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Abstract

When high intensities of light are focused inside of a medium, strange effects occur.
Light can self-interact. It can be slowed down based on how bright it is, it can be
made to go in one direction but not the other, and it can even be made to change
colour.

It is hard to imagine how the world would look if these were effects that we
experienced in our everyday lives. Fortunately, it takes a significant amount of
effort to make the conditions right for such events to occur, specifically, with high
optical intensities required. This thesis details some of these efforts.

In this work, I present some applications of Kerr microresonantor based nonlinear
and quantum optics. Microresonators are minute devices that can be integrated in
photonic circuits. They trap and guide light on a repeating path, with each round-
trip leading to an increase in intensity until nonlinear effects start to occur.

I start by explaining how such resonators work, are fabricated, and how nonlin-
ear effects can manifest. Next, an all-optical polarisation controller is introduced,
in which the nonlinear splitting of otherwise degenerate polarisation modes is em-
ployed. This device could find application in integrated photonic circuits that require
fast response times. A similar effect, but this time for counter-propagating light,
is then used to demonstrate an all-optical, universal logic gate. Interestingly, a set
of such logic gates could be used for the on-chip routing of optical signals to pro-
vide low-latency communications for telecoms and distributed computing. Finally,
the quantum nature of these nonlinearities is explored, first with the calculation of
multi-modal entanglement metrics before then discussing work that is progressing
towards a single-photon source. These phenomena show promise for integration into
future quantum technologies, in particular in secure quantum communications and
for state generation for quantum information processing.
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Chapter 1

Introduction

The endeavor to understand is the
first and only basis of virtue

Baruch Spinoza

The ever increasing rate of scientific and technological progress is a staggering
thing to behold, sometimes appearing as an ever growing organism beyond human
control or comprehension. I’ve been lucky enough to spend these past several years
looking at the workings of this machine and helping to make contributions to the
fascinating subject of optics. This thesis encapsulates my findings.

My focus has been in two distinct fields and their intersection: nonlinear photon-
ics and quantum technologies. I will use this chapter to motivate research in these
areas and showing how they can be applied together naturally. A short summary of
the structure of the rest of the document will then be given.

Photonics, like electronics, is a technological field in which photons (rather than
electrons) are the physical medium which is exploited as a tool to realise various
applications. The ubiquity of electronics in all aspects of life makes it hard to
appreciate just how much of an effect it has had on the human experience. If
photonics has but a tiny fraction of this impact, it will have justified all the time
and resources invested.

Why then does photonics not find equally ubiquitous application? Whereas
Volta invented the battery - a stable source of electrons - in 1800, the laser (which
is key for photonics) wasn’t invented until 1960 [1]. Many applications require the
exploitation of nonlinear effects which is relatively simple to do in electronics as
the Pauli exclusion principle can lead to current blockade in doped semiconductors
[2]. Light however, is made up of bosonic photons which do not succumb to the
Pauli exclusion principle. Nonlinear effects cannot manifest from photon-photon
interactions alone - they must be mediated by a host material. This has been a
focus of the last 60 years; fabricating photonic devices that can guide and confine
light, creating complex optical circuits for various applications.

The behaviour of light has always fascinated humankind. As a visual species,
light gives us our primary means of observing our surroundings and so it is of no
surprise that optical effects were of great interest to early thinkers. Indeed, many
philosophers of the ancient world saw light as a fundamental component of reality,
a concept shared by particle physics today! Ibn al-Haytham, the so-called “father
of modern optics”, pioneered an early version of the scientific method to increase
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CHAPTER 1. INTRODUCTION

our understanding, solidifying the concept of light rays. The enlightenment then
gave a series of leaps in our understanding and mastery of light. Galileo’s use
of lens technology to invent the telescope had birthed a new form of astronomy,
and began a new interest in the mechanics of light’s behaviour. This famously
led to two competing ideas, from two intellectual titans, of the underlying nature
of light: Issac Newton’s corpuscular theory (which would today be described as a
particle theory), and Christiaan Huygens wave theory. As a better descriptor of the
diffraction, Huygen’s wave model was preferred by contemporary physicists, but the
story didn’t end there [3].

In 1905, Albert Einsten showed that the photoelectric effect could only be de-
scribed by a quantised field [4], confirming earlier thoughts Max Plank had when
considering blackbody radiation [5]. Such quantised systems were said to have a
wave-particle duality: both Newton and Huygens were correct, but neither had a
complete understanding. In some senses light acts as a wave, in some senses it acts
as a particle. Such particles were termed photons. Theoretical work to describe these
phenomena, initiated by Paul Dirac, became the first example of a quantum field
theory which now give us our most sophisticated understanding of the microscopic
world.

The advent of the laser was the development that truly brought nonlinear and
quantum optics into being. Consisting of a gain medium inside of a cavity, which
amplifies and outputs only well-defined optical states, precise control of light was now
possible [1]. These systems have since been used to develop multiple technologies,
with particular success in telecommunications using optical fiber technology [6], and
the manufacturing of semiconductor chips which have underpinned the electronics
industry [7].

1974 saw the first observation of an important nonlinear phenomenon: optical
bistability [8–10]. Bistability describes a system which can have two distinct output
states for the same input. Electronic bistability is the concept which underpins all
(classical) electronic information processing and storage technology. Accordingly,
there was significant interest in developing optical devices to mimic their electronic
counterparts [11–13]. The weak nature of light-matter interactions is double edged:
on the one hand, this leads to low signal absorption allowing for the transmission of
information over great distances with modest input power in fiber optic networks.
However, it creates difficulties in achieving the optical nonlinearities required for the
realisation of bistability based information processing devices. Luckily, there is a
way to enhance light-matter interactions: the optical resonator.

Resonance is an effect that is ubiquitous in physics and engineering. When a
system is driven by an oscillation, it will itself begin to oscillate. When driven at
the correct frequency, these oscillations constructively interfere, potentially growing
in amplitude far beyond that of the input itself. This idea underpins the optical
resonator: input light is made to traverse a repeating path around an optical cavity.
When the input field is of the correct frequency, it is entirely in phase with the
cavity field leading to constructive interference and hence intensity buildup. When
the cavity round-trip losses are low, extreme intensity buildup is possible.

Thus, optical resonators allow for the build up of high intensities, allowing for
the exploitation of nonlinear effects with only modest input powers. Accordingly,
optical resonators are an important tool for the development of practical photonic
devices, and indeed the first demonstration of optical bistability was completed using
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a Fabry-Pérot cavity [8].

In the decades since these first demonstrations of prototype optical devices, much
work has gone into developing them into a useful technology. This is best exemplified
in the field of optical communications, with fiber optic networks underpinning global
telecoms and the internet. Previous work has broken these applications into three
main categories: diversifying laser light (e.g. through the generation of pulses or new
colours), material interaction, and information processing [13]. Of particular interest
is the frequency comb - a set of equidistant frequency modes that are all mutually
phase locked, the invention of which earned its inventors, John Hall and Theodor
Hänsch, half of the 2005 Nobel Prize in Physics [14, 15]. Allowing the coherent links
between different parts of the electromagnetic spectrum, this technique has allowed
for improved precision in time keeping, spectroscopy, and waveform generation and
is likely to be a key component in the LIDAR systems used by autonomous vehicles
[16]. In particular, progress in integrating frequency combs - so called Kerr combs -
onto photonic chips is a promising route to a future commercial technology [17, 18].

Another field that promises to develop exciting new technologies is quantum
optics. In their seminal work of 2000, Knill, Laflamme and Milburn showed that
linear optical devices and single photon sources/detectors are sufficient to construct
a universal quantum computer which has been shown to be able to outperform
classical information processing systems [19, 20]. Quantum optics can also be used
with existing fiber optics technology to provide provably secure communications over
long distances and at high speed [21].

In quantum optics, the outputs of a laser are called coherent states, and are the
analog of the classical harmonic oscillator. Similarly, such states propagate rather
unremarkably through empty space - the bosonic nature of photons means they
don’t typically interact with each other. How then, are quantum and nonlinear
optical effects produced? Laser light must interact with matter.

A key early demonstration of an optical state that could only be described using
a quantum description was given by Jeff Kimble et al. in 1977 [22]. Here, Sodium
atoms were resonantly excited such that they absorb an input photon which is then
emitted fluorescently. As this process happens one-at-a-time, the statistics are said
to be anti-bunched - direct evidence for the quantised nature of light.

The real marriage between nonlinear and quantum optics was shown in the 1980s
with the generation of squeezed states [23]. Optical states can be described using
two non-commuting observables (such as the amplitude and phase quadratures),
which obey Heisenberg’s uncertainty relations. Coherent states share this uncer-
tainty equally between both quadratures, though squeezed states sacrifice certainty
in one quadrature to increase it in the other. Accordingly, squeezed states have a
great interest to metrology, and have recently been implemented into the LIGO in-
terferometer to improve the resolution of gravitational wave astronomy [24]. Again,
our increased understanding of the mechanics of light has given us a new way to
observe our universe.

Nonlinear optics can lead to squeezed state generation by the coupling of different
optical fields by a host material’s nonlinear susceptibility. This can be achieved by
the electric dipole that is induced in a medium by incident electric fields. For low
intensity input fields, the induced dipole response is small and thus only affected
by the host atom, giving a linear response. For input fields of higher intensity, the
dipole response becomes affected by neighbouring atoms, giving a nonlinear response
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which can couple fields of different frequency in a way that leads to squeezed states
[23, 25]. This was first demonstrated in the mid-1980s using two different types of
material nonlinearity [26, 27].

Since then, quantum optics has made a number of impressive advancements both
in terms of fundamental physics and technological progress. The non-local nature
of quantum entanglement has been proven by Bell test violations [28], quantum
states have been teleported [29], and photonic quantum computation is also making
rapid progress [30, 31], to name a few major advances. Interestingly, the latter two
examples rely on squeezed states, and are pioneering works in the fields of quantum
communication and information processing.

Thus, both classical and quantum information processing technologies could ben-
efit from the use of on-chip optical resonators. Such devices allow for the realisation
of optical nonlinearities with only low input powers required. Furthermore, these
devices have a small footprint and are an essential component in any future photonic
circuit system.

This thesis focuses on applications using the Kerr-nonlinearity in microresonators,
starting with classical before moving onto quantum phenomena. All nonlinear op-
tics requires high optical intensities, which can be generated inside of an optical
resonator - a device which allows light to propagate around many times, building up
in intensity as it does so. The next chapter describes how this buildup occurs, how
to fabricate the required devices, and the origins of the Kerr-nonlinearity and asso-
ciated phenomena. Next, the spontaneous symmetry breaking of the polarisation of
light is presented. This is a form of bistability, and is used to demonstrate an all-
optical polarisation controller using the nonlinear resonance splitting of orthogonal
polarisation modes of a fiber cavity. Then, using a similar effect, an all-optical (clas-
sical) logic gate is presented, which could see application in optical computation or
the on-chip routing of light. Then the quantum nature of the Kerr-comb is explored,
starting with a chapter developing theory to quantify the associated multi-modal en-
tanglement, showing promise for application in quantum communications networks.
Finally, the experimental efforts to use such a system as a heralded single-photon
source is discussed, which could see such systems employed in quantum communi-
cations, information processing, and measurements.

I have been lucky enough to be involved in a diverse set of projects and, for
brevity, this thesis will focus on the work for which I would be considered “first-
author”. Accordingly, I led the development and execution of all methods here
presented along with the subsequent analysis, though with valuable help from my
collaborators.
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Chapter 2

Background

In this chapter, I detail the underlying concepts and background material to my
research. Appreciable nonlinear effects require high optical intensities which were
realised by using a suitable resonator. Accordingly, this chapter begins with a
discussion on how coupling coherent light to such a resonator leads to a build-up of
optical intensity. This leads to a description of the parameters which characterise
such a resonator and their physical meaning. Finally, fabrication methods for such
cavities, along with the practical methods for coupling light into them, is discussed.

With this understanding of optical resonators, the fundamentals of nonlinear
optics is presented. Starting with the origins of optical nonlinearities, there is then
a focus on the particular nonlinear effect here studied - the Kerr effect. It is shown
that, when one or two resonator modes are studied, this nonlinearity manifests as an
intensity dependent refractive index due to the phenomena of self- and cross-phase
modulation. Increasing the number of modes that are considered, it is then shown
that four-wave mixing can be exploited to generate quantum states of light.

This chapter should not be taken as a complete description of either optical
resonators or nonlinear optics (which can be found in e.g. Refs [25, 32]), rather it
concerns the topics which are of direct relevance to the work subsequently discussed.
Later chapters will then detail the specific phenomena and experimental consider-
ations related to their subject matter, with the reader able to refer back to this
chapter for the more general considerations.

2.1 Optical resonators

2.1.1 Types of optical resonator

An optical resonator is simply a device that traps light in a region in space by
making it repeatedly follow a closed path multiple times. This results in an increase
of the intensity of the light inside the resonator in comparison to that which is input
to it. Whispering gallery mode (WGM) and Fabry-Perot (FP) resonators are two
common examples, and both have been utilised in this work.

The impact of the advent of optical resonators is difficult to overstate. Building
upon the development of the maser, the development of the laser required a res-
onator for optical wavelengths [1, 33]. The pioneering theoretical work by Fox and
Li then furthered the development of practical lasers which have found ubiquitous
application in modern technology [34]. Alongside the nonlinear effects that can be

16



CHAPTER 2. BACKGROUND

accessed inside optical resonators with only modest input power, optical resonators
have recently also been used in the first observation of gravitational waves in the
LIGO interferometer, opening up a new way to look into our universe [35].

A WGM resonator (cf. Fig. 2.1a) consists of a circular dielectric structure along
with an adjacent waveguide which couples light into/out of the device via their over-
lapping evanescent fields [36]. The cavity field is then guided around the interface
of the dielectric via total internal reflection, with cavity intensity building up when
there is constructive interference with the input after a round trip.

A FP resonator (cf. Fig. 2.1b) consists of two co-axial mirrors. The input
(output) to (from) the cavity comes from the light that is transmitted through the
mirrors, which are taken as having sub-unity reflectivity [37, 38]. In contrast to
a WGM resonator, this leads to a standing wave as the field counter-propagates
against itself during each half-round trip of the cavity.

(a) (b)

Figure 2.1: Optical resonator types. a) A whispering-gallery mode (WGM) res-
onator. Light couples into a circular resonator inside which it is guided through
multiple round-trips by total internal reflection. b) A Fabry-Perot (FP) cavity.
Light couples through a semi-transparent mirror into a cavity in which it undergoes
multiple reflections from the bounding mirrors.

Both the WGM and FP cavities have symmetries which make them useful choices
for this work. The WGM resonator has a reflective symmetry, leading to degenerate
counter-propagating modes. Similarly, the FP cavity exhibits an axial symmetry,
leading to degenerate polarisation modes in the absence of any birefringence. These
make WGM and FP resonators effective tools for exploring the nonlinear interactions
between counter-propagating and orthogonally polarised light respectively.

2.1.2 Build-up of optical intensity

Many of the important parameters which define the characteristics of an optical res-
onator arise naturally from a model of the constituent fields, as shown in Fig. 2.2.
The same model can be used to describe both WGM and FP resonators, though
with some negligible differences arising from different path lengths and phase accu-
mulation upon reflection from the FP cavity’s mirror. The following model describes
the fields of a WGM resonator.
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2.1. OPTICAL RESONATORS

(a) (b)

Figure 2.2: Cavity fields with a single coupling location. a) The input field E1 par-
tially couples into the WGM resonator field E4, which undergoes loss and phase
accumulation as it is guided around the resonator to E3. Near resonance, this field
will constructively interfere with the input field leading to an intensity build-up inside
the resonator. The output field E2 is then the interference between the out-coupled
cavity field and the remaining input field. b) A FP cavity is equivalent to a WGM
resonator with a single coupling waveguide when one of its mirrors has perfect re-
flectivity.

Fig. 2.2a shows the important fields for a WGM resonator. An input field, E1,
partially couples into the cavity field E4. This field propagates around the cavity to
E3, accumulating phase and losing amplitude due to intrinsic losses as it does so. The
output field E2 is then the interference between the input field (which is transmitted
past the resonator) and the cavity field that couples out of the resonator. The
coupling between the waveguide and cavity fields can be described by the following
matrix equation, which treats the coupling as happening at a point, characterised
by the reflectivity, r, and transmission, t [39]. The coupling is assumed lossless (i.e.
|r|2 + |t|2 = 1)

[
E4

E2

]
=

[
r it
it∗ r∗

] [
E3

E1

]
. (2.1)

Also, assuming that all field amplitudes are slowly changing in comparison to
the round trip time of the cavity, the fields E3 and E4 are related by the following
equation, in which tRT is the round-trip time of the light, α is the optical loss rate,
and ω is the field frequency:

E3 = etRT(−α+iω)E4. (2.2)

According to Eq. (2.1):

E4 = rE3 + itE1, (2.3)
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which with Eq. (2.2) becomes:

E4 = retRT(−α+iω)E4 + itE1,

E4

(
1− retRT(−α+iω)

)
= itE1,

E4

E1

=
it

1− retRT(−α+iω)
. (2.4)

This gives a way to find the linear relationship between the intracavity field
E4 in terms of the input field E1 and all relevant cavity parameters. Similarly
the relationship between the output field E2 and input field E1 can be found from
Eq. (2.1):

E2 = it∗E3 + r∗E1,

= it∗etRT(−α+iω)E4 + r∗E1,

=

(
it∗etRT(−α+iω)E4

E1

+ r∗
)
E1,

E2

E1

=
r∗ − etRT(−α+iω)

1− retRT(−α+iω)
. (2.5)

2.1.3 Resonator parameters

This section will use Eqs. (2.4) & (2.5) to derive the useful parameters for charac-
terising resonators, which will be used in the remainder of this work.

Build-up factor

As previously mentioned, the light intensity is the most important parameter re-
quired for the observation of nonlinear effects. This characteristic is well described
by the build-up factor, defined as:∣∣∣∣E4

E1

∣∣∣∣2 = ( it

1− retRT(−α+iω)

)(
−it∗

1− r∗etRT(−α−iω)

)
,

=
|t|2

1 + |r|2 e−2tRTα − 2 |r| e−tRTα cos (ωtRT + ϕr)
, (2.6)

in which ϕr = arg (r) is the phase accumulation from the reflection at the coupling
point and will subsequently be taken as 0 with no loss of generality.

Figure 2.3 shows the resonant nature of these optical cavities. The cosine term
in the denominator of Eq. (2.6) leads to periodic minima, giving rise to periodic
maxima of the cavity intensity - this is resonance - which occurs when the input
frequency satisfies ωtRT+ϕr = n2π, n ∈ Z - the cavity resonance condition, in which
n gives the longitudinal mode number for a particular resonance.

Lorentzian lineshape

Resonators are often described as having a Lorentzian lineshape. This arises when
taking a small angle approximation for the cosine term in Eq. (2.6) i.e. cos(x) ≈
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Figure 2.3: Cavity build-up factor for various coupling parameters (round-trip loss
tRTα = 0.01 and reflected phase shift ϕr = 0). This figure shows the resonant nature
of the cavity; for suitable input frequencies, the cavity intensity can far exceed that
of the input. The magnitude of this increase, and the range of input frequencies over
which it occurs is a function of the coupling parameter (and round-trip losses).

1 − x2

2
, which is valid in the vicinity of any resonance with low round-trip losses,

which is the case for all devices here studied. These give:∣∣∣∣E4

E1

∣∣∣∣2 = |t|2

t2RT |r| e−tRTα

1

(ω − ωn)
2 +

(
γ
2

)2 , (2.7)

in which ωn is the nth order resonance of the cavity and γ =
2

tRT

(
[|r| e−tRTα]

− 1
2 − [|r| e−tRTα]

1
2

)
, and gives a Lorentzian spectrum for each

longitudinal mode.

Linewidth

In Eq. (2.7), γ is the full width at half maximum (FWHM) linewidth of the resonant
mode. It is inversely related to the losses in the cavity - both from intrinsic loss (α)

and out-coupling (|t| =
√

1− |r|2). This linewidth limits the rate at which the cavity

can respond to a change in the input field, making it an important parameter for
signal processing applications. In particular, it is related to the fractional round-trip
losses LRT = |r| e−tRTα by:

γ =
2

tRT

1− LRT√
LRT

. (2.8)

Decay time

The inverse of the cavity linewidth is the decay time. This is the time constant for
the ring-down of the cavity and is given by:

τph =
1

γ
. (2.9)
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Round-trip time

The other main temporal characteristic of the cavity is its round-trip time, tRT. For
a circular resonator of diameter d and refractive index n0, it is given by:

tRT =
2πdn0

c
. (2.10)

Free spectral range

The free spectral range (FSR) of the cavity is the difference in frequency between
adjacent modes, and the inverse of the round-trip time. Accordingly:

fFSR =
1

tRT
,

=
c

πdn0

. (2.11)

ωFSR =
2c

dn0

. (2.12)

Finesse

The cavity finesse, F , is the ratio of the free spectral range to the linewidth:

F =
ωFSR

γ
= π

√
LRT

1− LRT

. (2.13)

It is a function of only the round-trip losses, high finesse implies low losses, and
so is a useful metric to compare resonators of different length.

Q-factor

The Q-factor is the ratio of the resonance frequency and the linewidth, and so gives
a sense of the photon lifetime associated with the cavity:

Q =
ωn

γ
= ωnτph. (2.14)

Both the Q-factor and the finesse give a sense of the optical build up associated
with a cavity, with the Q-factor being the finesse multiplied by optical frequency
then divided by the free-spectral range. Although both the Q-factor and finesse give
a metric for the build-up of optical intensity inside of a resonator, their different
properties lead to them typically being used in different situations. The Q-factor is
related to the photon lifetime of the cavity and so is used when operating speeds
are important, whereas the finesse is related to the round-trip losses and so is used
for example in free-space cavities which can have variable lengths with minimal
associated change to these losses. With the speed of operation being an important
factor for many of the devices here studied, typically the Q-factor will be used for
the remainder of this work to characterise the resonator losses.
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Transmission factor

For the transmission factor - the relationship between the output intensity to the
input intensity - a similar method to that used in Eq. (2.6) leads to:

∣∣∣∣E2

E1

∣∣∣∣2 = |r|2 + e−2αtRT − 2 |r| e−αtRT cos (ωtRT)

1 + |r|2 e−2αtRT − 2 |r| e−αtRT cos (ωtRT)
,

=
1

(ω − ωn)
2 +

(
γ
2

)2 ( |r|
t2RTe

αtRT
+
e−αtRT

t2RT |r|
− 2

t2RT

[
1− t2RT

2
{ω − ωn}2

])
.

(2.15)

Example transmission factors for different parameters are plotted in Fig. 2.4.
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Figure 2.4: Cavity transmission factor across a resonance for different relative values
of the coupling loss, |r|, and the intrinsic loss, e−tRTα (e−tRTα = 0.9, tRT = 0.05).
For all conditions, the transmission approaches unity far from resonance, with a dip
corresponding to resonance. The green curve has the lowest total losses and so has
the narrowest dip - under-coupling. When both loss sources are equal in magnitude,
the system is critically coupled - the red curve - in which the transmission drops
to zero on resonance. Over-coupling happens when the coupling losses exceed the
intrinsic losses, blue curve, here the dip is broadest and there is residual transmission
on resonance.

Coupling conditions

Equation (2.6) shows that, when the input frequency is resonant with the cavity,
the magnitude of the intensity build-up is a function of the round-trip losses e−αtRT

and the coupling parameter |r|. Typically, there is little that can be done to reduce
round-trip losses of a cavity after its fabrication, but the coupling parameters remain
a tool which can be used to maximise device performance (this can be done by
moving the coupling waveguide relative to the resonator).
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Figure 2.5: Cavity build-up factor (blue) and output transmission (red) for different
coupling parameters. The coupling parameter |r| is normalised by the fractional
cavity round-trip losses e−αtRT which is here set to 0.9. Critical coupling (dashed
black line) is achieved when the coupling parameter equals the round-trip loss. At
this point all of the input light couples into the cavity, leading to maximal cavity
intensity as the transmission drops to 0. The region to the right of this is said to be
under-coupled, and to the left it is over-coupled.

Figure 2.5 shows how the transmission and build-up factors change with different
coupling parameters (normalised to the round-trip loss). From this, three distinct
coupling regimes can be seen:

Under-coupling (right of dashed line in Fig. 2.5, green line in Fig. 2.4) - when the
coupling parameter is below the round-trip loss, the resonator is said to be under-
coupled. This regime has the lowest total losses and thus the narrowest linewidth,
but the inability for the input to couple into the cavity limits the intra-cavity power.

Critical-coupling (dashed line in Fig. 2.5, red line in Fig. 2.4) - when the coupling
parameter equals the round-trip loss, the resonator is said to be critically-coupled. In
this condition the out-coupled cavity field completely destructively interferes with
the transmitted input field, eliminating all output transmission. Accordingly the
intra-cavity intensity is maximal for a critically coupled resonator.

Over-coupled (left of dashed line in Fig. 2.5, blue line in Fig. 2.4) - when the
coupling parameter exceeds the round-trip losses, the resonator is said to be over-
coupled. This regime has the highest losses thus exhibits the broadest linewidth and
an intra-cavity intensity that is smaller than that for critical-coupling. Although
these both seem to be detrimental, this regime is useful for signal-processing and
quantum photonic applications; broad linewidths allow for the manipulation of faster
signals, and the dominance of the coupling parameter over intrinsic losses reduces
the rate at which quantum states will be lost to the environment.

The idea of intrinsic loss is valuable when discussing resonator parameters, it
describes the resonator as a single system without a coupling waveguide (i.e. |r| = 0).
The intrinsic loss, due to material absorption and bending losses, gives rise to an
intrinsic linewidth γ0. The actual linewidth is then given by:
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γ = γ0 + γc, (2.16)

where γc is the linewidth associated with the effective cavity losses due to coupling.
Similarly the cavity Q-factor can be decomposed into intrinsic and coupling Q-
factors as:

1

Q
=

1

Q0

+
1

Qc

. (2.17)

At critical coupling, γc = γ0 (thus Qc = Q0) and so:

γcrit = 2γ0,

Qcrit =
Q0

2
. (2.18)

2.1.4 Add-drop coupling

Thus far we have only considered the cavity field as being a coherent build-up of the
pump and we now turn to a technique how to better access the new fields generated
inside the cavity. Using a single waveguide coupling as in Fig. 2.2, the output field
E2 is an interference of the cavity field E3 and the transmitted input E1. Instead,
we can access the cavity field with no interference effects from the residual pump
using two waveguides coupled to the cavity (cf. Fig. 2.6) with one waveguide serving
as an input and the other serving as an output.

(a) (b)

Figure 2.6: Cavity fields with two coupling locations for a WGM (a) and FP (b)
resonator respectively. In this configuration, the intracavity field can be monitored
directly via E8, without any interference with the un-coupled input field E1 so long
as there is no further input at E6 (N.B. this is not strictly true for quantum optical
effects, as a vacuum state input at E6 will still exhibit quantum fluctuations, but this
is beyond the current background discussion).
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In this situation, if no light is input to the second waveguide (i.e. |E6| = 0),
the output (E8) is simply a scaled down version of the intracavity field, with no
unwanted interference with pump light. Admittedly, this is a simplistic description
particularly when considering quantum optics for which there will always be (at
minimum) vacuum fluctuations input to this waveguide, but it highlights how a
second waveguide can be used to separate the input light from the output.

The fields are once again taken to change slowly in comparison to the round-
trip time, with both waveguides coupling, without loss, to the resonator at a point.
For the FP resonator in Fig. 2.6b the second mirror is necessarily half a round-trip
away from the first, whereas there is some freedom as to the second coupling point’s
location with respect to the first for the WGM resonator of Fig. 2.6a. This will be
assumed to be exactly halfway through the round-trip with negligible bearing on
the results of this work. Accordingly, the fields are related by:

[
E4

E2

]
=

[
r1 it1
it∗1 r∗1

] [
E3

E1

]
,

E5 = e
tRT
2

(−α+iω)E4,[
E7

E8

]
=

[
r2 it2
it∗2 r∗2

] [
E5

E6

]
,

E3 = e
tRT
2

(−α+iω)E7. (2.19)

where ri (ti) is now the reflectivity (transmission) for the coupler i which is
1 (2) for the input (output) waveguide. The assumption of lossless coupling sets
|ri|2+ |ti|2 = 1. Ensuring that no light is incident to the output waveguide (E6 = 0),
the following equations are determined:

E4

E1

=
it1

1− r1r2etRT(−α+iω)
,

E8

E1

=
−t1t∗2e

tRT
2

(−α+iω)

1− r1r2etRT(−α+iω)
,

E2

E1

= r∗1 −
|t1|2 r2etRT(−α+iω)

1− r1r2etRT(−α+iω)
. (2.20)

The cavity build-up factor is now:∣∣∣∣E4

E1

∣∣∣∣2 = |t1|2

t2RT |r1| |r2| e−tRTα

1

(ω − ωn)
2 +

(
γ
2

)2 , (2.21)

i.e. it is still a Lorenztian lineshape, though now with a broader linewidth as it
is the sum of the intrinsic and now two coupling linewidths (γ = γ0 + γc,1 + γc,2).
It is still possible to critically couple to such a cavity to ensure that no power
leaves the waveguide through E2 by setting the linewidth associated with the input
waveguide to equal the sum of the intrinsic and output waveguide linewidths (γc,1 =
γ0 + γc,2). However it is not possible to critically couple two waveguides to a cavity
simultaneously, as it is not possible to have γc,1 = γ0 + γc,2 and γc,2 = γ0 + γc,1 in a
physical system that exhibits intrinsic loss.
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Figure 2.7: Performance associated with different add-drop coupling parameters.
The upper row shows the cavity build-up factor, the middle row the output taper
transmission, and the lower row the input taper transmission. The left column cor-
responds to an intrinsic round trip loss of 10%, with the right corresponding to 1%
(dashed white lines show the coupling parameters that would correspond to losses
equal to this intrinsic loss). These plots show that there may be some compromises
required with add-drop coupling, with a competition between the drop port transmis-
sion and the associated reduction in cavity build-up.
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This analysis demonstrates some of the compromises that must be considered for
applications involving optical resonators for nonlinear and quantum optics; one may
wish to have direct access to a cavity field and thus use a second coupling waveguide,
however this comes at the expense of either losing critical coupling, or increasing
the linewidth and thus reducing the intracavity intensity. Both of these situations
reduce the efficiency of the system and so it becomes an important experimental
endeavor to balance all outcomes. Fig. 2.7 shows how these performance parameters
can change for different coupling conditions, with the top row showing the cavity
build-up factor, the middle row showing the relative transmission to the output
port, and the lower row showing the (here unwanted) transmission out of the input
waveguide. Ideally the top two parameters would be maximised, with the lower one
minimised, but there are no coupling conditions that simultaneously allow for this
and so compromises must be made when choosing the intended device performance.

Intrinsic resonator losses

The previous discussion showed that the linewidth of a resonance, and thus many
associated resonator characteristics, is in part dependent on the intrinsic resonator
losses. Such losses give the ultimate limit on the resonator performance, leading to a
ceiling of the attainable intensity build-up which sets threshold powers for nonlinear
phenomena. Accordingly, a brief discussion on the origins of such losses follows.

Firstly, fused silica was chosen for the material to fabricate all resonators in
this study due to its high transparency in the telecoms band. However, in spite
of this high transparency, silica still exhibits some residual optical absorption. In
particular, it has been shown that adsorption of water into the surface of the silica
resonator can lead to excess optical absorption by the presence of OH bonds [40,
41].

Secondly, optical scattering can occur due to surface inhomogeneities [40]. Ac-
cordingly, some proportion of the resonator optical mode is coupled into unguided
spatial modes, acting as a source of loss. Great care is taken in the fabrication
process to ensure all surfaces are smooth, and subsequent handling of the devices
done in a clean environment to prevent the accumulation of surface contaminants.

Finally, bending losses are a phenomena well known to the fiber optic community
and can be seen in microresonators. In both fiber optics, and WGM resonators,
light is guided by total internal reflection at the interface of two materials with
contrasting refractive indices. These structures support a travelling wave within the
waveguide itself, and lead to the development of an evanescent field at the material
interface, which decays exponentially away from the guided mode. In the presence
of a bend in a waveguide, one can imagine an effective refractive index that increases
linearly from the bend centre to account for the increasing distance the field has to
travel. Accordingly, some proportion of the evanescent field will experience a high
effective refractive index, and will then couple into this region. This proportion of
the field is no longer constrained by the waveguide and radiates away as a form of
loss. The magnitude of this effect is mediated by the bend diameter and refractive
index contrast in the waveguide (which is high for the silica-air interface exploited
in the WGM resonators here studied). Thus, this effect is only appreciable for
WGM resonators of diameters ⪅ 30µm [40], which is smaller than any device here
studied. Similarly, fiber Fabry-Pérot cavities can have their bending losses reduced
to negligible amounts by ensuring there are no tight bends.
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2.2 Fabrication methods

Thus far, I have detailed the theory of coupling of light to a resonator and how this
leads to a build up of the intensity of the cavity field. But how is this implemented
in practice?

This section details the fabrication methods for the main devices used in this
work - the micro-toroid and rod WGM resonators - along with those for the tapered
fibers used to couple light into them. The Fabry-Pérot cavities used in this work
were made using fiber mirrors fabricated by a collaborator, so associated methods
will be presented briefly, for the reader’s interest.

2.2.1 Micro-toroid

SiO2

Si

Photoresist

(a)

Cr
UV

(b) (c)

(d) (e) (f)

(g)

Figure 2.8: Illustration of the fabrication process for a micro-toroid resonator. a)
A fused silica-on-silicon wafer is taken and a uniformly thin layer of photoresist is
coated on top by spin-coating. b) A disc shape is patterned onto the photoresist using
UV lithography and a chromium mask. c) The remaining photoresist is removed in
a development process. d) The silica is etched using a BOE (HF acid mixture)
which is inhibited by the photoresist disc, leaving a wedge shaped silica disc. e) The
underlying silicon is etched away using XeF2 gas, leaving a silica disc on a silicon
pillar. f) A CO2 laser pulse is used to reflow the disc into a toroidal shape. g) Image
of silica-on-silicon micro-toroid resonator fabricated in this method.

The ideal material for making a resonator has to be transparent to minimise losses
and a high refractive index is preferred to increase the optical confinement. Although
multiple materials can be used as microtoroid cavities, such as lithium niobate and
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silicon nitride [42, 43], silica remains a popular choice due to the relative ease of
fabrication and high quality factors achievable (despite relatively modest material
nonlinearities).

The fabrication process used, similar to the method given in [44], uses a silica-
on-silicon chip and a process of lithography, dry etching and reflow to create toroids
with exceptionally smooth surfaces and associated high quality factors.

A commercially available silica-on-silicon chip (2 − 6 µm thick layer of silica
on a 360 µm silicon chip) is taken and deposited with a thin (≈ 1 µm) layer of
photoresist by spin-coating which ensures uniform thickness, as shown in Fig. 2.8a).
This (positive) photoresist is made from a chemical which becomes soluble to some
developer under exposure to UV light (in contrast, a negative photoresist loses
solubility to a developer under similar exposure).

A mask - a thin layer of chromium patterned with the desired design - is clamped
to the top of the photoresist and all is exposed to UV light, Fig. 2.8 b). Due to the
mask, only the regions of photoresist that are not directly below chromium will be
exposed to UV and become soluble to the developer. After exposure, the mask is
removed and the chip is placed in developer to dissolve the exposed photoresist.

The chip is then immersed in a Buffered Oxide Etch (BOE, a HF acid mixture),
which then etches the exposed silica away but is inhibited by the photoresist. The
BOE acts to slow and control the etching speed of the HF, ensuring the ability to
control the process. Figure. 2.8 c) shows the result of this stage, with wedge shaped
silica discs sitting atop the silicon chip.

The relatively high refractive index of silicon compared to silica (nSi ≈ 3.47,
nSiO2 ≈ 1.45) means that light would preferentially couple from the silica to the
silicon, inhibiting optical confinement. Accordingly, the underlying silicon is dry-
etched using xenon diflouride (XeF2) gas, leaving silica discs atop silicon pillar as
shown in Fig. 2.8d).

The final step is to reflow the silica disc to reduce surface roughness. A CO2

laser pulse is focused, from above, onto the disc. This momentarily melts the edge
of the disc, which collapses into a toroidal shape under surface tension and then
cools in place, leaving a smooth surface.

This process can be used to make toroids with major diameters ranging from
30 µm to 2 mm, and with Q-factors around 3 × 108, with an example 200 µm
diameter micro-toroid shown in Fig. 2.8 f).

2.2.2 Rod resonator

Rod resonators are fabricated in a process using a CO2 laser lathe, following a
method similar to that set out in [45] and illustrated in Fig. 2.9. Rods of optical
quality fused silica are bought from commercial suppliers and inserted into a spindle
and spun, Fig. 2.9a). A CO2 laser is focused and directed by computer controlled
galvo mirrors onto the upper surface of the spinning rod, with the aid of a visible
collinear laser.

The focal point is swept across the upper surface of the spinning rod, with the
laser power set to machine away this upper layer, Fig. 2.9b). This stage has multiple
purposes: it removes impurities, which are mainly found in the outer region of the
silica, gives symmetry about the spindle’s rotation axis and machines the rod to the
desired diameter. Next, the focal point is swapped between two locations just below
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the upper surface, machining two channels into the glass, Fig. 2.9c). These channels
are formed by the vaporisation of the glass, due to the extreme intensity of the high
power laser at the focus, which then melts the surrounding region, forming a curved
surface shown in Fig. 2.9d).

The vaporised glass can stick to the surface of the spinning rod, giving it a milky
colour but more importantly leading to large optical losses. To account for this,
the steps from Fig. 2.9b) and c) are alternated, with a lower power for step b) to
continually remove the build up of impurities.

This process can make rod resonators with (major) diameter between 170 µm-
8 mm, and with Q-factors up to 1× 109. In comparison to micro-toroid fabrication,
this process is fast and affords the user better control over the geometric parameters
of the resonator. In particular the important geometric parameters are: the diameter
of the resonator, which is dependent on the final reflow stage in micro-toroid fabri-
cation (and hard to accurately control), which then sets the resonator FSR. Also the
resonator cross section is easier to control for rod resonators, which helps to engineer
dispersion (see section 2.3.7). Finally, the larger diameters of rod resonators make
them experimentally easier to access from two locations simultaneously, allowing for
the add-drop coupling presented in Fig. 2.6. However, in comparison, micro-toroid
resonators have smaller associated dimensions which allow for the fabrication of high
FSR cavities and, most importantly, have far smaller mode volumes than rods. This
concentrates light into a smaller space, leading to higher intensities thus allowing for
the realisation of nonlinear effects at lower input powers. Whilst rods may be more
appropriate in a research laboratory setting due to their ease of implementation,
micro-toroids are more likely to be integrated into future photonic technologies.

2.2.3 WGM fabrication requirements

With silica chosen as the material for the resonator due to its high transparency in
the telecom band and its ease of fabrication, there remain two major aims for the
fabrication process: ensuring a smooth surface, and achieving a diameter such that
the resonator has the desired FSR.

As described above for both the micro-toroid and rod resonator geometries, a
CO2 laser is used to ensure smooth surfaces. This is achieved by reflowing the
surface: melting it for a short amount of time during which surface tension pulls it
into a smooth and regular shape. This ensures that all surface roughness features are
on a length scale much smaller than the optical wavelength, ensuring that scattering
losses are minimised.

Chapters 3 & 4 concern the dynamics of degenerate optical modes of the same
longitudinal mode number and so do not have any requirements on the resonator
FSR, and thus its diameter. Chapter 6, however, describes the generation of photons
into spectral modes that can be separated by a dense wavelength division multiplexer
(DWDM). DWDMs are commercial devices with channels at frequencies specified by
international standards, each separated by 100 GHz. Thus, according to Eq. 2.11, to
match the resonator FSR to the DWDM spacing, its diameter must be 660 µm. The
tolerance to this value is set by the DWDM channel bandwidth (typically 10GHz)
and the number of modal pairs required to be separated. For five modal pairs, a
diameter of 660 ± 12 µm is required. Such precision is within that available from
the WGM fabrication methods previously described.
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Figure 2.9: Illustration of the fabrication process for a rod resonator using a CO2

laser lathe. a) A length of fused silica rod is spun in a spindle. b) The outer layers
of the rod are removed by scanning the focal point of a CO2 laser beam over the
top surface. c) The beam is focused onto two spots to dig two channels into the
spinning rod. d) The laser is scanned over the machined region, softening the silica
which reforms into a smooth shape. e) Image of a rod resonator fabricated using this
method.

2.2.4 Tapered fiber

In order to couple light into, and out of, these high-Q resonators without excessive
interference with the cavity fields, the evanescent field is exploited. As electromag-
netic waves propagate around aWGM resonator via total internal reflection, it would
initially appear that there is a discontinuous jump in the electric and/or magnetic
field at the resonator-air interface. Of course this can not happen and is prevented
by the development of an evanescent field in the region - an oscillating EM field that
matches the cavity field at the resonator boundary but then exponentially reduces
further away such that there is no associated propagation (N.B. this is not strictly
true as for a curved interface some proportion of the evanescent field will radiate
away and is termed a “bending loss”, which sets a maximum curvature - and so
minimum diameter - of WGM resonators).

Accordingly, one can use the evanescent field of another device which guides
light via total internal reflection to excite the evanescent field of the cavity. This
leads to the coupling between the field input to the device and the cavity field, with
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some proportion propagating around the WGM resonator. Three main methods
have been used for this:

• Prisms. These can have very strong evanescent fields and associated coupling
to WGM resonators, but are large and require free-space optics making them
less easy to use [46].

• Waveguides. On-chip WGM resonators can couple to waveguides made us-
ing the same lithographic techniques. This mechanically robust technique is
undoubtedly the most promising method for implementation in photonic tech-
nologies, but can be inflexible in a research setting as there can be no changes
post-fabrication [47].

• Tapered fibers. Tapering an optical fiber can allow the evanescent field to be
accessible from its surface, giving a coupling device that is easy to send light
through and flexible in positioning making it useful for research purposes,
albeit with a fragility that makes it difficult to be used outside of a laboratory
environment [48].

In this work, tapered fibers were used as the coupling device due to their versatility.
In particular, the ability to change the coupling position in three dimensions was
found to be useful - the vertical position of the taper with respect to the WGM plane
determining the spatial mode of the resonator being excited; the axial position of
the taper determining its diameter at the coupling location and hence the phase
matching between the taper and cavity fields; and finally the distance between the
taper and WGM resonator giving a control for the degree of coupling between the
taper and cavity fields (i.e. under-, critically- or over-coupled). Moreover, the ability
to avoid free-space optics and simply have all fields inside of fibers and commercially
available fiber components simplifies experimental setups significantly.

The principle for the tapered fiber fabrication process is simple (though in prac-
tice it is often not!), and is illustrated in Fig. 2.10. A standard, single mode fiber
(≈ 10 µm diameter core, 125 µm diameter cladding) is taken, and the protective
plastic coating is removed over a ≈ 10 mm length. This exposed region is clamped
in place above a hydrogen nozzle, Fig. 2.10a), and a laser is sent through it to a
photodiode (PD) to monitor transmission.

Hydrogen is then pumped through the nozzle and ignited, creating a flame po-
sitioned such that the hottest part is on the fiber. The fiber clamps are then
moved slowly away from each other using two computer controlled translation stages,
adding tension to the hot fiber which draws the central region into a taper as shown
in Fig. 2.10b).

In a normal fiber, the higher-index core guides light due to total internal reflection
at the core-cladding interface. However, during tapering, the diameters of both
cladding and core reduce and the light is no longer fully guided by the core with
the fiber now becoming multi-modal and shows a complex interference pattern in
transmission, see Fig. 2.10c). Eventually the cladding becomes so narrow that light
is guided through the cladding-air interface, and the fiber becomes once more single
mode. Due to the higher index contrast between the cladding and air, relative to
that between the core and the cladding, this happens for a relatively narrow taper
of ≈ 1 µm.
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Figure 2.10: Illustration of the fabrication process for a tapered optical fibre. a) The
plastic coating over a length of optical fibre is removed and clamped onto translation
stages above a hydrogen flame. b) The translation stages slowly move apart from
each other, leading to a taper with a sub-micron waist. c) The transmission through
a fiber during tapering. The ordinarily single mode fiber becomes multi-modal as the
light is guided by both the core and cladding as their diameters reduce exhibiting the
complex interference shown. Eventually the taper becomes so narrow that the light is
guided by the cladding-air interface and the taper becomes once again single mode,
which is indicated by a dramatic reduction in the amplitude of the oscillations in
transmissions following a short increase in these amplitudes, shown at the right of
the image.

The flame is then removed, with a small amount of tension applied to the taper
to counter any thermal relaxation, and it is glued onto a bracket. The fiber ends are
then spliced onto commercially available fiber pigtails to be connected to photonics
circuits as required.

Subsequent handling of tapered fibers requires great care to protect them from
breaking. Although glued onto a bracket, having a sub-micron waist means that
vibrations or gently touching another object can break them. This can be a partic-
ular issue when coupling light from the taper into a resonator as they need to be
very close for their respective evanescent fields to overlap. On a similar note, the
exposed evanescent fields of a tapered fiber mean that surface contaminants (e.g.
dust) can easily lead to scattering. This prevents meaningful transmission from the
taper to the resonator and it is thus important to maintain them in a clean environ-
ment which can be done using an enclosure with a positive pressure to reduce the
likelihood of dust entering. Despite these issues, the versatility of operation afforded
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by the ease at which tapered fibers can be manoeuvred, along with the fact they are
intrinsically fiber-coupled, give a useful experimental tool.

2.2.5 Fiber mirrors

For fiber Fabry-Pérot cavities, coupling is much simpler. When the cavity is made
of optical fiber itself, mirrors can be deposited directly onto the ferrule connectors
at the fiber ends, with input/output coupling attained by merely connecting other
fibers to these ferrules. These fiber mirrors were made by a collaborator using a
technique called sputtering.

Sputtering allows for individual layers of material to be grown onto a surface
with very precise thicknesses. This allows for the fabrication of Bragg mirrors -
alternating layers with differing refractive index and very well defined thickness - to
be fabricated on the ends of fibers. These mirrors, made from layers of tantalum
pentoxide (Ta2O5) and silica (SiO2) can have reflectivities well above 99% (up to
99.9% is feasible!).

A fiber Fabry-Pérot cavity, which was first introduced in Ref [38], is then made
by simply attaching two such mirrors to either end of a given fiber. As optical fibers
exhibit low loss, it is possible to make such cavities longer with minimal addition
to the round-trip loss, increasing the net nonlinearity exhibited by the cavity for a
given input power.

2.3 Nonlinear optics

This section details the emergence of the nonlinear optical effects that underpin the
phenomena studied in this work, in particular those of the third order nonlinearity:
the optical Kerr effect. The first half of this thesis relies on the intensity depen-
dent refractive index that the Kerr effect manifests leading to self- and cross-phase
modulation (SPM and XPM). In particular, the difference in magnitude between
SPM and XPM [49] is of vital importance for understanding Chapters 3 and 4 and
so is derived in this section. Finally the process of four-wave mixing (FWM) is
discussed as a manifestation of the Kerr-effect in which light coherently couples to
other frequency modes. This process is here treated classically, and will be quantised
in Chapter 5 to show how it can yield states interesting for a variety of proposed
quantum technologies.

2.3.1 Maxwell’s Equations

All classical optics can be described using Maxwell’s equations:

∇ ·D = ρf, (2.22)

∇ ·B = 0, (2.23)

∇×E = −∂B
∂t

, (2.24)

∇×B = µ0

(
J f +

∂D

∂t

)
, (2.25)

in which D = ϵ0E + P is the electric displacement vector - the sum of the electric
field E multiplied by the permittivity of free space ϵ0 and the electric dipole moment
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density P , ρf is the density of free charge carriers (taken to be zero), B is the
magnetic field, µ0 is the permeability of free space and J f is the free current density
(taken to be zero). Eqs. (2.24)-(2.25) together give:

∇×∇×E +
1

c2
∂2

∂t2
E = −µ0

∂2

∂t2
P , (2.26)

which with the identity ∇×∇×E = ∇ (∇ ·E) −∇2E and Eq. (2.22) (assuming
∇ ·D ≈ ∇ ·E = 0) gives:

∇2E − 1

c2
∂2

∂t2
E = µ0

∂2

∂t2
P . (2.27)

This is a wave equation for E in which P is a driving term. However, the dipoles
are induced by the electric field and so Eq. (2.27) can be expressed in terms of the
single field E.

2.3.2 Electric dipole moment density, P

The electric dipole moment density P is an important parameter, describing para-
metric light-matter interactions. An oscillating electric field passing through a
medium induces oscillating electric dipole moments, which in turn radiate light.
It is for this reason that P appears as a driving term in Eq. (2.27), and it can be
given as a Taylor expansion in terms of E:

P = ϵ0
(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
, (2.28)

in which χ(N) is the N -th order susceptibility - a tensor of rank N + 1 with, in gen-
eral, 3N+1 components each of which is dependent on the frequency of the electric
field oscillations. For optically isotropic media, such as fused silica, the polarisa-
tion dependence of the susceptibility tensor is lost simplifying the situation greatly.
Moreover, all parameters of χ(2) equal zero for media which exhibit such (inversion)
symmetries, and so only χ(3) nonlinearities are observed (higher order effects are neg-
ligible due to the extreme intensity requirements due to the very small contributions
from higher order susceptibility tensors).

2.3.3 Linear Optics

For isotropic media, the χ(1) susceptibility loses its tensor nature, becoming simply
a number. Ignoring nonlinear phenomena, Eq. (2.27) becomes:

∇2E − 1

c2
∂2

∂t2
E = µ0ϵ0χ

(1) ∂
2

∂t2
E,

∇2E − 1 + χ(1)

c2
∂2

∂t2
E = 0,

∇2E −
(n1

c

)2 ∂2
∂t2

E = 0,

(2.29)

which is simply a wave equation in which light is slowed by a factor n1 =
√
1 + χ(1)

- the refractive index of the material.
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2.3.4 The second-order susceptibility, χ(2)

The second-order susceptibility is the lowest order nonlinearity and is the source of
the electro-optic Pockels effect, second harmonic generation (SHG) and spontaneous
parametric down conversion (SPDC) - a common source of entangled photon pair
generation [25, 50, 51].

Centrosymmetric media, such as silica, have no such nonlinearity and so none
of the aforementioned effects are present in the resonators that are studied in this
work.

2.3.5 The third-order susceptibility, χ(3)

The third-order susceptibility - the source of the Kerr-effect - is a fourth-rank tensor,
with elements χ

(3)
i,j,k,l for which the indices i, j, k, l ∈ {1, 2, 3} represent the three

spatial dimensions. In general each of the associated 81 elements are unique, but
the spatial symmetries of isotropic media reduce these dramatically to only three
independent parameters from which all others can be derived:

χ
(3)
i,j,k,l = χ

(3)
1,1,2,2δi,jδk,l + χ

(3)
1,2,1,2δi,kδj,l + χ

(3)
1,2,2,1δi,lδj,k, (2.30)

which holds for arbitrary field frequencies [25]. The associated (nonlinear) dipole
moment density is:

P
(3)
i (ωa + ωb + ωc) = ϵ0

∑
a,b,c

∑
j,k,l

χ
(3)
i,j,k,l (ωa + ωb + ωc;ωa, ωb, ωc)Ej (ωa)El (ωb)Ek (ωc) ,

(2.31)

in which the indices a,b,c allow for the nonlinear coupling of different frequency
components of the light subject to conservation of energy, in a process known as
four-wave mixing (FWM).

2.3.6 The intensity-dependent refractive index

A special case of Eq. (2.31) occurs when ωa = ωb = −ωc = ω. Here:

P
(3)
i (ω) = ϵ0

∑
j,k,l

χ
(3)
i,j,k,l (ω;ω, ω,−ω)Ej (ω)El (ω)Ek (−ω) ,

= 6ϵ0χ
(3)
1,1,2,2 (E ·E∗)Ei + 3ϵ0χ

(3)
1,2,2,1 (E ·E)E∗

i , (2.32)

where the latter step comes from the intrinsic permutation symmetry of the suscep-
tibility tensor. This can be expressed as:

P (3) = 3ϵ0χ
(3) (2 (E ·E∗)E + (E ·E)E∗) , (2.33)

which has been simplified by χ
(3)
1,1,2,2 = χ

(3)
1,2,2,1 = χ(3) which holds for materials

in which the nonlinearity is dominated by the non-resonant response of bound
electrons, as is the case for silica [25, 49]. In the circular polarisation basis, i.e.
E = E+σ+ + E−σ− where σ± are the basis vectors for circular polarised light of
opposite handedness (such that σ∗

± = σ∓, σ± ·σ∓ = 1, σ± ·σ± = 0), this becomes
[52]:

P
(3)
± = 6ϵ0χ

(3)
(
|E±|2 + 2 |E∓|2

)
E±. (2.34)
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This now has the same apparent form as the linear term in Eq. (2.29) and indeed
has the same effect - it leads to a change in the apparent refractive index of the
material though with a magnitude that is dependent on the intensity of the field.

This nonlinear refractive index arises from two processes: self-phase modulation
(SPM), in which the intensity of a circular polarisation affects the refractive index
experienced by the same handedness, and cross-phase modulation (XPM) in which
the refractive index experienced by the opposite handedness is affected. The dif-
ference in magnitude of these effects - XPM has a factor of two in comparison to
SPM - means that these two components can experience different effective refrac-
tive indices (with the less intense component experiencing a greater shift due to the
greater magnitude of XPM) [25, 53].

This conclusion - that light can be broken down into components that experience
different refractive indices - is the underlying phenomenon responsible for the inter-
esting effects I demonstrate in Chapters 3 & 4, hence why it has here been discussed
in detail.

2.3.7 Four-wave mixing

The frequency mixing available from Eq. (2.31) allows for the generation of light
in different frequency modes (i.e. those with the same transverse spatial structure,
but differing longitudinal mode numbers) inside the resonator by FWM. Here, two
pump photons are annihilated and simultaneously a pair of photons - termed the
signal and idler pair, in which the signal (idler) has a higher (lower) frequency than
the pump - are created with frequencies according to the conservation of energy [54].

Figure 2.11 illustrates the two manners in which FWM can occur. Degenerate
FWM (2.11a) occurs when two pump photons of the same frequency are annihilated,
generating photons in modes equidistant about the pump mode in frequency. Non-
Degenerate FWM (2.11b) occurs when two pump photons of different frequency are
annihilated, generating photons in modes equidistant about the mean pump photon
frequency.

Importantly in both of these situations, the generated photons are centred in fre-
quency about the pump. This is in contrast to the χ(2) effects of parametric down-
conversion or second-harmonic generation in which the frequencies of the modes
involved differ significantly. FWM allows all fields to be of a similar frequency (e.g.
all in the telecom band) allowing for the easy integration with existing devices - a
valuable property for photonic/quantum technologies. The χ(3) effects of third-order
down-conversion or third-harmonic generation also suffer from this large frequency
contrast between pump and generated fields and will be disregarded for the remain-
der of this work for this reason.

For a weak pump, the rate at which signal/idler photons are generated is less than
the rate at which photons dissipate from their respective modes. In this situation
- called spontaneous-FWM - a two-mode squeezed vacuum state is generated [53]
for which the detection of a single photon in the signal (idler) mode can be used to
herald a single photon in the idler (signal). For higher pump powers, the parametric
gain exceeds the losses, and lasing occurs in the signal/idler modes. In this case, the
underlying quantum nature of the system leads to quantum correlations between
the modes. Both of these circumstances - heralded photon sources and multi-modal
quantum correlations - are a useful resource for a wide range of quantum technologies

37



2.3. NONLINEAR OPTICS

Degenerate 
FWM

(a)
Non-Degenerate 

FWM

(b)

Figure 2.11: Illustration of four-wave mixing (FWM). a) Degenerate FWM. For a
suitably intense cavity field in the pumped mode ω0, two pump photons can anni-
hilate generating a pair of photons, one with a higher (lower) frequency, called the
signal (idler), which are separated in frequency from the pump by an integer num-
ber of FSR. The frequency selective nature of the cavity, along with conservation of
energy ensures that this is effect is only significant for equidistant modes about the
pump, ω±N. b) Non-degenerate FWM. When two cavity modes have suitably intense
fields, a photon from each field can annihilate, generating photons in the modes that
correspond to the same total energy (i.e. ω0 + ω+1 = ω−1 + ω+2).

[55] and will be discussed in Chapters 5 & 6.

Phase matching

Momentum, along with energy, must be conserved between the annihilated and
generated photon pairs. For nonlinear optics, this requirement is more often referred
to as phase matching which simply means that there should be a (near) constant
phase difference between all beams to maximise the parametric conversion efficiency.

There is an intuitive picture for phase matching for degenerate FWM in an
optical resonator: the generated signal and idler photons must be equidistant in
frequency about the pump, but there must also be optical modes at both of these
frequencies to allow for the generated light to be guided inside the resonator. As
shown in Fig. 2.12, this is necessarily true for a resonator with zero dispersion, but
the lowering (raising) of the frequency of the signal/idler optical modes relative
to the pump mode due to normal (anomalous) dispersion can inhibit this. Such
chromatic dispersion is present in all materials and resonator geometries (although
perhaps only at higher orders), and this ultimately limits the spectral region for
which efficient FWM can occur in optical resonators, hence dispersion engineering
has been a subject of substantial research [56].
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Figure 2.12: Effects of dispersion on the cavity resonances about pump mode. For
zero dispersion, adjacent resonances are equidistant in frequency about the pump
mode. Normal dispersion shifts these resonances to lower frequencies with respect
to the pump mode, whereas anomalous dispersion shifts them to higher frequencies,
both breaking the equidistance in frequency from the pump.

Frequency combs and optical solitons

Cascaded FWM, where a new tone then can lead to complex nonlinear dynamics
featuring many modes, all equidistant in frequency, that can become mutually phase
locked - a phenomena called frequency combs [57]. For suitable pump powers and
detunings (defined as the difference between the laser and cavity resonance frequen-
cies), this can lead to dissipative Kerr solitons (DKS) - a sequence of narrow bright
pulses with a repetition rate equal to the FSR of the cavity [58].

Cross phase modulation between different frequency modes, rather than between
different polarisation modes as previously discussed, can balance dispersion in this
regime. Those generated sidebands have a greater shift in their refractive index due
to XPM from the strong pump, which has the same effective outcome as normal
dispersion in Fig. 2.12. This effect can balance out intrinsic anomalous dispersion
in the resonator, giving a very wide range in frequency for which phase matching is
satisfied.

DKS can manifest when there is a twofold balance - one between nonlinearity
and dispersion as described, and another between resonator losses and parametric
gain - which lead to a pulse with a squared hyperbolic-secant spectrum.

2.3.8 The Lugiato-Lefever Equation

The Lugiato-Lefever Equation (LLE) was developed to describe the evolution of the
field inside a nonlinear cavity that is pumped by a monochromatic coherent field.
Initially this work assumed a longitudinally uniform field, with the self-focusing
Kerr-effect counterbalancing diffraction, leading to stable, nontrivial transverse spa-
tial structure in the beam [59]. This work was then developed to describe longitu-
dinal (and hence temporal) structure in ring cavities, with diffraction replaced by
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Figure 2.13: Dissipative Kerr Soliton (DKS) profile. A DKS is a bright pulse
amongst a dark background when seen in time or as a function of the longitudinal
position around the resonator (above). In frequency space (below), there is a strong
pump mode which excites high intensities in its nearest neighbours which drops off
exponentially as a hyperbolic secant profile (red line).

dispersion in this context [60]. The LLE is given using the following notation in
Ref [53]:

∂E

∂t
= −1

2
δωtotE + i∆E + ig0 |E|2E +

iη2
2

∂2E

∂θ2
+
√
δωextEin, (2.35)

in which E is the cavity field envelope; Ein is the input field; δωtot and δωext are the
linewidths associated with the whole system and external coupling respectively; ∆
is the detuning (difference between the laser and cavity frequencies); g0 gives the
strength of the Kerr effect; η2 is the second-order dispersion of the cavity; t is time;
and θ gives the azimuthal angle around the resonator.

Normalising Eq. (2.35) gives a simpler dimensionless model, with the following
form being what is meant by the term LLE for the rest of this work unless explicitly
stated otherwise:

∂ψ

∂τ
= − (1 + iα)ψ + i |ψ|2 ψ − iβ

2

∂2ψ

∂θ2
+ F , (2.36)

where the dimensionless cavity field ψ (τ, θ) =
√

2g0/δωtotE, dimensionless time
τ = t/2τph, dimensionless detuning α = −2∆/δωtot, dimensionless dispersion β =
−2η2/δωtot and dimensionless input field F =

√
8g0δωext/δω3

tot

√
Pin/ℏω.

Modified versions of the LLE accurately model all effects studied in this work.
The interaction of orthogonally polarised light in ring resonators was studied in
Ref [61], which showed that the Kerr-effect can lead to a nonlinear coupling of po-
larisation modes via cross phase modulation. Together with Refs [62, 63], which
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develops the LLE for Fabry-Pérot, rather than ring, cavities a model for the in-
teraction of orthogonally polarised light in a fiber Fabry-Pérot resonator can be
developed1. This model is used, for uniform cavity fields, in Chapter 3 to develop
a set of coupled nonlinear equations which accurately predict the spontaneous sym-
metry breaking of the polarisation of light in a fiber Fabry-Pérot cavity.

In Chapter 4, two lots of Eq. 2.36 are used to describe the nonlinear interaction
of counter-propagating light in a ring resonator. Again, the fast dynamics in these
equations are ignored by assuming uniform cavity fields, and the nonlinear term
is expanded as per Eq. 2.34 to account for the cross phase modulation each mode
experiences due to the other.

Finally, Chapter 5 follows the method of Ref [53] to quantise the LLE. This set
of equations are linearised and manipulated to explore the entanglement between
modal pairs, requiring a numerical solution to the LLE in the process.

Numerical solution of the LLE

The LLE does not have a general analytic solution, but can be solved numerically
using a “split-step Fourier” method [64]. Direct integration of Eq. (2.36) is com-
putationally inefficient for the simulation of many modes, but can be simplified by
splitting the evolution into two independent steps. The first step, including the
dispersive and detuning terms can be solved efficiently in frequency-space after the
Fourier transform of ψ, as they both manifest as a complex detuning for each mode
in this space. This solution is then inverse-Fourier transformed and updated in
time with additions from the nonlinear and pump terms. This algorithm is detailed
further in Appendix A.

2.3.9 Modal spectra

As shown in Eq. (2.7), under simplifying assumptions, the spectrum of a high-Q
mode should be a Lorentzian line-shape, though these breakdown when nonlinear
effects are considered. Fig. 2.14 shows both the theoretically predicted, and exper-
imentally observed, modal spectra. Lorentzian profiles are expected and observed
for low input powers - see Fig. 2.14a,b) - at higher powers the spectrum becomes
triangular shaped - Fig. 2.14c,d).

The nonlinearities that are not present in the simplified model are present in the
LLE. Figure 2.14 shows how the LLE precisely matches experiment in describing
both the modal spectra and frequency comb generation. The first three rows of the
figure show comparisons between theory and experiment in terms of modal spectra
for increasing pump power, with the theory plots derived from numerical solutions to
the LLE with a changing detuning, and the experimental plots found by monitoring
the intracavity intensity whilst sweeping the laser frequency over a cavity resonance.
The final row gives a comparison of the comb spectra calculated by the LLE and
measured experimentally using an optical spectrum analyser (OSA).

The top row of Fig. 2.14 shows the theoretical and experimentally measured
modal spectrum for a WGM resonance at low input power. They both correctly

1N.B. The Fabry-Pérot cavities studied in Ref [62, 63] have an additional nonlinear term due to
the counter-propagating fields in such a resonator geometry. This term changes the effective
detuning of the system (which can be removed with a commensurate redefinition of detuning)
but has no qualitative effects and so is disregarded for the rest of this work.
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show a Lorentzian like profile, with the experimental version already showing some
skew to the right due to thermal effects (see below).

The middle row shows the spectra when the input power is higher. Now, rather
than the basic Lorentzian shown above, the LLE predicts a tilted profile - this can
be explained by the nonlinear refractive index which pushes the resonance condition
to the right in terms of detuning from a weakly pumped cavity. Accordingly, the
frequency-sweeping laser pushes and follows this resonance, tuning into resonance
slowly. Immediately after the laser is on resonance, the dynamics of this system
reverses and so the system detunes quickly leading to a sudden drop in cavity in-
tensity. The experimental trace shows a similar, though more dramatic version, of
this effect due to the presence of thermal nonlinearities which tend to be orders of
magnitude more substantial than the Kerr-effect for such resonators.

The third row shows the spectrum of a mode for which frequency comb generation
occurs. Part way through the resonance, there is a characteristic notch - a dip in
power - which implies the onset of FWM causing a drop in the intracavity power.
This notch is seen in both the theory and experimental plots, which both show
qualitative similarity.

The lower row shows the associated cavity spectra during comb generation.
Fig. 2.14g) shows two such spectra - calculated as the Fourier transform of the
LLE solution ψ (τ, θ) - for detunings corresponding to the respective positions in
Fig. 2.14. Before the characteristic notch (green), the cavity field is monochromatic
as the system is below threshold stimulated FWM. After this notch (red), stimulated
FWM occurs, leading to a frequency comb spanning many modes. Fig. 2.14h) shows
a similar spectrum measured from a similar cavity field, showing the versatility of
the LLE to describe a broad range of effects in Kerr resonators.

2.3.10 Thermal locking of laser to resonator

It is of great importance to be able to maintain a constant and controllable detuning
between the laser and cavity in order to explore different dynamical regimes. Ther-
mal and mechanical fluctuations in both the laser and cavity can lead to fluctuations
of their lasing and resonance frequencies respectively, and so techniques have been
developed to “lock” these with respect to each other.

Active locking requires the pump to have some modulation applied to it, such
that a signal can be produced that is proportional to the laser-cavity detuning. The
Pound-Drever-Hall technique [65] is the archetype of such optical locking methods
which can be augmented to allow for the control of the locked detuning [66]. Such
methods require pump modulation, and an extraction of some proportion of the
output light from the cavity, both of which can degrade the signal needed for the
experiment.

Passive locking is a technique in which cavity nonlinearities keep the resonance
frequency of the cavity fixed with respect to the laser with no need for active feed-
back. Along with the simpler experimental setup associated with these techniques,
the pump can be truly monochromatic and no output light need be monitored to
maintain the lock, maximising the signal-to-noise ratio for the experimental results.

The thermal effect - due to the thermal expansion of the cavity and thermo-
refractive effects in silica - gives a strong nonlinearity that can be used to form
a passive lock [67]. Both thermal effects, like the Kerr-effect, act to increase the
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Figure 2.14: Theoretical and experimental modal spectra. a) Solution to the LLE
during a frequency sweep across a resonance. b) Experimental measurements of the
intracavity power during a frequency sweep across a resonance. c-f) As per a) and
b), with increasing pump power. g) Spectra associated with the cavity fields shown in
part e), which is monochromatic before the characteristic dip in intracavity power,
and becomes a frequency comb thereafter. h) Experimental measurement of a comb
qualitatively similar to the theoretical prediction shown in g) II.
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effective path length for light inside a resonator and so can be considered in this
context as the thermal term in Eq. (2.36). Drifts in either the laser or resonance
frequency manifest as an increase (decrease) in detuning, α, reducing (increasing)
the intracavity intensity, |ψ|2. When α > 0 (i.e. the laser is red-detuned from the
cavity), these effects evolve to cancel each other, giving a passive lock. However,
there is an associated instability when both of these effects work in tandem (i.e.
when α < 0 i.e. the laser is blue detuned from the cavity), in which there can be no
such locking possible.
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Chapter 3

Spontaneous symmetry breaking
of the polarisation of light

3.1 Introduction

An entirely symmetric universe would be exceedingly dull. Spatial translation and
rotational symmetries would ensure that all the “stuff” that makes up such a universe
would be uniformly distributed in an eternal (thanks to time-translation symmetry)
blob - no, even blobs have spatial structure - in an eternal void. Luckily, symmetries
can break.

Spontaneous symmetry breaking - the evolution of a system for which both the
initial state and the equations of motion possess some symmetry into a state which
no longer has such symmetry - is an intriguing process that underpins much of
modern physics. It is responsible for the description of superconductivity [69], the
Higgs mechanism [70] and the phases of matter [71], to name but a few areas.

The prototypical example of symmetry breaking is given by a particle in a nonlin-
ear, sombrero potential, see Fig. 3.1. This system shows rotational symmetry about
its central axis, though coupling the particle to some noise source - which could in
principle be due to quantum fluctuations - will lead the particle to fall in a certain
direction, breaking the symmetry. This picture nicely illustrates the underlying con-
cept behind the polarisation spontaneous symmetry breaking (PSSB) discussed in
this chapter: the Kerr-effect leads to a potential that, although symmetric, has an
unstable symmetric state for some sets of system parameters. A similarly symmetric
input state couples to a source of noise (in principle due to vacuum fluctuations, in
practice due to experimental noise) and thus spontaneously breaks the symmetry,
“choosing” one of two polarisation states.

Such nonlinear optical interactions that lead to symmetry breaking have been
well explored in the literature. An example is time-reversal symmetry breaking in
a pulse-pumped ring cavity [72, 73]. In addition, the Kerr interaction plays an
important role in the interaction of soliton frequency combs in microresonators [74–
78], which can be thought of as having broken time-translation symmetry. In the
continuous wave regime, spontaneous symmetry breaking has been observed [79–

This chapter expands on work I wrote as first author in Ref [68]. Passages and figures from this
original work conducted by myself may be directly adapted into this chapter where appropriate.
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Figure 3.1: A particle in a sombrero, or Mexican hat, potential. The system is
rotationally symmetric about the central axis, though we can intuit that coupling to
some noise source will lead the particle to fall in a particular direction, thus breaking
the symmetry.

81] between counter-propagating light in microresonators with high optical quality
factors. In addition, recent work has predicted [49] and shown polarisation symmetry
breaking of optical pulses in fiber ring resonators with residual birefringence [82–
85] using peak pulse powers of 2.7 W (average power of 110 mW) and multi-color
input light [86]. The high finesse and polarisation degenerate cavity presented here
enables the observation of polarisation symmetry breaking for continuous wave and
monochromatic input light at 7 mW optical power.

Here, an experimental demonstration of symmetry breaking of the polarisation
states of continuous wave light in geometrically linear Fabry-Pérot-type cavities is
given. This symmetry breaking is demonstrated for linearly polarised input light
that is sent into a high Finesse fiber cavity. At low powers this system maintains
symmetry such that the polarisation of the cavity field matches that of the input.
At a measured threshold power of 7 mW, spontaneous symmetry breaking of the
resonator modes splits up the linear polarised light into left and right polarised
light, with one handedness being transmitted and the other one reflected. We fur-
ther demonstrate that the output polarisation can be optically controlled by using
a resonator with slight asymmetries due to birefringence. This enables us to con-
tinuously change the output polarisation state from linear to elliptical and close to
circular polarisation. Together with an additional polariser, the Kerr polarisation
symmetry breaking can be used to generate an orthogonal polarisation component
with respect to the linear polarised input light.

Such a phenomenon could find application as an all-optical polarisation con-
troller in photonic circuits. Many optical effects only occur for specific polarisation
states, and so having active control over a fields polarisation is a necessity for many
situations. The most familiar polarisation controllers used in optics laboratories use
birefringence to convert an input polarisation state to the intended output. For
free-space systems, these include quarter- and half-waveplates which retard the po-
larisation component that is aligned to the optical axis of the constituent crystal
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by a quarter, or half, of a wavelength. Rotating these crystals (and hence their
optical axes) can be used to perform an arbitrary polarisation transformation. For
fiber-optic systems, a common polarisation controller uses a succession of loops of
fiber, the planes of which can each be independently rotated to give stress induced
birefringence. Again, proper alignment can lead to arbitrary polarisation control.

Both these systems are sizable, and require manual - and hence slow - control,
neither of which allow for the integration into useful photonic devices. Accordingly,
achieving fast polarisation control remains an active area of research within the
photonics community.

One method for on-chip polarisation rotation, rather than control, is in using
waveguides with variable cross-section [87, 88]. Here, the adiabatic rotation of the
waveguide profile gives a commensurate rotation of the optical mode that traverses
it. Accordingly, the polarisation of the output field of such a device will be rotated
from that of its input. This is set by the waveguide geometry, which is not modified
after fabrication. Thus, though arbitrary rotation angles are possible, one cannot
use this method to vary the output polarisation state on-the-fly1.

Another method for polarisation rotation is to use the Faraday effect. Here,
an external magnetic field is used to rotate the polarisation using the magneto-
optic effect [89, 90]. Such devices allow for polarisation control but require complex
fabrication methods to integrate, control, and shield magnetic fields on a photonic
chip.

The electro-optic effect can also be used for polarisation control on-chip [91, 92].
Such devices use the χ(2) nonlinearity in some materials to produce a controllable
refractive index change for different polarisation components. Accordingly, one po-
larisation mode is retarded with respect to the other, leading to a rotation. Such
devices can operate at high speed, but are limited to crystalline materials for which
such a nonlinearity is present. On-chip polarisation control using thermal and me-
chanical actuation has also been demonstrated [93–96], though this can either have
complex fabrication processes or operate at low speeds.

The polarisation controller demonstrated in this chapter is all-optical, meaning
the control mechanism is also an optical field. Accordingly, this has minimal associ-
ated requirements on the fabrication process as any photonic system will naturally
be supporting optical fields. Moreover, the nonlinearity that is exploited in this
device is the Kerr-effect which is present in all materials and thus can work for any
chip design. However, there remains a challenge to incorporate high finesse mirrors
on-chip to generate the polarisation degenerate cavities required for operation.

The polarisation interactions discussed here are mathematically analogous to
the Kerr interaction between counter-propagating light [49, 79, 80, 97]. Thus, this
effect can be similarly used for all-optical information processing and storage of
information [98–102]. Integration of this system on-chip would also give enhanced
sensing of polarisation effects beyond shot noise limitations.

1This is not a drawback of such a system - fixed polarisation rotations are often needed and such
waveguide geometries are a promising solution to this problem.
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3.2 Theory

3.2.1 Nonlinear coupled equations

The Lugiato-Lefever Equation (LLE) of Eq. (2.36) can have fast dynamics ignored
(i.e. assuming a uniform, monochromatic, cavity field) and the nonlinear term can
be decomposed into two coupled nonlinear equations for light of opposite handed
circular polarisations2 [81]:

∂ψ±

∂τ
= −

(
1 + i

(
α− |ψ±|2 − 2 |ψ∓|2

))
ψ± + ψ̃±, (3.1)

(a)

(b)

Figure 3.2: Coupling of light into a polarisation degenerate Fabry-Pérot cavity. a)
The polarisation degeneracy, due to a lack of birefringence, means that an arbitrary
polarisation state can couple into the cavity subject to resonance conditions. b) Any
such polarisation state can be decomposed into two circular polarisation components
of opposite handedness: ψ+ (red) and ψ− (blue).

where ψ+ (ψ−) is the clockwise (anti-clockwise) handed circular polarisation
component of the normalised cavity field, α is the normalised laser-cavity detuning,
and the tilde represents an input field.

2This is somewhat simplified - the nonlinear term in Eq. (2.36) doesn’t account for the tensor nature
of the χ(3) nonlinearity nor the modification to the detuning due to the counter-propagating
fields described in Refs [62, 63], but the decomposition can be performed in the same way as
described to yield Eq. (2.34)
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These equations are valid for describing the cavity fields in a resonator that
exhibits no linear coupling between any polarisation modes. Such cavities require
zero birefringence, leading to polarisation degenerate modes such that an arbitrary
input polarisation can couple into and through the cavity - see Fig. 3.2 - giving
an apparent symmetry of the cavity polarisation with respect to the input (i.e. it
should be exactly the same). Let us see how the nonlinear dynamics can break this
symmetry following the method descibed in [81].

In steady state, Eq. (3.1) becomes:

ψ± =
ψ̃±

1 + i
(
α− |ψ±|2 − 2 |ψ∓|2

) , (3.2)

which multiplication by the complex conjugate gives the normalised intensities
in the modes:

|ψ±|2 =
˜|ψ±|

2

1 +
(
−α + |ψ±|2 + 2 |ψ∓|2

)2 . (3.3)

When the two modes are equally pumped -
∣∣∣ψ̃+

∣∣∣ = ∣∣∣ψ̃−

∣∣∣ = ∣∣∣ψ̃∣∣∣, corresponding to a
linearly polarised input which we define as being the vertical state when these inputs
are in phase - this system is symmetric with respect to polarisation as evidenced by
the ability to exchange the ± indices without change to the equations of motion.
Now as the modes have identical pumps, Eq. (3.1) can become:

|ψ+|2
(
1 +

(
−α + |ψ+|2 + 2 |ψ−|2

)2)
= |ψ−|2

(
1 +

(
−α + |ψ−|2 + 2 |ψ+|2

)2)
,(

|ψ+|2 − |ψ−|2
) (

|ψ+|4 + |ψ+|2 |ψ−|2 + |ψ−|4 − 2α
(
|ψ+|2 + |ψ−|2

)
+ α2 + 1

)
= 0.
(3.4)

The first term in this equation -
(
|ψ+|2 − |ψ−|2

)
- gives the symmetric solutions

to the system: it is zero when both polarisation components have the same intensity
and thus the equation is satisfied. Interestingly, the second term can, for certain
input powers and detunings, equal zero also satisfying this equation. These describe
the symmetry broken states to the system in which |ϕ+|2 ̸= |ϕ−|2 even though the
system and inputs are symmetric with respect to these intensities!

Figure 3.3 shows the solutions to Eq. (3.4), with the black line being the symmet-
ric solution and the ellipses being the symmetry broken states for different detunings.
For a given detuning, the symmetric solutions inside of the associated ellipse are un-
stable. This now describes how the system responds to increasing (equal) input
powers for both modes at a fixed detuning: starting at the origin, both modal cav-
ity intensities equally increase by following the black line. If the detuning is above
some threshold (α >

√
3 [81]) at some point this black line reaches an ellipse at

which point the system spontaneously selects a path - upper left for |ψ−|2 > |ψ+|2
or lower right for |ψ+|2 > |ψ−|2 - at random. The system then follows this ellipse
with increasing input power before eventually meeting the black line again, after
which it both modes again symmetrically increase with input power.
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Figure 3.3: Coupled intracavity intensities for symmetrically pumped circular polar-
isation modes. These lines are solutions to Eq. (3.4), with the black diagonal being
the symmetric solution and the ellipses being the symmetry broken solution for dif-
ferent detunings. For a given detuning, this plot is found by varying the input power.

3.2.2 Physical description of symmetry breaking

The two factors which determine how much power couples into a cavity are the
input power and the effective detuning. The effective detuning in this system has
three contributions, as seen in the denominator of Eq. (3.1): laser-cavity detun-
ing (α), self-phase modulation (SPM, |ψ±|2), and cross-phase modulation (XPM,
2 |ψ∓|2). Accordingly, the cavity intensities are self-referential (SPM) and coupled
across modes (XPM). Importantly, the factor of two difference in magnitude be-
tween XPM and SPM means that two modes with different cavity intensity will
have different effective detunings i.e. a nonlinear splitting of the otherwise degener-
ate resonances.

The intensity dependent refractive index in dielectrics - both SPM and XPM -
acts to increase the refractive index with intensity. This acts to reduce the resonance
frequencies with increasing cavity intensity, with XPM having twice the magnitude
of effect of SPM. Accordingly, when a laser frequency is swept from above to below
a cavity resonance (at speeds much slower than the cavity dynamics), light progres-
sively couples into the cavity and the associated resonance frequency is pushed away
from the laser. As the laser frequency finally reaches the (now shifted) resonance fre-
quency, the situation is reversed: less light couples into the cavity, whose resonance
condition now returns back towards its original value. Together these phenomena
lead to a triangular response of the intracavity power for both polarisation modes
with respect to the laser-cavity detuning, as shown in Fig. 3.4.a).
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Figure 3.4: Physical description of polarisation symmetry breaking. Each subfigure
shows a representation of the input fields to, and output fields from, a polarisation de-
generate F-P cavity. Also shown is the intracavity intensity response for both modes
as the laser is swept across a resonance, showing a Kerr-triangle below threshold and
a symmetry broken “bubble” above threshold. The effective positions of both modes
with respect to the input laser are then shown for a certain laser-cavity detuning,
showing how one mode preferentially couples in the symmetry broken state.
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The symmetry breaking phenomena can be explained by a competition between
both modes due to the difference in magnitudes of SPM and XPM. The intensity of
one mode will push its own resonance frequency by some amount, but will push that
of the other mode by twice the amount. For suitable powers and detunings, this can
then lead to a reduction in the intensity of the secondary mode, thus bringing the
primary mode closer into resonance. This leads to a frequency splitting of the two
otherwise degenerate polarisation modes, with one preferentially coupling into the
cavity and dominating the other, see Fig. 3.4.b,c).

This is the physical principle for which the symmetry breaking phenomena hap-
pens: both circular polarisation modes are in competition, each trying to push the
other from resonance to bring themselves closer in the process. This competition
is typically self-stable, with both fields coupling in equally, but becomes unstable
for certain input powers and detunings. In this situation, any noise that leads to
some small domination of one mode will become amplified leading to the symmetry
broken state, with the dominant mode being random due to the stochastic nature
of the underlying noise process.

3.2.3 Polarisation state of the symmetry broken cavity field

The Poincaré sphere is a useful tool for visualising a polarisation state. Linear
polarisation states exist on the equator of the sphere, with their orientation set by
their angular position and the opposite handed circular polarisation states are on the
poles. The remainder of the sphere surface denotes elliptical polarisation states. The
Poincaré sphere is shown in Fig. 3.5, and one can see how any state can be defined
by two angular parameters: ψ and χ, which refer to the orientation and ellipticity
of the state respectively. To avoid confusion from ψ referring to both electric fields,
as in the equations above, and as the orientation angle, the polarisation orientation
will be given by ϕ such that 2ϕ = 2ψ + π and ϕ = 0 referring to vertically oriented
polarised light.

Now, the polarisation state of the system can be referred to as |ψ⟩ which can
be decomposed into the circular polarisation basis (|+⟩: right-handed, |−⟩: left-
handed):

|ψ⟩ = ψ+ |+⟩+ ψ− |−⟩ ,

=

√
|ψ+|2 + |ψ−|2eiϕglobal

(
cos
(π
4
− χ

)
|+⟩+ sin

(π
4
− χ

)
eiϕ |−⟩

)
, (3.5)

which shows that the polarisation parameters can be calculated from knowledge
about the field amplitudes ψ±. There is also a global phase ϕglobal, which can be
ignored with no loss of generality.

Finding χ

From Eq. (3.5) we have:

sin
(π
4
− χ

)
=

|ψ−|√
|ψ+|2 + |ψ−|2

, (3.6a)

cos
(π
4
− χ

)
=

|ψ+|√
|ψ+|2 + |ψ−|2

, (3.6b)
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Figure 3.5: The Poincaré sphere. Any purely polarised state can be represented
as a point on the surface of this sphere, described by an orientation angle ψ, and
ellipticity angle χ. N.B. to avoid confusion between this angle and the electric field
states, both denoted ψ, instead the orientation angle will subsequently be given by ϕ
and be relative to the vertical rather than horizontal polarisation state.

tan
(π
4
− χ

)
=

|ψ−|
|ψ+|

, (3.6c)

which using the identities tan (−θ) = − tan (θ), tan
(
θ ± π

4

)
= tan(θ)±1

1∓tan(θ)
, and

tan (2θ) = 2 tan(θ)
1−tan2(θ)

gives:

2χ = arctan

(
1

2

(
|ψ+|
|ψ−|

− |ψ−|
|ψ+|

))
, (3.7)

which is zero whenever |ψ+| = |ψ−| i.e. the cavity polarisation ellipticity is only
nonzero in the symmetry broken state.

Finding ϕ

Multiplying the top and bottom of Eq. (3.2) by the complex conjugate of its denom-
inator gives the following expression for the steady state fields inside the resonator:

ψ± =
ψ̃±

1 +
(
−α + |ψ±|2 + 2 |ψ∓|2

)2 (1− i
(
α− |ψ±|2 − 2 |ψ∓|2

))
. (3.8)

Taking the phase of the inputs to be zero, which only affects the global phase
of the cavity fields and does not affect ϕ, the fractional term of Eq. (3.8) is purely
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real, and so the argument becomes:

∠ψ± = arctan
(
−α + |ψ±|2 + 2 |ψ∓|2

)
. (3.9)

Now the global phase is simply ∠ψ+, and 2ϕ is the phase difference between the
modes:

2ϕ = ∠ψ− − ∠ψ+,

= arctan
(
−α + |ψ−|2 + 2 |ψ+|2

)
− arctan

(
−α + |ψ+|2 + 2 |ψ−|2

)
,

2ϕ = arctan

(
|ψ+|2 − |ψ−|2

1 +
(
−α + |ψ+|2 + 2 |ψ−|2

) (
−α + |ψ−|2 + 2 |ψ+|2

)) , (3.10)

which again is zero for the symmetric solution |ψ+| = |ψ−|.

Accessible region of the Poincaré sphere

Equations (3.7) & (3.10) can be used with the solutions of Eq. (3.4) to determine
the accessible region of the Poincaré sphere. For the symmetric solutions both
χ and ϕ are zero, meaning that the cavity polarisation state is equal to that of
the input (defined as being vertically polarised). Only when the symmetry has
broken - when there has been a split in the resonance condition for both circular
polarisation modes - is there a difference. This is because both the intensity and
phase of a cavity field in comparison to the associated input are affected by the
effective input-cavity detuning. When the otherwise degenerate modes split, both
circular polarisation modes couple in at different intensities (leading to the cavity
field developing an ellipticity χ) and different phases (shifting the orientation of the
vertical input polarisation by an amount ϕ).

Figure 3.6 shows the accessible region on a (flattened) Poincaré sphere, with
the colour representing the detuning (upper panel), and input power (middle panel)
required to reach this state. For interest, the associated total cavity power is also
shown in the lower panel. Unsurprisingly, polarisation states far from the origin
- and thus significantly different to the input polarisation - require higher cavity
intensities.

It seems that, for limitless input powers and detunings, half of the Poincaré
sphere is accessible: specifically in both the upper-right and lower-left quadrants.
The particular quadrant that is accessed is determined by the symmetry breaking
direction: upper-right when |ψ+| > |ψ−|, lower-left when |ψ+| < |ψ−|.

3.2.4 Birefringence

The nonlinear coupled equations described in Section 3.2.1 show the same detuning
for both polarisation modes. This means that they are valid for modes ψ± that are
- in the absence of the nonlinear splitting - frequency degenerate.

In general however, this isn’t the case: a single mode fiber cavity will show
two distinct polarisation modes of different frequencies due to the difference in the
refractive index for these polarisation states. This effect is caused by birefringence:
either through fabrication asymmetries in the fiber and mirrors, or bending/stresses.

Birefringence is a linear optical phenomenon and arises from off-diagonal terms
in the χ(1) tensor. This linear coupling can be characterised by the following set of
normalised equations [103]:
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Figure 3.6: Accessible region of the Poincaré sphere. The accessible regions are
shown in colours that represent the required detuning (upper-panel) and input power
(middle-panel) required to access this polarisation state. Also shown is the associated
cavity power (lower-panel, logarithmic scale) associated with these states.

∂ψ+

∂τ
= − (1 + iα)ψ+ + iκψ− + ψ̃+, (3.11a)

∂ψ−

∂τ
= − (1 + iα)ψ− + iκ⋆ψ+ + ψ̃−, (3.11b)

which are of the same form as Eq. (3.1), albeit with the nonlinear coupling replaced
by linear coupling characterised by a strength κ.
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Figure 3.7 shows the solution of Eq. (3.11), in terms of coupled cavity intensities,
for different values of κ (though with the imaginary part fixed at ℑ (κ) = −3). When
ℜ (κ) ≫ ℑ (κ), two distinct resonant peaks are observed (Fig. 3.7 I). These peaks
correspond to modes for which the two circular polarisation components are in-phase
(ψv) and out of-phase (ψh), where v and h denote the vertically- and horizontally-
polarised modes:

ψv,h =
1√
2
(ψ+ ± ψ−) . (3.12)

In this polarisation basis, there is no mutual coupling between the modes, but
they have different associated detunings. This is more reminiscent of the idea of
birefringence - the different modal detunings resulting from the different resonance
frequencies associated with modes of mismatched refractive index. We can think
of birefringence in two different ways: in terms of a polarisation basis where the
components travel at different speeds, and there is no mutual coupling, or a different
basis in which both components travel at the same speed but are mutually coupled.

In order to access the frequency degeneracy required for the observation of sym-
metry breaking, the linear coupling must be removed. As κ is complex valued, this
is a 2-dimensional problem - both the real and imaginary parts must be reduced to
zero. Simply adjusting the real part of κ - as in the upper panels of Fig. (3.7) - leads
to an avoided crossing rather than degeneracy. Panel II shows the closest approach
of the avoided crossing, with two peaks corresponding to two hybrid modes in the
ψv,h basis that are still separated in frequency. The process to control the real- and
imaginary-parts of the coupling separately, in order to set both to zero and achieve
polarisation degenerate modes is described in section 3.4.4.

3.3 Experimental Methods

This section details the experimental work that was done to demonstrate Kerr-
polarisation control. It starts with a description of the main elements of the res-
onator, which allow for the realisation of high-Q polarisation degenerate modes,
before showing how this is incorporated into a wider experimental setup.

3.3.1 Fiber Bragg Mirrors

The fiber Bragg mirrors used in this work were fabricated by a collaborator. Al-
though this process was not undertook as part of this thesis, it is worthy of a brief
description for a complete understanding of the work.

Bragg mirrors use alternating layers of (typically) two materials with differing
refractive index to achieve a highly reflective surface. At each interface between
the materials there is a partial reflection and partial transmission of incident light
due to the differing refractive indices. When the layers are of precisely the correct
thickness (quarter wavelength is typical) interference effects occur between the set
of reflected and transmitted waves such that the vast majority (far exceeding 99%)
of the light is coherently reflected from the structure.

The following passage gives a detailed description of the fabrication process as
given by a co-author in Ref [68]:
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Figure 3.7: Avoided crossing behaviour of linearly coupled modes. When the real part
of the coupling coefficient κ is swept across zero, but there is a constant imaginary
part (here ℑ (κ) = −3) an avoided crossing is seen. I) When the magnitude of ℜ (κ)
is high two distinct peaks are seen, corresponding to the ψv,h modes. II) When the
real part is zero, residual coupling from ℑ (κ) inhibits these modes from overlapping
in frequency, instead leading to hybrid modes in the ψv,h basis.

The Bragg mirrors are produced with an reactive ion beam sputtering (IBS) thin-
film deposition process (Navigator 1100, CEC GmbH) using Xenon as a sputtering
gas. The IBS technology stands out by its ability to deposit layers with exceptionally
low scattering loss and low residual absorption. Tantalum pentoxide (Ta2O5, nH =
2.124 at λc ≈ 1550 nm) and silicon dioxide (SiO2, nL = 1.479 at λc ≈ 1550 nm) are
used as high-refractive index and low-refractive index materials, respectively. The
oxides are formed by oxidation of the metallic Ta (5N purity) and Si (9N purity)
released from the sputtering targets with a deposition rate of about 0.1 nm/s. Before
deposition, the vacuum chamber is evacuated down to a level in the range of 1 ×
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10−7 mbar. During the deposition the vacuum pressure doesn’t exceed 2×10−3 mbar
and the holder of the fiber tips was heated and temperature controlled to 60 °C.
No post-processing or annealing is applied to the samples after the deposition. The
automated coating process is precisely controlled by broadband optical monitoring.
The layerstack is build up by starting with a half-wave layer of SiO2 and then 9
quarter-wave layers of Ta2O5 interleaved with 8 quarter-wave layers of SiO2 and
then closed with a half-wave layer of SiO2. In this way the coating starts with a
layer that closely matches the refractive index of the core of the fiber on which it
is coated and with the one it is in contact and the half wave thickness minimises
the influence of the interface from core to coating since it is placed at a node of the
standing wave formed by the incoming and reflected wave (see Fig. 3.8).
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Figure 3.8: Design of the layer stack of the Bragg mirror. The height of the bars
indicates the refractive index n of the silica fiber core (gray), coated SiO2 (light blue)
and coated Ta2O5 (blue). The red line shows the electric field intensity |E|2 formed
by the normalised incoming wave coming from the right side and the reflected wave.

3.3.2 Polarisation Degenerate Modes

Fundamentally, the polarisation controller here described relies on the Kerr-induced
frequency splitting of otherwise degenerate (circular) polarisation modes. Birefrin-
gence manifests due to the linear coupling between two orthogonal polarisation com-
ponents of the field, and leads to polarisation states with different associated refrac-
tive indices. Accordingly, in a resonator, there will be two polarisation modes with
the same longitudinal mode number, but differing resonance frequencies: linear cou-
pling leads to resonance splitting. If the magnitude of this resonance splitting is too
great, the system does not behave symmetrically with respect to input polarisation
and so the nonlinear effects are obscured.

In order to observe symmetry breaking, it was found experimentally that the
differences between the resonance frequencies for the orthogonal circularly polarised
modes (ω±) due to birefringence must be less than ≈ 5% of their linewidths (δω+ ≈
δω− ≈ δω).

|ω+ − ω−| < 0.05 δω, (3.13)

which can be written in terms of the average resonance frequency ω0 and the cavity
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Q-factor:

|ω+ − ω−| < 0.05
ω0

Q

|ω+ − ω−|
ω0

<
0.05

Q
. (3.14)

Since the resonance frequencies are inversely proportional to their respective
refractive indices (and both modes were confirmed to have the same longitudinal
mode number), this becomes:

n0

∣∣∣∣ 1n+

− 1

n−

∣∣∣∣ < 0.05

Q
,

n0
|n− − n+|
n+n−

<
0.05

Q
,

δn

n0

<
0.05

Q
, (3.15)

where δn = |n+ − n−| is the difference between the refractive indices for the or-
thogonal circularly polarised modes, and n0 is their average. The last step of this
derivation is valid for small values of δn, which is the case for high-Q cavities. In
our case, the Q-factor of 4.9× 108 leads to the requirement of δn

n0
< 10−10.

In principle, the fiber and mirrors that constitute the cavity should be axisym-
metric and thus show no birefringence. However, the narrow linewidths of the cav-
ity resonances and their associated strict birefringence limitations mean that small
amounts of birefringence (e.g. due to stresses or minor fabrication imperfections)
are enough to prohibit sufficient polarisation degeneracy. This was solved by putting
a polarisation controller inside of a fiber cavity.

This may seem somewhat counter-intuitive, using a polarisation controller to
construct...a polarisation controller, but its not. These manual polarisation con-
trollers induce birefringence by changing the applied stresses inside of a fiber thus
it is possible to use one to cancel any of the resonator’s intrinsic birefringence. All
polarisation controllers are then left unchanged for the demonstration of all-optical
polarisation control.

3.4 Experimental setup

A schematic of the experiment is shown in Fig. 3.9 which can be split into three
parts:

• The fiber cavity (red shaded area).

• Preparation of linearly polarised input light (left of the cavity).

• Monitoring of the cavity polarisation state (right of the cavity).

3.4.1 Fiber cavity

The cavity is made of a 2-m-long single-mode fiber set inside a manual polarisation
controller. The ends of the fiber are connected to fiber Bragg mirrors creating
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Figure 3.9: Experimental Schematic. A high-finesse Fabry-Pérot fiber cavity is re-
alised by connecting an optical fiber on both ends to fibers with dielectric Bragg mirror
stacks (fiber mirror, FM). To attain degenerate polarisation modes, a polarisation
controller (PC2) is placed within the cavity, which is used to cancel any birefringence
in the fiber and mirrors. Light is sent into the cavity from a tunable diode laser via
an erbium-doped fiber amplifier (EDFA) with an isolator (Iso) to prevent back reflec-
tions. A variable attenuator (VA) is then used to control the power of the input light
and its polarisation is set by polarisation controller PC1. The output of the cavity
is split by a 50:50 fiber coupler and each branch is directed to photo-diodes (PD) via
PC3 and PC4 and polarisation beam splitters (PBS). These final PCs are used to
map the cavity’s polarisation states to the PBS such that the PDs each monitor a
distinct polarisation mode of the resonator. Schematic figure adapted from Ref [68].

a high-finesse cavity (F ≈ 140) with very narrow linewidths (δν ≈ 0.40 MHz,
Q ≈ 4.9 × 108). Even though the finesse is already high, these parameters could
be further improved by directly depositing the mirrors on both ends of the fiber to
form a cavity, minimising losses at the connector.

3.4.2 Preparation of linearly polarised input light

In the experiment, light from a tunable diode laser is amplified by an erbium-doped
fiber amplifier (EDFA), before being sent through an isolator to minimise unwanted
effects from back reflections of the fiber cavity. The output polarisation of the EDFA
changes with power due to thermal effects, so the power input to the cavity is in-
stead controlled using a variable attenuator which maintains polarisation across the
required power range. Finally, the input polarisation is set to linear by a polarisa-
tion controller (see section 3.4.4) before entering the cavity. This polarisation state
is henceforth defined to be the vertical polarisation direction.

3.4.3 Monitoring the cavity polarisation state

The last two sections describe how a polarisation degenerate cavity is set up with
a vertically polarised input (section 3.4.4 will detail how this was achieved), but
we wish to see how the polarisation state of the cavity field develops. To achieve
this, photodiodes are used to monitor the outputs of a polarisation beam splitter
(PBS). However, this does not immediately work - this will monitor the polarisation
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components in the PBS’s basis rather than any basis corresponding to the cavities
polarisation state (bends and stresses in the fiber after the cavity will rotate these
polarisation states as they travel through the fiber). To account for this, a polarisa-
tion controller is used before the PBS to map the required cavity polarisation bases
onto the PBS basis such that the intensity of the outputs gives a measure of the
associated intensity of the cavity polarisation components.

This is done twice - a beam splitter divides the output field such that the
clockwise/anti-clockwise circular basis and vertical/horizontal linear basis can be
monitored simultaneously.

3.4.4 Polarisation controller alignment

The following approach was used to adjust the polarisation states during the mea-
surements. In reference to Fig. 3.9, first, the polarisation controllers PC1 (input)
and PC2 (intracavity) are aligned. For the alignment, the laser is swept across
the resonances. This is done at sufficiently low optical power to observe the reso-
nances as Lorentzian lines without nonlinear or thermal broadening of the modes.
In general, birefringence inside the cavity leads to two polarisation modes with dif-
ferent associated resonance frequencies, which manifests as two distinct peaks in
the photodiode output during a laser frequency sweep. By adjusting PC2, residual
birefringence in the fiber cavity is compensated and moves the resonance frequencies
of the two polarisation modes closer together, while it is simultaneously ensured (by
adjusting PC1), that light couples equally into both polarisation modes. Adjust-
ment of a single degree of freedom of the polarisation controller leads to an avoided
crossing as described in section 3.2.4 and so the process is iterated using both de-
grees of freedom of the controller until the polarisation modes are close enough to be
considered degenerate (i.e. the difference in the resonance frequencies is negligible
in comparison with their linewidths). In addition, it is confirmed that the two po-
larisation modes have the same longitudinal mode number by examining the mode
overlap across multiple resonance pairs within the tuning range of the laser (Toptica
CTL1550 external cavity diode laser [ECDL] - range from 1510 nm to 1630 nm).

In the next step, PC1 and PC3 are adjusted in order to detect the left- and
right-circular polarised output light. The laser output power is set sufficiently high,
such that symmetry breaking will occur for linearly polarised input light. PC3 is
adjusted until the signals from the photodiodes for left- and right-circularly polarised
light are as symmetric as possible. There is then an iterative process in which PC1
is adjusted, followed by a corresponding adjustment of PC3 to keep the signals as
symmetric as possible. As PC1 nears the correct state - such that its output is
linearly polarised - the onset of symmetry breaking is apparent from the PD signals.
Fine tuning of PC1 and PC3 is then used to optimise the system until the biggest
possible symmetry breaking “bubble” is observed.

Finally, PC4 is adjusted in order to detect the horizontal and vertical polarisation
states. For this, the linear input polarisation state is defined as being vertical. At
input powers below the symmetry breaking threshold, the output light is expected
to be vertically polarised and no horizontally polarised light exits the resonator.
Accordingly, the input power is reduced with a variable attenuator that does not
affect the polarisation state. PC4 is iteratively adjusted until the signal on the hori-
zontal photodiode vanishes. This has now mapped the cavity vertical and horizontal
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polarisation states onto the second PBS, such that the PDs monitor these cavity
components. The experiment is performed immediately after adjusting the polari-
sation controllers to minimise polarisation drifts induced by temperature changes in
the laboratory.

3.5 Results

The most telling demonstration of symmetry breaking is with a frequency sweep
across a resonance for different input powers (with the input polarisation set to
vertical, as described in the previous section). This shows how the system behaves
symmetrically at low input powers, but above some threshold there is a region -
which has been affectionately dubbed the “bubble” due to its visual appearance
in these traces - of symmetry breaking. This was achieved in practice by simply
sweeping the output frequency of the laser via piezo control of its external cavity
and can be modelled theoretically by parameterising Eq. (3.2) in terms of detuning
(α) for a given input power.

Figure 3.10 shows these experimental results along with equivalent theoretical
predictions, which qualitatively agree. It can be seen that for low input power,
the system responds symmetrically: both the circular polarisation states (CW: red,
CCW: blue) equally couple through the cavity throughout the frequency sweep which
in the vertical-horizontal basis is seen as the light being purely vertical - with no
horizontal component - throughout.

At higher input powers - specifically above ≈ 7 mW - we see symmetry breaking
by the emergence of a bubble (middle column of Fig. 3.10). This bubble occupies
a region of detuning in which one circular polarisation component has a higher
intensity than the other. In the linear basis, this bubble manifests as a dip in
the otherwise smooth increase of the intensity of the vertical polarisation, with
an associated “generation” of horizontally polarised light (N.B. this is not truly
generation of light in this polarisation, rather the suppression of one component
in the circular basis, which appears as a spontaneous generation of horizontally
polarised light). The depth and breadth of this bubble increases with increasing
input power, with associated increases in the relative intensity of the horizontally
polarised light.

The main difference between the theoretical and experimental results is the lack
of tilting of the experimental lineshapes. The theory shows resonances that are tilted
to the right, giving an almost triangular lineshape, which was previously explained
as being due to the intensity dependent refractive index pushing the resonance to
the right with increasing coupled power. The fact that this is not seen in experiment
is due to a competing (likely thermal) nonlinearity which opposes this effect and can
been seen in other fiber cavity experiments [86].

The maximum input power was limited by parasitic nonlinear effects, which
limited the region of parameter space that was investigated. At higher powers, high
frequency oscillations were seen in the traces, which was assumed to come from four-
wave mixing (FWM), stimulated Raman scattering (SRS) or stimulated Brillouin
scattering (SBS). Accordingly, some of the field was sent to an optical spectrum
analyser (OSA) for analysis, shown in Fig. 3.11. Traces were taken at low, and
high (but sub-oscillation threshold) powers to determine the response of the OSA
and show similar shapes. However when the cavity was in its oscillatory state, a
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Figure 3.10: Theoretical and experimental traces of a frequency sweep across a res-
onance for different input powers. The upper half shows the solutions to Eq. (3.2)
in both the circular (CW: red, CCW: blue) and linear (vertical: green, horizontal:
yellow) bases. The lower half shows the measured traces for such frequency sweeps
in these bases, with input powers roughly equivalent to those normalised values asso-
ciated with the panels above. Qualitatively, these plots broadly agree, with the main
difference being the lack of tilting of the resonances due to the Kerr effect, which is
likely due to a thermal nonlinearity countering these effects.
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peak between 10− 20 GHz below the pump frequency is seen with associated peak
at higher frequency. FWM processes would be symmetric about the pump, having
peaks both below and above it in frequency, and SRS has a gain band terahertz
away from the pump. SBS however has a gain around 10 − 15 GHz in fiber [104]
so it appears as if this parasitic nonlinearity arises from Stokes Brillouin scattering.
The length of this cavity gives it a small FSR (≈ 55 MHz) giving a high likelihood
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Figure 3.11: Optical spectrum analyser traces of the cavity field when oscillations
in the experimental traces both are, and are not, present. The oscillations appear
to be due to Stokes scattering into modes separated from the pump by 10− 20 GHz,
indicative of Brillouin scattering.

of a cavity mode being present in the Brillouin gain region. This is exacerbated by
the relatively high bandwidth of the Brillouin effect in fiber (up to 100 MHz [104]),
making it difficult to mitigate in such an experiment.

3.5.1 All-optical Polarisation Control

The symmetry breaking effect here described can be used to make an all optical
polarisation controller. The concept is as follows: light enters a cavity as described
above that has a very small level of birefringence. This breaks the symmetry of the
system, giving a preferred handedness of the cavity for a given detuning such that
it behaves deterministically with no spontaneous “choice” of the output state.

In this regime, the handedness of the output light is determined by the splitting
of the resonance frequencies for both circular polarisation components, which in turn
depends on the input intensity. Fig. 3.12 gives a schematic for such a device, along
with the results from an experimental demonstration at different input powers.

3.6 Conclusion

This chapter presents an all-optical polarisation controller based on the spontaneous
symmetry breaking of degenerate polarisation modes in a fiber Fabry-Pérot cavity.
A threshold power for symmetry breaking of 7 mW was observed, leading to a
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Figure 3.12: All optical polarisation control. a) Schematic of the concept. Linearly
polarised input light is incident to a fiber cavity such that its input intensity deter-
mines the ellipticity of the output field. b) Experimental demonstration of all-optical
polarisation control. Below some threshold power (≈ 7 mW) there is no symmetry
breaking and so the output light remains vertically polarised. Above threshold, the
ellipticity of the polarisation is determined by the input power.

maximum ellipticity of the output polarisation of 30◦. The polarisation controller
could find application in photonic circuits for which fabrication methods for current
such controllers are not suitable, and more generally the symmetry breaking effect
could be used in information processing and sensing applications.

3.7 Outlook

The equivalence between the symmetry breaking here described and that between
counter-propagating light in WGM resonators implies that there is substantial fur-
ther work that can be completed with these cavities. This work can be furthered in
three main areas:

• Information processing. Chapter 4 follows the work completed in Ref [105]
which utilises the Kerr induced splitting of degenerate counter-propagating
modes of a WGM resonator to perform Boolean logical operations. Together
with Ref [99], which uses the same effect to demonstrate optical memories,
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this work shows how information processing is possible with the information
carrier being the propagation direction of light. This work could be replicated
in the polarisation degenerate cavities here discussed, with the information
carrier now being the polarisation state of light.

• Nonlinear enhanced sensing. Ref [106] shows how the Kerr induced split-
ting can enhance the Sagnac effect3, giving orders of magnitude improvement
to the measurement of rotation - a promising route to the development of
on-chip optical gyroscopes. Similar enhancements are feasible with the mea-
surement of polarisation states, rather than propagation directions, for e.g.
the measurement of the chirality of chemical/biological samples.

• Chaotic polarisation state preparation. This chapter has focused on
steady-state solutions to the coupled nonlinear system, however Refs [81, 97]
have shown that, for certain input parameters, self-switching and chaotic dy-
namics are possible. Chaotic systems show promise for use as random num-
ber generators [109] which are required for trustworthy data encryption and
stochastic modelling [110–113]. The polarisation degenerate cavity discussed
here could be explored in a chaotic regime similar to that of Ref [97], finding
application as a random number generator for data security and simulation.

3The Sagnac effect is a relativistic optical phenomena in which two beams counter-propagating
inside a rotating ring-cavity have a differential phase accumulation during one round-trip.
Such a system was first used as a method for measuring rotation in Ref [107] and is now a
common type of high-performance gyroscopes [108].
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Chapter 4

Logic Gates based on the Kerr
interaction of counter-propagating
light in microresonators

4.1 Introduction

Fiber optic technology has underpinned the development of internet communications
over the last few decades allowing the transmission of vast amounts of information
with reduced latency. However, there are fears that internet latency and bandwidth
limitations will slow progress in developing real-time applications, particularly for
what is often referred to as the internet of things. Accordingly, methods to increase
internet speeds are of great interest and one proposed solution is to reduce the
latency associated with optic-to-electronic conversion at network nodes by keeping
the signal in the optical domain [114, 115]. A photonic processor will instead be
used to route the incoming signal to the correct output port [116], utilising optical
logic gates in the process.

So why don’t we simply use photonics processors? Indeed why don’t we use optics
as the information carrier in computing? Why are consumer electronics ubiquitous,
but consumer photonics are unheard of? Simply: it’s hard to process information
using light. In general, information processing is a nonlinear process and so the
physical system that underpins it must demonstrate nonlinearity. The advent of
the transistor in the late 1940’s as a nonlinear electronic element was an important
milestone in the development of the electronics industry, however its photonic coun-
terparts have been more difficult to develop due to the reluctance of light to interact
with itself in a nonlinear manner.

Progress in photonic chip fabrication capabilities has led to a resurgence in inter-
est in optical computing [117]. In particular, the ability to reliably and repeatedly
fabricate nonlinear optical components on-chip with modest operation powers sug-
gests that optical computing may be nearing real-world application. Such devices
could broadly operate in three separate domains: as a counterpart to the archetypal

This chapter expands on work I wrote as first author in Ref [105]. Passages and figures from this
original work conducted by myself may be directly adapted into this chapter where appropriate.
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digital computer [118], in analog form (which has particular interest for machine
learning applications) [119–121], and for quantum computation [30, 31, 122].

An important problem that can be solved with digital optical computing, which
like its electronic counterpart uses an architecture of (classical) logic gates, is the
on-chip routing of light [123, 124]. Much of the internet, along with high-power
computing services, is hosted in large data centres with a vast array of distributed
processors and memories [125]. Optical interconnects are used to transfer informa-
tion within this expansive network as electronic transmission cables would operate
too slowly and have prohibitive power requirements [126–129]. This communica-
tions network consists of many nodes at which an input optical signal is analysed
in the electronic domain to determine which node it should be sent to next. Such
optical-to-electronic (and electronic-to-optical) conversion requires power and leads
to latency, which is a particular issue for distributed computing systems [130]. In-
stead, a set of optical logic gates could be used to facilitate this routing, improving
the performance of distributed networks and computing [114–116, 131].

Whispering gallery mode (WGM) resonators [132] are a promising candidate
for optical logic gate architectures as their high Q-factors and small mode volumes
[133] allow for the required nonlinear optical phenomena for only modest input
powers [36, 134]. Furthermore, such devices can be integrated on-chip using CMOS
technology and made from a wide range of materials, ensuring scalability [135–137].
Optical logic gates have been previously demonstrated in WGM resonators, but with
associated issues that would prevent easy integration into optical networks. These
issues include: requiring multiple operation frequencies [138–146], needing electronic
control [147–151] or requiring pulsed inputs [152].

Another possible architecture for all-optical switching is the Mach-Zender inter-
ferometer (MZI), which is studied extensively in Ref [153]. Here, an input signal is
split into two spatial modes at a 50 : 50 beamsplitter (BS), both propagating along
their respective arms, before being recombined at a second 50 : 50 BS. The nature
of the BS interaction is that input signals that are completely in phase will both
exit from one output port, while those that are in anti-phase will exit the other.
Thus, having a control field in one arm of the interferometer can be used to control
which port the signal exits from. A low intensity control field means that both arms
lead to the same phase accumulation and exit one port. A high intensity control
field modifies the phase accumulated in one arm via cross phase modulation (XPM)
and thus the signal exits the other port. This was completed in fiber in Ref [153]
and is especially useful in switching quantum signals for which loss is a major issue
[154]. This method would be more difficult to apply to the on-chip routing of opti-
cal signals. Without the benefit of a resonator, the input powers and optical path
lengths required are far greater to achieve the nonlinear phase modulation (also the
frequency selective nature of cavities mean that the phase modulation required can
be far below the value of π required for full switching in an MZI). Along with it be-
ing difficult to integrate long waveguides and high power lasers onto a chip, another
issue is that both MZI arms need to be phase locked to each other which is difficult
when they also have to be long. In contrast, a WGM resonator can be utilised in a
purely intensity dependent manner, without the need to worry about phase locking.

In this chapter, an all-optical, universal logic gate is presented in which all sig-
nals operate at the same frequency in the telecom band. Being universal means
that, with a sufficient number of these devices working in a suitable fashion, any
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Boolean operation can be achieved. Furthermore, the fact that it has single fre-
quency, continuous-wave operation and only requires passive optical elements makes
this a uncomplicated and scalable device.

4.2 Concept

Chapter 3 detailed how orthogonally polarised states of light can mutually interact
via the Kerr effect. In particular, cross-phase modulation (XPM) allows the reso-
nance frequency of one mode to be dependent on the intensity of light in the partner
mode. It will be shown in section 4.2.1 that counter-propagating modes in a WGM
resonator also interact in this way, leading to a similar symmetry breaking effect as
previously described [79].

Figure 4.1 shows how this effect can be used to demonstrate all-optical logic.
Two fields are coupled into a WGM resonator, in opposite directions, using an in-
put waveguide. Logical information - classical bits - are encoded onto these fields
using their respective intensities: high intensity for logical state high (1), low in-
tensity for low (0). N.B. ket notation will be used to show that an optical field
has classical information encoded into it: |1⟩ implies a field with high intensity
corresponding to a Boolean value of 1. This chapter will contain no references to
quantum information/states.

When input A is high and input B is low - Fig. 4.1b) - the counter-clockwise
(CCW) field is on resonance. Accordingly, the field couples efficiently into and
through the resonator to a second, output, waveguide. In this situation, the output
field (from the upper-left port) is high.

However, when input B is also high, this output is suppressed - Fig. 4.1c). In
this situation, light couples into the clockwise (CW) mode, building up in intensity
and modulating the refractive index of the CCW mode. The input field is no longer
resonant, and so does not efficiently couple to the output port, which is now in logical
state low. In order for this situation to work, the high state associated with input
B must be more intense than the corresponding high state for input A. If not,
this system can undergo the symmetry breaking that was observed in Ref. [79] (the
counter-propagating equivalent to the polarisation symmetry breaking described in
Chapter 3). This would lead to a randomness in the output of the logic gate, which
would inhibit its intended application. Having the intensity of the high state of
input B to be greater than that of A forces the system to adopt the correct output
in this situation, ensuring the correct logical operation.

Trivially, the output is low when input A is low as there is no incident light to
couple into the CCW mode. Accordingly, the output is high if and only if A is high
and B is low - equivalent to the A ·B̃ gate. This gate is universal (see section 4.2.2)
and thus an arbitrary Boolean operation can be performed using only copies of this
gate suitably cascaded. Moreover, low back-scattering in WGM resonators makes
the counter-propagating modes degenerate meaning that all fields have the same
frequency and can thus come from the same source - a useful property for scalable
devices.

Another interesting property of this gate is that no information is destroyed.
The prototypical logic gate has two input ports and only one output, thus the
computation is irreversible with the destruction of 1 bit of information. According
to Landauer’s principle, this comes with a thermodynamic cost which will heat
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Figure 4.1: Schematic for the concept of an all-optical logic gate. a) Inputs A and
B enter a WGM cavity in opposite directions via an input waveguide. The cavity
field couples to a second (output) waveguide such that the output is only high when
input A is high and input B is low - the A · B̃ gate. b) When A is high and
B is low light couples through the cavity making the output high. c) When input
B is also high, the Kerr effect modulates the resonance frequency of the counter-
clockwise mode such that the output is low. N.B. Ket notation is used to denote the
logical state of different parts of the system, but these states strictly define classical
(Boolean) information.
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the circuit [155]. Instead, for the logic gate presented here, all of the system’s
information leaves the four ports of the input and output waveguides. Thus, there
is no intrinsic heating with such a system as all unused outputs can be directed away
from the circuit1.

4.2.1 XPM of counter-propagating light

Section 2.3.6 detailed how the orthogonal circular polarisation bases exhibit nonlin-
ear coupling via XPM. In particular, it was shown that the magnitude of this effect
was twice that of SPM - this difference in magnitude being necessary for symmetry
breaking. The same is the case for counter-propagating light in a WGM resonator,
though the underlying theory is slightly different. The mode of a WGM resonator
has a well defined polarisation, so Eq. (2.33), which gives the 3rd order electric dipole
moment density, can be written more simply as:

P (3) = ϵ0χ
(3)E3, (4.1)

for an applied field E. This field is now made of two counter-propagating components
E(c)cw for the (counter-)clockwise directions, so the total field is:

E = Ecwe
i(kz+ωt) + Eccwe

i(−kz+ωt) + c.c, (4.2)

for CW propagation direction z.
Accordingly, Eq. (4.1) has 64 terms, though many of these include high order

terms in both k and ω which is beyond the scope of this work. The remaining terms
are:

P (3) = 3ϵ0χ
(3)
( [

|Ecw|2 + 2 |Eccw|2
]
Ecwe

i(kz+ωt)+[
|Eccw|2 + 2 |Ecw|2

]
Eccwe

i(−kz+ωt)
)
+ c.c. (4.3)

This shows the same nonlinear coupling between counter-propagating modes in a
WGM as was discussed in the previous Chapter for polarisation modes - the reason
why symmetry breaking is observed in both.

4.2.2 Universality of the A · B̃ gate

The universality of a logic gate - its ability to implement any Boolean operation
without requiring the use of another type of gate - is a valuable property. The lack
of reliance on other devices allows scalable production and straightforward operation.
However - the famous universal gates are the NAND and NOR gates, is the A · B̃
gate also universal?

There is a useful property of universal logic gates: if multiple copies of one type
of logic gate can be arranged to mimic the operation of another universal logic gate,
that gate too is universal. This method can show the universality of the A · B̃ gate.

First, it is important to note that a constant input of logic value 1 to the A port
of the A · B̃ gate just gives the B̃ gate (the NOT gate).

Second, putting this output into the B port of a second A · B̃ gate simply gives
the AND gate - the original B input has been inverted twice.

1It should be noted that material absorption will still lead to heating.
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Figure 4.2: Proof that the A · B̃ gate is universal. Using only 3 A · B̃ gates (blue
rectangles), it is possible to make the universal NAND gate, thus proving that A · B̃
too is universal. This proof relies on the fact that a constant logical 1 input to the
A port of the gate turns it into a NOT gate.

Finally, this output can itself be inverted by a further A · B̃ gate - using a logic
1 in the A port to give the NOT gate previously described. These three A · B̃ gates,
with two additional constant logic 1 inputs, mimic the NAND gate, proving the
universality of A · B̃. Fig. 4.2 gives a circuit diagram of this proof.

4.3 Experimental Methods

This section details the experimental work that was done to demonstrate optical logic
gates. It starts with a description of how a resonator with low intrinsic backscatter-
ing was chosen to avoid resonance splitting, how an EOM overdrive was used to get
the correct input waveforms before a detailed description of the experimental setup
and methods used.

4.3.1 Backscattering

The operation of the logic gate requires both counter-propagating modes to be fre-
quency degenerate at low powers, such that the only splitting of these resonances
arises from a difference in the input powers. This idea is analogous to that de-
scribed in Section 3.2.4, where the low-power splitting of resonances was explained
to be a consequence of the linear coupling between modes. For polarisation, this
coupling is due to birefringence (non-diagonal elements of the χ(1) tensor), but for
counter-propagating modes it arises from backscattering.

Backscattering occurs due to the presence of Rayleigh scatters within the optical
mode. Some proportion of this scattered field is guided in the counter-propagating
mode of the resonator thereby linearly coupling the two modes [156]. The scattering
can be caused by defects in the resonator material or geometry, and the presence
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of the tapered fiber in the evanescent field of the optical mode. The resonator and
tapered fiber position were chosen such that, at low power, the counter-propagating
modes were frequency degenerate, with the low intrinsic backscattering in rod res-
onators making this a relatively painless process.

4.3.2 EOM Overdrive

The logical state of the inputs is encoded into their respective intensities, with
fiber-coupled EOMs (Thorlabs LN81S-FC) used to independently modulate these
values. These modulators utilise a Mach-Zender interferometer made up of Lithium
Niobate (LiNbO3) waveguides. Electrical signals are input to electrodes spanning
these waveguides, which leads to a relative phase mismatch between both arms of
the interferometer via the strong Pockels effect in LiNbO3. This phase mismatch
leads to an interference at the interferometer output such that the output intensity
is a function of the electrical input.

An ideal demonstration of optical logic would employ inputs that quickly switch
between the high and low input states in a square-wave like fashion. This allows
the highest switching speed of the logic gate to be realised, and so showing its
strongest performance.

Charging phenomena, e.g. due to the capacitance across the electrodes, leads to
a finite rise time for the EOMs. This manifests as damped response in the output
optical fields intensity in comparison to the input electric signal. This was accounted
for as best as possible in the experiment by overdriving the input signal - an input
square wave is instead replaced by an input that overshoots the intended voltage,
decreasing to this value exponentially in time such that the output intensity better
approximates a square wave. This initial overshoot acts to speed up the charging
phenomena to get to the steady state value quicker.

4.3.3 Relative input powers

As previously discussed in Section 4.2, correct logical operation is ensured when
both input states are high by having the intensity of input B in this situation be
greater than that of input A. The aforementioned use of EOMs to independently
control the intensities of both inputs was used to ensure this: both inputs were
modulated by the same amount, with A going from near zero power in the low
state up to this maximum value for the high state, whereas input B had some
positive offset in both situations. Experimentally, this is simply a DC difference
between the electrical signals to both EOMs respectively

The input powers, p̃, in both propagating directions are given in terms of the
modulation amplitude and offset as:

p̃ccw = PmA, (4.4a)

p̃cw = Pm (B + ζ) , (4.4b)

where A,B ∈ {0, 1} are the logical inputs, Pm is the dimensionless input modulation
amplitude and ζ ∈ (0, 1) is the modulation offset as a proportion of Pm.

The EOMs set the absolute power limitation on the experiment. They are rated
up to 100 mW input power, with an expected insertion loss of −4 dB. They were
however used up to a maximal output power of 50 mW before the author became
too nervous about potential damage to the device.
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4.3.4 Hysteresis

Alongside symmetry breaking, another nonlinear phenomena that can inhibit the
correct logical operation is hysteresis. Hysteresis is the dependence of a system on
not only its instantaneous inputs, but also on the history of the system itself. In
some sense, such a system has developed a memory - and indeed this system has
been shown acting as an optical memory during the completion of this thesis in
Ref [99].

A logic gate should be sensitive only to its current input state, with no regard
for its own history. The issue that could manifest from hysteresis is that correct
state changes are inhibited. In this system, such hysteresis can be imagined in the
following example: input A is high and B is low such that the cavity field develops
a strong dominance in the CCW direction. When input B is increased to the high
state, the CW direction should now dominate. However one can imagine that the
original dominance of the CCW direction is so strong that input B cannot couple
in regardless of how intensely it is pumped. Such a system would remain CCW
dominant even when both inputs are high, counter to the truth table in Fig. 4.1.

To ensure experimentally that this is not the case, the inputs were modulated
such that each state change should be seen. Not only were each of the four rows
of the truth table investigated, each of the twelve possible transfers between them
were tested also. Hysteresis was deemed to be negligible when the output intensity
was correct (based on the current inputs) regardless of the previous state.

4.3.5 Experimental setup

A schematic for the experimental setup is given in Fig. 4.3. Light from an ECDL
at 1550 nm is split into two branches which each serve as the inputs A and B
respectively. An EOM is used in each branch - as described in section 4.3.2 -
to give the correct waveforms for these inputs. The nonlinear crystal inside the
EOM is polarised and so includes a built-in polariser and is coupled to an aligned
polarisation maintaining (PM) fiber. Accordingly, to maximise throughput through
the EOM, the input polarisation must be matched to that of the PM fiber. This is
achieved using a fiber polarisation controller before the EOM.

After the EOM is a further polarisation controller, which is used to match the
input polarisation to that of the resonant mode under investigation. In order to
reduce the drifts in polarisation state that can arise from fiber bending, they are
taped to the optical table to minimise movements. An optical isolator follows from
this polarisation controller to ensure that the counter-propagating light does not
enter the EOM/ECDL.

The light is then sent to a tapered fiber, via a 99 : 1 beamsplitter. The beam-
splitter allows for the majority of the light to be sent to the resonator via the tapered
fiber. A small amount of light is sent to photodiodes to monitor the intensity input
to, and transmitted through, the tapered fiber which can be used to discern whether
the input is resonant with the cavity.

The tapered fiber is mounted onto an aluminium bracket for structural ro-
bustness. This bracket is then fixed onto a three-axis translation stage (Thorlabs
NanoMax) which allow for sub-micron positioning of the tapered fiber. With the
laser frequency sweeping, this tapered fiber is brought close to the WGM resonator
with the help of a set of microscopes. Dips in the transmission through the taper
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Figure 4.3: Experimental setup. A laser beam is split into two branches, corre-
sponding to inputs A and B. Each input is independently amplitude modulated by
a Mach-Zender electro-optic-modulator (EOM) and has its polarisation matched to
that of the resonant mode using a polarisation controller (PC). They are then cou-
pled in opposite directions into a fused silica microrod resonator via a tapered fibre,
with directional couplers and photodiodes used to monitor the power input into and
transmitted through the tapered fibre in both directions. A second tapered fibre is
used to couple out the resonator field, and is attached to photodiodes to monitor the
output.

indicate near-correct positioning of the taper as light is now coupling into the res-
onator. This position is then optimised: with the two directions in the plane of
the optical mode controlling the degree of overlap between the evanescent fields of
the resonator mode and tapered fiber. The final direction - along the tapered fiber
axis - is used to maximise phase matching between both the tapered fiber and the
resonator (the tapered fiber wave vector is a function of the taper width, which
changes along this axis).

A second tapered fiber is coupled into the opposite side of the resonator. This is
done by first simply swapping the taper that is connected to the rest of the setup and
using the same method as for the first fiber. There are now two tapers connected to
the resonator: an input and output. The coupling rates associated with both act as
a source of (extrinsic) loss in the cavity and hence degrade the Q-factor. The output
taper is positioned such that it is under-coupled, maintaining a high Q-factor of the
cavity at the expense of the intensity of out-coupled light. This output taper is
connected to photodiodes such that the output of the logic gate can be monitored.

4.3.6 Tuning into resonance

Logical operation requires the laser frequency to be locked to the resonator such
that frequency drifts of either do not inhibit the correct logical operation. This was
achieved using a passive thermal lock (see section 2.3.10) for which relative motion
of the frequencies of the laser and resonant mode are countered by heating/cooling
of the resonator.

Tuning into the resonance is done in the following process:

1. The modulation amplitude of the square-wave inputs to the EOMs are set
to zero. Accordingly, the intensities of the inputs to the resonator in both

75



4.4. RESULTS

directions are constant in time. Moreover, these intensities are the same as
the average value for a random binary sequence input i.e. setting A = B = 0.5
into Eq. (4.4). This last step reduces the effects of any thermal instabilities in
the tuning process by maintaining the same average input power.

2. The laser frequency is scanned using piezo control. This allows the investiga-
tion of what resonances look like on an oscilloscope, which helps to find those
with appreciable nonlinear effects.

3. A suitable resonance is selected. This is chosen as one in which there is a
region in the resonator that has, for a range of detunings, a high suppression
of the input A (due to the XPM from input B).

4. The amplitude of the laser frequency sweep is reduced to zero, using the DC
offset of the piezo control to maintain the laser inside resonance. This is
done such that the laser is on the thermally stable side of the resonance, thus
mutually locking their frequencies.

5. The modulation amplitude input to the EOMs is increased to give the correct
output. Even though the average power should remain the same during this
procedure, this is done gradually to ensure there are no shocks to the system
that could break the frequency lock.

6. Correct logical operation is confirmed. The output should be high only when
input A is high and B is low. However this will not be optimised as the
detuning between the laser and resonator is not ideal...

7. The DC offset to the laser piezo is adjusted to maximise the suppression of the
output low state by optimising the detuning. The data is continually saved
during this process to subsequently find the optimum suppression.

4.4 Results

The optimal experimental realisation of optical logic is given in Fig. 4.4. The upper
panel shows the input waveforms (A: red, B: blue), with the lower panel showing
the output. The inputs powers were modulated between 0−35 mW for input A and
15− 50 mW for B (Pm = 35 mW, ζ ≈ 0.4).The input binary sequence can be seen
to include every possible change of input state, with the output only being high
when A is high and B is low - proving the correct demonstration of A · B̃ logic.

4.4.1 Low state suppression

When both inputs are high, there is a residual output due to the incomplete suppres-
sion of input A (this can be seen in the output trace roughly between 0.5− 1.0 ms).
The intensity associated with this state is suppressed by −11 dB in comparison to
the (steady-state) high value, the maximum value of suppression that was found
experimentally.

This suppression is an important parameter for the realisation of cascaded logic
- the output can be subsequently amplified and fed into further logic gates, with
a high suppression ensuring that a low state input into a subsequent logic gate
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Figure 4.4: Demonstration of the all-optical logic gate. The upper panel shows the
measured powers input into the tapered fibres in both directions. Inputs A and B are
both amplitude modulated by the same amount, but with B having a positive offset in
order to suppress the output when both inputs are high. The lower panel shows the
measured output field, which can be seen to be high only when input A is high and
input B is low, showing the correct operation of an A · B̃ gate. When both inputs
are high the output is not fully suppressed, which can be seen by the slight increase
between 0.5 and 1 ms. This residual power and the proper output power together
characterise the suitability of the logic gate to be cascaded, with a low residual power
and a high signal power being optimal.

does indeed have a low intensity. Accordingly, the maximum possible values are
investigated theoretically in section 4.5.

4.4.2 Output power

For cascaded logic, with subsequent gates that are identical to the first, the output
power from the gate should be equal to that of the original inputs. This would
require perfect throughput efficiency between the input and output ports, which is
impossible with a lossy resonator.

Instead, there will be some loss associated with this device, which can be min-
imised by strongly over-coupling both the input and output waveguides. However
this over-coupling, which acts as increased losses inside of the resonator, will degrade
the Q-factor and hence require stronger input powers to achieve the same amount
of nonlinear suppression.

Instead, cascaded logical operation can be achieved by using an amplifier af-
ter each logic gate, to keep the input powers to subsequent gates the same. This
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amplification could be performed by, for example, an erbium doped amplifier, or
a semiconductor optical amplifier (SOA), both of which have been demonstrated
on-chip [157, 158]. There would then be a compromise made between the input
power requirements and throughput efficiencies available (setting the demands on
the subsequent amplifier input powers) which would determine the ideal coupling
rates for the input and output waveguides.

4.4.3 Operation speed

Another important parameter for any logic gate is its speed of operation. This
device is ultimately limited by the cavity lifetime, though this demonstration is
limited by the rise time of the EOMs (which was minimised using the method given
in section 4.3.2). The slowest switching speed of ≈ 0.05 ms (20 kbps) is limited by
the rise time for input B at ≈ 1.95 ms2.

With ideal input switching, the device would still be limited by the resonator
lifetime to a possible bitrate of≈ 1 Mbps. This is still significantly lower performance
than that required for most telecomms applications, but the use of chip-integrated
silicon nitride resonators (the higher associated nonlinearity allow for a lower Q-
factor/response times) could allow for the required Gbps operation at milliwatt
input powers [99].

4.5 Maximum low state suppression

The experimental demonstration of −11 dB seemed optimal for the power limit
of 50 mW per input, though this had not been confirmed theoretically. This was
done using a time-step simulation of Eq. (3.1), with input powers modulated as per
Eq. (4.4).

This leaves three free parameters to optimise the suppression: the modulation
amplitude (Pm), the modulation offset (ζ) and detuning between the laser and cavity
(α). The detuning can be fixed in terms of the other two by maximising the cavity
intensity associated with input B, meaning the optimisation of the suppression is
now a two dimensional problem.

Figure 4.5 shows the results of this simulation for different values of the modu-
lation amplitude and offset. The main panel shows a colourmap of the suppression
(in dB) for these different parameters, with stronger suppression being associated
with higher modulation amplitude/offsets. This trend - which is expected: higher
intensities leading to greater nonlinear splitting - does not persist with arbitrarily
high powers. The white-space in this panel is indicative of the inhibition of correct
logical operation due to hysteresis.

The action of hysteresis is shown in the right panels of Fig. 4.5. These are
the results of a time-step simulation for logical inputs with a binary sequence as
given in the upper two plots. The remaining three plots: I), II), and III), give
the (normalised) output intensity for these logical inputs with a modulation offset
ζ = 0.4 and different modulation amplitudes, with the corresponding points shown
in the main panel.

2N.B. The actual demonstrated value of ≈ 5 kbps is lower than this value though this is simply to
make the demonstration of optical logic clearer for the reader.

78



CHAPTER 4. LOGIC GATES BASED ON THE KERR INTERACTION OF
COUNTER-PROPAGATING LIGHT IN MICRORESONATORS

1 2 3 4
Modulation Amplitude

0.0

0.2

0.4

0.6

0.8

1.0
M

od
ul

at
io

n 
O

ffs
et

I) II) III)

Maxiumum suppression, dB

12

10

8

6

4

2

0
0

1

In
pu

t A

0

1

I)

0

1

In
pu

t B

0

1

II
)

Simulation Time
0

1

II
I)

Figure 4.5: Maximum available suppression. Main panel: suppression of low out-
put state for different dimensionless modulation amplitudes and offsets in dB. Low
values indicate suitability for cascaded operation, which is improved for higher in-
put modulation amplitudes and offsets up to a maximum of −13 dB at Pm ≈ 3.1,
ζ ≈ 0.75. The whitespace shows the regions for which the inability to correctly access
all states inhibits the operation of the logic gate. Upper right panels: inputs A and B
for the timestep simulation presented below. (I)-(III) Simulated output for different
modulation amplitudes at a modulation offset of ζ = 0.4. For low amplitude (I) the
output is only suppressed to roughly 3 dB of its maximum value. This suppression
improves with a higher modulation amplitude (II), but eventually the system stops
behaving suitably (III): for sufficiently large input powers there are instances where
the output state should be high but it cannot reach this state because of hysteresis
in the system.

Panel I) shows the correct logical operation, but with low suppression. The out-
put intensity is always similarly high when A is high and B is low, but the output
is still relatively intense when both inputs are high. Panel II) also shows correct
operation, though with better suppression associated with this higher modulation
amplitude. Panel III) however no longer operates correctly as a logic gate. The first
two occasions for which the output should be high (perfect operation shown by a
green line) are not.

This shows that the performance of such a device has two competing reactions
from increasing the intensity input to the cavity. On the one hand, the higher asso-
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ciated nonlinearity leads to a greater suppression that will be helpful for cascaded
logical applications, though increasing this eventually leads to a hysteresis that
inhibits the correct operation. Such compromises would need to be made when inte-
grating such a device into a wider photonic circuit and could be avoided by having a
circuit that does not have a full duty-cycle (i.e. both inputs return to zero between
each logical operation) to get arbitrarily high suppression with no hysteresis, though
this would entail its own operational complexity.

4.6 Conclusion

This chapter presents an all-optical, universal logic-gate based on the nonlinear
resonance splitting of degenerate counter-propagating modes in a WGM resonator.
Near optimal relative low state suppression of −11dB was achieved. Operational
speeds were limited to 20 kbps by auxiliary experimental equipment, with the device
predicted to be able to operate up to 1 Mbps. In principle, such a system could
be integrated onto a photonic chip to operate at Gbps speeds with sub-mW input
power, finding application in the on-chip routing of optical signals in telecoms and
data-centres.

4.7 Outlook

This chapter has detailed the first demonstration of universal optical logic based
on the interaction of counter-propagating light in microresonators, however to be
genuinely useful (e.g. in telecomms/data centre applications) further developments
are required:

• Cascaded logical operation. Real-world applications require many logic
gates working in parallel and series to make useful devices. This would require
a high degree of repeatability in fabrication, or active control mechanisms to
tune the resonance frequency of each device, to ensure that there is a com-
mon frequency that is appropriate for all logic gates. The issues associated
with throughput efficiency and post-gate amplification would also need to be
addressed to ensure that there is sufficient input power to subsequent logic
gates.

• Chip integration. The current performance characteristics of the device
- operating speed and power requirements - are insufficient for use in most
applications. The Gbps, sub-mW performance expected from photonic chip
integration [99] would make this concept a viable technology. Chip integration
could eventually allow for the fabrication of complex circuits consisting of many
such devices all working in concert

• Explore different information carriers. The state of the logic gate pre-
sented in this chapter is provided by the propagation direction of the field
inside the resonator. One can imagine using the same concept - of using cross-
phase modulation to shift resonance frequencies - for different components of
an optical field. Indeed, such a system was explored in Ref [141] for fields with
different frequencies, with the logical state set by the dominant frequency.
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One could also imagine expanding the work of Chapter 3 to encode the log-
ical information in the intensity of a circular polarisation component of the
field. E.g. a logical high value could be represented by a clockwise handed
polarised field of high intensity (low otherwise). Sending such a field to an
output port via a polarisation degenerate Fabry-Pérot cavity, as in Chapter 3,
would lead to a high output. This process would be hindered by the presence
of a secondary high intensity input field of anti-clockwise handed polarisation
due to cross-phase modulation shifting the resonance frequency. The output
field would now have a suppressed clockwise polarised component - the logical
low state. Thus, again the system would act as an A · B̃ gate
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Chapter 5

Multi-partite continuous-variable
entanglement in a Kerr-frequency
comb

5.1 Introduction

Fundamentally, optical fields are quantum mechanical in nature. In contrast to
the simplest quantum system, the spin, which exists in a binary state on a two-
dimensional Hilbert space, optical fields are described by continuous variables in an
infinite dimensional Hilbert space. Similarly to classical information theory, quan-
tum information can be encoded in discrete systems, with the quantum equivalent
of the bit being the qubit, and in continuous systems, with the quantum equivalent
of such a signal often called a qumode.

Photonic systems are a promising architecture for the generation and manipu-
lation of both discrete and continuous variable quantum information [30]. In com-
parison to other quantum information architectures, photonic systems can be trans-
ported with low losses either in free space or optical fiber. These advantages, along
with the the ability to use linear optical elements to perform arbitrary unitary op-
erations [159, 160], make photonics an exciting platform for the three main areas of
quantum technology: computation, (secure) communication, and sensing.

In particular, nonlinear optics provides a way to turn the classical coherent states
that are output from a laser into “squeezed” states. Quantum optical states can be
described by their associated amplitude and phase (and equivalently as quadrature
variables), which are conjugate variables and thus obey Heisenberg’s uncertainty
relation. For coherent states, the uncertainty in both of these operators is equal,
but squeezed states will sacrifice uncertainty in one operator for improved knowledge
of the other. Squeezed states are examples of Gaussian states but, in general, the
Kerr-effect leads to the generation of non-Gaussian states [161]. Under certain
approximations (see section 5.2.3), degenerate, spontaneous, four wave mixing can
be treated as a form of two-mode squeezing - generating a non-classical state of light

This chapter describes unpublished work-in-progress which is intended to be developed into a
journal article. Accordingly, rather than giving a comprehensive literature review, the aim is
to highlight the key literature that contextualises the work here presented.
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[53, 162–164]. Importantly, for Gaussian states, multi-modal squeezing is equivalent
to multi-modal entanglement [165].

The quantum nature of frequency combs has been well studied in the literature,
specifically for χ(2) cavities. In particular, synchronously pumped optical parametric
oscillators (SPOPOs) have been were predicted to show multi-modal squeezing in
Refs [166, 167]. Such a system consists of a cavity which includes a χ(2) nonlinear
crystal that is pumped by a train of pulses that are temporally separated by the
cavity round-trip time [168, 169]. The pump intensity is set such that spontaneous
optical parametric down-conversion leads to the generation of quantum correlations
in the OPO frequency modes. This was first experimentally confirmed in Ref [170]
with the observation of intensity (photon number) squeezing for a set of at least two
frequency modes. Ref [171] developed on this work, using an OPO to generate a 60
modal multi-partite entangled state, the largest such state that had been generated
at the time of publication in 2014. Such systems have been shown to be a sufficient
resource state for universal quantum computation, making them an interesting area
of research [172, 173].

These demonstrations were done in large, free-space cavities whose small FSR
make addressing different frequency modes individually difficult. Ref [174] solves
this problem, utilising crystalline WGM resonators. Such systems are also easier to
fabricate repeatedly, and their small footprint and ability to be integrated on-chip
make them a promising candidate for future quantum optic technologies.

Still, the frequency doubling/halving nature of the χ(2) nonlinearity means that it
couples light of vastly different wavelength. The χ(3) nonlinearity allows for all modes
to be of similar wavelength, for example in the telecoms band - a useful property for
generating states that could be integrated into existing telecoms systems (e.g. for
distributed quantum computing). Thus, is it possible to use the multi-modal nature
of Kerr frequency combs, along with their ability to be integrated with existing
telecoms systems, to produce multi-mode squeezed states? This chapter aims to
answer this question1.

This chapter will develop the system of equations that describes Kerr comb for-
mation - the LLE - into a quantum model which can then be linearised to see how
quantum fluctuations in each mode are entangled. Such a model was developed in
Ref [53], though in this work mutual entanglement between modes was not investi-
gated, rather the degree of quadrature squeezing between such modes was explored.
A useful metric for understanding the degree of entanglement in a bipartite system
is the logarithmic negativity [176–178], which is particularly interesting as it gives an
entanglement monotone - i.e. higher levels of entanglement manifest as larger values
of the logarithmic negativity. This metric has been applied to the case of modal
pairs of the Kerr frequency combs in the sub-threshold, multi- and single-soliton
regime in Ref [179], and has been used with experimental data from a single-soliton
state in Ref [180]. This chapter expands this work to include higher-order disper-
sive effects, and includes the experimentally accessible regimes in which there is
sub-unity conversion efficiency.

1In this context, multi-mode squeezed states refers to a system which consists of multiple sub-
systems, multiple pairs of which simultaneously show bi-partite entanglement. Such a system
could share quantum information - via mutual entanglement - between each mode in a large
scale network for quantum communications [175].
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5.2 Theory

This derivation follows closely the notation and method shown in Ref [53] to find
the coupled modal dynamics that are then treated using the method developed in
Refs [176–178] to find the degree of entanglement between modes.

5.2.1 Modal expansion of the LLE

(a)

(b)

Figure 5.1: Four-wave mixing in a WGM resonator. a) A monochromatic input field
couples into a resonator in which its intensity builds up above the FWM threshold.
Accordingly, the output light is made up of multiple frequency modes. b) The input
field frequency (ωlaser) is detuned from the pumped mode frequency (ω0, linewidth
∆ωtot) by an amount σ. This leads to light being generated in modes separated by
an integer number of FSR away from the pump, with an efficiency determined by
the FWM coupling strength, detuning and dispersion.

The Lugiato-Lefever Equation - Eq. (2.35) - describes the evolution of an electric
field inside of a ring resonator that exhibits a Kerr nonlinearity as shown in Fig. 5.1a).
A monochromatic input field couples into the resonator where its intensity builds up
to above the stimulated four-wave mixing threshold. Although four-wave mixing has
extremely high bandwidths in dielectrics [181], the resonator modes act to select the
possible frequencies that can be efficiently generated by this process giving an output
field consisting of discrete frequency modes corresponding to those separated by an
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integer number of free-spectral ranges from the pump. This situation is shown in
Fig. 5.1b): a continuous-wave (cw) laser couples into a cavity mode with a detuning
of σ = ωlaser − ω0. There exist cavity modes of the same transverse structure as the
pumped mode, differing in longitudinal mode number l (with l taken to be zero for
the pump). The resonance frequency of these modes can then be found as a Taylor
series:

ωl = ω0 +
nmax∑
n=1

ζn
n!
ln, (5.1)

which is typically truncated at nmax = 2 [182]. The first term in the expansion,
ζ1, is simply the free-spectral range of the cavity: ∆ωfsr. The second term, ζ2, is the
group-velocity dispersion (termed normal when ζ2 < 0, anomalous when ζ2 > 0). It
has been shown [53, 60] that the electric field envelope A governed by the following
equation:

∂A
∂t

= (−κtot + iσ)A+ ig0 |A|2 + i
ζ2
2

∂2A
∂θ2

+
√
2κtAin, (5.2)

and can be expanded in terms of its modes:

∂Al

∂t
=

(
−κtot + i

[
σ − ζ2

2
l2
])

Al + δ (l)
√
2κtAin

+ ig0
∑
m,n,p

δ (m− n+ p− l)AmA⋆
nAp, (5.3)

which is equivalent to the spatiotemporal LLE given in Eq. (2.35). Note that the
electric field envelope A has now been normalised such that |A|2 gives the number
of photons occupying the cavity. The modal expansion gives an associated field
envelope for each mode, Aj, where |Aj|2 is the number of photons in mode j, and
the Kerr-effect in this picture is a mixing of these fields. The solution of the LLE is
detailed in Appendix A.

5.2.2 Quantisation of the LLE

Canonical quantisation of this system then gives a way to infer the quantum prop-
erties of the associated states:

• Replace field amplitudes (and their conjugates) with annihilation (creation)
operators: Aj → âj (A⋆

j → â†j), subject to the usual commutation relations

(
[
âi, â

†
j

]
= δi,j, [âi, âj] =

[
â†i , â

†
j

]
= 0) [183].

• Treat all coupling ports and noise sources as having a vacuum fluctution op-
erator V̂s,j where subscript s specifies the origin of the fluctuation, and j the
frequency mode for which it acts [184]. These fluctuations are zero-mean, tem-

porally uncorrelated and obey the commutation relations
[
V̂s,i (t) , V̂

†
s′,j (t

′)
]
=

δs,s′δi,jδ (t− t′),
[
V̂s,i (t) , V̂s′,j (t

′)
]
=
[
V̂ †
s,i (t) , V̂

†
s′,j (t

′)
]
= 0.
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Under canonical quantisation Eq. (5.3) becomes:

˙̂al =

(
−κtot + i

[
σ − ζ2

2
l2
])

âl + δ (l)
√
2κtAin1̂+

√
2κtV̂t,j +

√
2κiV̂i,j

+ ig0
∑
m,n,p

δ (m− n+ p− l) â†nâmâp, (5.4)

where we can see that there are two sources of loss: subscript i denotes intrinsic
losses, with t indicating resonator-waveguide coupling losses. These each have an
associated loss rate κs which leads to the total loss rate κtot = κi+κt which is half the
value of the full-width at half-maximum (FWHM) linewidth shown in Fig. 5.1b). All
loss rates are taken to be the same for each mode. It is worth noting that Eq. (5.4)
has the form of a Langevin equation which is often seen in cavity quantum optics
[185].

Remark: Eq. (5.4) gives an intuitive way to think about the nature of the Kerr nonlinearity. The
associated Hamiltonian is ĤKerr = − 1

2g0
∑

m,n,p,q δ (m− n+ p− q) â†mâ†nâpâq which shows that
the Kerr effect is simply the simultaneous annihilation, and creation, of two pairs of photons in
different modes subject to energy conservation (from the δ function constraint). In general this
leads to the coherent generation of photon pairs in different frequency modes, leading to complex
quantum correlations.

Specifically, when the field indices are such that only one or two-modes are involved, we
get the Hamiltonians for self - and cross-phase modulation (SPM, XPM) respectively: ĤSPM =
− 1

2g0
∑

m â†mâ†mâmâm, ĤXPM = −g0
∑

m,n â
†
mâ†nânâm (where m ̸= n). These lead to the simul-

taneous annihilation and creation of photons in the same mode with a phase delay set by the
nonlinear coupling strength and the intensity of the same (for SPM) or counterpart (for XPM)
mode: an intensity-dependent refractive index arises. The SPM Hamiltonian has two such annihi-
lation/creation events for mode m, whereas for XPM there is only one such event but four possible
index combinations that can lead to it. Accordingly the magnitude of XPM is twice that of SPM
(all intensities being equal) - this is another explanation of the physical principle that was required
for the phenomena explained in Chapters 3 and 4.

5.2.3 Linearisation of the quantum model

Equation (5.4) is a multipartite nonlinear equation and thus computationally diffi-
cult to solve, but the system can be linearised by assuming that the modes compose
of a classical field perturbed by a small quantum fluctuation: âl = Al+δâl. Inserting
this into Eq. (5.4) and ignoring terms in δâl which are higher than first order gives
two equations: Eq. (5.3b) for the classical fields and the following linear equation
for the quantum fluctuations:

δ ˙̂al = −
(
κtot − i

(
σ − 1

2
ζ2l

2

))
δâl +

∑
s

√
2κsV̂s,l+

ig0
∑
m,n,p

δ (m− n+ p− l)
(
AmApδâ

†
n + A⋆

nApδâm + A⋆
nAmδâp

)
, (5.5)

This linearisation step was first developed in Ref [163] as a method to tame the
nonlinear dynamics of the system. In general, the Kerr-effect leads to non-Gaussian
states which can be difficult to analyse though this linearisation step (i.e. ignoring
higher order terms in δâl) approximates all states as Gaussian. This linearisation
step is invalid when the system is proximal to critical points (in this case, when a
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modal pair is near their lasing threshold) and in the absence of thermal fluctuations
[162, 163]. Accordingly, in order to satisfy the Gaussian approximation, all input
states will be Gaussian (coherent for the pump, vacuum for all other modes) and
the classical dynamics will be confirmed to be stable and not close to any critical
points.

We will now limit the modes under consideration to those that are maxi-
mally distant in mode number from the pump by some integer K, such that
l,m, n, p ∈ {−K,−K + 1, . . . K}. The specific value of K is chosen such that the
photon occupancy of the highest order mode is negligible, i.e. |AK |2 ≪ 1. We can
now rewrite Eq. (5.5) as (N.B. some slight index changing for convenience):

δ ˙̂aj =
K∑

i=−K

Rj,iδâi + Sj,iδâ
†
i +
∑
s

√
2κsV̂s,j, (5.6)

where Rj,i is given by:

Rj,i = −
(
κtot − i

(
σ − 1

2
ζ2j

2

))
δ (j − i)+2ig0

∑
m,n

δ (m− n+ i− j)AmA
⋆
n, (5.7)

and Sj,i is given by:

Sj,i = ig0
∑
m,n

δ (m+ n− i− j)AmAn. (5.8)

This can be written succinctly as a matrix equation:

δ ˙̂a = Rδâ+ Sδâ† +
∑
s

√
2κsV̂ s, (5.9)

with δâ = [δâK . . . δâ-K]
T , V̂ s =

[
V̂s,K . . . V̂s,-K

]T
, and matricesR, S having elements

defined in Eqs. (5.6b,c). Together with the Hermitian conjugate of this equation,
we can contain all of the quantum dynamics of the system in a single equation:

[
δ ˙̂a

δ ˙̂a†

]
=

[
R, S
S⋆, R⋆

] [
δâ

δâ†

]
+
∑
s

√
2κs

[
V̂ s

V̂
†
s

]
, (5.10)

transforming this equation into the quadrature basis simplifies the dynamics by
having purely real matrices. These quadrature operators are vectorised δX̂ =[
δX̂K . . . δX̂-K

]T
, δŶ =

[
δŶK . . . δŶ-K

]T
, where each modal quadrature follows the

usual definition δX̂j =
1√
2

(
δâj + δâ†j

)
, δŶj =

i√
2

(
−δâj + δâ†j

)
such that:
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[
δX̂

δŶ

]
=

1√
2

[
1, 1

−i1, i1

] [
δâ

δâ†

]
,[

δ
˙̂
X

δ
˙̂
Y

]
=

1√
2

[
1, 1

−i1, i1

] [
R, S
S⋆, R⋆

] [
δâ

δâ†

]
+
∑
s

√
κs

[
1, 1

−i1, i1

][
V̂ s

V̂
†
s

]
,

=
1

2

[
1, 1

−i1, i1

] [
R, S
S⋆, R⋆

] [
1, i1
1, −i1

] [
δX̂

δŶ

]
+
∑
s

√
κs

[
1, 1

−i1, i1

][
V̂ s

V̂
†
s

]
,[

δ
˙̂
X

δ
˙̂
Y

]
=

[
ℜ (R) + ℜ (S) , −ℑ (R) + ℑ (S)
ℑ (R) + ℑ (S) , ℜ (R)−ℜ (S)

] [
δX̂

δŶ

]
+
∑
s

√
κs

[
V̂ s + V̂

†
s

i
(
−V̂ s + V̂

†
s

)] ,
(5.11)

with 1 as the (2K + 1) dimensional identity operator. This is a quantum Langevin
equation of the form:

−̇→u = A−→u +−→n (t) . (5.12)

5.2.4 Finding the steady state correlation matrix

Equation (5.12) has a solution at time t:

−→u (t) = M (t)−→u (0) +

∫ t

s=0

dsM (s)−→n (t− s) , (5.13)

where M (t) = expAt. This system is assumed to be stable (i.e. A has eigenvalues
with negative real parts such that M (∞) = 0) as a consequence of the stability
of the numerically solved LLE. The elements of the steady-state correlation matrix,
V , are given by:

Vi,j =
⟨ui (∞)uj (∞) + uj (∞)ui (∞)⟩

2
. (5.14)

The uncorrelated nature of the noise, alongside system stability, sets the steady-
state as:

ui (∞) =
∑
k

∫ ∞

s=0

dsMi,k (s)nk (t− s) , (5.15)

so the correlation matrix elements are:

Vi,j =
∑
k,l

∫ ∞

s=0

∫ ∞

s′=0

dsds′Mi,k (s)Mj,l (s
′) Φk,l (s− s′) , (5.16)

where the noise correlation function is:

Φk,l (s− s′) =
⟨nk (s)nl (s

′) + nl (s)nk (s
′) ⟩

2
,

= δ (s− s′) δ (k − l)
∑
s

κs,

= δ (s− s′) δ (k − l)κtot,

= δ (s− s′)Dk,l, (5.17)
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due to the delta correlations of the noise in time and modes. Accordingly Eq. (5.16)
becomes:

V =

∫ ∞

s=0

dsM (s)DMT (s) , (5.18)

with

D = κtot1, (5.19)

Equation (5.18) is the continuous-time case of the Lyapunov equation which is
equivalent to (due to the system stability):

AV + V AT = −D, (5.20)

which is a linear equation with an efficient solution for the correlation matrix V
[186].

5.2.5 Logarithmic negativity

Following from the work of Lee et al. in 2000 [187] in 2002, Vidal and Werner
presented a computable measure of entanglement called negativity N [178]. This
parameter, along with the similarly defined logarithmic negativity EN , find useful
application because they are entanglement monotones (and thus give a useful metric
for the degree of entanglement in a composite system) and can be used with mixed
states. They are defined as follows:

N (ρ) =

∥∥ρTA
∥∥
1
− 1

2
, (5.21a)

EN (ρ) = log2
∥∥ρTA

∥∥
1
, (5.21b)

where ρ is a bipartite density matrix of systems A and B, ρTA is the partial transpose
of this state over system A, and ∥ρ∥1 = Tr

√
ρρ† is the trace norm of a system. N.B.

The system over which the partial transpose is completed does not affect these

parameters as ρTB =
(
ρTA
)T

and the trace norm is invariant under transpose.

Gaussian states

The effect of Eq. (5.10) is to give a multi-mode squeezed vacuum, an example of
a Gaussian state. Accordingly, the specific method to compute the logarithmic
negativity associated with Gaussian states is required and was developed by Kim et
al. in 2002 [188].

Bipartite Gaussian states can be fully characterised by their first two moments.
Only the second moments contain the information of the entanglement in the sys-
tem, as the first can be reduced to zero using local displacements. Under these
transformations, the resulting second moment v is simply the system covariance
matrix [178] which can be given in general as:

v =

[
A, C
CT , B,

]
(5.22)
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where A and B describe the variance of the systems A and B respectively, and C
captures their covariance.

Calculating the trace norm of a system ρ with such a correlation matrix is easier
after symplectic diagonalisation, a linear transformation that describes the system
in terms of two single-mode thermal-like oscillators. The logarithmic negativity is
then a function of one of the eigenvalues of this symplectic spectrum and is given in
terms of the sub-matrices of Eq. (5.22) as [178, 189]:

EN (ρ) = max [0,− ln 2η] , (5.23)

where the parameter η is given by:

η = 2−
1
2

[
Σ (v)−

[
Σ (v)2 − 4 detv

] 1
2

] 1
2

, (5.24)

and the function Σ is given by:

Σ (v) = detA+ detB − 2 detC. (5.25)

5.2.6 Bipartite entanglement matrix

The previous section describes how to compute the logarithmic negativity of a bi-
partite Gaussian state. However, Kerr-frequency combs consist of many modes –
how shall entanglement be calculated for such a system?

It is possible to develop a multipartite version of Eq. (5.23), but a more inter-
esting metric is that of bipartite entanglement between each mode pair; one can
imagine creating a Kerr-comb and demultiplexing each frequency mode, giving each
to a different party. Giving Alice mode i and Bob j of the total system, ρK, their
reduced system and associated covariance matrix is:

ρK → ρi,j = Tr{i,j}c ρK, (5.26a)

V → vi,j, (5.26b)

where the subscript on the trace means to trace over all subsystems except i and j,
vi,j is a sub-matrix of V corresponding to the modes i and j. Being of the same form
as Eq. (5.22), the associated bipartite logarithmic negativity Ei,j

N can be calculated
[178, 190]. These values can then be set as the elements of a (2K + 1) × (2K + 1)
matrix E - the bipartite entanglement matrix.

Procedure for calculation

1. Choose the resonator parameters. Choose the coupling rates to the environ-
ment (intrinsic losses: κi, and output waveguide coupling: κt), the detuning
(σ), second-order dispersion (ζ) and input field strength (Ain). Set the max-
imum number of modes to simulate, K, such that the extremal modes are
found to have negligible field strengths, thus ensuring that the solution has
not been artificially truncated. N.B. These resonator parameters can be con-
verted to their dimensionless equivalents given in Eq. (2.36) with only minor
adjustments to the rest of this procedure.
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2. Solve for the classical fields Al. Using the procedure given in Appendix A, the
classical equations of motion - the LLE - can be solved.

3. Calculate R and S. The coupling matrices for the system of annihilation and
creation operators can be calculated using Eq. (5.6b,c).

4. Calculate A. Convert R and S into the real matrix A using Eq. (5.11). This
is the coupling matrix between the (vectorised) quadrature operators.

5. Calculate the system covariance matrix V . This is done via the solution of
the Lyapunov equation in Eq. (5.20). An algorithmic solution given in [186]
(which is implemented in Python in the linear algebra part of the package
SciPy using solve discrete lyapunov).

6. Calculate the bipartite entanglement matrix, E. For each pair of modes (i, j),
find the 4×4 sub-matrix vi,j - the bipartite covariance matrix for these modes.
Solve for the logarithmic negativity between these modes using Eq. (5.23),
which is then set as the corresponding element of E.

5.3 Results

The following discusses the entanglement matrices associated with various regimes of
the Kerr-frequency comb: sub-threshold, Turing rolls, soliton crystals, single soliton,
and a single soliton with a dispersive wave. Each of these figures is made of three
panels, with the upper two panels showing the magnitudes of the classical fields
- found from solving the LLE. The uppermost panel shows the intensity in each
of the resonator modes, with the second showing the spatial intensity distribution
inside the resonator. Below these are graphical representations of the entanglement
matrix, with the logarithmic negativity given by the colour of each element of the
matrix.

5.3.1 Below threshold comb

Figures 5.2 and 5.3 show the solution for a sub-threshold Kerr comb. Being sub-
threshold, both only have a single mode - the pumped mode - lasing, and so the
intensity is uniformly distributed around the resonator. As the classical field is made
up of a single mode2 only the anti-diagonal elements of the entanglement matrix can
be non-zero. This is due to the fact that only the ±l modes can be coupled to each
other when there is a single non-zero element of the classical fields, namely A0.

The degree of entanglement - the logarithmic negativity - between the modes is
non-trivial and follows some distribution based on mode number. In both figures,
starting from the central mode pair and moving outwards, the degree of entangle-
ment increases to some maximum before then progressively reducing. In Fig. 5.2 this
maximum is found very quickly at modes ±3; whereas the increase is more gradual
in Fig. 5.3, reaching its maximum for modes ±19. The is difference between the two
systems arises because of their differing dispersion, β. This changes the effective de-
tuning for each of the mode pairs, with those with minimal effective detuning (and

2N.B. Fig. 5.2 shows some intensity on the other modes but this is just a numerical artefact from
the noise added to the numerical LLE solver - see Appendix A
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hence the strongest phase matching for the process) having the strongest levels of
entanglement. Phase matching is a function of the pump detuning (α), dispersion
(β), and the strength of the Kerr-effect which shifts signal/idler mode frequencies via
cross-phase modulation. Their values were chosen somewhat arbitrarily to demon-
strate how entanglement is dependent on them. Such sub-threshold dynamics are
the most accessible experimentally and are discussed further in Chapter 6.

5.3.2 Turing rolls

Figure 5.4 shows the solution for a system that is above threshold in a state termed
“Turing rolls”. The upper panel shows that sidebands have been generated in the
±19 modes, which have then cascaded to create sidebands in the ±38 and ±57
mode pairs. Interestingly, the primary modes that start lasing (±19) are the same
as those which have the strongest entanglement in Fig. 5.3; the difference between
these plots is just the associated detunings with the phase matching for these modes
now such that FWM is efficient enough to lead to lasing.

The lasing in these modes allows for further elements of the entanglement matrix
to be non-zero, shown by the lines that are parallel to the main anti-diagonal.
However this comes at the expense of the total magnitudes of logarithmic negativity,
with these new coupling processes washing out some of the original entanglement.
Qualitatively this makes sense: when there is multimodal coupling, the others must
be traced over to determine the entanglement between a single pair. This acts to
decohere the state, leaving it less entangled than if only the two-modes in question
were coupled.

5.3.3 Soliton crystal

Soliton crystals are an example of an interesting state in nonlinear optics, in which
multiple solitons are locked via their mutual interaction [191]. Such a state is shown
in Fig. 5.5, in which each mode is lasing with a rather complex intensity distribu-
tion. This corresponds to multiple, here three, equidistant pulses in the intracavity
intensity distribution.

The entanglement matrix associated with such a state is seen to be more complex,
with each lasing mode giving rise to an anti-diagonal set of entangled pairs. Again
this increased coupling has reduced the magnitude of entanglement between any
single pair.

5.3.4 Single soliton

Figure 5.6 shows the results for a single soliton. The modal envelope of such a
state follows a sech2 (l) profile (for mode number l), with the intensity of higher
order modes diminishing. Temporally, this corresponds to a single pulse inside the
resonator.

The associated entanglement matrix is interesting, showing regions in which all
modal pairs are mutually entangled, but again with a correspondingly low magnitude
of the effect.

92



CHAPTER 5. MULTI-PARTITE CONTINUOUS-VARIABLE
ENTANGLEMENT IN A KERR-FREQUENCY COMB

5.3.5 Dispersive wave

All of the work here presented has been for resonators that demonstrate at most
second order dispersion. However, the higher order terms of Eq. (5.1) can be taken
into account and lead to solitons with a so-called dispersive wave [192]. Such a
state is shown in Fig 5.7, and parameterised by β3 in the LLE. The main difference
between this and the single soliton state of Fig. 5.6 is the extra peak for the ≈ −25
mode. The higher order dispersion has made this mode well phase matched and so
it has a higher associated intensity.

This has had some interesting effects on the entanglement matrix. Firstly, it has
broken the symmetry such that there is a strong anti-diagonal line in the upper-right
half of the figure. This has also led to fewer modes being entangled as they need to
be well phase matched to two strong fields of rather different mode numbers, which
leads to a greater maximum associated entanglement.
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Figure 5.2: Classical and quantum properties of a sub-threshold Kerr frequency comb.
The input parameters to the normalised LLE are α = 0.25, β = −0.4 and F = 1.25.
Only pairs of modes equidistant from the pump are entangled, with the combined
effect of detuning, dispersion and nonlinearity making the innermost most entangled.
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Figure 5.3: Classical and quantum properties of a sub-threshold Kerr frequency comb.
The input parameters to the normalised LLE are α = 0.25, β = −0.01 and F =
1.25. This system is still sub-threshold, ensuring only equidistant mode pairs are
entangled, however cavity dispersion ensures that modes ±19 share the highest degree
of entanglement.
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Figure 5.4: Classical and quantum properties of an above-threshold Kerr frequency
comb. The input parameters to the normalised LLE are α = 0.45, β = −0.01 and
F = 1.25. The presence of sidebands in this system leads to further pairs of modes
that are mutually entangled. However this comes at expense of the maximum amount
of entanglement available between mode pairs.
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Figure 5.5: Classical and quantum properties of an soliton crystal state. The input
parameters to the normalised LLE are α = 4.24, β = −0.15 and F = 2.01. This
system has many lasing sidebands with an interesting intensity profile due to their
mutual locking. Again, this adds further mode pairs to the entanglement matrix
whilst diminishing the degree of entanglement between any of them.
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Figure 5.6: Classical and quantum properties of a single soliton state. The input
parameters to the normalised LLE are α = 4.06, β = −0.15 and F = 1.91. This
system has many modes mutually entangled, though with a rather diminished mag-
nitude in each.
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Figure 5.7: Classical and quantum properties of a single soliton state with a disper-
sive wave. The input parameters to the normalised LLE are α = 4.00, β = −0.15,
β3 = −0.025, and F = 1.91. The strength of the sideband that causes the dispersive
wave makes for quite the interesting asymmetric pattern.
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5.3.6 Conclusion

This work shows that the Kerr frequency comb can indeed be used as a system to
simultaneously entangle multiple mode pairs. When below threshold, only symmet-
ric mode pairs (i.e. those of number ±l relative to the pump) are entangled, due to
conservation of energy. Momentum must also be conserved, meaning that the degree
of entanglement is also contingent on phase matching and thus on the interplay of
pump detuning, nonlinearity and dispersion.

When above threshold, the presence of multiple strong classical fields leads to
multiple avenues for FWM to couple modes. This leads to a more complex en-
tanglement matrix, in which any single mode may be simultaneously entangled to
multiple partners, though with reduced magnitude. This form of entanglement may
find interesting applications in quantum networks.

A drawback of this approach is that all fields propagate in the same spatial mode
at comparable wavelengths. This makes the subsequent demultiplexing of each mode
to route, and address, each individually difficult. Utilising the larger FSRs of WGM
resonators with smaller diameters increases the spectral separation of the modes,
mitigating this issue, which can also be alleviated with improved filter design.

Another major drawback of this approach, in comparison to the optical states
generated by synchronously driven optical parametric oscillators, is that in order to
have a mode entangled to multiple partner modes, the system must operate above
threshold. In this situation, the extra nonlinear coupling mechanisms act to wash-
out quantum correlations between modal pairs, limiting the usefulness of such a,
above-threshold, system.

This work shows the benefits of using a WGM resonator as a means of generating
entangled optical states. The high Q-factors of such devices allow for the realisation
of nonlinear phenomena at low powers, and they can be fabricated on-chip with
materials that can easily be used with existing telecoms devices. The high intrinsic
Q-factors of such devices mean that they can be operated in the over-coupled regime
whilst maintaining significant intensity build-up. This allows the fragile quantum
states to be out-coupled efficiently, whilst still only requiring low powers to produce.
Such a scheme minimises losses to the environment, preserving the entanglement.
Finally, the frequency selective nature of an optical cavity naturally splits the optical
field into distinct modes. This ability to generate a plurality of entangled modes
and transfer them to a telecoms system makes WGM resonators a promising route
for the distribution of quantum information. Although this is of limited benefit as
a source of multi-partite entanglement in the above threshold regime, it can be a
useful source of bipartite entanglement in the telecom band when pumped below
threshold, which will be explored further in Chapter 6.

5.3.7 Outlook

This chapter has shown that FWM in WGM resonators can create interesting en-
tangled states of the resonant modes. Some further areas of research include:

• Cavity input/output formalism. All of the entanglement here discussed
is for the cavity fields, however these are not accessible to the experimenter.
Instead, some of this field will “leak” into an output waveguide to be explored,
with the rest being lost to the environment. One would expect the output
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field entanglement to approach that of the resonator fields in the limit that
κt ≫ κi (κt: coupling loss rate, κi: intrinsic loss rate), and to approach
zero in the opposite limit. However this has not been fully explored, and
the intermediate behaviour would be of interest for experimental design as κi
are set by the resonator, whereas κt can to some extent be controlled by the
coupling between the resonator and waveguide. High κt will indeed ensure the
output entanglement approaches that inside the resonator, but it also reduces
the cavity intensity buildup due to the extra loss. It is thus expected that there
will be some optimal ratio between the intrinsic and coupling loss rates that
maximise the output field entanglement. A promising avenue for this work
would be to follow the cavity input/output relations as discussed in Ref [193–
195].

• Comparison to other work. This work follows a similar method to
Ref [179], though with quite different qualitative results for the single soliton
state. This is quite likely due to the pump suppression there demonstrated in
which the intensity of the pump mode is lower than that of some sidebands.
This seems to be an nonphysical situation which has been included to show
an interesting entanglement matrix, but may be worth more investigation.

• Multi-partite entanglement. The analysis in this chapter has been limited
to the bipartite entanglement, with all other modes traced over. Interesting
future work could include looking at metrics for multi-modal entanglement,
with no modes traced over, which may not show the same detrimental effects
in the above-threshold regime. Indeed other forms of bipartite entanglement
could be studied, say between the two systems made from taking all frequencies
above the pump, and all those below.

• Sub-threshold Kerr comb entanglement. The sub-threshold Kerr comb,
having only a single appreciable classical field (the pumped mode), is much
simpler to analyse and seems to show promise for the levels of entanglement
that it can exhibit. Chapter 6 includes a more detailed description of such a
state and the experimental work that has been started to investigate it.
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Chapter 6

Towards the generation of
two-mode squeezed vacuum states

6.1 Introduction

The previous chapter showed how Kerr-frequency combs can contain interesting
quantum correlations useful for quantum information applications, with FWM cou-
pling different WGM resonator modes giving rise to complex networks of bipartite
entanglement. Amongst the regimes identified, the sub-threshold regime is perhaps
the most accessible for experiments that aim to study these quantum correlations.

It is not immediately obvious how sub-threshold dynamics can be of any interest
as there is only one (classical) field. However, when the two-mode squeezing operator
- a consequence of FWM - acts on a pair of modes in the vacuum state, it produces
the two mode squeezed vacuum (TMSV) state. When looked at in the Fock (the
photon number) basis, such states are understood to be a superposition of different
photon numbers with photon number entanglement between the modes. Thus, if n
photons is measured in one of the modes, this will project the other mode into the
|n⟩ photon state. Higher order, i.e. n ≥ 2, states can be avoided by using low pump
powers which reduces the likelihood of such events occurring. This is the basis of
heralded single photon sources ; a pair of pump photons annihilate to create a signal
and idler pair, with the detection of one used to project the other mode into the
single-photon state.

Single photon sources fall into two categories: the heralded source, as described
above, and the spontaneous emission from single quantum emitters [196]. Single
quantum emitters are atom-like systems that can only emit a single photon at a
time - in contrast to heralded systems for which higher photon occupation is possible.
Quantum dots are perhaps the most preeminent of such devices, but they have poor
collection efficiencies (though impressive recent works are pushing the state-of-the-
art [197]) and are difficult to reproducibly fabricate into photonic circuits [198].
Thus, there remains great interest in heralded sources of single photons.

This chapter describes unpublished work-in-progress which is intended to be developed into a
journal article. Accordingly, rather than giving a comprehensive literature review, the aim is
to highlight the key literature that contextualises the work here presented.
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The major issue with this approach to generating single photons is that it is a
probabilistic process, in any given time frame there is only a finite chance that a
single photon will be heralded. Moreover, the method to increase the chance of such
an event also increases the chances of higher photon numbers to be generated which
would reduce how useful of a resource this state would be. One way to account for
this issue is multiplexing, which is the process of attempting to make a number of
photons in different modes such that at least one of these is near certain to succeed,
heralding this success event and converting the associated photon into the desired
mode.

Different schemes for multiplexing exist. Perhaps the simplest is spatial multi-
plexing: a set of N heralding sources are ran in parallel such that there is a high
probability that at least one of these will produce a photon. Each output photon
state enters a N × 1 optical switch which is reconfigured using fast electronics to
output one of the generated photons [199–201]1. Temporal multiplexing uses a sin-
gle heralded photon source, pumped multiple times. For any successful event, the
photon is stored in either a quantum memory or a delay line and retrieved at a later
time [203–205]. Finally, spectral multiplexing seeks to use a single cavity source to
simultaneously attempt to create photons in a plurality of mode pairs [206–209].
The frequency of the heralded photon is now dependent on which mode had a suc-
cessful generation event. Accordingly, there then needs to be a feed forward control
to a nonlinear frequency conversion unit to ensure the output photon wavelength is
correct [210, 211].

Accordingly, a promising method to create frequency multiplexed states is the
quantum frequency comb [212]. These utilise a nonlinear medium inside of a cavity
which when pumped below threshold generate signal and idler photon pairs in cavity
modes of differing longitudinal mode number. This was first done in free space
cavities with a χ(2) crystal [170], generating high-dimensional quantum states [213]
which have been shown to be a resource for measurement-based quantum computing
[214]. However, the small FSRs associated with large, free-space, cavities make
addressing each mode individually difficult. This problem can be solved by using
smaller resonators with the χ(3) nonlinearity, allowing the integration onto photonic
chips, individual addressing of each mode, and having all operational wavelengths
in the telecoms band. Such devices, which are simply the sub-threshold Kerr-comb,
have been dubbed the quantum microcomb [215].

Quantum microcombs have been explored theoretically in Ref [53], and there has
recently been significant experimental work to generate such states [216–221]. In
particular, Ref [216] used a self-locked microring resonator inside of an external cav-
ity to generate photon pairs in the ITU frequency bands used in telecoms. Ref [217]
uses a similar approach, though including a pulsed pump configuration that also
allows for time-bin entanglement of the generated photons. Ref [219] shows how the
multi-modal nature of the quantum microcomb can be used to access, and control,
high dimensional quantum states. Spectral correlations between the signal and idler
photons from quantum microcombs can reduce the purity of the heralded single
photon states, which would make them unusable for many applications. Ref [220]
overcomes this issue by using a dual-pump to reduce these correlations, giving a
photon purity of 98.0%. Ref [221] produces 20 pairs of entangled qumodes, using

1N.B. the efficiency of this process can be improved by using an N ×M optical switch to reduce
wasting successful photon generation events [202]
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balanced photodetection to confirm quadrature squeezing.

Remark: Also of interest is the use of micro-resonators as the means for the coherent frequency
conversion of light [222]. One can imagine the use of one micro-ring to generate a source of
frequency-multiplexed single photons, each of which is split into a separate spatial mode and sent
to a second micro-ring resonator for de-multiplexing to the required frequency [223].

This chapter expands on the aforementioned work on quantum micro-combs by
considering how detuning effects degrade the generated states. Phase-matching is
a vital requirement of any nonlinear optical process, and the frequency range over
which it is satisfied for any Kerr-comb is set by three parameters: pump detuning,
frequency dispersion, and nonlinearity. First, an analytic form of the logarithmic
negativity between a pair of modes is given in terms of these parameters. Next, a
description of the experimental process which has been undertaken to confirm these
results is discussed along with proposed next steps. This is an important step in the
development of quantum micro-combs; in order to maximise the number of qumodes
available, and thus the dimension of the generated quantum state, an understanding
of the effects of imperfect phase matching over a wide frequency range is required.

6.2 Theory

The physics of this Chapter matches that of Chapter 5 with only one caveat -
this chapter focuses on sub-threshold effects, which are explored further. Below
threshold, the pump mode couples into the cavity, but at a low enough power such
that the parametric gain in the other modes is not high enough to compensate their
respective losses. Accordingly, there is no lasing in any mode other than the pump
- the classical fields are zero in all but the pump mode: Al = 0, l ̸= 0.

Although the four-wave mixing gain is too low to allow the coherent build up of
light in other modes, there is still the transfer of light between the modes. This can
be thought of in the following manner: degenerate four-wave mixing leads to the
annihilation of two photons from the pump mode, creating a signal and idler pair in
modes ±l. These photons, occupying a lossy cavity mode, will trickle out - either to
the environment, or to an output waveguide - at a rate which exceeds the creation
events. Interesting states of light are generated, just at insufficient levels to allow a
coherent buildup.

In this sub-threshold regime, the dynamics of such quantum fluctuations in mode
l, are given in a modified version of Eq. (5.5):

δ ˙̂al = −
(
κtot − i

(
σ − 1

2
ζ2l

2

))
δâl +

∑
s

√
2κsV̂s,l+

ig0

(
A2

0δâ
†
−l + 2 |A0|2 δâl

)
, (6.1)

where the latter term shows that mode l is only coupled to the opposite mode−l that
is equidistant from the pump. Accordingly, the sub-threshold system is necessarily
bi-partite as the linearisation of the model inhibits any entanglement between the
signal (idler) and pump modes in the absence of classical fields in the signal (idler)
mode.
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In a similar fashion to Chapter 5 we can fully characterise this bipartite state us-

ing the steady-state covariance matrix. With δâl = [δâl, δâ−l]
T , V̂ s,l =

[
V̂s,l, V̂s,−l

]T
,

we have a bipartite equivalent of Eq. (5.11):

[
δ ˙̂al

δ ˙̂a†
l

]
=

[
Rl12, Slσx

S⋆
l σx, R⋆

l 12

] [
δâl

δâ†
l

]
+
∑
s

√
2κs

[
V̂ s,l

V̂
†
s,l

]
, (6.2)

where Rl is given by:

Rl = −
(
κtot − i

(
σ − 1

2
ζ2l

2 + 2g0 |A0|2
))

,

= −κtot + i∆eff,l, (6.3)

and Sl is given by:
Sl = ig0A

2
0, (6.4)

where 12 is the two dimensional identity operator and σx the Pauli x-matrix and
all the pseudo-detuning terms are brought together into a single effective detuning
parameter ∆eff,l (N.B. this parameter encompasses all of the physical effects that
act as detunings: actual detuning of the pump laser, nonlinearity and dispersion).
The quadrature basis is here defined by the transforms:[

δX̂ l

δŶ l

]
=

1√
2

[
1, 1
−i, i

]
⊗ 12

[
δâl

δâ†
l ,

]
(6.5a)[

δâl

δâ†
l

]
=

1√
2

[
1, i
1, −i

]
⊗ 12

[
δX̂ l

δŶ l

]
, (6.5b)

with Eq. (6.2) in this basis (here the pump field A0 is taken to be real for simplicity
without loss of generality) becoming:[

δ
˙̂
X l

δ
˙̂
Y l

]
=

[
−κtot12, g0 |A0|2 σx −∆eff,l12

g0 |A0|2 σx +∆eff,l12, −κtot12

] [
δX̂ l

δŶ l

]
+
√
κtot

[
X̂

in

l

Ŷ
in

l

]
,

(6.6)
where all vacuum fluctuation operators have been combined into single input noise
operators. The steady-state covariance matrix associated with these dynamics, from
Eq. (5.20), can be solved analytically to give:

V l =


va,l, −vb,l, 0, vc,l
−vb,l, va,l, vc,l, 0
0, vc,l, va,l, vb,l
vc,l, 0, vb,l, va,l

 , (6.7a)

va,l =
κ2tot +∆2

eff,l

2
(
κ2tot +∆2

eff,l − g20 |A0|4
) , (6.7b)

vb,l =
g0 |A0|2∆eff,l

2
(
κ2tot +∆2

eff,l − g20 |A0|4
) , (6.7c)

vc,l =
g0 |A0|2 κtot

2
(
κ2tot +∆2

eff,l − g20 |A0|4
) . (6.7d)
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6.2.1 Comparison to a two-mode squeezed vacuum

The covariance matrix for a sub-threshold Kerr comb can be compared to that of a
TMSV. The TMSV can be given by:

|ξ⟩ = S (ξ) |0, 0⟩ , (6.8)

= exp
(
ξâ†b̂† − ξ⋆âb̂

)
|0, 0⟩ , (6.9)

where the squeezing parameter ξ = reiϕ. The associated Hamiltonian looks similar
to that of the sub-threshold Kerr-comb where the squeezing parameter is given by
ξ = −ig0A2

0. The covariance matrix for such a state, where ϕ = π
2
, can be shown to

be (see Appendix B):

V TMSV =


cosh (2r)

2
, 0, 0, sinh (2r)

2

0, cosh (2r)
2

, sinh (2r)
2

, 0

0, sinh (2r)
2

, cosh (2r)
2

, 0
sinh (2r)

2
, 0, 0, cosh (2r)

2

 . (6.10)

Contrary to the work reported in [53], this does not seem to be comparable to
the sub-threshold Kerr comb. However, for ∆eff,l = 0 and g0 |A0|2 ≪ κtot (i.e. for
strong phase matching and well below threshold) it can be shown to agree using
the first order expansions of the hyperbolic functions. In this case, the associated

squeezing parameter has magnitude r = g0|A0|2
2κtot

and is much less than unity.

6.2.2 Logarithmic negativity

The logarithmic negativity of the TMSV can be shown using Eq. (5.23) to be EN =
2r. Using this same method with the covariance matrix of the sub-threshold Kerr
comb - Eq. (6.7) - can give the (somewhat cumbersome) analytic expression:

EN =
1

2
ln

(
(1 +D2 −G2)

D4 −D2 (G2 − 2) +G2 − 2G
√
D4 −D2 (G2 − 2) + 1− 1

)
, (6.11a)

G =
g0 |A0|2

κtot
, (6.11b)

D =
∆eff,l

κtot
. (6.11c)

This value is only well defined for arbitrary detunings when g0 |A0|2 < κtot, a
consequence of the analysis only being valid for sub-threshold situations. Figure 6.1
shows these values for the region of interest.

6.2.3 Motivation

Approximating to the TMSV, sub-threshold Kerr-combs are an exciting method to
generate multi-partite quantum states for a variety of information processing and
communication applications [175]. In particular, when the squeezing parameter is
low the TMSV can be used as a source of entangled photon pairs - the key component
of a heralded single-photon source. Eq. (6.9) can be expanded in the Fock basis to:
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Figure 6.1: Logarithmic negativity of sub-threshold Kerr comb modes as a function
of input power and effective detuning.

|ξ⟩ = 1

cosh (r)

∞∑
n

einϕ tanhn (r) |n, n⟩ , (6.12)

which has the probability of having a photon occupancy of n as being:

pn = |⟨n|ξ⟩|2 = tanh2n (r)

cosh2 (r)
. (6.13)

For a heralded single photon source, the presence of a photon state in the herald-
ing mode - affectionately referred to as a “click” in a photon detector - would only
happen when there was a single photon in the heralded mode. Accordingly it is
undesirable to have any photon state where n > 1. The probability of heralding a
single photon state given a click from the heralding mode is then given by:

pn=1|n>0 = 1− tanh2 (r), (6.14)

which is greater than 99% for r ≤ 0.1. Accordingly, sub-threshold Kerr comb modes
that have low effective detunings and low squeezing parameters are a promising
source of heralded single-photons.

However, section 6.2.1 has shown that the dynamics of the system are somewhat
richer than the pure TMSV, which further motivates experimental investigation
of this regime. The remainder of this chapter will detail the work that has been
undertaken at the time of writing, the challenges that have been encountered, and
proposed methods to characterise these states.
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6.3 Experimental work

The previous section describes how the sub-threshold Kerr comb approximates a
squeezed vacuum for small effective detunings and squeezing levels. During the
course of this thesis, significant experimental work was undertaken to demonstrate
and characterise the quantum nature of these states, with progress limited by device
performance. This section will detail the work completed thus far, along with the
challenges that need to be addressed.

6.3.1 Experimental setup

Figure 6.2 shows the experimental setup for generating a sub-threshold Kerr-comb.
Light from an external cavity diode laser (ECDL) is amplified by an erbium doped
fiber amplifier (EDFA) to the required power. Both of these processes generate
broadband noise by (amplified) spontaneous emission, which would ultimately be
detrimental to the system by generating unwanted photons in the same frequency
bins as those created by four-wave mixing. Thus, this noise is rejected using a
narrowband tunable filter.

The pump field, as has been described in section 4.3, is coupled into the resonator
via a polarisation controller (to match the input and cavity polarisation states) and
tapered optical fiber. Spontaneous four-wave mixing between the cavity modes leads
to the generation of squeezed states, which then couple out of the resonator into the
tapered fiber.

To ensure the system remains sub-threshold - i.e. that there is only one lasing
mode inside the resonator - 1% of the output is sent, via a beam splitter, to an
optical spectrum analyser. The input laser power/detuning is then set such that no
sidebands are observed.

In order to split each of the frequency modes of the resonator for further inves-
tigation, a dense wavelength division multiplexer (DWDM) is used. However, these
devices still exhibit residual cross-coupling between frequency channels, meaning
that the unfiltered strong pump - relative to the single-photon level signals in the
other modes - will dominate. Accordingly a further tunable filter (or indeed a series
of them) is used to selectively filter out the pump frequency before the DWDM. This
signal rejected from the filter (i.e. the pump) is then sent to a photodiode (PD) and
monitored on an oscilloscope to determine the frequency of the laser in comparison
to the cavity resonances. DWDMs are commercially available devices, commonly
used to (de)multiplex different frequency channels in optical fiber for telecoms ap-
plications. These channels are spaced by 100 GHz (some allow 50 GHz) and the
diameter of the microresonator was designed so that the FSR matched this spacing.
For a fused silica WGM resonator, this corresponds to a diameter of 660 µm, which
can be accurately fabricated as a rod resonator as described in section 2.2.2.

6.3.2 Method for photon-pair generation

Using this setup, the following method can be used to generate photon pairs in the
output fibers from the DWDM.

1. Set the laser frequency inside the central DWDM channel. DWDMs have
frequency channels according to the ITU specifications, which have channels
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Figure 6.2: Experimental setup for the generation of a two-mode squeezed vacuum
(TMSV) state. Light from an external cavity diode laser (ECDL) is amplified by an
erbium-doped fiber amplifier (EDFA). Broadband noise is rejected using a tunable
filter (TF) and this light has its polarisation set to that of a cavity mode using a
polarisation controller (PC). The light then enters a whispering gallery mode res-
onator (WGM) via a tapered fiber, with some proportion of the cavity field also
coupling out into the tapered fiber. 1% of this output is sent to an optical spectrum
analyser (OSA) to monitor sideband formation, with the remainder going through a
further tunable filter. The light reflected from the filter - corresponding to the pump
frequency - is sent to a photodiode (PD) and observed on an oscilloscope (Osc.).
The filter transmission - corresponding to any light generated in the resonator at
frequencies different to the pump - is split into different frequency modes for further
experimentation using a dense wavelength division multiplexer (DWDM).
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separated by 100 GHz. The specific device used in this study used ITU chan-
nels 30-37 (1553.33 nm - 1547.72 nm) such that the pump can be centred on
channel 34 (1550.12 nm) which has the lowest loss in standard optical fiber.

2. Tune the filters. Both filters in Fig. 6.2 need to be tuned to the correct fre-
quency. This is completed in two stages, using the OSA to monitor the trans-
mission window of the first filter and tuning it such that the laser transmits
through it. The second filter is then set by maximising the photodiode output
on the oscilloscope.

3. Search for resonances that exhibit stimulated four wave mixing. In this stage,
the OSA is used to find resonances for which sidebands are generated via stim-
ulated four-wave mixing. Although these sidebands are not actually wanted in
the exploration of sub-threshold dynamics, they indicate that the resonances
are of the required quality. In this process, the laser frequency must be swept
over multiple resonances, with the polarisation controller and taper position
adjusted to optimise the associated nonlinear effects - in practice this is max-
imising the width of the resonances that are broadened by thermal and Kerr
nonlinearities, as described in section 2.3.10. This process is iterated until
sidebands are seen on the OSA, identifying a suitable resonance for further
study. DWDM channels have a relatively large bandwidth of 10 GHz to allow
for high bitrate telecoms signals, meaning that finding a suitable resonance in
this spectral region is likely. If this were not the case, thermal tuning of the
resonator could be used to bring suitable resonances into this required region.

4. Reduce input power. The power is now reduced until the sidebands are no
longer observed, giving a good approximation to the threshold power. The
power can be further reduced to explore the full range of the sub-threshold
regime.

5. Couple into resonance. As described in section 2.3.10, the laser can be pas-
sively locked to a resonance via the thermal nonlinearity. In practice this is
done by progressively reducing the laser frequency scan range whilst keeping
the center of the scan inside the resonance. When the scan has reduced to
zero amplitude, the laser is passively locked to the resonance and the detun-
ing can be monitored using the photodiode output (lower voltage means less
light is transmitted through the tapered fiber implying the input is closer to
resonance, i.e. lower detuning).

6. Choose DWDM output fibers. Having now found a resonance that exhibits
four-wave mixing inside a DWDM channel, output fibers are chosen that
should have mutually entangled output fields. These are chosen such that
they are spectrally equidistant from the pump, i.e. if the pumped mode is in
channel 34, the channel pairs 33 : 35, 32 : 36 or 31 : 37 can be chosen.

6.3.3 Superconducting nanowire single photon detectors

During this work, a set of superconducting nanowire single photon detectors
(SNSPDs) was assembled and configured. These devices have lower dark counts and
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higher detection probabilities and temporal resolution than single photon avalanche
diodes (SPADs), and do not require to be gated.

The operating principle is as follows: a nanowire is patterned in a spiral-type
shape such that it covers a wide area. It is cooled in a cryostat to below its super-
conducting critical temperature and a bias current that is close to, but below, the
critical current is applied. Incident photons are then absorbed by Cooper pairs of
superconducting electrons, breaking superconduction and leading to a voltage spike
across the device. So long as the bias current is low enough to ensure that ohmic
heating doesn’t permanently break superconduction, the device then cools back into
a superconducting state ready to signal the arrival of subsequent photons.

The relative arrival time of photons incident to each of the detectors in the
cryostat are then measured by a time tagger, which allows for temporal correlations
between different spatial modes to be established.

6.3.4 Pump suppression

The main experimental difficulty in this work is the separation of the strong pump
from the single-photon-level signals that are being investigated. Section IV.C. of
Ref [53] gives a method to calculate the output photon flux from spontaneous four-
wave mixing inside a resonator and this was calculated to be ≈ 100 dB below
that associated with the pump for the resonator parameters estimated from the
experiment.

If not suitably suppressed prior to input to the DWDM, each of the outputs will
be dominated by the crosstalk from the pump. This is exactly the problem that
has been faced in experiment; the insufficient suppression of the pump masking the
signals of interest.

At the time of writing, the level of suppression that has been established gives
output photons that are 15 − 20% likely to be from four-wave mixing, rather than
simply being an unfiltered pump photon. This is calculated by sending the DWDM
output to SNSPDs, and measuring the associated photon count rate. When the laser
is far detuned from resonance, all of these photons will be a mix of dark counts from
the environment (found to be of negligible amount) and unfiltered pump photons.
As we tune into resonance, pump light couples into, and is lost inside, the resonator.
Accordingly, the pump photon count rate can only go down when tuning into a
resonance. Instead the count rate is seen to increase, indicating the creation of
photons in this frequency range by FWM. The difference between this higher value
and the original, FWM free, count rate gives a lower bound for the proportion of
photons that are from FWM.

Unfortunately, this level was not high enough to see any interesting signals (e.g.
heralded sub-Poissonian photon statistics). At the time of writing, further tunable
filters are being added to the experiment to further suppress the pump in this
pursuit.

6.4 Conclusion

This chapter presents the initial work undertaken to demonstrate detuning effects
on the quantum states generated by a sub-threshold Kerr-comb. First, an analytic
form of the associated entanglement between the modes is presented, followed by
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a discussion on the experimental endeavours to explore these effects. Ultimately,
insufficient pump suppression prevented the completion of this work, which can be
solved with improved wavelength filtering. This work will be an important step
in the understanding of the applicability of Kerr-combs as a platform for different
quantum technologies.

6.5 Outlook

This section will describe subsequent steps in the experiment once further tunable
filters are delivered to better suppress unwanted pump photons.

6.5.1 Temporal correlation of photon pairs

Degenerate FWM annihilates a pair of pump photons, simultaneously creating a
signal and idler pair in the ±l modes of the resonator. Accordingly, there should be
a strong correlation in the timing of the clicks from the SNSPDs that are connected
to output fibers of the DWDM that correspond to these ±l modes.

The finite bandwidth of these modes, giving the photons themselves a finite
bandwidth, means they are not perfectly localised in time. Instead, after the FWM
creation event, both of the photons “leak” out of the cavity, giving them a temporal
envelope that would be interesting to characterize.

This temporal profile can be measured in the following way: take the time a
photon is measured in mode −l to be τ = 0. Measure the time difference between
this event and the measurement of a sister photon in mode +l as τ . Time binning
such results over many measurements then allows for the build up of the temporal
profile of the photons in mode l.

This process illuminates a number of interesting things about the system in
question. Firstly, losses in the system mean that for each photon measured in mode
−l there is not necessarily going to be a partner measured in +l. These losses, which
come from scattering from the resonator to the environment (which can be reduced
by overcoupling) and losses within the fiber/filters/DWDM, are useful for knowing
the heralding efficiency of the system when used as a single-photon source. Secondly,
the temporal width of these photons is linked to the linewidth and effective phase
matching of the modes the photons are generated in. It would be interesting to see
whether factors which affect this phase matching, such as cavity dispersion, affects
the linewidth of the photons. This will be particularly interesting as it could affect
the associated purity of the photons (see section 6.5.3).

6.5.2 Second order temporal coherence, g(2) (τ)

A useful metric in quantum optics is the second-order temporal coherence, g(2) (τ), as
for classical optics g(2) (0) ≥ 1 and this inequality can only be broken for a quantum
state. For low photon-number signals, this can be experimentally measured by
sending a mode through a beam splitter into two separate SNSPDs and measuring
the relative timing of detection events [224].

For the TMSV state that is here discussed, ignoring one mode - equivalent to
partially tracing over it - leaves the other in a thermal state. This (classical) state
shows photon bunching, with g(2) (0) > 1. In Fig 6.3 this would mean that a photon
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Figure 6.3: Proposed setup to measure the g(2) (τ) of the generated states. The ±l
modes are separated from the output of the DWDM. One of these, say mode −l, is
sent through a beam splitter into channels 1 and 2 of the SNSPDs. Ignoring mode
+l, which is sent to channel 3, projects mode −l into a thermal state and so photon
bunching is seen between channels 1 and 2 (g(2) (0) > 1). However, conditioning
these measurements on a click in channel 3 projects the system into a single-photon
state which should demonstrate anti-bunching (g(2) (0) → 0).

measured in Ch 1 will imply a higher likelihood of measuring a photon in Ch 2
immediately before/after than normal. If the filtering and measurement procedure
work well, an ideal thermal state with g(2) (0) = 2 could be approached.

Instead, photon anti-bunching should be seen in this mode when the measure-
ment is conditioned on the measurement of a photon in its partner. Conditioning
here means that measurements on Ch 1 and Ch-2 are only considered when there
has been a click in Ch-3. This click in Ch-3 projects the other mode into a sin-
gle photon state (higher photon number states are suppressed by using suitably low
pump power). This single photon cannot further split, and so there will be a click in
either Ch-1 or Ch-2, but there cannot be simultaneous clicks in both. This photon
antibunching is associated with g(2) (0) < 1 and is evidence of the quantum nature
of the state.

In particular, the actual value of g(2) (0) gives a sense for the photon occupancy of
the state. For a Fock state, |n⟩ (i.e. the n-photon state), the second order temporal
coherence with zero delay is given by [195]:

g(2) (0) = 1− 1

n
(6.15)

Accordingly, for the single-photon state, g(2) (0) = 0. A value of g(2) (0) < 0.5
indicates that the photon occupancy of the state n < 2, and so is taken as an
indicator of a single photon state. However, the value should be minimised so as to
suppress unwanted effects from higher photon occupancies.

The value of g(2) (0) can be related to the squeezing parameter r and so makes
a useful metric to characterise the differences in mode pairs of the sub-threshold
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Kerr comb. Higher r leads to an increased generation rate of photon states (often
called the “brightness” of the source) which is beneficial as it allows for increased
operational speed of whichever device employs such states. However, this comes at
the cost of increasing g(2) (0), increasing the likelihood of heralding a multi-photon
state, which would degrade the operational accuracy of the device. Accordingly in
practice there is often a compromise made on the levels of squeezing employed.

6.5.3 Spectral/temporal purity

An ideal single-photon source would have a high-purity output such that gener-
ated photons are indistinguishable. This is required for their mutual interference, a
requirement for most interesting applications e.g. quantum photonic computation
[159].

Residual frequency correlations between the heralding and heralded photons can
degrade this purity. For a monochromatic pump, the signal and idler photons created
by FWM are perfectly correlated in frequency with some spectral bandwidth set by
the resonator lineshape. The heralding detection of one of these photons destroys its
frequency information, equivalent to a trace over this parameter, leaving the other
in an incoherent mixture of frequencies.

Pulsed pumping goes some way to alleviate these issues, as the ambiguity in
the frequencies of the annihilated pump photons reduces the residual frequency
correlations between the signal and idler photons [220, 225]. Moreover, using a
Mach-Zender interferometer (MZI) coupling setup can change the relative linewidths
of the pump, signal and idler modes, further increasing the pump photon frequency
ambiguity and improving the associated purity [226].

A proposed idea would be to use cavity dispersion to effectively narrow the
linewidths of the signal and idler photons, due to the narrower window of effective
phase matching. Thus the relative frequency ambiguity of the pump photons can
again be increased, potentially giving the benefits of the MZI setup without the
associated experimental difficulties.

6.5.4 Optomechanical coupling

Finally, an interesting application of this system as a single-photon source would be
its coupling to a WGM optomechanical resonator. Strong coupling between optical
and mechanical fields have been seen in such devices mediated by Brillouin scattering
[227]. The similarity in linewidths between these modes and those of the photons
generated in this work imply they should interact strongly, with a photon generated
in one WGM resonator, coupling into another and being converted into a phonon by
Brillouin scattering to be retrieved by a read-pulse at a later time. Accordingly, this
work could constitute an important part of an integrated quantum optical memory.
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Chapter 7

Conclusion

The aim of this thesis was to investigate the applicability of Kerr microresonators
as a platform for future classical and quantum technologies.

Microresonators have been shown to have high Q-factors, allowing for the inte-
gration of Kerr-nonlinearities into photonic circuits. This nonlinearity can exhibit
two separate phenomena: the intensity dependent refractive index, and four-wave
mixing. This work has shown how these effects can be used as the basis for various
technologies.

In fabricating a polarisation degenerate, high finesse, fiber Fabry-Pérot cavity,
it has been shown that the nonlinear refractive index can lead to a splitting of the
degenerate modes, with the cavity field spontaneously developing a chirality even
though the rest of the system has none. This is not only interesting in of itself, it was
also shown to be a method for the all-optical control of an optical field’s polarisation,
which could find application in any photonic circuit for which polarisation must
be controlled but the current fabrication techniques are prohibitive. Such cavities
should be investigated further as they are a promising architecture to study the
nonlinear interactions of polarisation modes - in particular, an enhancement to the
sensitivity of a field’s polarisation could find many applications.

The same splitting of degenerate modes, though of the counter-propagating
modes in a whispering-gallery mode resonator, was then demonstrated as a use-
ful platform for all-optical logic. The main benefits of this system in comparison to
others was the fact that a universal logic gate was presented and all fields could op-
erate at the same frequency. Accordingly, such a device could be replicated multiple
times into a complex photonic circuit in which an optical signal can be routed from a
given input to a chosen output port without the latency associated with converting
the signal to the electronic domain. With the rise of distributed computing in data
centres with information communicated between individual cores via fiber optics,
and the increase in demand for latency free telecommunication, such a device could
improve internet and high power computing performance.

Finally, four-wave mixing was investigated as a source of entanglement for quan-
tum optics applications. Numerical simulations were performed to determine the
logarithmic negativity (the magnitude of entanglement) between each pair of modes
in a Kerr frequency comb. The sub-threshold regime was deemed worthy of further
study, leading to an analytic solution for the logarithmic negativity in terms of the
relevant parameters: detuning, dispersion and nonlinearity.

It was then decided to experimentally verify these theoretical results in an ex-
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periment that uses single photon detectors to measure coincidence counts of photon
pairs that are associated with the two-mode squeezed vacuum. Good progress was
made on this experiment, but in order to see signals that are indicative of quantum
effects, there needs to be improved pump suppression to reduce false “clicks” from
the photon detectors. Such experimental investigations are interesting and worthy
of further work as these systems can be used as heralded single photon sources for
photonic quantum computing and quantum key distribution applications, and this
investigation will lead to a better understanding of limitations to the system.

The Kerr effect in microresonators shows promise for utilisation in future pho-
tonic circuit devices. In particular, their ability to support multiple optical modes
which can mutually couple via the material nonlinearity allows for the realisation
of bistable systems. Such systems are important for the development of all-optical
controllable devices, necessary for optical information processing. In particular, the
high intrinsic Q-factors from such resonators allow for the development of devices
for real-world application, as this allows low-power operation (though at the cost of
operating speed). Furthermore, there are fabrication methods available which would
allow such devices to be reliably and repeatedly integrate into photonic chips.

Such resonators also show promise for the generation of quantum optical states.
Again, for such devices to be scalable, they require low power operation and the
ability to be integrated on-chip. The frequency selective nature of optical cavities
means that the optical states generated inside of them are naturally multi-modal.
Accordingly, the Kerr effect can be used to generate multi-modal entangled states.
When operated below threshold - i.e. with no sideband modes lasing - these sys-
tems can be used as a frequency multiplexed source of heralded single photons,
an important device for quantum optical technologies. The main issues with using
such devices for quantum technologies is: out-coupling, ensuring that the generated
quantum states exit the device without loss, and pump suppression, as the strong
pump field can wash out any quantum effects without adequate filtering. Such dif-
ficulties in operation are mitigated by the high intrinsic Q-factors of such devices,
which allow for the exploitation of nonlinear effects even in the presence of high
out-coupling. Also, the Kerr effect ensures that all generated sidebands are similar
in frequency to the pump, which makes filtering difficult, but has benefits in terms
of allowing all modes to exist at telecoms wavelengths - allowing the employment of
off-the-shelf componenets.

In summary, this body of work constitutes a series of advancements in the knowl-
edge and opportunities available to (quantum) photonic circuit design. Kerr mi-
croresonators allow the realisation of low-power, on-chip, all-optical devices that
can be used for a plethora of real-world applications. Progressing our ability to have
light self-interact in non-trivial ways promises to launch new and exciting areas of
technology.
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Appendix A

Numerical solution to the
Lugiato-Lefever Equation

The normalised Lugiato-Lefever equation is given by (see Chapter 2):

∂ψ

∂τ
= − (1 + iα)ψ + i |ψ|2 ψ − iβ

2

∂2ψ

∂θ2
+ F , (A.1)

with the (all parameters are dimensionless) cavity field (ψ = ψ (θ, τ)) as a function
of time (τ) and position around the resonator (θ). The system is made of a resonator
with second-order dispersion characterised by a magnitude β and is forced by a field
F that is detuned from the pump mode by an amount α.

The method to solve this equation is described in [228], taking from the works [60,
229], and adapted here for completeness. In this context, solution of the equation
means the propagation of the field amplitudes in time: ψ (θ, τ) → ψ (θ, τ + δτ), in
an efficient manner such that a steady-state solution is converged upon quickly.

1. Convert the field into the frequency domain using the Fast Fourier Transform
(FFT) over the spatial distribution. The resultant frequency domain field is
denoted by a tilde, and is parameterised by a mode number l.

ψ̃ (l, τ) = FFTθ (ψ (θ, τ)) . (A.2)

2. Propagate ψ̃ in time by δτ
2
, accounting only for the dispersive term. In the

Fourier domain, this evolution is straightforward and the resulting fields are
denoted with a subscript D to show that dispersion has been accounted for.

ψ̃D

(
l, τ +

δτ

2

)
= exp

(
−β il

2

2

δτ

2

)
ψ̃ (l, τ) . (A.3)

3. Transform back into the spatial domain using the Inverse Fast Fourier Trans-
form (IFFT) over the frequency variable.

ψD

(
θ, τ +

δτ

2

)
= IFFTl

(
ψ̃D

(
l, τ +

δτ

2

))
. (A.4)

4. Evolve these fields in time - this time for the entire time-step δτ - accounting
for all the other terms (the Kerr effect, detuning, dissipation and forcing). The
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result has a subscript N to show the nonlinear effects have been accounted for.

ψN (θ, τ + δτ) =

exp

(
− (1 + iα) + i

∣∣∣∣ψD

(
θ, τ +

δτ

2

)∣∣∣∣2
)
ψD

(
θ, τ +

δτ

2

)
+ δτF. (A.5)

5. Repeat steps 1 & 2 to account for the remaining half-time-step of dispersion,
now using subscript N+D to show both nonlinearity and dispersion have been
accounted for.

ψ̃N (θ, τ + δτ) = FFTθ (ψN (θ, τ + δτ)) , (A.6)

ψ̃N+D (l, τ + δτ) = exp

(
−β il

2

2

δτ

2

)
ψ̃N (θ, τ + δτ) . (A.7)

6. Perform the IFFT to get back to the time domain.

ψ (θ, τ + δτ) = IFFTl

(
ψ̃N+D (l, τ + δτ)

)
. (A.8)

7. Optional. Add noise to excite four-wave mixing. This can be done in the
frequency domain to a level that would be expected from quantum fluctuations
if preferred.

The solution of the LLE (with inputs F = 1.91, α = 4.16, β = −0.15) is shown
in Fig. A.1. The input values, along with an initial condition for ψ (θ, τ = 0) that
has a small pulse, was used found to give the desired evolution into a single soliton
state.
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APPENDIX A. NUMERICAL SOLUTION TO THE LUGIATO-LEFEVER
EQUATION
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Figure A.1: a) Evolution of a cavity field under the LLE with inputs F = 1.91,
α = 4.16, β = −0.15. Before τ = 2 the solution is highly chaotic and so not shown.
Between τ ≈ 2−6, there are a number of pulses inside the cavity that are interacting,
settling down to a single pulse after τ = 6. b) Cavity field at τ = 10. The LLE
solution shows a soliton: a sharp pulse in the spatial domain, and a sech2 profile in
the frequency domain.
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Appendix B

Covariance matrix of a two-mode
squeezed vacuum

Let the two-mode squeezed vacuum be denoted by:

|ξ⟩ = S (ξ) |0, 0⟩ , (B.1)

= exp
(
ξâ†b̂† − ξ⋆âb̂

)
|0, 0⟩ , (B.2)

where ξ = reiϕ is the squeezing parameter, and â† (â), b̂† (b̂), being the creation
(annihilation) operators for the two modes of the system. In the Fock basis, this
expands to:

|ξ⟩ = 1

cosh (r)

∞∑
n

einϕ tanhn (r) |n, n⟩ , (B.3)

and the associated Hermitian conjugate:

⟨ξ| = 1

cosh (r)

∞∑
n

e−inϕ tanhn (r) ⟨n, n| . (B.4)

The quadrature operators of these systems are given by:

X̂A =
â† + â√

2
, (B.5a)

X̂B =
b̂† + b̂√

2
, (B.5b)

ŶA =
i
(
â† − â

)
√
2

, (B.5c)

ŶB =
i
(
b̂† − b̂

)
√
2

, (B.5d)
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APPENDIX B. COVARIANCE MATRIX OF A TWO-MODE SQUEEZED
VACUUM

The covariance matrix of such a state is given by (N.B. all first-order moments
are zero):

V =



〈
X̂2

A

〉
,

〈{
X̂A, ŶA

}〉
,

〈
X̂AX̂B

〉
,

〈
X̂AŶB

〉〈{
ŶA, X̂A

}〉
,

〈
Ŷ 2
A

〉
,

〈
ŶAX̂B

〉
,

〈
ŶAŶB

〉〈
X̂BX̂A

〉
,

〈
X̂BŶA

〉
,

〈
X̂2

B

〉
,

〈{
X̂B, ŶB

}〉〈
ŶBX̂A

〉
,

〈
ŶBŶA

〉
,

〈{
ŶB, X̂B

}〉
,

〈
Ŷ 2
B

〉

 , (B.6)

with the anti-commutator expectation
〈{

Â, B̂
}〉

= 1
2

〈
ÂB̂ + B̂Â

〉
, and the fact

that many of these operators commute ensuring that many of the elements are
replicated. The independent parameters will now be derived:

Diagonal elements

The following method shows how to calculate
〈
X̂2

A

〉
(which is the same as

〈
X̂2

B

〉
due to the symmetry of how the operators work on both systems):〈
X̂2

A

〉
= ⟨ξ| X̂2

A |ξ⟩ ,

=
1

2 cosh2 (r)

∞∑
m,n=0

eiϕ(n−m) tanh(n+m) (r) ⟨m,m|
(
â† + â

) (
â† + â

)
|n, n⟩ ,

=
1

2 cosh2 (r)

∞∑
m,n=0

eiϕ(n−m) tanh(n+m) (r) ⟨m,m|
(
â†â† + ââ† + â†â+ ââ

)
|n, n⟩ ,

=
1

2 cosh2 (r)

∞∑
m,n=0

eiϕ(n−m) tanh(n+m) (r) (2n+ 1) δm,n,

=
1

2 cosh2 (r)

∞∑
n=0

tanh(2n) (r) (2n+ 1) ,

=
cosh (2r)

2
. (B.7)

Only the â†â and ââ† terms added to this expectation due to the orthogonality

of different Fock states. In calculating
〈
Ŷ 2
A,B

〉
, the sign of these terms are flipped,

but this is reversed by the two imaginary prefactors to the Ŷ operators - thus all
diagonal terms are the same.

Anti-commutator terms

Symmetries in the anti-commutator terms ensures that they all have the same value.
Looking at one example of these:

{
X̂A, ŶA

}
= X̂AŶA + ŶAX̂A,

=
i

2

((
â† + â

) (
â† − â

)
+
(
â† − â

) (
â† + â

))
,

= i
(
â†â† − ââ

)
, (B.8)
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which only includes terms that would lead to orthogonal Fock states in the expec-
tation calculation and so all of these terms are zero.

Coupling terms

The symmetry of how the operators act on both systems, and the fact operators
that act on different states together mean that the remaining elements of the matrix

are only made of two independent values. These will be taken as
〈
X̂AX̂B

〉
and〈

X̂AŶB

〉
.〈

X̂AX̂B

〉
= ⟨ξ| X̂2

A |ξ⟩ ,

=
1

2 cosh2 (r)

∞∑
m,n=0

eiϕ(n−m) tanh(n+m) (r) ⟨m,m|
(
â† + â

) (
b̂† + b̂

)
|n, n⟩ .

(B.9)

Now, in order to retain the parity of the photon number in both systems, which
is needed for a term to add to the expectation value, only the â†b̂† and âb̂ terms
need be included.〈

X̂AX̂B

〉
=

1

2 cosh2 (r)

∞∑
m,n=0

eiϕ(n−m) tanh(n+m) (r) ⟨m,m|
(
â†b̂† + âb̂

)
|n, n⟩ ,

=
1

2 cosh2 (r)

∞∑
m,n=0

eiϕ(n−m) tanh(n+m) (r) (mδm,n+1 + nδm+1,n) ,

=
1

2 cosh2 (r)

∞∑
n=0

(n+ 1) tanh(2n+1) (r)
(
e−iϕ + eiϕ

)
,

=
1

2
cos (ϕ) sinh (2r). (B.10)

Using a similar method we arrive at:〈
X̂AŶB

〉
=

1

2
sin (ϕ) sinh (2r). (B.11)
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