in each loop as 

shown in Table 4.3.  Furthermore, using .dss files to give upstream/downstream boundaries 

does not work with SI units. It is therefore necessary to use US customary units when working 

with .dss files. 
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Table 4.3: Script to overcome the errors shown in Figure 4.17 

for loop:   

hec = win32com.client.Dispatch ("RAS507.HECRASController")  

‘Body of code’  

del hec  

end of loop 

4.5 Conclusions  

This chapter describes Python scripts, along with examples, for implementing Monte Carlo 

simulations in HEC-RAS. Example 1 discusses the use of MC simulations to calibrate unsteady 

flow models. This example presents two cases of unsteady flow model calibration: 1) 

Manning's n is constant throughout the channel reach and 2) Manning's n varies in the reach. 

This example can be used to calibrate an ungauged river section and estimate river discharge 

using stage data alone. The approach demonstrated in Example 1 can also be used to calibrate 

steady flow models. The second example demonstrates how MC simulations can be used to 

analyse all plausible flood depth scenarios. Additionally, it demonstrates the handling of DSS 

files and their benefits, which were not included in previous studies. Example 2 can be extended 

to include error analysis to ascertain the effect of input parameter errors on model outputs. 

Finally, Example 3 demonstrates how to apply MC simulations to sensitivity and uncertainty 

analysis. Additionally, this chapter also includes a list of errors encountered during this study 

and the solutions adopted. It is worth noting that a complex model completed the MC 

simulations successfully in 37 days after the error was rectified. 

MC simulations are especially advantageous when alternative approaches are difficult or 

impossible to implement, as they always work regardless of the model's complexity (Signoret 

& Leroy, 2021). With growing computational power and efficiency, this method is being 

increasingly used to solve difficult physical and mathematical problems. Using Python scripts 

to perform MC simulations in HEC-RAS opens new opportunities in river flow modelling, 

water management, river engineering, and flood risk management as both are open-source 

application programs and Python has a diverse range of functionality. The application of the 

Python script is not limited to the examples presented in this chapter. The scripts can be 

extended for additional purposes, such as sediment studies, probabilistic flood inundation 

mapping, optimization of hydraulic structures, etc.  
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5 Using a network of water level sensors for 

dynamic river discharge estimation 

River discharge data is essential for river and water management strategies and for coping with 

water-related hazards such as floods. One of the most common methods for continuous 

automatic discharge measurement is based on water level observations, which are converted to 

discharge using a rating curve. However, obtaining and maintaining accurate rating curves is a 

major challenge, especially in rivers in which the relationship between water level and 

discharge is dynamic. This chapter addresses this issue by presenting a novel methodology for 

dynamic river discharge estimation using synchronous measurement of stage data from an 

array of sensors along a river reach. The proposed technique utilises only stage data from 

multiple sensors to calibrate unsteady flow parameters, in particular, Manning’s roughness 

coefficient and initial flow, and estimate river discharge. The shallow water equations of river 

flow are solved in the full dynamic waveform for unsteady flow parameter calibration and 

dynamic discharge estimation. Here, I use the popular river flow analysis software HEC-RAS 

to obtain a unique solution to the shallow water equations. This methodology is then applied 

to several idealised rivers with various channel and flow conditions. The methodology was also 

tested on a kilometer-long stretch of the Wandle River in London, the United Kingdom. A 

sensitivity analysis was performed to evaluate the impact of measurement error in stage data 

on discharge estimation and the robustness of the developed methodology. The results indicate 

that the methodology can be applied to both prismatic and natural channels, as well as channels 

with the lateral flow, and can be used to develop rating curves at ungauged sites. 
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5.1 Introduction 

The discharge of a river is the total volume of water flowing through a river channel at any 

given point. Various methods exist for the quantitative estimation of river discharge. As direct 

measurements of river discharge are impractical in most conditions, indirect methods are often 

used. One of the most accurate indirect methods is the velocity-area method, which involves 

multiplying the flow area of water in a river cross-section by the average velocity of water in 

that cross-section (Herschy, 2008). In this method, current meters are employed to determine 

the average velocity of water in a cross-section. Advanced equipment such as Acoustic Doppler 

Current Profilers (ADCP) and Acoustic Doppler Velocimeters (ADV), which are based on 

measuring the Doppler shift of the backscattered acoustic signal reflected by the solid particles 

moving within the stream flow, are being increasingly used to obtain the velocity profile of 

water in a cross-section (Morlock, 1996; Mueller, 2003; Kim, 2012; Shope et al., 2013). Both 

current meters and ADCPs should be in contact with the water surface to measure velocity. 

Therefore, using these poses safety concerns for operators when flow depth can vary 

significantly. Additionally, the measurement is manual and time-consuming; therefore, it is 

carried out only a limited number of times in a year, mostly during low flow conditions 

(Bonacci, 1983; Hauet, Creutin & Belleudy, 2008). In recent years, image-based methods such 

as large-scale particle image velocimetry (LSPIV), particle tracking velocimetry (PTV) (Tauro, 

Petroselli & Grimaldi, 2018) and radar-based methods such as surface velocity radars (SVRs) 

(Romeiser et al., 2007; Welber et al., 2016) are used for non-contact measurement of river 

velocity. In the image-based method, tracer particles are introduced into the river, and, for 

sufficiently small particles, it is assumed that the flow dynamics are valid. The water with 

suspended particles is illuminated in the images. The movement of the illuminated particles, 

using either an Eulerian or Lagrangian approach, in the subsequent images is used to estimate 

the surface velocity of the water (Tauro, Piscopia & Grimaldi, 2017). Radar sensors emit radio 

waves that are reflected by floating debris and received by the sensor. This information is used 

to measure the surface velocity. Both image and radar methods estimate the surface velocity 

and require additional processing and assumptions to determine the average velocity. Also, 

using the right tracers, lighting conditions, and image processing procedures is important for 

image-based methods to give accurate quantitative information (Fujita, Muste & Kruger, 1998; 

Jodeau et al., 2008). These constraints limit the application of the above approaches to niche 

users. 
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Because of the aforementioned limitations and challenges, continuous river discharge 

measurement using the velocity method is practically infeasible. Therefore, empirically 

developed stage-discharge relations (or Rating curves) are used to measure discharge at most 

gauging stations around the world (Spada et al., 2017b). However, using rating curves is 

fraught with difficulties, including: 

- rating curves are mostly suitable for steady flows and unsteady flows that show 

kinematic behaviour - usually corresponds to rivers with steep bed slopes (>10−3) 

(Dottori, Martina & Todini, 2009) 

- rating curves need to be updated regularly due to changes in hydraulic resistance and 

channel geometry (Bakry, Gates & Khattab, 1992; Burguete et al., 2007), 

- hysteresis or loop in the rating curve can cause an error in discharge estimation during 

unsteady flow because for the same river stage, discharge in the rising limb of the 

hydrograph is higher than that in the falling limb (Chow, 2006; Spada et al., 2017b), 

- extrapolation error when estimating for low or high flows – error in discharge can reach 

up to 200% (Kiang et al., 2018). 

Furthermore, because of the hysteresis effect during unsteady flow, peak discharge occurs 

before the peak stage. Therefore, if a hydrologic model is calibrated using discharge derived 

from the steady flow rating curves, then the time of peak discharge in the model will be wrong. 

Past studies have found that the delay in the time to peak for rivers with very mild slope 

(Dottori, Martina & Todini, 2009)Dottori, Martina & Todini, 2009). 

To partially overcome the limitations of steady flow rating curves and estimate the unsteady 

flow discharge, recent studies (Aricò, Nasello & Tucciarelli, 2009; Aricò et al., 2011; Spada et 

al., 2017a; Harlan et al., 2021) have developed discharge estimation methods based on 

hydraulic routing or modelling. The hydraulic routing methods are based on the measurement 

of stage data from two water level sensors located at the ends of a selected river reach and the 

application of unsteady flow hydraulic modelling (solves governing equations or shallow water 

equations (SWE) of river flow). Most studies (for example, Birkhead & James, 1998; 

Franchini, Lambert & di Giammarco, 1999; Moramarco & Singh, 2001) have developed simple 

models to link stage data at downstream locations with discharge and rating curve data at the 

upstream river reach location. Birkhead & James (1998) method uses the classical Muskingum 

routing method to relate upstream flow to concurrent downstream stage hydrograph. The 
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authors assumed a one-to-one relationship between stage and discharge at a river location 

during unsteady flow; therefore, Moramarco & Singh (2001) concluded that this method was 

insufficient for unsteady flow discharge measurement. Franchini, Lambert & di Giammarco 

(1999) proposed an alternative technique for synthesising the rating curve at an ungauged site. 

The method employs a different formulation of the variable parameter Muskingum-Cunge 

method with a particular parameterization scheme to account for the space-time dynamics of 

the flood wave. Moramarco et al. (2005) noted that the estimation of nine parameters makes 

this method cumbersome to employ. Both the Birkhead & James (1998) and Franchini, 

Lambert & di Giammarco (1999) methods are of limited utility because they were developed 

based on a one-to-one relationship between stage and discharge and involve the estimation of 

numerous parameters using limited observed data. Dottori, Martina & Todini (2009) uses two 

gauged sections to estimate both the water depth and the water level gradient and to compute 

the corresponding discharge based on the assumption of zero local inertia. To apply this 

method, the distance between the sections must be large enough to permit accurate estimation 

of the water level gradient but short enough to assume negligible lateral inflows. Because of 

this and the requirement for an assumed Manning’s roughness coefficient, this method is 

difficult to apply in the field. 

More recently, Perumal et al. (2007), Aricò, Nasello & Tucciarelli (2009), and Aricò et al. 

(2010) developed and applied their flow routing algorithms to calibrate unknown Manning’s 

roughness coefficient of the riverbed and estimate unsteady flow river discharge. Perumal et 

al. (2007) employ the variable parameter Muskingum stage hydrograph (VPMS) (Perumal, 

1994a, 1994b) method to solve SWE and route an upstream stage to downstream locations. 

The VPMS method solves the diffusive form of SWE; that is, it includes the water depth 

gradient terms in the momentum equation but adopts a Muskingum numerical scheme. This 

results in the lack of a downstream boundary condition, which prevents the application of this 

methodology in the case of subcritical flow. Aricò, Nasello & Tucciarelli (2009), like Perumal 

et al. (2007), solve the SWE in diffusive form. However, it uses stage data from three water 

level sensors to calibrate Manning’s roughness coefficient and estimate river discharge in the 

case of subcritical flow. Besides these studies, the discharge estimation from Dense Arrays of 

Pressure Transducers (DAPT) (Harlan et al., 2021) and Continuous Slope Area (CSA) (Lee, 

Firoozfar & Muste, 2017; Muste, Bacotiu & Thomas, 2019) methods have also been recently 

developed. Both these methods estimate reach-averaged discharge like Durand et al. (2014). 

The DAPT method uses a Bayesian discharge algorithm (Hagemann, Gleason & Durand, 2017) 
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developed for the upcoming Surface Water Ocean Topography satellite (SWOT) to estimate 

discharge, whereas the CSA method uses a modified form of the traditional slope area (Smith, 

Cordova & Wiele, 2010) approach. Both the DAPT and the CSA methods solve SWE in 

restricted form and require discharge values to estimate Manning's roughness coefficient. In 

addition, the authors reported that the CSA method underestimates the peak discharge by 30–

40% and concluded that further research is required before its application in the field. 

All of the above-mentioned methods (a) solve SWE in conservative form, (b) are most suitable 

for prismatic channels with no lateral flow thus reducing the possibilities for operational 

applications, (c) require one flow value, and (d) assume Manning’s roughness or calibrate it by 

using observed stage data from two or three gauging locations. Although stage data from two 

or three gauging locations are theoretically sufficient to calibrate Manning’s roughness, in 

practice error margins are still high due to the sub-optimal positioning of gauging stations or 

sensors, and the coarse temporal resolution of existing measurement networks. 

Therefore, this study hypothesises that a larger network of high-frequency water level sensors 

allows for (1) better calibration of hydraulic parameters and 2) estimating unsteady flow 

discharge dynamically. 

I tested this hypothesis using a network of more than 3 water level sensors operating at a one-

minute and five-minutes frequency. The stage data from this network is used to constrain the 

unsteady flow hydraulic model set up in HEC-RAS and to extract the rating curve from the 

model simulations. This configuration is then applied to both an idealised river simulation and 

a real-world case study on the Wandle River in South London. For both case studies, I 

implement a sensitivity analysis to determine the relative impact of the observations and the 

hydraulic model on unsteady flow parameter calibration and discharge estimation. For the 

Wandle River, the results are also compared to the operational rating curve obtained by the 

Environment Agency of England and Wales. 
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5.2 Methodology 

5.2.1 Hydraulic modelling approach 

Our discharge estimation approach is based on a hydraulic model simulation of the river reach 

of interest using shallow water equations, which is constrained using data from the array of 

water level sensors. This involves two steps. First, the hydraulic model parameters of unsteady 

river flow are calibrated, and then the calibrated model is used to estimate the unsteady flow 

discharge dynamically. 

In contrast to previous research (Aricò, Nasello & Tucciarelli, 2009; Perumal et al., 2010; 

Sahoo et al., 2014; Barbetta, Moramarco & Perumal, 2017), I did not develop a numerical 

scheme to solve SWE but instead used the existing river flow analysis software HEC-RAS 

(Hydrologic Engineering Centre – River Analysis System) as an SWE solver. HEC-RAS 

(Brunner et al., 2016) is a widely used river flow modelling software that has the following 

advantages: 

▪ it solves the SWE in full form 

▪ it can be used to model both prismatic and natural channels,  

▪ it provides functionality to incorporate river reach with lateral flow and 

▪ users can access additional functionality such as steady flow discharge estimation, flood 

inundation modelling or others as required.  

A hydraulic model of unsteady flow in the HEC-RAS has two main parameters that need to be 

calibrated: a) Manning’s roughness coefficient and b) initial flow of the model. Here, I 

implement a Monte Carlo method (Fryer & Rubinstein, 1983; Babister et al., 2016) (refer to 

section 2.6 for further details). A Python script has been developed to implement the Monte 

Carlo method for calibrating hydraulic model parameters and controlling and automating HEC-

RAS simulations (refer to chapter 4).  
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5.2.2 Sensor setup 

 

Figure 5.1: Schematic of a sensor network along a river reach 

This method estimates the unsteady flow discharge at an ungauged location of a river using 

only river stage data from a network of sensors (refer to Figure 5.1). To estimate the unsteady 

flow discharge, the governing equations of river flow (or SWE) are solved in full form, i.e., 

including all the terms in the momentum equation 2.2. To solve the SWE using only stage data, 

channel geometry, Manning’s roughness coefficient, initial condition (or discharge at t=0), and 

boundary conditions at the two ends (upstream and downstream) of a river reach are required. 

Therefore, first, an unsteady flow hydraulic model of a river reach (as seen in Figure 5.1) is set 

up in HEC-RAS. For setting up the model, the channel geometry of the river is required. In this 

study, channel geometry is either assumed to be prismatic or extracted from a high-resolution 

digital elevation model (DEM) of the river or a bathymetry survey of the channel. Stage 

hydrograph data is used as the upstream boundary condition, and normal depth (or average bed 

slope at the downstream boundary) is used as the downstream boundary condition.  

Now unknown is the initial condition, Manning’s roughness coefficient, and river discharge at 

all the nodes of the hydraulic model. Since there are too many unknowns for a unique solution 

to the SWE, a two-step procedure has been adopted to solve the SWE and estimate the river 

discharge. In the first step, the initial condition and Manning’s coefficient of the channel are 

calibrated by employing the Monte Carlo method and using known river stage data from a 

network of sensors (such as Figure 5.1). Then, in the second step, the calibrated initial condition 

and Manning’s roughness coefficient are used to estimate the river discharge dynamically.    
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5.2.3 Model calibration 

The Monte Carlo method is used for the calibration of Manning’s roughness and initial 

condition (or initial flow) (refer Figure 5.2). To implement the Monte Carlo method, at least 

one set of concurrent stage data should be available at the upstream (e.g., at location 1 in Figure 

5.1) and the downstream (e.g., any location from 2 to n in Figure 5.1) of the ungauged river 

location. Here, it is assumed that the stage data is available from the sensor network. The 

observed upstream stage is routed with different sets of randomly sampled Manning’s 

coefficient (upper and lower bounds of the sample set are based on Manning’s coefficient table 

available for different channels and vegetation types (Chow, 2006)) and initial conditions to 

the downstream location. The routed stage at the downstream and other sensor locations is then 

compared with the observed stage at those locations by using the performance measures 

described in section 5.2.4. 

The MC method requires a large number of simulations (for instance, 1000, 5000 or more) 

depending on the number of calibration parameters and statistical distribution of the 

parameters. However, HEC-RAS allows only a ‘one-click-one-run option’ to run a hydraulic 

model (Goodell, 2014). Therefore, in this study, a Python application was developed to control 

and automate HEC-RAS simulations. The developed Python application is discussed in detail 

with examples in chapter 4.   

Furthermore, it should be noted that in almost all of the previous studies, for example, Perumal 

& Ranga Raju (2007); Perumal et al. (2007b), (2010); Dottori, Martina & Todini (2009); Sahoo 

et al. (2014); Barbetta, Moramarco & Perumal (2017), to the best of my knowledge, the initial 

flow is assumed and not calibrated. In this method, both initial flow and Manning’s roughness 

coefficient are calibrated by using observed river stage data from more than three locations. 

Additionally, when required, the hydraulic model can be re-calibrated with stage data from a 

network of low-cost, non-contact sensors described and discussed in chapter 3. 
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5.2.4 Model evaluation 

The performance of the proposed approach was evaluated based on the following performance 

criteria that assess the quality of the match between the observed and simulated stage and 

discharge hydrographs (Aricò, Nasello & Tucciarelli, 2009; Perumal et al., 2007a; WMO, 

2011): 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐾𝑙𝑖𝑛𝑔 − 𝐺𝑢𝑝𝑡𝑎 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐾𝐺𝐸)

= 1 −  √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 

𝑟 (𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) =  
𝑐𝑜𝑣 (𝑍𝑖

𝑠, 𝑍𝑖
𝑜)

𝜎 (𝑍𝑖
𝑠) ∗  𝜎 (𝑍𝑖

𝑜)
 

𝛽 (𝐵𝑖𝑎𝑠 𝑟𝑎𝑡𝑖𝑜) =  
𝜇 (𝑍𝑖

𝑠)

𝜇 (𝑍𝑖
𝑜)

 

𝛾 (𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜) =  
𝐶𝑉 (𝑍𝑖

𝑠)

𝐶𝑉 (𝑍𝑖
𝑜)

=  (
𝜎 (𝑍𝑖

𝑠)

𝜇 (𝑍𝑖
𝑠)

) (
𝜎 (𝑍𝑖

𝑜)

𝜇 (𝑍𝑖
𝑜)

)⁄  

(5.1) 

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑍𝑝 [%] =  
𝑍𝑚𝑎𝑥

𝑠 − 𝑍𝑚𝑎𝑥
𝑜

𝑍𝑚𝑎𝑥
𝑜 ∗ 100 

(5.2) 

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑇𝑝 [𝑚𝑖𝑛] =  𝑡𝑚𝑎𝑥
𝑠 −  𝑡𝑚𝑎𝑥

𝑜  (5.3) 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟: 𝑅𝑀𝑆𝐸 = √
∑ (𝑄𝑖

𝑠 − 𝑄𝑖
𝑜)2𝑁

𝑖=1

𝑁
 

(5.4) 

where, 𝑍𝑠 is the simulated stage, 𝑍𝑜 is the observed stage, 𝑍𝑚𝑎𝑥 is peak stage, 𝑡𝑚𝑎𝑥
𝑠   and 𝑡𝑚𝑎𝑥

𝑜  is 

time (in minutes) at which the simulated and observed peak reaches the gauging station, 𝜇, 𝜎 

is mean and standard deviation, 𝑐𝑜𝑣 is covariance, and 𝐶𝑉 is coefficient of variation.  

𝑖 is the time step in hydrographs, 𝑁 is the total number of time steps, 𝑄𝑖
𝑜 is observed discharge 

at the 𝑖𝑡ℎ time step and 𝑄𝑖
𝑠 is simulated discharge at the 𝑖𝑡ℎ time step. 
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The modified KGE is used as a performance measure for parameter calibration because it 

provides an optimal solution that is simultaneously good for bias, variability, and correlation 

(Knoben, Freer & Woods, 2019).   

Manning’s roughness and initial flow which provide the most optimal performance are chosen 

as the calibrated parameters of the hydraulic model. It should be noted that Manning’s 

roughness coefficient can be assumed as homogenous throughout the reach or heterogenous, 

depending on the river reach characteristics.  

5.2.5 Dynamic discharge estimation 

Once the hydraulic model is calibrated, it can be used to estimate river discharge dynamically, 

as shown in Figure 5.3, avoiding the need for rating curve development. The developed method 

is verified with different idealised river channels and field testing.  

It should be noted that, in case of the presence of lateral flow in the river, additional sensors 

can be installed on this reach and lateral flow can be estimated in the same way as described 

above. Additionally, using HEC-RAS makes it easier to include the lateral flow in the main 

channel. 

The unsteady flow discharge estimation developed in this study was not compared with other 

methods because 1) past methods solved SWE in restricted or conservative form, 2) most past 

methods did not calibrate initial flow, 3) they were used to estimate flow in a prismatic channel 

only, and 4) there was a lack of availability of a developed numerical scheme to solve SWE. 

The focus of this chapter was to develop a method to estimate discharge by using only stage 

data. Therefore, in the test applications shown in this chapter, the locations and spacings 

between the sensors are kept random. A methodology for the optimisation of sensor networks 

is discussed in detail in chapter 6. 
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5.3 Sensitivity analysis 

In natural rivers, the water level data acquired by sensors is often affected by measurement 

error due to poor instrument accuracy, regional oscillation, wind, etc. Therefore, to determine 

the effects of the stage data error on the calibration of the model parameters and discharge 

estimation, a sensitivity analysis was performed. To determine the impact of the error, the 

following approach was used: 

i. A randomly sampled measurement error was added to the upstream and downstream 

stage data. The measurement errors are assumed to be independent and normally 

distributed with a mean of 𝜇 and a standard deviation of 𝜎 respectively. Therefore,   

𝑌𝑈𝑆
′ =  𝑌𝑈𝑆 +  𝜀 ~𝑁(𝜇, 𝜎)  and 𝑌𝐷𝑆

′ =  𝑌𝐷𝑆 +  𝜀 ~𝑁(𝜇, 𝜎) 

where, 𝑌𝑈𝑆 ,  𝑌𝐷𝑆 are observed stage at upstream and downstream locations and  

 𝑌𝑈𝑆
′, 𝑌𝐷𝑆

′  are upstream and downstream stages with errors.  

ii. An unsteady flow hydraulic model with the new stage data, i.e., 𝑌𝑈𝑆
′ as an upstream 

boundary condition was set up in HEC-RAS 

iii. This hydraulic model was then calibrated by employing the Monte Carlo method 

discussed in section 5.2.3. The only difference is that the routed/simulated stage at 

downstream was compared with the new downstream stage, i.e.,  𝑌𝐷𝑆
′ by using 

performance measures discussed in section 5.2.4. A similar analysis was performed for 

errors with different means and standard deviations 

iv. Once, the model was calibrated, unsteady flow river discharge was estimated at the 

downstream boundary of the hydraulic model river reach 

The method was tested on Case 3 of the idealised river channel. The root mean square error 

(RMSE) for computed and observed discharge was calculated and the results were analysed. 
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5.4 Application 

5.4.1 Idealised rivers 

The developed methodology was tested by calibrating idealised rivers having different channel 

and flow characteristics as outlined in Table 5.1. Various types of bed slopes and flow values 

have been employed to represent different flow conditions in the natural channel. The bed 

slopes values used for idealised rivers range from 10−3 (steep-slope) to 2.5×10−5 (very mild 

slope), including the intermediate values of 5×10−4, 2×10−4, 10−4, and 5×10−5.  

Table 5.1: Channel and flow types for different cases of idealised rivers (Dottori, Martina & Todini, 

2009) 

  

Cross section geometry  

(w = width; d = depth) 

 

Bed slope 

(𝑺𝟎) 

 

Time to 

peak (𝑻𝒑) 

 

Peak 

discharge 

[𝑸𝒑] 

Case 1 Rectangular (w = 50 m, d = 10 m) 10−4 24 h 900 

Case 2 Rectangular (w = 50 m, d = 10 m) 10−3 24 h 900 

Case 3 Rectangular (w = 50 m, d = 10 m) 10−4 72 h 900 

Case 4 Rectangular (w = 50 m, d = 10 m) 2 × 10−4 24 h 900 

Case 5 Rectangular (w = 50 m, d = 10 m) 2 × 10−4 72 h 900 

Case 6 Rectangular (w = 50 m, d = 10 m) 5 × 10−4 24 h 900 

Case 7 Rectangular (w = 400 m, d = 40 m) 5 × 10−5 168 h 10000 

Case 8 Rectangular (w = 400 m, d = 40 m) 2.5 × 10−5 168 h 10000 

Case 9 Variable (channel changes from 

rectangular to trapezoidal) 

10−4 24 h 900 

Idealised rivers are simple prismatic models with a channel length of 10 km and various widths 

as described in Table 5.1. While setting up the hydraulic model in the HEC-RAS, depending 

upon the width of the rivers, the depths of the rivers are assumed to be 10 and 40 m. The river 

reach is assumed to have a constant bed slope (𝑆0). A stage hydrograph was used as an upstream 

boundary in all the test simulations. The stage hydrographs, as would be obtained from a 

sensors network, were simulated by running a reference hydraulic model with a known 
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discharge hydrograph and other model parameters such as initial flow and Manning’s 

roughness coefficient in HEC-RAS. The stage and discharge hydrographs obtained at different 

locations of the reference model were considered as ‘True or Observed hydrographs’.  

The following relationship was used to obtain the discharge hydrograph for the reference model  

(Dottori, Martina & Todini, 2009):  

𝑄 (𝑡) =  𝑄𝑏 + (𝑄𝑝 − 𝑄𝑏) [
𝑡

𝑇𝑝
𝑒𝑥𝑝 (1 −

𝑡

𝑇𝑝
)]

𝛾

 (5.5) 

where, 𝑄𝑏 = base flow, 𝑄𝑝 = peak flow, 𝑇𝑝 = time to peak, 𝑡 = time instances and 𝛾 = coefficient 

= 16. For all idealised rivers, 𝑄𝑏 was set to 100 m3/s, and t was set to 5 minutes. For reference 

model n was assumed as 0.035 and base flow was assumed as 100 m3/s. For idealised rivers, 

the initial flow and base flow are the same as the model was assumed to be dry. 

For simulating various stage hydrographs, three types of waves are used: a fast wave with a 

rising time of 24 hr and a peak discharge of 900 m3/s, a medium wave with a rising time of 72 

hr and a peak discharge of 900 m3/s and a slow wave with a rising time of 168 hr and a peak 

discharge of 10,000 m3/s. They were selected in accordance with previous studies (Lamberti & 

Pilati, 1990; Dottori, Martina & Todini, 2009). Additionally, the selected parameters conform 

to the real river; for example, the river Karnali at Chisapani, Nepal, has a width of about 250 

m, a depth of about 10 m, and its peak discharge ranges between 5000 and 12000 m3/s (Aryal 

et al., 2020). 

For all cases of idealised rivers, the stage hydrograph was used as an upstream boundary 

condition in the hydraulic model. Normal depth, a Manning’s equation approximation which 

needs an initial guess of the friction slope (average riverbed slope applied), was used as the 

downstream boundary condition. The simulation time was set at 60 seconds following 

Courant’s condition to satisfy the stability and accuracy of the model (Brunner, 2016b). 

5.4.2 Field case study 

The developed method was tested on a 1012 m long reach of the river Wandle in Wimbledon, 

London, UK. This river reach was selected due to the presence of existing Environment Agency 

hydrometric stations (Environment Agency, 2021) at both ends of the reach, as shown in Figure 
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5.4. Additionally, although HEC-RAS can model hydraulic structures such as bridges and 

weirs, this river reach was relatively straight, and the bridges present were not considered in 

the model as they did not constrict the flow. However, under higher flow conditions, they 

would need to be included in the modelling. Four bespoke, low-cost sensors, named as 204, 

205, 206 and 207 (refer to Figure 5.4), were installed along the river reach to measure the water 

level at one-minute intervals. These sensor locations were chosen as they were accessible for 

sensor installation. However, I intended to install more sensors towards the downstream end of 

the reach (reasoning for this is discussed in detail in chapter 6). 

The channel geometry and riverbed slope for setting up an unsteady flow hydraulic model were 

obtained by conducting a bathymetry survey of the river. The average bed slope of the river 

reach was obtained as 0.00398 and the bed slope at the downstream boundary, to use it as a 

normal depth boundary condition, was obtained as 0.0015. The upstream and downstream 

cross-sections of the river reach are shown in Figure 5.6. 

 

Figure 5.4: River Wandle reach selected for field testing of the method 
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The water level data obtained from the sensor is the distance between the water surface and the 

sensor receiver/emitter surface (i.e., h1 as shown in Figure 5.1). This water level data was 

converted to the stage (Z1 + y1) by referencing river depths (y1 as shown in Figure 5.1) to an 

ordnance survey (OS) datum (Ordnance Survey, 2021). In this study, the datum of the nearest 

OS was transferred to the sensor and channel cross-section locations by conducting a 

benchmark transfer survey. The detail of river Wandle model is provided in Table 5.2 and 

details of observed data is provided in Table 5.3. The locations of sensors and EA stations with 

their identifiers and stage datum are listed in Table 5.4. 

 

Figure 5.5: Profile plot of river Wandle model. Black circle represents cross-section locations 

 

Table 5.2: Detail of River Wandle unsteady flow model inputs 

Model inputs Descriptions 

River reach length 1012 m  

River Wandle Geometry (cross-

sections and riverbed slope) 

Obtained from Bathymetry survey (discussed in Section 5.2) and 

1m resolution lidar digital elevation model (Environment 

Agency, 2021b) 

Number of cross-sections 26, including upstream and downstream boundaries 
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Model inputs Descriptions 

Upstream boundary Stage hydrograph from sensor 204 (refer to Figure 5.5) 

Downstream boundary Normal depth, average bed slope at the downstream boundary 

obtained from Bathymetry survey, 0.0015 

Manning’s roughness 

coefficient (𝐬. 𝐦−𝟏/𝟑) 

Randomly selected from a uniform distribution n~𝑈[0.02, 0.08]. 

Above values for n were chosen because river Wandle was 

straight, but with more stones and weeds. It also has deep pools 

as can be seen from Figure 5.5 (Chow, 2006) 

Initial flow (m3/s)  Randomly selected from a uniform distribution 

𝑄𝑖~𝑈[1.42, 2.27] 

Simulation time (seconds) 30, as per Courant’s stability criteria (Brunner, 2016a) 

 

Table 5.3: Observed data available at upstream and downstream boundaries of river Wandle unsteady 

flow model  

Observed data Descriptions 

Rating curve at the upstream 

boundary 

The rating curve for WPM station was obtained from the 

Environment Agency 

Observed stage at the downstream 

boundary 

Stage hydrograph from Summerstown station (Environment 

Agency, 2021c) 

Observed discharge at the 

downstream boundary 

It was assumed that discharge at upstream (i.e., WPM) is 

equal to the discharge at downstream 

True/ observed initial flow (m3/s)  1.75 from the rating curve at WPM station 
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Table 5.4:  Summary of EA Gauging stations and sensor installations. mASD (meters above stage 

datum), is the elevation of the river zero flow point above the UK Ordnance Datum. 

Station name (ID) 
mASD 

(mAOD) 

Coordinates 

Latitude (°) Longitude (°) 

Wandle Park Main Channel*  

(ID: 4180_w1TH) 
10.16 51.419659 -0.18127 

Upstream sensor (US) – 1 

 (ID: 204) 
9.383 51.4208 -0.18161 

Upstream sensor (US) – 2 

(ID: 205)  
9.193 51.42145 -0.18234 

Midstream sensor (MS) – 3 

(ID: 206) 
8.874 51.42364 -0.18361 

Downstream sensor (DS) – 4 

(ID: 207) 
8.182 51.42841 -0.18768 

Summerstown** 

(ID: 4192TH) 
8.0 51.428571 -0.187677 

* https://environment.data.gov.uk/flood-monitoring/id/stations/4180_w1TH.html  
**https://environment.data.gov.uk/flood-monitoring/id/stations/4192TH.html  

 

 

Figure 5.6: Upstream and downstream river Wandle cross-section used for hydraulic modelling. Cross-

sections obtained from bathymetry survey 
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Photos of the bathymetry survey, datum transfer, and sensor installations are shown in Figure 

5.7. 

  

  

Figure 5.7: Field testing on river Wandle, London, UK. (a) Benchmark transfer using a level (b) 

Bathymetry survey for determining river profile and cross-sections (c) sensor installed at Wandle Main 

Park (upstream boundary) and (d) sensor installed at Wandle Summerstown (downstream boundary) 

 

b) a) 

c) d) 
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Figure 5.8: River Wandle stage (measured at one-minute frequency) from the four sensors installed on 

the river reach and the Environment Agency (named EA in the legend). The dots indicate the elevation 

of the zero-flow point above the Ordnance Datum (mASD). 

An unsteady flow hydraulic model was set up on this river reach. It is assumed that the river 

reach has a homogenous Manning’s roughness coefficient. The Manning’s coefficient and 

initial flow of the river reach were calibrated by employing the Monte Carlo method and using 

stage data from the sensors (as shown in Figure 5.8). Two cases of calibration were carried out; 

1) with two sensors (sensor at 204 and 207) and 2) with three sensors (sensors at 204, 206 and 

207) 

Stage hydrograph data for a flood event of July 4-8, 2021, was used to calibrate the model and 

also compare the observed and estimated discharge at the downstream location (i.e., sensor 

207).  Among the two EA stations, only the Wandle Park Main Channel (WPM) station has a 

rating curve (Environment Agency, 2021a; National River Flow Archive, 2021). Therefore, 

since the reach was small and there was no lateral inflow or outflow from the reach, it was 

assumed that the discharge at the downstream, that is at the sensor 207 location, was the same 

as the discharge at the upstream, that is at WPM.  
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5.5 Results and discussions 

The developed methodology was tested on a set of idealised rivers and one real river (the river 

Wandle in London). Idealised rivers are rivers with a prismatic channel geometry and a 

constant bed slope. It is assumed that all the idealised rivers have a known Manning’s 

roughness coefficient of 0.035 s. m−1/3 and an initial flow of 100 m3/s. The river reach 

considered for modelling is assumed to be straight, without any hydraulic structures such as 

bridges, and has a constant Manning’s n throughout the reach. The stage/flow hydrograph used 

as an upstream boundary condition for calibrating these rivers is simulated using equation 4.5. 

Normal depth is used as the downstream boundary condition. 

River Wandle is a natural river; however, it is in the city of London and has bridges, weirs, and 

an embankment wall throughout its reach. A straight reach without considering hydraulic 

structure is considered suitable for applying the developed discharge estimation method. The 

stage hydrograph obtained from the sensor is used as the upstream boundary condition, and the 

normal depth obtained from the bathymetry survey (or from DEM) is used as the downstream 

boundary condition. The range of Manning’s n and initial flow required for running the Python 

script is selected from Manning’s n for channels as provided in Chow (2006) and an estimate 

of river initial flow at the time of sensor installation, respectively. For the river Wandle, I used 

the float method to estimate the initial flow of the river. 

Example 1, presented in Section 4.3.2, describes the modelling procedure, and demonstrates 

the application of the developed method in an idealised and real-world river case. 

5.5.1 Idealised rivers 

Table 5.5 presents the model calibration results with performance measures for all the idealised 

rivers. It can be seen that the KGE for all the idealised rivers, despite of varied morphology 

and flow condition, is 99.99%, which indicates that it is possible to simulate the stage 

hydrograph at the downstream location using the Monte Carlo method. Furthermore, except 

for case 5, the error in calibration of Manning’s roughness coefficient is below 5 %. The 

increased error in Manning’s roughness coefficient in case 5 may be due insufficient parameter 

sampling during the Monte Carlo simulation as other rivers of larger size and milder slopes are 

performing as expected. Additionally, the error in the peak stage and the error in the estimation 

of initial flow calibration are also below 10 %. Except for Case 5, the error in the time to peak 
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stage is zero. This means that the time of arrival of the peak stage at the downstream location 

in the simulated stage hydrograph is the same as that of the reference model. Furthermore, the 

Froude number, shown in Table 5.6, for calibrated parameters for different models shows that 

the modelled flow is subcritical at the downstream of the models. This is expected as Normal 

depth is used as the downstream boundary in all the model simulation. It can also be seen that 

the Froude number for steep river is higher than that of milder rivers. This is because steep 

rivers such as case 2 has higher average velocity at the downstream boundary cross-section. 

These results are consistent with past studies as the previously developed methods have 

performed well in prismatic channels.   

However, past studies' assumptions and lack of availability of developed numerical schemes 

to solve SWE make them difficult to use. For example, to develop a rating curve at an ungauged 

location, Perumal et al. (2007a) assume that there is a one-to-one relationship between the 

estimated stage at an ungauged site and the steady discharge that occurs downstream of that 

location. Here, the location of the steady discharge has not been quantified. 

Table 5.5: Summary of performance criteria and results of parameter calibration from idealised rivers 

Cases 
KGE 

 [%] 

Manning’s 

n 

  [s/m(1/3)] 

Estimated 

Initial 

flow (𝑸𝒊) 

 [m3/s] 

Error in 

Time to 

peak 

(𝑻𝒑) 

[min] 

Error 

in peak 

stage 

(𝒁𝒑)  

 [%] 

Error in 

estimation 

of Initial 

flow (𝜺𝑸𝒊
)  

  [%] 

Error in 

estimation 

of n 

  (𝜺𝒏) [%] 

Case 1 99.99 0.0359 103.88 0 -0.42 3.88 2.57 

Case 2 99.99 0.0357 102.53 0 0 2.53 2.00 

Case 3 99.99 0.0358 113.58 0 0 13.58 2.29 

Case 4 99.99 0.0357 115 0 0 15 2.00 

Case 5 99.99 0.0376 94.13 5 -5.19 -5.87 7.43 

Case 6 99.99 0.0358 96.42 0 0 -3.58 2.29 

Case 7 99.99 0.0356 102.73 0 0.053 2.73 1.71 

Case 8 99.99 0.0362 99.85 0 -1.23 -0.15 3.43 

Case 9 99.99 0.0358 99.09 0 -0.42 -0.91 2.29 
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Table 5.6: Summary of hydraulic details for calibrated Manning’s n and initial flow at the downstream 

boundary of the model 

For calibrated Manning's n and initial flow at Downstream boundary 

Cases 

  

Hydraulic depth 

(Y [m]) 

Discharge  

(Q [m3/s]) 

Average Velocity 

(V [m/s]) 
Froude No. (Fr) 

Y_min Y_max Q_min Q_max V_min V_max Fr_min Fr_max 

Case 1 2.67 10.99 99.60 880.88 0.75 1.60 0.15 0.15 

Case 2  1.31 5.17 100.01 899.29 1.53 3.48 0.43 0.49 

Case 3  2.67 11.11 100.01 898.33 0.75 1.62 0.15 0.15 

Case 4 2.15 8.72 100.01 892.28 0.93 2.05 0.20 0.22 

Case 5 2.15 8.77 100.44 903.02 0.93 2.06 0.20 0.22 

Case 6 1.59 6.47 96.43 897.49 1.22 2.78 0.31 0.35 

Case 7 0.92 14.77 102.73 9997.08 0.28 1.69 0.10 0.14 

Case 8 1.13 18.31 99.85 9998.06 0.22 1.37 0.07 0.10 

Case 9 2.82 8.19 99.09 881.16 0.81 1.54 0.15 0.17 

 

In another study, Aricò, Nasello & Tucciarelli (2009) developed a numerical scheme to solve 

SWE in diffusive form and needed stage data from three locations to calibrate a hydraulic 

model and estimate discharge during sub-critical flow conditions. However, the method 

developed in this study does not make these assumptions, and the results show that stage data 

from two locations is enough to calibrate model parameters and estimate discharge with a high 

degree of accuracy in prismatic channels or idealised rivers with no lateral flow.  

Figure 5.9 shows the results of Manning’s roughness and initial flow calibration, true and 

observed stage and discharge hydrographs, and a simulated rating curve corresponding to the 

calibrated parameters. From Figure 5.9b, we can infer that the simulated stage is not sensitive 

to initial flow as there is no visible pattern between sampled initial flows and the simulated 

stage (or KGE). Furthermore, for range of initial flow value sampled, most of the KGE value 

is between 80 and 100 percent. However, Figure 5.9a shows that the simulated stage is 

significantly sensitive to Manning’s n as there is a clear visible pattern between KGE and 

Manning’s n samples. Although not shown here, similar results were obtained in all cases of 

idealised rivers. Figures 5.9c and 5.9d show the True upstream and downstream hydrographs 
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and simulated hydrographs corresponding to the maximum KGE. The calibrated hydrographs 

at the downstream are seen to be a close match to the true hydrographs. Figure 5.9e shows all 

the simulated rating curves and the rating curve corresponding to the maximum KGE. This 

shows that the developed method can be used to estimate unsteady flow discharge or develop 

a rating curve, similar to traditional rating curve, at an ungauged or desired location of a river 

reach. 

 

Figure 5.9: Calibration and discharge estimation for idealised river described in Case 3. (a) Modified 

KGE for different Manning’s roughness coefficient, (b) Modified KGE for different Initial flows, 

(c)True and calibrated flow hydrographs, (d) True and calibrated stage hydrographs and (e) Simulated 

and estimated rating curves at the downstream location  

 

a) b)

c) d)

e)
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5.5.2 Field case study  

The results of the river Wandle hydraulic model parameter calibration and performance 

measures are presented in Table 5.7.  

Table 5.7: Performance criteria and results of parameter calibration for river Wandle 

Natural 

channel 

KGE 

 [%] 

Manning’s 

n 

  [s/m(1/3)] 

Estimated 

Initial 

flow (𝑸𝒊) 

 [m3/s] 

Error 

in 

Time 

to 

peak 

(𝑻𝒑) 

[min] 

Error 

in 

peak 

stage 

(𝒁𝒑)  

 [%] 

Error in 

estimation 

of Initial 

flow (𝜺𝑸𝒊
)  

  [%] 

No. of sensor 

data used for 

calibration and 

its location  

Wandle 96.63 0.05172 1.673 0 2.84 -4.4 
3 sensors at 204,  

206 and 207 

Wandle 91.99 0.0467 1.729 0 13.64 -1.15 
2 sensors at 204  

and 207 

The sensors installed on the river Wandle were measuring the water level at 1-minute frequency 

(see Figure 5.8). Therefore, three sensors, sensors 205, 206, and 207, were able to capture the 

time lag between the peak stages.  It was found that, unlike for idealised test cases where the 

quality of the match between the observed and simulated stage and discharge hydrographs was 

assessed by using KGE alone, combined criteria of error in time to peak (𝑇𝑝) and KGE 

improved the match between observed and simulated stages, thereby improving unsteady flow 

parameter calibration and discharge estimation. In the combined criteria, KGE was only 

calculated for simulations where the error in the time to peak at different sensor locations 

(sensors 205, 206, and 207) was zero. Then, among these simulations, unsteady flow 

parameters corresponding to the maximum KGE were chosen as calibrated parameters and 

were used for dynamic river discharge estimation. It should be noted that unlike idealised river 

cases where KGE is 99.99 percent, the maximum KGE for the river Wandle is only 96 percent. 

This is expected, as we can never expect a perfect match between simulated and observed 

stages in natural river conditions where flow is affected by measurement error, eddies in flow, 

and other uncertainty. 
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Compared to two sensors, three sensors improved the calibration of Wandle model as the KGE 

for three sensors combination is higher (refer to Table 5.7). Furthermore, the river Wandle 

reach considered in this study is straight, with stones, tall weeds, and deep pools and therefore, 

the calibrated value of Manning’s n is expected to be between 0.048  and 0.06 (Chow, 2006). 

However, with two sensors data, the  calibrated value of Manning’s n is underestimated thus 

resulting in overestimation of discharge at the Summerstown (see Figure 5.10c). I hypothesise 

that the sensor at location 206 can capture the celerity of the wave accurately aiding in good 

match between simulated and observed stage at downstream boundary (i.e., at sensor location 

207). Further analysis on the value of additional sensors on parameter calibration and discharge 

estimation is discussed in detail in chapter 6.  

From Figure 5.10b, we can see that, similar to idealised rivers, for natural channels too, 

simulated stages are not sensitive to initial flows. 

After the Wandle model was calibrated, the discharge obtained by the developed method was 

compared to the observed discharge at Wandle Summerstown station. The observed stage at 

Summerstown and the rating curve at WPM were used to obtain the observed discharge at  

Summerstown station. Figure 5.10c shows all of the simulated rating curves as well as the 

rating curve corresponding to the calibrated parameters. It can be observed that this method is 

able to reproduce the traditional rating curve. However, it should be noted that this method uses 

non-contact sensors to measure river stage. This means that it would be able to monitor flood 

stage and precisely estimate flood discharge, something that is typically accomplished by 

extrapolation when a conventional rating curve is employed.  

It should be noted that the methodology is not automated at the moment, meaning that the 

calibrated model needs to be run manually to obtain the discharge data in real time.    
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Figure 5.10: Calibration and discharge estimation for river Wandle. (a) Modified KGE for different 

Manning’s roughness coefficient, (b) Modified KGE for different Initial flows, (c) Simulated and 

estimated rating curves at downstream location (Summerstown) 

5.5.3 Sensitivity analysis 

 

Figure 5.11: Effect of error in stage data on discharge estimation. (a) effect of error standard deviation 

on discharge and (b) effect of error mean on discharge estimation 

Figure 5.11a depicts the relationship between the standard deviation of errors in the upstream 

and downstream stages and the error in discharge estimation at the downstream location of a 

hydraulic model (Case 3). This graph illustrates that as the standard deviation of errors 

increases, the error in discharge estimation also increases.  

a) b)

c)

a) b)
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To test the robustness of the developed method, errors were generated with both positive and 

negative error means and added at random to both the upstream and downstream stages. The 

model was then calibrated for each error mean using the minimum RMSE criterion. Figure 

5.11b depicts the relationship between different error means (expressed as a percentage of the 

true initial river depth) and minimum RMSE. Here, it is observed that the mean of errors is 

directly proportional to the minimum RMSE. However, the minimum RMSE is not zero when 

the mean error is zero. This could be due to the inherent randomness of the HEC-RAS model 

or a lower number of Monte Carlo simulations, resulting in insufficient parameter space 

coverage. 

Figures 5.12 and 5.13 depict the calibrated values of Manning's n and simulated rating curves 

for various error mean values. From these figures, it can be observed that when the mean error 

is negative, the calibrated Manning’s roughness coefficient is underestimated, thus resulting in 

an overestimation of discharge at the downstream location and vice-versa. 

 

Figure 5.12: Calibrated Manning’s roughness for the different mean of errors 
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Figure 5.13: Simulated rating curves for the different mean of errors 

It is interesting to note that, for a mean of error varying between -25 and 25 %, the error in the 

calibration of Manning’s roughness coefficient is between -8.5 % and 14 %. This indicates that 

the developed model is robust. This is due to the use of the MC method where the most probable 

events occur first (i.e., it is self-approximating, refer to 2.6.1.1).  
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5.6 Conclusions 

This chapter proposes a methodology for dynamically estimating unsteady flow discharge at a 

river location using stage data from a network of sensors. The method is applicable in prismatic 

and natural channels and does not require any measured discharge value. As HEC-RAS is used 

to model the rivers, the methodology would also work with lateral flows. However, this has 

not been tested in this study. The method was evaluated on several simulated rivers and a 

natural river. Two sensors are sufficient for hydraulic model parameter calibration and 

discharge estimation based on river simulations. However, field testing reveals that using more 

than two sensors improves unsteady river flow model calibration and discharge estimation. The 

sensitivity analysis suggests that the methodology is robust and can provide accurate estimate 

of river flow parameters and river discharge. The primary benefit of the method is that it allows 

simultaneous estimation of unknown river flow parameters and discharge. However, this 

method must be tested on additional natural rivers to determine its practical utility. 
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6 Optimising a water level sensor network for 

river discharge estimation 

Theoretically, river stage data from two sensors is sufficient to calibrate an unsteady flow 

hydraulic model and estimate river discharge at an ungauged location. To calibrate the unsteady 

flow parameters and estimate river discharge, the governing equations of river flow (i.e., SWE) 

are solved. However, in the previous chapter, I found that utilising stage data from more than 

two sensors improves parameter calibration and discharge estimation. In the case of more than 

two sensors, the configuration of the sensors network, including 1) the location of the sensors, 

2) the number of sensors, and 3) the distance between the sensors, has not previously been 

investigated. Therefore, this chapter proposes two approaches for utilising stage data from a 

network of sensors and optimising the sensor network. In one approach, stage data is used as 

internal boundary conditions of a hydraulic model, while in another, they are used to calibrate 

model parameters (i.e., used in post-processing of the model simulations). In both approaches, 

the Monte Carlo method is utilised to evaluate the value of additional sensors in unsteady flow 

calibration, discharge estimation, and optimal sensors network configuration. Both approaches 

have been evaluated on idealised river channels and a natural river channel (River Wandle, 

London). In both instances, the calibration parameters of an unsteady flow hydraulic model 

and discharge hydrograph obtained at a location with more than two sensors are compared to 

those obtained with only two sensors in order to determine the value of the additional sensors. 

Various sensors configurations are subjected to identical analyses in order to identify the 

optimal sensors network. 
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6.1 Introduction  

In chapter 5, a method is presented for calibrating the input parameters of an unsteady flow 

river model and estimating discharge using stage data from a network of sensors. The method 

was evaluated using idealised and natural river channels. In the case of prismatic channels or 

idealised rivers, I found that two sensors are adequate to estimate unsteady flow discharge, 

while in the case of natural rivers, depending on the length of the modelled reach and channel 

geometry, three or more sensors are required to achieve best predictive performance. The 

configuration of the sensor network, such as the location of the sensors and the spacing between 

them, was not explored in chapter 5. Neither has prior research, including Dottori et al. (2009), 

Harlan et al. (2021), and Perumal et al. (2007), investigated the optimal sensor configuration. 

Therefore, according to my knowledge, this is the first study addressing the following 

questions:  

A. Although two sensors are sufficient from a theoretical standpoint (for a straight river 

reach with linear water slope under steady state subcritical conditions), would 

additional sensors improve parameter calibration and discharge estimation in the case 

of idealised  rivers? If so, what should be the optimal configuration of the additional 

sensors? 

B. In the case of three or more sensors, what is the optimal sensor configuration for 

improving discharge estimation in natural rivers? 

The configuration parameters under consideration in this study are 1) the location of the 

sensors, 2) the number of sensors (excluding the upstream and downstream boundaries), and 

3) the spacing between the sensors. 

Various metaheuristic optimisation algorithms such as differential evolution, particle swarm 

optimization, and genetic programming were reviewed to implement them for configuring 

optimal sensor networks. However, metaheuristic algorithms are computation intensive. 

Therefore, because of available computation capacity and previous usage of the Monte Carlo 

(MC) method in chapters 4 and 5, I employed the MC method to find the optimal sensor 

configuration parameters. 
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6.2 Methodology 

The MC method is used to assess the value of the additional sensors in unsteady flow 

calibration, discharge estimation, and to configure the optimal sensor network. To implement 

the MC method, first an unsteady flow hydraulic model of a river reach (see Figure 6.1) is set 

up in the HEC-RAS. Then, in the second step, the discharge estimation method discussed in 

chapter 5 is employed to calibrate the unsteady flow parameters and estimate the river 

discharge. Here, however, two or more than two additional sensors are used in the first or in 

the second step of this methodology. The additional sensors are utilized: 

i. as additional hydraulic model boundary conditions   

Here, a different number of additional sensors, i.e., apart from the upstream boundary 

condition, such as 2,3, 4, 5, 6, and 7 are used as internal boundary conditions when setting up 

the unsteady flow hydraulic model in the HEC-RAS. HEC-RAS has a built-in functionality to 

assimilate stage observations at free cross sections along the simulated reach. It does so by 

forcing the simulated water level to coincide with the observed water level value. Then, the 

MC method is implemented to calibrate the unsteady flow parameters of the hydraulic model 

and estimate the river discharge at a given location. 

ii. in hydraulic model calibration  

In this case, additional sensors are used to evaluate the hydraulic model simulations (refer to 

5.2.4) obtained from the MC method implementation. During the MC method implementation, 

randomly sampled errors, for example, uniformly sampled errors between ± 15 cm, are added 

to the upstream boundary condition (i.e., stage hydrograph). Then, a different number of 

additional sensors, for instance, two or more than two sensors, are used to calibrate the error in 

upstream boundary condition and the unsteady flow parameters. The objective is to find an MC 

simulation in which the error in the upstream boundary condition calibration is as close to zero 

as possible and the error in the unsteady flow parameter calibration is minimum. 

In both cases, the calibration parameters and discharge hydrograph obtained at the downstream 

location by utilising more than two sensors are compared to those obtained by utilising only 

two sensors to determine the value of the additional sensors. Identical analyses are conducted 

on various sensor configurations to identify the optimal sensors network. 
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6.2.1 Optimisation strategy  

 

Figure 6.1: A schematic representation of an array of sensors positioned along a river reach. 

The discharge estimation methodology developed in chapter 5 uses stage data from two or 

more than two sensors to solve the governing equations of river flow in full form to calibrate 

the unsteady flow parameters, Manning's roughness coefficient, and initial flow, and estimate 

river discharge at a location. To use the discharge estimation method discussed in chapter 5, 

we would require stage data from at least two sensors, one at the upstream boundary (as shown 

in Figure 6.1) and the other at any location, free of backwater effects, downstream of the 

upstream boundary i.e., at any location between "2" and "n" " (as shown in Figure 6.1). 

However, in the case of only two sensors, the second sensor is usually located at the 

downstream boundary i.e., at location ‘n’. In this study, the additional sensors are assumed to 

be at any location between "2" and "n" (as shown in Figure 6.1) and the optimal sensor network 

configuration analysis is carried out for these additional sensors.  

As discussed above, this study considers two approaches to assimilate the data from the 

additional sensors. In both approaches, the design of an optimal sensor configuration is carried 

out in three sequential steps: 

i. Optimal sensor location 

The optimal sensor location is determined by investigating if the additional sensors should be 

placed closer to the upstream boundary (represented by grey in Figure 6.1) or mid-stream 

(represented by orange in Figure 6.1) or downstream boundary (represented by pink in Figure 

6.1), of the river reach. 

Q

Downstream 

Boundary

Upstream 

Boundary

2

8

6

4

n

n- 1

1



134 

 

ii. The number of sensors 

After the location of the sensors has been determined, additional analysis is carried out to 

determine the optimal number of additional sensors, for instance 2, 3 or more, for parameter 

calibration and discharge estimation. 

iii. Spacing between the sensors 

Once the location and number of sensors have been determined, an optimization algorithm is 

used to determine the distance between sensors. The objective of both approaches is to 

minimize the error in the parameter calibration and unsteady flow discharge estimation. Here, 

modified KGE, error in time to peak stage and average absolute relative error (AARE), are 

used as performance measure to minimize the error in the parameter calibration.  

6.2.1.1 Performance measures 

The performance of MC simulations that assess the quality of the match between the observed 

and simulated stage and discharge hydrographs was evaluated based on the following 

performance criteria (Aricò, Nasello & Tucciarelli, 2009; Perumal et al., 2007a; WMO, 2011): 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐾𝑙𝑖𝑛𝑔 − 𝐺𝑢𝑝𝑡𝑎 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐾𝐺𝐸)

= 1 −  √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 

𝑟 (𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) =  
𝑐𝑜𝑣 (𝑍𝑖

𝑠, 𝑍𝑖
𝑜)

𝜎 (𝑍𝑖
𝑠) ∗  𝜎 (𝑍𝑖

𝑜)
 

𝛽 (𝐵𝑖𝑎𝑠 𝑟𝑎𝑡𝑖𝑜) =  
𝜇 (𝑍𝑖

𝑠)

𝜇 (𝑍𝑖
𝑜)

 

𝛾 (𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜) =  
𝐶𝑉 (𝑍𝑖

𝑠)

𝐶𝑉 (𝑍𝑖
𝑜)

=  (
𝜎 (𝑍𝑖

𝑠)

𝜇 (𝑍𝑖
𝑠)

) (
𝜎 (𝑍𝑖

𝑜)

𝜇 (𝑍𝑖
𝑜)

)⁄  

(6.1) 

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑇𝑝 [𝑚𝑖𝑛] =  𝑡𝑚𝑎𝑥
𝑠 −  𝑡𝑚𝑎𝑥

𝑜  (6.2) 
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𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑄𝑝 [%] =  
𝑄𝑚𝑎𝑥

𝑠 − 𝑄𝑚𝑎𝑥
𝑜

𝑄𝑚𝑎𝑥
𝑜 ∗ 100 (6.3) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟: 𝐴𝐴𝑅𝐸 [%] = (∑ |
𝑄𝑖

𝑠 − 𝑄𝑖
𝑜

𝑄𝑖
𝑜 |

𝑁

𝑖=1

𝑁⁄ ) × 100 (6.4) 

where, 𝑍𝑠 is the simulated stage, 𝑍𝑜 is the observed stage, 𝑍𝑚𝑎𝑥 is peak stage, 𝑡𝑚𝑎𝑥
𝑠   and 𝑡𝑚𝑎𝑥

𝑜  is 

time (in minutes) at which the simulated and observed peak reaches the gauging station, 𝜇, 𝜎 

is mean and standard deviation, 𝑐𝑜𝑣 is covariance, and 𝐶𝑉 is coefficient of variation.  

𝑖 is the time step in hydrographs, N is the total number of time steps, 𝑄𝑖
𝑜 is observed discharge 

at the 𝑖𝑡ℎ time step and 𝑄𝑖
𝑠 is simulated discharge at the 𝑖𝑡ℎ time step. 𝑄𝑚𝑎𝑥

𝑜  and 𝑄𝑚𝑎𝑥
𝑠  are the 

maximum observed and simulated discharges respectively. 

Other similarity measures than AARE exist, such as Discrete Fréchet distance (Jekel, 2021) 

and Hausdorff distance (SciPy, 2021), which compare similarity between two curves, and can 

be applied to rating curves. These were tested but found to be too computationally demanding 

and therefore not incorporated in the performance evaluation.  

6.3 Numerical experiments  

6.3.1 Approach I: additional sensor as hydraulic model boundary conditions 

In this experiment, additional sensors are used as internal boundary conditions into the 

unsteady flow hydraulic model in the HEC-RAS. Then, the discharge estimation methodology 

developed in chapter 5, which uses stage data from two or more than two sensors to solve the 

governing equations of river flow in full form to calibrate the unsteady flow parameters, 

Manning's coefficient, and initial flow, and estimate river discharge at a location, is utilised to 

calibrate river flow parameters and estimate discharge. 

HEC-RAS allows the user to input a known stage hydrograph at an "open" cross-section (one 

not associated with a hydraulic structure) as an internal boundary condition (Brunner, 2016). 

For instance, in Figure 6.1, any cross-section location between "2" and "n-1" can be considered 

an open cross-section. During the execution of the hydraulic model, the HEC-RAS algorithm 
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forces the simulated stage to match the known stage by optimizing the routed unsteady flow 

simulations. Therefore, in this approach, different combinations of additional sensors, for 

instance 2, 3, 4, 5, 6, and 7, were placed as internal boundary conditions at different locations 

in river reach, and the developed discharge estimation method was utilised to calibrate the river 

flow parameters and estimate discharge. The error in calibration of river flow parameters and 

discharge at the downstream location with different sensor combinations was compared to 

evaluate the value of additional sensors.  

6.3.1.1 Application 

This approach was evaluated on different idealised rivers, i.e., cases 1, 2, 3, 4 and 6. The cases 

are shown in Table 6.1 below and discussed in detail in chapter 4. 

Table 6.1: Idealised river cases used to test approach I 

 

Cases 

 

Cross section geometry 

(w = width; d = depth) 

 

Bed slope 

(𝑺𝒐) 

 

Time to 

peak (𝑻𝒑) 

 

Peak discharge 

(m3/s) 

Case 1 Rectangular (w = 50 m, d = 10 m) 10−4 24 h 900 

Case 2 Rectangular (w = 50 m, d = 10 m) 10−3 24 h 900 

Case 3 Rectangular (w = 50 m, d = 10 m) 10−4 72 h 900 

Case 4 Rectangular (w = 50 m, d = 10 m) 2 × 10−4 24 h 900 

Case 6 Rectangular (w = 50 m, d = 10 m) 5 × 10−4 24 h 900 

All idealised river channels are assumed to have a length of 10 km and width of 50 m. The 

rivers are assumed to have a constant bed slope (𝑆𝑜) as mentioned in the Table 6.1 and have 

uniformly spaced cross-sections at every 100 m. A stage hydrograph was used as an upstream 

boundary and normal depth, a Manning’s equation approximation which needs an initial guess 

of the friction slope (average riverbed slope applied), was used as the downstream boundary 

condition in all cases. The simulation time was set in accordance with Courant’s condition 

(refer to 2.4.3.2) to satisfy the stability and accuracy of the model (Brunner, 2016b). 
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This approach was not tested on natural rivers (explanation provided in 6.4.1). 

The approach I implemented was as follows:   

1. An unsteady flow hydraulic model of a river reach, as described in the discharge 

estimation method (see 5.2.2), is set up in HEC-RAS 

2. Then, locations for internal boundary conditions are selected. Apart from the two 

sensors at the upstream and downstream boundaries, it was assumed that seven 

additional sensors placed at different open cross-sections would be adequate to evaluate 

the value of stage data from these seven additional sensors. However, in idealised river 

cases discussed above, there are 99 "open" cross-section locations at 100-metre spacing. 

Testing all combinations of seven sensors at these open cross-sections, i.e., 99C1 + 99C2 

+... + 99C7, would be impossible as the Monte Carlo approach used in the discharge 

estimation method takes, on an average, 24–50 hours to run a single combination. 

Therefore, instead of looking at all the possible combinations of the seven sensors and 

the open cross-sections, the internal boundary conditions were considered only at 

selected open cross-sections in three different regions as discussed above (refer to 

6.2.1). Furthermore, when using two or more sensors as internal boundary conditions, 

adjacent sensor positions were avoided to account for any measurement error. In the 

field, local oscillations of the water surface can cause two adjacent measurements to be 

identical therefore the measurements would not capture the water surface profile. 

3. The stage hydrographs, as would be obtained from a sensor network, were simulated 

by running a reference hydraulic model with a known discharge hydrograph and other 

model parameters such as initial flow (100 m3/s) and Manning’s roughness coefficient 

(0.035 s m-(1/3)) in HEC-RAS. The stage and discharge hydrographs obtained at 

different locations of the reference model are considered true or observed hydrographs.  

4. The stage hydrograph data obtained from the reference model are used as upstream 

boundary and known internal boundary (locations of additional sensors) of the 

hydraulic model.   

5. During each Monte Carlo (MC) simulation of the model calibration (see 5.2.3) step of 

the discharge estimation method (chapter 5), a randomly sampled uniformly distributed 

error, for instance, 𝜀~𝑈[−0.1, 0.1] m, is added to the stage hydrograph data of the 
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upstream boundary of a hydraulic model. This error is added because, during field 

experimentation with the lidar sensor, we encountered an error in measurement between 

5 and 30 cm. 

6. Then a fixed number of MC simulations is run 

7. The performance of each MC simulations was evaluated as follows:   

i. Error in time to peak stage i.e., 𝑇𝑝  is calculated by using equation 6.2 

ii. Common MC runs for which error in 𝑇𝑝  is equal to a chosen value (for instance ± 

5 minutes) or minimum value in the MC simulations at additional sensor locations 

are selected. This can be changed as per user needs 

iii. For the common runs obtained in step ii, modified KGE (using equation 6.1) is 

computed at downstream boundary 

iv. Parameters corresponding to the max KGE is selected as calibration parameters 

v. Error in maximum discharge of observed and that obtained from a calibrated model 

is computed by using equation 6.3 

8. Once the river flow parameters have been calibrated, discharge at the downstream 

boundary of the river reach is computed. The peak value of computed or simulated 

discharge is compared with the peak value of observed or true discharge, derived from 

the reference model, to obtain the error in peak discharge using equation 6.3 

6.3.2 Approach II: additional sensors in hydraulic model calibration 

In this approach, stage data from additional sensors are utilised to evaluate the hydraulic model 

simulations (refer to 5.2.4) obtained from each MC run. That is using additional sensors stage 

data during post-processing of the MC simulations to find the unsteady flow calibration 

parameters. 

The proposed approach is implemented as follows: 

1. An unsteady flow hydraulic model of a river reach, as described in the discharge 

estimation method (see 5.2.2), is set up in HEC-RAS 

2. During each Monte Carlo (MC) simulation of the model calibration (see 5.2.3) step of 

the discharge estimation method (chapter 5), a randomly sampled uniformly distributed 
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error, for instance, 𝜀~𝑈[−0.2, 0.2] 𝑚, is added to the stage hydrograph data of the 

upstream boundary of a hydraulic model. This error is added because, during field 

experimentation with the lidar sensor, we encountered an error in measurement between 

5 and 30 cm. 

3. Location of additional sensors, more than one, placed at different cross-sections, any 

location between “2” and “n” (refer to Figure 6.1), is pre-selected for post-processing.  

4. The stage data of these additional sensors is obtained from a reference model, the same 

as that would be obtained from a sensor network, and is considered as true or observed 

stage 

5. A randomly sampled uniformly distributed error, for instance, 𝜀~𝑈[−0.15, 0.15] 𝑚, is 

added to the true stage hydrograph of all the additional sensors 

6. After the Monte Carlo simulations have been completed, the optimal Manning's 

roughness coefficient, initial flow and error in the upstream stage hydrograph are 

calibrated by comparing the simulated stage at additional sensor locations with the stage 

data obtained from step 5 (i.e., true stage with some error) at that location. The 

performance of each MC run is evaluated as follows:   

i. Error in time to peak stage i.e., 𝑇𝑝  is calculated by using equation 6.2 

ii. Common MC runs for which error in 𝑇𝑝  is equal to ± 2 minutes at additional 

sensor locations are selected. This can be changed as per user needs 

iii. For the common runs obtained in step ii, modified KGE (using equation 6.1) is 

computed at all the additional sensor locations 

iv. Then, the sum of (1 − 𝐾𝐺𝐸)2, as shown in equation 6.5, at all additional sensor 

locations and for all the common runs obtained in step ii is minimized 

∑ (1 − 𝐾𝐺𝐸𝑖)𝒋
𝟐

𝑗=𝑐𝑜𝑚𝑚𝑜𝑛 𝑟𝑢𝑛𝑠 𝑐.𝑡.  𝑇𝑝 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑖=𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑒𝑛𝑠𝑜𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠

 (6.5) 



140 

 

v. The parameters corresponding to the minimum value of  ∑(1 − 𝐾𝐺𝐸)2 is 

considered as calibrated parameters 

vi. Once the river flow parameters have been calibrated, discharge at the downstream 

boundary of the river reach is computed. This computed or simulated discharge 

is compared with the observed or true discharge, derived from the reference 

model, to obtain the average absolute relative error in discharge hydrograph using 

equation 6.4 

7. For one combination of additional sensor positions, which is pre-selected in step 3, 

steps 5 and 6 are repeated multiple times, such as 5000 times. The objective, for the 

pre-selected location of additional sensors, is to find the maximum frequency when 

additional sensor data can minimize the error in the upstream stage (or in other words, 

calibrate the upstream stage error approximately to zero) and discharge estimation (i.e., 

AARE within acceptable limit such as 5-10 %).  

8. Steps 3 to 7 are repeated for different combinations of locations and numbers of sensors. 

The locations and number of sensors for which the frequency of calibrated upstream 

error and AARE within the acceptable limit is highest are chosen as the optimal 

positions and number of sensors 

9. Once the locations and number of sensors have been determined, the spacing between 

the sensors is optimised by repeating steps 4 to 7 for different combinations of sensor 

positions within the optimal locations. For example, say cross-sections 8 to 15 (refer to 

Figure 6.1) are optimal sensor locations (i.e., 8 locations on the river reach) and the 

optimal number of sensors is three. Then, steps 4 to 7 are repeated for all combinations 

of three sensors at these eight locations; that is, 8C3 or fifty-six combinations to 

determine the optimal spacing between the sensors. 

6.3.2.1 Application 

Approach II was tested on idealised river cases discussed in Table 6.1 and river Wandle in 

London. The case study of river Wandle is discussed below.  
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6.3.3 A case study of the river Wandle 

The above optimisation approach (i.e., Approach II) is demonstrated with a case study of the 

river Wandle. It should be noted that this analysis is done before installing any sensors in the 

field so that the results can inform on optimal locations for sensor installation. In this example, 

Environment Agency’s stage data of river Wandle Main Park station and Wandle on 

Summerstown is used to build the hydraulic model.  

An unsteady flow hydraulic model of a river reach of Wandle was set up in HEC-RAS. The 

model inputs and observed data are described in Table 6.2 and Table 6.3 respectively.  

Table 6.2:  River Wandle unsteady flow model inputs  

Model inputs Descriptions 

River reach length 1086 m (between Wandle Park Main Channel (WPM) and 

Summerstown EA stations - refer to Figure 5.4 

River Wandle Geometry (cross-

sections and riverbed slope) 

Obtained from Bathymetry survey (discussed in Section 5.4.2) 

and 1m resolution lidar digital elevation model (Environment 

Agency, 2021b) 

Number of cross-sections 26, including upstream and downstream boundaries 

Upstream boundary Stage hydrograph from WPM station (Environment Agency, 

2021d) 

Downstream boundary Normal depth, average bed slope at the downstream boundary 

obtained from Bathymetry survey, 0.0015 

Manning’s roughness 

coefficient (𝐬. 𝐦−𝟏/𝟑) 

Randomly selected from a uniform distribution n~𝑈[0.02, 0.08] 

(Chow, 2006) 

Initial flow (m3/s)  Randomly selected from a uniform distribution 

𝑄𝑖~𝑈[1.42, 2.27] 

Simulation time (seconds) 30, as per Courant’s stability criteria (Brunner, 2016a) 
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The above unsteady flow hydraulic model of the river Wandle was run for 1000 Monte Carlo 

simulations following model calibration (i.e., 5.2.3) of the discharge estimation method. 

However, in addition, during each Monte Carlo run, a randomly sampled error from a uniform 

distribution, i.e.,  𝜀~𝑈[−0.15, 0.15] 𝑚, was added to the upstream stage hydrograph (as 

described in step 2 of this optimisation approach). It should be noted that the same error was 

added to all the stages of the hydrograph. A few combinations of three and two additional 

sensors placed at different locations, ranging from 2 to 26 cross-sections, along the river reach 

were determined. These locations were chosen to investigate if the additional sensors should 

be placed closer to the upstream boundary, mid-stream, or downstream boundary of the river 

reach. The stage data, as would be obtained from a sensor network, of these additional sensors 

was obtained by running the same river Wandle model with the observed data described in 

Table 6.3. 

 

Figure 6.2: Longitudinal profile plot of river Wandle model. Black circle represents cross-section 

locations or locations for the additional sensors 
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Table 6.3: Observed data available at upstream and downstream boundaries of river Wandle unsteady 

flow model  

Observed data Descriptions 

Rating curve at the upstream 

boundary 

The rating curve for WPM station was obtained from the 

Environment Agency 

Observed stage at the downstream 

boundary 

Stage hydrograph from Summerstown station (Environment 

Agency, 2021c) 

Observed discharge at the 

downstream boundary 

It was assumed that discharge at upstream (i.e., WPM) is 

equal to the discharge at downstream 

True/ observed initial flow (m3/s)  1.75 from the rating curve at WPM station 

True/ observed Manning’s 

roughness coefficient (m3/s)  

0.05172, according to calibrated values derived from field 

testing of the discharge estimation method (refer to Table 5.2 

of chapter 5) 

After the locations and numbers of additional sensors were determined, steps 5 to 9 of the 

optimisation Approach II were followed. For finding the optimal spacing between the sensors, 

the following limits for upstream error calibration and AARE were applied: 

a. Upstream error calibrated within ± 0.005 m [referred to as “US error criterion”] 

b. AARE at downstream boundary is < 10 % [referred to as “AARE criterion”] 

c. US error and AARE criteria combined – MC run that fulfils both a and b error criteria  

The bespoke sensor can capture the time lag between the maximum peak stage as well as 

smaller peak stages. Therefore, the error in the time peak stage i.e., 𝑇𝑝 (computed in step 6) 

was modified to include all peak stages above a certain threshold, as depicted by the black line 

in Figure 6.3. This threshold was chosen because below this threshold, there are no prominent 

peaks in the stage hydrograph seen in Figure 6.3. To estimate the modified error in time to the 

peak stage, the “find peak” function of Scipy, which finds all peaks (or local maxima) by simple 

comparison of neighbouring values based on peaks properties such as peak height, peak width, 

distance between two peaks, all the peaks above a threshold etc., was applied (Scipy, 2021). It 
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was found that modifying the error in time to the peak stage improved the calibration of flow 

parameters and discharge estimation. 

 

Figure 6.3:  River Wandle stage (measured at a 1-min frequency) from the four sensors installed on the 

river reach, and the Environment Agency (EA) stage (measured at 15-min frequency). The Dotted black 

line demarks all the peak stages above the 9.0 m threshold for sensor 207.   

6.4 Results and discussions 

6.4.1 Approach I: additional sensor as hydraulic model boundary conditions 

Various combinations of seven additional sensors placed closer to the upstream boundary, mid-

stream, and closer to the downstream boundary of the river reach, as shown in Table 6.4 and 

Appendix A, were evaluated to determine the value of these additional sensors in discharge 

estimation and to determine the optimal position of these sensors. For each sensor combination, 

1000 Monte Carlo simulations were run and evaluated to obtain the calibrated parameters. The 

calibrated parameters obtained from various sensor combinations were compared to the 

observed or true parameters. The error in parameter calibration of a model with two sensors 

was compared to that of various combinations of seven sensors to determine if additional 

sensors improved unsteady flow parameter calibration and, consequently, discharge estimates. 
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In addition, the observed peak discharge was compared with the peak discharge from various 

combinations of seven sensors to determine if the estimation of peak discharge had improved. 

Table 6.4 summarises the performance evaluation of Case 1 of idealised rivers with different 

sensor combinations. The results from other idealised river cases are summarised in Appendix 

A. Table 6.4 shows that adding 3 sensors at "2", "4", and "6" locations improves, compared to 

the case of only 2 sensors, even though the KGE for 2 sensors is 99 %,  the unsteady flow 

parameters calibration. However, the time to peak stage (𝑇𝑝) is overestimated by 25 minutes, 

which is significant in the case of flood peaks. The error in time to peak stage is the same for 

various combinations of seven sensors when placed closer to the upstream boundary (i.e., 

between locations "2" and "14"). However, when various combinations of seven sensors are 

placed in mid-stream (i.e., between locations "50" and "62") and closer to the downstream 

boundary (i.e., between locations "80" and "92"), the error in time to peak stage is reduced to 

zero or five minutes. Furthermore, for mid-stream and closer to downstream locations, mixed 

results are observed in parameter calibration. For most combinations of sensors at mid-stream, 

for which the error in time to peak stage is zero, there is a significant error in initial flow 

calibration. The results of this idealised river case show that having two more sensors at 

locations "80" and "82," for a total of four sensors in a sensor network, improves the calibration 

of the unsteady flow parameters and the estimation of the discharge.  

The analysis of various idealised river cases suggests that having more than two sensors closer 

to the downstream boundary improves the calibration of unsteady flow parameters and the 

estimation of discharge. However, while it can be inferred that more sensors should be placed 

closer to the downstream boundary in general, the idealised river case analysis did not clearly 

demonstrate this. 

Furthermore, in most idealised river cases, one or two additional sensors are sufficient to 

improve parameter calibration and discharge estimation. Further analysis revealed that due to 

the way HEC-RAS uses stage data as internal boundary conditions, having more than two 

additional sensors in the case of idealised rivers is not advantageous. Therefore, the Approach 

I was not applied in natural river channels. Additionally, it should be noted that the hydraulic 

properties of the model, such as average velocity at the downstream boundary and Froude 

number, did not change with number of additional sensors as the intermediate boundaries.    
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The HEC-RAS program forces the simulated/routed stage at the internal boundary (or open) 

cross-section to match the observed or actual stage at that location. When forcing the observed 

stage, HEC-RAS also updates the simulated stages at all locations upstream of the open cross-

sections to account for the difference between the simulated and observed stage at the open 

cross-sections. Therefore, if three additional sensors are located along the river reach, the true 

stage at the furthest downstream location will be forced to the simulated stage data at the other 

two additional sensor locations. Therefore, in a sense, the true stage data from two upstream 

additional sensors will not be utilized in improving model calibration. This was validated by 

running multiple simulations of idealised river models in which a known error was introduced 

to the true stages of the additional sensors. It was observed (results not shown) that the error in 

the true stage of the furthest downstream internal boundary propagates to all the cross-sections, 

affecting model calibration and discharge estimation. Therefore, the value of additional sensors 

in post-processing (or model calibration) of the simulated stages was evaluated, and the 

findings are presented in section 6.4.2. 

6.4.2 Approach II: additional sensors in hydraulic model calibration 

Because the selected river Wandle's reach is short, approximately 1.1 km, various combinations 

of only three and two additional sensors were evaluated to determine the value of additional 

sensors in parameter calibration and discharge estimation. Only selected results are shown here.  

The histogram of calibrated upstream error for various combinations of three and two sensor 

locations is depicted in Figure 6.4. In the case of three additional sensors, the first is placed 

near the upstream boundary (i.e., at location 8), the second is placed in mid-stream (i.e., at 

location 16), and the third is placed near the downstream boundary (i.e., at location 25) – refer 

to Figure 6.2. In the case of two additional sensor combinations, one sensor is placed in mid-

stream and the other closer to the downstream boundary (as depicted in the middle plot of 

Figure 6.4), whereas in the second combination, both additional sensors are placed closer to 

the downstream boundary (as shown in the right plot of Figure 6.4). Based on this analysis, it 

is evident that three additional sensors are advantageous to two additional sensors for 

calibrating the upstream stage error. Moreover, in the case of three additional sensors, a larger 

number of simulations calibrate upstream stage error to zero, indicating that the probability of 

compensating bias or error in the upstream stage increases as the number of sensors increases. 
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Table 6.4: Summary of performance criteria and results of parameter calibration when additional sensors are used as the internal boundary condition 

Case 
KGE  

 [%] 

Manning's 

n 

  [s/m(1/3)] 

Estimated 

Initial flow 

(𝑸𝒊) 

 [m3/s] 

Error 

in Time 

to peak 

(𝑻𝒑) 

[min] 

Error in 

peak 

flow 

(𝑸𝒑)  

 [%] 

Error in 

estimation 

of Initial 

flow (𝜺𝑸𝒊
)  

  [%] 

Error in 

estimation 

of n 

  (𝜺𝒏) 

[%] 

Intermediate 

Boundary locations 
Remarks 

 

 

 

 

 

Case 1 

99.99 0.0359 103.88 0 -0.42 3.88 2.57 None 
Model results when only two 

sensors data were used 

99.54 0.03524 97.36 25 -0.061 -2.64 0.69 2 

Sensors at 

upstream location 

99.53 0.0354 98.98 25 -0.5 -1.02 1.14 2,4 

99.5 0.0352 100.92 25 -0.1 0.92 0.57 2,4,6 

99.46 0.0353 99.99 25 -0.024 -0.01 0.86 2,4,6,8 

99.46 0.0354 102.19 25 -0.52 2.19 1.14 2,4,6,8,10 

99.47 0.0355 106.12 25 -0.4 6.12 1.43 2,4,6,8,10,12 

99.48 0.0355 107.95 25 -0.82 7.95 1.43 2,4,6,8,10,12,14 

99.99 0.0358 85.43 0 0 -14.57 2.29 50 

Sensors at 

midstream location 

99.99 0.0358 89.32 0 0.02 -10.68 2.29 50,52 

99.99 0.0359 112.62 0 -0.39 12.62 2.57 50,52,54 

99.99 0.0357 102.68 -5 0.04 2.68 2.00 50,52,54,56 

99.98 0.0361 104.1 -5 -0.8 4.1 3.14 50,52,54,56,58 

99.99 0.0357 103.05 -5 0.08 3.05 2.00 50,52,54,56,58,60 

99.99 0.0358 109.22 -5 0.09 9.22 2.29 50,52,54,56,58,60,62 

99.99 0.0356 90.31 0 0.43 -9.69 1.71 80 

Sensors at 

downstream location 

99.99 0.0355 97.73 0 0.43 -2.27 1.43 80,82 

99.99 0.0358 89.49 0 0.02 -10.51 2.29 80,82,84 

99.98 0.0358 125.53 -5 -0.4 25.53 2.29 80,82,84,86 

99.99 0.0358 109.86 -5 0.02 9.86 2.29 80,82,84,86,88 

99.99 0.0358 89.12 -5 0.02 -10.88 2.29 80,82,84,86,88,90 

99.97 0.0361 112.63 -5 0.81 12.63 3.14 80,82,84,86,88,90,92 
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Table 6.5: Summary of hydraulic details for calibrated Manning’s n and initial flow at the downstream 

boundary of the model for different combinations of sensors for Case 1 

Hydraulic depth 

(Y [m]) 

Discharge (Q 

[m3/s]) 

Average 

Velocity  

(V [m/s]) 

Froude No. 

(Fr) Additional sensor 

location 

Y_min  Y_max Q_min Q_max V_min V_max 
Fr_

min 

Fr_

max 

2.6 10.89 97.37 884.03 0.75 1.62 0.15 0.16 2 

2.64 10.89 99 880.2 0.75 1.62 0.15 0.16 2,4 

2.66 10.89 100.93 884.09 0.76 1.62 0.15 0.16 2,4,6 

2.58 10.89 96 884.35 0.74 1.62 0.15 0.16 2,4,6,8 

2.67 10.89 100.78 879.93 0.76 1.62 0.15 0.16 2,4,6,8,10 

2.67 10.89 100.86 881.04 0.76 1.62 0.15 0.16 2,4,6,8,10,12 

2.67 10.89 100.43 877.33 0.75 1.61 0.15 0.16 2,4,6,8,10,12,14 

2.42 10.99 85.45 884.6 0.71 1.61 0.15 0.16 50 

2.49 10.99 89.33 884.74 0.72 1.61 0.15 0.16 50,52 

2.67 10.99 99.6 881.14 0.75 1.6 0.15 0.15 50,52,54 

2.67 10.99 100 884.87 0.75 1.61 0.15 0.16 50,52,54,56 

2.67 10.99 99.19 877.68 0.74 1.6 0.15 0.15 50,52,54,56,58 

2.67 11 100.01 885.24 0.75 1.61 0.15 0.16 50,52,54,56,58,60 

2.67 11 100.01 885.35 0.75 1.61 0.15 0.16 50,52,54,56,58,60,62 

2.5 10.99 90.32 888.36 0.72 1.62 0.15 0.16 80 

2.62 10.99 97.74 888.41 0.74 1.62 0.15 0.16 80,82 

2.49 10.99 89.5 884.72 0.72 1.61 0.15 0.16 80,82,84 

2.67 10.99 99.6 881.05 0.75 1.6 0.15 0.15 80,82,84,86 

2.67 10.99 100.01 884.77 0.75 1.61 0.15 0.16 80,82,84,86,88 

2.48 10.99 89.13 884.78 0.72 1.61 0.15 0.16 80,82,84,86,88,90 

2.67 10.99 99.1 877.41 0.74 1.6 0.15 0.15 80,82,84,86,88,90,92 
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Figure 6.4: A histogram of calibrated upstream error values with various sensor combinations; left: 

three sensors at locations 8, 16, and 25, middle: two sensors at locations 12 and 25, and right: two 

sensors at locations 22 and 25. A larger number of runs centred around the zero (x-axis) indicates better 

performance of the model. 

This result was confirmed by performing the same analysis three times with varying error 

conditions on the US stage and sensor locations. Findings suggest that placing additional 

sensors closer to the downstream boundary improves the result. This may be because there is 

a change in riverbed slope at cross-section location 25 (refer to Figure 6.2). Therefore, an 

additional sensor located closer to this location should be able to measure the abrupt change in 

water level at this location accurately. Additionally, I am comparing observed and modelled 

discharge at the downstream location. Therefore, placing additional sensors closer to the 

downstream boundary may reduce the uncertainty or inaccuracy in the simulated stage and 

flow hydrograph closer to the downstream site, resulting in improvement in results. This result 

may change for different channel and flow conditions.  

The histogram of AARE values for various combinations of sensors, as shown in Figure 6.5, 

indicates that two additional sensors placed closer to the downstream boundary are adequate to 

improve the estimation of unsteady flow discharge. In addition, when three additional sensors 



150 

 

(illustrated in Figure 6.5) were positioned closer to the downstream boundary, it was observed 

that the discharge estimation improved, nevertheless, the improvement was marginal. 

The optimisation analysis applied to the river Wandle suggests that placing two or three 

additional sensors closer to the downstream boundary improves the unsteady flow parameter 

calibration and discharge estimation.  

 

Figure 6.5: A histogram of AARE values with various sensor combinations; left: three sensors at 

locations 8, 16, and 25, middle: two sensors at locations 12 and 25, and right: two sensors at locations 

22 and 25. A larger number of runs towards the zero (x-axis) indicates better performance of the model 

To determine the optimal spacing between the additional sensors, all possible combinations of 

two and three sensors between locations 18 and 26 were evaluated. However, adjacent sensor 

combinations such as 18–19 and 18–19–20 were neglected to account for the variation of water 

surface slope and instrumental error. The average distance between two adjacent sensors is 45 

metres.  

Figure 6.6 depicts the evaluation of the performance of a sensor network for various 

combinations of two sensors. It can be observed that the US error criteria for various sensor 

combinations exhibit little variation. Therefore, sensor combinations are sorted according to 

AARE criteria (refer to Figure 6.7) for clarity.  
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Figure 6.6: Performance evaluation of different combinations of two sensors. Y-axis shows, out of 

5000 model evaluation, the number of times US error is calibrated within ± 0.0005 m, AARE is <10 % 

and common number of runs for which both US error and AARE criteria is met 

Figure 6.7: Same as Figure 6.6 but results are sorted according to increasing AARE criteria 
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For certain sensor combinations, such as 19-22, 18-23, 18-22, 21-24 and 19-23 there is a 

significant improvement in the discharge estimation, as it is more likely to achieve an AARE 

of less than ten percent (refer to Figure 6.7). We can observe that the optimal distance between 

sensors for these sensor combinations ranges between 145 and 225 m. It should be noted that 

in none of the aforementioned combinations is the additional sensor located at the downstream 

boundary, or location 26. 

Although all five combinations provide optimal results, based on US error and AARE criteria 

combined, the optimal position for two additional sensors is determined to be between 21 and 

24. In this instance, 135 m would be the optimal distance between sensors. It should be noted 

that this optimization would give a range of optimal solutions for additional sensor locations, 

and the decision to choose the additional sensor location would be up to the user and the 

accessibility of the location to install the sensor. For instance, if a user decides to keep spacing 

between the sensor constant, say 90 metres (or if this is the only feasible distance during field 

installation). Then, having additional sensors placed at location 24 and 26 would provide 

optimal results (refer to Figure 6.8). Similarly, if during field installation, only 135 metres 

spacing is feasible, then 19-22 sensor combinations would be an ideal choice for additional 

sensor (see Figure 6.9). 

Because the average riverbed slope of Wandle is 0.00398 and the sensor used in this study has 

a resolution of 1 mm, it would be possible to measure the variation in the river's water surface 

slope even if sensors were placed at adjacent locations. 
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Figure 6.8: Performance evaluation of two sensor combination when the spacing between the sensors 

is kept constant at 90 metres 

 

Figure 6.9: Performance evaluation of two sensor combination when the spacing between the sensors 

is kept constant at 135 metres 
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Figure 6.10: Performance evaluation of different combinations of three sensors. Y-axis shows, out of 

5000 model evaluation, the number of times US error is calibrated within ± 0.0005 m, AARE is <10 % 

and common number of runs for which both US error and AARE criteria is met 

Figure 6.10 illustrates the evaluation of the performance of a sensor network for various 

combinations of three sensors. Similar to two-sensor combinations, the variation in US error 

criteria for three-sensor combinations is minimal. Therefore, sensor combinations are sorted 

according to AARE criteria (refer to Figure 6.11) for clarity.  
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Figure 6.11: Same as Figure 6.10 but results are sorted according to increasing AARE criteria 

For three distinct sensor combinations, namely 21-24-26, 19-22-26 and 18-22-26, there is a 

significant improvement in the discharge estimation, as it is more likely to achieve an AARE 

of less than 10%. Notably, the improvement in discharge estimation with three sensor 

combinations is greater than with two sensor combinations. Also, unlike two-sensor 

combinations, three-sensor combinations most of the time include an additional sensor at the 

downstream boundary (see RHS of the x-axis of Figure 6.11), or location 26. Based on US 

error and AARE criteria combined, the optimal location for three additional sensors is 

determined to be between 21, 24 and 26. Therefore, 135 and 90 metres is the optimal distance 

between these sensors.  

In idealised river cases, similar results (not shown) were obtained. Compared to having no 

additional sensors, having two additional sensors (for a total of four) placed closer to the 

downstream boundary improved unsteady flow parameter calibration and discharge estimation. 
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6.5 Conclusions 

This chapter test two approaches for optimising the location, number, and spacing of a sensor 

network. Both approaches demonstrate that the use of more than two sensors reduces the error 

in unsteady flow parameter calibration and discharge estimation. However, Approach I, which 

incorporates additional sensors as internal boundary conditions, is computationally demanding. 

In addition, the evaluation of a variety of idealised river scenarios revealed that the addition of 

more than two sensors did not provide a significant advantage. 

Approach II includes stage data from the additional sensors in the post-processing of simulated 

stages or model calibration. This optimisation approach was evaluated using an unsteady flow 

model of the Wandle River. This approach provides evidence that compared to using two 

additional sensors, utilising three additional sensors placed closer to the downstream boundary 

improves parameter calibration and discharge estimation. However, calibration and discharge 

estimation improvement are marginal (approximately 3%). Nevertheless, the sensor network 

with three additional sensors (for a total of four sensors) is more reliable because the additional 

sensors can compensate for various errors in the upstream stage and reduce errors in discharge 

estimates at the downstream boundary. The Wandle case study demonstrated that this 

optimisation approach can be utilised to configure an optimal sensor network.  

However, additional field testing and analysis are required to generalise the sensor optimisation 

algorithm for rivers with varying morphological characteristics. Also, in the case of low to 

moderate flows, AARE should be calculated by comparing the discharge from this method to 

the discharge obtained from more accurate methods, such as ADCP. Other parameters, such as 

measurement frequency, should also be incorporated into the optimization algorithm for 

studying floods. 

 



157 

 

7 Conclusions 

River monitoring and discharge estimation are becoming ever more important practices to 

support the development of mitigation measures for weather and climate extremes. Past studies 

have concluded that the ideal river gauge of the future should directly monitor the variables 

that govern discharge (river stage), be able to do so continually, and not require devices to be 

placed in the water. This could significantly expand the measurement range, including high 

flows, make the results more accurate, and the procedure safer to implement. In line with this 

vision, the overall aim of this research was to explore the potential of self-built, low-cost, non-

contact lidar sensors and sensor networks in monitoring river levels and develop a methodology 

to use stage data from such sensor networks to estimate unsteady flow river discharge 

dynamically at an ungauged location. 

The lidar sensors employed in this study emit near-infrared light of wavelength 905nm and use 

the time-of-flight method to compute the distance between the sensor and the water surface. 

Various laboratory and field experiments were carried out to assess the sensor's performance 

as a function of measurement distance, surface roughness, air temperature, water turbidity, and 

measurement angle. The experiments concluded that the sensor could take measurements under 

all tested conditions, up to an incidence angle of ∼ 40°. The accuracy of the sensor was found 

to be within a relative error of around 0.1%. A strong correlation between sensor temperature 

and accuracy was also observed. This could be due to suboptimal internal electronic 

compensation. Further, it was found that the precision of the sensor decreased with increasing 

measured distance and increased with the surface roughness of the water body. This means that 

sensors are better suited to monitor fast-flowing rivers.  

After it was established that the sensors can efficiently monitor river levels, a methodology to 

use stage data from a network of sensors to estimate river discharge dynamically was 

developed. This methodology solves the governing equations of river flow, i.e., shallow water 
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equations, by utilising river geometry and synchronous measurement of stage data from the 

sensors network. Here, I use HEC-RAS as a numerical solver to obtain a unique solution for 

the shallow water equations. A Python script was developed to control and automate hydraulic 

simulations in the HEC-RAS. The developed discharge estimation methodology is employed 

in two steps. First, using stage data from sensors, it calibrates Manning's roughness coefficient 

and the initial condition of an unsteady flow river. Then, it uses the calibrated model to estimate 

the discharge dynamically. In this methodology, the Monte Carlo method is used to calibrate 

the parameters of the hydraulic model of rivers. This developed methodology was tested on 

several idealised rivers with various channel and flow conditions as well as on a kilometre-

long stretch of the Wandle River in London, the United Kingdom. A sensitivity analysis was 

also performed to evaluate the impact of measurement error in stage data on discharge 

estimation and the robustness of the developed methodology. The results indicate that the 

methodology can be successfully applied to both prismatic and natural channels, as well as 

channels with lateral flows, does not require any discharge value, and can be used to develop 

rating curves at ungauged sites. The sensitivity analysis results show that for a mean of error 

varying between ± 25 %, the error in the calibration of Manning’s roughness coefficient is 

between -8.5 % and 14 %. This indicates that the developed model is robust. 

Although theoretically, stage data from two sensors are adequate to calibrate an unsteady flow 

hydraulic model and estimate river discharge at an ungauged location, it was found that 

utilising stage data from more than two sensors improves parameter calibration and discharge 

estimation. In the case of more than two sensors, the configuration of the sensor network, 

including 1) the location of the sensors, 2) the number of sensors, and 3) the distance between 

the sensors, has not previously been investigated. Therefore, two approaches for utilising stage 

data from a network of sensors and optimising the sensor network were explored. In the first 

approach, stage data is used as internal boundary conditions of a hydraulic model, while in the 

second, they are used to calibrate model parameters (i.e., used in post-processing of the model 

simulations). In both approaches, the Monte Carlo method is utilised to evaluate the value of 

additional sensors in unsteady flow calibration, discharge estimation, and optimal sensor 

network configuration. Both approaches were evaluated on idealised river channels and a 

natural river channel (River Wandle, London). In both instances, the calibration parameters of 

an unsteady flow hydraulic model and discharge hydrograph obtained at a location with more 

than two sensors were compared to those obtained with only two sensors to determine the value 
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of the additional sensors. Various sensor configurations were subjected to identical analyses to 

identify the optimal sensor network. 

Both approaches demonstrated that the use of more than two sensors reduces the error in 

unsteady flow parameter calibration and discharge estimation. However, Approach I, which 

incorporates additional sensors as internal boundary conditions, is computationally demanding. 

In addition, the evaluation of a variety of idealised river scenarios revealed that the addition of 

more than two sensors did not provide a significant advantage. The results of Approach II, 

which includes stage data from the additional sensors in the post-processing of simulated 

stages, show that compared to using two additional sensors, utilising three additional sensors 

placed closer to the downstream boundary improves parameter calibration and discharge 

estimation. However, calibration and discharge estimation improvements are marginal 

(approximately 3%). Nevertheless, the sensor network with three additional sensors (for a total 

of four sensors) is more reliable because the additional sensors can compensate for various 

errors in the upstream stage and reduce errors in discharge estimates at the downstream 

boundary. The Wandle case study demonstrated that this optimisation approach can be utilised 

to configure an optimal sensor network. 

The Python script developed for the discharge estimation methodology has been extended for 

1) calibrating hydraulic models under homogenous and heterogenous Manning's roughness 

coefficient assumptions, 2) performing uncertainty and sensitivity analyses of unsteady flow 

parameters, and 3) conducting probabilistic flood inundation analyses in HEC-RAS. The 

developed scripts were tested on both an idealised river case and a real river, the river Brent in 

London. 

7.1 Contribution to Science 

This thesis made the following contributions:  

▪ Demonstrated the use of low-cost sensors, developed as part of this thesis, for cost-

effective and flexible method for river level measurement at high frequency. 

▪ Developed a novel dynamic discharge estimation method to estimate river discharge 

using only stage data from network of sensors  

▪ Developed and demonstrated a Python application to 1) calibrate hydraulic models 

under homogenous and heterogenous channel roughness assumptions, 2) perform 
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uncertainty and sensitivity analysis of unsteady flow parameters, and 3) perform 

probabilistic flood inundation analysis in HEC-RAS. 

7.2 Limitations 

Following are the limitations of this study:  

▪ I could not compare lidar sensor with other sensors. Therefore, it would be useful to 

determine whether our findings could be generalised to sensors other than the one we 

used (e.g., lasers of different wavelengths, power, and pulse width). 

▪ The developed discharge estimation method was only tested on medium and large 

idealised rivers. Therefore, the methodology can be tested for a few small rivers 

▪ The developed dynamic discharge estimation method was tested in only one natural 

river, i.e., river Wandle, therefore, it should be tested in different rivers in the field 

▪ River Wandle is an urban river with in-stream flow control measures such as spillways 

and sluice gate. Therefore, the flow in the river is mostly laminar. Thus, the discharge 

estimation methodology needs to be tested in turbulent river flow conditions. 

▪ The discharge estimation methodology was not tested for river channel with lateral 

flows and hydraulic structures 

7.3 Further work 

This study tested the potential of a specific lidar sensor in monitoring river levels. However, it 

would be useful to determine whether the findings of this study could be generalised to sensors 

other than the ones used (e.g., lasers of different wavelengths, power, and pulse width) in this 

study. The wireless prototype sensors employed in this thesis use the Zigbee wireless data 

transmission protocol. Zigbee is a proprietary low-power, close-proximity (25–100 m) wireless 

network (Shah, 2018b). More recently, the LoRa (long range) standard has been developed 

specifically for IoT (Internet of Things) applications (Shah, 2018a). LoRa has a higher range 

(2–8 km) than Zigbee but a lower data transmission rate. Although ad-hoc experimental results 

can be found in the grey literature (The Things Network, 2017), no comprehensive tests have 

been published on the performance of Zigbee and LoRa in environmental settings typical for 

hydrometry (e.g., dense vegetation, riverbanks, complex topography). Therefore, further work 

can be carried out to test the performance of both transmission technologies under various 
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environmental conditions such as open grassland and forest of varying densities to choose a 

suitable technology for the sensor. 

Only limited field testing of the discharge estimation methodology could be carried out in this 

study. Therefore, additional field testing and analysis can be carried out to generalise the 

discharge estimation and sensor optimisation algorithms for rivers with varying morphological 

characteristics. Furthermore, where available, discharge data from a rating curve was used to 

compare the discharge obtained from the developed methodology. Therefore, in the future, 

discharge obtained from more accurate methods, such as ADCP, should be used. In chapter 

five, the Monte Carlo method was employed to configure an optimal sensor network. As a next 

step, the optimisation algorithm proposed in this study can be made better by comparing it to 

metaheuristic algorithms like genetic programming. For example, measurement frequency 

could be added as one of the optimisation parameters. 

River discharge data is used for a variety of scientific purposes, but one of the most important 

is constraining catchment-scale rainfall-runoff models, which are essential catchment 

management tools. Calibrating these models and reducing their predictive uncertainties is still 

a significant scientific challenge (Pappenberger & Beven, 2006; Beven & Westerberg, 2011), 

and the contribution of errors from discharge estimations has received considerable attention 

(e.g., Ocio et al., 2017 and references therein). In addition, recent research has demonstrated 

that "less-than-ideal" data, such as water level measurements and discharge measurements of 

lower accuracy or shorter duration, can be informative for calibrating models (Seibert & Beven, 

2009; van Meerveld, Vis & Seibert, 2017). This is attributable to the decrease in information 

capacity with increasing time series length and the importance of time series attributes such as 

timing and the slope of the recession curve for calibration, which is frequently well captured 

in water level data. Therefore, it is necessary to investigate how data from a sensor network 

like the one proposed in this study can be utilised to constrain rainfall-runoff models. 
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Appendix A: Summary of performance criteria and results of parameter calibration when additional sensors are used as internal boundary conditions 

Cases 
KGE  

 [%] 

Manning's 

n 

[s/m(1/3)] 

Estimated 

Initial flow 

(𝑸𝒊) 

 [m3/s] 

Error in 

Time to 

peak (𝑻𝒑) 

[min] 

Error in 

peak flow 

(𝑸𝒑)  

 [%] 

Error in 

estimation of 

Initial 

flow (𝜺𝑸𝒊
) [%] 

Error in 

estimation 

of n  (𝜺𝒏) 

[%] 

Intermediate 

Boundary locations 
Remarks 

 

Case 2 

99.99 0.0357 102.53 0 0 2.53 2.00 None  

99.99 0.0358 81.33 0 0 -18.67 2.29 2 

Sensors at 

upstream location 

99.99 0.0358 107.69 0 -0.41 7.69 2.29 2,4 

99.99 0.0358 113.58 0 0 13.58 2.29 2,4,6 

99.99 0.0359 99.55 0 -0.41 -0.45 2.57 2.,4,6,8 

99.99 0.0358 88.82 0 0.01 -11.18 2.29 2.,4,6,8,10 

99.99 0.0357 109.73 0 0.01 9.73 2.00 2,4,6,8,10,12 

99.99 0.0357 107.87 0 0.01 7.87 2.00 2,4,6,8,10,12,14 

99.99 0.0359 111.11 0 -0.42 11.11 2.57 50 

Sensors at 

midstream location 

99.99 0.0357 86.32 0 0 -13.68 2.00 50,52 

99.99 0.0356 93.51 0 0.422 -6.49 1.71 50,52,54 

99.99 0.0357 86.65 0 0.004 -13.35 2.00 50,52,54,56 

99.99 0.0358 84.092 0 -0.34 -15.908 2.29 50,52,54,56,58 

99.99 0.0358 99.86 0 -0.41 -0.14 2.29 50,52,54,56,58,60 

99.99 0.0357 116.03 0 0 16.03 2.00 50,52,54,56,58,60,62 

99.99 0.0358 105.62 0 0 5.62 2.29 80 

Sensors at 

downstream location 

99.99 0.0357 99.34 0 0 -0.66 2.00 80,82 

99.99 0.0358 92.34 0 0 -7.66 2.29 80,82,84 

99.99 0.0355 106.25 0 0.42 6.25 1.43 80,82,84,86 

99.99 0.0359 109.13 0 -0.41 9.13 2.57 80,82,84,86,88 

99.99 0.0357 107.78 0 0 7.78 2.00 80,82,84,86,88,90 

99.99 0.0356 99.21 0 0.42 -0.79 1.71 80,82,84,86,88,90,92 
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Cases 
KGE  

 [%] 

Manning's 

n 

[s/m(1/3)] 

Estimated 

Initial flow 

(𝑸𝒊) 

 [m3/s] 

Error in 

Time to 

peak (𝑻𝒑) 

[min] 

Error in 

peak flow 

(𝑸𝒑)  

 [%] 

Error in 

estimation of 

Initial 

flow (𝜺𝑸𝒊
) [%] 

Error in 

estimation 

of n  (𝜺𝒏) 

[%] 

Intermediate 

Boundary locations 
Remarks 

Case 3 

99.99 0.0358 113.58 0 -9.24 13.58 2.29 None  

99.99 0.0357 107.31 0 -0.23 7.31 2.00 2 

Sensors at 

upstream location 

99.99 0.0357 110.17 0 0.43 10.17 2.00 2,4 

99.99 0.0358 106.95 0 -0.29 6.95 2.29 2,4,6 

99.99 0.0357 99.13 0 0.01 -0.87 2.00 2.,4,6,8 

99.99 0.0358 109.78 -5 0.02 9.78 2.29 2.,4,6,8,10 

99.99 0.0357 92.74 0 -4.77 -7.26 2.00 2,4,6,8,10,12 

99.99 0.0356 132.04 -5 0.44 32.04 1.71 2,4,6,8,10,12,14 

99.99 0.0357 88.64 0 -0.18 -11.36 2.00 50 

Sensors at 

midstream location 

99.99 0.0358 98.95 0 0 -1.05 2.29 50,52 

99.99 0.0357 100.87 -5 0 0.87 2.00 50,52,54 

99.99 0.0358 78.16 -5 0 -21.84 2.29 50,52,54,56 

99.99 0.0356 109.44 -5 0.43 9.44 1.71 50,52,54,56,58 

99.99 0.0357 85.69 -5 0.01 -14.31 2.00 50,52,54,56,58,60 

99.99 0.0357 113.78 -5 0.01 13.78 2.00 50,52,54,56,58,60,62 

99.99 0.0358 84.48 0 0 -15.52 2.29 80 

Sensors at 

downstream location 

 

99.99 0.0358 90.4 0 0 -9.6 2.29 80,82 

99.99 0.0357 95.11 -5 0 -4.89 2.00 80,82,84 

99.99 0.0358 93.43 -5 -0.41 -6.57 2.29 80,82,84,86 

99.99 0.0358 117.54 -5 0 17.54 2.29 80,82,84,86,88 

99.99 0.0357 97.76 -5 0.003 -2.24 2.00 80,82,84,86,88,90 

99.99 0.0357 100.11 -5 0.003 0.11 2.00 80,82,84,86,88,90,92 
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Cases 
KGE  

 [%] 

Manning's 

n 

[s/m(1/3)] 

Estimated 

Initial flow 

(𝑸𝒊) 

 [m3/s] 

Error in 

Time to 

peak (𝑻𝒑) 

[min] 

Error in 

peak flow 

(𝑸𝒑)  

 [%] 

Error in 

estimation of 

Initial 

flow (𝜺𝑸𝒊
) [%] 

Error in 

estimation 

of n  (𝜺𝒏) 

[%] 

Intermediate 

Boundary locations 
Remarks 

Case 4 

99.99 0.0357 115 0 0 15 2.00 None  

99.99 0.0356 96.76 0 0.44 -3.24 1.71 2 

Sensors at 

upstream location 

99.99 0.0357 94.28 0 0.03 -5.72 2.00 2,4 

99.99 0.0354 104.82 0 0.89 4.82 1.14 2,4,6 

99.99 0.0356 106.08 0 0.48 6.08 1.71 2.,4,6,8 

99.99 0.0359 94.24 0 -0.36 -5.76 2.57 2.,4,6,8,10 

99.99 0.0358 93.04 0 0.08 -6.96 2.29 2,4,6,8,10,12 

99.99 0.0357 90.57 0 0.08 -9.43 2.00 2,4,6,8,10,12,14 

99.99 0.0357 94.63 0 -0.04 -5.37 2.00 50 

Sensors at 

midstream location 

99.99 0.0359 105.61 0 -0.4 5.61 2.57 50,52 

99.99 0.0358 111.6 0 0.03 11.6 2.29 50,52,54 

99.99 0.0357 91.51 0 0.33 -8.49 2.00 50,52,54,56 

99.99 0.0358 94.19 0 0.04 -5.81 2.29 50,52,54,56,58 

99.99 0.0359 94.1 0 -0.37 -5.9 2.57 50,52,54,56,58,60 

99.99 0.0356 105.47 -5 0.11 5.47 1.71 50,52,54,56,58,60,62 

99.99 0.0358 98.65 0 0.005 -1.35 2.29 80 

Sensors at 

downstream location 

99.99 0.0357 105.1 0 0.01 5.1 2.00 80,82 

99.99 0.0358 95.94 0 -0.44 -4.06 2.29 80,82,84 

99.99 0.0358 111.95 0 0.01 11.95 2.29 80,82,84,86 

99.99 0.0358 93.25 0 -0.4 -6.75 2.29 80,82,84,86,88 

99.98 0.0356 91.2 -5 0.43 -8.8 1.71 80,82,84,86,88,90 

99.99 0.0357 89.1 -5 0.01 -10.9 2.00 80,82,84,86,88,90,92 
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Cases 
KGE  

 [%] 

Manning's 

n 

[s/m(1/3)] 

Estimated 

Initial flow 

(𝑸𝒊) 

 [m3/s] 

Error in 

Time to 

peak (𝑻𝒑) 

[min] 

Error in 

peak flow 

(𝑸𝒑)  

 [%] 

Error in 

estimation of 

Initial 

flow (𝜺𝑸𝒊
) [%] 

Error in 

estimation 

of n  (𝜺𝒏) 

[%] 

Intermediate 

Boundary locations 
Remarks 

Case 6 

99.99 0.0358 96.42 0 0 -3.58 2.29 None  

99.99 0.0357 104.41 0 0.01 4.41 2.0 2 

Sensors at 

upstream location 

99.99 0.0359 96.37 0 -0.41 -3.63 2.6 2,4 

99.99 0.0359 83.88 0 -0.4 -16.12 2.6 2,4,6 

99.99 0.0358 94.86 0 -0.37 -5.14 2.3 2.,4,6,8 

99.99 0.0359 95.47 0 -0.4 -4.53 2.6 2.,4,6,8,10 

99.99 0.0357 102.11 -5 0.024 2.11 2.0 2,4,6,8,10,12 

99.99 0.0355 93.93 -5 0.45 -6.07 1.4 2,4,6,8,10,12,14 

99.99 0.0358 97.09 0 -0.41 -2.91 2.3 50 

Sensors at 

midstream location 

99.99 0.0357 95.95 0 0.425 -4.05 2.0 50,52 

99.99 0.0358 108.55 0 -0.4 8.55 2.3 50,52,54 

99.99 0.0357 85.24 0 0.01 -14.76 2.0 50,52,54,56 

99.99 0.0357 102.77 0 0.01 2.77 2.0 50,52,54,56,58 

99.98 0.0361 104.89 0 -0.81 4.89 3.1 50,52,54,56,58,60 

99.99 0.0358 98.88 -5 -0.34 -1.12 2.3 50,52,54,56,58,60,62 

99.99 0.0358 103.27 0 0 3.27 2.3 80 

Sensors at 

downstream location 

99.99 0.0357 87.11 0 0.003 -12.89 2.0 80,82 

99.99 0.0356 117.54 0 0.42 17.54 1.7 80,82,84 

99.99 0.0358 104.94 0 0 4.94 2.3 80,82,84,86 

99.99 0.0357 95.8 0 0 -4.2 2.0 80,82,84,86,88 

99.99 0.0358 99.16 0 -0.41 -0.84 2.3 80,82,84,86,88,90 

99.99 0.0358 84.36 -5 0 -15.64 

 

 

2.3 80,82,84,86,88,90,92 
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