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Abstract 

 

For over 100 years, the histopathological analysis of cytology, biopsy or resection specimens 

has been the final step in the process of diagnosing multiple diseases, including cancer. In 

recent years, standard clinical care is continuously becoming more complex, and as a result, 

diagnostic pathology workup is also more complex and extensive. Moreover, despite being 

considered a gold standard in making a diagnosis, histopathological investigations can be time-

consuming. Additionally, an examination of the stained slides is subject to intra-observer error. 

Therefore, it is evident that some additional techniques are required to complement making a 

diagnosis. 

 

Desorption electrospray ionisation mass spectrometric imaging (DESI-MSI) is an emerging 

mass spectrometry technique with great potential in tissue analysis, especially in histological 

settings. DESI-MSI enables visualising the spatial distribution of lipid species across tissue 

sections allowing a direct correlation of the metabolomic information with the morphological 

features. However, this technique has always relied on frozen sections, which are not required 

in routine histopathology settings very often. Moreover, some embedding media, e.g. OCT, a 

common choice in diagnostic laboratories, have been proven not to be very well suited for MSI.  

 

The main aim of this study was to make DESI-MSI more compatible with the standard 

pathology procedures.  

 

Therefore, the first step was to assess OCT's impact on the quality of DESI-MSI data. The 

acquired data suggested that this embedding medium could be used for histopathological and 

mass spectrometric analyses. There were no clear polymeric signals causing differences in the 

negative mode data, but some reduction in intensities might be attributable to polymer-induced 

ion suppression. In positive mode data, the interferences due to OCT were more overt but could 

be negated by removing the regular peaks of the various polymeric distributions. 

 

As formalin-fixed, paraffin-embedded (FFPE) samples are the gold standard in histopathology 

laboratories worldwide, the next step was to optimise the pre-DESI-MSI protocol to allow the 

analysis of specimens that have been processed that way. A new protocol has been adapted and 

successfully tested on FFPE mouse and human tissue samples for tissue classification. 



7 

 

Additionally, DESI-MSI has been used to analyse fresh-frozen and FFPE colorectal samples. 

88.5% accuracy for normal samples and 91.7% for tumours was achieved when a batch of 38 

fresh-frozen samples was analysed. Tissue microarray (TMA) consisting of 54 cores was used 

further to test the application of DESI-MSI to FFPE samples. A 10µm thick sections were 

subjected to analysis in negative and positive modes, and accuracy of over 80% and 92% for 

tissue prediction was achieved, respectively. Equally good results were obtained for TMA 

sections which were 5µm thick. This last observation was crucial in the light of making DESI-

MSI as histology-friendly as possible, as 10µm tissue sections are not routinely prepared in 

histopathology laboratories.  

 

Lastly, a new statistical approach based on ion colocalisation features has been applied to 

DESI-MSI data acquired for cirrhotic liver diseases. It allowed to identify top correlations of 

ions, and their distribution within analysed tissue sections was visualised. It is possible that 

using this approach, some biochemical interactions that are distinguishing the three classes of 

cirrhotic liver diseases (metabolic, hepatitis and cholangiopathy) could be captured. The 

colocalisation patterns can potentially be used for data-driven hypothesis generation, 

suggesting possible local molecular mechanisms characterising the samples of interest. 
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1.1 Cancer 
 

Cancer has been estimated the second leading cause of death in the United States and is a 

significant health problem in more and less economically developed countries worldwide. It 

had been projected that in the USA alone, 1 806 590 new cases and 606 520 cancer-related 

deaths were expected in 2020 [1, 2]. The occurrence of cancer continues to increase further due 

to the population’s growth and ageing. Moreover, a rising prevalence of established risk factors 

such as overweight, smoking, and physical inactivity also plays a significant role in the cancer 

burden [3].  

This condition’s complexity is linked to cancer being a highly heterogeneous collection of 

different diseases with different risk factors, clinical presentations, pathological features, 

responses to therapy, and outcomes. Moreover, over 200 types of cancer have been described, 

each with different causes, symptoms and treatments [4].  

The fundamental abnormality resulting in cancer development is the continual unregulated 

proliferation of cancer cells. Instead of responding appropriately to the signals that control 

normal cell behaviour, cancer cells continue to grow and divide in an uncontrolled manner. As 

a result, they invade healthy tissues and organs and eventually start to spread throughout the 

body. The loss of growth control exhibited by cancer cells directly results from accumulated 

abnormalities in multiple cell regulatory systems. Furthermore, several aspects of cell 

behaviour distinguish cancer cells from their healthy counterparts [5]. 

These aspects can be described as six essential alterations in cell physiology: insensitivity to 

growth-inhibitory signals, self-sufficiency in growth signals, evasion of apoptosis, sustained 

angiogenesis, limitless replicative potential, and tissue invasion and metastasis (Figure 1.10) 

[6]. 

Two distinct mechanisms can be used to block proliferation. Cells may be induced to surrender 

their proliferative potential by being induced to enter a postmitotic state. Alternatively, they 

might be forced out of the active proliferative cycle into the G0 state. At the molecular level, 

many of the antiproliferative signals are guided by the retinoblastoma protein pRb and its 

relatives, p107 and p130. Therefore, disruption of the pRb pathway allows cell proliferation 

[6].  

Healthy cells rely on mitogenic growth signals before they can move into an active proliferative 

state. Tumour cells, however, show a significantly reduced dependence on exogenous growth 

stimulation. As a result, these cells must generate many of their own growth signals, allowing 

them to reduce their dependence on stimulation from the normal tissue microenvironment. That 
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leads to disturbances in a critically important homeostatic mechanism that ensures the proper 

behaviour of various cell types within a tissue [6].  

 

 

 

Figure 1.1. Acquired capabilities of cancerous cells. Reproduced with permission [7].  

 

Many strategies allow cancer cells to become resistant to apoptosis, and the p53 tumour 

suppressor gene is involved in the most commonly occurring loss of a proapoptotic regulator. 

The p53 protein is seen in more than 50% of human cancers and results in removing a vital 

component of the DNA sensor responsible for inducing the apoptotic effector cascade [8]. 

Signal linked to other abnormalities like oncogene hypertension and hypoxia is also funnelled 

in part via p53 to the apoptotic machinery. When p53 function is lost, these are also impaired 

at eliciting apoptosis [9].  

Nutrients and the oxygen supplied by the vascular system are essential for cell function and 

survival. Coordinated growth of parenchyma and vessels occurs during organogenesis and is 

transitory and carefully regulated once the tissue is formed. Interestingly, cells within aberrant 

proliferative lesions cannot initially grow new blood vessels (angiogenesis). Therefore, to 

progress to a larger size, angiogenic ability must be developed by incipient neoplasias [10, 11]. 

Angiogenesis is encouraged or blocked by counterbalancing positive and negative signals. 

Soluble factors and their receptors displayed on the surface of endothelial cells convey one 
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class of these signals. Adhesion molecules and integrins responsible for mediating cell-cell and 

cell-matrix association also play crucial roles [6]. The signals initiating angiogenesis are 

exemplified by acidic and basic fibroblast growth factors (FGF1/2) and vascular endothelial 

growth factor (VEGF). Each of them binds to transmembrane tyrosine kinase receptors 

displayed by endothelial cells [12, 13]. Thrombospondin-1 is a prototypical angiogenesis 

inhibitor. It binds to CD36, a transmembrane receptor localised on endothelial cells coupled to 

intracellular Src-like tyrosine kinases [14]. 

Moreover, in order to generate macroscopic tumours, cancer cells require unlimited replicative 

potential. There is considerable evidence that telomeres protecting the ends of chromosomes 

are involved in the capability for unlimited proliferation [15, 16]. The telomeres are composed 

of multiple tandem hexanucleotide repeats, and they shorten progressively in non-immortalised 

cells when propagated in culture. Eventually, this leads to the loss of ability to protect the ends 

of chromosomal DNAs from end-to-end fusion. Those fusions generate unstable dicentric 

chromosomes, and their resolution leads to a scrambling of karyotype that threatens cell 

viability [7]. Consequently, the telomeric DNA length in a cell dictates how many successive 

cell generations its progeny can pass through before telomeres are significantly eroded and lost 

their protective functions [7].  

Lastly, it is clear that as carcinomas arising from epithelial tissues progress to a higher 

pathological grade of malignancy, the associated cancer cells usually develop alterations in 

their shape and attachment to other cells as well as the extracellular matrix (ECM). The best-

described alteration involves the loss by carcinoma cells of E-cadherin, a critical cell-to-cell 

adhesion molecule. Increased expression of this molecule is well established as an antagonist 

of metastasis and invasion, while the reduction of E-cadherin expression is known to potentiate 

these phenotypes. Frequently observed downregulation of E-cadherin and its occasional 

mutational inactivation in human carcinomas provides strong support for its role as a critical 

suppressor of activating invasion and metastasis [17, 18].  

 

With further research into cancer development, additional hallmarks have been added to the 

original list, including the adjustment and dysregulation of cancer cells metabolism to 

effectively support proliferation and cancer cells’ capability to evade immunological 

destruction [7].  
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1.2 Lipids 
 

The lipid classification system currently most frequently referenced was proposed in 2005 by 

Fahy et al. [19]. It was updated in 2009 to encompass lipid structures from non-mammalian 

sources such as plants, bacteria, and fungi [20]. As a result, there are eight categories, which 

cover both eukaryotic and prokaryotic lipids: glycerolipids, glycerophospholipids or 

phospholipids, sphingolipids, saccharolipids, fatty acyls, prenol lipids, sterol lipids, and 

polyketides. 

Lipids, which are fundamental components of biological membranes, are functionally and 

structurally diverse classes of metabolites. Due to their diversity and combinatorial structures, 

there are already over 37,500 lipids described by Fahy et al. in the LIPID MAPS Structure 

Database [21]. They play essential roles in biological systems, including composing membrane 

bilayers, signal transduction, storing energy, providing functional implementations of 

membrane proteins, and their interactions. 

Sphingolipids, glycerophospholipids, triglycerides and sterols are the most common lipid 

classes which play important roles in membrane structure and energy storage. There is also 

another classification system used to categorise the most abundant lipids. It references their 

different charge properties: anionic (phosphatidic acid (PA), phosphatidylinositol (PI), 

phosphatidylglycerol (PG), phosphatidylserine (PS), and cardiolipin (CL)), weakly anionic 

(phosphatidylethanolamine (PE) and ceramide (Cer)) and 'neutral' lipids (mono, di, 

triacylglycerol, cholesterol esters, phosphatidylcholine (PC), sphingomyelin (SM)) [22]. 

It has been estimated that 5% of eukaryotic cell genes are directly involved in cellular lipid 

metabolism, underlining the importance of lipids in cellular structure and function. The 

lipidome, often considered a sub-fraction of the metabolome, contributes to around 70% of 

entries in the Human Metabolome Database [23].  

Therefore, it is crucial to understand lipids' role in healthy and diseased cells as they may have 

prognostic value [24].  

 

1.3 Lipid metabolism in cancer 
 

There is increasing evidence that cancerous cells exhibit specific alterations in various aspects 

of lipid metabolism. Those alterations can impact the availability of structural lipids to 

synthesise and degrade lipids, contributing to energy homeostasis, the synthesis of membranes, 

and the abundance of lipids responsible for signalling functions [25].  
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In order to meet their increased demands for proliferation and survival, cancer cells can alter 

their metabolic pathways. Their accelerated proliferation rate requires a higher metabolism rate 

[26, 27], and the ‘Warburg effect’, the most known metabolic change, was first described by 

Otto Warburg in the 1920s [28]. It was then reported that compared to normal cells, cancer 

cells take up and utilise much more glucose for glycolysis [28]. It has been proposed that 

aerobic glycolysis should be considered the core cellular metabolism to supply cancer cells 

with energy, and also the building blocks required the synthesis of macromolecule proteins, 

nucleic acids, lipids and carbohydrates [29]. In recent years, more and more evidence confirms 

that altered lipid metabolism is another common property of cancerous cells [27]. Similar to 

glucose metabolism, common oncogenic signalling pathways regulate lipid metabolism in 

malignant cells. It is believed that in that case, altered lipid metabolism plays a crucial role in 

the process of initiation and progression of tumours [30]. In order to synthesize fatty acids and 

their derivatives, many lipogenic enzymes utilize reduced acetyl-CoA and nicotinamide 

adenine dinucleotide phosphate (NADPH) generated from glucose and glutamine metabolism. 

As a result, the exacerbated lipogenesis in cancerous cells is linked to the upregulated lipid 

metabolizing enzymes, and additionally, is also directly coupled not only to other common 

metabolic pathways but also their associated cell signalling pathways [26, 27].  

Therefore, the signalling pathways responsible for controlling the altered metabolism in 

malignant cells are promising targets for cancer therapy [31]. 
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Figure 1.2. Functions of lipids in cancerous cells. Lipids play many crucial roles in cancer 

cells. They are responsible for providing those cells with signalling molecules, membrane 

building blocks, energy supply to support rapid cell proliferation, and posttranslational 

modifications of proteins. uPAR – Urokinase-type plasminogen activator-receptor; GPCRs – 

G protein-coupled receptors. Adapted from [31].  

 

 

1.4 Cancer diagnosis 
 

Cancer is described as a physical alteration of the relation cells and their tissues, resulting in 

aberrant social organization. These alterations are detected as tumours, and a cancer diagnosis 

is made through manual histological evaluation of biopsies taken from the mass and its 



36 

 

surrounding regions. This evaluation is one of the key prognostic factors for most 

cancers, providing information on the tumour type, grade and any morphological abnormalities 

[32].  

Grading and staging of tumours are used to decide on the treatment for each particular diagnosis 

and predict the outcome of individual cancers. Grading relies on the histological criteria of 

neoplasm. It also includes information about the degree of differentiation and proliferation of 

individual cells and the degree of deviation from healthy tissue architecture. Extensive studies 

have contributed to the correlation of these microscopic characteristics with clinical outcomes. 

Grading of invasive and preinvasive neoplasms is helpful not only in prognosis but also in 

therapy decisions. Staging is based on the local extent of tissue involvement combined with 

microscopic confirmation of the neoplastic cells’ presence in distant sites [32].  

 

Traditional histological evaluation of the post-operative tissue sections is the standard gold 

method that has been used over the decades to enable clinicians to understand and characterise 

tumours. Whilst this approach is relatively simple and powerful, it has some significant 

drawbacks. There is a broad spectrum in cancer morphology; therefore, many tumours can be 

atypical or lack morphological features crucial for future diagnosis [33]. For example, bone 

tumours are classified as a challenging field in pathology, and often they require a global 

assessment of clinical and imaging data. However, even under perfect conditions where a 

representative biopsy and imaging documents are available, diagnostic difficulties persist [34]. 

Another aspect that should also be mentioned here is an inter-observer error [35-37]. These 

two studies looked at the rate of agreement between specialist histopathologists evaluating liver 

biopsy specimens. Depending on the scoring system used, that level varied between 87%-65%.  

Lastly, manual examinations are very time consuming and hence limit the speed and 

throughput of diagnosis. All the steps required before the final histopathological report is issued 

are discussed in the next paragraph.  

 

1.5 Why can a histopathological assessment be time-consuming?   
 

Tissues are usually taken either from the biopsies of patients in clinics or during surgical 

operations. The tissue samples are immediately immersed in a fixative or rapidly frozen and 

then fixed. The tissue sections are prepared for a histopathological assessment by a pathologist, 

who examines their cellular appearance [38]. However, there are multiple steps required before 

the slides are ready for the assessment, and the whole process is summarized in Figure 1.3. 
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Figure 1.3. All the steps required from a specimen’s arrival in a Histopathology 

Department until the final report can be issued. The total number of days required to 

complete the whole procedure depends on whether additional tests are requested (e.g. special 

stains or immunohistochemistry (IHC) staining).  

 

 

 

1.5.1 Fixation  

Living cells must receive food and oxygen as well as discard waste products. They decline and 

die when removed from the body because neither food nor oxygen is available. The DNA, 

sugars, proteins and fats start to deteriorate through waste products build up and the 

uncontrolled release of proteases. Thus, the first part of the histopathology process is not to 

allow cells’ shape and structure to deteriorate; otherwise, diagnosis becomes impossible as 

those changes are irreversible. This can be done by either fixing or freezing the tissue sample 

to keep cells in as natural a state as possible [39].  

 

1.5.1.1 Fixatives – what do they do? 

Most fixatives are enzyme poisons because fixation should prevent abnormal enzyme activity 

and metabolism and inactivate the lysosomal enzymes to stop autolysis. Destroying enzymes 
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is essential to prevent fungal and bacterial growth, so putrefactive changes do not occur [40]. 

In terms of maintaining morphology, probably the most important reactions are those which 

stabilize the proteins. Fixatives form cross-links between proteins, forming a gel, so everything 

is kept in their in vivo relations to each other [41]. Many chemicals act as enzyme poisons, but 

only some of them are useful as histological fixatives. Aqueous solutions are usually used, but 

occasionally vapour may be employed. The most commonly used fixative in the UK is 

formalin, a 4% formaldehyde solution [40], but there are about 2000 known fixatives and 

fixatives mixtures [38].   

Various types of fixatives and their effects on tissue samples are listed in Table 1.1. 

 

Type of fixative Examples Other effects on tissues 

Aldehydes Formaldehyde 

Glutaraldehyde 

Shrinkage 

Early fixatives Ethanol 

Acetic acid 

Dehydration 

Oxidising agents Potassium dichromate 

Potassium permanganate 

Osmium tetroxide 

Enzyme inhibition 

Proteins breakdown 

Cold  Freezing to -200°C Dehydration 

Heat Microwave 

Boiling 

Enzyme inhibition 

Release of gases 

Others Picric acid 

Mercuric chloride 

Carbodiimides 

Various 

Table 1.1. Different types of fixatives and their effects on the chemistry of tissues. In 

general, all the fixatives inhibit enzymes, denature proteins, and change the volume of tissues. 

Adapted from [38].   

 

 

1.5.1.2 Formaldehyde 

Formaldehyde is a pungent toxic gas, and it is soluble in water. In the solution, it is mainly in 

the hydrated form of methylene glycol, which acts as a fixative. Fixation with formaldehyde is 

a complex process in which a very rapid penetration stops autolysis. It is then followed by 

covalent bonding and cross-linking. Methylene bridges are formed between protein molecules, 
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mainly with the basic amino acid lysine. Lysine residues that react are only those which are on 

the exterior of the protein molecule [42, 43]. The reaction between formaldehyde and proteins 

is pH-dependent and more rapid at high pH. Formaldehyde has many advantages as a routine 

fixative. It causes tissues to swell slightly, so the organs remain soft, which is suitable for 

dissection and trimming. Tissues cannot be over fixed and can be stored in formalin for a long 

time. Formaldehyde is also the only fixative that does not alter tissues’ colour, but cytoplasmic 

staining is duller compared with other fixatives. Formalin is cheap and easy to prepare; 

however, it has several health and safety considerations [40, 44]. 

Moreover, several studies reported various issues regarding formalin fixation. Abe et al. 

described changes in collagen’s cross-links in nucleic acid fragmentation and degradation due 

to the development of formic acid by and elastin in formalin-fixed tissue [45]. Schulz et al. 

established that three-dimensional strain fields in the human brain result from this type of 

fixation and are related to the shrinkage of soft tissues [46].  Chen et al. reported that formalin 

fixation might cause shrinkage of head and neck tumours, leading to underestimating tumour 

staging [47]. 

 

1.5.1.3 Alcohols 

These are non-additive fixatives that denature nucleic acids and proteins by removing their 

bound water so it can be replaced with alcohol. Only the shape of molecules is altered, not the 

reactive groups. Therefore, the chemical reactivity of many cellular materials is preserved what 

makes alcohols fixation popular in histochemical investigations. However, the tissue shrinks 

considerably and may become brittle and overhard if this type of fixation is used. Due to this 

fact, alcohol is commonly used for fixing fresh sections or smears rather than fixing blocks of 

tissue [40]. Numerous studies revealed that alcohol-based fixatives could offer superior 

morphology and RNA quality [48, 49]. Gillespie et al. reported that fixation in 70% ethanol 

provided superior DNA quality to that recovered from formalin-fixed tissue [50]. This 

approach allowed to perform techniques that require relatively large DNA fragments. There 

was a significant increase in the number of successful PCR amplification that could be 

performed per cell number [50]. 

 

1.5.1.4 Limitations of fixation 

Although fixation is fundamental in histopathology investigations, it is crucial to realize that it 

may cause artefacts. Good examples are changes in the volume of tissue or formalin pigment 

artefact produced under acid conditions. Another group of artefacts is related to unfixed 
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material diffusion to give false localization by resting in someplace different from its original 

location, e.g. wrong location occurring with glycogen [41]. Materials may also diffuse out of 

the tissue, which is likely to happen with small molecules during fixation. The reverse of this 

situation is also possible and leads to the false fixation of extraneous material to the tissue [41].  

Moreover, formaldehyde contact with the tissue components leads to the initial formation of 

highly reactive hydroxy-methyl groups, resulting in methylene bridges between amino groups 

of proteins. The outcome of this process is the intramolecular loss of antigen availability for 

the paratope to bind, referred to as antigen masking [51-53].  

Fixation is an essential step in the histopathology process. It is the foundation for all the 

subsequent stages in preparing the sections (processing, embedding, cutting sections, 

performing different stains) to make a diagnosis. However, it is essential to remember that no 

fixative can preserve any tissue precisely the same way it was in life. There is no single fixative 

that can be suitable for all preparation. 

 

1.5.2 Dehydration 

Acetone, ethanol, and dioxane are used for dehydration. The first two solvents extract lipids; 

therefore, most likely, not many of them would be left after the exposure of relatively small 

pieces of tissue to large volumes of reagents. Since Singer and Nicholson’s publication in 1972 

[54], it has been accepted that cell membranes are ‘fluid’ and that the fluids are mainly 

composed of water and lipids. Therefore, the dehydration step is likely to alter membrane 

dynamics significantly. Additionally, each phase of the cells and the extracellular fluid contain 

various amounts of water. Dehydration alters all the constituents’ relative concentrations in 

each of the phases, too [38].  

 

1.5.3 Clearing  

Reagents like xylene, benzene, toluene, chloroform, trichloroethylene, clove and cedar oil can 

be used for clearing. The first three are also used for infiltration. These reagents make tissues 

more transparent by increasing their refractive index. All of these reagents, except for clove 

and cedar oil as well as ethanol and methanol, are routinely used in biochemical procedures for 

lipids extractions [38].  
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1.5.4 Infiltration 

As the dehydrating agents are not miscible with the embedding ones (wax, epoxy or acrylic 

resins), intermediate substances such as xylene, polyethene glycol, 2-hydroxymethyl acrylate 

are used to infiltrate tissue samples before proceeding to the embedding step.  

Infiltration and dehydration at least twice each extract lipids, water, lipid-soluble, and water-

soluble constituents [38].  

 

1.5.5 Embedding 

Fixed tissue samples need to be embedded to make them hard enough to allow thin tissue 

sections to be cut. This step involves enclosing adequately processed and correctly oriented 

specimens in a support medium that supports microtomy. The embedding medium must fill the 

matrix within the tissue, providing support for cellular components.  

Most histopathology laboratories use modular embedding centres, consisting of a cold plate, a 

paraffin dispenser, and a heated storage area for moulds and tissue cassettes. Melted paraffin 

wax is dispensed automatically into a suitably sized mould, but a qualified staff member does 

the embedding itself [55].  

 

1.5.6 Cutting tissue sections 

Microtomy is how an embedded tissue specimen is sectioned and attached to a glass slide 

surface for further microscopic examination. The primary instrument used to cut FFPE blocks 

is a microtome. An advancing mechanism moves the block for a predetermined distance until 

it is in contact with a blade or a knife. The specimen moves vertically past the cutting tool, and 

a tissue section is produced. Routine surgical material is cut at 3-4µm, while sections for the 

IHC staining are usually cut at 1.5µm [55].  

 

1.5.7 Floating and mounting tissue sections 

The thin, cut tissue sections are floated in the water bath and mounted on glass slides. The 

sections need to stick to the slides firmly so they do not come off when subjected to other 

reagents later on. After the tissue sections have been mounted, they usually do not shrink [38].  

 

1.5.8 Rehydration 

As most staining solutions are aqueous, tissue sections need to be rehydrated before proceeding 

to that step. In order to stain the sections, the wax has to be dissolved and replaced with water. 

It is achieved by passing the tissue sections through xylene, decreasing the strengths of alcohol 
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(100% to 0%) and finally water. Essentially, this is the reverse of the dehydration process. As 

a result, any substances soluble in water or ethanol present in the sections will be removed [38, 

55].  

 

1.5.9 Staining  

There are about 2500 stains and staining procedures available. They can be classified in many 

different ways, e.g. the colour, whether they are basophil or acidophil, the types of cells, 

organelles or granules they stain, or the tissue types they are thought to be specific [38].  

The most widely used histological stain is the hematoxylin and eosin (H&E) stain. Its 

popularity is based on its simplicity and ability to demonstrate an impressive number of 

different tissue structures. The hematoxylin component stains the cell nuclei blue-black and 

shows good intracellular detail. On the other hand, the eosin stains cell cytoplasm and most 

connective tissue fibres in varying intensities and shades of red, pink, and orange [55].  

Special stains remain essential tools for pathologists, providing a powerful complement to flow 

cytometry, IHC, in situ hybridization and other diagnostic technologies that define patients’ 

medical profiles. Many special stains play an essential role in diagnosing and monitoring 

cancer, while others are used to detect and identify pathogens [55].  

IHC is a technique used to identify cellular or tissue antigens utilizing antigen-antibody 

interactions. The antibody binding site is identified using a secondary labelling method or by 

direct labelling of the antibody. Many antibodies are available these days to identify epitopes 

that survive formalin fixation and processing paraffin wax. IHC is invaluable in all those cases 

where morphology combined with clinical data do not allow a firm diagnosis. The increasing 

use of predictive and prognostic markers allows pathologists to make decisions that could 

significantly affect patients’ management [55].  

 

All the above procedures need to be fulfilled before the final histopathology report can be 

issued. Some steps of the process are automated, but most of them are still performed by hand 

by staff members.  

 

1.5.10 Limitations of histology and the need for new alternative techniques 

As the result of the increasing complexity in pathology workup, it has been estimated that the 

number of tissue blocks per patient and the number of required spare slides per block has 

increased by more than 60% over the last decade [56]. However, this enormous increase in 

workup is not the only issue that pathology services are facing. Despite being considered a gold 
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standard in making a diagnosis, histopathological investigations can be time-consuming. 

Depending on the required stains, it can take days before the final pathology report is issued. 

Additionally, an examination of the stained slides is subjected to intra-observer error [36, 37].  

Therefore, it is clear that alternative methods are needed for accurate and timely diagnosis and 

tumour grade and stage characterisation. Further research and new modalities involving 

automated diagnosis are required to overcome challenges to lessen the traditional pathology-

based tissue diagnosis burden. Currently, mass spectrometry imaging (MSI) is extensively 

applied to in situ molecular analysis of tissues to classify primary tumour tissues, identify 

tumour margins as well as prognostic and diagnostic markers, and analyse the rates and 

resistance of drug responses. Elucidation of various molecules' abundance and spatial 

distribution with malignant cells and tissues can significantly contribute to the staging, 

diagnosis, and treatment of various diseases [57].  

 

1.6 Mass spectrometry – general principles 
 

Mass spectrometry (MS) is described as a microanalytical technique that can be selectively 

applied to detect and determine a given analyte amount. MS can also be used to determine the 

elemental composition and reveal some aspects of an analyte’s molecular structure. This is 

accomplished by the experimental analysis of the mass of gas-phase ions produced from an 

analyte’s molecules [58]. Advantages of this approach include its capacity to produce and 

detect fragments of the molecule corresponding to discrete groups of different elements’ atoms 

that reveal structural features and the possibility of a direct determination of the nominal mass 

of an analyte. Importantly, this microanalytical technique can generate more structural 

information per unit quantity of an analyte that can be achieved by any other analytical 

approach [58].  

Before ions can be separated according to their m/z and detected, they must be in the gas phase. 

Before the 1970s, only analytes characterized by a significant vapour pressure were amendable 

to MS. This was because techniques like chemical ionization (CI) or electron ionization (EI) 

could be used to produce gas-phase ions only from gas-phase molecules. Thermally labile and 

non-volatile molecules could not be subjected to those gas-phase ionization techniques. 

Nowadays, both CI and EI play a significant role in the combined methods of liquid 

chromatography/mass spectrometry (LC/MS) and gas chromatography/mass spectrometry 

(GC/MS) [58].  
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After the 1970s, there was a further development in the MS capabilities. Desorption/ionization 

(D/I) techniques were invented, allowing for the analysis of gas-phase ions directly from a 

sample in the condensed phase. Fast atom bombardment (FAB), which required analyte’s 

nanomoles to produce an interpretable mass spectrum, was the first widely accepted technique 

for D/I. In the 1980s, techniques like matrix-assisted laser desorption/ionization (MALDI) and  

Electrospray ionization (ESI) became more widely applied than FAB. One reason contributing 

to their increasing popularity was that they only required analyte’s picomoles for analysis [58].  

Nowadays, MS plays a significant role in the biological sciences. MALDI and ESI have hugely 

contributed to that as they can be applied to analyse femtomole quantities of non-volatile and 

thermally labile analytes [58]. 

However, MS applications are not limited to only measurements of organic molecules. This 

approach is suitable for the analysis of any element as long as it can be ionized. MS, for 

example, can be applied to study silicon wafers to establish the presence of iron and lead (any 

of them can cause microprocessors’ semiconductor failure). Moreover, MS is widely applied 

to material sciences and geology studies. Each of these two disciplines has developed unique 

analytical capabilities: secondary ion mass spectrometry (SIMS) in material sciences and 

isotope ratio mass spectrometry (IRMS) in geology [58].  

 

1.6.1 The concept of MS 

Since ions are charged particles, the use of magnetic and electric fields can manipulate their 

position in space. When only individual ions are present, their unique properties, such as mass 

and the number of charges, can be used to group and move them from one point to another. 

Therefore, ions need to be analysed in a vacuum, as that way, the individual ions are free from 

any other forms of matter. As a result, ions must be in the gas phase.  

MS analysis relies on ions in the gas phase and at a low pressure to separate and detect them 

based on their mass-to-charge ratio (m/z). That means that each ion’s mass on the atomic scale 

is divided by the number of charges that the ion possesses [58]. Dimensionless numbers 

represent m/z values. A mass spectrum is a recording of the number (abundance) of ions of a 

given m/z value as a function of the m/z value. MS only detects ions; all other particles are 

removed from the instrument by a continuous pumping that maintains the vacuum [58].  

MS consists of three major components: the ionisation source, mass analyser and detector. 

The ionization sources used in MSI are described in Chapter 1.7; only the last two components 

will be discussed here.  
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1.6.2 Mass analyser 

Once the ions have been produced in the gas phase, they are separated according to their m/z 

ratio by the mass analysers. Mass analysers are designed to utilise static or dynamic, magnetic 

or electric fields, either individually or as a combination of both. Quadrupoles, Time-of-Flight 

(TOF) instruments, ion traps, Fourier transform ion cyclotron resonance (FT-ICR), and Fourier 

transform Orbitrap (FT-Orbitrap) instruments are the most commonly used mass analysers for 

the analysis of lipids and metabolites. Each type of mass analyser has its unique characteristics, 

summarised in Table 1.2 [58]. 

 

1.6.2.1 Quadrupole ion traps 

This type of mass spectrometer was commercially introduced in the mid-1980s; however, the 

first use of quadrupole electric fields to manipulate ions was reported in the early 1950s [59].  

In this type of mass spectrometer, an electric field is created between four opposing electrical 

poles. The electric field’s shape is described as a function of the geometric arrangement of 

these four surfaces. The primary component of the electric field surrounding the ions is based 

on radio frequency potentials which are applied to two pairs of opposing electrodes [58]. The 

transmission quadrupole instrument relies on a two-dimensional electric field that pulls and 

pushes ions in the x- and y-directions while travelling along the z-axis. This allows to filter out 

ions of all m/z values except for those of interest. The quadrupole ion trap is different from all 

other types of mass spectrometers because it operates at a relatively high pressure of ~10-1 Pa 

instead of 10-7 Pa for reTOF and 10-4 for the transmission quadrupole [58]. The quadrupole 

analysers are one of the most common mass analysers. 

 

1.6.2.2 The Orbitrap 

Alexandor Makarov developed this device, and it is the latest development in trapping devices 

used as an m/z analyzer [60]. However, it is helpful to think about the orbitrap as a modified 

Knight-style Kingdon trap with specially shaped outer coaxial (a barrel) and inner axial (a 

spindle) electrodes. While the quadrupole ion trap uses a dynamic electric field oscillating at 

~1 MHz, the orbitrap relies on a static electrostatic field to sustain ion trapping following the 

specialized dynamic injection pulse [60]. Two electrodes in the form of coaxial axisymmetric 

electrodes, an inner spindle-shaped electrode oriented, and an outer barrel-shaped surface form 

the orbitrap. A constant electric potential is imposed between these two axisymmetric 

electrodes. No oscillating electric potentials or magnetic field are involved. The opposing 

surfaces of the axisymmetric coaxial electrodes are nonparallel. Therefore, the electric field 
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between the two surfaces varies and reaches a minimum at the point of greatest separation of 

the electrode surfaces (the centre of the orbitrap). Advantages of the orbitrap mass spectrometer 

include resolving power of 70 000 +, comparable performance to FT-ICR without the need for 

cryogen, fell get an advantage as in FT-ICR. On the other hand, the main disadvantages are 

inefficient trapping of the product ions, low pressure is necessary as a mean-free path of ~100 

km is required, and high cost compared to 3D and linear QIT [60].  

 

1.6.2.3 TOF m/z analysers 

The operating principle of this type of mass spectrometer relies on measuring the time required 

for an ion to travel from an ion source to a detector. The detector is usually 1 to 2 meters away 

from the source. Therefore, these mass spectrometers require a high vacuum. The same kinetic 

energy is applied to all the ions during instantaneous acceleration, but since the ions have 

various m/z values, they also have correspondingly different velocities. When the ions traverse 

the ‘field-free’ area between the ion source and the detector, they are separated into groups or 

packets based on velocity [61-63].  

 

1.6.2.4 FT-ICR and FT-Orbitrap 

The highest mass resolution characterizes these analysers. In FT-ICR, ions are trapped in a 

chamber by the Lorentzian force originating from a high strength magnetic field. The ions are 

orbiting at an angular frequency known as ion cyclotron frequency which is inversely 

proportional to the m/z ratio [58]. FT-Orbitrap relies on a similar principle to FT-ICR, except 

that an electric field replaces the magnetic field. This mass spectrometer consists of two 

electrodes, an inner spindle-shaped and an outer barrel-shaped surface electrode. Constant 

electric potential is applied between these two electrodes for ion trapping. Ion packets of 

different m/z ratios execute their axial oscillations at their respective frequencies [58].  
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Type of 

analyser 

Principle of 

separation  

Mass range 

limit 

Mass 

resolution  

Accuracy Pressure 

Quadrupole 

(Q)  

 

m/z 

(trajectory 

stability)  

 

2000 Th 2000 100 ppm 10-5 Torr 

Time-of-

Flight (ToF)  

 

Velocity 

(flight time)  

 

10 000 Th 20 000 10 ppm 10-6 Torr 

Fourier 

transform ion 

cyclotron 

resonance 

(FT-ICR)  

 

m/z 

(resonance 

frequency)  

 

30 000 Th >1 000 000 

 

1 ppm 10-10 Torr 

Fourier 

transform 

Orbitrap 

(FT-

Orbitrap)  

 

m/z 

(resonance 

frequency)  

 

50 000 Th 1 000 000 

 

<5 ppm 10-10 Torr 

Table 1.2. Characteristics of most often used types of mass analysers [58].   

 

 

1.6.3 Ion Detector 

Once the ions have been filtered through the mass analyser, the detector is responsible for 

recording each m/z value’s abundance. There are many types of detectors, but most work by 

producing an electronic signal based on the charge or current induced when an ion strikes the 

surface. This is then converted into a graph demonstrating the relative current produced by ions 

of different m/z ratios [58]. For example, the Faraday cup is a conventional electrical detector, 

where the measured ion current is directly proportional to the number of ions and the number 

of charges per ion. It is an inexpensive, simple, rugged and robust detector. Electrical multiplier 

detectors, another category of detectors, use the principle of secondary-electron emission to 

amplify the signal’s intensity. In the case of FT-ICR and FT-Orbitrap analysers, the detection 

is already incorporated into the analyser. The ions are detected by the image current they 

produce between the metal parts within the mass analyser region [58].  



48 

 

Other types of ion detectors include Negative-ion detection, Channel electron multiplier array, 

Electro-optical ion detection, the Daly detector, Cryogenic detectors, Ion detection in FTMS, 

Post-acceleration detection and Detection of high-mass ions [58].  

 

1.7 Mass spectrometry imaging 
 

Over the past decade, MSI was demonstrated to be a tremendous scientific tool that can 

unambiguously detect multiple analytes from complex biological samples during a single 

analysis and provide information about the spatial distribution of the detected analytes. MSI is 

a novel method that has proven to be an invaluable tool for localising peptides, metabolites, 

drugs, and proteins in biological tissues without any prior labelling [64]. Probing the tissue 

surface with an ionization beam is involved in a typical MSI experiment. It aims to acquire 

thousands of mass spectra at defined x, y coordinates from specific locations throughout the 

sample surface. As a result, each sampling location corresponds to a unique mass spectrum. 

Reconstruction of an image from the collective dataset in which each pixel consists of a mass 

spectrum is achieved by employing dedicated software. Therefore, mapping the distribution of 

individual compounds is possible. An alternative to MSI is IHC, which is widely used to study 

the localisation and distribution of biomarkers in cancer cells in cancer tumour cells’ diagnosis. 

Whilst this provides a sensitive and selective technique, it relies on the availability of the 

antibodies specific to the protein of interest, resulting in low throughput characterisation [65]. 

MSI has been shown to provide an accurate technique for analysing metabolic changes within 

different tissue regions and can provide information on anticancer drug treatments’ efficacy.  

Furthermore, MSI can impact the prognostic and therapeutic stages of cancer phenotyping and 

provide a platform for identifying and developing novel biomarkers [66, 67].  

Multiple ionisation techniques can be used in MSI, and each has its strength and weakness 

based on its uses, spatial resolution and sample preparation requirements. The three most 

commonly used are SIMS, MALDI, and DESI [68]. Their characteristics are summarized in 

Figure 1.4.  
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Figure 1.4. Comparison of the three commonly used MSI technologies. MALDI requires 

an application of an organic matrix across the sample (A). In DESI, a solvent spray is directed 

towards the sample for desorption (B). SIMS relies on pulsed ion beams to locally desorb 

compounds (C). SIMS offers the highest spatial resolution, followed by MALDI and DESI (D). 

MALDI offers the highest versatility in the mass range and hence the type of investigable 

molecular classes (E). Contrary to MALDI, one of the benefits of DESI is reasonably 

straightforward and quick sample preparation. As a result, the total time needed to perform 

DESI-MSI analysis is relatively short. (F). Reproduced with permission [69]. 

 

 

1.7.1 SIMS 

SIMS utilizes beams of primary monoatomic or polyatomic ions in a vacuum for ionization 

[70]. During analysis, the surface of the sample is bombarded with a beam of primary ions, 

resulting in the release of the molecules from the analysed sample’s surface. This process is 

described as sputtering, and during it, energy from the primary ions is transferred to the analyte 

molecules [57]. It has been estimated that around 1% of the sputtered analyte molecules has an 

electric charge, and these are the ions that a mass analyser can later detect. Compared to the 

covalent bond energies of the analyte molecules, the energy of the primary ion beam is usually 

high. This causes the fragmentation of the molecules from the analyte. Because of this property, 

SIMS is referred to as a ‘hard’ ionization technique [71]. No matrix is required for SIMS 

experiments. This technique is characterised by higher depth and spatial resolution (<10 µm) 

compared with MALDI. However, MALDI, on the other hand, is more sensitive. The highest 

detectable mass range in the case of SIMS is around 1kDa [70]. 
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1.7.2 MALDI 

MALDI was developed in the late 1980s. The routine techniques for this ionisation method 

were developed and described by Karas and Hillenkamp et al. [72-75].  

In this technique, the sample is mixed with an organic matrix compound, e.g. dihydroxybenzoic 

acid. The matrix plays multiple roles, but the key one is absorbing the radiation and protecting 

the analyte from radiation damage. Another purpose of the matrix is the separation by diluting 

the analyte molecules to prevent analyte-analyte molecular interactions during the analysis. 

The matrix’s essential features that need to be considered when selecting one include its 

capacity to absorb the laser energy and solubility characteristics similar to the analyte [72, 73]. 

The matrix’s two desirable attributes are as follows: it must be capable of forming a fine 

crystalline solid during co-deposition with the analyte, and its molecules must be characterized 

by a high absorptivity for the laser radiation. Most likely, the sample preparation is the most 

time-consuming part of the whole MALDI analysis [58].  

 

 

Figure 1.5. Schematic representation of the ionisation process in MALDI. The analyte is 

mixed with a matrix which is then deposited onto a target plate. The mixture is placed in a high 

vacuum source region and is irradiated with a short-pulsed laser beam. The excitation of the 

matrix by the high-intensity laser pulse causes simultaneous desorption and ionisation of the 

sample resulting in the formation of predominantly singly charged ions. 

 

For the analysis, a sample is placed on a conductive surface. Then, depending on the type of 

analysis, a digestion step might be needed. The analysis of metabolites, lipids, intact proteins 

and endogenous peptides performed directly from tissues does not require enzyme treatment 
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[76]. Before analysis, the matrix is suspended in an acidified solvent buffer and then deposited 

over the sample. Incorporating the matrix into the analyte molecules results in the formation of 

crystals [77]. Analyte ionization is induced by the application of a focused laser beam to the 

sample surface. The ions are accelerated through a strong electric field in the ion source. The 

charged analyte molecules hit the detector, and detailed information about the number of events 

is recorded within a time period. This is the source of information about the intensity. The 

detected analyte ion’s mass can be calculated by comparing the measured information to 

calibration standards [57]. A schematic representation of the ionisation process used in this 

technique is presented in Figure 1.5.  

In general, MALDI is described as a soft ionization technique, meaning there is little, if any, 

fragmentation of the protonated molecule created during the analysis process. The spatial 

resolution is around 20 µm, and this technique can accommodate a molecular mass range of 

over 100 kDa [57]. 

 

1.7.3 DESI 

DESI was the first described ambient MS method, which was implemented by directing a 

pneumatically assisted solvent electrospray onto the surface of interest [78].  

The impact of multiply charged droplets of solvent on the analysed surface results in the 

formation of secondary charged molecules. The ions released from the surface are transported 

through the air at atmospheric pressure for some distance before reaching the atmospheric 

interface of the mass spectrometer [78]. However, the sample needs to be either isolated from 

the ground or be non-conductive [79]. These secondary droplets contain molecular species that 

are dissolved on the surface and then due to solvent evaporation from multiply charged 

droplets. The molecular species are converted into gaseous ions [80].  

Figure 1.6 shows a schematic representation of the ionisation process in DESI.  
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Figure 1.6. Schematic representation of the ionisation process in DESI. A pneumatically 

assisted electrospray is directed at the sample surface. The molecules are desorbed from the 

sample surface and are protonated or deprotonated and then transferred to the mass 

spectrometer through a capillary. Reproduced with permission [78]. 

 

 

A key feature of DESI is that it allows keeping the sample outside of the instrument. Only ions 

are allowed to enter the m/z analyser via a capillary vacuum sweeper [81]. Contrary to SIMS, 

the application of this technique causes no damage to metallic or polymeric surfaces. However, 

physical ablation of soft sample material might occur [82]. Another advantage of this method 

is that no matrix is needed, and sample preparation is straightforward [79]. 

DESI is considered as a ‘soft’ ionization technique, as little analyte fragmentation occurs 

during ionization. It is characterized by a spatial resolution of around 50-100 µm and an upper 

mass range detection limit of around 2 kDa [57].  

 

Following its introduction in 2004 [78], the main application area of DESI has been cancer 

research focusing on histological and drug distribution applications. It has been tested to 

replace frozen section histology for margin control in cancer resection surgery [83-85]. Several 

studies focusing on different cancer types have also been published. Eberlin et al. used DESI 

to study prostate cancer [86] and reported novel tissue cancer biomarkers. Dill et al. applied 

this technique to study human bladder cancer [87] using supervised multivariate analysis-

driven pixel-wise classification for DESI data. Afterwards, similar data treatment for projects 
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targeted on the DESI analysis was applied in multiple studies focusing on various human 

cancers, including colorectal adenocarcinoma [88], seminoma [89], and gliomas [90].  

Studies focusing on the lipid composition in human cancers analysed by DESI included breast 

cancer [91], ovarian cancer [92], and brain tumours [90, 93], to list just a few. 

 

1.7.4 DESI vs MALDI – selection of the technique 

DESI is a common choice for drug, metabolite and lipid imaging, while MALDI is the most 

widespread high vacuum imaging technique for protein, peptide and lipids [94]. Therefore, 

projects focusing on alternations in lipid metabolism could use any of these techniques [93, 95-

98]. As an untargeted approach was used for all fresh-frozen samples analysed during this PhD, 

and all of them were analysed at 100µm x 100µm pixel size, DESI was a sensible choice. 

MALDI, on the other hand, could be applied for experiments requiring high-resolution data. 

The FFPE project could also use any of these two techniques. FFPE specimens undergo 

excessive processing before being embedded in wax, and formalin fixation is known to cause 

cross-linking of proteins [99, 100]. Therefore, the project described in Chapter 5 aimed to 

instead focus on small metabolites and lipids mass range. Moreover, no results have been 

published for FFPE samples analysed by DESI-MSI, contrary to the MALDI approach [101, 

102]. It was interesting to see if DESI-MSI could be applied for tissue classification in FFPE 

specimens.  

Other practical considerations were also taken into account. DESI does not require the use of 

the matrix. Therefore, sample preparation is very straightforward. Moreover, it is a non-

destructive technique, allowing for a histopathology assessment of the same tissue section that 

was used for imaging. 

 

 

1.8 Data analysis strategies for the MSI data 
 

MSI studies generate profiles containing signals corresponding to hundreds of biomolecules 

originating from the analysed tissue samples. The ultimate aim of these studies is to find m/z 

features of biological significance specific to a spatial region, e.g. those that are discriminative 

for a tumour region compared to a healthy region. The data analysis strategy plays an essential 

role in the whole process as it allows the correlation of biochemical and histological features. 

Different chemo-informatics strategies have been developed to achieve this aim, based on three 
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main steps: 1) pre-processing of raw imaging data, 2) unsupervised analysis as a preliminary 

step for data examination and 3) supervised classification.  

 

1.8.1 Pre-processing raw data 

Typically, the following pre-processing steps are involved:  

- normalisation 

- peak picking  

- peak matching/spectra recalibration.  

Incorporating these steps allows making the MSI data representing different samples 

comparable and manageable while simultaneously accounting for bioanalytical complexities 

common to all MSI studies. 

 

1.8.1.1 Spectral normalisation 

The normalisation, defined as scaling each spectrum to a factor (usually dataset-specific), is 

critical for pre-processing steps. It allows better inter-comparison of intensities between 

different spectra. Total ion count (TIC) normalisation, the most often recommended approach, 

is the most popular method [103]. It relies on the fact that the sum of all intensities (the TIC 

value) is calculated, and then all m/z intensities are divided by it. However, this method’s 

disadvantage is that a single outlier m/z peak’s intensity can significantly influence it. Another 

approach – median normalisation – has been suggested as an alternative to TIC. It has also been 

demonstrated to be the least likely to be compromised by biological variability [103]. 

 

1.8.1.2 Peak picking  

Peak picking refers to selecting m/z values corresponding to high and relevant peaks and is a 

crucial step in pre-processing. It aims to reduce the number of m/z values by filtering out values 

corresponding to noise-related signals. When comparing lists of relevant peaks from different 

datasets, m/z values selected for the same peak but in different spectra can vary slightly. As a 

result, peak alignment is fundamental to correct these small m/z shifts, as instrument calibration 

cannot be used to counterbalance this issue [104]. Multiple peak alignment algorithms are 

based on hierarchical clustering [105] and an average spectrum to find the common peaks 

[106]. 
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1.8.2 Multivariate statistical analysis 

Multivariate statistical analysis can be applied to establish correlations in high dimensional 

datasets. In the MSI data analysis context, by treating each pixel as an independent sample, 

multivariate techniques can be used to visualise their output as score plots in the spatial domain. 

Multivariate techniques most often used for imaging datasets can be divided into two different 

groups: unsupervised and supervised. 

 

1.8.2.1 Unsupervised approach  

Principal component analysis (PCA) is the most commonly used unsupervised technique in 

analysing imaging data. It can be applied to spectra from specific regions of interest and the 

entire tissue section without prior knowledge. This unsupervised approach is often used to 

briefly inspect the data before implementing more advanced data analysis algorithms. PCA is 

described as a dimensionality reduction technique, which involves reducing the number of 

variables with minimal loss of information to reveal the data set’s general distribution. This is 

achieved by establishing relationships between samples (pixels) and variables (m/z features) 

by finding the linear combination of variables with the highest variance. Linear orthogonal 

transformation is used to help to maximise the variance resulting in an ordered set of principal 

components, where the first principal component (PC1) contains the maximum variance in the 

data, followed by PC2, which is orthogonal to PC1 and so on [107]. In the majority of cases, 

the first three principal components usually explain most of the variation. The PCA results are 

usually reported in the form of loadings (represents the contribution of m/z peaks to the 

principal components), score plots (coordinates of pixels in the transformed axes), and variance 

(from each principal component) [107]. 

 

k-means clustering is another unsupervised analysis technique that incorporates the data’s 

spatial component into a clustering analysis. This approach is a powerful method for a quick 

assessment of the spatial-chemical organisation of MSI datasets. It involves segmenting the 

imaging dataset into a pre-defined number, (k), of clusters, generally based on the Euclidian 

distances between the mass spectra [108]. The clustering algorithm is initialised by the 

selection of k-locations in the data space (k-means). Each pixel’s mass spectrum is assigned to 

the cluster with the closest mean. Next, each cluster's centroid is defined as the new mean, and 

the whole process is repeated until convergence is achieved. Notably, the results are highly 

dependent on the number of clusters and the radius of the pixel groups clustered together [108]. 
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Hierarchical clustering analysis (HCA) is an unsupervised approach where the pixels that share 

similar MS profiles (similar m/z peaks with similar intensity) are grouped first. Then pixels 

with different MS profiles are separated. The data is presented in the form of a dendrogram or 

a hierarchical tree using a ‘linkage’ calculation and a similarity metric (often Euclidian distance 

in imaging). Hierarchical clustering is extensively used for gene expression analysis [109], but 

it has also been applied to MSI-based cancer studies [110]. The advantage of hierarchical 

clustering is the ability to investigate subgroups within the data interactively. However, it is 

best suited for comparatively small numbers of 49 individual data points. Otherwise, 

visualising large datasets gets challenging quickly and causes the removal of the interactive 

nature by overcrowding the dendrogram [109]. 

 

Other unsupervised strategies, such as independent component analysis, probabilistic latent 

semantic analysis, and non-negative matrix factorisation, have also been reported for analysing 

MSI datasets [107]. 

 

1.8.2.2 Supervised approach 

Discriminant analysis (DA) is the most widely used supervised strategy that considers the data's 

group membership. In linear discriminant analysis (LDA), PCA is usually employed first to 

reduce the data’s dimensionality. Afterwards, LDA is applied, and it finds linear combinations 

in m/z features that best explain the group membership. This is achieved by maximising inter-

class variance (e.g. cancer versus normal) while simultaneously reducing intra-class variability. 

The resulting discriminant function can be applied for classifying samples or patients by 

building a test set and a training set. The number of correct classifications then determines the 

quality of the model. However, employing PCA before DA is based on the assumption that the 

variance between different groups is a significant source of the data variance [111]. 

Additionally, LDA cannot be directly applied when the number of variables exceeds the 

number of samples. This is a prevalent situation in MSI datasets [111, 112]. On the other hand, 

partial least squares (PLS), which combines PCA and multiple regression features, is described 

as a regression technique. PLS extracts latent variables as linear combinations of the original 

explanatory variables so that most of their association with the response variable is explained 

[113]. 

 

Maximum margin criterion discriminant analysis (MMC-DA) is another example of a 

supervised multivariate technique that has been adapted for lipidomics-based MSI studies as 
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recursive maximum margin criterion (RMMC-DA) [114]. The RMMC feature extractor can 

effectively be applied to extract the most discriminatory features by maximising the variance 

between and within classes after dimensionality reduction. Moreover, unlike LDA, it does not 

suffer from the small sample size problem. Its feature extracting capacity does not depend on 

the non-singularity of the within-class scatter matrix [114]. Class-specific m/z signatures are 

derived based on weighted combinations of m/z feature patterns. The average margin between 

classes is increased by maximising the distance between their most outer data points, thus 

improving class separation. By avoiding selecting an optimal number of principal components 

before applying LDA, the RMMC-DA approach also avoids the model over-or under-fitting 

[114]. 

 

Many other multivariate algorithms, such as those incorporating random forest, neuronal 

networks, and support vector machines, to name just a few, have been used to study MSI data. 

The main feature shared by all of these strategies is building a statistical model to separate the 

training set, which can be used to classify the unknown [115]. 

 

1.8.3 Univariate analysis 

In MSI, univariate tests are performed to compare spectral profiles from different cohorts (e.g. 

tumour versus normal) peak by the peak to identify potential biomarkers. In most MSI-based 

cancer studies, the mean spectra of histologically defined regions for each patient are extracted 

and used for univariate analysis [116]. Statistical tests, such as analysis of variance (ANOVA) 

and Student’s t-test, assess the likelihood that the sample groups subjected to investigation are 

different. Univariate statistical tests are individually applied to each MS signal/feature. The t-

test might be the most commonly known statistical test, but it is often not applicable to clinical 

data [107]. For multi-class systems, ANOVA is more suitable. A p-value, which is a measure 

of the probability that the observed result is caused by chance, results from such tests. A p-

value below 0.05 is considered statistically significant (corresponding to a false positive rate 

of 5%) [107]. 
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Hypothesis 

 

Pathology is involved in 70% of all diagnoses made in the NHS. Examination of stained tissue 

sections is considered a gold standard for establishing cancer diagnosis and patient 

management. However, the whole process can be time-consuming, and it is not free from the 

subjective evaluation of tissue specimens. As a result, some alternative techniques could be 

implemented to accompany the whole process. 

DESI-MSI technique has the potential to deliver a substantial shift in current histopathology 

services. It supplements traditional morphological analysis with objective lipidomic profiling. 

The spatially resolved nature of MSI imaging combined with multivariate statistical tools holds 

the potential for more accurate and effective cancer diagnosis and prognosis. 

 

Therefore, the project’s overall hypothesis is that the DESI-MSI protocol can be further tested 

and adjusted to make it more compatible with a standard histology workflow.  
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Aims and objectives of the project 

 

There is a clear need for a system that can provide pathologists with a tissue diagnosis based 

on biochemical features to accompany the traditional morphology-based approach. DESI-MSI 

has been proven to be able to generate specific metabolomic profiles to allow tissue 

classification. This tissue identification system may serve pathologists as a complementary tool 

to the traditional histopathology procedure, allowing accurate tissue characterisation to guide 

cancer diagnosis better. This project aims to test if DESI-MSI could be applied in conditions 

that are routinely used in histopathology laboratories to make it more pathology-friendly.  

To achieve this aim, the specific objectives are:  

• To assess the impact of Optimal cutting temperature compound (OCT), which is 

routinely used in histopathology laboratories, on the data acquired by DESI-MSI 

• To assess and optimise pre-DESI-MSI protocol to enable successful metabolomic 

analysis of FFPE tissue samples 

• To apply DESI-MSI to an FFPE human colorectal samples, including colorectal tissue 

microarray (TMA) 

• Proof of concept for the application of the DESI-MSI technique for the analysis of 

fresh-frozen colorectal samples 

• Proof of concept for the application of the DESI-MSI methodology for the analysis of 

cirrhotic liver diseases samples 
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Chapter 2 

Materials and Methods 
 

 

 

 

 

 

 

 

 



61 

 

2.1 Patient recruitment 

 

2.1.1 Fresh-frozen colorectal samples 

Single colorectal tissue samples utilised in the subsequent studies were obtained from patients 

undergoing resectional surgery within Imperial College Healthcare NHS Trust. Full ethical 

approval was obtained from the institutional review board at Imperial College Healthcare NHS 

Trust (REC reference number 14/EE-0024). Patients undergoing surgery for the colorectal 

disease were prospectively recruited before surgical intervention. Suitable patients were 

recruited from the operating list based on the review of preoperative imaging and histology. 

Patients were supplied with verbal and written information about the study and subsequently 

provided written informed consent. All patients over the age of 18 years undergoing surgical 

resection for benign or malignant colorectal disease who were able and willing to provide 

informed consent were eligible for inclusion into the study. Patients who had undergone 

neoadjuvant therapy were included, and this was documented in the corresponding clinical 

dataset. Additional information included gender, age, medical comorbidities, drug history and 

primary pathology, including tumour location, histological subtype, grade, stage, presence of 

EMVI and gene mutations. 

 

2.1.2 Fresh-frozen liver samples 

The first project, which involved the use of human liver samples, was looking into the effects 

of the OCT embedding on the DESI-MSI (Chapter 3). The tissue used in those experiments 

was identified as macroscopically normal liver taken from a patient who underwent resection 

for colorectal adenocarcinoma metastases to the liver.  Written consent for the use of this tissue 

was taken from the patient prior to surgery. Ethical approval was obtained from the South East 

London National Research Ethics Committee (Study ID 11/LO/1686). 

 

The second project where human liver samples were used was the DESI-MSI of cirrhotic liver 

disease (Chapter 6). Single liver tissue samples utilised in the subsequent study were obtained 

from patients undergoing resectional surgery within the University Hospitals Birmingham 

NHS Foundation Trust. Full ethical approval was obtained from the institutional review board 

at University Hospitals Birmingham NHS Foundation Trust (REC reference numbers: Immune 

Regulation: 06/Q2702/61, Cellular Trafficking: 06/Q2708/11). Patients undergoing surgery for 

liver disease were prospectively recruited before surgical intervention. Suitable patients were 
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recruited from the operating list based on the review of preoperative imaging and histology. 

Patients were supplied with verbal and written information about the study and subsequently 

provided written informed consent. All patients over the age of 18 years undergoing surgical 

resection for benign or malignant liver disease who were able and willing to provide informed 

consent were eligible for inclusion into the study. Details like gender, age, medical 

comorbidities, drug history and primary pathology were documented in the corresponding 

clinical dataset.  

 

2.2 FFPE tissue samples 
 

2.2.1 FFPE colorectal samples 

Some of the samples were part of the same study as the fresh-frozen colorectal samples and 

were covered by the same ethics (REC reference number 14/EE-0024).  

 

A human colorectal carcinoma FFPE sample was obtained from the Histopathology 

Department at St. Mary's Hospital, London, UK. 

 

Colorectal Tissue microarray (TMA) slides were commercially available and were purchased 

from Biomax.us (https://www.biomax.us/).  

 

2.2.2 FFPE mouse liver sample 

FFPE mouse liver sample was obtained from the Histopathology Department at St. Mary's 

Hospital, London, UK. 

 

2.3 Collection and storage of fresh-frozen tissue samples 
 

Fresh (within 3 hours post-surgery) colorectal tissue specimens were collected from the 

operating theatre and sent to the same hospital's pathology laboratory. A histopathologist 

assessed the tumour size, and if possible, the samples were transferred on for research. The 

type of tissue available for the project was mainly dependent on the tumour's size and the extent 

of healthy tissue in the surgical specimen. For example, following a complete local excision 

for colorectal cancer, the extent of healthy colon tissue in the sample might have been too small 

to provide a sample safely. Therefore, it was not always possible to consistently obtain samples 
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of both tumour and healthy tissue from each patient. After tissue collection, fresh samples were 

snap-frozen and then stored at -80 °C [117]. 

The same workflow was in place during the collection of fresh-frozen liver samples.  

 

2.4 Collection and processing of FFPE tissue samples 
 

Tissue specimens harvested during surgical procedures were either transferred to 10% neutral 

buffered formalin prefilled pots straight away or had to be dissected by a histopathologist first. 

In order to allow appropriate fixation, samples were kept in this fixative for at least 24 hours. 

After this time, specimens were subjected to automated processing, which involved 

dehydration in graded ethanol (70% to 100%) and clearing with xylene. All the steps of this 

process are listed in Table 2.1. 

             

 

Stage Solution name Time (hours) 

1 Formalin 1:00 

2 Formalin 1:00 

3 70% Alcohol 1:00 

4 Alcohol 1:00 

5 Alcohol 1:00 

6 Alcohol 1:00 

7 Alcohol 1:00 

8 Xylene 0:45 

9 Xylene 0:45 

10 Xylene 0:30 

11 Paraffin 2:00 

12 Paraffin 1:30 

13 Paraffin 1:00 

14 Paraffin 0:05 

 

Table 2.1. List of stages of automated tissue samples processing. All FFPE samples were 

subjected to automated processing runs, consisting of many steps during which various solvents 

were used. The length of each phase is also listed. 
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Once the automated processing run was completed, tissue samples were embedded in wax. 

This allowed for the formation of tissue wax blocks that could be mounted on a microtome for 

section cutting.  

 

2.5 General DESI-MSI workflow 
 

The general workflow for the DESI-MSI sample analysis is shown in Figure 2.1.  

 

 

Figure 2.1. General DESI-MSI workflow. This particular chart reflects the steps related 

to samples analysed on Xevo-G2 QToF. HDI software is only compatible with this 

instrument; different software was used in conjunction with Exactive. Otherwise, all the steps 

were precisely the same for both mass spectrometers used to acquire the data. The same 

workflow was applied to both fresh-frozen and FFPE tissue samples. 
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2.6 Automated DESI-MSI 
 

A small batch of colorectal samples was analysed as a part of a project run by Dr Emrys Jones 

from Waters, Wilmslow. The samples were analysed on Xevo-G2 QToF. 

The workflow was the same as described in Chapter 2.5; however, the significant difference 

was related to the fact that the automated approach allowed for queuing up to 200 slides. Details 

are shown in Figure 2.2.  

 

 

 

Figure 2.2. Automated DESI-MSI. The standard DESI-MSI experiments required setting 

up the runs one by one. In the case of Xevo-G2 QToF, a maximum of two slides could be 

queued. Here, the user could load up to 200 slides which would then be automatically loaded 

one by one for mass spectrometric analysis. A camera was used to take an image of each glass 

slide which was then used for the algorithmic tissue detection process.  
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2.7 Sample preparation 
 

2.7.1 Fresh-frozen samples 

In the case of fresh-frozen samples, sample preparation is relatively straightforward.  

DESI-MS analysis of biological tissue is usually performed on tissue sections mounted on a 

non-conductive surface such as glass slides [79]. In order to enable cryosectioning of frozen 

samples, they must be mounted to a chuck first. Diagnostic histopathology laboratories 

routinely use OCT (optimal temperature cutting compound) for this purpose. OCT is a water-

soluble blend of glycols and resins that provides a convenient specimen matrix for 

cryosectioning. However, this gel-like matrix is known to interfere with the mass spectra 

collected from tissue samples and introduce polymers in the positive ionisation mode. 

Therefore, it is not compatible with mass spectrometry applications. The effects of OCT on 

mass spectrometry analysis have been further analysed and described in Chapter 3. Liver 

samples used for that project were divided into two groups, and OCT and distilled water were 

used for embedding the specimens from each group, respectively.  

Otherwise, all fresh-frozen tissue samples were embedded in distilled water (Figure 2.3A).  

 

 

Figure 2.3. Cryosectioning of fresh-frozen tissue samples. Liver sample embedded in 

distilled water and mounted on a chuck (A). 10µm thick tissue section mounted on a super frost 

glass slide (B).  
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Frozen samples were cryosectioned at 10 µm thickness using an FSE cryostat (Thermo Fisher 

Scientific Inc, Waltham, MA, USA). Tissue sections were thaw mounted onto histology glass 

slides (SuperFrost® Plus, Thermo Fisher Scientific, USA) as shown in Figure 2.3B. 

Crysectioning protocol was the same for both OCT and water embedded samples. Tissue 

sections were kept frozen throughout the procedure, and slides were stored in a -80°C freezer 

before DESI-MSI analysis. 

 

2.7.2 FFPE samples 

Tissue sections for FFPE sample blocks were prepared using a ME+ microtome (Thermo Fisher 

Scientific Inc, Waltham, MA, USA). Details of this procedure are shown in Figure 2.4. Sections 

were either 5 or 10 µm thick.  

 

 

 

Figure 2.4.  The process of preparation of tissue sections from the FFPE blocks. Tissue 

samples were embedded in wax to form blocks that could be mounted on a microtome (A).  

Next, those blocks were briefly cooled on a cooling plate, and one by one, mounted on the 

microtome. Each block had to be trimmed first to remove the excess of wax covering the 

sample. Once this was achieved, tissue sections could be cut (B). Once a good quality tissue 

section was prepared, it was placed on a water bath (water temperature 45°-50°) to allow 

stretching. (C). Then the section was picked up on a glass slide (D) and placed on a hot plate 

(~50°C) to evaporate water leftovers (E). In the end, the slides were baked out in the oven (80°) 

for at least 30 mins to ensure the tissue sections have firmly adhered to the slides.  
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Colorectal TMA slides were ordered directly from Biomax.us (https://www.biomax.us/) and 

were shipped cut at either 5µm or 10µm thick.  

 

Before DESI-MSI analysis, FFPE slides were baked out for 1 hr in a 60 °C warming oven and 

then washed in xylene (Histology grade, Sigma-Aldrich, St Louis, MO, USA) twice for 8 

minutes [101]. The samples were left to dry at room temperature for 24 hours prior to DESI-

MSI measurements. 

Some other pre-DESI protocols were also tested during the optimisation process – details are 

listed in Materials and methods, Chapter 4.2. 

 

2.8 DESI-MSI analysis of fresh-frozen samples 
 

2.8.1 Instrument set up  

All fresh-frozen samples used in projects which are part of this dissertation were analysed on 

a Thermo Exactive Orbitrap instrument.  

A home-built 3D XYZ integrated linear stage shown in Figure 2.5A was used in conjunction 

with a home-built DESI sprayer (Figure 2.5B).  Before the analysis, slides with tissue sections 

were mounted with double-sided tape onto the aluminium stage. The collection of ions was 

performed using a home-built inlet capillary.  

 

 

Figure 2.5. Home-built DESI sprayer mounted on the Thermo Exactive Orbitrap 

instrument. Secured DESI sprayer (1); sample table, movable in x and y-direction (2); gas 

supply (3); high voltage supply (4); solvent supply (5); inlet capillary (6); tissue section on 

glass slide mounted onto the stage using the double-sided tape (7). 
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2.8.2 Home built sprayer 

A schematic representation of the home-built sprayer is shown in Figure 2.6. This sprayer was 

built using a stainless-steel Swagelok T element as the main body and two fused silica 

capillaries which were held in place by sleeves and ferrules. For solvent delivery, a 50 µm inner 

diameter (ID), 150 µm outer diameter (OD) fused silica capillary was used. It was inserted into 

an approximately 1.5 cm long 250 µm ID, 363 µm OD fused silica capillary to deliver the 

nebulising gas. The two capillaries were oriented with the inner one, which was touching the 

outer capillary at its top edge when the sprayer was directed towards the sample (Figure 2.6) 

at an angle up to 90°. This setup was crucial as it resulted in an elliptical spray point facing the 

mass spectrometer's inlet capillary and an increased ion yield [118].  

 

 

 

Figure 2.6. Home built DESI sprayer. Schematic representation of home-built DESI sprayer 

(A), a photograph of a sprayer (B) and a microscopic image of the DESI sprayer (50-fold 

magnification) (C). ID – inner diameter; OD – outer diameter.  
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2.8.3 DESI-MSI parameters for the analysis of fresh-frozen tissue samples 

DESI-MSI analysis of fresh-frozen samples was performed in negative ion mode using a high-

resolution orbital trapping Exactive mass spectrometer (ThermoScientific Inc., Bremen, 

Germany). The instrumental parameters are listed in Table 2.2. Spatial resolution was always 

set at 100 µm. Methanol: water, 95:5, v/v (Sigma-Aldrich, St. Lewis, Missouri, USA) was used 

as the electrospray solvent at a flow rate of 1.5 µl/min. Zero-grade nitrogen was used as the 

nebulising gas at a pressure of 7 bar. The height distance between the DESI sprayer and the 

sample surface was set to 2 mm. The distance between the sprayer and the inlet capillary of the 

mass spectrometer was set to 14 mm. The distance between the sample surface and the inlet 

capillary of the instrument was less than 1 mm. The angle between the sprayer tip and the 

sample surface was set at 75°. The angle between the inlet capillary and the sample surface 

was set to 10°. These parameters were selected based on the reproducibility study by Abbassi-

Ghadi et al. [119].   

Regions of interest were selected with the help of Moving stage controlling software.  

 

 

Parameters 

 

Settings of Thermo Exactive instrument 

Polarity Negative 

Max injection time 1000 ms 

Micro-scans 1 

Mass resolution  100000  

Mass range 150-2000 m/z 

Capillary temperature  250°C 

Capillary voltage -50 V 

Tube lens voltage -150 V 

Skimmer voltage -40 V 

Spray voltage 4.5 kV 

Skimmer voltage -40 V 

Table 2.2. Thermo Exactive Orbitrap settings used for DESI-MSI of fresh-frozen 

samples.  
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2.9 DESI-MSI analysis of FFPE samples 
 

2.9.1 Instrument set up 

All FFPE samples were analysed using a Xevo G2-XS QToF mass spectrometer (Waters 

Corporation, Milford, MA) coupled to a 2D sample stage (Prosolia Inc., Indianapolis, IN, 

USA), as shown in Figure 2.7A. FFPE slides were mounted onto the commercial stage for the 

analysis, and the collection of ions was performed using a custom-built inlet capillary heated 

to 500 °C (Figure 2.7B). 

 

 

 

Figure 2.7. DESI-MSI set up on a Xevo G2-XS QToF mass spectrometer. Stage with a 

novel DESI sprayer mounted to the instrument (A); redesigned, more robust DESI sprayer (1); 

heated capillary (2) (B).  

 

 

2.9.2 Novel DESI sprayer 

A novel re-designed DESI sprayer (Waters, Milford, MA, USA) described by Tillner et al., 

[120] was used for analysing FFPE samples. It consisted of a 400 µm aperture, stainless steel 

gas nozzle and a 360 µm OD and 20 µm ID TaperTip™ emitter. The emitter was secured by a 

stainless-steel emitter guide which slides into a stainless steel positioning disc with radially 

arranged holes for the nebulising gas flow (Figure 2.8) [120]. 
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Figure 2.8. Schematic representation of the TaperTip™ emitter, gas nozzle and the 

emitter guide. Image reproduced under the terms of the Creative Commons Attributions 

International License 4.0 [120]. ID – inner diameter; OD – outer diameter.  

 

 

2.9.3 DESI-MSI settings for the analysis of FFPE samples 

All DESI-MSI experiments involving FFPE samples were performed on a Xevo G2-XS QToF 

mass spectrometer (Waters Corporation, Milford, MA) coupled to a 2D sample stage (Prosolia 

Inc., Indianapolis, IN, USA).  These samples were analysed in both positive and negative 

ionisation modes. A custom-built inlet mass spectrometry capillary heated at 500°C was used 

for all experimental measurements. A nanoAcquity binary solvent manager (Waters 

Corporation) was coupled to the DESI sprayer for DESI solvent delivery, which consisted of 

95:5 methanol (Sigma-Aldrich): water (Thermo Fisher Scientific Inc) at a flow rate of 1.5 

µl/min. Zero-grade nitrogen was used as the nebulising gas at an inlet pressure of 7 bar. The 

height distance between the DESI sprayer and the sample surface and between the sprayer and 

the heated capillary was set to 2 mm and 10 mm, respectively. The distance between the sample 

surface and the inlet capillary of the mass spectrometer was less than 1 mm. The angle between 

the sprayer tip and the sample surface was set at 75°. The angle between the inlet capillary and 

the sample surface was set to 10°. 100 µm2 pixel size and 100 µm step size were set up for 

imaging analysis at a scan rate of 1 scan/second. All imaging analysis was performed using 50 

to 1500 mass range.  
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Regions of interest were selected with High Definition Imaging software (HDI, v 1.4, Waters 

Corporation). The data collection required a combination of HDI and MassLynx version 4.1 

software (Waters, Milford, MA, USA). 

 

 

Parameters Xevo G2-XS QToF (Waters 

Corporation, Milford, MA) 

 

Scan time 1 sec 

Scan mode Sensitivity 

Mass analyser TOF 

Mass range 50-1500 m/z 

Ionisation mode  Negative  Positive 

Sampling cone voltage -40 V 40 V 

Source offset -80 V 80 V 

Source temperature 120°C 120°C 

Spray voltage 4.5 kV 4.5 kV 

Table 2.3. Xevo G2-XS QToF parameters used for DESI-MSI of FFPE samples. 

 

 

2.10 The rationale behind using two different types of mass spectrometers 
 

All fresh-frozen samples were analysed on a Thermo Exactive Orbitrap instrument. Orbitrap 

technology is known for higher resolution resulting in greater spectral quality compared to 

ToF. Therefore, the starting quality of the raw data acquired on Orbitrap is superior. As a result, 

all the data processing has less impact on the final results contributing to more reproducible 

data. This aspect was of great importance for long-term DESI-MSI studies of colorectal and 

cirrhotic liver samples.  

ToF technology used in the laboratory, on the other hand, could be described as a commercial 

platform. It relied on more standardised parts, out of which the sprayer was especially crucial, 

and the whole setup was considered more robust. As the ultimate goal of DESI-MSI analysis 

of FFPE samples was to make this technique as histology-friendly as possible, it was clear that 

all the experiments should be run using a commercially available platform rather than a home-

built setup.  
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2.11 DESI-MSI acquisition workflow 
 

The acquisition pattern for DESI-MSI is shown in Figure 2.9. First, a slide was mounted onto 

the stage, and the area of interest was selected. Next, the automated DESI sprayer performed 

horizontal line scans over the tissue surface by moving at a predetermined speed to generate a 

unique mass spectrum (one scan) for each pixel (at a spatial resolution). After completing the 

analysis, ion images of the area sampled were constructed to show the spatial distribution of 

the intensity of selected ions. In this manner, a chemical image of particular lipid species 

present in the tissue section could be constructed. 

 

 

 

Figure 2.9. Schematic representation of DESI-MSI data acquisition workflow. The tissue 

section mounted on a glass slide was continuously analysed using horizontal line scans until 

the whole area of interest was covered (A). A unique mass spectrum was generated for each 

pixel (B). Ion images of the area sampled were constructed to show the spatial distribution of 

selected ions' intensity to generate a chemical image of species present in the tissue section (C, 

D). 
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2.12 Length of DESI-MSI measurements 
 

All the data were acquired at 100µm pixel size, 1 scan per second.  

The total length of the DESI-MSI runs depended on the size of a particular tissue section.  

Chapter 3 

The size of the tissue sections used for the analysis was around 10 mm x 6 mm. Acquisition 

time was about 5 – 5.5 hours. Therefore two samples were analysed per day. All the data for 

this chapter were acquired within one week.  

Chapter 4  

As this work focused on optimising pre-DESI-MSI protocol, various tissue sections were tested 

and acquisition times varied.  

Chapter 5 

Fresh-frozen colorectal tissue sections were around 7 mm x 5 mm, allowing for DESI-MSI 

experiments to be completed within 3 – 4 hours. Usually, three samples were run per day. 

Data acquisition for each of the colorectal TMA slides took around 12 hours.  

Chapter 6 

Fresh-frozen samples from the cirrhotic liver cohort were the largest of all fresh-frozen tissue 

samples analysed during this PhD. The average size of liver tissue sections was about 12 mm 

x 8 mm, resulting in DESI-MSI analysis lasting between 10 to almost 12 hours. Therefore, 

these samples were only measured overnight.  

 

2.13 Post-DESI-MSI H&E staining of the slides 
 

Following DESI-MSI analysis, the tissue sections underwent H&E staining to allow for a 

histological tissue classification by a pathologist.  

H&E is the most widely used histological stain as it is a simple way to demonstrate a high 

number of different tissue structures. The hematoxylin component stains the cell nuclei blue-

black, allowing good intranuclear detail. Eosin allows for staining most connective tissue fibres 

and cell cytoplasm in varying intensities and shades of red, orange, and pink [55].  

The details of the H&E staining protocol are listed in Table 2.4.  
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Table 2.4. H&E staining protocol. Since frozen sections can be fragile, all the steps were 

done by hand to reduce the total time of the procedure.  

 

 

After the H&E staining, the slides were cover-slipped to prevent tissue sections from 

dehydration and allow long-term and safe storage.  

 

2.14 Slide scanning  
 

All the H&E stained slides were scanned with a Hamamatsu NanoZoomer slide scanner. 

Digitalised images were produced at x40 resolution.  

 

2.15 MS/MS analysis 
 

MS/MS analysis was done as a part of the experimental work in Chapter 6 to confirm the 

identity of the most abundant ions present in cirrhotic liver diseases samples.  

Ten randomly selected slides (stored at -80°), each with two tissue sections, were used to 

prepare tissue extractions. Care was taken to ensure that these slides represented various liver 

diseases. A blade was used to scrape tissue sections into an Eppendorf tube. Next, 300µl of 

methanol was added, and the tube was centrifuged for 15 minutes at 12000 RPM.  

Step Time 

 

Stain nuclei in Harris hematoxylin  1 minute 

Rinse (immerse in a dish with running 

water) 

10 seconds 

Differentiate in 1% acid alcohol  2-3 dips 

Rinse (immerse in a dish with running 

water) 

10 seconds 

"blue" in Scotts water  20 seconds 

Rinse (immerse in a dish with running 

water) 

10 seconds 

Stain in 1%eosin   
 

45 seconds 

Rinse (immerse in a dish with running 

water) 

10 seconds 

Dehydrate in 99% alcohol x3 20-30 dips 

Clear in xylene x2 20-30 dips 
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A collision-induced dissociation feature on the LTQ-Orbitrap Discovery mass spectrometer 

(Thermo Scientific, Bremen, Germany) was employed, and tissue extractions were directly 

injected using a commercial source. Collision energy values between 30-45 eV were used to 

obtain the characteristic fragmentation spectra for the top correlating molecular species. 

Fragmentation spectra were only obtained when the ions of interest gave a sufficiently high 

signal. 

 

2.16 Data processing  
 

Following DESI-MSI data acquisition on Exactive instruments, an imzML converter (version 

1.0.5) [121] was used to combine the series of raw files for each imaging dataset. The following 

imzML files were then imported into a MATLAB 2014a (http://www.mathworks.co.uk) 

environment. An in-house bioinformatics platform developed especially for interrogation of 

MSI data sets was used for data processing and feature extraction [114].  

Imaging data obtained using Xevo G2-XS QToF were analysed directly in HDImaging, or 

concatenated raw files were centroided and lock mass corrected with the predominant raffinose 

peaks: 503.42 [M-H]-, 539.89 [M+Cl]- in negative ion mode and 527.43 [M+Na]+ and 543.43 

[M+K]+ in positive mode with MassLynx version 4.1. This procedure aimed to ‘lock’ on to 

peaks with known m/z to correct for calibration drift with time. Raffinose was found to be ideal 

for fatty acid and phospholipid mass spectrometric analysis because raffinose m/z peaks are 

located between the fatty acid (m/z 200-400) and the phospholipid (m/z 700-900) m/z ranges.  

 

After lock mass correction, it was possible to achieve mass accuracies of less than 5 ppm (Table 

2.5) for low mass peaks, such as arachidonic acid (exact mass [M-H]- of 303.2322), as well as 

for higher masses, for example for phosphoinositol (PI) 38:4 (exact mass [M-H]- of 885.5499). 
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Ionisation 

mode 
Exact mass 

Observed mass 

(uncorrected 

spectrum) 

ppmuncorr 

Observed mass 

(corrected 

spectrum) 

ppmcorr 

Negative 

303.2322 

(arachidonic acid) 

  

303.2255 22 303.2325 1 

885.5499 

(PI 38:4) 

  

885.5262 27 885.5468 3 

766.5392  

(PE 38:4)  

  

766.5186 27 766.5359 4 

Positive 

 

782.5670 

(PC34:1 [M+Na]+) 

  

782.6082 53 782.5642 3 

824.5566 (PC 36:2 

[M+K]+) 

  

824.6021 55 824.5554 1 

Table 2.5. Table of mass accuracy for m/z peaks detected in pork liver in negative and 

positive ionization modes showing observed masses before and after lock mass correction. 

ppm – parts per million (mass error). 

 

 

2.16.1 Removal of solvent/ noise-related peaks  

Following the peak picking of spectra, solvent related peaks were removed from the data. 

As DESI-MSI detects m/z species in the order of thousands, solvent and noise-related peak 

subtraction feature is essential to ensure that the extracted profiles are of genuine biological 

relevance. 

 

2.16.2 Image alignment  

Since each MSI dataset was composed of numerous pixels consisting of unique mass spectra, 

precise co-registration of the optical H&E stained image with the DESI-MSI image was 

essential for the effective extraction of morphological and biochemical features. For example, 

colorectal samples could be classified as healthy or tumour, and further histological 

discrimination was possible within each of these two types. In the healthy samples batch, tissue 

classes like mucosa, submucosa, and muscle were most commonly seen.  

The image alignment procedure is shown in Figure 2.10. It was performed using an in-house 

developed affine image transformation (translations, rotation, and scaling) algorithm. Each 

histological image was co-registered to the DESI-MSI ion image. H&E optical image was used 

to select areas of interest (various tissue classes) which allowed tissue-specific mass spectra 

extraction (Figure 2.10), which were subsequently used for multivariate analyses. The image 
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alignment process was repeated for each sample to extract mass spectra of different tissue 

subtypes, build a database, and allow further statistical analysis [114]. 
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Figure 2.10. Image alignment using the in-house MATLAB platform for tissue-specific 

pixel labelling. Non-aligned optical H&E image (A); DESI Total Ion Current (TIC) image (B); 

aligned optical H&E image with annotated regions (C); MSI showing tissue-specific pixel 

labelling (D); Respective mass spectra of specific tissue types extracted from the ion image 

(E). 
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2.16.3 Mass range selection 

All the data acquired on Exactive Orbitrap instruments covered 150-1500 m/z. These mass 

spectrometers were used for the analysis of fresh-frozen colorectal and liver samples. As future 

tissue classification in all fresh-frozen tissue samples relied on changes in lipids composition, 

600-1000 m/z range was used for further statistical analysis.  

 

Xevo G2-XS QToF was used for the DESI-MSI measurements of FFPE tissue samples, and 

the data were recorded in 50-1500 m/z range.  In this case, uni- and multivariate statistics were 

performed on the m/z range 100 to 1000. It was hypothesized that the molecular content of the 

FFPE samples would be very different to fresh-frozen ones. Therefore, potential changes in the 

molecular content allowing successful tissue classification would not only (if at all) rely on 

lipids, and a much broader mass range allowed to cover alterations in other molecular species, 

e.g. metabolites. The FFPE samples were analysed in negative and positive ionization modes, 

as it was hypothesized that more chemical information would be captured in the positive mode.  

 

In both cases, subsequent data pre-processing of raw data was performed on the selected m/z ranges 

of interest. 

 

2.16.4 Peak alignment  

Although both Exactive Orbitrap and Xevo QToF instruments were calibrated daily, non-linear 

peak shifts were quite common. To compensate for those shifts, an in-house developed peak 

alignment algorithm was used (dynamic programming, 10ppm matched) before performing 

multiple sample comparisons. 

 

2.16.5 Normalisation 

The aligned data were TIC normalised to account for differences in signal intensities of 

molecular species. These intensity variations could have arisen due to instrument variations 

and differences in cellular density in heterogeneous tissues. The same overall sum intensity of 

peaks was allocated for a given mass range by imposing TIC normalisation, irrespective of the 

sample being analysed. Therefore, the only difference would be the relative abundance of the 

spectral features found within that mass range. 
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2.16.6 Data averaging 

From the selected regions/pixels of interest, the mean average spectra were calculated for each 

tissue type for each patient and were treated as single data units. 

 

2.16.7 Multivariate statistical analysis 

The processed data were subjected to supervised and unsupervised analysis strategies to reduce 

their complexity and identify spectral features of discriminatory power. Multivariate statistical 

methods allowed finding both similarities and differences between samples in each 

particular dataset. In unsupervised strategies, such as PCA, the classification was based on data 

analysis without the user providing sample classes. This method provided a relative measure 

of the relationship between samples and was used to identify the most significant variance 

without the influence of external factors [107].  

In the case of supervised strategies such as recursive maximum margin criterion (RMMC), the 

user could select specific sample characteristics, which in turn could be used to classify 

different characteristics in samples [114]. 

 

2.16.8 Principal component analysis 

In MSI, PCA can be applied to the extracted mass spectra from selected regions or the entire 

tissue section [107]. The averaged DESI-MSI profiles extracted from different patients were 

analysed by PCA in order to identify trends between various tissue classes. This separation was 

based on the lipidomic profiles of the samples without any prior histological information. The 

PCA results were presented in score plots and percentages of variance for a given principal 

component. In most cases, the majority of variation was explained by the first three 

components. The closer the points were on the scores plot, the closer the similarity in the data. 

 

2.16.9 Recursive maximum margin criterion  

RMMC is considered ideal for MSI datasets as it maximises the inter-class variability while 

minimising intra-class variability [114]. Therefore, it was used as the primary supervised data 

analysis strategy in order to generate tissue classification models. RMMC was applied to derive 

components for discriminating spectra by taking the tissue samples' histological class 

assignment into account. The final reduced set of discriminating components was equal to the 

number of classes minus one. 
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2.16.10 Cross-validation 

In order to determine the predictive quality of models based on the RMMC approach, cross-

validation was performed. As an external validation set was not available for this project, 

training and test sets were composed of the acquired data. The discriminating models were 

validated using leave-one-out cross-validation [122]. DESI-MSI data from one patient were 

excluded at a time from the sample set; this allowed for a new model to be calculated using the 

remaining data. The withheld data from the excluded patient were subsequently projected into 

the calculated model and classified using Mahalanobis distance-based classifier. This process 

was repeated until all patients' data were sequentially excluded, models were rebuilt, and the 

classification of excluded data was performed. The classification results were presented in the 

form of "confusion matrices" (Figure 2.11). A confusion matrix was used throughout this thesis 

to demonstrate how well the predicted classifications correspond with the actual classifications. 

From the confusion matrix, sensitivity, specificity, and overall classification accuracy of the 

models were calculated: 

- Classification accuracy = (TP + TN) / (TP + FP + FN + TN)  

- Sensitivity (true positive rate) = TP / (TP + FN)  

- Specificity (true negative rate) = TN / (TN + FP)  

 

 

 

Figure 2.11. Example of a confusion matrix. TP – true positive; FP – false positive; FN – 

false negative; TN – true negative.  
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Chapter 3  

Impact of OCT embedding 

on DESI-MSI 
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3.1 Introduction 
 

3.1.1 Advantages of DESI-MSI 

DESI-MSI was developed in 2004 [78] and allowed to analyse samples at ambient temperature 

and pressure. One of its advantages is the fact that it requires minimal sample preparation and 

is a non-destructive technique. Therefore, the same tissue sections can be H&E stained 

afterwards to allow for a histopathology assessment. Since its introduction, DESI-MSI relied 

on fresh-frozen samples from which so-called frozen sections were cut [78].  

 

3.1.2 Properties of OCT 

On the other hand, as part of routine diagnostic histopathology, when a fresh-frozen specimen 

is received, it is embedded in OCT. At room temperature, OCT is a clear, viscous gel and 

consists of polyvinyl alcohol, polyethene glycol and other non-reactive chemicals [123-125]. 

Once frozen, it becomes solid and is used as a specimen matrix to assist with cryosectioning 

[126, 127].  

 

 

Figure 3.1. An example of a specimen embedded in OCT. Crysectioninig is performed at a 

minimum -15°C, and at this temperature, OCT turns into a white, solid matrix.  

 

 

3.1.3 OCT and its use in MSI 

However, from a mass spectrometry point of view, tissue samples embedded in OCT are not 

fully compatible with the imaging analysis. OCT has been documented to cause strong ion 

suppression when used to embed specimens analysed via MALDI imaging [128, 129] and also 

causes the detection of a series of polymer peaks at m/z > 1100 [129]. Other MALDI-based 
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studies employed alternative embedding media, such as gelatin [129-131] and 

carboxymethylcellulose [132-134]. Another study used a modified preparation of OCT to 

embed mouse lung before MALDI [135]. However, most previous DESI studies have typically 

relied on distilled water to attach samples to a chuck [92, 136, 137]. This approach has never 

resulted in the presence of polymers in either positive or negative mode data. As a result, it 

seems to be the most commonly used sample preparation protocol for DESI-MSI analysis [91, 

92, 138]. 

 

3.1.4 Assessment of applicability of OCT to DESI-MSI  

The translation of DESI from a research tool into one employed for clinical use requires it to 

be successfully integrated into conventional diagnostic histopathology workflows.  The ability 

to use OCT to prepare frozen sections for analysis via DESI-MSI is a significant step towards 

this aim. This study compares the impact of the two sample preparation techniques – 

embedding in water and OCT – on the imaging data quality.  

Liver tissue samples embedded in water and OCT were analysed by DESI-MSI in both positive 

and negative ion modes to assess the practicalities of using OCT as part of a routine DESI and 

histological workflow.   

 

3.2 Materials and methods 
 

3.2.1 Clinical specimens and sample collection 

The tissue used in this experiment was identified as macroscopically normal liver taken from 

a patient who underwent resection for colorectal adenocarcinoma metastases to the liver.  

Written consent for the use of this tissue was taken from the patient before surgery. Ethical 

approval was obtained from the South East London National Research Ethics Committee 

(Study ID 11/LO/1686). 

 

3.2.2 Sample preparation 

Fresh-frozen samples were prepared as described in Chapter 2.7.1. 

Five liver pieces were cut from the resected tissue. Each of them was fixed to a cryostat chuck 

with half-frozen distilled water. 10 µm thick frozen sections were then cut at a temperature of 

-18oC. Each frozen section was thaw mounted onto a SuperFrost Plus microscope slide 

(Thermo Scientific). 
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After sections had been cut from each tissue piece, the ice was washed off with room 

temperature sterile water.  The tissue pieces were then embedded in OCT (Surgipath Frozen 

Section Compound, FSC 22, Leica), and further sections were cut under the same conditions.  

Thus, for each of the liver pieces (labelled from LIV3 through to LIV7), 4 sections were cut 

and analysed, i.e. one OCT-embedded and one H2O-embedded section in each ionisation mode. 

 

Slides were stored at -80oC, and before DESI-MSI, they were allowed to warm to room 

temperature. After the MS analysis, the slides were H&E stained to permit histological 

evaluation. 

 

3.2.3 DESI-MSI analysis  

DESI-MS was performed using a home-built DESI ion source coupled to a high-resolution 

orbital trapping mass spectrometer (Exactive, ThermoScientific, GmbH) controlled by 

XCalibur 2.1 software. The home-built source was operated at a spatial resolution of 100 µm 

using nitrogen at a pressure of 7 bar, with a voltage of 4.5 kV.  A solvent mixture of 95/5 

methanol/water was used at a flow rate of 1.5 µL / min.  Mass analysis was performed in both 

negative and positive ion modes over an m/z range of 150-1500.  

Full details of the DESI-MSI setup for this batch of samples can be found in Chapter 2.8. 

 

Parameters 

 

Settings of Thermo Exactive instrument 

Polarity Negative Positive 

Max injection time 1000 ms 1000 ms 

Micro-scans 1 1 

Mass resolution  100000  100000 

Mass range 150-1500 m/z 150-1500 m/z 

Capillary temperature  250°C 250°C 

Capillary voltage -50 V 50 V 

Tube lens voltage -150 V 150 V 

Skimmer voltage -40 V 40 V 

Spray voltage 4.5 kV 4.5 kV 

Skimmer voltage -40 V 40 V 

Table 3.1. Thermo Exactive Orbitrap settings used for DESI-MSI of fresh-frozen liver 

samples.  
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3.2.4 Data analysis 

Data for this project were analysed with Dr James McKenzie's help.  

Data for each of the ten samples were converted into imzML format and imported into Matlab 

using an in-house developed data processing pipeline. The comparison of the positive and 

negative mode sections was performed using an average mass spectrum determined over all 

pixels (i.e. tissue and background regions). Four regions of 16 pixels each were annotated in 

each sample, and these annotated pixels were subsequently used for classification purposes. 

 

Each positive mode OCT-embedded section was analysed individually. 13 individual 

polymeric distributions were identified across the five sections, each having spacings of 

44.026Da corresponding to the repeat unit C2H4O. For each of the identified polymeric 

distributions, the charge was determined by inspecting the spacing between isotopologue 

peaks. For each distribution centred around the most intense polymeric peak, a linear series 

with spacings of 44.026/z was created and assessed against the experimental MS spectrum.  

Peaks were matched within ±10 ppm, and a single continuous distribution from the most 

intense was determined.  For each of these peaks within the distribution, isotopologue peaks 

were determined. Thus, the spectral profile for each polymer consisted of a single continuous 

distribution of isotopic clusters. The m/z values identified by this method were removed.   

 

Initial comparisons between the OCT- and H2O-embedded sections for positive and negative 

mode data were performed using the average spectra over each sample.  For each ion mode,  

a common m/z vector representative over all samples was determined, and individual samples 

were aligned to this with a maximum permitted peak shift of ±10 ppm. Each spectrum was 

normalised to its total intensity before principal components analysis (PCA). 

 

For the classification of OCT-embedded samples, a cross-validating scheme was employed. 

Each OCT-embedded sample (i.e. the test set) was classified against a model determined using 

its paired H2O-embedded sample and all other OCT-embedded samples (i.e. the training set). 

The training set samples were aligned, TIC normalised and logarithmically transformed. The 

test set was subsequently aligned to the training set and normalised and transformed. A 

maximum margin criterion linear discriminants analysis (MMC+LDA) model was determined 

using the training set, and the 64 annotated test spectra were classified against this model, using 
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a 5-nearest neighbours classifier. This approach was repeated for each OCT-embedded sample, 

with the results presented in confusion matrices. 

 

Univariate analysis was performed using the Kruskal Wallis test. False discovery rate 

correction was performed using the Benjamini-Hochberg-Yekutieli method with α = 0.05. 

 

3.3 Results  
 

After data acquisition was completed, the raw data were inspected by hand to assess its quality.  

Liver embedded in distilled water was treated as a baseline as this sample preparation method 

has been known not to introduce any contamination [92, 119, 138], providing the samples were 

adequately handled before cryosectioning. Figure 3.2 represents averaged spectra recorded in 

the negative mode for a liver sample embedded in water and OCT. The spectral composition 

was almost identical for these two samples, and no polymer has been seen in the negative mode 

data for any of the liver samples embedded in OCT. 

 

 

Figure 3.2. Comparison of averaged spectra recorded in negative ionisation mode for 

different embedding media (top – liver embedded in distilled H2O; bottom – liver in 

OCT).  
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Similarly, the positive mode raw data were carefully checked, as it was expected that the 

potential polymer peaks would be visible in the positive ionisation mode. An averaged 

spectrum for the liver embedded in the water looked like a perfect example of what should be 

expected in terms of good quality data (Figure 3.3). Phospholipid mass range signals were very 

intense, but otherwise, no contamination was detected. However, when the same liver sample 

was cryosectioned using OCT, the acquired data started to look very different and very intense 

polymer peaks started to appear. There were times when those peaks were only present in the 

mass range from m/z 1100 onwards (Figure 3.3), but also, they could be present in the 

phospholipids range, causing a significant ion suppression (Figure 3.4).  

 

 

Figure 3.3. Comparison of averaged spectra recorded in positive ionisation mode for 

different embedding media (top – liver embedded in distilled H2O; bottom – liver in 

OCT). Polymer starts to appear from m/z 1100 onwards.  
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Figure 3.4. Examples of spectra recorded in positive mode for a liver sample embedded 

in OCT. Polymer peaks are very intense and cause ion suppression for signals of interest 

(phospholipids mass range) from the analysed tissue section.  

 

One of the most common contaminants reported in metabolomic workflows are surfactants like 

polyethene glycol (PEG) that are often introduced during sample preparation [139, 140]. These 

contaminants can be significantly disruptive as they cause ion suppression and interfere with 

the target ions of interest (e.g. phospholipids – Figure 3.4) [141, 142].  

In this study, all the samples have initially been taken from the same patients' liver. Therefore, 

all of them have been handled the same way. The only source of the polymer was OCT 

embedding.  

 

3.3.1 Identification and removal of polymeric interference 

Figure 3.5 shows the average spectra for a single liver sample (LIV3) analysed in negative and 

positive ion modes (similar plots for the other liver sections are shown in Appendix A). The 

difference in the H2O-embedded and OCT-embedded spectra was clear for positive mode data, 

with extensive polymeric profiles dominating at m/z > 1000 and to a less noticeable extent 



92 

 

around the phospholipid region (600 < m/z < 1000). Additionally, a large peak at m/z = 326.378 

was found in all other OCT-embedded spectra. There were no visible polymeric distributions 

in the negative mode spectra. 

 

 

Figure 3.5. Average spectra for LIV3 analysed in the negative (A) and positive (B) ion 

modes. The H2O-embedded spectra are shown in blue, and below, in red, are the OCT-

embedded spectra. 

 

The polymers in OCT have a monomeric unit of C2H4O with a mass of 44.026 Da.  

A linear series of m/z values (±44.026/z) centred around the identified m/z value was created 

and matched (±10 ppm) against the mean spectrum for each sample.  From the most intense 

peak within the distribution, only those peaks found in a continuous distribution were 

considered, i.e. there are no gaps in the polymer peaks identified in the spectrum. The 

isotopologue peaks for each of these were also identified based on the distance expected due 

to the charge state. 

 

13 polymeric distributions were observed by eye across the five positive modes OCT-

embedded samples and were removed by hand (along with the peak clusters at m/z = 326.378, 

327.380, 328.384). Further details can be found in Appendix B and C. This was not performed 

for the negative mode sections. Figure 3.6 is similar to that shown in Figure 3.5B, but without 

the polymeric signals in the OCT-embedded sample. Similar plots for the other four samples 

are shown in the Supplementary Information, Appendix D. There was an apparent visual 

similarity between the two spectra, although the intensity was noticeably reduced in the OCT-

embedded samples. Whilst there may have been residual traces of polymeric signal remaining 
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with these processed samples, it was clear that a significant part of the interference has been 

removed. The identification and removal of intense polymeric signals were important when 

normalising spectra according to their total intensity. The polymeric signal distribution across 

the tissue and background is shown in Figure 3.7; it demonstrates that the problem of polymeric 

contamination cannot be ignored simply by using 'tissue only' pixels. 

 

 

Figure 3.6. Average spectra for LIV3 analysed in positive mode, following the removal of 

the identified polymer-associated peaks. The H2O-embedded spectra are shown in blue, and 

the OCT-embedded spectra in red. 

 

 

Whilst most of the polymeric signal was confined to the background of each MS image, there 

was considerable 'contamination' of the tissue signal.  Ion image of the polymeric peaks is 

shown below (Figure 3.7). This demonstrates that the polymer was not purely confined to the 

background and was abundant throughout the tissue itself. As such, removal of the polymeric 

signal was required even when excluding background pixels. 
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Figure 3.7. Summed and logged ion image composed of all polymeric signals identified in 

the OCT-embedded LIV3 positive mode liver section. 

 

Following polymer removal, the various m/z vectors across the 10 negative and 10 positive 

mode sections were aligned and processed as described previously. Principal components 

analysis was performed on both ion modes. Four clusters dominated the PC1 loadings from the 

positive mode data. Those peaks were identified as surfactant molecules and eliminated from 

the data (further details can be found in Appendix E). The PCA scores (Figure 3.8A) showed 

that whilst some sections differ depending on the embedding medium, others (especially LIV3) 

showed relatively inconsequential differences between H2O and OCT samples. 

 

 
 

Figure 3.8. PCA of positive mode data (after removal of 4 surfactant clusters) (A). PC1 

loadings representing these samples (B). Various colours in the PCA plot represent different 

samples, while O refers to samples embedded in H2O and ◊ to samples embedded in OCT.  
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The negative mode data was different in one of the liver samples (LIV7) and showed a marked 

decline in m/z 279.233 and 281.248 but increased in m/z 215.030 (Figure 3.9). This difference 

has previously been observed in samples left too long at room temperature. However, this issue 

aside, the PCA was broadly in line with the positive mode data in that there was no apparent 

trend between OCT- and H2O-embedded sections. Whilst it would be incorrect to say that OCT 

embedding did not affect the spectral profile, the scores plots in Figures 3.8A and 3.9A 

demonstrate that the effect was no more significant than the variation seen across distinct parts 

of the same tissue. 

 

 

Figure 3.9. PCA of negative mode data. The difference in the LIV7 samples was attributed 

to the sample being left at room temperature for longer than the others (A). PC1 loadings 

representing samples analysed in the negative mode (B). Various colours in the PCA plot 

represent different samples. O refers to samples embedded in H2O and ◊ to samples embedded 

in OCT. 

 

 

3.3.2 Classification 

In order to determine the similarity between OCT- and H2O-embedded spectra from the same 

liver section, supervised classification was performed. For each OCT-embedded sample (i.e. 

the test set), supervised classification was determined using all other OCT-embedded samples 

and the H2O-embedded sample matching the test set sample. Thus, spectra from each OCT-

embedded sample were classified with respect to other OCT-embedded spectra or spectra from 

the equivalent H2O-embedded sample. 
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Figure 3.10. Confusion matrices showing the classification performance in the negative 

(A) and positive (B) ion modes. 

 

The confusion matrices for negative and positive mode classifications are shown in Figures 

3.10A and 3.10B, respectively. The negative mode samples exhibited poor classification, 

demonstrating that OCT-embedded samples were classified as other OCT-embedded samples 

rather than as the corresponding H2O-embedded sample. Only the LIV7 sample obtained 

perfect classification, although this was due to the effect discussed previously (see Figure 

3.9A).  In contrast, the positive mode data (Figure 3.10B) exhibited perfect classification for 3 

of the 5 sections, with LIV6 and LIV7 being almost perfectly swapped.   

 

The confusion matrix in Figure 3.10B can be placed in context when compared to that shown 

in Figure 3.11. This confusion matrix shows the results of the same classification analysis but 

performed using the unprocessed positive mode data, i.e. containing all previously removed 

polymeric interference (the surfactant-like peaks identified in the Supplementary Information 

have been removed). The difference in the two confusion matrices demonstrates the value of 

removing the polymeric interference from the positive mode samples.   
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Figure 3.11. Confusion matrix showing the classification performance in the ‘raw’ 

positive mode data containing all polymer-identified peaks. 

 

 

The similarity, however, between Figures 3.10A and 3.11 leads to an inference that the negative 

mode data was, in some way, affected by OCT. The polymeric peaks in the positive mode 

sample were pronounced and of considerable, yet variable, magnitude. Their presence also 

interfered significantly with the normalisation of spectra. Because such an extensive 

interference was not overt in the negative mode spectra, it suggested that OCT’s effect was 

more subtle. However, the misclassification may also be partly due to the high similarity of the 

liver tissue sections. The negative mode data failed to distinguish their differences adequately 

regardless of the embedding medium. 

 

3.3.3 Ion suppression  

Univariate analysis between H2O- and OCT-embedded spectra was performed to determine 

differences between the two embedding media over the ten negative mode sections. Variables 

with H2O/OCT log2 fold changes greater than 0 with q less than 0.001 were identified; Figure 

3.12 shows the boxplot of one such variable (split according to file and embedding medium).           

4 of the 5 sections demonstrated lower median intensities in OCT compared to H2O spectra, 

with LIV4 in contrast to this. A range of other variables is shown in the Supplementary 

Information, Appendix F, which shows similar ion suppression evidence. However, the 

evidence for the suppression of ions was not always consistent across 5 tissue pieces. The PCA 

scores plot in Figure 3.9A suggests that the differences between OCT- and H2O-embedded 

sections were not always consistent. 
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Figure 3.12. Boxplot showing the intensity of m/z 742.539, which has q < 0.001 and a 

positive H2O/OCT log2 fold change. OCT intensities are depicted in red and H2O intensities 

in blue. 

 

 

While these figures demonstrate possible ion suppression caused by OCT as an embedding 

medium, it may not be the only cause that leads to poor classification results. All of the tissue 

used in this study was obtained from the same patient and is thus expected to be homogeneous.  

Further investigation of the use of OCT as an embedding medium is required to determine if 

the use of OCT masks tissue-to-tissue or subject-to-subject variabilities. 

 

3.4 Discussion 
 

The data generated as part of this project suggest that it is possible to employ OCT as an 

embedding medium for histopathological and mass spectrometric analyses. Whilst some of the 

reduction in intensities may be attributable to polymer-induced ion suppression, there are no 

clear polymeric signals causing differences in the negative mode data.  In positive mode data, 

the interferences due to OCT are more overt but can be negated by removing the regular peaks 

of the various polymeric distributions. 

 

The study was designed using tissue from the same patient and is thus expected to be broadly 

homogeneous across the 5 tissue pieces.  The variation seen over the two embedding media 



99 

 

was broadly of the same magnitude as the inter-tissue variation. The inability to correctly 

classify according to tissue section should be considered in light of the similarity of the liver 

sections and similarity in spectral profiles from OCT- and H2O-embedded sections. 

 

In order to further probe any potential ion suppression effects, a wider-reaching experiment is 

proposed. This would encompass tissue samples acquired from a range of subjects with a range 

of tissue types. Analysing such samples embedded in both media would enable the 

classification according to both tissue type and patient.  Any potential interference could thus 

be placed in the context of inter-patient and inter-tissue type variation and hence permit a 

greater understanding of the effect of OCT in DESI. 
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Chapter 4  

Optimisation of pre-DESI 

protocol for the analysis of 

FFPE samples 
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4.1 Introduction 
 

4.1.1 Tissue fixation strategies 

After fresh human tissue is collected by biopsy or during surgery for further pathological 

examination, it is typically very delicate and easily damaged or distorted. To allow the 

preparation of thin tissue sections that can be assessed by a histopathologist, these specimens 

need to be chemically preserved first. Two main strategies employed to allow tissue fixation is 

freezing tissue samples straight after removing them from a body or immersing them in 10% 

neutral buffered formalin or another fixative. However, only a limited number of defined 

clinical situations requires tissue specimens to be preserved by freezing. These mainly include 

only intraoperative consultations or muscle and renal biopsies [143]. Therefore, most tissue 

samples undergo an alternative treatment that allows the preparation of paraffin-embedded 

(FFPE) specimens. The whole process is summarised in Figure 4.1.  

 

4.1.2 Advantages of FFPE samples  
 

Although preservation as frozen tissue has long been regarded as the gold standard for samples 

that were to be used in research, in recent years, lots of efforts were put into making FFPE 

blocks accessible for this application. The recruitment of cryopreserved tissue samples in 

sufficient numbers allowing for robust study designs has always been challenging. 

Simultaneously, FFPE specimens represent an extensive collection of clinically annotated 

samples, mostly with known outcomes. Moreover, wax blocks can be stored at room 

temperature for many years and are considered an essential resource for historical studies in 

medicine [99]. Although FFPE samples offer an attractive alternative for the retrospective 

analysis of pathological processes, their use in research requires lots of optimisation due to how 

these tissue specimens are fixed and further processed.  

 

4.1.3 Why is the use of FFPE samples in research a challenge?  

Fixation in buffered formalin or another liquid fixing agent is only the first step of the 

procedure, leading to diagnosis based on histopathological examination. After this, tissue 

specimens are immersed in graded alcohols to remove the water before they can be infiltrated 

with wax. However, an intermediate solvent that is fully miscible with alcohol and paraffin 

wax must be used before this is possible. This solvent displaces alcohol in tissues, then it, in 

turn, is displaced by molten paraffin wax [100, 143]. All these steps forming a routinely used 
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specimen processing protocol contribute to the fact that using FFPE samples by widely applied 

mass spectrometry platforms can be challenging [99, 100].  

 

4.1.4 Formalin fixation  

Formalin fixation allows tissues preservation by forming methylene bridge cross-linkages 

between proteins, and extensive washes in alcohol and xylene contribute to the loss of tissue 

samples' chemical content. In recent years, several approaches have been reported to attempt 

to reverse formalin fixation, a process that is referred to as antigen retrieval [52, 144, 145]. 

This process typically relies on applying high-temperature treatment altogether with the use of 

a buffer solution. These steps are undertaken to return the tissue to its native state as closely as 

possible by reversing the protein cross-linking [52]. The development of effective and 

reproducible methods, allowing for antigen retrieval on FFPE samples, has contributed 

significantly to the standardisation of IHC protocols. As a result, it has recently allowed for 

proteomic and genomic analysis of a vast collection of archival clinical samples [146]. Studies 

were reporting the successful investigation of proteins from FFPE specimens [99, 145, 147, 

148] by LC-MS/MS and metabolite imaging by MALDI [101, 102]. This project aims to test 

various pre-experimental treatments that would allow further DESI-MSI analysis of FFPE 

tissue samples.  
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Figure 4.1. Typical workflow applied in routine histopathology laboratories for 

processing fresh tissue specimens fixed in formalin. Since many steps are needed in order to 

produce slides that can be assessed by a histopathologist, it can take many days before the final 

diagnosis is made. Steps contributing to making the use of FFPE samples by mass spectrometry 

platforms challenging are also highlighted.  

 

 

4.2 Materials and methods 
 

4.2.1 Tissue samples used for the optimisation 

Since pork liver is very homogenous and gives a good signal intensity, all the initial tests were 

done using this readily available tissue type. It was purchased from a butcher and then divided 

into multiple pieces, each measuring about 1.5 cm x 1.5 cm x 1.5 cm.  

In each case, 10µm thick tissue sections were prepared using a Thermo Fisher cryostat.  

 

Mouse liver and human colorectal carcinoma FFPE samples were obtained from the 

Histopathology Department at St. Mary's Hospital, London, UK. 

10 µm thick tissue sections were prepared using a microtome (Thermo Fisher Scientific Inc, 

Waltham, MA, USA), the sections were hydrated in a water bath before mounting onto 
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SuperFrost® Plus Glass slides (Thermo Fisher Scientific Inc) and incubating at 60°C for 30 

minutes. The slides were then stored at room temperature until further analysis.  

 

4.2.2 Pre-experimental sample preparation 

Various pieces were subjected to different pre-experimental treatments, including the 

following: 

- Fresh-frozen sample – it was snap-frozen straight away in a -80° freezer. It was then 

treated as a baseline in terms of the signal intensity and, even more importantly, the 

spectra's composition.  

- Formalin-fixed (FF) samples – straight after dissection, fresh pork liver pieces were 

fixed in 10% Neutral Buffered Formalin for 24 hours. 60 ml prefilled pots were ordered 

from CellPath (catalogue number BAF-6000-08A). Formalin fixation is routinely used 

in Cellular Pathology laboratories as a part of the diagnostic protocol. Next, the samples 

were subjected to the following conditions: 

• Sucrose was tested as an alternative stabilising method. A FF pork liver sample 

was rinsed with distilled water and then soaked overnight in a sucrose solution 

(30% w/v) in distilled water. BioXtra ≥ 99.5% Sucrose was obtained from 

Sigma-Aldrich (St. Louis, MO, USA), catalogue number S7903. The following 

day, the sample was removed from the solution and rinsed with distilled water, 

and frozen at -80°C before cryosectioning.  

Another sample was subjected to the same treatment but was embedded in 

gelatin (10% w/v; catalogue number 4078; Merck, Darmstadt, Germany). 

Before this step, gelatin was heated to 50°C for about 10 minutes until a 

homogeneous solution was achieved. The embedded sample was frozen at -

80°C before cryosectioning.   

• Glycerol, which should have similar protection properties as sucrose, was also 

tested. It was supplied by Sigma-Aldrich (St. Louis, MO, USA), catalogue 

number 49781. Two concentrations were tested – 0.1% and 5%. Tissue samples 

were soaked in solutions overnight and then were embedded in 10% gelatin and 

frozen at -80°C.  

• Urea was tested as an antigen retrieval treatment. Urea powder bioreagent for 

molecular biology was supplied by Sigma-Aldrich (St. Louis, MO, USA), 

catalogue number U5378. Three concentrations were tested: 1M, 5M and 10M. 
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FF pork liver was heat-treated at 100⁰C for 4 minutes in urea solutions and 

sectioned onto glass slides.  

• Sodium metabisulfite (Molecular Dimensions, catalogue number TRC-

S667060) was tested as an antigen retrieval treatment. FF pork liver was heat-

treated with sodium metabisulfite aqueous solution at either 15 or 40 % (w/v) 

at 95⁰C for 2 minutes. The pork liver was then sectioned as above. 

• Denator, The Stabilizor™ T1, was used for the experiments requiring heat 

treatment of pork liver tissue samples.  

 

Four different solvents were also tested to assess their abilities to remove paraffin from tissue 

sections. These were as follows: 

- Pentane (Chromasolv, Sigma Aldrich, St. Louis, MO, USA) 

- Hexane (SupraSov, Merck KGaA, Darmstadt, Germany) 

- Chloroform (≥99.8%, Sigma Aldrich, St. Louis, MO, USA) 

- Xylene (Histological grade, Sigma Aldrich, St. Louis, MO, USA) 

 

Before DESI-MSI analysis, the slides were washed for 8 minutes twice in each of the solvents 

listed above. Next, the samples were left to dry at room temperature for 24 hours.  

 

4.2.3 Strategies for method optimisation 

FF samples were subjected to various treatments to assess their effectiveness in assisting with 

future DESI-MSI analysis.  

One of the challenges was the fact that FF tissues tended to become very brittle when frozen 

and therefore were hard to section. This issue is usually overcome by embedding samples. 

Therefore, sucrose and glycerol were tested as alternative stabilising agents. This set of 

experiments was performed to address the issues with cryosectioning samples prior to DESI-

MSI.  

Secondly, tissue fixation in formalin was known to result in the formation of methylene bridge 

cross-linkages between proteins. In order to attempt to reverse formalin fixation during a 

process referred to as antigen retrieval, several approaches were tested. These included heat 

treatment and neutralisation of formaldehyde with sodium metabisulfite and urea.  

In the first phase, all the experiments described above were performed on FF samples that were 

not embedded in wax. If any of the tested treatments were successful, they would be applied to 
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FF samples that had been put in the form of wax blocks. That would require the successful 

removal of wax prior to repeating the experiments.  

 

4.2.4 DESI-MSI analysis 

All DESI-MSI experiments were performed on a Xevo G2-XS QToF mass spectrometer 

(Waters Corporation, Milford, MA) coupled to a 2D sample stage (Prosolia Inc., Indianapolis, 

IN, USA).  

100 µm2 pixel size and 100 µm step size were set up for imaging analysis at a scan rate of 1 

scan/second. Methanol: water, 95:5, v/v (Sigma-Aldrich, St. Lewis, Missouri, USA) was used 

as the electrospray solvent at a flow rate of 1.5 µl/min. Zero-grade nitrogen was used as the 

nebulising gas at a pressure of 7 bar. All imaging analysis was performed using 50 to 1500 

mass range.  

Full details of the DESI-MSI setup can be found in Chapter 2.9.  

 

Regions of interest were selected with High Definition Imaging software (HDI, v 1.4, Waters 

Corporation) for analysis in positive and negative ion modes.  

 

 

Parameters Xevo G2-XS QToF (Waters 

Corporation, Milford, MA) 

 

Scan time 1 sec 

Scan mode Sensitivity 

Mass analyser TOF 

Mass range 50-1500 m/z 

Ionisation mode  Negative  Positive 

Sampling cone voltage -40 V 40 V 

Source offset -80 V 80 V 

Source temperature 120°C 120°C 

Spray voltage 4.5 kV 4.5 kV 

Table 4.1. Xevo G2-XS QToF parameters used for the optimisation of the DESI-MSI 

protocol for the analysis of FFPE tissue samples. 
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Following DESI-MSI, the analysed tissue sections were stained with H&E, and optical images 

were acquired. 

 

4.2.5 Data analysis 

Imaging raw files (.DAT) were uploaded into a custom-build imaging toolbox in 

MatLab (R2014a, MathWorks, Natick, MA, USA) environment and followed by the 

optical images' upload.  

Methodological details of data analyses are described in Chapter 2.13. 

 

4.3 Results 
 

4.3.1 Fresh-frozen pork liver in OCT 

Conditions that were the closest to those that have routinely been employed in diagnostic 

laboratories when dealing with fresh-frozen samples were tested first. Fresh pork liver was 

embedded in OCT, sectioned and imaged in negative ion mode without any previous sample 

treatment. Clear morphological structure (Figure 4.2) was observed, including for ions with 

signal intensities as low as 250 counts, e.g. m/z 726.5.  

 

 

Figure 4.2. Comparison of DESI-MSI results in negative ion mode for morphological 

structures for different signal intensities for fresh pork liver embedded in OCT. m/z 

726.54 – PE(P-36:2); m/z 766.53 – PE(38:4); m/z 742.51 – PE(36:2).  
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Figure 4.3. An example of an averaged mass spectrum acquired in negative ionisation 

mode for fresh pork liver embedded in OCT.  

 

As can be seen in Figure 4.3, the right intensity spectrum was recorded, demonstrating a good 

background: phospholipids peak ratio. It was treated as a baseline to assess further attempts to 

optimise the pre-DESI-MSI sample preparation protocol to analyse FFPE tissue samples. The 

three most intense peaks related to pork liver: m/z 742.54, 766.54 and 885.55, have been 

highlighted and used as signature peaks for future experiments.  

 

4.3.2 Removing excess formalin by rinsing the sample in water 

Firstly, the FF pork liver tissue sample was washed in LC-MS grade water to remove the excess 

formalin present in the tissue. It was then analysed by DESI-MSI, and the results were 

compared with a fresh-frozen liver sample. It was observed that the signal intensity was higher 

(1.19x104) for the fresh-frozen pork liver than for the FF pork liver (7.23x103) (Figure 4.4). 

Also, different phospholipid species were observed in each sample treatment (Figure 4.4). No 

morphological features could be discerned despite the high signal intensity for the FF pork liver 

(Figure 4.5). 
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Figure 4.4. Comparison of spectra intensity in negative ion mode for fresh-frozen pork 

liver and FF pork liver washed in LC-MS grade water. 

 

Figure 4.5. Comparison of DESI-MSI results in negative ion mode for fresh-frozen pork 

liver (A) and FF pork liver washed in LC-MS grade water (B). Ion images of 

phosphoinositol (PI) 38:4 (m/z 885.5499). 

 

4.3.3 Sucrose as an alternative stabilising agent 

A significant challenge in making DESI more histologically friendly is making it accessible to 

analyse FF tissue. FF tissues tend to become very brittle when frozen and therefore are hard to 
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section. This issue is usually overcome by embedding samples. However, as discussed in 

Chapter 3, embedding can significantly impact mass spectra and lipid species conservation. It 

was reported that a sucrose infiltration step significantly contributed to the improvement of the 

quality of tissue sections prepared from whole insects [149]. Therefore, sucrose cryoprotection 

was investigated as an alternative stabilising method.  In order to test this, FF pork liver was 

rinsed and then soaked overnight in a 25% sucrose solution. It was later removed, rinsed again, 

and frozen for sectioning. 10% gelatin was used as an embedding medium, as it has been 

reported to help with cryosectioning of some other fragile tissue samples like crab’s organs and 

brain [131]. The tissue section was analysed in both positive and negative ion modes.  

Comparison of spectra from these sections with spectra from FF, OCT embedded sample 

showed that spectral intensity was slightly better but still not as good as for fresh-frozen tissue. 

There were also differences in spectral composition, which could probably be attributed to 

shifted adduct formation. Sucrose was clearly visible in positive ([M+H]+, [M+Na]+) ion 

spectra. No morphological structure of the analysed sample could be seen (Figure 4.6A).  

 

Figure 4.6. MSI in negative ion mode of FF pork liver treated with Sucrose 25% (A) or 

Glycerol (B - 0.1%; C - 5%). Ion images of phosphoinositol (PI) 38:4 (m/z 885.5499). 

 

4.3.4 Glycerol as an alternative cryoprotection agent 

As the next step, glycerol was tested as an alternative cryoprotection agent. It was hypothesised 

that it would show similar protection properties as sucrose. In addition to this, glycerol was 

thought to be more compatible with formaldehyde scavenging protocols as it did not contain 

an aldehyde group.  
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Two different glycerol concentrations - 0.1% and 5% - were used as a pre-embedding treatment 

for the FF pork liver samples, which were then embedded in 10% gelatin and analysed in both 

negative and positive ionisation modes. 

 

Figure 4.7. MSI in positive ion mode of FF pork liver soaked in Glycerol (A - 0.1%; B - 

5%). Ion images for m/z 782.5770 (PC 34:1[M+Na]+).  

 

As shown in Figures 4.6 and 4.7, lower ionisation intensity was observed for the cryoprotectant 

0.1% glycerol compared to 5% glycerol and 25% sucrose in both ionisation modes.  

 

Figures 4.8 and 4.9 summarise the outcome of testing the following two media – 30% sucrose 

+ 10% gelatin and 5% glycerol + 10% gelatin. The tissue morphology was best preserved for 

the fresh pork liver when a mix of glycerol + gelatin was used; however, some structures could 

also be seen for the other medium. In both cases, FF pork liver tissue sections did not show any 

morphological features. The one treated with glycerol + gelatin appeared very destroyed and 

mainly blown away from the glass slide (Figure 4.8).  
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Figure 4.8. Comparison of post-DESI morphological structures of analysed samples for 

both fresh and FF pork liver embedded in gelatin with either 30% sucrose (top row) or 

5% glycerol (bottom row). Ion images of phosphoinositol (PI) 38:4 (m/z 885.5499).  

 

Figure 4.9 shows that averaged spectra recorded for the fresh pork liver looked very similar 

after both treatments. Signal intensity was slightly higher for the sample treated with glycerol, 

but otherwise, the spectral composition and the intensities of the signatures peaks were almost 

the same. However, different phospholipid species were seen in the case of FF liver samples. 

Significantly, the data recorded for the piece treated with glycerol showed many more peaks 

than in the fresh liver samples. 
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Figure 4.9. Comparison of DESI-MSI results for both fresh and FF pork liver embedded in gelatin with either 5% glycerol or 30% sucrose. 

Averaged spectra for fresh and FF pork. All the results shown are for the negative ionisation mode data.
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4.3.5 Formalin and glycerol tissue sample fixation 

Next, fresh pork liver was fixed either in formalin with 0.1% glycerol or formalin with 5% 

glycerol for 72 hours at room temperature. The tissues were embedded in 10% gelatin and OCT 

and sectioned onto glass slides. However, when the tissue section was analysed in negative ion 

mode, morphological structures were barely discernable, despite a relatively high signal 

intensity (Figure 4.10). 

 

 

Figure 4.10. DESI-MSI analysis of pork liver fixed in formalin + 5% glycerol embedded 

in OCT. Signal intensity in negative ion mode (A), and averaged spectrum focusing on the 

phospholipids mass range (B). Ion image for m/z 794.535.  

 

4.3.6 Heat treatment as an antigen retrieval method 

It has been reported that the adaptation of heat-induced antigen retrieval methods has 

significantly contributed to the development of FFPE proteomics [150-152].  

Therefore, experiments were performed using heat treatment and formalin scavengers (e.g. 

urea) to reverse formalin action. FF pork liver was heat-treated at 100⁰C for 4 minutes in water 

or 10M urea solution and sectioned onto glass slides for DESI-MSI analysis in negative ion 

mode. It was observed that the FF liver sample heat-treated in the water had a higher signal for 

fatty acids (1.24x105) by two orders of magnitude when compared to fresh-frozen pork liver 

(Figure 4.11). This effect was also observed when comparing FF pork liver and heat-treated 

FF pork liver. Again, an increase by order of magnitude was detected, while morphological 

features were beginning to be discernable (Figure 4.12). 



115 

 

 

Figure 4.11. Comparison of spectra intensity in negative ion mode for fresh-frozen pork 

liver (A), FF pork liver (B), heat-treated, FF pork liver (C).  

 

 

As shown in Figure 4.11, the spectral composition for FF and heat-treated FF samples was very 

similar, with only two signature peaks, m/z 742.54 and 885.55, being detected. The most 

intense peak present in the fresh pork liver sample – m/z 766.54 – was not seen.  
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Figure 4.12. Comparison of DESI-MSI in negative ion mode for fresh-frozen pork liver 

(A), FF pork liver (B) and heat-treated FF pork liver (C). Ion images of arachidonic acid 

(20:4; m/z 303.24). 

 

 

After these experiments, the critical observation was that urea/ heat-treated FF pork liver could 

not be sectioned as the tissue became too soft after-treatment. Therefore, further work needed 

to be performed using other formalin scavengers and other heat-treatment conditions to 

understand if formalin's action can be effectively reversed in an attempt to obtain 

morphological information from FF tissue. 

 

4.3.7 Sodium metabisulfite as antigen retrieval treatment 

Further experiments were performed regarding the removal of formalin from FF tissues. Since 

the neutralisation of formaldehyde with sodium metabisulfite has been reported [153, 154], it 

was tested as a formalin removal reagent in the FF pork liver. Two concentrations of sodium 

metabisulfite were tested (15 and 40 % (w/v)). FF pork liver was heat-treated with sodium 

metabisulfite aqueous solution at either 15 or 40 % at 95⁰C for two minutes. After this, the 

tissue block was embedded in OCT, sectioned and analysed by DESI-MSI in negative ion 

mode.  

 

It was observed that the signal intensity for the phospholipid mass range for samples heat-

treated with sodium metabisulfite was high. In contrast, the fatty acid: phospholipid ratio was 

low, as observed in other heat treatment experiments. No morphological features were detected 

(Figure 4.13). 
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Figure 4.13. Spectra intensity in negative ion mode for FF pork liver heat-treated with 

15% (w/v) sodium metabisulfite (B). Ion image for m/z 794.535 (A). 

 

 

This phenomenon was surprising as before analyses, and extensive morphological features 

were visible to the naked eye; however, in the DESI-MSI image, no morphological features 

were detected. In order to try and understand this, the tissue sections were examined under the 

microscope. Before analysis, it was observed that morphological features could be seen in the 

tissue section, but after analysis, these seem to have been destroyed (Figure 4.14). 

 

 

Figure 4.14. Microscope images for FF pork liver heat-treated with sodium metabisulfite. 

Before (A) and post (B) DESI-MSI analyses. 

 

 

In order to overcome this, thicker tissue sections (20µm) were prepared and analysed by DESI-

MSI. However, the same phenomenon was observed. The effect of the gas flow (7 bar gas 

pressure) was also examined by analysing a sample with only 3 bar gas pressure, and it was 

noted that morphological features were much more apparent after the experiment. 
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4.3.8 Various numbers of heat-treatment combined with different glass slides 

types as another attempt to reverse the effects of formalin fixation 
 

It was hypothesised that the tissue section did not adhere to the glass slide as firmly as frozen 

sections do. This might be because formalin cross-linking of proteins was not reversed to a 

sufficient extent to promote enough ionic interactions between the proteins and the glass slide. 

To improve these ionic interactions, the time of heat-treatment was increased (heat-treatment 

cycles), urea was used as a formalin scavenger, and microscope adhesion slides were also tested 

(Table 4.2).  

 

 

Formalin scavenger Concentrations Heat-treatment (Denator) Microcope slides 

Water - 1 cycle SF 

Sodium metabisulfite 15%, 40% 1, 3 cycles SF,SFP 

Urea 1M, 5M, 10M 1, 3, 5, 10 cycles SF,SFP, PL, SFPU, SFG 

Legend: SF-SuperFrost; SFP-SuperFrostPlus; PL-Poly-Lysine; SFPU-SuperFrostPlus Ultra; SFG-SuperFrost 

Gold 

 

Table 4.2. Summary of the formalin scavengers and heat-treatment times used for FF 

pork liver tissue to reverse formalin protein cross-linking bonds. 

 

 

It was observed that when the number of heat-treatment cycles was increased for the treatment 

of FF pork liver, the spectra showed a difference in the ratio of fatty acids: phospholipids 

(Figure 4.15). However, no morphological features were detected, and post-DESI-MSI 

analysis, the tissue section was still destroyed even when using adhesion slides SuperFrost Plus 

(Figure 4.16). 
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Figure 4.15. Comparison of spectral intensity in negative ion mode for FF pork liver using 

sodium metabisulfite (15% and 40% (w/v) and heat-treatment (1 and 3 treatment cycles) 

as formalin scavengers. SF-SuperFrost glass slides; SFP-SuperFrostPlus glass slides.  
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Figure 4.16. FF pork liver heat-treated for 3 cycles with 15% (w/v) sodium metabisulfite 

after DESI-MSI analysis in negative ion mode. Ion image (m/z 794.535) (A); microscope 

image of tissue after DESI-MSI (red square) (B). 

 

 

 

4.3.9 Urea as a formalin scavenger 

As no morphological features were detected so far, urea was tested as a formalin scavenger. 

Different concentrations were prepared: 1M, 5M and 10M and various heat-treatment cycles 

and adhesion slides were also applied. It was observed that urea seemed to have more effective 

formalin reversal properties than sodium metabisulfite as the fatty acid: phospholipid ratio was 

improved with all urea concentrations tested (Figure 4.17). That could be because urea is a 

chaotropic agent, and such a molecule can disrupt the hydrogen bonding [155, 156]. Regarding 

the number of cycles tested, it appeared that 3 and 5 cycles were the most effective to reverse 

the cross-link bonds of FF tissue proteins. 
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Figure 4.17. Comparison of spectra intensity for FF pork liver using urea and heat-

treatment as formalin scavengers. Different concentrations of urea, as well as various heat 

treatments, were tested. Data acquired in negative ionisation mode. Types of glass slides used: 

SF-SuperFrost; SFP-SuperFrostPlus; PL-Poly-Lysine.  

 

 

 

The comparison between standard histology slides (SuperFrost) and adhesion slides 

(SuperFrostPlus, Poly-Lysine, SuperFrostPlus Ultra and SuperFrost Gold) showed no 

improvement in the adhesion of the FF pork liver tissue sections (Figure 4.18). 
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Figure 4.18. Microscope image of FF pork liver post-DESI-MSI analysis using different 

types of glass slides. 5M urea, 3 heat-treatment cycles, SuperFrost slide (A); 5M urea, 3 heat-

treatment cycles, SuperFrostPlus slide (B); 5M urea, 5 heat-treatment cycles, Poly-Lysine slide 

(C). 

 

 

No morphological features were discernable when using sodium metabisulfite or urea, except 

when urea at 5M concentration and three heat-treatment cycles were applied (Figure 4.19). 

However, method development needed to be performed to further overcome tissue destruction 

and improve tissue morphological feature detection.  

 

 

 
Figure 4.19. Ion images for FF pork liver heat-treated for 3 cycles with 5M Urea after 

DESI-MSI analysis in negative ion mode. Ion image using SuperFrost slide (A) and 

SuperFrostPlus slide (B).  
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4.3.10 Conclusions from the experiments performed so far  

Up to this point, none of the pre-experimental treatments tested gave satisfactory results.  

Not only spectra composition and signal intensity were taken into account, but also the ability 

to detect morphological features from the analysed tissue sections. Even if it were possible to 

acquire sufficient chemical information during DESI-MSI measurements, post-experimental 

quality of tissue sections would be equally important. In order to allow for further data analysis, 

all tissue sections needed to be H&E stained and assessed by a qualified histopathologist. 

Without this input and the ability to match chemical information to various tissue classes, the 

DESI technique would lose most of its potential. Therefore, it was clear that further 

optimisation was required if FFPE samples were to be compatible with DESI-MSI.  

A new paper was published around this time that claimed that the in situ imaging of metabolites 

from FFPE human tissue samples using MALDI-MSI was successful [101]. The ionisation 

process is not the same when we compare MALDI-MSI and DESI-MSI, and the first technique 

requires the use of a matrix, which results in the creation of matrix ions artefacts. Nevertheless, 

it was hypothesised that the same pre-experimental treatment could be tested and applied to 

DESI-MSI.  

 

4.3.11 A new approach to histologically friendly DESI-MSI 

The pre-DESI protocol for MALDI-MSI analysis of FFPE human tissue samples was very 

straightforward. Tissue sections were prepared using a microtome, then incubated for 1h at 

70°C. The only additional step after the incubation was deparaffinisation in xylene 2 x 8 

minutes. After this, the slides were allowed to air-dry for 24 hours before the matrix application 

and MALDI-MSI measurements  [101].  

It was hypothesised that the same treatment might be useful for DESI-MSI of FFPE tissue 

samples' metabolic content.  

 

4.3.12 Deparaffinization of FFPE tissue sections using different solvents 

Four different solvents were tested during this experiment – Pentane, Hexane, Chloroform, and 

Xylene. Tissue sections were prepared as described in Chapter 2.7.2. Prior to DESI-MSI, each 

slide was washed 2 x 8 minutes in one of the solvents mentioned above. Then, the slides were 

left to dry at room temperature for 24 hours.  

As can be seen in Figure 4.20, after the standard DESI-MSI experiments, the section that was 

deparaffinised in xylene was intact, and morphological features were very well preserved. The 
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most destroyed section was rinsed in hexane, while both pentane and chloroform gave 

comparable results.  

 

 

 

Figure 4.20. Quality of sections prepared from the same sample after DESI-MSI. The 

slides were subjected to deparaffinisation using four different solvents before standard DESI-

MSI measurements. After the analysis, the slides were H&E stained to assess the quality of the 

analysed tissue sections. Optical images represent four tissue sections cut from the same FFPE 

block but rinsed in different solvents before the DESI-MSI measurements. 
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As expected, the quality of the ion images followed the same pattern. As can be seen in Figure 

4.21, the positive mode data appeared to contain much more information.  

 

 

 

Figure 4.21. Ion images representing the data acquired in both ionisation modes for four 

tested solvents. The distribution of m/z 599.32 was visualized for the negative mode and m/z 

155.13 for the positive mode data. The putative ID of LPI (18:0) was assigned to m/z 599.32.  

These two ions were chosen by hand in the HDI software.  
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Different tissue classes were distinguishable in the tissue section washed in xylene and to a 

certain extent also for the sections rinsed in chloroform and pentane. 

The negative mode data did not look promising, contrary to the observed spectra composition 

(Figure 4.22).  

 

 

 

Figure 4.22. Averaged mass spectra acquired after tissue sections were washed in four 

different solvents as a part of testing the new pre-DESI-MSI protocol for FFPE tissue 

samples. 
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Figure 4.23. Averaged mass spectra for the colorectal sample rinsed in xylene 2 x 8 

minutes before the standard DESI-MSI analysis was conducted. Data were acquired in both 

positive and negative ionisation modes (A). Zoom in on the phospholipid mass range (B).  

 

 

It was observed that spectral composition for FFPE samples was very different from those 

acquired for fresh-frozen specimens. There were hardly any peaks present in the phospholipid 

mass range, which was thought to result from extensive washes in alcohol and xylene during 

sample processing. Still, an averaged spectrum for the tissue section washed in xylene seemed 

to contain the most information for the negative mode measurements (Figure 4.22A). As for 

the positive mode data, results recorded for samples washed in pentane, chloroform, and 

hexane all looked very similar, with hardly any metabolic information present in analysed 

sections (Figure 4.22B). Therefore, these results confirmed that pre-DESI washes in xylene 

contributed to the best conservation of the sample's chemical composition out of all tested 
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solvents. A zoomed-in view of the phospholipid mass range for the tissue section rinsed in 

xylene is shown in Figure 4.23B.  

 

4.3.13 Preliminary DESI-MSI results for the FFPE sample washed in xylene 

The tissue section rinsed in xylene was subjected to the post-DESI analysis. Two tissue classes 

present in the sample were annotated with the help of a qualified histopathologist. This was a 

first attempt to assess if an FFPE sample's chemical content might be enough to allow 

successful tissue classes classification.  

 

 

Figure 4.24. Statistical analysis of FFPE colorectal sample washed in xylene and analysed 

in negative ion mode. Showing PCA (A) and MMC+LDA (B) plots, cross-validation accuracy 

for the prediction of stroma and cancer (E) H&E-stained analysed tissue section (C) and ion 

image of m/z 619.27 (D).  

 

It is worth mentioning that the histopathologist only managed to select five pixels representing 

stroma for this particular sample. Ideally, to build a reliable and robust model, a higher number 

of pixels would be used. A similar number of pixels would be annotated for each tissue class 

present in each particular tissue section. However, a clear trend was still seen when an 

unsupervised analysis was attempted (Figure 4.24A) for the negative mode data. Leave-one-
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out cross-validation confirmed a 100% accuracy in classifying stroma and cancerous tissue 

(Figure 4.24E).  

Similarly, the positive mode data also looked promising. An adequate tissue separation was 

achieved with the supervised analysis, as observed on the MMC plot (Figure 4.25), with a 

cross-validation accuracy of over 85%. 

 

 

Figure 4.25. Statistical analysis of FFPE colorectal sample washed in xylene and analysed 

in positive ionisation mode. Showing PCA (A) and MMC+LDA (B) plots, cross-validation 

accuracy for two tissue classes present in the analysed sample (E) and H&E image of the 

analysed tissue section (C) and ion image of m/z 665.38 (D). 

 

 

4.3.14 Statistical analysis of a 10µm thick FFPE mouse liver sample 

As mentioned above, one potential drawback of the procedure for processing tissue samples 

was that while performing the ethanol gradient washes and the xylene clearing steps, molecules 

of interest could also be washed from the tissue sections. Therefore, it has been investigated 

whether enough metabolite information could be obtained from FFPE tissue sections using 

DESI-MSI to discriminate between different tissue types. Hence, a mouse liver sample with 

basophilic and acidophilic nodules was prepared according to the standard processing protocol. 

Before the DESI-MSI experiment, the slides were washed twice with xylene for 8 minutes in 
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order to remove paraffin, allowed to dry for 24 hours and analysed in both positive and negative 

ion mode. 

 

 

Figure 4.26. FFPE mouse liver sample with three tissue types used for data acquisition in 

negative ionisation mode. H&E stained digitalised image with tissue annotations: healthy 

liver tissue is marked in green, acidophilic nodule 1 – pink, basophilic nodule 2 – yellow (A); 

integrated ion image (B); overlaid RGB image of PCA components (C).  

 

Figure 4.27. Statistical analysis of the results for a mouse liver sample analysed in 

negative ion mode. PCA analysis of different components (A); supervised analysis 

MMC+LDA (B); leave-one-out Mahalanobis cross-validation (C).   
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Statistical analysis was performed using PCA and MMC, and it was observed that 

differentiation between tissue types could be accomplished using FFPE samples in both 

positive and negative ionisation mode. 

The analysed tissue section with histopathological annotations is shown in Figure 4.26A.  There 

were three different tissue types present in this sample:  healthy liver tissue, basophilic nodule 

and acidophilic nodule. When statistical analysis in negative ion mode was performed, it was 

possible to separate the nodules, and healthy liver tissue in the first component of the PCA, and 

separation between the nodules was achieved in the second component of the MMC, with a 

cross-validation accuracy of over 93% (Figure 4.27).  

 

The tissue section analysed in positive ion mode is shown in Figure 4.28A. Again, three tissue 

classes were annotated with a qualified histopathologist's help to allow further statistical 

analysis. These three different tissue types were quite clearly visible on the overlaid RGB 

image (Figure 4.28C).  

 

 

 

 

Figure 4.28. Mouse liver sample with three tissue types used for data acquisition in 

positive ionisation mode. H&E stained digitalised image with tissue annotations: healthy liver 

tissue is marked in green, acidophilic nodule 1 – pink, basophilic nodule 2 – yellow (A); 

integrated ion image (B); overlaid RGB image of PCA components (C). 
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In the positive ion mode, tissue separation could also be achieved, with a cross-validation 

accuracy of over 94% for the acidophilic nodule and healthy liver tissue and 70% for the 

basophilic nodule (Figure 4.29).  

 

 

Figure 4.29. Statistical analysis results for the FFPE mouse liver sample analysed in 

positive ion mode. PCA analysis of different components (A); supervised analysis 

MMC+LDA (B); leave-one-out Mahalanobis cross-validation (C).  

 

 

4.3.15 Statistical analysis of a 5µm thick FFPE mouse liver sample 

The optimal thickness of fresh-frozen sections prepared to be analysed by DESI-MSI has been 

evaluated to be 10-14µm. Therefore, all the experiments performed so far were relaying on 

10µm thick tissue sections. However, diagnostic histopathology laboratories do not cut sections 

at that thickness as a standard. If they are dealing with frozen samples, sections are cut at 4-

5µm thick. Therefore, as a part of ongoing efforts to make DESI-MSI more histology-friendly, 

additional experiments were run to assess whether FFPE samples cut at 4µm would still contain 

enough metabolomic information to allow tissue classification.  

The same mouse liver sample that was used for experiments described in Chapter 4.3.13 was 

cryosectioned at 5µm thick. Before DESI-MSI, the slide was washed in xylene 2 x 8 minutes, 

and the rest of the protocol remained precisely the same, including the instrument set-up. The 

data were recorded in both ionisation modes.
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Figure 4.30. The FFPE mouse liver sample cut at 5µm washed in xylene and analysed by DESI-MSI in both ionisation modes. The sample 

contained an acidophilic nodule (pink) and normal liver tissue (green) that were annotated with a histopathologist's help. A perfect separation was 

achieved for both ionization modes data even when an unsupervised analysis (PCA) was attempted.   
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A clear trend was observed even during an unsupervised PCA, with two tissue classes 

separating from each other for both negative and positive mode data (Figure 4.30). Therefore, 

this experiment has proven that even tissue sections cut at 5µm thick might contain enough 

metabolic information to classify different tissue types. However, contrary to tissue 

classification in fresh-frozen samples, it did not rely entirely on phospholipids mass range for 

the FFPE tissue specimens. Due to extensive washes in various solvents performed during the 

fixation phase, FFPE samples’ metabolic content was understandably very different. Therefore, 

the whole mass range (100 – 2000) was taken into account when tissue classification was 

attempted. Some phospholipid species were still present when the acquired data were 

examined, but the low mass range seemed to be especially rich. As a result, it was hypothesized 

that small metabolites could mainly contribute to successful tissue differentiation after DESI-

MSI. An example of an averaged mass spectra for these sections is shown in Appendix G.  

 

4.4 Discussion 
 

There are numerous reasons why many efforts have been put into making FFPE tissue samples 

available for various mass spectrometry platforms.  Not only most of the samples taken as a 

part of the diagnostic process are fixed in formalin and embedded in wax, but also the clinical 

information for those samples is readily accessible. Often, some additional tests like IHC and 

special stains are also available for those cases.    

Therefore, this project aimed to optimise a pre-DESI-MSI protocol to allow the metabolic 

analysis of FFPE tissue samples.  

First, a sucrose infiltration step and embedding in gelatin have been tested. It has been reported 

that these steps could significantly improve the quality of cryosections prepared from whole 

Drosophila [149]. It has, however, been observed that the signal intensity was not comparable 

to fresh-frozen samples, and no morphological structure of the analysed sections could be seen. 

The study using gelatin to assist with cryosectioning Drosophila reported that one of the 

difficulties they have been experiencing was related to the fact that each section consisted of 

heterogeneous tissue types. As the external cuticle was very hard, and the internal structures 

were much softer and surrounded by the fat body, each tissue class required different 

cryosectioning conditions. Also, the hydrophobic external cuticle was not compatible with a 

hydrophilic embedding medium. Therefore complete coverage by the medium used to assist 

with the cryosectioning was not possible [149]. While tissue samples fixed in formalin were 

often very brittle and challenging to cryosection, they did not pose the same issues as those 
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mentioned above. The majority of times, at least two different tissue types were present in each 

sample, but they were not as significantly different as in Drosophila. Therefore, this approach 

did not seem to be compatible with the requirements of this project.  

Secondly, an attempt was made to assess whether glycerol might be more suitable as a 

cryoprotection agent. It would likely show similar protection properties as sucrose but would 

not ionise as readily in negative ion mode, thus being less likely to cause ion suppression. 

Moreover, glycerol was thought to be more compatible with formaldehyde scavenging 

protocols as, unlike sucrose, it did not contain an aldehyde group. However, the signal intensity 

was also not satisfactory. The lowest ionisation was observed for the sample treated with 0.1% 

glycerol. On the other hand, the one treated with 5% glycerol appeared to be completely 

destroyed after the DESI measurements with hardly any tissue remaining on the glass slide.  

Next, the heat-induced antigen retrieval method was taken into consideration. Many studies 

reported that satisfactory protein extraction protocols had been established based on the 

heat-induced antigen retrieval technique, which was widely applied in IHC for FFPE tissue 

sections [150-152, 154]. It was hypothesised that a similar pre-experimental approach could be 

helpful for this project's aims, even though proteins were not the primary molecules of interest. 

Heat treatment was the first approach out of those tested so far, which resulted in the 

morphology of analysed sections becoming discernable. However, after these experiments, the 

most crucial observation was that urea/ heat-treated FF pork liver was tough to section as the 

tissue became too soft after the treatment. Therefore, this approach was also not compatible 

with the intended use.  

Since some papers reported that sodium metabisulfite could be used to neutralise formaldehyde 

[153, 154], this approach was also tested. Recorded signal intensity was surprisingly high; 

however, no morphological features could be seen in the analysed tissue sections. Pictures of 

pork liver sections mounted on glass slides were taken before and after DESI measurements. 

Prior to DESI-MSI, the tissue sections' morphological features could be clearly seen; therefore, 

it was hypothesised that the frozen section might not have adequately adhered to SuperFrost 

slides that were used as a standard. That led to further experiments being carried out using 

various types of glass slides (SuperFrost, SuperFrostPlus, Poly-Lysine, SuperFrostPlus Ultra, 

and SuperFrost Gold). They were combined with different formalin scavengers used at various 

concentrations (sodium metabisulfite, urea) with varying numbers of heat-treatment cycles 

(details are summarised in Table 4.2). However, none of these pre-experimental treatments 

resulted in satisfactory results. Urea seemed to have more effective formalin reversal properties 

than sodium metabisulfite as the fatty acid: phospholipid ratio was improved with all urea 
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concentrations tested. However, post-DESI tissue sections' quality was still unacceptable, and 

no morphological structures could be seen.  

It was then decided to assess the recently published protocol, which claimed to allow for the 

successful analysis of FFPE tissue sections by MALDI-MSI [101]. Since it has already been 

tested for the MSI application, it was the most suitable approach to DESI-MSI.  

After some initial tests, it was established that reasonably simple preparation steps were enough 

to obtain some metabolic information for FFPE tissue sections. Simultaneously, the sections 

were still intact after DESI-MSI measurements allowing for a detailed histological 

examination. As expected, the spectral composition for FFPE samples was very different from 

those acquired for fresh-frozen specimens. Peak intensities were significantly reduced above 

600 m/z in FFPE samples. However, it was tested and confirmed that despite extensive washes 

in gradients of alcohol and xylene, the remaining metabolic content was sufficient to allow for 

reasonable tissue classification within the analysed FFPE tissue sections. 

Moreover, even 5µm thick tissue sections were tested, and the results of an unsupervised 

analysis were very encouraging. These preliminary data have proven that it was possible to 

conduct metabolite measurements from FFPE tissue samples by DESI-MSI. Interestingly, as it 

has already been stated, the use of MSI platforms for FFPE peptide and protein content required 

many preparation steps [157]. In contrast, a straightforward workflow consisting only of a 

deparaffinisation step was enough to measure FFPE tissue samples' metabolic content by both 

MALDI-MSI [101] and DESI-MSI.  

The work carried out and described in this Chapter was used as a foundation and was further 

expanded in Chapter 5.  

 

 



137 

 

 

 

 

 

 

 

 

Chapter 5  
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5.1 Introduction 
 

5.1.1 Colorectal cancer incidence rates 

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. It is 

considered the third most common cause of cancer death, after lung and breast cancer in 

women, and after lung and prostate cancer in men [1, 158, 159]. In England, CRC incidence 

rates increased by 14 per cent for women and 33 per cent for men between 1971 and 2009. 

Around 6,000 women and 7,000 men died from CRC in England in 2010, a rate of 13 deaths 

per 100,000 and 21 per 100,000, respectively [160]. It has been estimated that 85% of colorectal 

cases occur in people who are more than 55 years old [161]. However, many studies have 

recently reported an increasing incidence rate in patients less than 40 years old [162-167].  

 

5.1.2 Aetiology 

The molecular mechanisms still require further investigation, even though significant efforts 

have been undertaken to understand the pathogenesis of CRC. Its aetiology has been linked to 

multiple factors, which include genetic mutations [168, 169], inflammatory processes [170, 

171], diet [172-175], and more recently, gut microbiota [176-179]. Cigarette smoking [180, 

181] and alcohol consumption [182, 183] are also associated with an increased risk of 

developing CRC. It was established that more than 95% of colorectal cancers are sporadic and 

the individuals affected are not genetically predisposed to the disease [184].  

Research studies have shown that the gut microbiota is linked to CRC development as a 

primary driver of inflammation in the colon [185]. One mechanism through which microbes 

can influence disease development is thought to be through microbe-driven intestinal 

inflammation. However, only a slight increase in CRC incidence has been observed in 

individuals with chronic inflammation due to inflammatory bowel disease (IBD), including 

ulcerative colitis and Crohn’s disease. Moreover, since genetic abnormalities are hallmarks of 

all cancers, it remains unclear how a deregulated immune response can lead to genetic lesions 

predisposing to CRC [186, 187].  

 

5.1.3 Diagnosis 

A CRC diagnosis is made through manual histological evaluation of biopsies taken from the 

tumour and surrounding tumour regions. This evaluation acts as one of the key prognostic 

factors for most cancers, providing information on the tumour type, grade and any 

morphological abnormalities. This information is then used to decide on the treatment for a 
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particular patient. CRC develops through many different stages, and these can be classified as 

either benign or malignant (Figure 5.1). Endoscopy is routinely used for the identification of 

gastrointestinal polyps and tumours [188]. However, early diagnosis is essential and may 

prevent the formation of tumours. Therefore, the aim is to identify and remove polyps when 

they are still at the benign stage. In this case, cancerous cells will only be defined within the 

polyps, and as a result development of the tumour can be prevented in the future.  

 

 

Figure 5.1. Progression from colorectal polyp to cancer. Adapted from [189]. The whole 

process is divided into two phases: benign and malignant. In the benign stage, cancerous cells 

are confined with polyps, and the tumour did not grow beyond mucosa, the inner layer of the 

colon or rectum. Therefore, if a polyp is removed during a routine gastroscopy, the 

development of the tumour is prevented. In the malignant stage, cancerous cells are invading 

through the layer of the underlying muscle.  

 

 

 

In each case, removed polyps are sent for histology assessment, and Tumour Nodes Metastases 

(TNM) staging is used to describe the invasiveness and spread of cancer (Supplementary 

information, Appendix H). In the TNM system, the T refers to the size and extent of the primary 

tumour, the N refers to the number of nearby lymph nodes with cancer, and the M refers to 

whether cancer has metastasized [188].  

 

5.1.4 Histopathological assessment  

Traditional histological evaluation of post-operative tissue sections is the standard method that 

has been used over the decades to enable clinicians to characterise tumours. Whilst this 

approach is relatively simple and powerful, it has some significant drawbacks. Manual 

examinations are very time consuming and hence limit the speed and throughput of diagnosis. 

Another aspect that should also be mentioned is an inter-observer error [35-37]. There is a 
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broad spectrum in cancer morphology; therefore, many tumours can be atypical or lack 

morphological features crucial for future diagnosis [33]. Moreover, the advanced form of 

CRC's low survival outcome has prompted the need for reliable predictive and prognostic 

markers.  

 

5.1.5 Prognostic markers for the CRC 

Recent advances in the molecular subtypes of colorectal cancer, methylation of DNA in CRC, 

micro-RNA biogenesis, and their involvement in CRC have resulted in many new colorectal 

biomarkers [190-192]. Such biomarkers may be used for earlier diagnosis (microsatellite 

instability, APC mutation, methylation biomarkers) [192], selection of 'personalised' therapy 

(KRAS, BRAF) [191], and prognosis of CRC (KRAS, BRAF, and potentially miR-21, miR-

92a, miR-200, miR-320e) [193, 194]. Several marker classes have been evaluated for their 

CRC screening use and have shown potential in early phase biomarker studies. Importantly, 

non-invasive biomarkers derived from biological fluids (blood- or stool-based markers), due 

to their easy accessibility, could be considered practical tools for CRC detection and 

monitoring [195]. Unfortunately, most of the identified biomarkers failed in the validation 

studies due to the lack of consistency between biomarker panels. This failure highlights a 

significant obstacle to the development of robust CRC biomarkers [190]. Therefore, it is clear 

that alternative methods are required for accurate and timely diagnosis and characterisation of 

tumour grade and stage [196]. As a result, further research and new modalities involving 

automated diagnosis are needed to overcome these challenges to lessen the traditional 

pathology-based tissue diagnosis burden.  

 

5.1.6 DESI-MSI as a tool to complement traditional diagnosis 

DESI-MSI has been used in many projects aiming to characterise various types of cancer, 

including colorectal cancer [83, 84, 88, 90-92]. This project also aims to apply the DESI-MSI 

to study colorectal cancer and use fresh-frozen tissue sections as has been done so far and also 

FFPE tissue samples. The reasons why FFPE samples are a very desirable material to use in 

research studies have been discussed in Chapter 4.1.  

 

5.1.7 Use of FFPE samples in MS-omics studies 

Currently, fresh-frozen samples are still preferred over FFPE in tissue-based DESI-MSI and 

MALDI-MSI studies. This is mainly due to concerns related to the effect of chemical 

processing on the molecular content of tissue samples, molecular delocalization resulting from 
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washing steps, and the risk that paraffin might cause ion suppression [197, 198]. However, 

several separation studies have been performed in recent years, demonstrating that unlocking 

FF proteins was possible. Ahram et al. [199] reported that they could extract proteins from 

ethanol-fixed and paraffin-embedded tissue and analyse them by HPLC MS/MS. Shi et al. 

[150, 151] showed evidence that obtaining a good overlap between proteins identified from 

frozen and FFPE sections was possible. Some encouraging results were also published by 

Crockett et al. [147] and Prieto et al. [200] regarding the identification of proteins from 

enzymatically digested FFPE tissues by LC-MS/MS.  

There was also much effort put into the application of MALDI-MSI to FFPE samples. Ronci 

et al. [201] described a methodological investigation of protein unlocking protocols to allow 

MALDI-MSI experiments using FFPE tissue sections. Many protocols have been published for 

MALDI-MSI of peptides [202-205] and N-glycans [202, 206] from FFPE specimens.  

Moreover, it has been reported that metabolite measurements from homogenised FFPE tissue 

samples using liquid-based mass spectrometry were performed [207, 208]. It is important to 

stress that liquid samples cannot provide information on molecular spatial distribution. This 

aspect is particularly essential as tissues are heterogeneous and highly complex systems [101]. 

The liquid-based MS approach requires significant amounts of tissue to allow for satisfactory 

metabolite yields to be used for analyses. Additionally, it has been established that tissue 

homogenization leads to loss of specificity and therefore contributes to reducing significant 

results [101]. As an analysis of FFPE samples is very desirable from a biological and clinical 

context, it has been hypothesized that given the ability to measure metabolites from FFPE 

samples by LC-MS, it should also be possible to do so in MSI.  

When this work was carried out, it was the first study of in situ DESI-MSI analysis of FFPE 

tissue samples. 

These efforts are undertaken in order to make DESI-MSI as histology-friendly technique as 

possible.  
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5.2 Materials and methods 
 

5.2.1 Fresh-frozen vs FFPE – two types of samples used  

Two types of human colorectal tissue samples were used for experiments performed for this 

project's needs: fresh-frozen samples and FFPE tissue samples (including tissue microarray).  

 

5.2.2 Clinical specimens and sample collection  

5.2.2.1 Fresh-frozen colorectal tissue samples 

Approval for the study was obtained from the institutional ethics review committee and 

Imperial College Healthcare Tissue Bank (REC reference number 14/EE-0024). Tissue 

samples for this study were collected from patients who were undergoing colorectal surgery at 

Imperial College Healthcare NHS trust. Further details can be found in Chapter 2.1.1. 

After retrieving a surgical specimen, it was first sent for routine histopathological examination, 

where suitable samples were taken and snap-frozen for DESI-MSI. 

Patient characteristics for this cohort were recorded and are summarised in Table 5.1.  

 

 

Table 5.1. Histological characteristics of fresh-frozen colorectal tissue samples.  

 

 

5.2.2.2 FFPE colorectal tissue samples 

All the details of FFPE colorectal tissue samples were described in Chapter 2.2.1.  

 

5.2.3 Sample preparation 

Fresh-frozen samples were prepared as described in Chapter 2.7.1. 

FFPE samples were prepared as described in Chapter 2.7.2. 

 

 

 

Number of 

samples 

Number of 

patients 
Age range 

Normal  27 27 33-69 

Adenoma 8 8 43-55 

Cancer 12 12 35-71 

TOTAL 47 47  
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5.2.4 DESI-MSI analysis of the colorectal tissue samples 

5.2.4.1 Fresh-frozen samples 

Fresh-frozen human colorectal samples were analysed in a random order in negative ion mode 

using a high-resolution orbital trapping mass spectrometer (Exactive, ThermoScientific, 

GmbH) controlled by XCalibur 2.1 software. Full details of the DESI-MSI setup for this batch 

of samples can be found in Chapter 2.8.  

 

Parameters 

 

Settings of Thermo Exactive instrument 

Polarity Negative 

Max injection time 1000 ms 

Micro-scans 1 

Mass resolution  100000  

Mass range 150-2000 m/z 

Capillary temperature  250°C 

Capillary voltage -50 V 

Tube lens voltage -150 V 

Skimmer voltage -40 V 

Spray voltage 4.5 kV 

Skimmer voltage -40 V 

Table 5.2. Thermo Exactive Orbitrap settings used for DESI-MSI of fresh-frozen 

colorectal samples.  

 

 

5.2.4.2 FFPE samples 

FFPE colorectal samples were analysed using a Xevo G2-XS QToF mass spectrometer (Waters 

Corporation, Milford, MA) coupled to a 2D sample stage (Prosolia Inc., Indianapolis, IN, 

USA). HDI software was used to select the regions of interest on the glass slides. Full details 

of the DESI-MSI setup for the FFPE samples is described in Chapter 2.9.  
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Parameters Xevo G2-XS QToF (Waters 

Corporation, Milford, MA) 

 

Scan time 1 sec 

Scan mode Sensitivity 

Mass analyser TOF 

Mass range 50-1500 m/z 

Ionisation mode  Negative  Positive 

Sampling cone voltage -40 V 40 V 

Source offset -80 V 80 V 

Source temperature 120°C 120°C 

Spray voltage 4.5 kV 4.5 kV 

Table 5.3. Xevo G2-XS QToF parameters used for the DESI-MSI protocol for the analysis 

of FFPE colorectal tissue samples. 

 

5.2.5 Histological assessment  

As DESI-MSI is a soft ionisation technique, the analysed tissue sections can be stained with 

H&E for histopathological evaluation. The DESI-MSI image and histology image of the same 

tissue section can then be used for tissue-specific data extraction. The stained slides were 

digitally scanned at high resolution, using a Nanozoomer 2.0-HT digital slide scanner 

(Hamamatsu, Japan) and analysed by an in-house histopathologist blinded to the results of 

DESI-MSI. 

 

5.2.6 Data analysis 

5.2.6.1 Fresh-frozen samples 

Methodological details of data analyses are described in Chapter 2.13.  

 

5.2.6.2 FFPE samples 

The raw data files were lock-mass corrected to molecules present endogenously in the samples: 

FA(18:1) with an m/z of 281.2486 and hexadecanedioic acid with an m/z of 287.2217 for 

negative and positive ion modes, respectively, and background subtracted. The purpose of this 

procedure was to “lock” on to a single peak to correct for calibration drift with time. Once the 

“lock” onto the chosen peak's theoretical mass has been done, the spectrum was recalibrated to 

that theoretical mass, improving the mass accuracy at all points. Imaging raw files were 
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uploaded into a custom-build imaging toolbox in MatLab (R2016a, MathWorks, Natick, MA, 

USA) environment. The H&E stained optical image was co-registered to the MS image. Next, 

areas of the tissue section corresponding to different tissue types (such as mucosa, mucin, 

muscle, and tumour) were annotated with a qualified histopathologist. The annotated regions 

were used for uni- and multivariate statistics and as the training set to predict the sample's un-

annotated pixels. Uni- and multivariate statistics were performed on the m/z range 100 to 1000. 

Multivariate analysis was done using median fold change normalised data which was 

subsequently log-transformed. PCA and MMC-LDA were attempted for the multivariate 

differentiation of annotated spectra. Univariate ANOVA was performed with data normalised 

in the same manner but which was not log-transformed to identify significantly different m/z 

variables. Pixel prediction was tested using leave-one-spectrum-out cross-validated MMC 

models with a 3-nearest neighbour classifier. 

 

5.3 Results  
 

5.3.1 Fresh-frozen colorectal tissue samples 

A small set of 47 human colorectal tissue samples was analysed. It consisted of 27 healthy, 8 

adenoma, and 12 tumour samples and the tissue sections were measured in negative ionization 

mode. The data were recorded in 150-1500 m/z, but the tissue classification attempts were 

based only on the phospholipids mass range. It has been established that PCs usually do not 

ionise well in negative ion mode, but they are highly intense in positive ion mode and therefore 

dominate the spectra. As a result, it is challenging to achieve a good intensity for other lipid 

classes, contributing to less diversity of the spectra from the positive ionization mode compared 

to the negative mode. For this reason, the majority of previous studies have focused on negative 

ion mode for lipid characterisation and identification of different tissue types by DESI-MSI 

[91, 138]. 

In order to compare and link the chemical composition with the morphological features of the 

analysed samples, optical images were aligned with ion images and examined by a qualified 

histopathologist for a precise selection of morphological regions of interest.  

In most healthy colorectal samples, three tissue classes were present – mucosa, submucosa, 

and muscle. Figure 5.2 shows different metabolic profiles for these tissue classes. DESI-MSI 

generated intense fatty acids and phospholipids signals in negative ionisation mode. By 

comparing these tissue classes' averaged spectra, it was possible to observe changes in their 
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molecular composition from one class to another, with the most apparent differences in the 

phospholipids mass range.  

 

 

Figure 5.2. Averaged mass spectra acquired in negative ion mode from the different tissue 

types within a fresh-frozen, healthy colorectal tissue sample. Mass ranges corresponding to 

phospholipids are highlighted.  
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5.3.1.1 Prediction of tissue types in individual fresh-frozen samples 

First, a single healthy colorectal sample was subjected to multivariate statistical analysis. A 

histopathologist annotated three tissue types with the smallest number of pixels assigned to 

muscle. That was because there was only a thin layer of that tissue between mucosa and 

submucosa (Figure 5.3E).  

PCA was then applied to identify overall similarities/differences in lipid composition between 

different tissue regions in all sample surfaces without any prior information in the analysis. 

The resulting principal component scores for every pixel in the tissue section were visualized 

in a colour-coded manner with the colour intensity proportional to a given pixel score. Based 

on the PCA plot, there was a clear separation between the mucosa and submucosa. Muscle-

related data points seemed to scatter a bit over these two tissue classes, but that could be 

explained by their biological composition. Since submucosa comprises a layer of dense 

irregular connective tissue that supports the mucosa and joins it to the muscular layer and bulk 

of overlying smooth muscle, it was expected that it would be similar to the muscle itself. The 

first component explained more than 75% of the variation in the negative mode data (Figure 

5.3F). The tissue classes' spectral profiles were distinct, which was also demonstrated in the 

MMC plot (Figure 5.3G). The leave-one-out cross-validation results are presented in Figure 

5.3H. The accuracy of over 98% was achieved for mucosa and submucosa and 94% for muscle.  

Next, another healthy colorectal sample was subjected to statistical analysis, but this time four 

tissue classes were annotated. There were not too many pixels available for lymphoid tissue, 

but still, the overlaid RGB image of PCA components showed an apparent prediction of all 

four tissue classes (Figure 5.4C). The only two tissue types that were not distinct on the PCA 

plot were submucosa and muscle (Figure 5.4D). However, supervised analysis results were 

very clearly showing three groups representing mucosa, submucosa, and muscle. Two 

subgroups present for lymphoid tissue most likely resulted from a small number of annotated 

pixels (Figure 5.4E).  

Lastly, a single colorectal tumour sample was annotated and analysed. Most cancerous samples 

were classified as an entire tumour, but the one shown in Figure 5.5A had two tissue types. A 

clear trend was seen after the unsupervised analysis.  Leave-one-out cross-validation results 

confirmed a 100% accuracy for both tumour and muscle (Figure 5.5).  
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Figure 5.3. A single, fresh-frozen, healthy colorectal sample analysed in negative ion 

mode. PCA component images for the different tissue types identified (A-C); overlaid RGB 

image of PCA components (green – mucosa; pink – muscle; blue – submucosa) (D); an optical 

image of the H&E stained section (E) PCA analysis of different components (F); supervised 

analysis MMC+LDA (G); leave-one-out Mahalanobis cross-validation results (H). 
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Figure 5.4. A single, fresh-frozen, healthy colorectal sample with four tissue classes 

analysed in negative ion mode. An optical image of the H&E stained section with 

histopathological annotations (A) first principal component image (B); overlaid RGB image of 

PCA components (pink – mucosa; green – submucosa; yellow – lymphoid, blue - muscle) (C); 

PCA analysis of different components (D); supervised analysis MMC+LDA (E); confusion 

matrix showing the classification performance (F). 
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Figure 5.5. Results for a single, fresh-frozen tumour sample analysed in negative 

ionization mode. H&E stained tissue section with annotations for different tissue classes (red 

– tumour and green – muscle) (A); PC1, which already revealed the structure of analysed tissue 

section (B); MMC component image (C); unsupervised principal analysis plot showed a clear 

separation between tumour and muscle (D); leave-one-out cross-validation results (E). 
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5.3.1.2 Normal versus cancerous fresh-frozen colorectal tissue samples 

The most obvious question that arose after the statistical analysis of individual samples was 

how different the surrounding healthy tissue was from a tumour. Figure 5.6 represents averaged 

spectra from these two tissue types as a visual representation of collected data from one 

randomly chosen sample. It was observed that most of the time, the signal intensity was 

significantly lower for cancerous samples. As colorectal cancer originates from the mucosa, all 

samples described as normal ones were focusing on their healthy mucosa component. It did not 

make much sense to try and compare cancerous tissues with submucosa or muscle.  

 

 

 

 
Figure 5.6. Averaged mass spectra acquired in negative ion mode from fresh-frozen 

healthy and colorectal tumour tissue samples. Some putative IDs have been assigned, and 

highlighted are those which were shared between these two tissue types.  

 

 

 

One of the essential advantages of DESI-MSI is that, straight after the data acquisition is 

completed, it is possible to visualise the distribution of metabolites within analysed tissue 

sections. Figure 5.7 displays examples of DESI images representing four endogenous 

molecules for normal colorectal and colorectal tumour tissue sections, alongside the 

corresponding H&E stained images of the same tissue samples. Colorectal tumour samples 

were more homogeneous, generally presenting just one tissue type. 
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These four m/z values were selected by hand in the HDI software. First, the healthy colorectal 

sample was subjected to manual inspection in order to be able to identify some m/z values 

which were specific to individual tissue classes, e.g. mucosa, submucosa or muscle. Next, four 

molecules were selected, out of which three were only present in healthy mucosa, while m/z 

878.55 seemed to be evenly distributed within the whole tissue section (Figure 5.7A). Next, 

the same molecules were visualized in the colorectal tumour sample.  

 

 
 

Figure 5.7. Molecule distribution in fresh-frozen normal and colorectal tumour samples. 

Healthy colorectal sample (A) and colorectal tumour sample (B) analysed in negative 

ionisation mode. The same molecules could be found in these two tissue types, and one of the 

advantages of this technique is that their distribution could also be visualised in the analysed 

tissue sections. Putative IDs: m/z 303.23 – FA(20:4); m/z 726.54 – PE(P-36:2); m/z 750.54 – 

PE(P-38:4); m/z 878.55 – PE(44:8). 

 

 

 

Next, an attempt was made to identify some molecules contributing to the separation of these 

two tissue types (Figure 5.8). m/z 701.54 and 772.55 were more abundant in a healthy mucosa, 

while m/z 887.5725 was in a tumour. Putative IDs were [PA(36:1)-H]-, [PS(P-36:1)-H]- and 

[PI(38:3)-H]-, respectively.  
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Figure 5.8. The Kruskal-Wallis ANOVA test results were used to identify molecules 

contributing to discrimination between fresh-frozen healthy and cancerous tissue 

samples. Four randomly chosen healthy and matching cancerous samples were used to show 

the distribution of the identified molecules. m/z 701.54 and m/z 772.55 were more abundant in 

a healthy mucosa, while m/z 887.5725 was in a tumour. 

 

 

Four patient-matched healthy versus tumour pairs were randomly chosen to demonstrate the 

distribution of these identified molecules. As shown in Figure 5.9, m/z 701.5145, which was 

more abundant in healthy samples, was present in all normal tissue sections and was especially 

intense in the mucosa. A histopathologist first described the only tumour sample in which m/z 

701.5145 was also present as cancer. However, when blindly rechecking the tissue sections, he 

commented that there were a couple of areas in that particular sample where healthy-looking 

mucosa was present. This can serve as an explanation of why that molecule was present in that 

cancerous sample.  
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On the other hand, [PI(38:3)-H]- which was identified as more abundant in the tumour, was 

found to be rather intense in healthy colorectal mucosa as well (Figure 5.10).  

 

 

 

 

Figure 5.9. An example of molecules that were more abundant in fresh-frozen, healthy 

colorectal samples. Their distribution is also shown in both healthy and colorectal tumour 

samples.  
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Figure 5.10. m/z 887.5725 with a putative ID [PI(38:3)-H]- was identified as more 

abundant in colorectal tumour samples. However, it was found in healthy colorectal mucosa 

too.  

 

 

5.3.1.3 Prediction of tissue classes in multiple fresh-frozen colorectal 

tissue samples 
 

Next, 27 healthy colorectal samples were analysed. Three tissue classes were annotated – 

mucosa, muscle and submucosa. As shown in Figure 5.11A, the unsupervised analysis revealed 

that muscle and submucosa seemed somewhat similar. In contrast, the metabolomic 

composition of mucosa seemed to be completely different. However, since submucosa 

comprises a layer of dense irregular connective tissue that supports the mucosa and joins it to 

the muscular layer and bulk of overlying smooth muscle, it was expected that it would be 

similar to the muscle itself. A good separation of these three tissue classes was achieved in the 

supervised analysis (Figure 5.11B). The leave-one-out cross-validation results confirmed it 

with an accuracy of 96% for mucosa and over 76% for both submucosa and muscle (Figure 

5.11C). Each data point represents a single sample meaning that all the collected information 

for each particular specimen needed to be averaged first. 

 



156 

 

 

Figure 5.11. Statistical analysis of 27 fresh-frozen healthy colorectal samples. PCA plot 

(A); MMC+LDA plot (B); leave-one-out cross-validation matrix (C).  

 

 

The next step was to build a model for normal, adenoma and tumour samples. Only pixels 

representing mucosa were used to represent the healthy samples. This was as per the 

histopathologist's advice, as colorectal cancer originates from the mucosa.  

The PCA plot did not show a clear differentiation, especially data points matching adenoma 

samples seemed to be scattered over normal and tumour samples (Figure 5.12A). However, 

when a supervised analysis was performed, different sample types were clearly classified 

(Figure 5.12B). An accuracy of 85% was achieved for healthy, 83% for tumour and 25% for 

adenoma samples when a leave-one-out cross-validation was performed. 
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Figure 5.12. Multiple sample analysis results for 14 healthy, 8 adenoma and 12 colorectal 

tumour samples (fresh-frozen). PCA plot (A); MMC+LDA plot (B); leave-one-out cross-

validation matrix with an accuracy of 85.7% for healthy and 83.3% for tumour samples (C). 

 

 

Adenoma samples were mainly polyps removed during a colonoscopy. Even though a 

colonoscopy is routinely used, the number of available adenoma samples was deficient when 

this analysis was run. In order to build a robust model, the number of analysed samples needs 

to be much higher and balanced for different tissue types included in a study. Therefore, these 

results can only be treated as preliminary ones. As five out of eight adenoma tissue samples 

were classified as a tumour, it would be interesting to see patients' clinical history and how the 

disease has progressed. It might be that DESI-MSI could capture some metabolomic 

information indicating the potential progression of the disease.  

 

Lastly, an attempt was made to classify only healthy and cancerous samples.  

As shown in Figure 5.13, a clear trend was observed when the unsupervised analysis was 

performed for these two tissue classes. This data was also complemented by a leave-one-out 

cross-validation plot which confirmed 88.5% accuracy for normal samples and 91.7% for 

tumours.  

The three samples with labels ‘healthy’ that were classified as tumours were identified and 

assessed by a histopathologist again. It was confirmed that there was no reason to consider 
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them as cancerous from a histology perspective. It might have happened that those samples 

were taken very close to the centre of the tumour. Despite tissues themselves looking ‘healthy’, 

it might be that their metabolic content suggested the opposite.  

 

 

 

Figure 5.13. Multiple sample analysis results for 26 healthy and 12 colorectal tumour 

samples (fresh-frozen). PCA plot (A); MMC+LDA plot (B); leave-one-out cross-validation 

matrix with an accuracy of 88.5% for healthy and 91.7% for tumour samples (C). 

 

 

5.3.2 High-throughput profiling of fresh-frozen colorectal samples 

5.3.2.1 Introduction 

The current procedure of analysing tissue sections by DESI-MSI in our lab allows setting up 

measurements for only one sample at a time. This is because queuing more than one slide 

means that every tissue section would be exposed to the room temperature during the previous 

samples' analysis. When tissue specimens are removed from bodies, every care is taken to 

reduce the time they spend exposed to ambient conditions to avoid degradation of their 

components. Therefore, unless a reliable system allowing to control the temperature is in place, 

only one slide can be mounted on a DESI stage and needs to be placed under the nitrogen flow 

straight away.  
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At the same time, these days, diagnostic laboratories more and more rely on automation. 

Introducing new instruments that can perform designated tasks with the minimum input from 

staff members speeds up the whole process and eliminates human errors. Therefore, it is 

evident that if DESI-MSI is meant to be introduced to routine diagnostic use, it has to be as 

user-friendly as possible. That includes the ability to queue the slides awaiting measurements. 

This feature would also allow using the instrument time much more efficiently as multiple 

samples could be analysed, for example, overnight rather than just one as it is at the moment.  

As a result, multiple efforts have been undertaken to design a new high throughput DESI-MSI 

platform allowing safe queuing of multiple glass slides awaiting measurements. Dr Emrys 

Jones from Waters, Wilmslow, UK, has been working on a similar project in collaboration with 

Professor Takats group from Imperial College London. The preliminary results presented 

below form a part of this collaboration.  

All the initial tests assessing the stability of the DESI-MS setup over time were done by Dr 

Jones. After running some experiments using pork liver, he concluded that the experimental 

DESI-MS system could operate at high performance for extended periods. It has been observed 

that intra and inter tissue spectra were comparable, albeit for a simple test system of the food-

grade liver. Therefore, based on the study results, the method was adapted for clinical samples 

as well.  

 

5.3.2.2 Materials and methods 

Fresh-frozen colorectal tissue samples 

24 human colorectal samples (12 patient-matched healthy vs tumour pairs) were randomly 

selected from the colorectal cohort described in Chapter 2.1.1.  

 

5.3.2.3 Sample preparation 

Fresh-frozen samples were prepared as described in Chapter 2.7.1. 

 

5.3.2.4 DESI-MSI instrument setup  

Samples were measured in Waters laboratory in Wilmslow. This batch of fresh-frozen 

colorectal samples was analysed using a Xevo G2-XS QToF mass spectrometer (Waters 

Corporation, Milford, MA) coupled to a 2D sample stage (Prosolia Inc., Indianapolis, IN, 

USA). HDI software was used to select the regions of interest on the glass slides. Contrary to 

all other DESI-MSI experiments performed for projects described in this Thesis, these samples 
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were measured at a resolution of 50µm. Full details of the DESI-MSI setup for this batch of 

samples is described in Chapter 2.9. 

 

Parameters Xevo G2-XS QToF (Waters 

Corporation, Milford, MA) 

 

Scan time 10 scans/ sec 

Scan mode Sensitivity 

Mass analyser TOF 

Mass range 50-2000 m/z 

Ionisation mode  Negative  

Sampling cone voltage -40 V 

Source offset -80 V 

Source temperature 120°C 

Spray voltage 4.5 kV 

Table 5.4. Xevo G2-XS QToF parameters used for the high throughput automated DESI-

MSI protocol to analyse fresh-frozen colorectal tissue samples. 

 

The schematic of high-throughput automated DESI is described in Chapter 2.6.  

 

5.3.2.5 Data analysis 

At this stage, only three ion RGB overlay images were prepared using HDI software. 

 

5.3.2.6 Results and discussion 

These are only preliminary results, but they look very promising. In order to be able to make 

any firm conclusions, the acquired data need to be subjected to proper statistical analysis. Once 

a qualified histopathologist annotates tissue sections, the usual post-DESI-MSI data analysis 

workflow will be applied to this dataset.  

 

After completion of 17 hours of DESI-MSI automated run, data for each sample were looked 

at separately using HDI software. At this stage, the main aim was to assess if it was possible to 

distinguish different tissue types within each tissue section. In order to do that, three ion RGB 

images were created.  
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Figure 5.14. Optical images of H&E stained tissue sections (left) and matching RGB 

image (right). Fresh-frozen healthy and cancerous samples from the same patient were used 

here as an example. Matching tissue classes are annotated in both H&E and RGB images. RGB 

images are composed of the following ions: Colorectal normal: green – 738.50 (PE 36:4), blue 

– 885.54 (PI 38:4), orange – 790.53 (PE 40:6); Colorectal tumour: green – 747.51 (PG 34:1), 

blue – 773.53 (PG 36:2), orange – 861.54 (PI 36:2).  

 

 

As it can be seen in Figure 5.14, data acquired at 50µm x 50µm pixel size allowed for the 

collection of detailed information. Not only mucosa (green) and submucosa (blue) could be 

seen in the image representing a healthy sample, but also lymphoid tissue (orange) could be 

visualised. The cancerous sample's RGB image contained even more information and revealed 

a few different tissue types present in that tissue section. One of them was stroma which is 

highlighted in yellow. That colorectal tumour sample would be particularly interesting to be 

reviewed by a histopathologist as, based on its metabolic content, it seems to contain three or 
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four tissue types. It would be exciting to verify if the same statement could be made from the 

histopathology perspective.  

These two tissue sections were imaged as the third and the fourth out of the whole batch 

consisting of twenty-four specimens. However, equally encouraging results were seen for all 

other samples, including those run towards the end. In every case, the RGB image showed an 

apparent separation of various tissue classes present in each section (Figure 5.15). This 

observation compared with averaged spectra recorded for the 1st and the 21st sample (Figure 

5.16) concluded that tissue sections were stable from the biological perspective. The spectral 

composition was very similar, and the signal intensity was consistent throughout the run.  

 

As mentioned earlier, all the above are preliminary conclusions as this dataset needs to undergo 

the usual post-DESI data analysis workflow. The first step would be to get the tissue sections 

annotated with a qualified histopathologist's help, as all further statistical analysis relies on 

assigned labels representing various tissue classes. 

However, based on Dr Jones's initial tests and the first results from the batch of clinical 

samples, it seemed that the current DESI-MS system could operate at high performance for 

extended periods. This is a crucial step towards making the DESI-MSI setup more histology-

friendly. Moreover, running whole studies as a single batch rather than over days or weeks 

should provide more comparable data and contribute to better use of the instrument time.  

DESI-MS imaging allows tissues to be classified based on their chemical composition, and 

multiple levels of information can be obtained quickly from the same analysis with no sample 

preparation. The relative simplicity of DESI-MS as a molecular imaging platform lends itself 

to routine use, and improvements in performance and robustness make this even more feasible.  
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Figure 5.15. RGB images representing all 24 fresh-frozen tissue samples run as one batch during the 17 hours of automated DESI-MSI 

analysis. Different tissue classes were distinguishable in each tissue section and were represented by different colours in RGB images: green – 

747.51 (PG 34:1), blue – 835.53 (PI 34:1), orange – 790.53 (PE 40:6).   
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Figure 5.16.  Comparison of mass spectra acquired for the first and the twenty-first fresh-frozen colorectal sample analysed during the 

automated DESI-MS imaging run. Signal intensity and spectral composition were consistent throughout the 17 hours long run. Different tissue 

classes were distinguishable in each tissue section and were represented by different colours in RGB images: green – 747.51 (PG 34:1), blue – 

835.53 (PI 34:1), orange – 790.53 (PE 40:6).
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5.3.3 Colorectal samples: Fresh-frozen versus FFPE 

5.3.3.1 Introduction  

Before commencing to FFPE colorectal samples analysis, a small cohort consisting of fresh-

frozen and matched FF tissues was subjected to DESI-MSI. This study was performed to make 

a quick and simple comparison of metabolic content of precisely the same tissues, which were 

first processed as fresh-frozen samples, and then fixed in formalin and treated as FFPE.  

 

5.3.3.2 Materials and methods  

4 human colorectal samples (2 patient-matched healthy versus tumour pairs) were randomly 

selected from the colorectal cohort described in Chapter 2.1.1. 

First, the fresh-frozen samples were prepared, as described in Chapter 2.7.1. After preparing 

all required frozen sections, the same piece of tissue was fixed in formalin for 24 hours and 

processed as described in Chapter 2.4. FFPE samples were then prepared, as described in 

Chapter 2.7.2. 10µm thick sections were cut for both fresh-frozen and FFPE samples. 

 

Fresh-frozen human colorectal samples were analysed in negative ion mode using a high-

resolution orbital trapping mass spectrometer (Exactive, ThermoScientific, GmbH).  

Full details of the DESI-MSI setup for this batch of samples can be found in Chapter 2.8. 

 

FFPE colorectal samples were analysed in negative mode using a Xevo G2-XS QToF mass 

spectrometer (Waters Corporation, Milford, MA) 

Full details of the DESI-MSI setup for the FFPE samples is described in Chapter 2.9.  

 

5.3.3.3 Data analysis 

This small cohort of colorectal samples was analysed with the help of Dr Paolo Inglese. The 

same workflow was in place, as described in Chapter 2.13. R package was used to perform 

data analysis.  

 

5.3.3.4 Results 

It is important to stress that this small cohort of samples was only run to assess the chemical 

composition of the same tissues treated as fresh-frozen and then embedded in the wax as FFPE. 

Since two types of mass spectrometers were used to run DESI-MSI, apparent differences came 

from the instruments themselves. Orbitrap is known to have excellent mass accuracy, while 

ToFs have high sensitivity. That was one reason why FFPE samples were analysed on the latter. 
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Their metabolomic content was expected to be severely impacted by all the washes taking place 

during sample processing [99, 100]. Other reasons were purely practical and included 

instrument availability and sturdiness. As described in Chapter 2.9., the sprayer used on Waters 

ToF mass spectrometer was more robust and easier to optimise, which was an important factor 

when dealing with a novel application of DESI-MSI.  

First, the acquired data were compared in terms of spectral composition. In the fresh-frozen 

tissue sections, most tissue-related peaks were present in the phospholipid mass range. On the 

other hand, completely different molecular species were seen in the FFPE imaging data. This 

was expected and already seen in the results described in Chapter 4. The average peak intensity 

for each sample is presented in Figure 5.17.  

Next, two unsupervised analyses – k-means and PCA – were used to see if tissue discrimination 

was possible, especially in FFPE samples. The objective of k-means is to group similar data 

points and discover underlying patterns. In order to do so, k-means looks for a fixed number 

of clusters in a dataset. A cluster refers to a collection of data points that are grouped because 

they share certain similarities [209]. On the other hand, PCA might be the most popular 

multivariate statistical technique and functions as a linear transformation of the original 

variables. It is described as an unsupervised pattern recognition method, and as such no a priori 

knowledge about the dataset is used. PCA projects multivariate data by reducing the number 

of dimensions in a dataset whilst retaining the necessary information [210].  

Results of these two unsupervised statistical techniques are presented in Figure 5.18. Matching 

H&E-stained tissue sections with histopathological annotations are shown as well as a 

reference. In every tissue sample, its metabolic content specific to each tissue type was 

preserved and allowed discrimination of different tissue classes represented by various colours 

in k-means and PCA images. The colour-coded classification was especially apparent in 

healthy samples as, by default, those were presented with at least two tissue types.  

Sample Fresh-frozen_368_normal contained two tissue types: mucosa and submucosa. 

However, k-means and PCA images were mainly composed of one colour matching the shape 

of the mucosa. There was a bit of background surrounding it, which was thought to come from 

the submucosa part. That particular tissue section was quite destroyed after DESI-MSI, and 

only the mucosa part was well preserved on the glass once the measurements were completed. 

DESI-MSI is a non-destructive technique, but tissue sections can be destroyed by the solvent 

and gas flow on rare occasions if they do not adhere to the slide properly. A consecutive slide 

was H&E-stained in the case of this particular sample. All the remaining fresh-frozen and FFPE 

normal colorectal samples were annotated with three labels: mucosa, submucosa, and 
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muscle/lymphoid tissue. The best statistical results were achieved for the sample 

FFPE_369_normal, where the k-means and PCA images were composed of three colours, 

perfectly matching histological annotations (Figure 5.18).    

Interestingly, in colorectal tumour samples (both fresh-frozen and FFPE), all the k-means 

images mainly contained one colour. That classification was correct as those entire tissue 

sections were classified as tumours. However, PCA images for the samples FFPE_368_tumour 

and FFPE_369_tumour were composed of a couple of colours. Therefore, it would be 

interesting to have those sections re-checked by a histopathologist more in detail. Potentially, 

there could be two tissue types present in tumour samples, too.  

 

It is essential to mention that the H&E images representing the same sample after two different 

treatments (fresh-frozen or FFPE) do not match. After cryosectioning, each sample had to be 

fully thawed (so its ‘shape’ was no longer sustained) and then transferred to a formalin pot 

where it was loosely floating for 24 hours. As a result, it was impossible to ensure that the same 

orientation would be maintained when the sample was embedded in wax. Therefore, tissue 

sections were cut from different sides of a sample resulting in different morphology features 

seen on the H&E images. 
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Figure 5.17. Spectra comparison of fresh-frozen vs FFPE colorectal tissue samples analysed in negative mode by DESI-MSI. Average peak 

intensity is shown for four randomly chosen pairs of fresh-frozen colorectal samples and matching FFPE samples.
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Figure 5.18.  k-means and PCA results for a cohort of the same colorectal samples 

analysed as fresh-frozen first and then as FFPE. Matching H&E-stained optical images are 

also shown. Different colours in k-means and PCA images correspond to specific tissue classes. 
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Figure 5.18.  k-means and PCA results for a cohort of the same colorectal samples 

analysed as fresh-frozen first and then as FFPE – continued. In each case, four regions 

were set in the k-means analysis. 
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5.3.3.5 Discussion 

The results obtained from the analysis of DESI-MSI data acquired for fresh-frozen and 

matching FFPE colorectal samples agreed with those presented in Chapter 4.  

Despite extensive washes, the remaining metabolic content of tissue samples was sufficient to 

allow tissue discrimination. Interesting results were obtained when the same samples were first 

analysed as fresh-frozen and then as an FFPE, as the PCA images representing FFPE tumours 

revealed exciting composition. As expected, molecular species seen in fresh-frozen samples 

were very different from those recorded for FFPE tissue sections. In comparison, the results 

presented in Chapter 5.3.1 relied on the changes in phospholipid composition. At the same 

time, in the case of FFPE samples, the whole mass range was taken into account for the tissue 

classification. Although some lipids were still present, the 600-900 mass range was noticeably 

less affluent in the data acquired for FFPE samples. However, the low mass range seemed to 

contain much information and molecules such as small metabolites were thought to play a 

crucial role in post-DESI-MSI tissue classification. 

After this experiment, it was decided to focus on the novel application of DESI-MSI as a tool 

that could be used for molecular mapping of FFPE tissue samples.  

 

5.3.4 Analysis of FFPE colorectal samples by DESI-MSI 

5.3.4.1 Analysis of a single FFPE colorectal sample - methodology  

A human colorectal carcinoma FFPE sample containing non-tumour and tumour tissues was 

obtained from the Histopathology Department at St. Mary's Hospital, London, UK.  

The sample was sectioned into 10 µm thickness with the help of a microtome (Thermo Fisher 

Scientific Inc, Waltham, MA, USA), hydrated in the water bath until the sections were fully 

stretched. After this, the tissue sections were mounted onto SuperFrost® Plus Glass slides 

(Thermo Fisher Scientific Inc) and incubated at 60°C for 30 minutes. The samples were then 

reserved at room temperature until further analysis.  
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Figure 5.19. H&E stained optical image of the human colorectal FFPE sample analysed 

by DESI-MSI. Two different areas were selected for negative and positive ionization modes.  

 

Before DESI-MSI analysis, the samples were washed in xylene (histology grade, Sigma-

Aldrich, St Louis, MO, USA) for 8 minutes twice. Then, the slides were left to dry at 

room temperature for 24 hours. 

Two 'regions of interest' per sample were selected with High Definition Imaging 

software (HDI, v1.4, Waters Corporation) for analysis in positive and negative 

ionisation modes (Figure 5.19).  

 

5.3.4.2 Prediction of tissue types in a single FFPE sample 

After DESI-MSI analysis in negative ion mode, the biochemical content of the samples 

was assessed. There were few spectral peaks compared with non-FFPE sections (Figure 

5.20); however, several metabolites remained in the sample after the ethanol and xylene 

washes utilised during the FFPE sample preparation. It was noticed that the 

phospholipid mass range had fewer peaks than in fresh-frozen specimens. However, the 

lower mass range (50-500 m/z) contained tissue-specific information, which is in 

agreement with previous findings [101].  

 

 



173 

 

 

Figure 5.20. Averaged spectra representing normal colorectal samples analysed as an 

FFPE (top) and fresh-frozen (bottom) by DESI-MSI in negative ionization mode. 

Noticeably fewer molecular species were seen in the case of the FFPE sample.  

 

 

As shown in Figure 5.21, several m/z ions were localised in specific regions of the tissue 

sample, suggesting that metabolites' spatial distributions were preserved during FFPE 

sample preparation. While the preservation of spatial distributions has been previously 

reported in MALDI-imaged FFPE samples [101], this is the first reported instance when 

using DESI-MSI. It was possible to observe that m/z 619.27 was substantially more 

abundant in the sample's mucosal region (Figure 5.21A), while m/z 650.24 – in the 

mucin (Figure 5.21B). When these two ions were overlaid as an RGB image (Figure 

5.21C), both regions could be compared to the H&E stained areas from the same tissue 

section's optical image (Figure 5.21D). 
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Figure 5.21. DESI-MSI analysis of the human colorectal FFPE sample in negative 

ionisation mode. Single ion distributions where mucosa (m/z 619.27) (A) and mucin (m/z 

650.24) (B) could be detected. RGB image of overlaid m/z ions (m/z 619.27 – green, mucosa; 

650.24 – red, mucin; 400.89 – blue, tumour) (C). The annotated H&E stained optical image is 

also shown (D). 

 

 

Differentiation of the various tissue types was performed using multivariate PCA and MMC 

methods. PCA scores and loadings plots reflected this normalised and log-transformed data. 

The ellipses drawn in PCA and MMC scores plots (Figure 5.22A and Figure 5.22B) represented 

the 100% confidence interval. The PCA scores plot showed a clear separation between the four 

tissue types in the first two PCs, similar to that achieved using MMC. The cross-validated 

results from leave-one-pixel-out prediction are shown in the confusion matrix with an overall 

classification result of 100% for four tissue classes (Figure 5.22D). 
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Figure 5.22. Multivariate statistical analysis of a single human colorectal FFPE sample 

analysed in negative ionisation mode. PCA (A) and MMC+LDA (B) of mucosa, muscle, 

mucin, and tumour show a clear separation across the first two components. The leave-one-

spectrum-out cross-validated MMC scores plot shows a clear separation between the four tissue 

types. The weights demonstrate that the separation was directed by a few ions (C). The cross-

validated prediction accuracy is also shown (D). The mucosa is represented by red, muscle – 

green, mucin – black, and tumour – yellow.  

 

The MMC-LDA weights identified several discriminatory ions (Figure 5.22B and 

Appendix I). Those ions were next inspected by hand to select some m/z values that 

were more abundant in various tissue classes present in the analysed sample. Four such 

ions, all with Kruskal Wallis ANOVA p < 0.001, are shown in Figure 5.23. Box plots 

showed this normalised data, with the grey box representing the 25th and 75th percentiles.  

The thick black line denoted the median value.   

The intensities of individual data points were shown on the axes with a random x-axis 

positional variation. Putative identifications for these ions were attempted by reference 
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to the Metlin database (https://metlin.scripps.edu/index.php) using a 30ppm m/z 

deviation. However, there were no possible identifications for some of the ions, which 

suggested that MS/MS analysis was necessary to confirm their identity. The ions m/z 

350.1100 and m/z 650.2400 (more abundant in mucin) were given putative 

identifications of N-acetyl-7-O-acetylneuraminic acid and Neu5Acα2-6GalNacα-Thr, 

respectively. The identification of molecules containing sugar moieties in FFPE tissue 

samples has previously been reported [101, 206], including sialic acid containing-

molecules in mucin and colorectal cancer [211, 212]. 

 

 

Figure 5.23. Box plots showing examples of ions detected in a human colorectal FFPE 

sample analysed by DESI-MSI in negative ion mode. m/z 350.11 was found to be more 

abundant in the mucin, m/z 400.89 in the tumour, m/z 499.39 in the mucosa, and m/z 693.64 in 

the muscle. All ions have Kruskal Wallis ANOVA p < 0.001.    

 

The annotated spectra from the previous MMC-LDA analysis were used for the classification 

of all pixels from the analysed sample. All unambiguously classified pixels were used for PCA 

analysis. The RGB classification images were generated from a supervised MMC analysis. The 

histopathology-annotated pixels were normalised and transformed. Then they were used as a 

training set with which an MMC model was derived.  All pixels were classified against this 
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model in one class-against-all approach, whereby probabilities of a spectrum/pixel belonging 

to each class were determined. For the negative mode image (containing four tissue classes), 

these probabilities were expressed in two images as either the red, green or blue channels of an 

image (Figure 5.24).  

 
 

Figure 5.24. Multivariate statistical analysis of a single human colorectal FFPE 

sample for all pixels. PCA of muscle, mucin, mucosa and tumour shows a separation 

across the first two components (A). The MMC components of RGB images are also 

shown (B). H&E stained matching tissue sections with annotations of various tissue 

classes.  

 

 

Another area of the same sample (see Figure 5.19) was analysed in positive ionisation 

mode to determine if tissue differentiation could also be observed using DESI-MSI. The same 

parameters as described for negative mode analysis were employed. Also, the same statistical 

approach was used for tissue classification using positive ionisation data. The clustering of the 

different tissue types was observed from the PCA, where muscle tissue could be separated from 

the other tissue types (Figure 5.25). In the supervised analysis and subsequent cross-validated 

predictions, tumour tissue was well separated from muscle and mucosa in the first and second 

components (Figure 5.25). From the PCA classification using all the pixels performed as 

described for negative ion mode, clustering of the different tissue types was attained. The RGB 

classification images obtained from the supervised MMC analysis were in significant 

agreement with the H&E optical image (Figure 5.27). For the positive mode image (containing 

three tissue classes), these probabilities were expressed as either the red, green or blue channels 

of an image. Examples of ions identified as being discriminatory are shown in boxplots in 

Figure 5.26 and Appendix J. 
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Figure 5.25. The human colorectal FFPE sample analysed by positive mode DESI-MSI. 

Clear separation between the three tissue types was visible in the PCA (A) and leave-one-

spectrum-out cross-validated MMC+LDA (B) scores plots. The weights demonstrated that a 

larger quantity of ions than observed in the negative mode was causing the between-group 

separation (C). The cross-validation accuracy of the multiple annotated tissue classes is also 

shown (D). The mucosa is represented by green, muscle – yellow, and tumour – black.  
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Figure 5.26. Box plots of ions detected in a human colorectal FFPE sample analysed by 

DESI-MSI in positive ion mode. The MMC-LDA weights identified several discriminatory 

ions, which were then inspected by hand to choose more abundant molecules in each tissue 

type. m/z 269.16 was found to be more abundant in the muscle, m/z 301.11 in the mucosa, and 

m/z 535.54 in the tumour. All ions have Kruskal Wallis ANOVA p < 0.001. 

 

 

 

Figure 5.27. DESI-MSI analysis of a human colorectal FFPE sample in positive ionisation 

mode. RGB image of overlaid m/z ions (m/z 269.16 – green, muscle; 665.38 – red, mucosa; 

349.12 – blue, tumour) (A). H&E stained optical image of tissue sample analysed (B). PCA of 

all the pixels (C) and MMC components RGB image is also shown (D). 
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5.3.4.3 DESI-MSI of a human colorectal tissue microarray (TMA) 

5.3.4.3.1 Introduction  

The tissue microarray was first described by Kononen in 1998 [213] and represented a high-

throughput technology allowing the assessment of histology-based laboratory tests. Tissue 

microarrays are paraffin blocks that contain many small representative tissue samples from 

hundreds of different cases. The construction of a TMA block is shown schematically in Figure 

5.28. Core tissue biopsies are taken from individual FFPE donor blocks and then precisely 

arrayed into a new recipient block [214, 215].  

 

 

 

 

Figure 5.28. Schematic of the process of constructing a tissue microarray. Adapted from 

[216].  

 

 

From a mass spectrometry point of view, the ability to analyse FFPE TMAs would be a 

significant advancement allowing for rapid measurements of hundreds of tissue cores. 

Therefore, this project aimed to assess if TMA sections were compatible with DESI-MSI 

requirements.  
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5.3.4.3.2 Materials and methods  

Two thicknesses – 5µm and 10µm – human colorectal tissue microarray slides were purchased 

from Biomax.us (https://www.biomax.us/).  

 

The layout of the TMA is presented in Figure 5.29. The total number of cores was 54, and 

samples from 18 patients were used to construct this TMA. The diameter of each core was 1.5 

mm.  

 

 

Figure 5.29. The layout of the human colorectal FFPE TMA. Microarray panel display: AT 

– adjacent tissue, NAT – normal adjacent tissue (A); H&E stained digitalised image of the 

TMA slide (B).  

 

FFPE TMA slides were then prepared as described in Chapter 2.7.2. 

 

FFPE TMA colorectal slides were analysed in negative and positive mode using a Xevo G2-

XS QToF mass spectrometer (Waters Corporation, Milford, MA) 

Full details of the DESI-MSI setup for the FFPE samples is described in Chapter 2.9.  

 

5.3.4.3.3 Data analysis 

Full details can be found in Chapter 2.13 and Chapter 5.2.6.2. 
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5.3.4.3.4 Results  

First, a TMA section cut at 10µm was analysed in the negative ionization mode. It is important 

to stress that the analysis time for 54 samples was 12 hours.  

Four tissue types were annotated with a histopathologist's help: mucosa, submucosa, lymphoid 

tissue, and tumour. The unsupervised analysis revealed a clear trend in the grouping of those 

tissue classes. The data points clustered together during the supervised approach, where a clear 

trend was seen. That observation was confirmed by the results of a leave-one-out cross-

validation test where an accuracy of over 90% was achieved for mucosa and tumour (Figure 

5.30).  

 

 

 

Figure 5.30. 10µm thick colorectal TMA analysed by DESI-MSI in negative ionisation 

mode. Four tissue labels were annotated for this slide: lymphoid, mucosa, submucosa, and 

tumour. Results of an unsupervised analysis (A); a plot representing the outcome of supervised 

analysis (B); leave-one-out cross-validation results with Mahalanobis classifier (C).  
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Similarly, the 10µm thick TMA section was subjected to the DESI-MSI followed by labelling 

the tissue classes. This time only two cores were seen to contain lymphoid tissue, and as a 

result, this tissue type was excluded from further statistical analysis.  

PCA plot represents the results of an unsupervised analysis where data points labelled as 

mucosa and tumour formed well-defined clusters. An apparent trend was seen in the supervised 

analysis, where three groups of data points were observed. An accuracy of over 90% was 

achieved in the leave-one-out cross-validation (Figure 5.31). 

 

 

Figure 5.31. 10µm thick colorectal TMA analysed by DESI-MSI in positive ionisation 

mode. PCA (A); maximum margin criteria analysis (B); leave-one-out cross-validation matrix 

using Mahalanobis as a classifier (C). 

 

 

The results obtained for negative and positive mode data confirmed that tissue classification 

was possible for FF samples. Moreover, it was achievable for tiny, 1.5 mm diameter tissue 

cores used to construct a TMA. It was a significant finding which, without any doubt, would 
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play a crucial role in the whole process of making DESI-MSI more compatible with routine 

diagnostic use. 

As has already been mentioned in Chapter 4.3.14, routine histopathology laboratories do not 

cut 10µm thick tissue sections as a standard. Therefore, 5µm sections were requested for the 

same TMA and were subjected to DESI-MSI. All the experimental conditions were the same 

as in the case of 10µm slides. 

 

The statistical results for the slide analysed in the negative ionization mode are shown in Figure 

5.32. An apparent trend was seen even when an unsupervised analysis was attempted. The 

highest accuracy was achieved for mucosa, and it reached over 98%. Correct tissue prediction 

was equally high for submucosa (88,4%) and tumour (89,4%).  

 

 

 

Figure 5.32. 5µm thick colorectal TMA analysed by DESI-MSI in negative ionisation 

mode. PCA (A); RMMC analysis (B) cross-validated with the respective leave-one-patient-out 

cross-validation using Mahalanobis as a classifier (C).  
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Statistical results for the positive mode data were even more impressive (Figure 5.33). This 

time, it was possible to label four tissue classes, and again, a clear separation was seen in the 

PCA plot. With the cross-validated RMMC, it was possible to separate all four classes with an 

overall accuracy of over 95%. 

 

 

Figure 5.33. 5µm thick colorectal TMA analysed by DESI-MSI in positive ionisation 

mode. Four tissue classes were assigned to this slide and were used for the statistical analysis. 

Results of an unsupervised PCA (A); supervised RMMC (B) cross-validated with the 

respective leave-one-patient-out cross-validation using Mahalanobis as a classifier (C). 

 

Overall, higher accuracy was achieved in the leave-one-patient-out cross-validations for the 5 

and 10µm samples analysed in the positive ionization mode. It was related to the fact that the 

row data recorded in the positive mode seemed to contain more molecular species than the 

negative mode one. This effect was also seen during the optimisation experiments described in 

Chapter 4.  
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5.4 Discussion  
 

In the last two decades, imaging mass spectrometry has been playing an essential role in 

histological research. One of the essential milestones allowing that was the development and 

application of ambient ionisation methods, such as DESI-MSI.  

DESI was first reported in 2004 [78], and since then, it has been demonstrated for many 

potential applications, mainly involving biological tissue analysis [136, 137, 217]. To date, 

most studies involving DESI-MSI have relied on the use of fresh-frozen tissue samples.  

Although there have already been studies using fresh-frozen samples that have successfully 

used DESI-MSI to study colorectal cancer further [88, 218], the first part of this Chapter also 

focused on the same approach. However, the ultimate goal was to apply this technique to FFPE 

samples for the very first time.  

The data collected for the fresh-frozen colorectal tissue samples revealed characteristic 

molecular differences that allowed the classification of various tissue types within single 

samples. Multivariate pattern recognition methods such as PCA and MMC+LDA have been 

shown to provide user-independent data in individual samples and for a larger cohort. Tissue-

specific molecular ion signatures allowed to achieve an accuracy of 96% for mucosa and over 

75% for muscle and submucosa in a leave-one-out cross-validation for a cohort of 27 normal 

samples.  

Similarly, 88% and 91% accuracy was achieved for normal and tumour samples, respectively, 

when a batch of 38 samples was subjected to statistical analysis. These results correspond to 

those obtained by other similar projects [88, 114], confirming that DESI-MSI can successfully 

analyse the metabolic content of fresh-frozen colorectal samples to allow tissue differentiation. 

As this has been well established by now, the goal is to make this technique as automated as 

possible. Ideally, queueing samples would be the desired option, allowing for better use of the 

instrument time and reducing staff members' input.  

 

MSI offers the possibility to chemically map morphological regions of interest, contributing to 

the development of next-generation prognostic biomarkers. Moreover, it provides the 

opportunity to work on automated approaches for tissues classification based entirely on their 

molecular ion patterns [219]. With this idea in mind, a new high throughput DESI-MSI 

platform was used to analyse 24 fresh-frozen colorectal samples. After completing 17 hours of 

the automated run, the collected preliminary data suggested that the new set-up was stable. 

RGB images showed an apparent separation of various tissue classes present within analysed 
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tissue sections for the samples queued at the beginning of the run and the very last ones. 

Without any doubt, this was an essential first step towards making DESI-MSI a more histology-

friendly technique. This project will continue as high-throughput, automated DESI is a must if 

it is meant to be introduced into the routine diagnostic services.  

 

As it has already been mentioned since its introduction, DESI required the use of frozen 

sections. However, many reasons make FFPE tissues a desirable material as these samples are 

considered the gold standard for histopathological analysis. As a result, vast archival 

collections of FFPE tissue samples with long-term clinical data are readily available.  

This first proof-of-principle study examined whether it was possible to conduct metabolite 

measurements from a single FFPE sample and multiple FFPE tissue cores embedded in one 

block (tissue microarray) by DESI-MSI. The only similar paper available when this was carried 

out was by Buck et al. [21] and looked into MALDI-MSI's suitability for global metabolite 

analysis from FFPE tissue samples. However, it is crucial to stress again that these two MSI 

techniques require different sample preparation, and as a result, the obtained results are not 

entirely comparable. MALDI-MSI requires the use of the matrix, which is coated on the surface 

of the sample. On the other hand, one of the benefits of DESI is that it combines the advantages 

of electrospray ionization and other desorption ionization methods with no need for matrix 

application. As a result, the sample is only subjected to minimal damage, and the matrix's 

complicated ionization interference can be avoided [220].  

 

It was observed that peaks of metabolites were detected in the low mass range – m/z 50 – 400. 

Simultaneously, a significant reduction of peak intensities was seen above the mass range of 

m/z 600. This observation was correlated with the expectation that tissues processing consisting 

of multiple washes in gradients of alcohol and xylene might remove lipids and was also 

reported by Buck et al. [101].  

However, despite this, several lipids were detected and classified as significant features in all 

three tissue classes – mucosa, muscle, and tumour – in a single human colorectal sample 

analysed in Chapter 5.3.4.1 (Supplementary information, Appendix I&J). This could be due to 

some cellular components such as lipids, nucleic acids, and carbohydrates, which might not 

have been directly fixed by formalin, but could be trapped in the network of insoluble cross-

links between proteins [221]. A Fourier Transform Infrared (FTIR) spectroscopy imaging study 

on prostate FFPE tissue sections hypothesized that although methylene chains of free, unbound 

tissue lipids were removed from the tissues, solvent-resistant lipids remained present in FFPE 
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tissue samples. Those lipids were thought to be locked into protein-lipid complex matrices, 

predominantly in the membranes [222].  

Buck et al. [101] reported that the data collected for fresh-frozen and FFPE colorectal tumour 

samples were compared, and 1465 and 1470 peaks were found in those two sample types, 

respectively. This observation indicated that the sample preparation did not seem to impact the 

number of detected peaks. Moreover, 1226 peaks overlapped between the fresh-frozen and 

FFPE samples leading to the conclusion that the detected metabolite content was similar. A 

similar comparison could be made using the data collected for this project as a part of future 

work.  

 

In the case of both the single FFPE colorectal sample and the TMA, the samples' remaining 

metabolomic content was sufficient to allow for tissue classification. At least 80% accuracy 

was achieved in the leave-one-out cross-validation for the TMA data collected in the positive 

and negative modes. It has also been proven that the tissue sections cut at 5 µm instead of 10 

µm were still compatible with DESI-MSI. Groseclose et al. [146] published results confirming 

that different lung cancer histologies could be distinguished and individual cancer types 

subclassified based on MALDI-MSI analysis of a single TMA. The core diameter was 1 mm, 

so it was smaller than the cores used in this project. However, in the colorectal TMA case, it 

was impossible to classify tumour samples according to cancer grade. It could be because the 

TMA used by Groseclose et al.contained more tissue needle core biopsies taken from a higher 

number of patients. The TMA used for this project had samples from only 18 patients, out of 

whom the majority had grade 2 colorectal cancer (n=14). Only one patient was diagnosed with 

grade 3, and three patients had grade 1. Aerni et al. [223] also used MALDI-MSI to analyse 

human kidney TMA. The study described a high-throughput workflow and reported that over 

700 peptides were detected. Peptide profiles from fresh-frozen tissue sections were similar to 

those from FFPE samples. They also reported that the sections as thin as 5 µm were suitable 

for analysis. This is in line with the results obtained for the 5 µm thick colorectal TMA tissue 

sections described in this Chapter.  

 

To summarize, this study has demonstrated a high degree of chemical metabolite conservation 

in FFPE tissue samples. The ability to perform MSI of metabolites is the starting point towards 

investigating metabolic pathways in FFPE tissues. This advance could play a significant role 

in the determination of the exact location of metabolic disturbances. Furthermore, the future 

use of TMAs can allow hundreds of molecules' measurements and, therefore, can help generate 
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pathways from thousands of patients. As FFPE samples have been archived for many years in 

hospitals worldwide, this presents an excellent source of information on multiple diseases and 

patients’ outcomes to various treatments. This project and obtained results represent a 

significant technical advance and can play an essential role in diagnosis and predicting a patient 

outcome in the future
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DESI-MSI of cirrhotic liver 

tissue samples 
 

 

 

 

 

 



191 

 

6.1 Introduction 
 

6.1.1 Liver cirrhosis and its aetiology 

In recent years, liver cirrhosis has been reported as an increasing cause of mortality in more 

developed countries, being the fourth most common death cause in central Europe and 14th 

worldwide [224]. Cirrhosis is defined as the end-stage of chronic liver disease and results from 

different liver injury mechanisms leading to necroinflammation and fibrogenesis [224].  

Most of the time, cirrhosis's aetiology can be identified by the patient’s history combined with 

serologic tests and histologic evaluation. Hepatitis C and alcoholic liver disease (ALD) are the 

most common causes in the Western world, while Hepatitis B prevails in sub-Saharan Africa 

and most parts of Asia [225]. Other liver diseases that can lead to cirrhosis include 

Autoimmune hepatitis (AIH), Non-alcoholic steatohepatitis (NASH), Primary biliary 

cholangitis (PBC) and Primary sclerosing cholangitis (PSC) [225].  

The transition from chronic liver disease to cirrhosis involves a few phases, including 

inflammation, activation of hepatic stellate cells with ensuing fibrogenesis, angiogenesis, and 

lastly, parenchymal extinction lesions caused by vascular occlusion [226] Majority of chronic 

liver diseases are asymptomatic and unsuspected until cirrhosis with clinical decompensation 

occurs [224].  

 

6.1.2 Diagnosis of cirrhotic liver diseases and its challenges 

Ultrasonography, magnetic resonance imaging (MRI), and computerized tomography (CT) are 

not sensitive enough to detect cirrhosis, and final diagnosis still relies on histology [225]. As a 

result, histological analysis of ultrasound-guided liver biopsy is still considered a gold standard 

in modern clinical practise [227, 228].  

However, diagnosis can still be challenging when conditions can exhibit features of two 

different diseases. These conditions are commonly designated as overlap syndromes. They 

include descriptions of consecutive or simultaneous AIH and PBC, consecutive or 

simultaneous AIH and PSC, and very rarely, PBC and PSC [229].  

 

6.1.3 An overlapping syndrome: AIH and PBC 

This overlap syndrome is not a rare condition. 2-19% of patients with typical PBC hallmarks 

also show AIH features [230, 231]. The overlapping features include clinical symptoms, 

biochemical tests, immunological findings, and histologic features. However, it should be 

noted that it is still controversial whether these overlap syndromes are distinct entities or 
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variants of the major autoimmune liver diseases, and standardization of diagnostic criteria and 

terminology is lacking [232, 233].  

 

6.1.4 An overlapping syndrome: AIH and PSC 

AIH-PSC overlap syndrome most often occurs among young/ pediatric people [234]. PSC 

differs from AIH and PBC in that males represent 2/3 of patients in most populations [232].  

Concurrent IBD is common in patients with this overlap syndrome [235]; however, its absence 

does not rule out the diagnosis [236]. Similarly, as with AIH and PBC, the overlapping features 

include clinical symptoms, biochemical tests, immunological findings, and histologic features 

[229, 237].  

 

 

 

Figure 6.1. Relationship between the clinical expressions of AIH, PBC, and PSC. 

Depending on diagnostic criteria, 2-19% of patients with PBC * and 7-14% with PSC ¤ have 

been reported to have overlapping features with those of AIH [232].  

 

 

6.1.5 An overlapping syndrome: PBC and PSC 

The overlap between these two conditions has only been described in a few patients. Most of 

the time, these two conditions can be distinguished. However, liver histology may be similar 

[232, 238].  
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6.1.6 MSI and cirrhotic liver diseases 

So far, no results for MSI projects looking into cirrhotic liver diseases have been published, 

except for a paper reporting MALDI-MSI application to study Non-alcoholic fatty liver disease 

(NAFLD) samples [239]. The authors concluded that the lipid composition of steatotic and 

non-steatotic tissue samples was highly distinct, implying that spatial context was essential for 

understanding lipid accumulation mechanisms in NAFLD.  

Therefore, this project aimed to apply DESI-MSI to study metabolomic signatures of tissue 

samples representing various cirrhotic liver diseases. It was hypothesized that the molecular 

content differences might allow successful liver disease classification, primarily focusing on 

those with the so-called overlap syndrome.  

 

6.2 Materials and methods 
 

6.2.1 Clinical specimens and sample collection 

Full ethical approval was obtained from the institutional review board at University Hospitals 

Birmingham NHS Foundation Trust (REC reference numbers: Immune Regulation: 

06/Q2702/61, Cellular Trafficking: 06/Q2708/11). Further details can be found in Chapter 

2.1.2. 

 

Patient characteristics for this cohort were recorded and are summarised in Table 6.1.  

 

Diagnosis 

Number of samples per 

gender 
Age range 

Total 

number 

of 

samples 
Female Male Female Male 

AIH 3 0 35-67 -  3 

ALD 3 7 33-59 48-67 10 

HBV 1 8 35 37-69 9 

HCV 2 5 54-65 45-56 7 

NASH 3 4 53-57 45-56 7 

PBC 9 1 33-72 51 10 

PSC 4 6 22-67 18-74 10 

Resection 4 6 43-71 57-80 10 

Table 6.1. Characteristics of the liver samples.  
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If a patient had liver cancer and if that cancer was under specific cm, then the patient could 

have a liver resection surgery (= part of the liver removed). In that resected liver, there was 

always a normal (healthy) area and the tumour area. The samples described as ‘Resection’ were 

taken from the normal area and were believed to be a healthy part of this organ. 

 

6.2.2 Sample preparation 

Fresh-frozen samples were prepared as described in Chapter 2.7.1. 

 

6.2.3 DESI-MSI analysis of the liver tissue samples 

Fresh-frozen human liver samples were analysed in a random order in negative ion mode using 

a high-resolution orbital trapping mass spectrometer (Exactive, ThermoScientific, GmbH) 

controlled by XCalibur 2.1 software. Full details of the DESI-MSI setup for this batch of 

samples can be found in Chapter 2.8.  

 

Parameters 

 

Settings of Thermo Exactive instrument 

Polarity Negative 

Max injection time 1000 ms 

Micro-scans 1 

Mass resolution  100000  

Mass range 150-2000 m/z 

Capillary temperature  250°C 

Capillary voltage -50 V 

Tube lens voltage -150 V 

Skimmer voltage -40 V 

Spray voltage 4.5 kV 

Skimmer voltage -40 V 

Table 6.2. Thermo Exactive Orbitrap settings used for DESI-MSI of fresh-frozen liver 

samples. 
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6.2.4 Histological assessment  

As DESI-MSI is a soft ionisation technique, the analysed tissue sections could be stained with 

H&E for histopathological evaluation. The stained slides were digitally scanned at high 

resolution, using a Nanozoomer 2.0-HT digital slide scanner (Hamamatsu, Japan) and analysed 

by an in-house histopathologist blinded to DESI-MSI results. 

 

6.2.5 Data analysis 

Methodological details of data analyses are described in Chapter 2.13.  

 

6.3 Results  
 

6.3.1 Histopathological presentation  

From a histopathology point of view, the presentation of all cirrhotic liver H&E-stained tissue 

sections is very similar. Histologically, cirrhosis is characterised by diffuse nodular 

regeneration surrounded by dense fibrotic septa with subsequent extinction of parenchymal and 

liver structures collapse. Together these changes are causing pronounced distortion of hepatic 

vascular architecture [224]. Some H&E-stained tissue sections representing four liver diseases 

are shown in Figure 6.2, with examples of nodules marked in blue and darker staining fibrotic 

tissue filling spaces between them.  
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Figure 6.2. H&E-stained liver tissue sections representing various cirrhotic liver diseases. 

Nodules are marked in blue, and the darker pink/ purple staining tissue in between is the fibrotic 

tissue. 

  

 

Distortion of hepatic vascular architecture leads to increased resistance to portal blood flow, 

causing portal hypertension and hepatic synthetic dysfunction. Fibrosis describes the 

replacement of injured tissue by a collagenous scar. Cirrhosis is an advanced stage of liver 

fibrosis and is accompanied by distortion of the hepatic vasculature [225]. Clinically, cirrhosis 

has been described as an end-stage disease, invariably leading to death unless liver 

transplantation is done. Screening for oesophageal varices and hepatocellular carcinoma have 

been regarded as the only preventive strategies [224].  

 

All the samples have been annotated with the help of a qualified histopathologist. At this stage, 

annotations only focused on two tissue types: nodules and fibrotic tissue. As the latter was 
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thought to be an outcome of each disease, only nodules’ metabolomic content was taken into 

account for classification purposes.   

 

6.3.2 DESI-MSI data acquisition 

All the liver samples received as a part of this project were around 12mm x 9mm x 7mm large. 

That resulted in individual DESI-MSI runs taking between 9 – 11 hours. For that reason, all 

the samples were only analysed in the negative ionization mode. All the runs were randomised 

to avoid a batch effect.  

MSI generated intense phospholipids signals, and the statistical analysis focused on the changes 

in the phospholipid mass range to attempt tissue/ diseases differentiation. Figure 6.3 represents 

averaged spectra for randomly chosen sections representing all cirrhotic liver diseases included 

in this project. By comparing those spectra, it was possible to observe specific ion changes in 

their relative abundances from one liver disease to another. It was hypothesized that those 

variations were significant enough to allow diseases classification. 
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Figure 6.3. Averaged mass spectra representing different cirrhotic liver diseases. DESI-

MSI data acquired in negative ionization mode.  
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Figure 6.3. Averaged mass spectra representing different cirrhotic liver diseases - 

continued.  
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6.3.3 Prediction of tissue types in individual samples 

The first step was to determine the ability of DESI-MSI to distinguish between different tissue 

classes in individual samples based on the lipidomic profiles. Multivariate statistical analysis 

was performed in each sample.  

First of all, tissue types in an AIH sample and their spatial distribution were determined by an 

independent histopathologist. Nodules and fibrotic tissue were the two main types of tissue 

identified based on the corresponding histological image. Based on this information, a small 

number of representative pixels per tissue type was selected from the integrated MS ion image 

to build a sample-specific RMMC model used to classify all the MS ion image pixels. The 

different tissue types were classified with the PCA approach, as shown in the PCA plot (Figure 

6.4). This data was complemented by a leave-one-out cross-validation test that confirmed 

100% accuracy in classifying all the pixels from the MS ion image (Figure 6.4). 

All other samples were subjected to the same data analysis, and results for PBC, ALD, and 

NASH samples are shown in Figures 6.4 and 6.5.  
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Figure 6.4. Results for individual AIH and PBC samples. Post-DESI-MSI, the same tissue section was H&E stained and annotated. PC1 

revealed the histological structure of the analysed sections. An unsupervised principal analysis plot showed a clear separation between fibrotic 

tissue and nodules in the case of both AIH and PBC samples. MMC component images and confusion matrices showing classification performances 

are also presented. 
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Figure 6.5. Results for individual ALD and NASH liver samples. Again, a 100% accuracy was achieved when tissue classification was 

attempted. 
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The same workflow was applied to all the remaining cirrhotic liver samples included in this 

study.  

 

6.3.4 Prediction of tissue types in multiple cirrhotic liver diseases samples 

Further data analysis was performed in a MATLAB environment using the imaging toolbox to 

compare multiple cirrhotic liver tissue samples; resections were excluded.  

The unsupervised PCA was performed, and a clear separation was achieved between fibrotic 

tissue and the nodules. This was confirmed by a supervised analysis and the results of leave-

one-out cross-validation, where an accuracy of 100% was achieved for both tissue classes 

(Figure 6.6). 

 

 

Figure 6.6. Results for all 56 diseased samples – comparison of the chemical content of 

nodules and fibrotic tissue. PCA plot showed good separation between these two tissue 

classes (A), which was then confirmed by the maximum margin criteria analysis (B). Accuracy 

of 100% was achieved for both nodules and fibrotic tissue in a leave-one-out cross-validation 

(C).  

 

Some molecules which contributed to the discrimination of the nodules and fibrotic tissue were 

putatively identified using Metlin https://metlin.scripps.edu/metabo_search_alt2.php (Figure 

6.7). PE(P-38:4) was found to be more abundant in fibrosis, and three PIs molecular species – 
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PI(36:2), PI(38:3), and PI(40:6) were more abundant in nodules. The difference between these 

two tissue classes appeared to be more evident in the case of the PIs.  

 

 

Figure 6.7. Molecules contributing to the separation of nodules and fibrotic tissue. PE(P-

38:4) was found to be more abundant in fibrosis, while three different PIs molecular species 

were more abundant in nodules. Some intensities have been zoomed in order to put them on 

the same scale. 

 

 

6.3.5 Liver disease prediction based on DESI-MSI data 

The same approach was used to analyse the differences in the nodules' chemical composition 

from all the cirrhotic liver diseases samples. However, for this particular analysis, each data 

point represented ten averaged spectra for visualisation purposes. Figure 6.8 shows some trends 

in the grouping of the pixels representing the same disease. However, it also appeared that there 

was a slight effect for a couple of PBC/PSC samples, most likely due to the low number of 

samples per disease. The PCA plot suggested that whilst the difference between fibrotic tissue 

and the nodules was large, there was no significant difference between nodules of the various 

cirrhotic liver diseases. Leave-one-out cross-validation results did not show any trend as all, 

with the majority of samples being misclassified.  

However, since various testing options are available (e.g. biochemical tests, immunological 

findings, histopathological features), the real challenge lies in classifying liver diseases with 

the so-called overlapping syndrome.  
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It was then decided that the acquired data should not be used to separate an individual disease 

from the pool of all the conditions mixed all together. Instead, an attempt was made to try and 

distinguish AIH and PBC and AIH and PSC.  

 

Figure 6.8. An attempt of cirrhotic liver disease classification based on metabolomic 

content analysed by DESI-MSI. Some trends in the grouping of the pixels from the same 

cirrhotic diseases could be seen in the PCA plot; however, it was evident that the results were 

suffering from the low number of samples included (A). The supervised analysis also revealed 

some trends, which are highlighted by the arrows (B). 

 

 

One data point per sample was used, meaning that all the acquired data per sample were 

averaged and represented as a single point.  

Based on the collected metabolomics data, the separation was possible between neither AIH 

and PBC nor AIH and PSC. The statistical analysis not only suffered from a low number of 

samples, especially in the case of AIH but also from some batch effect. As a result, no trend 

was seen in the unsupervised PCA or even supervised MMC+LDA analysis. 

Next, an attempt was made to use all annotated pixels per sample, and obtained results were 

promising. This was discussed with a bioinformatician who highlighted the fact that that was 

only because the model was overfitted. Overfitting a model is described as a condition where 

a statistical model describes the random error in the data rather than the relationships between 

observed variables. This problem often occurs when the model is too complicated or complex. 

An overfitted model will fail to replicate in future samples, creating considerable uncertainty 

about the finding's scientific merit [240]. Some of these results are presented in the 



206 

 

Supplementary Information (Appendix K). However, those results must not be treated as a 

reliable statistical model. 

Therefore, it has been suggested that another approach to look into this set of data should be 

tested.  

 

6.3.6 Colocalization features as a new statistical approach  

All of the results presented from this point onwards were prepared with extensive help from 

Dr Paolo Inglese.  

The significant advantage of this alternative approach described by Inglese et al. is the fact that 

it allows the classification of the analysed sample using the acquired MSI data and at the same 

time preserves the spatial information which is associated with the mass spectra. This method 

relies on ion colocalization features and is less sensitive to spectral intensities' variations 

induced by the batch effect [218].  

 

6.3.7 Data pre-processing 

The same workflow, as described by Inglese et al. [218], was applied to the whole dataset.  

All the raw data were converted into the imzML (centroided mode) format before their m/z 

values were corrected using a single point recalibration (palmitic acid – 255.2330 m/z,             

[M-H]-). A search window of 10ppm was used, which was compatible with the theoretical mass 

spectrometer instrument error.   

The recalibrated samples were pre-processed independently through the following workflow: 

- Total ion count (TIC) scaling intensity normalization 

- Peak matching 

- Log transformation  

 

Next, Sputnik, an R package, was used to removing noise peaks.  

Sputnik provides a series of filters that are used to select informative and meaningful peaks 

based on the probability of their spatial distributions. Moreover, it provides a correlation-based 

filter, an estimation of split peaks, and a series of tests based on complete spatial randomness 

[241]. Its application to both DESI-MSI and MALDI-MSI datasets has already been 

successfully tested and described by Inglese at el. [241].  

The PCA was run within each tissue section before and after noise-related peak removal. The 

results are presented in Figures 6.9 and 6.10.  
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Significant variability was discovered within each tissue section, and obviously, it was not 

related to histological components present in the analysed samples (Figure 6.9). Therefore, it 

was apparent that this set of data had to be subjected to batch effect correction before any 

further statistical analysis.  

There were a couple of reasons why an apparent variability was seen between the samples and 

within them. Due to the size of tissue sections, the whole process of data acquisition took 

months. In the meantime, a new sprayer had to be built and optimised. During this time, the 

instrument was shared between different users who also analysed various tissue samples types. 

Every care was taken to ensure the instrument was in good shape before commencing with the 

DESI-MSI measurements. However, some signal fluctuations were inevitable, especially 

during such a long time needed to measure the whole batch of these samples.  

 

6.3.8 Colocalization features extraction 

The MSI images were composed of tissue-related and tissue-unrelated pixels. Therefore, to 

filter and only use tissue-related pixels to calculate the colocalization features, the ‘kmeans2’ 

method from the Sputnik package was applied to determine the region of interest (ROI) 

representing the part of the image which was occupied by tissue. k-means was applied to entire 

MSI images allowing the extraction of four clusters, which were then used to allow a more 

refined MS image segmentation into tissue-related and unrelated areas [218].  

Only tissue-related ROI pixels were used to calculate Spearman’s rank correlations between 

each pair of matched peaks within each MS image.  

The Spearman’s rank correlations were calculated on a fixed number of randomly selected 

pixels belonging to the tissue-related ROI to accommodate the fact that the size of the tissue-

related ROI could vary between MS images [218].  

None of the spatially related intensity transformations was applied to the ion images before 

calculating the correlations [218].  

 

 

 

 

 

 

 

 



208 

 

 

Figure 6.9. PCA representation of the analysed liver tissue sections before the batch effect correction. Various colours present within one 

tissue section represent a high variability, which does not reflect the sample's histopathological composition.   
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Figure 6.10. PCA of the same tissue section after removal of the batch effect. A significant improvement in the data quality was achieved; the 

acquired data related to and represented the samples' metabolomic content and histological details.
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Instead of trying to classify individual cirrhotic liver diseases, they were grouped into three 

classes based on similar aetiology: 

- metabolic (ALD and NASH) 

- cholangiopathy (PBC and PSC) 

- hepatitis (AIH, HBV and HCV).  

 

6.3.9 Colocalization features and their visualization  

It has been hypothesized that different diseases were represented by different pathways locally. 

Therefore, those different pathways could be expressed in the acquired mass spectrometry data 

because some ions were co-localised in specific regions. They were potentially part of the same 

biochemical mechanism. In a different disease, the same ions were not co-localised as the exact 

mechanism was not occurring.  

A multiple pairwise univariate Kruskal–Wallis test was used to determine the colocalization 

features that were significantly different between the three classes of liver diseases (metabolic, 

cholangiopathy and hepatitis) [218].  

That allowed us to identify the essential correlations and see which correlations were more 

important to discriminate between three classes of liver diseases. The univariate plot of the 

values of the correlations is shown in Figure 6.11. 

 

 

Figure 6.11. Correlations pairs found among the top-100 in 80% (=30) of the leave-one-

out cross-validation rounds.  
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Next, it was identified which pairs of ions were assigned to either cholangiopathy, metabolic 

or hepatitis group. The results are presented in Figure 6.12. Each ion pair is assigned to either 

cholangiopathy, metabolic, or hepatitis group.  

 

 

Figure 6.12. Values of correlations found among the top-100 in 80% (=30) of the leave-

one-out cross-validation rounds.  

 

 

The data presented in Figure 6.11 and Figure 6.13 were used to identify the top-10 correlations, 

and the mz values are presented in Supplementary Information, Appendix L.  

 

To assign IDs to those ions, MS/MS was performed (Details described in Chapter 2.13), and 

the results are shown in Table 6.3. 
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Mz Annotation 
Accurate 

mass 
ppm Error 

277.2173 FA(18:3) [M-H]- 277.2173 0 

280.2363 C13 isotope of FA(18:2) [M-H]- 280.2358 1.784211725 

281.2486 FA(18:1) [M-H]- 281.2486 0 

282.2519 C13 isotope of FA(18:1) [M-H]- 282.25142 1.700611462 

723.5163 PA(18:0_20:4) [M-H]- 723.497 26.67599175 

741.5268 C13 isotope of PE(18:1/18:2) [M-H]- 741.52642 0.512456454 

742.5391 PE(18:2_18:0) [M-H]- and PE(18:1/18:1) 742.5392 -0.134673025 

766.5389 PE(18:0_20:4) [M-H]- 766.5392 -0.391369417 

769.5023 PG(18:2/18:2) [M-H]- 769.5025 -0.259908188 

775.5387 PG(18:0_18:1) [M-H]- 775.5495 -13.92561016 

807.502 PI(16:1_16:0) [M-H]- 807.5029 -1.114547081 

810.5289 PS(18:0_20:4) [M-H]- 810.5291 -0.246752399 

883.5338 PI(18:1_20:4) [M-H]- 883.5342 -0.45272724 

888.5696 PS(22:3_22:4) [M-H]- 888.576 -7.202535292 

Table 6.3. Annotations the ions forming the top-10 correlations.  

 

The spatial localization of the ions listed in Figure 6.11 could be investigated by plotting the 

relative abundance images of the particular spectral peaks. These results are presented in Figure 

6.13, and the obtained images confirmed that the selected ions were localized only in tissue-

related areas. One randomly chosen sample was used to represent each group of liver diseases.  

Ion correlations were assigned various colours, and then their spatial distribution was visualised 

within the sample representing metabolic, hepatitis, and cholangiopathy group.  

In the case of every ion group, the highest intensities were observed within the nodules.  
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Figure 6.13. The spatial localization of ions forming the ten most significant correlations. Groups of ions were colour-coded, and their spatial 

distribution within one sample from each group was visualized. In the case of each ion correlation, they were mainly present in nodules of the 

analysed samples. 
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6.4 Discussion  
 

Since its introduction in 2004 [78], DESI-MSI was applied multiple times to successfully 

analyse tissue samples. It was reported that this technique had been used to discriminate tumour 

grades and subtypes, as well as to identify tumour margins in various types of human cancers 

[83, 85, 90, 92]. However, DESI-MSI has never been applied to analyse cirrhotic liver diseases. 

This project aimed to employ this technique to look into the metabolomic content of various 

liver diseases – AIH, ALD, HBV, HCV, NASH, PBC, and PSC – to assess if this additional 

information could be helpful in the process of making a final diagnosis. The diseases with the 

so-called overlapping syndrome – AIH/PBC and AIH/PSC – were particularly interesting as 

the overlapping features, including clinical symptoms, biochemical tests, immunological 

findings, and histologic features, make diagnosis challenging.  

First, using pixel-wise analysis of the DESI data confirmed that the successful discrimination 

of two types of tissue classes – nodules and fibrosis – was possible, both in individual samples 

and the batch of all analysed specimens. However, this information had no prognostic value as 

fibrotic tissue can be described as the disease's outcome. Therefore, it is the molecular content 

of nodules that remains interesting and can reveal some useful metabolomic information.  

Next, an attempt was made to build a model for AIH/PBC and AIH/PSC. At this point, it 

became apparent that the chemical content of nodules representing these diseases was not 

distinctive enough to allow classification. A deficient number of AIH samples (n=3) was a 

significant problem, but the models were also suffering from batch effects. All the statistical 

analysis performed so far was done in a Matlab environment using the home-built toolbox. 

Each sample was represented by one averaged (median) data point.  

Unsupervised and supervised statistical modelling approaches are commonly used to identify 

relationships between ion signatures and properties of the sample of interest. However, the 

large number of collected mass spectra per sample makes it challenging to invent a model that 

can capture a single property preserving the sample’s molecular information [218]. Therefore, 

it was suggested that the two most important properties of MS imaging – their spatial 

distributions and molecular heterogeneity – were not adequately preserved while using one 

averaged data point per sample.  

It was hypothesized that the classification of individual diseases would be too challenging, at 

least at that stage of the project. Based on the disease aetiology, samples were assigned to either 

metabolomic, hepatitis or cholangiopathy group. An alternative approach described by Inglese 

et al. [218] was then implemented. It relied on the fact that the observed spatial patterns 
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distributions of the ion peak intensities reflected the analysed samples' molecular properties. 

The raw data were pre-processed again as a part of this new workflow. An unsupervised 

analysis was run for each sample and revealed a significant variability within each analysed 

tissue section. The Sputnik package for R was used to filter tissue-unrelated peaks, and it 

allowed an enormous improvement in the data quality. Ion correlations were identified and 

visualised in randomly chosen analysed tissue sections.  

In the meantime, a second batch of the liver sample has been received and analysed. Therefore, 

this project is ongoing, and the final version of the results is yet to be presented. Detailed 

histological annotations will also be required to achieve a meaningful correlation between the 

MS imaging data and the histopathological presentation of the analysed samples.  

However, the most important achievement so far is that two independent statistical workflows 

have been tested. The obtained results were carefully discussed, and the future approach has 

already been agreed on.  
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7.1 Overall discussion  
 

For over 100 years, the histopathological analysis of cytology, biopsy or resection specimens 

has been the final step in the process of diagnosing multiple diseases, including cancer [242]. 

The final pathology report plays a crucial role in guiding clinicians in finding the optimal 

treatment and builds the framework for selecting new markers and new therapies for a patient 

in the future. In recent years, standard clinical care is continuously becoming more complex, 

and as a result, diagnostic pathology workup is also more complex and extensive [243]. For 

example, in the 1960s, the guidelines for preparing lung cancer specimens recommended only 

H&E and periodic acid-Schiff stain. In contrast, techniques like IHC and molecular analyses 

are essential these days and play a vital role in acquiring additional essential information [243]. 

Moreover, the increasing complexity in pathology workup resulted in a significant increase – 

by more than 60% over the last decade – in the number of tissue blocks per patient and the 

number of required spare slides per block [56]. However, this enormous increase in workup is 

not the only issue that pathology services are facing. 

Despite being considered a gold standard in making a diagnosis, histopathological 

investigations can be time-consuming. Depending on the required stains, it can take days before 

the final pathology report is issued. Additionally, an examination of the stained slides is 

subjected to intra-observer error [35-37]. Therefore, it is evident that some additional 

techniques are required to complement making a diagnosis.  

For several decades, MS has been the focus of technology development and imaging 

application. DESI-MSI was developed in 2004 [78] and since then has been used in multiple 

projects aiming to characterise various types of cancer [83, 90, 92, 244, 245]. As DESI-MSI is 

a non-destructive technique, histological features remain intact during the analysis of tissue 

sections. Therefore, the distribution of multiple analytes can be correlated with clinical and 

histological features [65]. Moreover, the analysis is performed at ambient conditions, sample 

preparation is straightforward, and the data collection is user-independent [78, 79]. However, 

there are also some limitations, especially in the sample preparation step. Since its introduction, 

DESI-MSI has always relied on frozen sections [79], which had to be prepared without OCT 

[128, 129]. At the same time, OCT is routinely used as an embedding medium in the histology 

diagnostic laboratories when frozen samples are cryosectioned.  

Therefore, this project aimed to study how to make DESI-MSI more compatible with the 

standard histopathological workflow. Making this technique as histology friendly as possible 

is crucial if it is meant to be implemented into the routine pathology portfolio. 
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Chapter 3 describes the impact of OCT embedding on the DESI-MSI data. Integration of 

sample preparation workflows to meet different techniques' requirements is crucial if we aim 

to make those techniques compatible with each other. Since all work involving the preparation 

of frozen samples in the diagnostic laboratories relies on OCT, the practicalities of using this 

embedding medium in DESI-MSI measurements have been tested. 

OCT has been documented to cause strong ion suppression when used to embed specimens 

analysed via MALDI imaging [128, 129] and also causes the detection of series of polymer 

peaks at m/z > 1100 [129]. Therefore, five pieces have been cut from a resected liver sample, 

cryosectioned embedded in distilled H2O (fully compatible with DESI-MSI), and then 

cryosectioned again in OCT. Acquired data allowed to focus purely on assessing the impact of 

the later embedding medium on the DESI-MSI.  

The difference in the H2O-embedded and OCT-embedded spectra was clear for positive mode 

data, with extensive polymeric profiles dominating at m/z > 1000 and to a less noticeable extent 

around the phospholipid region (600 < m/z < 1000). There were no visible polymeric 

distributions in the negative mode spectra. Following the polymer removal from the positive 

mode data, supervised classification was performed to determine the similarity between OCT- 

and H2O-embedded spectra from the same liver section. While a good classification was 

achieved for the positive mode data, the negative mode samples demonstrated poor results. 

Those results highlighted the value of removing the polymeric interference in samples analysed 

in the positive mode. They demonstrated that despite no evident polymeric distributions seen 

in the negative mode data, most likely subtle OCT effect was still present and impacted the 

classification. 

Obtained results suggested that it was possible to employ OCT as an embedding medium for 

histopathological and mass spectrometric analyses. There were no clear polymeric signals 

causing differences in the negative mode data, but some reduction in intensities might be 

attributable to polymer-induced ion suppression.  In positive mode data, the interferences due 

to OCT were more overt but could be negated by removing the regular peaks of the various 

polymeric distributions. However, studies involving various tissue types collected from 

multiple objects are needed to further assess the effects of potential ion suppression.  

 

Chapter 4 focuses on optimising the pre-DESI-MSI sample preparation protocol to allow the 

analysis of FFPE tissue samples. Over the past three decades, many efforts have been put into 

reversing formalin-fixation, thus allowing the use of FFPE blocks in research [146]. Some 

projects focused on protein identification [145, 147, 148, 150, 199], while others reported 
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successful metabolite imaging [101, 102]. Despite testing various pre-experimental conditions, 

only the protocol published by Buck et al. [101] allowed to obtain metabolic information for 

FFPE tissue sections by DESI-MSI. The spectral composition for FFPE samples was very 

different from those acquired for fresh-frozen specimens. It was observed that peak intensities 

were significantly reduced above 600 m/z. However, it was proven that the metabolic content 

remaining in the analysed sections was sufficient to allow for the successful classification of 

different tissue classes. These observations were in agreement with the results published by 

Buck et al. [101].  

Moreover, as a part of ongoing efforts to make DESI-MSI as histology-friendly as possible, 

the same experiments were performed using 5µm thick FFPE tissue sections (10µm thick 

sections are not routinely cut in diagnostic laboratories). Again, good classification results were 

achieved, confirming that even 5µm thick sections were suitable to DESI-MSI.  

The results obtained in Chapter 4 were further tested and applied to FFPE colorectal samples 

analysed as a part of another project described in Chapter 5.  

 

Results presented in the first part of Chapter 5 are for the fresh-frozen samples. Recent MS 

imaging projects reported that specific lipids show excellent histological specificity. Therefore, 

those lipids can be used to recognise various tissue classes unambiguously [154-156]. This 

observation has been widely confirmed by DESI-MSI, particularly for cancer-related 

applications [86, 246]. Although this project did not aim to identify lipids IDs, including 

potential biomarkers, it still relied on the phospholipids mass range for tissue classification. 

The investigated colorectal samples featured many histologically different tissue types, 

including mucosa, submucosa, muscle, tumour, and adenoma. Those various tissue classes 

were found to yield different DESI spectra.  

As a result, tissue-specific molecular ion signatures allowed to achieve an accuracy of 96% for 

mucosa and over 75% for muscle and submucosa in a leave-one-out cross-validation for a 

cohort of 27 normal samples. Similarly, 88% and 91% accuracy was achieved for normal and 

tumour samples, respectively, when a batch of 38 samples was subjected to statistical analysis. 

These results agree with Veselkov et al. [114], who reported a highly accurate localized 

biochemical profiling of various tissue types. The workflow described by him allowed tissue-

specific molecular ion pattern extraction leading to an accurate chemical reconstruction of 

histopathologically different regions within analysed colorectal samples.  

The weakest reproducibility of spectral patterns was seen in adenocarcinoma samples and was 

reflected by the highest misclassification rate. A similar observation was reported by Gerbig et 
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al. [88]. This phenomenon could be associated with necrosis and ischemia of the tumour. 

Enormously accelerated membrane lipid biosynthesis in proliferating tumour cells could also 

contribute to a noticeably wider variability of the acquired DESI data, as well as the different 

levels of de-differentiation of the analysed tumour samples [88].  

In general, the ion maps obtained for fresh-frozen colorectal samples followed the histological 

patterns, providing a mean for histology-level tissue identification. Multivariate pattern 

recognition methods such as PCA and MMC+LDA could provide user-independent data in 

individual samples and larger cohorts of samples. 

 

The results of the experiments described in the second part of Chapter 5 aim to demonstrate 

that FFPE tissue samples are compatible with DESI-MSI, and their molecular content is 

sufficient to allow tissue discrimination.  

The data presented here are based on a single TMA which was constructed using samples from 

only 18 patients. The collected data proved that tissue classification was possible but not at the 

level of tumour grade discrimination. This could be because most patients were diagnosed with 

grade 2 colorectal cancer (14 samples) and only one and three with grades 3 and 1, respectively. 

As a result, the sample number was deficient, and the number of samples representing different 

tumour grades was very unbalanced. Groseclose et al. reported that they distinguished different 

lung cancer histologies and individual cancer types [146]. Similar results were obtained by 

Morita et al., who detected specific signals for each status of gastric cancer differentiation 

[247]. These two projects, however, focused on proteomic MALDI data. It is crucial to keep in 

mind that a complete lack of matrix deposition and the ability to perform the analysis at 

atmospheric pressure are two significant advantages of DESI analysis vs MALDI-MSI [220], 

but at the same time data generated by these two techniques are not entirely comparable. 

Nevertheless, it would be desirable to analyse more TMAs with a higher number of colorectal 

cancer subtypes to validate if similar results could be obtained with DESI-MSI.    

It is important to stress that one of the main advantages of DESI-MSI is the visualization of the 

metabolites detected in samples while maintaining spatial integrity. This ability proves 

essential for tissue samples measurements that are thought to contain a heterogeneous 

distribution of cell types. Buck et al. employed MALDI-MSI to compare molecular content 

between fresh-frozen and FFPE samples and reported a similar metabolite spatial localization 

in analysed tissue sections [101]. That study was very similar to the one described here. It also 

reported that the collected spatially resolved mass spectra allowed successful discrimination of 

metabolic content between normal and diseased colorectal samples. 
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Moreover, TMAs were subjected to MALDI-MSI, and the acquired data were used to 

determine the metabolic ‘fingerprints’ of renal cell carcinoma and renal oncocytoma [101]. The 

ability to correctly separate samples representing those two diseases based on their metabolite 

signatures plus the high throughput analysis of large patients cohorts demonstrated the 

advantages of MALDI-MSI as a potential diagnostic tool [101]. Therefore, it is hypothesized 

that DESI-MSI should have similar potential.  

Without any doubt, the ability to image metabolites should be considered a starting point in 

investigating metabolic pathways in FFPE tissue samples. In the future, it should lead to 

distinguishing the exact location of metabolic disturbances. Additionally, there is a continuous 

improvement in the mass resolution of MSI instruments, which may increase the chances of 

detecting low abundance metabolites. As a result, it should be possible to annotate detected 

peaks more accurately. Measurements of hundreds of molecules from FFPE blocks will likely 

be possible in the foreseeable future, helping generate pathways from thousands of patients. 

The ability to analyse TMAs will only speed up that process [101]. Therefore, the results 

presented in Chapter 5 are significant technical advancements and carry the potential to directly 

impact diagnosis and predict patients’ outcomes in the future.  

 

Chapter 6 assesses the application of DESI-MSI to the process of diagnosis of cirrhotic liver 

diseases. 56 fresh-frozen liver samples representing seven liver diseases were subjected to the 

standard DESI-MSI and data analysis workflow. The first approach focused on the 

classification of individual diseases; however, that was not successful. Next, an attempt was 

made to distinguish AIH from PBC and AIH from PSC, as an overlapping syndrome 

characterises these two pairs of conditions. Since achieved results also were not satisfactory, it 

was hypothesized that the standard data analysis workflow might not be suitable for this 

dataset. As the median spectrum calculated over pixels representing each sample was used, it 

was feared that this approach failed to preserve spatial distributions and molecular 

heterogeneity of each MS image. This observation was reported by Inglese et al. [218]. As a 

result, an alternative statistical method described by the same author was implemented. It was 

based on ion colocalization features and not only preserved the spatial information but was also 

less sensitive to potential batch effects [218]. At this stage, all the samples were divided into 

three groups to reflect each disease's aetiology. Top correlations of ions were identified, and 

their distribution within analysed tissue sections was visualized.  



222 

 

It is possible that using this approach, some biochemical interactions that are distinguishing the 

three classes of cirrhotic liver diseases can be captured. The colocalization patterns can 

potentially be used for data-driven hypothesis generation, suggesting possible local molecular 

mechanisms characterizing the samples of interest. By visualizing the most significantly 

correlated ions, we can identify the specimen areas that are particularly interesting in future 

experiments.  

 

Although DESI-MSI is not likely to replace routine histology techniques, it has the potential to 

be implemented into the current diagnostic workflow. The ultimate goal is to make DESI-MSI 

as histology-compatible as possible and the results presented in this thesis have proven that this 

is possible. The ability to use OCT as an embedding matrix for DESI-MSI means that all 

required tissue sections can easily be prepared as a part of the standard histological protocol. 

Those slides can then be subjected to histological and MS assessment, and the obtained results 

will complement each other and contribute to a quicker, more accurate diagnosis.  

Moreover, the preliminary data suggest that high-throughput DESI-MSI runs are possible, and 

the quality of collected data is not compromised even during a 17-hours-long analysis. Without 

any doubt, further efforts should be undertaken to work on DESI-MSI automation, so the whole 

procedure is time-efficient and requires minimal input from staff members.  

Additionally, collected data support the statement that DESI-MSI can be used to successfully 

analyse FFPE samples, including TMAs. The future use of TMAs can allow measurements of 

hundreds of molecules and can help generate pathways from thousands of patients. As FFPE 

samples have been archived for many years in hospitals worldwide, this presents an excellent 

source of information on multiple diseases and patients’ outcomes to various treatments. 

Therefore, obtained results represent a significant technical advance and can play an essential 

role in diagnosis and predicting a patient outcome in the future. 

 

7.2 Consideration for future studies 
 

7.2.1 Quality control 

Without any doubt, one of the limitations of the projects described in this thesis is the lack of 

proper quality control (QC). QC of the identified biomolecule peak intensities is crucial for 

reducing extreme biological outliers and process-based sources of variation. Without this step, 

statistical results can be biased.  
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When the data used in this thesis were acquired, we did not have any validated QC for DESI-

MSI analysis. As a part of ongoing efforts to make up for this, the instrument was calibrated 

every day, and pork liver was used as a provisional QC. The reason why this tissue type was 

chosen was its availability and relatively homogenous structure. After calibration, a row in 

negative and positive ionization mode was recorded using a fresh-frozen pork liver tissue 

section. These data were then used to assess the instrument's shape, e.g. signal intensity, and, 

if needed, were treated as a ‘baseline’ for the rest of the data acquired on that particular day.  

A small pork liver tissue section is placed on every slide alongside the sample to be analysed 

these days. This way, some test data are recorded under precisely the same conditions before 

moving onto the analysis of the sample. This approach has already proven to be very useful 

when statistical analysis of multiple samples is undertaken.  

 

7.2.2 Batch effects 

Another limitation that needs to be taken into account is so-called batch effects.  

The process of identifying differential effects between sample classes (e.g. healthy versus 

diseased) in high-throughput biological data is crucial for providing potential drug targets as 

well as developing gene signatures for prognosis/ diagnosis. These effects are usually identified 

by statistical testing for relevant biological features (such as proteins or genes). This process 

requires identifying accurate signals against a complex backdrop of intra- and intersample 

variation [248]. However, it is essential to remember that some sources of variation are 

unrelated to intra- and intersample class differences. These are termed ‘batch effects’ and can 

arise from different experiment times and conditions, reagents, instrument users and 

instruments themselves [248, 249]. As a result, the presence of these batch effects can statistical 

bias models. Biased datasets, which consist of multiple MSI samples, often exhibit systematic 

variations of the mass spectral intensities of analysed subjects. Importantly, these variations 

are not a product of samples’ inner properties but a direct consequence of the specific 

experimental conditions during the data acquisition. For this reason, normalisation techniques 

are necessary to reduce the variations in spectral intensities caused by possible batch effects 

[218]. As a more general overview, existing approaches to minimise batch effects include an 

appropriate study design (randomisation in the order of samples analysis, technical replicates), 

outlier detection (excluding extreme data, which allows increasing sensitivity for finding 

differences between classes), and data transformation [249]. 

Every possible care was taken to minimise potential batch effects when analysing tissue 

samples by DESI-MSI. Samples representing different conditions (normal versus cancer or 
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various cirrhotic liver diseases) were always analyzed in randomised order. However, it was 

appreciated that factors like fluctuations in signal intensity or even conditions in the laboratory 

(temperature, humidity) could contribute to batch effects. Due to the high number of samples 

(n=66) and lengthy analysis time per sample (on average 10-11 hours), the data acquired and 

presented in Chapter 6 were the most likely to suffer from batch effects.  

 

7.2.3 Data acquisition using a home-built sprayer 

All frozen samples analysed as a part of this Thesis were measured using a home-built sprayer 

mounted to Thermo Exactive Orbitrap instrument. Therefore, the results presented in Chapter 

5 (fresh-frozen colorectal samples) and Chapters 3 and 6 (fresh-frozen liver specimens) were 

based on the Swagelok T element sprayer. It is unavoidable to encounter some minor 

differences in the sprayer design depending on the person building it. Also, every possible care 

was taken when optimising the sprayer, but again, there was no formal written protocol to 

follow to ensure this step was performed as per the SOP. Lastly, geometric setup and 

environmental factors such as the temperature can directly impact the sprayer's performance. 

As a result, the sprayer setup needs to be closely controlled to obtain reliable data [118]. 

Therefore, continuous optimisation of the sprayer before DESI-MSI analysis was crucial to 

ensure the quality of collected data was up to the expected standards. Before commencing with 

tissue samples analysis, a couple of lines were recorded in both positive and negative modes 

using a pork liver tissue section. That material was relatively homogenous and therefore has 

been used as quality control.  

Nevertheless, the optimisation procedure is currently non-standardised and relies on 

continuous adjustments to the sprayer before DESI-MSI analysis. Although normalisation was 

incorporated during data-processing to account for these variations, there is a high possibility 

that low-intensity peaks were eliminated due to ion suppression. Without any doubt, if the 

DESI-MSI platform is to be introduced as a part of a routine diagnostic portfolio, a more robust 

approach with a commercially available sprayer is a must. As such, the use of a redesigned 

sprayer described in Chapter 2.9.2 should be considered for all future studies.  

 

7.2.4 Expansion of the DESI-MSI database 

An adequate DESI-MSI database is needed in order to be able to build reliable models for 

diseased versus normal tissue samples.  
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Larger cohorts of patient samples would need to be analysed to validate the findings from 

Chapter 3. In order to further probe any potential ion suppression effects, a wider-reaching 

experiment is proposed.  This would encompass tissue samples acquired from a range of 

subjects with a range of tissue types. Analysing such samples embedded in H2O and OCT 

would enable the classification according to tissue type and patient. Any potential interference 

could thus be placed in the context of inter-patient and inter-tissue type variation. 

A limited number of fresh-frozen colorectal samples was analysed and included in Chapter 

5.3.1. Ideally, potential future work will focus more on samples histologically classified as 

adenoma. Moreover, access to complete patients’ metadata, including survival data, is 

essential.  

In Chapter 5 only one slide per patient was analysed. Going forward, DESI-MSI of TMA slides 

where multiple sections from the same patient should be considered “replication analysis” for 

future studies. 

A very limited number of cirrhotic liver samples was available per each disease when the 

project described in Chapter 6 was running. In a later course, additional samples were provided 

by the collaborators to make the groups representing various diseases more balanced.  

 

7.2.5 DESI-MSI as a routinely used tool in clinical settings 

The goal is to make DESI-MSI compatible with the requirements of clinical laboratory settings. 

The findings reported in this thesis regarding FFPE samples' analysis need to be further 

validated using established techniques like LC-MS or NMR. However, the preliminary results 

presented in Chapter 4 and Chapter 5 look very promising and bring DESI-MSI one step closer 

to applying this technique in histology-level cancer diagnostics. The molecular picture of the 

tissue section obtained by DESI-MSI makes this technique ideal for diagnostic tools to 

complement the current histology-based approach. Furthermore, this molecular information 

brings new insights about the systems lipid biochemistry.  

 

The future of DESI-MSI ultimately lies in developing an automated platform of appropriate 

size to be placed in hospitals providing spatial data to aid diagnosis. In a clinical scenario, a 

biopsy may be taken, and instead of following the traditional histopathology processing 

protocol, clinicians may assign it to DESI-MSI analysis. Since this is a non-destructive 

technique, analysed tissue slides could be kept for histological interpretation and validation. 

Challenges that would need to be overcome include the mass spectrometer's size, the time 

required for image acquisition, and a validated lipidomic profiles database. Additional 
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considerations include the cost of mass spectrometer instrument implementation (instrument 

affordability, staff training, and required lab space). 

 

7.3 Future directions  
 

7.3.1 Automation of DESI-MSI as a step towards routine pathology testing 

Future efforts should focus on making DESI-MSI as compatible with routine histopathology 

workflow as possible. That means that the following aspects covered in this thesis will require 

further investigation: 

- OCT as an embedding medium vs MSI 

Although results presented in Chapter 3 indicate that OCT can assist with cryosectioning fresh-

frozen samples as long as the data are adequately treated afterwards, a study involving a higher 

number of samples is required. Tissue specimens should represent various tissue types and be 

collected from multiple subjects. Acquiring data for such samples embedded in H2O and OCT 

will enable the classification according to tissue type and patient. As a result, any potential 

interference could be placed in the context of the inter-tissue type and inter-patient variation. 

Proven compatibility of OCT with DESI-MSI would mean that there is no need to adjust the 

existing histopathology protocols in the future.  

- High-throughput DESI-MSI 

Only preliminary data for a relatively small number of samples were presented in Chapter 

5.3.2. Again, the future continuation of this study needs to employ more tissue samples with 

clinically relevant metadata. The collection of the DESI data for various tissue types is essential 

to test the acquired data for tissue classification and build a sufficient database for future 

reference. That would allow fully automated tissue sections analysis where a dedicated 

software could compare and match the metabolomic content of an analysed specimen with the 

database.  

- DESI of FFPE tissue samples 

The results presented in Chapter 5.3.4 indicate that metabolomic analysis of FFPE samples by 

DESI-MSI is possible. Despite the concerns that the routine histology procedures employed to 

allow the fixation of tissue specimens and further processing, it was proven that the molecular 

content of those samples was sufficient to allow for tissue classification. The findings reported 

in this thesis need to be further validated by a well-established analytical technique like LC-

MS. That would allow minimising any bias from a single DESI-MSI platform. The next stage 
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would involve analysing a larger cohort of independent patient samples subjected to DESI-

MSI and LC-MS. 

 

7.3.2 DESI-MSI for cirrhotic liver diseases  

The results presented in Chapter 6 are for a batch of 66 liver specimens. However, as the total 

number of samples representing some diseases was deficient (e.g. only three AIH samples), the 

second batch of 69 specimens was added to this project. Those additional 69 samples have been 

analysed by DESI-MSI, but the analysis took place about 18-24 months after the first batch. 

An attempt was made to try and merge the DESI data so all the samples could be subjected to 

statistical analysis as one dataset. However, it was then discovered that there were apparent 

differences in the quality of acquired data. This was mainly due to the ongoing efforts to 

improve the signal quality, and as a result, a new sprayer with a slightly altered design has been 

used to analyse the second batch. 

Nevertheless, the two batches' variability was too significant to try and treat them as one 

dataset. Therefore, it has been suggested that the whole project should be moved to a different 

instrument (Xevo QToF from Waters). This is the mass spectrometer that uses a novel and 

more reliable sprayer, as described in Chapter 2.9.2. Also, to take advantage of re-analysis of 

all the liver samples, the measurements will use the lower resolution to capture much more 

detailed information. A new, much more detailed histological validation will be required, too.  

 

7.3.3 Cross comparison of colorectal samples lipid profiles with REIMS 

platform 

Although the work carried out as part of this thesis focused on the practicalities of DESI-MSI 

application to routine histopathology settings, the collected data could be used to study changes 

in colorectal cancer lipidomics. There is a batch of about 120 fresh-frozen colorectal samples 

for which both DESI-MSI data and REIMS data are readily available.  

Rapid evaporative ionisation mass spectrometry (REIMS), contrary to DESI-MSI, is a non-

imaging technique that allows near real-time characterisation of human tissue in vivo or in situ 

via the analysis of the aerosol released during surgical interventions [250-252]. Similarly to 

DESI-MSI, the resulting mass spectrometric profiles are mainly generated from membrane 

phospholipids and are characteristic of the type of tissue under investigation [253, 254]. 

Although a cross-platform normalisation method for DESI-MSI and REIMS data has already 

been proposed [255], this kind of comparison has never been done so far.  
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The main aim of the cross-comparison between the DESI-MSI and the REIMS data for 

colorectal cancer data would be to elucidate essential diagnostic ions and validate the lipidomic 

changes in colorectal cancer. The validation of the “lipidomic fingerprint” would improve the 

REIMS technique's probability of becoming a routine, providing a real-time tissue 

characterisation tool during surgery, and enhancing the implementation of DESI-MSI in 

diagnostic pathology. 

Comparative analysis between these two platforms would contribute to strengthening our 

understanding of lipidomic dysregulation in colorectal cancer.  

 

7.4 Conclusions 
 

The general aim of this PhD was to look into the DESI-MSI technique from the 

histopathology’s perspective. As the ultimate goal is to introduce DESI-MSI to diagnostic 

laboratories, it needs to be further optimised and tested so it can potentially be implemented 

into routine histopathology investigations. Therefore, the first chapter looks into the 

compatibility of OCT embedding medium and DESI-MSI. Chapter two describes the 

optimisation process of utilising DESI-MSI to analyse FFPE tissue samples. Lastly, chapters 

three and four present the results of DESI-MSI analysis for both fresh-frozen and FFPE 

colorectal samples, as well as for some cirrhotic liver diseases.  

The results presented in this thesis suggest that DESI-MSI can be considered a histology-

friendly analytical technique. It can be applied to analyse tissue samples embedded in OCT, 

providing that the collected data is subjected to a polymer removal step first. Moreover, the 

DESI-MSI protocol can be adjusted to allow for a successful analysis of FFPE samples. 

Without any doubt, this is a significant achievement, as the majority of samples processed by 

diagnostic histopathology laboratories are fixed in formalin. Additionally, as other studies have 

claimed, DESI-MSI is an efficient approach to look into alternations in phospholipids 

biochemistry in colorectal cancer and cirrhotic liver diseases.  

As the ultimate goal is not to replace the current histopathology approach but add DESI-MSI 

as a complementary technique, it is evident that it needs to be compatible with the standard 

pathology protocols. The data collected during my PhD prove that DESI-MSI has the potential 

to be implemented alongside the routine histopathology workflow.  
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Supplementary Information 

 

Appendix A: Average spectra for each of the other 4 liver sections, showing negative and  

positive ion modes. H2O-embedded spectra are shown in blue, and those from OCT- 

embedded samples are in red. 
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Appendix A: Average spectra for each of the other 4 liver sections, showing negative and 

positive ion modes. H2O-embedded spectra are shown in blue, and those from OCT-embedded 

samples are in red – continued.  
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Appendix B: Information about each of the polymeric distributions identified in the 5 

positive mode OCT-embedded samples. The polymers in OCT have a monomeric unit of 

C2H4O with a mass of 44.026 Da. The 13 distributions identified in the 5 positive mode OCT-

embedded samples are shown below. The charge of each distribution was determined by 

inspection of the M+1 isotopologue.   

A linear series of m/z values (±44.026/z) centred around the identified m/z value was created 

and matched (±10 ppm) against the mean spectrum for each sample.  From the most intense 

peak within the distribution, only those peaks found in a continuous distribution were 

considered, i.e. there are no gaps in the polymer peaks identified in the spectrum. The 

isotopologue peaks for each of these were also identified based on the distance expected due 

to the charge state. 

 

m z 

569.313 1 

586.657 3 

700.375 2 

708.360 2 

780.439 2 

829.974 2 

841.524  2 

844.000 2 

1289.705 1 

1333.733 1 

1361.784 1 

1400.854 1 

1489.068 1 
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Appendix C: The three panels in the plot show, from top to bottom: the mean spectrum 

of the raw data; the peaks identified as polymeric; the mean spectrum with the polymeric 

peaks removed. 

Appendix C shows the removal of the various polymeric peaks from the positive mode LIV3 

sample that was embedded with OCT.  Average spectra for the 4 other OCT-embedded positive 

mode samples, with polymeric profiles removed, are shown below (Appendix D). The 

comparison was made between the paired H2O-embedded liver section.  For all but LIV5, the 

average signal intensities of the OCT-embedded samples are much lower than for the H20-

embedded samples. 
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Appendix D: Average spectra, following polymeric signal removal, of the remaining liver 

sections. The H2O-embedded mean spectrum is shown in blue, and the OCT-embedded 

equivalent is shown in red. 
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Appendix E: PCA scores and loadings plots for positive mode data. 

The loadings of PC1 using positive mode data revealed the presence of 4 peak clusters with 

elevated intensities in 3 of the 5 liver samples (regardless of embedding medium). The PCA 

scores and loadings plots revealed these clusters with m/z ratios of 466.534, 494.566, 522.597 

and 550.628. The most intense of these (522.597) was likely to be a surfactant with the 

chemical formula of C36H75N, with the other 3 clusters differing by ±[C2H4]n. These peak 

clusters were subsequently removed from all positive mode spectra. 
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Appendix F: Boxplots showing ions at lower intensities in OCT-embedded samples. OCT 

intensities are depicted in red, and H2O intensities are shown in blue. 

Boxplots below show the intensities of specific ions, which were at lower intensities in the 

OCT-embedded spectra compared to the H2O-embedded spectra. All variables have q < 0.001 

and log2 H2O/OCT fold changes > 0. Few of these variables demonstrated a consistent trend 

across the 5 paired sections. 

Of the 6 boxplots shown below, only that with m/z 599.320 shows lower median intensities 

across all 5 OCT-embedded sections compared to H20-embedding. The remaining sections 

showed some sections with reduced OCT intensities and others with elevated intensities. 
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Appendix G. Averaged spectra recorded for the 5µm thick FFPE mouse liver sample.  

Zoom in on the phospholipids mass range is also shown. -ve mode data (A); +ve mode data  

(B).  
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Appendix H: TNM staging classification of the colon and rectal cancer. 

 

 

AJCC 

stage 

TNM stage TNM stage criteria for colorectal 

cancer 

 

Dukes 

 

Stage 0 Tis N0 M0 Tis: Tumour confined to mucosa; cancer-in-

situ 

 

- 

Stage I T1 N0 M0 T1: Tumour invades submucosa 

 

A 

Stage I T2 N0 M0 T2: Tumour invades muscularis propria 

 

A 

Stage II - 

A 

T3 N0 M0 T3: Tumour invades subserosa or beyond 

(without other organs involved) 

 

B 

Stage II - 

B 

T4 N0 M0 T4: Tumour invades adjacent organs or 

perforates the visceral peritoneum 

 

B 

Stage III - 

A 

T1-2 N1 M0 N1: Metastasis to 1 to 3 regional lymph 

nodes. T1 or T2. 

 

C 

Stage III - 

B 

T3-4 N1 M0 N1: Metastasis to 1 to 3 regional lymph 

nodes. T3 or T4. 

 

C 

Stage III - 

C 

any T, N2 

M0 

N2: Metastasis to 4 or more regional lymph 

nodes. Any T. 

 

C 

Stage IV any T, any 

N, M1 

M1: Distant metastases present. Any T, any 

N. 

 

-  
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Appendix I: Significant features detected for the different tissue types (mucin, mucosa, 

muscle and tumour) identified in a human colorectal FFPE sample analysed by DESI-

MSI in negative ion mode. All ions have ANOVA Benjamini-Hochberg-Yekutieli-corrected 

p < 0.001 and a mean intensity threshold of 10. 

 
   

Mean Intensity 

m/z Tissue Diff ANOVA pVal Mucin Mucosa  Muscle Tumour  

261.11 Mucin <0.001 49.6392 32.6435 29.6322 8.7663 

262.06 Mucin <0.001 18.1007 0.3108 0.0000 0.0000 

290.06 Mucin <0.001 27.4443 0.7274 0.0000 0.0000 

308.07 Mucin <0.001 20.2305 0.3169 0.0000 0.0000 

332.08 Mucin <0.001 18.2404 0.5235 0.0000 0.0000 

346.10 Mucin 2.22E-15 10.0384 2.5882 0.0000 0.0000 

350.11 Mucin <0.001 56.0621 3.2286 0.4959 0.3535 

374.10 Mucin <0.001 15.6223 7.6469 0.0000 0.0000 

392.12 Mucin <0.001 74.2800 14.7128 0.0000 0.0000 

410.17 Mucin <0.001 20.6282 0.6827 1.1400 0.6607 

434.14 Mucin <0.001 84.9303 64.2900 0.0000 0.0000 

452.15 Mucin <0.001 26.9229 0.1921 0.0000 0.0000 

468.20 Mucin <0.001 15.0576 2.4336 0.6318 8.1888 

470.20 Mucin <0.001 10.6845 1.5376 0.2763 5.5811 

494.18 Mucin <0.001 41.8908 4.1135 0.0000 0.0000 

509.25 Mucin <0.001 29.0356 5.1881 1.9678 5.9776 

510.21 Mucin <0.001 10.3986 0.3967 0.0000 0.3604 

511.26 Mucin <0.001 29.5445 2.2259 0.6841 3.4775 

512.20 Mucin <0.001 12.8239 0.4009 0.0000 0.2154 

533.22 Mucin <0.001 17.2730 0.2001 0.0000 0.2048 

535.26 Mucin <0.001 33.0786 5.6667 0.4104 0.5325 

536.20 Mucin <0.001 38.1305 11.7273 0.0000 0.0000 

537.42 Mucin 3.46E-06 13.1670 8.2928 2.5291 5.3688 

551.22 Mucin <0.001 45.5694 0.2162 0.0000 0.4320 

552.21 Mucin <0.001 14.3132 1.9877 0.0000 0.0000 

553.25 Mucin <0.001 48.9778 2.1710 1.6604 0.2244 

554.23 Mucin <0.001 16.3659 3.8881 0.2384 0.3906 

575.24 Mucin <0.001 22.2097 5.4860 0.0000 0.0000 

577.25 Mucin <0.001 49.8710 30.4554 0.0000 1.7674 

593.26 Mucin <0.001 65.5335 5.0029 0.5575 0.1880 

594.24 Mucin <0.001 21.1493 5.6570 0.0000 0.1700 

595.27 Mucin <0.001 74.5279 5.4468 0.2896 0.1920 

596.26 Mucin <0.001 18.9341 6.5879 0.0000 0.0000 

608.21 Mucin <0.001 10.0952 1.2666 0.0000 0.3213 

617.25 Mucin 4.08E-13 15.1051 12.2399 0.2581 0.0000 

623.28 Mucin <0.001 10.5642 0.4017 0.0000 0.2140 

635.27 Mucin <0.001 45.6562 12.1460 0.4898 0.2496 
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Mean Intensity 

m/z Tissue Diff ANOVA pVal Mucin Mucosa  Muscle Tumour  

637.28 Mucin <0.001 60.5516 12.2584 0.0000 0.2070 

650.24 Mucin <0.001 28.9000 0.3257 0.0000 0.0000 

655.30 Mucin <0.001 14.8722 0.4019 0.0000 0.0000 

679.32 Mucin <0.001 18.5642 6.0281 0.0000 0.0000 

715.35 Mucin <0.001 11.6294 0.4224 0.0000 0.4820 

756.38 Mucin <0.001 11.4788 0.5940 0.0000 0.0000 

763.73 Mucin <0.001 28.2928 13.4069 4.3143 0.9056 

793.35 Mucin <0.001 16.2688 0.0000 0.0000 0.4069 

796.39 Mucin 2.14E-14 10.8581 3.8743 0.0000 0.1925 

798.41 Mucin <0.001 22.0366 9.6287 0.0000 0.0000 

829.86 Mucin <0.001 13.6411 0.8463 0.0000 0.0000 

831.88 Mucin <0.001 12.1671 0.3463 0.0000 0.0000 

855.89 Mucin <0.001 26.2023 1.1143 0.0000 0.0000 

857.91 Mucin <0.001 43.6223 1.7922 0.4834 0.3711 

881.91 Mucin <0.001 11.9385 0.3996 0.0000 0.0000 

883.93 Mucin <0.001 24.6605 0.5072 0.0000 0.0000 

171.05 Mucosa <0.001 20.7370 83.8191 64.4134 68.6883 

187.05 Mucosa 1.12E-12 33.7141 42.2529 24.8077 24.4132 

199.09 Mucosa 2.37E-09 3.9920 15.1525 9.4201 12.6066 

214.01 Mucosa 8.11E-08 10.9706 15.0913 7.5984 13.9348 

215.09 Mucosa 3.89E-10 11.9224 23.2959 12.4378 14.5806 

234.12 Mucosa <0.001 5.3572 51.1614 34.1025 35.0106 

237.08 Mucosa 4.77E-15 1.1034 14.8536 7.8138 12.6848 

251.12 Mucosa 7.45E-14 8.1095 29.0719 21.4556 27.6355 

253.18 Mucosa <0.001 96.6506 327.1840 120.3742 259.7761 

255.19 Mucosa <0.001 965.2612 2641.6609 1332.3804 2288.2710 

255.24 Mucosa <0.001 0.4373 12.3837 0.0000 4.5978 

267.20 Mucosa <0.001 15.9716 54.8567 23.5786 46.6682 

269.00 Mucosa 1.74E-08 7.8799 13.2313 4.7319 10.9055 

269.18 Mucosa <0.001 10.4062 34.8015 9.8648 18.6559 

269.21 Mucosa <0.001 35.3463 103.0920 47.0651 84.7898 

271.20 Mucosa <0.001 7.2245 24.2620 7.8569 13.5727 

277.19 Mucosa <0.001 17.9389 43.8409 15.0523 35.0046 

279.20 Mucosa <0.001 357.0331 1154.3913 382.4971 939.5096 

281.21 Mucosa <0.001 2813.9493 8454.7073 3410.8704 5988.5829 

281.26 Mucosa <0.001 4.8754 95.9261 9.5069 43.4436 

281.35 Mucosa <0.001 0.9227 30.4091 1.0457 10.7206 

282.22 Mucosa <0.001 555.1404 1754.2433 685.5910 1237.8379 

283.23 Mucosa <0.001 640.2842 1227.9497 724.4103 1046.8690 

293.18 Mucosa <0.001 29.4666 60.9281 14.3177 30.2557 

294.22 Mucosa <0.001 2.8900 14.6925 0.2754 11.0915 

295.20 Mucosa <0.001 103.8801 288.1704 75.3792 150.5407 

295.24 Mucosa <0.001 7.2117 31.7659 11.4320 19.8868 



251 

 

   
Mean Intensity 

m/z Tissue Diff ANOVA pVal Mucin Mucosa  Muscle Tumour  

297.21 Mucosa <0.001 157.6942 495.6380 141.7942 227.3538 

299.24 Mucosa <0.001 6.3959 22.1960 5.3660 11.1008 

303.21 Mucosa <0.001 13.8877 54.7680 22.1001 47.7418 

305.22 Mucosa <0.001 12.4700 44.3242 19.1506 41.9861 

307.24 Mucosa <0.001 15.4943 49.3584 20.2829 36.8434 

309.18 Mucosa <0.001 14.4861 26.1235 8.0767 13.2693 

309.25 Mucosa <0.001 59.4476 195.9591 68.1830 123.2435 

311.20 Mucosa <0.001 43.1289 84.1923 20.8605 34.7262 

311.27 Mucosa <0.001 21.4937 39.3963 20.3373 26.8775 

323.24 Mucosa <0.001 2.1249 12.8500 2.3537 6.5448 

325.25 Mucosa <0.001 2.6996 14.2089 1.5817 7.1814 

327.24 Mucosa <0.001 22.0396 44.3912 19.1436 41.8819 

329.24 Mucosa <0.001 22.9078 53.6712 15.5879 34.4359 

331.24 Mucosa <0.001 10.3959 27.5611 11.5834 24.2653 

337.29 Mucosa <0.001 4.4569 22.4074 7.9000 11.7023 

349.22 Mucosa 4.92E-10 68.7986 134.2598 125.2112 120.9186 

357.21 Mucosa 1.02E-05 3.4227 11.3137 5.6215 10.6764 

363.24 Mucosa 4.81E-09 17.4649 32.9271 25.6732 28.5140 

365.26 Mucosa 1.75E-08 15.4930 28.7931 21.2385 25.6764 

366.22 Mucosa 1.29E-14 48.4542 76.9615 45.4825 71.0759 

379.27 Mucosa 7.68E-10 6.9105 14.3455 5.9249 12.5401 

389.09 Mucosa 9.88E-15 19.4337 54.3404 28.3879 51.3070 

415.27 Mucosa <0.001 15.8807 41.3307 16.0666 5.8632 

437.30 Mucosa 1.90E-14 3.6763 16.6335 5.8841 7.1562 

471.36 Mucosa <0.001 5.4801 14.9578 4.0517 0.1714 

476.16 Mucosa <0.001 33.8218 68.2179 0.0000 0.0000 

476.30 Mucosa <0.001 3.1897 37.3479 0.3270 3.2697 

477.42 Mucosa <0.001 6.1197 24.2693 4.4121 12.8361 

478.32 Mucosa <0.001 16.2634 66.4183 1.3891 23.7075 

479.39 Mucosa 2.02E-10 7.4699 28.8170 9.2029 12.3732 

480.33 Mucosa <0.001 1.8623 27.2947 0.5981 2.1642 

485.38 Mucosa <0.001 4.5611 18.5618 10.2902 0.3675 

497.38 Mucosa <0.001 4.1666 14.5059 2.8952 0.3767 

499.39 Mucosa <0.001 41.6937 101.0125 31.2551 5.0053 

500.31 Mucosa <0.001 20.0551 69.0505 15.5497 21.7180 

501.42 Mucosa <0.001 6.8277 28.6854 11.2846 12.1142 

508.34 Mucosa <0.001 1.2699 14.6335 0.9573 1.4546 

522.37 Mucosa <0.001 1.7887 13.4447 0.3040 3.7108 

523.40 Mucosa <0.001 7.2824 16.3374 2.2427 0.5239 

524.34 Mucosa <0.001 7.8652 27.0066 6.8645 9.7310 

525.42 Mucosa <0.001 38.9692 94.6635 26.1222 4.0130 

526.33 Mucosa 7.77E-16 3.5582 12.2853 1.5915 5.2001 

533.49 Mucosa <0.001 14.2884 65.9176 26.6598 56.6914 



252 

 

   
Mean Intensity 

m/z Tissue Diff ANOVA pVal Mucin Mucosa  Muscle Tumour  

539.44 Mucosa <0.001 5.6213 18.3934 5.5834 0.6049 

541.42 Mucosa 4.04E-14 3.9301 15.2109 6.7591 3.6295 

553.46 Mucosa 2.66E-15 3.3652 11.3613 1.7554 0.1897 

555.48 Mucosa 4.69E-14 2.1975 13.7432 2.8704 5.0776 

557.50 Mucosa <0.001 12.0066 78.1760 22.3569 62.8556 

559.52 Mucosa <0.001 64.6509 328.8802 113.7260 243.4245 

565.46 Mucosa 1.11E-16 9.3620 21.7113 5.3637 7.3982 

571.53 Mucosa <0.001 11.3691 32.9844 4.3879 18.2623 

573.54 Mucosa <0.001 3.2314 27.3071 4.3570 19.4514 

575.54 Mucosa <0.001 8.4412 19.9815 3.6247 12.0891 

581.51 Mucosa <0.001 0.0000 10.5135 0.5428 7.1545 

583.52 Mucosa <0.001 21.4511 124.1522 27.4835 83.9191 

584.53 Mucosa <0.001 4.9380 45.5852 10.7599 32.4382 

585.54 Mucosa <0.001 93.5042 498.0412 133.7663 297.4372 

587.56 Mucosa <0.001 37.8869 151.1592 49.7465 102.6002 

589.58 Mucosa 1.22E-15 8.8626 21.0122 11.0186 15.8336 

591.43 Mucosa <0.001 4.1780 21.6867 5.0051 16.5712 

597.37 Mucosa 1.42E-13 7.9098 16.1773 4.3907 14.4350 

599.38 Mucosa <0.001 65.1101 162.9795 50.7805 87.2919 

599.57 Mucosa <0.001 3.3158 34.2755 3.2518 16.5641 

600.39 Mucosa <0.001 22.1010 48.1535 14.6680 25.7137 

601.55 Mucosa <0.001 11.1660 50.9645 9.8502 24.3909 

607.44 Mucosa <0.001 7.3029 32.9813 9.4521 28.8467 

609.58 Mucosa 4.44E-16 0.5048 10.9977 2.2524 5.5067 

611.59 Mucosa <0.001 2.6177 17.6598 6.7600 8.2064 

613.51 Mucosa 5.91E-07 2.7586 11.1640 3.9848 9.6495 

613.59 Mucosa <0.001 3.0726 21.3230 3.9770 10.7032 

615.53 Mucosa <0.001 2.2833 13.0278 1.0483 9.6560 

617.54 Mucosa <0.001 0.9928 11.0344 0.4756 4.4155 

619.27 Mucosa <0.001 32.3848 75.1322 0.0000 0.0000 

619.47 Mucosa 7.05E-08 5.9923 10.6497 2.1248 8.2138 

625.58 Mucosa <0.001 2.9684 21.3315 5.7633 7.9569 

627.60 Mucosa 1.67E-15 3.0809 21.0808 15.3916 18.4307 

635.60 Mucosa 5.55E-16 0.9005 10.1388 1.5789 4.1633 

637.62 Mucosa 5.55E-16 2.9363 14.5153 8.2879 3.3057 

639.57 Mucosa <0.001 3.5957 14.6951 3.8541 0.6506 

641.58 Mucosa <0.001 4.0998 22.5924 11.6597 10.0905 

651.60 Mucosa <0.001 5.4338 28.6601 9.0555 14.0916 

653.55 Mucosa <0.001 13.0950 40.0580 19.2132 17.1470 

653.62 Mucosa 1.89E-15 4.6698 14.9543 5.1438 4.8169 

654.56 Mucosa <0.001 1.8242 16.5620 6.0239 6.3619 

655.58 Mucosa <0.001 6.2731 31.2269 14.5833 9.8876 

667.61 Mucosa <0.001 11.2565 31.0186 17.8866 12.2258 
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Mean Intensity 

m/z Tissue Diff ANOVA pVal Mucin Mucosa  Muscle Tumour  

669.55 Mucosa <0.001 19.8618 57.1365 22.1539 11.4256 

671.57 Mucosa 4.20E-11 0.5636 10.5117 3.7501 7.2242 

681.62 Mucosa <0.001 5.8018 16.4022 2.7518 1.9238 

683.43 Mucosa 1.11E-13 12.4065 23.1261 7.1704 19.7045 

683.61 Mucosa <0.001 5.6541 19.1726 5.8909 5.8520 

691.55 Mucosa 1.75E-11 1.7322 13.1012 2.9248 4.7272 

697.45 Mucosa <0.001 34.9672 68.1407 17.6882 48.7779 

697.60 Mucosa 1.11E-16 6.0076 22.9671 7.1878 9.9633 

699.61 Mucosa <0.001 2.0622 10.9939 0.4797 3.3629 

701.62 Mucosa <0.001 11.2016 29.6575 4.6401 11.7572 

713.46 Mucosa <0.001 13.3543 34.4365 8.1393 30.4012 

715.65 Mucosa 1.40E-05 2.6503 12.2091 8.7162 6.3132 

716.66 Mucosa 2.47E-13 0.6853 13.9690 13.0842 5.4426 

737.70 Mucosa <0.001 14.2990 23.0523 6.5910 0.9162 

742.65 Mucosa 6.42E-13 0.9142 14.1006 0.0000 2.4912 

753.54 Mucosa <0.001 19.5411 50.7872 5.3679 42.9982 

765.75 Mucosa <0.001 7.4104 14.1194 1.4166 1.1376 

788.68 Mucosa 4.44E-16 14.8678 34.8362 17.4794 11.7501 

789.70 Mucosa 3.65E-11 7.3427 17.9947 7.2090 6.3374 

829.76 Mucosa 1.11E-16 1.0652 10.1197 8.8823 1.5393 

833.75 Mucosa 7.40E-09 13.7543 18.9769 5.5632 11.9404 

835.68 Mucosa <0.001 35.5249 53.4038 4.2137 27.8072 

837.84 Mucosa <0.001 1.1178 18.2709 5.5171 15.6208 

838.42 Mucosa 1.08E-11 10.9957 14.6336 0.0000 0.0000 

840.43 Mucosa 1.50E-12 19.3361 25.3375 0.0000 0.9322 

857.67 Mucosa 4.74E-12 7.4384 10.8432 0.3217 4.9514 

859.69 Mucosa 5.13E-11 9.3901 10.2375 0.5545 6.5946 

861.72 Mucosa <0.001 37.1048 52.3319 4.0718 25.9020 

861.86 Mucosa <0.001 2.5247 17.5993 4.0635 14.5425 

863.73 Mucosa <0.001 36.0447 57.0051 6.1385 20.1274 

863.87 Mucosa <0.001 4.1143 52.6035 17.3436 37.4886 

883.70 Mucosa 1.52E-13 13.9848 18.6666 1.4028 12.5369 

885.71 Mucosa <0.001 99.3745 124.4126 25.4397 41.9162 

887.88 Mucosa <0.001 0.8020 18.2639 2.6657 12.3377 

889.90 Mucosa <0.001 4.9857 53.5006 13.3272 31.4064 

905.92 Mucosa <0.001 2.1923 13.0605 1.9333 3.8102 

911.76 Mucosa 3.21E-11 3.3564 11.7706 1.0012 7.5388 

931.94 Mucosa 7.87E-10 1.5689 11.3929 5.0096 5.5604 

933.77 Mucosa 1.44E-07 7.0417 13.7891 5.6807 6.3803 

949.73 Mucosa 1.56E-13 5.6518 12.1561 2.2333 3.2931 

193.04 Muscle 3.00E-15 3.1283 16.7794 28.7307 6.1892 

323.20 Muscle 2.62E-10 25.5466 48.9429 60.5363 53.7645 

329.17 Muscle 3.89E-06 2.1115 9.2834 13.4467 12.8899 
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Mean Intensity 

m/z Tissue Diff ANOVA pVal Mucin Mucosa  Muscle Tumour  

417.29 Muscle 1.17E-11 9.5631 23.5996 24.2373 12.7222 

427.30 Muscle <0.001 1.1729 4.4963 24.6641 8.2271 

451.36 Muscle 7.21E-13 4.3755 19.6634 31.9467 28.7697 

452.32 Muscle 1.12E-14 0.6104 14.6243 20.7457 14.9073 

665.60 Muscle 7.77E-16 4.7120 15.8218 22.0434 6.7370 

691.64 Muscle <0.001 0.4390 7.9962 37.5879 2.2068 

693.64 Muscle <0.001 0.0000 9.7650 52.4946 1.0081 

695.65 Muscle 1.80E-07 8.9041 14.1354 17.1584 5.9796 

717.65 Muscle <0.001 1.7982 28.0009 50.8552 13.7299 

719.67 Muscle <0.001 0.0000 22.0769 84.4764 7.6814 

733.66 Muscle 2.28E-09 0.0000 9.6823 16.5949 7.5631 

777.73 Muscle 5.23E-09 2.6028 8.2824 10.6612 0.8885 

787.69 Muscle <0.001 1.2085 2.9170 13.4209 0.9185 

802.71 Muscle 2.63E-14 0.6213 6.3520 13.0757 2.0694 

803.74 Muscle <0.001 4.8460 17.2666 18.5133 1.6093 

805.76 Muscle 1.67E-15 3.3180 11.8685 18.0948 4.1691 

831.78 Muscle <0.001 2.5965 5.9083 16.4947 1.0754 

995.98 Muscle 1.11E-15 0.0000 8.0260 16.3280 1.7696 

997.00 Muscle 2.86E-08 1.1608 5.3630 11.1047 1.4779 

999.01 Muscle 2.22E-16 1.2301 3.5352 10.8100 0.4113 

107.99 Tumour 2.08E-13 2.0708 12.7660 16.6131 21.3201 

120.97 Tumour <0.001 16.3474 44.8724 68.9917 81.7916 

123.95 Tumour <0.001 14.5966 18.3736 10.3937 35.2461 

133.99 Tumour <0.001 1.3001 15.8246 18.6971 61.8238 

136.98 Tumour <0.001 2.1748 9.5640 10.1495 24.9910 

137.96 Tumour <0.001 30.9291 88.1579 117.1125 148.0447 

143.99 Tumour 1.15E-07 1.4879 7.2625 5.3216 11.0161 

144.91 Tumour <0.001 3.3288 11.4367 4.0522 30.6426 

146.91 Tumour <0.001 14.6345 13.9043 18.5522 32.0973 

150.99 Tumour 2.20E-10 4.3730 9.7202 12.6455 15.7784 

151.98 Tumour <0.001 2.1266 18.8036 21.4426 25.2086 

153.00 Tumour 1.85E-06 0.5166 6.4772 4.9162 11.0248 

157.03 Tumour 8.87E-10 4.3066 12.9420 11.8705 15.9802 

161.01 Tumour <0.001 0.5294 4.2712 15.4614 23.0567 

165.96 Tumour <0.001 0.8294 8.4738 18.7426 20.9791 

166.00 Tumour 2.03E-13 0.0000 10.4511 11.3971 13.9056 

171.09 Tumour 6.44E-10 21.4959 32.3624 42.2416 45.7950 

173.95 Tumour <0.001 9.2583 11.5278 16.1414 28.4333 

177.04 Tumour 3.55E-14 0.5052 8.3792 6.8496 13.5851 

180.02 Tumour 4.10E-14 8.0402 14.9707 16.9759 23.7013 

182.95 Tumour <0.001 30.7884 85.0504 120.3443 212.2578 

185.11 Tumour 2.33E-11 6.3119 13.1312 16.1520 19.9799 

188.01 Tumour <0.001 0.0000 0.9143 1.0102 10.8861 
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Mean Intensity 

m/z Tissue Diff ANOVA pVal Mucin Mucosa  Muscle Tumour  

188.90 Tumour <0.001 9.9594 28.0751 21.2000 83.6333 

189.03 Tumour <0.001 6.0370 5.7915 8.8349 32.6086 

190.90 Tumour <0.001 5.1012 20.4753 15.9133 56.6382 

191.02 Tumour <0.001 0.0000 0.5983 0.0000 10.9830 

192.90 Tumour <0.001 0.4612 2.2252 0.5720 10.5758 

196.97 Tumour <0.001 3.4359 16.0304 25.2880 40.1085 

199.12 Tumour <0.001 20.2499 39.6783 42.8201 73.9717 

200.13 Tumour <0.001 0.0000 3.8689 2.7120 10.6313 

200.99 Tumour <0.001 25.9771 31.2687 31.9776 71.2820 

213.14 Tumour <0.001 6.4939 15.8471 18.4999 38.7649 

222.98 Tumour <0.001 10.7947 21.5028 26.5022 33.0810 

223.06 Tumour 1.58E-09 2.9849 11.7199 6.5358 13.1121 

225.04 Tumour 6.19E-09 2.1748 7.1133 8.4431 15.0175 

227.02 Tumour 1.85E-06 3.4070 4.4211 6.2250 10.1234 

227.16 Tumour <0.001 37.2034 109.0372 60.0828 123.0558 

233.11 Tumour <0.001 24.2926 72.9371 43.3213 88.6588 

235.13 Tumour 6.07E-14 0.0000 11.2193 5.9836 11.2508 

235.98 Tumour <0.001 0.0000 1.8877 1.8703 10.7474 

239.05 Tumour <0.001 11.4393 27.4575 33.1744 46.0537 

239.09 Tumour 3.05E-14 2.0925 6.2794 9.6190 13.3225 

241.18 Tumour <0.001 24.1805 59.0552 39.0962 73.8801 

246.87 Tumour 3.50E-12 0.0000 3.9893 5.6120 10.5018 

248.13 Tumour <0.001 0.6503 10.4571 12.2188 18.7561 

249.00 Tumour <0.001 7.5174 9.8917 7.0870 50.5243 

250.11 Tumour <0.001 32.0714 74.7505 74.5324 101.6549 

253.07 Tumour 4.28E-06 2.0355 7.9845 8.7834 12.0291 

256.90 Tumour <0.001 2.0473 6.2339 6.2033 16.8165 

258.90 Tumour 4.44E-16 0.0000 3.9623 3.9550 11.1728 

265.11 Tumour <0.001 24.5436 33.0967 31.4019 118.0745 

266.12 Tumour 1.33E-15 0.9794 3.6386 1.8955 15.6481 

267.13 Tumour 2.02E-08 2.2463 8.7453 6.8718 16.3433 

273.90 Tumour <0.001 2.8785 9.8416 7.0117 35.6297 

275.89 Tumour <0.001 1.2462 6.4193 1.8496 21.9074 

283.13 Tumour 2.81E-10 1.9894 9.7162 6.2030 14.8704 

293.15 Tumour 5.34E-08 8.7431 6.8894 4.9402 24.5316 

297.14 Tumour <0.001 20.5701 18.4653 16.2953 46.6507 

299.20 Tumour 4.88E-10 6.4124 12.0527 4.7468 20.1547 

300.94 Tumour <0.001 5.2205 12.7357 9.4824 55.9851 

302.94 Tumour <0.001 2.2574 8.4507 6.2164 38.1112 

303.16 Tumour 1.20E-14 1.0238 9.3609 2.4370 13.5374 

309.15 Tumour 1.28E-07 4.2427 6.3507 5.0040 24.5132 

311.14 Tumour 4.35E-12 58.7001 60.8920 46.7269 159.3133 

312.16 Tumour 5.41E-11 13.3459 12.6462 8.0110 31.1661 
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313.17 Tumour 7.92E-12 9.7101 14.2063 11.4279 29.0202 

315.17 Tumour 9.21E-15 3.4542 7.2923 3.2465 15.8776 

321.19 Tumour 4.03E-07 1.8793 4.7913 3.5981 10.0624 

325.16 Tumour 4.01E-10 94.2639 86.6160 71.2032 197.9468 

337.22 Tumour 8.13E-06 8.5225 18.9234 17.6451 23.0480 

339.18 Tumour 1.49E-08 53.3103 50.6702 47.4940 89.9682 

340.19 Tumour 4.22E-12 28.2326 36.0031 29.0730 47.4547 

341.21 Tumour 1.97E-10 22.1196 34.2044 23.6810 39.9894 

343.20 Tumour 1.17E-12 14.4568 40.2466 24.1023 41.2438 

352.24 Tumour 1.49E-07 4.3121 11.6067 9.9112 12.8572 

364.20 Tumour 1.41E-13 3.6136 9.9673 1.8093 10.2440 

367.24 Tumour <0.001 38.4929 55.3324 42.3900 70.8608 

377.26 Tumour 1.11E-16 4.4970 17.2400 3.6906 19.4981 

381.27 Tumour 1.11E-07 11.7663 14.2864 4.7783 16.7145 

384.20 Tumour <0.001 0.0000 3.9450 0.4252 13.8573 

391.28 Tumour 7.69E-13 10.6390 19.1078 10.4796 24.6353 

393.26 Tumour <0.001 61.6246 92.8869 51.6284 115.5951 

395.28 Tumour 2.46E-10 19.5045 21.2432 17.3129 28.5215 

397.24 Tumour 6.33E-07 4.2639 4.9835 1.6390 13.3670 

400.89 Tumour <0.001 0.0000 1.7110 0.0000 23.0143 

402.89 Tumour <0.001 0.0000 3.4883 0.5416 28.3538 

404.89 Tumour <0.001 0.0000 0.6454 0.0000 13.7683 

405.26 Tumour 4.63E-06 4.1692 9.9237 4.6543 10.1602 

407.28 Tumour 4.26E-06 3.8226 7.0379 4.7185 10.3331 

409.31 Tumour 1.15E-06 5.7011 10.4454 3.5242 11.3614 

419.28 Tumour 9.44E-09 5.6798 16.7063 10.0310 19.4099 

419.33 Tumour 7.77E-15 0.5551 7.5976 4.8884 13.7181 

421.23 Tumour <0.001 2.2210 2.8473 1.7183 12.8740 

421.34 Tumour 3.86E-13 2.1216 7.5218 3.7691 14.0534 

423.20 Tumour 1.76E-13 1.2819 7.4596 5.9353 13.8816 

425.31 Tumour <0.001 3.7735 13.1587 22.1512 27.8318 

428.25 Tumour <0.001 0.6304 7.3841 2.8480 21.8204 

429.30 Tumour 2.00E-15 2.2786 11.8784 15.7437 19.5207 

433.34 Tumour <0.001 1.6360 10.2954 5.4223 15.7472 

435.36 Tumour 4.39E-11 2.2101 14.8340 7.0053 16.8050 

439.30 Tumour 1.17E-05 3.0116 9.3799 5.8972 11.8870 

441.30 Tumour 5.64E-11 1.2949 3.8696 1.8486 12.3397 

447.36 Tumour <0.001 2.3665 11.7118 4.5999 18.9851 

449.37 Tumour 9.99E-16 3.7284 14.2440 5.1554 17.7015 

455.34 Tumour <0.001 0.4787 18.7062 35.0899 38.9537 

461.38 Tumour <0.001 3.6584 17.6440 13.0260 28.6657 

463.39 Tumour 3.05E-12 1.7134 7.0838 2.0522 10.7023 

467.34 Tumour <0.001 6.0239 18.6416 11.5027 41.9147 
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469.22 Tumour <0.001 2.3510 10.5841 5.1112 23.6610 

475.41 Tumour <0.001 7.0563 23.6776 11.8615 30.6830 

485.10 Tumour 5.02E-13 0.5452 2.3420 6.6624 10.7126 

489.42 Tumour 2.89E-15 2.5710 8.8749 3.4626 15.6657 

491.21 Tumour 9.67E-11 11.9130 6.7416 5.1607 13.8131 

493.22 Tumour <0.001 33.0243 44.1398 13.6021 81.8253 

495.25 Tumour <0.001 17.7395 36.1171 15.3036 64.3277 

497.26 Tumour <0.001 1.1470 9.3176 1.4713 20.0450 

503.44 Tumour <0.001 5.0176 11.3305 4.0613 20.4479 

505.45 Tumour <0.001 0.0000 7.4538 1.1258 12.3286 

517.46 Tumour <0.001 2.8338 7.5279 1.6798 13.5905 

531.48 Tumour <0.001 8.3783 30.8879 11.7917 33.2074 

545.50 Tumour <0.001 3.4668 12.7407 3.5767 16.5040 

583.38 Tumour <0.001 3.2194 23.0968 28.9477 43.1608 

585.39 Tumour <0.001 22.3115 86.3138 120.9338 331.9856 

586.26 Tumour <0.001 0.0000 2.1502 0.7866 10.3041 

586.40 Tumour <0.001 5.4807 28.4442 44.2110 122.7781 

587.41 Tumour <0.001 2.2529 11.2969 10.3515 28.3678 

601.41 Tumour <0.001 12.4840 34.1274 16.8850 41.3195 

615.42 Tumour 5.55E-16 1.5243 9.5740 6.0409 16.5078 

629.43 Tumour <0.001 2.7783 16.1950 10.7987 26.5287 

664.51 Tumour 4.37E-11 1.8680 10.9086 3.8265 12.5513 

699.47 Tumour 1.44E-09 7.0852 10.1171 0.8347 10.4059 

711.48 Tumour 2.66E-15 4.5989 10.9128 1.4365 15.8572 

714.46 Tumour 3.33E-16 3.0610 11.0807 1.0694 11.4779 

725.50 Tumour <0.001 18.4963 37.2563 4.2487 40.3553 

727.62 Tumour <0.001 4.5964 14.4444 2.2478 17.3977 

735.45 Tumour <0.001 0.4785 12.5115 5.7290 17.0056 

739.52 Tumour <0.001 10.8856 24.5390 0.6521 25.4074 

741.53 Tumour <0.001 5.9324 22.3579 2.6024 26.3171 

755.56 Tumour <0.001 2.8160 15.5479 1.3428 16.3764 

763.49 Tumour <0.001 1.6588 7.4147 0.5868 13.4163 

769.54 Tumour <0.001 8.7007 28.7520 3.0259 30.9160 

770.54 Tumour <0.001 1.3317 10.8863 0.0000 11.9782 

771.60 Tumour <0.001 1.1960 9.4088 1.2942 13.3466 

781.63 Tumour 3.95E-14 2.2855 9.8381 0.2166 11.6567 

791.53 Tumour 1.11E-16 1.0843 10.5462 1.3594 15.7011 

797.58 Tumour 6.33E-15 1.1982 8.3295 2.2655 13.9364 
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Appendix J: Significant features detected for the different tissue types (mucosa, muscle 

and tumour) present in a human colorectal FFPE sample analysed by DESI-MSI in 

positive ion mode. All ions have ANOVA Benjamini-Hochberg-Yekutieli-corrected p < 0.001 

and a mean intensity threshold of 10. 

    
Mean Intensity 

m/z Tissue Diff ANOVA pVal Mucosa Muscle Tumour 

129.03 Mucosa <0.001 96.5310 94.5009 74.1204 

134.99 Mucosa 3.58E-13 13.6244 8.5223 9.2772 

151.11 Mucosa 7.37E-05 16.9944 12.4333 16.1137 

155.11 Mucosa <0.001 1243.0841 821.9628 471.8559 

156.12 Mucosa <0.001 118.6423 76.5337 43.0947 

164.91 Mucosa 7.01E-13 13.5674 9.5101 7.9080 

173.07 Mucosa <0.001 788.3578 626.2211 600.8798 

177.08 Mucosa 4.85E-07 15.0210 10.9995 13.7932 

181.08 Mucosa 7.53E-12 24.4279 24.2328 18.6053 

191.10 Mucosa 1.32E-05 75.9828 75.2665 67.4742 

217.11 Mucosa <0.001 1238.0599 941.4287 926.5596 

217.16 Mucosa 5.68E-13 18.7419 9.2875 16.5293 

219.14 Mucosa 1.14E-06 18.3002 14.3448 13.3354 

223.14 Mucosa 8.96E-07 47.5054 47.3125 39.9247 

231.13 Mucosa 5.11E-15 61.8190 48.5335 47.3156 

233.17 Mucosa 9.88E-15 20.7362 19.7991 13.2892 

234.94 Mucosa <0.001 10.9301 10.2137 4.4079 

245.11 Mucosa 2.35E-09 66.8677 55.7950 59.3041 

297.27 Mucosa 1.07E-05 43.6905 41.6270 36.7663 

299.26 Mucosa 2.58E-11 36.8533 28.7215 29.9033 

301.11 Mucosa <0.001 41.8816 14.6671 7.8816 

313.28 Mucosa 1.80E-11 86.5049 69.2275 73.9301 

325.27 Mucosa <0.001 351.1586 289.7278 226.7982 

325.32 Mucosa 7.17E-06 11.4340 7.2130 10.1040 

326.28 Mucosa <0.001 64.9301 51.8285 37.0020 

329.29 Mucosa 7.74E-07 45.4712 38.4242 44.7362 

333.21 Mucosa <0.001 73.6947 43.3757 42.4282 

334.20 Mucosa <0.001 10.4931 3.0513 3.0688 

337.16 Mucosa <0.001 51.4469 33.4194 41.3911 

343.27 Mucosa 2.25E-06 129.9917 122.0842 114.5953 

351.26 Mucosa 2.84E-10 16.0827 8.6124 8.6691 

355.34 Mucosa 6.66E-09 51.2673 41.3549 43.5186 

357.32 Mucosa <0.001 15.7703 6.0877 11.2565 

360.42 Mucosa <0.001 13.8798 4.7720 6.1370 

363.28 Mucosa 2.08E-12 11.3232 4.0858 5.6905 

365.20 Mucosa 2.45E-08 42.7523 34.2185 39.7815 

375.31 Mucosa <0.001 94.7102 89.3500 65.4780 

376.32 Mucosa 1.11E-16 13.8455 13.2123 5.5031 



259 

 

   
Mean Intensity 

m/z Tissue Diff ANOVA pVal Mucosa Muscle Tumour 

387.31 Mucosa 1.91E-10 33.2241 23.7383 27.6251 

391.32 Mucosa <0.001 95.9292 89.8397 56.9621 

392.36 Mucosa 7.02E-13 18.8738 17.0011 9.3969 

394.38 Mucosa 1.08E-14 148.7453 124.0462 132.3320 

401.34 Mucosa <0.001 37.9989 27.9304 20.0983 

403.36 Mucosa <0.001 15.5190 12.3838 3.2796 

413.35 Mucosa <0.001 1543.9173 971.2763 1422.4869 

425.38 Mucosa <0.001 85.9441 44.8957 70.8266 

427.37 Mucosa 6.84E-14 74.9778 66.8662 52.0673 

429.41 Mucosa 1.33E-14 27.1098 17.1696 14.2693 

453.35 Mucosa 7.05E-05 10.8629 5.5804 6.2480 

467.22 Mucosa 4.32E-06 194.1853 177.2392 180.5576 

469.43 Mucosa 3.85E-13 148.6337 115.5462 139.7444 

475.44 Mucosa 7.11E-07 27.6672 20.3055 24.4293 

481.38 Mucosa 6.06E-08 22.3815 15.5631 15.6746 

487.23 Mucosa 3.11E-10 11.7533 8.2320 11.7441 

500.40 Mucosa <0.001 13.7109 0.3375 9.5167 

501.42 Mucosa <0.001 11.9454 3.3471 1.1083 

507.38 Mucosa <0.001 20.9668 11.3407 18.2676 

513.47 Mucosa <0.001 104.4613 68.2533 75.7589 

517.51 Mucosa 2.68E-07 10.8974 5.6590 9.4371 

522.25 Mucosa <0.001 49.6094 0.0845 18.4487 

522.39 Mucosa <0.001 11.4882 1.2679 9.4708 

523.27 Mucosa <0.001 13.2015 0.8547 4.6707 

555.33 Mucosa 5.08E-14 14.7239 10.1946 14.6647 

557.32 Mucosa 7.72E-12 17.2660 10.6710 13.9412 

557.52 Mucosa <0.001 241.8381 152.2428 184.6095 

595.59 Mucosa 4.29E-07 114.6206 102.3475 105.5221 

596.60 Mucosa 8.30E-06 47.0746 41.3131 39.3579 

601.56 Mucosa <0.001 369.2567 215.4552 291.5509 

604.65 Mucosa 1.11E-15 14.4083 5.2619 2.6657 

607.51 Mucosa <0.001 43.7505 23.9539 20.5099 

608.50 Mucosa <0.001 31.5644 7.3725 7.6206 

609.51 Mucosa <0.001 973.4119 255.7398 201.2460 

615.33 Mucosa 4.02E-05 58.8143 53.4689 58.1347 

617.32 Mucosa 8.80E-05 30.6490 27.1075 29.8406 

623.51 Mucosa <0.001 41.2854 18.4717 16.8176 

625.52 Mucosa <0.001 97.5977 38.3164 41.5784 

629.38 Mucosa <0.001 26.4294 13.3875 20.3015 

631.41 Mucosa <0.001 18.7521 8.0980 15.0880 

645.61 Mucosa <0.001 432.8940 234.6000 337.0116 

657.59 Mucosa 2.21E-11 14.7609 6.2291 6.4290 

661.60 Mucosa 2.09E-10 38.3686 28.6583 35.6863 
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665.38 Mucosa <0.001 14.7389 0.0000 1.8726 

689.66 Mucosa <0.001 401.5676 218.3764 317.0176 

699.72 Mucosa <0.001 62.9545 41.0705 62.2475 

703.47 Mucosa <0.001 48.3879 23.6225 45.1892 

704.44 Mucosa <0.001 32.8400 15.3540 29.9626 

705.65 Mucosa 9.49E-12 37.9617 25.8950 29.6724 

733.71 Mucosa <0.001 288.5857 142.2296 220.2000 

749.70 Mucosa 3.03E-11 30.5087 21.8012 21.5251 

775.75 Mucosa <0.001 12.5195 4.7454 11.5555 

777.49 Mucosa <0.001 25.0470 7.2745 20.4457 

777.76 Mucosa <0.001 179.0262 90.3928 131.1411 

779.77 Mucosa 1.81E-07 20.2104 15.9551 13.7776 

793.75 Mucosa 8.40E-06 20.7766 16.1169 14.3122 

805.84 Mucosa 4.22E-15 11.3687 4.3080 10.9938 

821.81 Mucosa <0.001 95.9879 48.2173 71.8193 

865.86 Mucosa <0.001 47.3257 24.6975 35.5635 

880.06 Mucosa 1.03E-10 18.1513 13.4944 10.2341 

882.07 Mucosa 2.83E-08 21.6951 19.1752 14.4627 

908.11 Mucosa 1.66E-07 12.5123 9.6802 6.4549 

104.08 Muscle <0.001 29.2308 58.7161 39.7071 

111.09 Muscle 1.13E-11 24.5212 28.2767 22.7673 

114.04 Muscle <0.001 7.7089 28.7916 0.6498 

114.06 Muscle 2.18E-10 8.6729 10.9407 7.6072 

136.06 Muscle <0.001 42.9787 118.1483 16.8193 

149.01 Muscle 5.71E-08 19.5759 22.4512 17.8217 

157.07 Muscle <0.001 115.4353 141.3258 106.6851 

158.08 Muscle 1.26E-07 14.4529 16.5274 12.6733 

163.08 Muscle 9.89E-09 14.7635 14.9901 11.2765 

165.08 Muscle 1.63E-10 19.4020 21.2646 15.8327 

169.97 Muscle <0.001 11.8681 17.8311 12.9928 

171.10 Muscle 1.51E-10 533.9635 543.6932 469.8940 

178.15 Muscle <0.001 19.0991 26.7098 14.1515 

182.18 Muscle 3.50E-09 37.2378 46.9135 43.2188 

183.09 Muscle 5.74E-12 35.5522 42.4085 32.8195 

185.11 Muscle 1.14E-12 87.7831 98.4655 83.6845 

187.09 Muscle <0.001 32.2874 45.9108 29.6087 

191.03 Muscle 3.87E-14 8.0263 10.7254 4.6121 

192.17 Muscle <0.001 8.9797 14.9743 9.1950 

195.15 Muscle 4.45E-11 51.3616 58.4802 47.1478 

197.08 Muscle <0.001 30.6515 40.5936 25.8535 

197.11 Muscle <0.001 13.7553 17.1318 10.5749 

199.09 Muscle 6.87E-11 30.0694 35.2976 27.6145 

201.12 Muscle <0.001 37.6380 48.4641 34.9258 
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202.18 Muscle <0.001 10.6147 13.7528 4.5467 

203.10 Muscle 5.61E-10 15.4868 18.1101 11.6438 

205.09 Muscle 1.92E-07 46.7073 49.4078 42.3744 

207.10 Muscle 6.39E-09 26.3243 29.5267 24.3772 

207.97 Muscle <0.001 11.7768 12.1229 4.9160 

209.12 Muscle 2.93E-07 46.9353 50.8145 44.1676 

212.24 Muscle <0.001 7.2935 11.0121 4.3086 

213.15 Muscle 1.59E-04 51.9441 55.2470 50.3543 

215.13 Muscle <0.001 129.8685 197.2412 118.6095 

226.20 Muscle <0.001 2.6315 10.1306 2.7882 

228.15 Muscle <0.001 7.3895 11.9932 3.2390 

228.18 Muscle <0.001 2.8735 11.4956 2.8101 

233.12 Muscle <0.001 141.0864 163.6599 78.7432 

236.08 Muscle 2.59E-07 31.9600 36.1029 29.7965 

241.09 Muscle 6.88E-10 68.7838 76.9001 67.9177 

241.19 Muscle 2.17E-12 30.1510 37.2426 27.4449 

243.14 Muscle <0.001 45.8898 62.8773 44.8063 

245.15 Muscle <0.001 193.2380 228.2726 157.7408 

254.24 Muscle <0.001 4.1048 16.1292 6.7604 

255.15 Muscle <0.001 14.0164 24.9323 12.5648 

255.21 Muscle <0.001 41.4759 61.9399 35.6426 

256.22 Muscle <0.001 3.0764 15.7218 5.8877 

257.15 Muscle <0.001 55.9386 67.6918 49.9363 

259.17 Muscle <0.001 179.4790 193.9965 154.4756 

261.15 Muscle 1.44E-15 149.7832 166.3862 141.4424 

265.13 Muscle 1.34E-09 22.2044 29.4393 24.1264 

267.19 Muscle 1.59E-06 20.1127 22.9847 18.4606 

268.26 Muscle <0.001 11.6108 27.6922 16.8201 

269.16 Muscle <0.001 61.5451 169.3704 34.2699 

269.23 Muscle <0.001 57.0241 78.2693 53.0396 

271.18 Muscle <0.001 72.9756 95.7139 64.5695 

273.19 Muscle <0.001 314.4038 415.6983 255.2252 

277.24 Muscle 6.56E-06 8.7651 11.1691 9.0257 

279.19 Muscle 3.27E-10 17.7221 22.4776 17.3979 

281.17 Muscle <0.001 14.2792 27.7110 8.2800 

282.28 Muscle <0.001 1.6848 10.7694 6.0448 

283.25 Muscle <0.001 42.8997 55.3060 38.1655 

285.17 Muscle <0.001 71.9232 95.5757 56.4749 

287.04 Muscle 2.23E-07 8.1820 12.1680 8.5710 

287.18 Muscle <0.001 115.7149 155.5222 91.4496 

287.25 Muscle 1.53E-14 48.4920 52.5697 41.8401 

297.24 Muscle <0.001 9.8917 11.8937 1.0966 

299.22 Muscle <0.001 42.1513 115.4064 38.6617 
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301.18 Muscle <0.001 663.8152 766.0373 587.7617 

303.22 Muscle 1.01E-13 81.0047 87.6982 69.5196 

304.29 Muscle <0.001 74.3811 82.2645 65.9814 

304.34 Muscle <0.001 375.7918 570.2889 269.5636 

306.12 Muscle 1.57E-10 13.6989 17.3317 11.6897 

306.35 Muscle <0.001 10.6633 15.6162 6.7599 

306.98 Muscle <0.001 61.8290 70.5168 57.6486 

307.26 Muscle 1.71E-12 27.6601 36.0530 28.1325 

308.98 Muscle <0.001 62.3454 70.8755 57.8107 

309.25 Muscle 2.62E-09 8951.9052 9136.9363 8585.4671 

309.34 Muscle 1.31E-14 169.9625 186.4241 157.8859 

309.46 Muscle 1.90E-06 54.6871 56.3306 47.7534 

309.52 Muscle 5.75E-05 10.7822 11.1275 9.0720 

310.98 Muscle 2.66E-06 21.3657 24.0007 20.2131 

311.26 Muscle 6.34E-08 228.1350 234.0632 216.9544 

311.30 Muscle <0.001 60.8556 67.0999 51.1053 

315.22 Muscle <0.001 126.0164 167.9910 107.5537 

323.27 Muscle <0.001 10.8935 18.6308 9.1661 

326.42 Muscle <0.001 376.5159 518.4649 291.5519 

327.22 Muscle 1.22E-15 36.5633 46.4925 36.9385 

327.43 Muscle <0.001 93.0191 131.2712 73.8388 

329.06 Muscle <0.001 22.3760 32.3156 20.5868 

331.08 Muscle 4.33E-15 7.6306 11.5873 7.3428 

331.31 Muscle 2.18E-11 4.8051 12.9863 10.8875 

332.38 Muscle <0.001 107.2064 143.9252 71.6245 

335.18 Muscle 1.78E-08 46.7846 48.7985 41.4445 

337.29 Muscle 1.80E-05 24.2730 30.3676 28.1678 

339.31 Muscle 1.47E-14 5.8689 11.1227 4.9827 

342.43 Muscle 1.37E-14 9.5300 11.9895 7.3835 

349.04 Muscle <0.001 203.8897 308.8370 185.0637 

349.33 Muscle 2.14E-14 34.5261 74.1706 64.1400 

351.04 Muscle <0.001 196.6705 301.3522 180.5607 

351.31 Muscle <0.001 107.0732 184.9386 35.0468 

353.06 Muscle <0.001 64.6889 101.1830 61.1562 

353.32 Muscle <0.001 177.6014 302.5913 40.1497 

357.36 Muscle <0.001 3.2612 13.4568 0.1034 

365.33 Muscle <0.001 22.7508 33.0822 24.8741 

367.35 Muscle <0.001 23.5597 31.3013 10.6543 

377.33 Muscle <0.001 623.0954 666.8446 195.8956 

379.35 Muscle <0.001 805.1844 1382.5351 216.4895 

381.36 Muscle <0.001 65.0891 99.8185 19.4512 

393.34 Muscle <0.001 183.9436 196.0130 92.1038 

395.36 Muscle <0.001 150.8968 200.8707 81.1840 
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405.31 Muscle 3.93E-13 9.4862 16.2397 9.6163 

407.32 Muscle 9.01E-08 36.4485 36.7310 29.7634 

407.39 Muscle <0.001 31.9400 34.7076 17.6434 

409.34 Muscle <0.001 88.3990 116.5540 79.4343 

411.18 Muscle 1.83E-08 14.6445 16.2744 12.7921 

411.35 Muscle 7.99E-15 27.4713 36.6524 25.4298 

422.34 Muscle <0.001 4.0992 16.4677 1.7403 

423.33 Muscle <0.001 37.9902 49.6033 33.6352 

445.28 Muscle 1.19E-04 15.7205 18.3803 16.1111 

462.25 Muscle 1.39E-06 10.7853 13.0058 9.5506 

479.45 Muscle 1.49E-13 25.8274 39.4877 35.6909 

491.53 Muscle 1.16E-07 4.3382 12.9807 7.1664 

493.47 Muscle <0.001 7.6068 22.3489 20.7699 

495.49 Muscle 5.03E-07 10.0810 18.4116 13.7730 

505.48 Muscle 3.03E-13 8.1465 14.4714 9.7834 

505.55 Muscle 5.33E-11 12.1519 44.9923 16.4727 

508.50 Muscle <0.001 3.9640 18.1261 17.8577 

517.56 Muscle 1.09E-11 0.4756 12.7981 1.8837 

519.50 Muscle <0.001 4.6733 17.3545 6.5654 

519.57 Muscle 1.29E-11 32.7157 184.2411 48.5431 

520.58 Muscle 8.86E-12 11.6795 65.3178 16.6659 

523.50 Muscle <0.001 11.2210 36.2688 23.0278 

531.52 Muscle 1.01E-11 7.4843 12.8120 6.6998 

533.52 Muscle <0.001 13.9007 36.5213 19.9783 

533.59 Muscle 4.47E-12 40.7566 289.1739 66.0725 

534.60 Muscle 2.14E-12 14.9099 102.1852 23.0756 

536.31 Muscle 1.14E-12 36.7351 44.1879 35.6799 

545.54 Muscle <0.001 12.2798 28.7267 17.6612 

547.54 Muscle 2.05E-10 26.6718 33.4408 23.6370 

547.62 Muscle 5.61E-12 4.8509 42.1181 8.4849 

548.65 Muscle 4.06E-14 5.2330 18.6160 5.1525 

549.58 Muscle <0.001 11.7792 30.8988 19.6042 

561.64 Muscle <0.001 5.8683 13.9063 2.3263 

587.63 Muscle 5.77E-05 15.8279 18.7211 13.9961 

589.65 Muscle <0.001 22.5902 33.2209 14.9419 

591.66 Muscle 4.80E-08 10.5494 14.2814 10.5024 

611.37 Muscle 1.65E-04 19.6569 23.4063 21.7186 

615.67 Muscle <0.001 58.7205 80.8544 37.4460 

617.69 Muscle <0.001 64.1524 93.5387 52.4009 

619.71 Muscle 4.54E-11 6.3217 12.9549 8.4242 

629.68 Muscle 1.71E-08 41.1833 53.1840 42.9281 

630.67 Muscle 9.28E-08 9.4835 14.6304 9.4062 

632.69 Muscle 1.19E-13 24.8678 36.2979 30.0485 
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634.70 Muscle 3.11E-08 10.6066 16.2895 12.6062 

635.40 Muscle 3.89E-12 6.1314 10.6558 5.5499 

639.69 Muscle 9.10E-14 14.9454 16.1280 6.6220 

641.70 Muscle <0.001 65.9011 81.3319 36.4905 

643.72 Muscle <0.001 90.1011 131.0901 72.1512 

647.69 Muscle <0.001 19.6276 45.8633 20.0659 

655.69 Muscle <0.001 30.3501 52.8675 12.7418 

657.70 Muscle <0.001 68.1357 120.4985 40.1450 

659.72 Muscle <0.001 52.3919 91.8009 42.2445 

661.67 Muscle <0.001 9.3152 21.0168 9.3259 

671.69 Muscle <0.001 25.0348 45.2040 16.2195 

673.71 Muscle <0.001 46.2047 95.1639 32.6703 

675.72 Muscle <0.001 27.2903 48.3400 26.7610 

676.74 Muscle <0.001 6.7544 14.0668 5.8397 

677.69 Muscle 1.03E-13 3.8634 10.0240 3.9623 

683.74 Muscle 8.97E-14 3.9149 11.6065 5.5810 

684.42 Muscle 2.85E-12 24.3274 31.8470 27.3145 

685.71 Muscle 2.61E-04 21.4854 24.4524 19.5210 

686.42 Muscle 2.61E-06 14.2218 17.5142 14.1609 

687.70 Muscle 1.11E-15 31.0903 44.6322 33.0410 

691.73 Muscle 4.65E-13 18.5623 30.8993 24.3880 

705.74 Muscle <0.001 10.3174 21.1869 10.1116 

707.74 Muscle 3.03E-05 10.5274 11.8357 7.4869 

737.74 Muscle <0.001 6.4406 11.7169 1.6603 

761.85 Muscle 5.50E-13 5.1902 10.2608 4.1170 

763.78 Muscle <0.001 2.4742 10.3374 1.2600 

765.79 Muscle <0.001 0.4190 10.8865 0.0000 

130.14 Tumour <0.001 14.4507 20.5514 24.2283 

143.10 Tumour <0.001 11.6125 12.9666 22.0081 

294.31 Tumour <0.001 6.6039 8.9045 18.9191 

301.25 Tumour <0.001 82.3463 68.3562 100.2242 

309.12 Tumour 3.02E-06 11.3165 14.1748 15.4235 

317.24 Tumour 2.43E-04 145.5891 146.8738 160.4403 

319.27 Tumour <0.001 11.7475 15.0308 31.3312 

321.28 Tumour <0.001 26.1982 30.4553 49.0590 

327.30 Tumour <0.001 280.9902 229.1627 353.1605 

335.27 Tumour <0.001 1.0405 2.6849 11.5020 

345.29 Tumour 6.66E-11 17.5325 27.2036 34.1220 

347.31 Tumour 4.44E-15 29.0779 53.9394 64.4117 

349.12 Tumour <0.001 95.6712 61.8203 121.8416 

359.26 Tumour 7.74E-05 154.5746 147.3970 161.6539 

363.31 Tumour 3.33E-16 15.6558 36.8516 42.5435 

366.41 Tumour <0.001 26.3186 34.0081 74.9526 
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373.29 Tumour 6.98E-05 113.3058 104.7790 114.2254 

380.43 Tumour <0.001 6.5197 7.9495 13.2751 

381.33 Tumour <0.001 1.8492 1.6608 10.7237 

383.28 Tumour 4.21E-13 22.5222 19.1138 26.4918 

385.27 Tumour 1.63E-14 91.6901 83.2655 97.7835 

385.31 Tumour <0.001 12.0293 7.1900 15.3868 

386.23 Tumour 1.18E-04 15.3652 14.7207 17.3632 

389.32 Tumour 1.12E-10 71.2817 69.6677 85.8852 

392.44 Tumour <0.001 4.1082 5.9676 12.6329 

393.37 Tumour <0.001 464.6936 350.0794 475.2672 

394.45 Tumour <0.001 37.0779 52.1857 81.9863 

397.42 Tumour <0.001 5.3809 9.3861 13.3502 

403.31 Tumour 2.30E-06 24.6032 24.0423 28.8911 

417.33 Tumour 1.04E-10 27.0276 23.3157 31.3473 

421.33 Tumour 2.46E-07 36.1960 31.3053 37.9182 

421.42 Tumour <0.001 39.5386 29.5875 45.3284 

422.50 Tumour <0.001 12.4185 19.4488 27.8373 

425.30 Tumour <0.001 716.9868 621.2831 821.8096 

425.46 Tumour 2.37E-12 6.0054 12.8519 13.6597 

427.32 Tumour 2.20E-12 32.9563 27.5470 37.8804 

429.30 Tumour <0.001 1.2641 0.5069 10.7788 

429.34 Tumour 3.81E-14 30.5884 22.9262 31.7027 

431.37 Tumour 1.11E-16 31.5288 23.1933 33.0328 

435.44 Tumour 1.56E-05 14.0276 11.6544 15.7046 

441.39 Tumour <0.001 165.3521 137.9443 201.5919 

447.44 Tumour <0.001 25.2982 21.8527 34.6889 

449.46 Tumour 5.40E-13 18.3291 16.0089 23.1418 

450.97 Tumour 3.11E-15 33.4949 33.8208 41.7514 

452.97 Tumour <0.001 61.6300 63.8922 80.4472 

454.97 Tumour <0.001 50.5287 50.9659 63.8164 

455.42 Tumour 7.97E-12 17.8398 17.8691 28.7759 

456.97 Tumour 5.52E-10 22.7553 23.1776 28.0301 

459.38 Tumour 3.02E-13 19.3170 17.2085 24.5464 

465.43 Tumour 1.03E-09 10.3462 14.9832 20.5497 

485.23 Tumour 1.11E-16 36.6951 27.7625 37.3440 

502.42 Tumour <0.001 23.1341 7.2674 35.7283 

503.45 Tumour <0.001 10.5455 4.8712 14.7975 

505.38 Tumour 2.01E-04 8.3271 7.2480 10.4198 

507.49 Tumour <0.001 19.8542 56.6427 60.5140 

518.45 Tumour <0.001 46.1126 65.3551 74.1496 

519.46 Tumour 3.62E-08 34.1829 29.9891 37.4096 

521.51 Tumour <0.001 7.9207 21.7867 36.1729 

524.41 Tumour 1.44E-08 44.6417 36.6593 45.6709 
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527.32 Tumour <0.001 0.0000 4.0650 13.5861 

535.54 Tumour <0.001 9.0378 26.1004 62.8525 

544.48 Tumour 1.15E-10 13.4430 14.3930 19.9301 

546.50 Tumour 1.52E-08 20.6877 28.2089 29.9066 

548.42 Tumour 5.99E-06 12.7629 9.9628 13.8432 

551.54 Tumour 7.44E-15 8.7083 15.7921 24.5315 

553.61 Tumour 4.25E-05 27.1284 31.1142 32.3693 

559.29 Tumour <0.001 27.0965 19.4986 31.2744 

561.56 Tumour 4.47E-10 27.4318 20.8106 27.8364 

563.62 Tumour 2.18E-07 20.5088 24.4323 31.1383 

579.60 Tumour 7.48E-06 12.2843 11.7556 17.0723 

605.66 Tumour 1.11E-16 50.5758 43.9588 62.2733 

607.65 Tumour 6.46E-14 4.4930 6.6121 14.6696 

633.36 Tumour 1.55E-12 12.2504 6.9009 12.6299 

635.47 Tumour <0.001 9.3587 4.1833 12.7977 

644.59 Tumour <0.001 8.2200 11.5125 17.6035 

645.50 Tumour <0.001 0.6985 10.0741 23.8512 

658.61 Tumour <0.001 11.1195 19.0257 29.1135 

659.64 Tumour 2.71E-10 17.2100 14.8836 23.7566 

661.74 Tumour 9.98E-12 10.1363 14.2502 16.9189 

665.70 Tumour 1.09E-10 8.7124 11.9619 18.6763 

667.74 Tumour <0.001 0.8595 10.0154 20.8470 

671.63 Tumour 2.42E-04 15.2609 12.7026 16.6537 

673.64 Tumour <0.001 27.3781 26.6234 46.4774 

675.65 Tumour 4.44E-10 6.4754 5.9550 13.2668 

686.66 Tumour 7.51E-10 16.8282 17.2290 23.0445 

688.64 Tumour <0.001 10.3901 18.3476 29.0334 

689.37 Tumour 3.54E-09 70.0045 62.8985 74.3017 

693.76 Tumour 1.58E-14 9.9988 13.4563 21.0294 

700.72 Tumour <0.001 37.0459 30.0449 50.5394 

701.76 Tumour 3.26E-06 31.7362 29.1148 35.4495 

710.62 Tumour <0.001 5.9940 11.2756 18.7671 

713.73 Tumour 2.28E-13 5.9588 9.7842 16.4007 

715.75 Tumour <0.001 11.1879 23.2927 27.3927 

716.69 Tumour <0.001 7.9424 10.0128 20.4596 

717.81 Tumour <0.001 22.6090 21.7413 33.6655 

725.79 Tumour <0.001 49.5058 32.6064 52.5545 

727.81 Tumour <0.001 13.9807 11.5562 21.1581 

728.76 Tumour <0.001 20.3539 13.2206 25.4186 

729.77 Tumour 6.93E-07 12.3925 9.8387 16.6630 

730.48 Tumour <0.001 0.1920 2.5525 21.0917 

731.76 Tumour 4.95E-06 7.6881 9.3343 13.9552 

743.59 Tumour <0.001 0.0000 5.0085 12.4391 
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743.73 Tumour <0.001 9.2227 4.7759 15.9473 

754.79 Tumour <0.001 3.3563 1.6432 10.0682 

755.80 Tumour 3.32E-09 8.7348 4.4339 11.1437 

758.47 Tumour 1.11E-16 30.5179 24.5671 35.0195 

759.59 Tumour <0.001 0.0000 2.9281 10.5058 

760.47 Tumour 2.03E-12 17.7275 14.1562 20.2619 

763.43 Tumour <0.001 82.0287 48.0112 99.4602 

771.63 Tumour <0.001 0.3686 2.1253 12.7127 

781.62 Tumour <0.001 0.0000 4.1346 11.6733 

782.83 Tumour 2.22E-16 59.0139 50.3376 79.4222 

783.84 Tumour <0.001 47.5599 32.6991 56.9588 

785.88 Tumour 6.07E-05 8.4226 7.0783 11.0215 

798.84 Tumour <0.001 2.7388 9.3391 15.8075 

803.82 Tumour <0.001 43.9410 13.8874 50.1498 

808.86 Tumour 1.07E-10 20.7257 17.0865 26.1917 

810.88 Tumour 4.44E-16 6.7527 4.8603 12.5383 

811.89 Tumour 1.69E-14 6.7410 3.8082 10.4021 

815.68 Tumour <0.001 0.0000 1.2960 12.9692 

830.85 Tumour <0.001 7.9287 7.1243 24.6102 

831.89 Tumour <0.001 13.6190 7.3671 23.4631 

832.54 Tumour <0.001 12.2989 6.3745 13.8960 

832.88 Tumour 6.66E-16 13.4207 7.6014 16.7202 

837.49 Tumour <0.001 36.1160 15.3963 43.6659 

837.69 Tumour <0.001 0.0000 0.5230 10.4112 

859.92 Tumour 4.43E-14 5.9904 3.3910 10.4426 

909.91 Tumour <0.001 20.9972 13.4286 22.4608 

910.04 Tumour <0.001 17.5229 15.9735 26.9277 

911.55 Tumour <0.001 11.9337 3.4029 13.1856 

931.88 Tumour <0.001 0.8254 10.4316 12.6036 

936.07 Tumour <0.001 9.2400 6.8359 19.9407 

938.09 Tumour 9.39E-05 8.1748 8.4729 11.5360 
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Appendix K. The results obtained using all annotated pixels per sample. This approach 

led to building models which were hugely overfitted; therefore, the results presented 

below are not correct.  

 

A model was built for all analysed samples (cirrhotic liver diseases and resections, n=66). All 

annotated pixels were used. Some grouping was seen on the PCA plot (A); this trend was even 

more apparent when the supervised analysis was performed (B). An accuracy of over 95% was 

achieved for each disease in the K-fold cross-validation (C).  

 

 

 

An attempt was made to built a model for AIH and PBC. A clear grouping was seen in both 

unsupervised (A) and supervised approached (B). Results of the cross-validation revealed an 

accuracy of over 99% for both AIH and PBC. 
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Appendix L. The m/z values representing the top-10 correlations found in all analysed 

liver samples.  

 

mz1 mz2 

277.2173 281.2486 

769.5023 888.5696 

775.5387 883.5338 

766.5389 769.5023 

280.2363 281.2486 

280.2363 282.2519 

723.5163 807.502 

775.5387 807.502 

741.5268 742.5391 

769.5023 810.5289 
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Figure 1.4 
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Figure 1.6  

 

 

 

 

 


