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Abstract

The challenge of meeting increasing global food demand is amplified by climate change. Crop yield is

vulnerable to extreme conditions, including heatwaves, droughts and downpours, leading to widespread

concern about negative e↵ects of climate change on food security. This thesis describes a novel

empirical analysis of total production, yields and harvested area data for three major crops (wheat,

maize and soybean), using a unique, global, gridded agricultural time-series data set. Trend analysis

is applied to changes in production, yield and harvested area of these three crops. Machine learning

is used to quantify their responses to climate. A new methodology is introduced to identify “shocks”.

Results show a more complex dynamics of agricultural production than is suggested by current liter-

ature. Large changes in regional production, driven by harvested area rather than yield, have been

driven by policy shifts. A large “killing degree-day” sum depresses yields for some regions and crops,

but enhances them in others. Heat deficits can be as deleterious as heatwaves. Shocks can be negative

or positive. Production variability has increased, but major negative shocks have been few, and have

not become more frequent. Production shocks have been caused as often by changes in harvested area

as in yield.

These findings do not support a universal negative e↵ect of climate change on crop production. More-

over, stable global food supplies will not be assured by maximizing yields. It is equally important

that farmers in di↵erent countries and environments grow a variety of crops. Climate-related risk is

currently concentrated in the most productive baskets, exposing the global food supply to avoidably

high risk. Increasing frequencies of climate extremes in the main producing areas only make such

shocks more likely. Various measures that are not directly related to climate would help to make

global food supplies more resilient.
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Chapter 1

Introduction

1.1 A demographic explosion

The agricultural sector faces the challenge of increasing production in order to feed a world population

that is projected to rise to 9 billion by the middle of the 21st century (Godfray et al. 2010, Rosenzweig

et al. 2013). Based on the observed relationship between per capita gross domestic product (GDP)

and demand for calories (including human consumption, feed crops, fish production and losses during

food production), Tilman et al. (2011) projected a doubling in the global demand for crops from

2005 to 2050. Thus, population growth alone will substantially increase the challenge of ensuring

food security. This challenge is amplified by the vagaries of national policies, and by the need for

agricultural systems worldwide to adapt to a changing climate.

1.1.1 Coping with food deficits

Food security, and the perceived risk of Malthusian famine, are not new concerns. However, throughout

history, famines have been caused not only by population growth but also – more often – by wars,

embargoes, crop failures (following unexpected weather events, or pests and diseases), and ine�cient

or unsuitable agricultural practices. From 1960 to 1990, the Green Revolution alleviated global food

deficits by dramatically improving crop yields. Improvements were achieved by agronomic measures

that targeted four cereal crops in particular: wheat, maize, barley and rice. In 2004 those four crops

accounted for 55% of the total global cropland. The combined use of fertilizers, pesticides and irrigation

greatly contributed to reducing yield gaps (di↵erences between actual and potential yield). A doubling

1
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of agricultural food production between 1965 and 1999 was attained with the help of an increase in

phosphorus and nitrogen fertilization, as well as an increase in the amount of irrigated cropland (see

Figure 1.1, extracted from Tilman et al. (2002)). Plant breeding and genetic improvements were

also major contributors to the success of the Green Revolution. Characteristics of higher-yielding

cultivars developed then include short stature (associated with increased harvest index, the ratio of

grain to plant biomass), tolerance to cold, heat or drought (allowing expansion of planting areas), and

short growth-duration cultivars (lowering exposure to summer stress during grain filling, and allowing

harvesting twice within a year) (Vergara et al. 1966). The introduction of resistance to targeted pests

and diseases also contributed greatly to stabilizing yields worldwide (Davies 2003).

1.1.2 Future prospects

Variability in crop yields worldwide is explained mainly by three drivers: climate, fertilizer use and

irrigation (Mueller et al. 2012, Ray et al. 2013, West et al. 2014). However, as agricultural systems

and society face new trade-o↵s, measures applied during the Green Revolution to increase yields are

unlikely to be as e↵ective as they were in solving the challenge of meeting the still-increasing demand

for food. Farming systems now face the challenge of evolving toward “sustainable intensification”

(Tscharntke et al. 2012, West et al. 2014, Bellmann 2019). The costs of intensive farming systems

are progressively increasing the costs of production (Tilman 1999), as food production systems are

becoming more intensive in terms of capital as well as resources. Thus, there is a widely recognized

need to re-examine the future of food production.

1.1.3 Future prospects: fertilisation

A significant increase in production (45% to 70% for most crops) is theoretically attainable by closing

yield gaps (Mueller et al. 2012, West et al. 2014), but the practicality of doing so depends on many

factors including infrastructure and finance. Yield ceilings may already have been attained on an

increasing proportion of agricultural land (Mueller et al. 2012), suggesting that further increases in

fertilizer application will not be e↵ective (Tilman et al. 2001). Overuse of fertilizer moreover comes

with heavy environmental costs, including water table pollution, which are best avoided.
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Figure 1.1: (a) Total global cereal production; (b), total global use of nitrogen and phosphorus fertilizer
(except former USSR not included) and area of global irrigated land; and (c), total global pesticide
production and global pesticide imports (summed across all countries). Extracted from Tilman et al.
(2002)
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1.1.4 Future prospects: irrigation and competition for water

According to the Food and Agriculture Organisation (FAO) of the United Nations, about 20% of

the world's cultivated area contributes 40% of the food supply. On average, irrigated crop yields

are 2.3 times higher than yields of rainfed crops Dowgert & Fresno (2010). Irrigated agriculture

contributes greatly to the world food supply. But available water for irrigation is in competition with

water resources required for other purposes. Foley et al. (2011) showed the dramatic environmental

consequences of the ine�cient use of irrigation water (measured in litres of irrigation water per calorie

produced) in India, for example. In the long run, depletion of aquifers will lead to shrinking harvests,

although currently, at the global scale, it is estimated that millions of people depend on and are fed

by the practice (Brown 2012).

1.1.5 Future prospects: land availability

According to the FAO, croplands and grazing lands cover 38% of the terrestrial surface, with 1.53 and

3.38 billion hectares respectively. These uses of land comprise the areas most suitable for farming.

The remaining areas are mostly of poor quality, subject to adverse climate conditions, or covered by

mountains, deserts, tundra or nature reserves (Foley et al. 2011).

1.1.6 Future prospects: evolution of diets

Income growth is correlated with changes in dietary preferences and patterns of consumption. The

former in particular has accelerated the demand for meat, and led to structural shifts in agricultural

systems towards specialized, high-input and resource-intensive production. FAOSTAT's figures (2017)

show an increase in meat and poultry production by nearly tenfold since 2000. Cassidy et al. (2013)

estimated that “36% of the calories produced by crops are being used for animal feed and only 12%

of those feed calories ultimately contribute to the human diet”. The drawback of these production

systems is the hastening transition to a poorer calorie conversion rate (relative to that of direct

consumption of cereal crops), diverting food production and leading to an ine�cient food production

system overall. Cassidy et al. (2013) estimated the conversion factors at around 2-4 kg of grain per

kg of meat for non-ruminants, and 7 kg of grain per kg of beef. Changes in dietary preferences could

have commensurate benefits to both the natural environment and global food security. According
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to Cassidy et al. (2013), growing food for direct human consumption could increase the quantity of

available calories by as much as 70%, and feed an additional 4 billion people.

1.1.7 Future prospects: the resilience of agricultural markets

Food security assessment at the global scale requires consideration not only of whether production will

meet demand, but also of the capability of an industry or a country to buy staple crops or commodities

on the global market. As a case study: in 2009, the Black Sea region accounted for about one quarter

of wheat exports. But the 2010 summer heat wave and drought caused a major crop failure and grain

shortage (down by 40%). This calamity prompted an export ban up to mid-2011, and a governmental

decision was made to reallocate some 3 million tonnes of grain to cope with cattle feed scarcity (Brown

2012). The same author estimated that as a consequence of this summer, total world grain stocks

dropped by 9.7% within 72 days. The fallout included a 60% hike in wheat prices on commodity

markets. Major market players were able to cope with this price increase; but low and middle-income

countries were not, and were forced to diversify their imports.

In many parts of the world, producers have the infrastructure and resources to moderate the impact of

climate and weather variability on agricultural systems, from provisioning to distribution. However,

regions such as Sub-Saharan Africa, marked by a high frequency of drought events and 89% of cereal

production depending on rainfall, are much less resilient to climate variability (Cooper 2004, Challinor

et al. 2007, Yang & Huntingford 2018, Kupika et al. 2018).

1.2 The challenges of climate change

Anthropogenic increases of greenhouse gas concentrations are driving the Earth system into a new state

(Sanford et al. 2014), of which one consequence is an increase in the vulnerability of food production

systems – as extreme events including floods, heatwaves and droughts are major causes of crop failure

(Schellnhuber et al. 2012). The rising concentration of CO2 in the atmosphere, and its role in warming

the Earth, are established facts as reported by the Intergovernmental Panel on Climate Change (IPCC)

Fifth Assessment Report (AR5) (Stocker et al. 2013). AR5 pointed to directional changes in the state

of the climate system, the most prominent being a warming of oceans and land and an increase of global

mean temperatures (up by 0.85�C during 1888-2012). The linkages between the rise in atmospheric
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CO2 and the increase in monthly global mean surface temperatures are illustrated in Figure 1.2 (IPCC

2018).

Figure 1.2: Observed monthly global mean surface temperature (GMST, grey line up to 2017, from
the HadCRUT4, GISTEMP, CowtanWay, and NOAA datasets) change and estimated anthropogenic
global warming (solid orange line up to 2017, with orange shading indicating assessed likely range).
Orange dashed arrow and horizontal orange error bar show respectively the central estimate and likely
range of the time at which 1.5�C is reached if the current rate of warming continues. The grey plume
on the right of the panel shows the likely range of warming responses, computed with a simple climate
model, to a stylized pathway (hypothetical future) in which net CO2 emissions decline in a straight
line from 2020 to reach net zero in 2055 and net non-CO2 radiative forcing increases to 2030 and then
declines. Extracted from IPCC (2018).

There is naturally concern about how the changing climate is likely to a↵ect food production, and

what steps might be taken to mitigate its e↵ects. However, the current state of knowledge in this field

is incomplete and beset by major uncertainties, both in climate change itself – even under the same

climate mitigation scenario, di↵erent models yield divergent predictions of changes in regional climates,

especially precipitation regimes – and in the impacts on agriculture of changes in atmospheric CO2 and

climate. A recent special report (IPCC 2018) reasserted the link between anthropogenic emissions an

global warming. It included a section on agricultural impacts, which broadly pointed to the advantages

of stronger action to mitigate climate change. But it did not present a clear picture of how agriculture

might adapt to the climate changes that are already “in the pipeline”, expected to take place even

under the strongest emissions-reduction scenarios.

Projections of future climate-change impacts start by modelling climate change itself. In a common

design, a global general circulation model (GCM) with relatively coarse spatial resolution (currently
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about 2�) is used to simulate the response of the climate to large-scale forcings, particularly changes

in greenhouse gas concentrations. A higher-resolution regional climate model (RCM) is then used to

refine the GCM projections in order to account for complex topographical features and land cover

heterogeneity (Giorgi & Mearns 1999). Unlike GCMs, RCMs can resolve fine-scale spatial features of

the distribution of precipitation. RCMs are particularly useful in regions of complex orography (Wilby

et al. 2002, Frei et al. 2006). The GCM provides initial conditions, and time-dependent meteorological

conditions around the boundary of the embedded RCM.

One problem with this design is that the coupling goes only one way (from GCM to RCM) with no

feedback. Another is that the RCM inherits any systematic errors present in the GCM. The ability of

RCMs to capture observed extremes in precipitation is generally poor (Durman et al. 2001, Rauscher

et al. 2010). Durman et al. (2001), in their comparative study of extremes of daily precipitation in

Europe, demonstrated that biases in the simulation of mean precipitation on large scales persist from

the GCM into the embedded RCM.

Empirical downscaling methods provide an alternative strategy to downscale the global projections

made by GCMs (Cavazos 1999, Busuioc et al. 1999, 2001, Busuioc & von Storch 2003, Von Storch &

Navarra 2013). Statistical downscaling relies on fitted statistical relationships between local climate

variables (predictands) and large-scale climatic variables (predictors) (Laflamme et al. 2016). The

underlying assumption is that “the large-scale climatic state and local to regional physiography (e.g.

topography, land-sea distribution, LUCC) condition the regional scale climate” (Wilby et al. 2004).

Briefly, statistical downscaling models can be divided into three main categories (Maraun et al. 2010,

Bhuvandas et al. 2014) as follows. Perfect prognosis (PP) means that the relationship between pre-

dictands and predictors is established based on observations alone. Model output statistics (MOS)

means that gridded observations and RCM outputs are used simultaneously to establish the statistical

relationship for downscaling. Stochastic weather generators are hybrid models that produce statistical

distributions of outcomes based on PP or MOS. All these approaches su↵er from the problem that

statistical relationships between smaller- and larger-scale weather phenomena – implicitly assumed

constant (Samadi et al. 2011) – may not hold under climate change (Wilks 1992, Jenkins & Lowe

2003).

Exclusive reliance on GCM projections to assess future climate-change impacts is thus fraught with

risks. Analysis of historical climate and crop data might be, at least, an important complement to

studies based on climate modelling. Historical climate data also have limitations. The number and
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coverage of weather stations contributing to the NOAA Global Historical Climate Network (GHCN)

of the US Natonal Oceanic and Atmospheric Administration (NOAA) increased after the early 20th

century to reach a maximum in the 1960s. There are still numerous regions with sparse or short

records (e.g. Africa, South America). Also, weather stations are being gradually abandoned (e.g. in

India, Australia) especially in rural, high-latitude and high-altitude locations (D’Aleo & Watts 2010).

Nonetheless, historical climate data provide a foundation for empirical analysis of the impacts of

climate variations and trends on ecosystems and plants that is entirely independent of climate models.

The next major source of uncertainty is crop models. A crop model should ideally be su�ciently

complex to capture the response of the crop to the environment (including extremes) while minimizing

the number of parameters that cannot be estimated from data (Katz 2002). Today's complex “process-

based” crop models depart greatly from this ideal. Developed originally for regional, crop-specific

applications (e.g. Sinclair & Seligman (2000), Katz (2002), Challinor et al. (2004)), these models

are far too complex, and require too detailed input information, to be reliable or robust in global

applications. This situation has direct parallels in the modelling of natural ecosystems (Prentice

et al. 2015). Examples of crop models that are widely used today include SUCROS (Goudriaan &

Van Laar 1994, Bouman et al. 1996), the IBSNAT models (Uehara & Tsuji 1993), the Agricultural

Production System Simulator APSIM (McCown et al. 1996), Sirius (Jamieson et al. 1998) and DAISY

(Abrahamsen & Hansen 2000). Such models can have 700 or more parameters, including functions

of soil composition, cultivar, and management. The default values of parameters used in global

applications of these models have often been derived from a single calibration, and therefore rarely

yield an accurate fit when applied to di↵erent sets of conditions (Bechini et al. 2006). It should be no

surprise that current complex crop models yield highly inconsistent global predictions, even of current

crop yields, and a fortiori of crop yields in a changing climate.

1.2.1 Trends, variability and extremes in global temperature

Meteorological data reveal a warming trend during the past 150 years (Jones et al. 1999). One

manifestation of this warming is the increase in the occurrence of heatwaves (Rahmstorf & Coumou

2011, Huntingford et al. 2013), which is to be expected simply due to a shift of the probability

distribution towards warmer temperatures. Any change in the variability of temperature has been

considered small in comparison (IPCC 2007). Several studies however suggest that a simple shift

in the mean of the statistical distribution of temperatures fails to explain recent record-breaking
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events in Europe and Russia (Easterling et al. 2000, Rahmstorf & Coumou 2011, Hansen et al. 2012,

Huntingford et al. 2013). Individual weather stations, especially in Europe and North America (which

are densely monitored), show evidence of a recent increase in temperature variability (Huntingford

et al. 2013). Globally averaged temperatures show less evidence of this trend, and climate models even

suggest a possible decline in interannual temperature variability linked to reduced sea-ice thickness

(Huntingford et al. 2013). Nevertheless, changes in variability have occurred in some regions. The

largest changes in standard deviation, across seasons and hemispheres, have occured in the Northern

Hemisphere spring and summer, and the Southern Hemisphere summer and autumn (Hansen et al.

2012, Huntingford et al. 2013).

According to Hansen et al. (2012) there has been a shift in the probability distribution of temperature

anomalies over the past three decades in favour of a higher frequency of low- to very low-probability

(three-sigma) heat events during the summer season. For Gaussian probability distributions of anoma-

lies, the likelihood of exceeding a three-sigma event is only 0.13%. This result conforms with the

CMIP5 projections reported in AR5. Schellnhuber et al. (2012) presented even more alarming results,

reporting that the occurrence of five-sigma events will also increase.

Extreme events are not only projected to become more frequent, but are also to influence a larger

proportion of the land area (Hansen et al. 2012), as a consequence of global warming. Rahmstorf

& Coumou (2011) showed that the Russian heat wave of 2010 would not have taken place without

climate warming, at a confidence level of 80%. Their key finding was that “the number of record-

breaking events increases approximately in proportion to the ratio of warming trend to short-term

standard deviation; short-term variability thus decreases the number of heat extremes, whereas a

climatic warming increases it” (Rahmstorf & Coumou 2011). The most recent IPCC reports (Stocker

et al. 2013, IPCC 2018, Hoegh-Guldberg et al. 2018) support Rahmstorf & Coumou (2011), stating

that the frequency of heat waves is likely to have increased in Europe (Greece, 2003), Asia (Russia,

2010) and Australia (2009). In Europe, the five hottest summers during the past 500 years, all occurred

after 2002, with 2003 and 2010 being such exceptional outliers (Schellnhuber et al. 2012) that they

were called “mega-heatwaves” (Barriopedro et al. 2011).
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1.2.2 Trends, variability and extremes in the hydrological cycle

Human-induced global warming has been shown to influence on the hydrological cycle (Trenberth

1999, Allen & Ingram 2002, Huntington 2006, Seager et al. 2010, Kummu et al. 2014). The direct

consequences for agriculture are mediated by changes in precipitation regimes (frequency and intensity)

and soil moisture content, the impacts of which include reduction of final yields and even crop failure

owing to prolonged periods of drought, and crop damage due to excessively heavy rainfall. According

to AR5, warming of the lower atmosphere is enhancing evaporation while there has been an upward

trend in the moisture content of the atmosphere since 1973, as the water-holding capacity of air

increases by about 7% per degree of warming. The resulting increase in the amount of precipitable

water held in the atmosphere leads to stronger rainfall – hence increasing risks of flooding – and

snowfall events (Trenberth 1999, Trenberth et al. 2003). Kunkel et al. (1999) provided evidence that,

in the USA, one- to seven- day extreme precipitation events showed an increase in frequency by 3%

per decade during 1931-1996.

Trenberth et al. (2003) argued that in regions with high rainfall amounts, increases in heavy rainfall

rate should follow or even exceed the increase in the water-holding capacity of the atmosphere, since

rainfall is primarily fed by low-level moisture convergence. This argument contrasts with findings by Li

et al. (2013), who showed that the response of precipitation to changes in temperatures is constrained

by water availability and that observed and simulated changes in precipitation are actually smaller

than the changes in the saturation vapour pressure; the local surface evapotranspiration rates from the

total land area cannot increase at the rate called for by the the increasing water-holding capacity of

the atmosphere. One interpretation is that evaporation is limited by surface energy balance (notably

the total net radiation that can be used for evaporation) and that the increase is more likely in the

range of 2-4% rather than 7% per degree (Sun et al. 2012, Li et al. 2013). In monsoon areas, however,

precipitation appears to be increasing at the full rate of 7% per degree, and to be often heavier than

before.

Increasing precipitation in some regions is expected to lead to reductions in others. Where circulation

is vigorous, the air is continuously saturated with water vapour. The energy advected to regions of

convergence is then unavailable in another regions. Subtropical latitudes (especially mediterranean-

type climates) are both observed and projected to be drying. Li et al. (2013) showed drying in the

Mediterranean, southwestern USA and southern African regions; these changes are consistent with
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projected changes in the Hadley Circulation. The phenomenon of wet regions becoming wetter while

dry regions become drier has been called “the rich get richer” (Seager et al. 2010, Trenberth 2011,

Trenberth et al. 2014). The generality of this phenomenon has been challenged (e.g. Porter et al.

(2019)), but the heterogeneity of changes in rainfall – with drying in some areas and wetting in others –

is an undisputed feature of both model projections and the recent observational record. The mean time

interval between successive heavy rainfall events is also expected to increase by ⇠5% K-1 (Hennessy

et al. 1997, Trenberth et al. 2003), implying an increase in both the intensity of rainfall events and

the duration of droughts. Sun et al. (2012) found no significant trend in the temporal evolution of

global mean precipitation, and a reduction of variance over land areas owing to a redistribution of

precipitation. However, at regional scale, this redistribution potentially has major consequences for

agriculture.

Caution is needed when drawing conclusions about regional drought trends under climate change.

Some projections point to a significant global increase of drought – for example, a projected doubling

of very dry areas from 1970s to 2000s (Dai et al. 2004, Dai 2013) and an increase in the area at risk of

drought to 44% in 2100, from the current 15% (Schellnhuber et al. 2012). But other assessments, e.g.

She�eld et al. (2012), have shown no change in global drought over the past 60 years. According to

Trenberth et al. (2003), part of the disagreement stems from the use and the formulation of Palmer

Drought Stress Index (PDSI), which is based on the Thornthwaite equation for potential evapotran-

spiration, which in turn depends (incorrectly) on temperature alone. The problems of the PDSI have

been discussed extensively (Hobbins et al. 2008, Donohue et al. 2010, Van der Schrier et al. 2011, Dai

2013, Trenberth et al. 2014). Other problems lie in (a) the datasets used to determine evapotranspi-

ration and (b) whether due account is taken of natural variability – especially the El Niño/Southern

Oscillation, which is a major cause of drought in tropical regions.

Trenberth et al. (2014) concluded that the anthropogenic contribution to the location and timing of

drought is not yet discernible. In the context of a warming climate, however, agricultural drought

episodes are projected to show a higher intensity and impact due to warming. Warming is expected

to drive the available water capacity of the soil to come nearer to the permanent wilting point due

to increased evaporation of soil water. Approaching dryness, the cooling e↵ect resulting from the

change of state of water declines and surfaces start to heat, compounding the damage to plants.

The combination of increasing evapotranspiration, less frequent rainfall, increased temperature and

drying thereby increases the intensity, duration and adverse e↵ects of drought (Trenberth et al. 2003).
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Climate change may therefore expand the domain a↵ected by drought, in subtropical dry regions in

particular.

Agriculture can also su↵er due to extremes of precipitation. Heavy rainfall can physically damage

crops, enhance soil erosion, and trigger floods. Excess soil moisture is also a major factor leading

to crop losses because of the anoxic conditions that it creates (Crawford 2003), increasing risks of

pest and disease, and chemical changes in flooded soils – their reduced state leads to the depletion of

NO3
- and accumulation of Fe2+, Mn2+, NH4

+ and S2- (Ponnamperuma 1972, 1984) – and because it

can hinder access to fields by machinery, hence delaying planting and harvesting operations. During

the 1993 Mississippi floods, about 70% of total crop losses occurred in upland areas because the soil

saturation followed the sustained heavy rains (Rosenzweig et al. 2002).

1.2.3 Implications of climate change for the agricultural sector

Agriculture (including crop and livestock production) is a major contributor to increases in atmo-

spheric greenhouse gas concentrations, accounting for up to 30% of anthropogenic emissions (Tubiello

et al. 2013, Smith et al. 2014, Bauer et al. 2016). Thus, cropping systems are partially responsible for

climate changes that a↵ect them. AR5 made projections, with levels of confidence ranging from low to

high, about the expected impact of global changes in the climate system on agricultural production.

The following impacts, both positive and negative, were indicated as expected e↵ects of global warm-

ing: increased potential for the production of some crops, especially in mid- to high latitudes, with

temperature increases between 1 and 3�C; decreased potential for food production in regions experi-

encing temperature increases > 3�C; and decreased potential for food production at lower latitudes

(especially seasonally dry regions) for temperature increases > 2�C. This last category is a particular

concern because many low- and middle-income countries are implicated.

These projections represent a “big picture” at best. Regional crop responses are likely to be more

complex. The IPCC projections were based on the assessment of a large but fragmented set of

publications. The spread in the results from the di↵erent authors is rooted in the diversity of modelling

frameworks, and implies high uncertainty in the IPCC's projections. Consecutive IPCC reports,

moreover, have been inconsistent. In the case of maize, for example, the IPCC Fourth Assessment

Report (AR4) suggested a increase in production under moderate warming, while AR5 suggested a

loss under the same conditions. Porter et al. (2019) highlighted the sources of such inconsistencies
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between IPCC reports, and the consequences for food security of our lack of firm knowledge about

climate-change impacts.

1.2.4 Temperature e↵ect on crop yields

Studies of the e↵ects of higher temperatures on crop productivity indicate that since the 1980s global

maize and wheat production may have been significantly reduced relative to a counterfactual scenario

without climate change (Schellnhuber et al. 2012). The negative e↵ects on agricultural production

might also have been underestimated owing to the nonlinear response of yield to temperatures. Peng

et al. (2004) estimated a decline in the production of grain in the Philippines by up to 10% per degree

of warming during the growing season. Many other studies have found an increasing risk of crop yield

reduction associated with warming and drying, with estimated losses ranging between 10 and 50% (e.g.

Jones & Thornton (2009), Schlenker & Roberts (2009), Schlenker & Lobell (2010), Tigchelaar et al.

(2018)). Reduced rates of yield improvement in cereals have also been reported (Peltonen-Sainio et al.

2009) and in some cases, the rate of yield improvement has stagnated, as observed in the case of oilseed

rape yields since the mid 1980s by Berry & Spink (2006). However, Semenov (2007) argued that a

warmer climate should benefit crops whose phenological stages are determined by temperature sums.

According to his simulations and projections, crops whose reproductive phase is especially sensitive

to super-optimal temperatures (such as wheat) will mature earlier in a warmer climate, leading to an

earlier onset of anthesis and avoidance of high-temperature extremes.

The large spread of estimates of the impact of temperature on future crop yields is partly a consequence

of methodological di↵erences. Numerous approaches have been used in impact studies, ranging from

simply equating average future impacts to yield losses observed in historical droughts (Boko et al.

2007, Parry et al. 2007), to process-based modelling (Rosenzweig et al. 1994, Rosenzweig & Parry

1994, Fischer et al. 2001, Jones & Thornton 2003), statistical time-series analysis (Lobell & Burke

2008, Lobell et al. 2008), and cross-sectional analyses (Kurukulasuriya et al. 2006). Some of these

methodologies however are flawed. For example, predicting future crop failures based on present

interannual variability (Lobell, Schlenker & Costa-Roberts 2011) is problematic, because it assumes

that farmers will not adapt to changes in climate. On time scales of five years or longer it is possible

– indeed it is economically necessary – for farmers to adapt to changes that they experience. The

spatial pattern of crop yields levels implicitly includes adaptation, and should thus provide more

relevant information on the impacts of climate change.
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1.2.5 Precipitation e↵ects on crop yield

Water availability is a fundamental control of crop yield, but the lack of consensus about current

trends and future trajectories of the hydrological cycle makes it hard to assess its potential role.

The uncertainty in assessment of recent and future drought trends is compounded by the interaction

of phenological timing with drought risks. For example, short-growth cultivars may be particularly

drought-sensitive because they have little time to recover from a stress event. On the other hand,

short-growth cultivars are less likely to be hit by summer droughts. This example shows how the

choice of crop varieties is an important aspect of adaptation, and illustrates the dangers inherent in

risk assessments that do not take adaptation into account.

1.2.6 Rising CO2 and crop yields

There is considerable interest in modelling CO2 e↵ects on plant physiology, growth and primary

production (Ziska 2008) because of the known positive e↵ect of CO2 increase on photosynthesis in C3

plants, and water-use e�ciency in both C3 and C4 plants. Plant physiological principles suggest that

the negative e↵ects of both increasing temperature and decreasing soil moisture should be mitigated,

at least in part, by the e↵ects of enhanced CO2 (Brooks & Farquhar 1985, Long et al. 2006). The most

reliable experimental information on CO2 e↵ects on crop growth comes from Free-Air Carbon dioxide

Enrichment (FACE) experiments. A robust finding of FACE experiments on crops is the decrease of

stomatal conductance and water use by plants at high CO2 (Ainsworth & Rogers 2007, Ainsworth

& Long 2021). In C3 plants, total dry matter production (above and below ground) and yield have

consistently shown positive responses to CO2 (Ainsworth & Long 2005, Ainsworth 2008, De Graa↵

et al. 2006, Van Groenigen et al. 2013, Ainsworth & Long 2021). C4 plants have shown little or no

enhancement of dry matter production in FACE studies (Ainsworth & Long 2021), but C4 plants

(like C3 plants) show reduced stomatal conductance at high CO2, which should reduce the e↵ects of

water stress under drought conditions (Leakey et al. 2009). There is currently no consensus about

how important the e↵ects of rising CO2 have been in increasing the yields of crops. It is likely that

these physiological e↵ects have contributed, even if only to a limited extent, to rising crop yields over

time. There are however no firm grounds to assume major yield increases due to the expected rise in

CO2 in the future, given all the other aspects of environmental change that inevitably accompany it.
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1.3 Aims and objectives of the thesis

The task of doubling the world's agricultural production during the next three to five decades is

expected to exert significant pressure on the global agricultural system. Assessing the climate change-

induced risks for the food sector is extremely challenging. It requires abilities, arguably well beyond

the state-of-the-art, to forecast climate change accurately at su�cient spatial resolution; to simulate

crop yields across di↵erent environments and crops; and to translate the resulting simulations into

economic indicators, in order to assess food security implications and impacts on human welfare.

More broadly, there is a major di�culty in translating research outputs, especially when fraught with

multiple uncertainties, into actionable information for the benefit of end-users. Farmers, wholesalers,

retailers, investors and policy makers alike have limited perception of the full range of possible climate

change impacts, either at a specific location or over larger regions. Scenarios needed by end-users fall

into two categories: projection of likely long-term trends (about three to five decades) and prediction

of variability on shorter time scales. Long-term trend projections are relevant for planning future

infrastructures and production facilities, while short-term variability is relevant for agricultural man-

agement and market investment. In this context, it seems unwise for research on food security and

the dynamics of food production to rely exclusively on complex, coupled models of climate change,

crop productivity and commodity prices (McCown et al. 1996, Jones et al. 1998, Jones & Thornton

2003, Levin 2006, Dimaranan & McDougall 2006, Koester 2008, Maraun et al. 2010, Rosenzweig et al.

2014, Nelson & Shively 2014), as implemented for example in the Agricultural Model Intercomparison

and Improvement Project, AGMIP1 – and appropriate to conduct complementary research based on

analysis of actual, observed long-term trends and short-term variability in crop production.

The research described in this thesis represents such a complementary approach to the assessment of

the controls of agricultural production, focusing on the three crops (maize, soybean and wheat) that

are the most traded on international commodity markets. The approach adopted is firmly rooted in

observations – of both climate and crop yields, harvested area and production – and relies on a unique

global gridded agricultural time-series data set provided by the University of Minnesota, which allows

a degree of detail in the assessment that has not previously been possible due to the coarse resolution

of existing (mainly national) data sets for much of the world. Analyses are conducted in a simple

conceptual framework, seeking to identify the main drivers of crop production over time in the main

1
https://agmip.org/
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producing areas for each crop. The approach is statistical rather than process-based, and is therefore

not able to distinguish, for example, how di↵erent biophysical controls (such as solar radiation or

CO2) influence crop growth and reproductive allocation, or to make forecasts. It is however focused

on the observed dynamics of crop production, and allows the separation of yield variations (with a

strong climatic imprint) from changes in planted or harvested area, which are strongly influenced by

socio-economic and historical factors. Its overarching objectives are (a) to obtain a new, empirically

grounded perspective on how the global food system works today and has worked over the past few

decades; and (b) to gain new insights into the interplay of climate and other factors in determining

the production of staple crops.

Chapter 2 uses statistical techniques to analyse trends in yield, harvested area and total production

in the main production areas (baskets) for each crop. Chapter 3 uses machine learning to analyse

how di↵erent agroclimatic variables have influenced crop yields in each basket. Chapter 4 introduces

a novel methodology for the detection of shocks, and applies it to assess the characteristics of yield,

harvested-area and production shocks. Chapter 5 discusses the results and considers their implications

for our understanding of food security and the factors that contribute, positively or negatively, to risks

in the global food supply chain.



Chapter 2

Agricultural trends and global food

security

Abstract

The challenge of feeding the world's growing population has highlighted the need to better understand

the nature, and causes, of trends and variations in the production of major agricultural crops. This

analysis of recent trends decomposes production into its components: yield, and planted (or harvested)

area. Changes in production, yield and area during the period 1961 to 2012 are analysed for the three

staple crops (maize, soybean and wheat) that are most traded on international markets. The dynamics

of yield and planted area are analysed within regions or “baskets”, defined by a clustering algorithm,

which are not necessarily linked to geopolitical boundaries. The sensitivity of each crop, in each region,

to heat stress is quantified using widely used agroclimatic indices. Key findings include that (a) both

trends and more rapid variation in the production of each crop can be driven by planted area as well

as yield; and (b) that the sensitivities of each crop to warming vary greatly from region to region. It

is suggested that the extreme spatial concentration of major producing areas for major crops poses

an inherent risk to global food security that is amplified by climate change.

17
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2.1 Introduction

The Sustainable Development Goal to “end hunger, achieve food security ... and promote sustainable

agriculture”, will not be achieved solely by attempting to maximize crop yields. There are good

reasons to consider also the stability of production, especially in the face of global climate change, to

which some of today's major producing regions are particularly sensitive; and to investigate not only

how much food is produced, but also where it is produced, and on how much land.

The task of doubling the world's agricultural production to meet the projected demand over the

next 30–40 years faces not only physical and biological, but also environmental and sustainability

constraints (Godfray et al. 2010, Tilman et al. 2011). Can we grow our way to global food security,

while reducing our impact on land and water resources?

Figure 2.1 depicts the striking predominance of agriculture on planet Earth, and highlights the fact

that arable land is scarce. This figure also makes a compelling case about the potential threat to the

Amazon rain forest, which could be considered – in a narrow perspective – to represent one of the few

opportunities to expand the area of arable land.

Figure 2.1: Global agricultural land use: croplands and pastures distributions. Data provided by the
University of Minnesota, Institute on the Evironment, adapted from Foley et al. (2005), Monfreda
et al. (2008, 2009), mapping courtesy of J.S. Gerber and P. Engstrom.

According to the Food and Agriculture Organization (FAO) of the United Nations, croplands and

grazing lands cover 1.53 and 3.38 billion hectares respectively. These uses of land account for 38% of
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the land surface. Most of the remaining area is covered by mountains, deserts, tundra or ecological

reserves, or experiences climate conditions unsuitable for agriculture (Foley et al. 2011, West et al.

2014). The residual lands available to agriculture are mostly of poor quality (in terms or structure,

composition or climate) and, if converted, probably would not support the same crop output and yield

levels as existing farmlands (Young 1999).

A significant increase in production (45% to 70% for most crops) could be attained by closing yield

gaps (Mueller et al. 2012): in other words, allowing crops to achieve their potential yields through

improved management, including adequate fertilizer inputs and (where possible) irrigation. However,

across much of the developing world, the trend is for production to be increased instead by increasing

the planted acreage. In the wet tropics, primary forest is still being burnt down and the land used

for cattle production (following the increasing demand for meat and dairy consumption) for a year

and then converted to soybean, which is mainly shipped to China as animal feed. In recent decades

farmland in (especially) Amazonia and Indonesia has increased by 2-3%, mainly driven by deforestation

(Mueller et al. 2014, West et al. 2014). Meanwhile, however, urbanization is encroaching on farmland;

at a rate of 16 million ha per year (Holmgren 2006) in the USA, China and India. Considering

deforestation combined with urbanization, the net global change of agricultural area has been small.

Even if yields are increasing globally, they are not keeping up with projected demands (Ray et al.

2013). With a rising demand for crop production on the one hand and physical, environmental

and sustainability constraints on the other, business-as-usual has become unsustainable. The global

food system can no longer anticipate, nor has the required resilience, to reliably meet demand. The

strategies available to increase the resilience of the global food system are: (1) closing yield gaps (West

et al. 2014); (2) changes in diets (Cassidy et al. 2013); and (3) re-engineering the system to mitigate

risk (Foley et al. 2011, West et al. 2014).

Closing yield gaps is a potentially powerful approach (Cassman et al. 2003, Tilman et al. 2011, Mueller

et al. 2012, West et al. 2014, Phalan et al. 2014, Pradhan et al. 2015, Zhang et al. 2016). It is estimated

that the USA, western Europe and parts of India, China and Brazil have reached at least 75% of

potential yields. Nearly three-quarters of under-achieving regions in terms of crop yields could reach

a similar level to western Europe solely by increasing nutrient inputs, while about a sixth could do so

by increased use of irrigation (Mueller et al. 2012). In the case of wheat, the gap between potential

and actual production increased 2.75–fold during the five decades after 1961 (Mueller et al. 2012):

potential production has increased at an average rate of ⇠14 metric tons (mt) per year while actual
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production increased at less than half this rate. If potential yields continue to climb at a higher rate

than actual yields, closing yield gaps constitutes an increasingly important opportunity to make the

global food system more resilient to production shocks, and better able to meet the increasing demand.

Closing yield gaps is also a sustainable approach, as production is thereby increased on available

land while pressure on natural ecosystems is not increased (Cassman et al. 2003, Tilman et al. 2011).

However, there is a geographic imbalance in the use of fertilizer: even though increased nutrient inputs

could significantly improve yields in some regions, large surpluses are applied in some regions. West

et al. (2014) estimated that about half of the excess of nitrogen (i.e. nitrogen fertilizer that is applied,

but not needed) is concentrated in only a quarter of the worlds cropland area. Similar figures apply

to phosphorus. Major production areas including the USA, China and India account for around 65%

of the excess application of nitrogen and phosphorus. In these regions, the amount of nitrogen and

phosphorus applied could be reduced by nearly 30% with no reduction in yields (West et al. 2014).

Other authors, including Mueller et al. (2014), have highlighted the e�ciency gain from more precisely

tailored application of nitrogen fertilizer.

Shifting farmed lands toward sustainable intensification is only one piece of the puzzle, however. First,

food waste reduction provides additional leverage to grow our way towards global food security and

meet future demands. Gustavsson et al. (2011) estimated the food production being wasted along the

supply chain, from the field to the plate, to range from 30 to 50% globally. Second, Cassidy et al.

(2013) and West et al. (2014) assessed the gains achievable through a reallocation of crop outputs.

According to their findings, up to ⇠70% more calories would be available to humans if the share of

the production allocated to animal feed and non-food uses (e.g. biofuels) were instead available for

direct consumption. Cassidy et al. (2013) also showed how relatively small changes in consumption,

and wastage of animal products in particular, could have a substantial e↵ect on available calories.

Similar findings were presented by MacDonald et al. (2015), who estimated that over 20% of global

production is traded for animal feed and non-food uses – and that redirection of this production to

direct consumption could feed as many as 2.5 billion people.

Above, I have outlined strategies that could address the challenge of more sustainably meeting the

increasing global demand for food. However, there have been few attempts to account for the con-

tribution of systemic risk on the global production of crops, especially in the context of a changing

climate.
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Discussion of the challenge of adequately meeting the growing demand for food, even sustainably,

has tended to emphasize long-term trends in production (Godfray et al. 2010, Paillard et al. 2011)

and yield (Grassini et al. 2013, Ray et al. 2013, West et al. 2014). Omitted from this discourse are

(a) interannual variability and its heterogeneity across regions, (b) the potential trade-o↵ between

absolute production output and stability of the food supply, (c) the fact that production is not solely

determined by the yield of a crop but also by the harvested area of the crop. Here, I propose a

decomposition of global crop outputs and their variability into “leverages” that quantify the relative

contribution of observed yield and harvested area to the variation in the production. To circumvent the

limitations of the classic approach whereby crop-growing regions are defined by geopolitical borders

(Ben-Ari & Makowski 2014), I introduce the concept of the “basket”, which is a relatively homogeneous

geographic and climatic region, rather than a geopolitical one. Baskets are likely to better capture

regional interannual variability, since climatic influences are linked to regions rather than nations.

2.2 Material and methods

2.2.1 Datasets

Crop data

I analysed global gridded datasets of maize, soybean and wheat that comprise data on annual yield,

harvested area and production, with a grid resolution of 5 arc minutes. These unique datasets,

obtained from the University of Minnesota, synthesize about 2.7 million census observations spanning

the period 1961 to 2012. They are the outcome of more than a decade of data collection and aggregation

performed by the Institute On The Environment (IonE) and the Global Landscape Initiative (GLI) at

the University of Minnesota. The data collection process included the collection and cross-validation

of data from major sources including the United States Department of Agriculture (USDA) and the

Food and Agriculture Organization (FAO) Corporate Statistical Database; but also the digitization of

census data, obtained from buying or borrowing hundreds of census books all over the world, through

national libraries and government agencies.

A few inevitable limitations on the quality of the data should be noted. Data quality can vary

across regions of the world for multiple reasons related to quality control and frequency of data

collection. In many developing countries, including India, yield measurements are conducted during
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crop-cutting experiments that have been tightly linked to the agricultural insurance sector since its

emergence, providing an incentive for accuracy. Because of the complexity of the process of data

collection, however, data may su↵er from mistakes made by field operators (errors in measurements,

typographical errors, and mistakes in digitizing hand-written documents). Further mistakes might be

made as the data are transferred to census books or national databases. There can also be unknown

temporal trends in data quality. These issues have been partially addressed through the work done

at the University of Minnesota in cross-validating the data between sources. It is important also to

note that the data for developing countries has proved to be extensive, and often available at much

higher spatial resolution than the publicly available data from the FAO. Finally this dataset is, to

the best of my knowledge, the most comprehensive globally gridded dataset for agriculture available

to research, hence its use to underpin a number of key papers on the agricultural system published

from 2010 onwards (Portmann et al. 2010, Foley et al. 2011, Ray et al. 2012, 2015, Mueller et al. 2012,

2014, Ray et al. 2013, Cassidy et al. 2013, West et al. 2014, Tigchelaar et al. 2018).

This chapter focuses on maize, soybean and wheat. These staples are the three most important

globally traded crops, by both volume and economic value. Having multiple uses, including biofuel

and animal fodder, means that variability in their production can impact multiple supply chains. Rice

was not included in part because, according to the GLI, the available time series data for rice are

significantly less reliable than those for maize, soybean and wheat.

Climate data

Climate data were obtained from the WATCH–WFDEI (WFD) climate dataset (Harding et al. 2011,

Weedon et al. 2014). This dataset covers the global land area on a 0.5�x 0.5�grid, with three-hourly

temporal resolution. It is based on the ERA-Interim reanalysis with bias correction (towards global

observed values) applied to temperature and precipitation (She�eld et al. 2006, Boucher & Best 2010,

Harding et al. 2011). It has been widely used in global analyses, including agriculture and climate

impacts research (Portmann et al. 2010, Foley et al. 2011, Mueller et al. 2012, Ray et al. 2012, 2013,

Rosenzweig et al. 2013, 2014, Schneider et al. 2014, Ray et al. 2015). It is also one of the reference

datasets and the basis of much research carried out in the framework of the Agricultural Model

Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al. 2013). From the WATCH–

WFDEI data set I extracted the maximum daily temperature that I use to derive the agroclimatic

variables defined in the following section.
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2.2.2 Agroclimatic variables

Temperature and precipitation anomalies can cause deviations from the expected yield of a crop

(Lobell & Burke 2008, Lobell, Bänziger, Magorokosho & Vivek 2011, Lobell, Schlenker & Costa-

Roberts 2011), and these variables have been used in analyses of climate impacts on crop growth and

yield. However, these basic meteorological variables do not represent well the processes by which crops

are a↵ected by the climate. For this reason, more “plant-centred” indices have been adopted widely

for statistical analyses of yield-climate relationships. These indices including the cumulative sum of

favourable temperatures (above a threshold) that drive the developmental phases of a crop, known

as growing degree days (GDD) (Chang 2011), and the cumulative sum of degrees above a higher

threshold that can harm crop development, known as killing degree days (KDD) (Tigchelaar et al.

2018). Such “agroclimatic variables” have been shown to be useful indicators of how crops respond to

climate anomalies (Butler & Huybers 2013, 2015, Chavez et al. 2015).

High temperatures can negatively a↵ect yield in various way including hampering crop growth and

reducing grain filling (Sánchez et al. 2014). Several studies have found the e↵ects of superoptimal

temperatures on crop yields to be more important than anomalies in precipitation (Lobell, Bänziger,

Magorokosho & Vivek 2011, Butler & Huybers 2013, 2015, Tigchelaar et al. 2018). It should be noted

also that e↵ects of droughts are likely to manifest through high air (and leaf) temperatures due to

stomatal closure and reduced transpiration, leading to an increase in the partitioning of net radiation

to sensible rather than latent heat (Jones 2013). In this chapter, accordingly, I focus on a small set

of proxies for heat stress. (Later, in Chapter 3, I investigate stresses related to temperature and

precipitation by means of a larger set of agroclimatic variables.) To quantify the yield response to

superoptimal temperatures in this chapter, I have used the sum of killing degree days (⌃KDD, the

annual sum of degrees above 32�C) and the number of hot days (nHotDays, the annual number of

days with temperatures above 32�C). On day d, I define KDD as

KDDd =

8
><

>:

Tmax,d � Tkdd if Tmax,d > Tkdd

0 if Tmax,d  Tkdd

(2.1)

Where Tmax,d is the maximum daily temperature and Tkdd is the temperature thresholds for killing

degree days. I selected a threshold of 32�C based on values used in the literature (Hesketh et al. 1973,

Porter & Gawith 1999, Egli et al. 2005, Schlenker & Roberts 2006, Setiyono et al. 2007, Cai et al.
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2009, Abendroth et al. 2011, Butler & Huybers 2013, 2015, Gourdji et al. 2013, Asseng et al. 2015,

Teixeira et al. 2013, Sánchez et al. 2014, Chavez et al. 2015), which range from 30� to 36�C. ⌃KDD

is then obtained by summing daily values (KDDd) over the year.

2.2.3 Regionalization

I consider eleven, seven and ten regions (called “baskets” throughout this thesis) for maize, soybean

and wheat respectively (SI, Section 2.6, Figure 2.11 and Table 2.2). The baskets were determined

according to the following procedure.

1. For each grid cell I computed the cumulative sum of the production and harvested area for the

period 1961 to 2012. I used the cumulative sum in order to build spatial distributions that are

not skewed by the e↵ect of averaging over time, and yet take into account that for a given grid

cell, the production and harvested area might have increased during the period studied. I also

computed the global total cumulative sum of production and harvested area for each crop during

the same period.

2. I defined “bounding boxes” as the following continental/subcontinental regions: North America,

South America, Europe, Eastern Europe, Africa, Asia, India, Australia. This step was necessary

for the subsequent classifiation steps to work, in order to allow for very di↵erent general levels of

production and harvested area in di↵erent continents (for example, maize production in Africa

as compared to North America and China). The coordinates of the bounding boxes where

computed using the function ST Envelope in the open-source Geographic Information System

(GIS) software PostGIS. As an example, for North America, the bounding box was computed

on the geometry of North America, obtain from Natural Earth1, a database of open-source GIS

geometries.

3. For each bounding box separately, I ran a spatial clustering procedure on the following variables:

longitude, latitude, cumulative production and cumulative harvested area, using the p–max

regionalization algorithm (Duque et al. 2012) as implemented by the method region in the

Python spatial analysis library PySAL. A key motivation behind the selection of this algorithm

is that no predefined number of regions is required; instead, the algorithm requires the user to

define the constraints of the optimization on target variables so that a minimum threshold is

1
https://www.naturalearthdata.com/
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met for these target variables within a region. For the basket selection, I imposed the constraint

that every region should contain grid cells where (a) the proportion of harvested area is at least

5% of the total grid cell area and greater than the 25th percentile of the spatial distribution of

harvested area for the region, and (b) the cumulative production is above the 25th percentile of

the distribution of cumulative production. The percentile values were chosen by trial and error,

with two additional optimization constraints: (a) for each bounding box, no more than four

regions should be identified; and (b) a region can be considered as a basket if all the grid cells it

contains together represent at least 1% of the global cumulative production for the period 1961

to 2012.

4. Finally, for each region identified, I computed the bounding box of the region and computed a

contour as the smallest (in area) continuous polygon that includes all grid cells of the region,

using the methods threshold and findContours in the Python OpenCV image detection library.

In the final results of this regionalization, the maize baskets accounted for 67% of the average world

production (for the whole period 1961 to 2021) and 56% of world average planted area. The corre-

sponding figures for wheat are 60% and 50%, and for soybean, 75% and 68%, respectively. A map

(Figure 2.11) representing the location of the baskets for each crop as well as their names (Table 2.2)

as used in this thesis can be found in Supplementary Information (section 2.6). More statistics on the

baskets' proportion of global production and harvested area are given in Tables 2.3 and 2.4 (SI).

2.2.4 Interannual variability

Residuals

To characterize and compare baskets for their variability in production, harvested area and yield, I

investigated the distribution of the time-series residuals. I defined residuals in production rit at year

t in basket i as

rit = Pit � µit (2.2)

where Pit is the observed production in metric tons per hectare (mt/ha) and µit is the expected

production (mt/ha) at year t in basket i for a given crop. To estimate values of µit I used a linear,
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quadratic or cubic regression models fitted by ordinary least squares (OLS) using the function lm in

the R programming language. The models were fitted to the time-series of each basket, and the model

with the lowest Akaike Information Criterion (AIC) was selected to detrend the time series. The

residuals were checked for the presence or absence of autocorrelation using ACF plots (R functions

acf and lm). The interannual variability Vi of each basket was estimated from the variance as

Vi =
1

T

TX

t=1

(rit � ri)
2 (2.3)

where ri is the average of anomalies for the period 1961–2012, and is equal to zero by definition.

Hence, the variance of the residuals in each basket i is

Vi =
1

T

TX

t=1

r2it (2.4)

Finally I computed the standard deviation of the residuals for each basket i as:

Si =

vuut 1

T

TX

t=1

r2it (2.5)

Variance and standard deviation have been widely used to quantify and compare the instability of

production and yield in di↵erent regions (Osborne & Wheeler 2013, Ben-Ari & Makowski 2014). Other

metrics used for this purpose include non-parametric statistics such as the interquatile range (IQR),

and the coe�cient of variation (CV) (Tsay 2014); CV however is not suitable here as the analysis

focuses on residuals, whose mean is zero. The robustness of the analysis to the chosen metrics is

further analysed in Supplementary Information (Section 2.6, Table 2.5), where it is shown that the

rankings of baskets are consistent for alternative metrics.

Statistical comparison of variance and standard deviation

The Fligner-Killeen test is one of several designed to assess the homogeneity of variances between

groups. The motivation for using the Fligner-Killeen test over alternatives it that it is the most robust

when the data deviate from a normal distribution (Beyene & Bekele 2016). For each crop and each

agricultural variables, I tested the homogeneity of variance between each pair of baskets using the R
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function fligner.test in the package stats.

2.2.5 Simpson diversity index

The Simpson diversity index is most commonly used to quantify species diversity. I use it here in a

di↵erent way to characterize the evolution of the spatial distribution of hectares under a given crop

among the di↵erent baskets. High values of the Simpson index mean a concentration of the production

in a few regions; low values indicate a more even distribution among regions. The Simpson diversity

index S at time t is expressed as

St =
NX

i=1

!2
it (2.6)

where !it is the ratio of the area in the ith region at year t to the total baskets area, with N the

number of baskets for the crop being considered.

!it =
SitPN
i=1 Sit

(2.7)

2.2.6 Leverages

The observed agricultural production is the product of observed yield and harvested area. To quantify

the relative contribution of observed yield and harvested area to the variation in the production, I

define a metric called “leverage”, denoted L. L is the ratio of the change in harvested area to the

change in yield. Thus, with Pt the production at year t, Yt the yield at year t and At the acreage at

time t, we have �P , the change in production between t and t+ 1 as

�P = (Y ⇤A)0 = Yt�A+At�Y +�A�Y (2.8)

where �Y and �A are the changes in yield and acreage, respectively, between t and t+ 1. Therefore

�P = At+1�Y + Yt�A (2.9)
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with At+1�Y the contribution of the increment in yield (noted dY for convenience) and Yt�A the

contribution of the increment in area (dA) to the production.

I define the leverage as L = dA/dY . When | L | > 1 the area has a greater contribution to the

incremental change in production, and when | L | < 1 the yield has a higher contribution to the

incremental change in production.

2.2.7 Principal Component Analysis (PCA)

In data sets including many variables, the covariance matrix can be too large to be analysed directly

because the number of pairwise comparisons increases with the square of the number of variables

– quickly making interpretation impossible. Principal Components Analysis (PCA) is the standard

method used to reduce the dimensionality of such a dataset. The method finds linear combinations of

variables that account for the maximum proportion of the variance in all variables. The first principal

component accounts for the largest proportion of total variance; the second, uncorrelated to the first,

accounts for the largest proportion of the remaining variance; and so on. Here, PCA was applied in

order to characterize groups of individuals (the baskets) by variables (leverages). Graphical plots of

the positions of individuals in the space defined by the first two (or first few) principal components

provide a convenient summary in which, to an approximation, more similar individuals are shown

closer together and less similar individuals further apart.

To make progress in understanding the type of leverages as well as how crops and baskets contrast

in leverages, I performed a PCA using the R function prcomp from the package stats. For each

crop, I computed a PCA on the count of each type of leverage (Section 2.3.3) in each basket. When

performing a PCA, a few methodological decisions must be made: whether to center the data on the

means for each variable (this is normally recommended), whether to normalize the data to unit variance

(this is necessary when variables are in di↵erent units), and the number of components retained for

analysis. Here, the data were mean-centred, and because all variables in the dataset are in the same

units, normalization was not carried out. There is no general rule as to how to choose the number of

principal components to consider, and no statistical test is applicable, so this decision is usually made

pragmatically (Jolli↵e 2002, Peres-Neto et al. 2005). However a scree plot (a plot of the eigenvalues

– proportional to the amount of variance explained – for successive components, in descending order)

can be a useful guide. Based on such a plot, the number of components to use “is determined at
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the point, beyond which the remaining eigenvalues are all relatively small and of comparable size”

(Peres-Neto et al. 2005). The number of principal components chosen for each PCA (Section 2.3.3,

Figure 2.7) according to this method was five for maize and wheat, and four for soybean.

To help interpret the principal components, I focused on those variables that were most strongly and

significantly correlated with each component, computed using the R function dimdesc in the package

FactoMineR. I also used the metric called cos2 (square cosine, square coordinates) to quantify the

importance of each component for a given variable (Abdi & Williams 2010). This metric was computed

using the R functions get pca var and get pca ind in the package factoextra.

2.3 Trends and variability in crop outputs

This section investigates the trends in crop output, as well as the factors that influence the variability

of crop production.

2.3.1 Trends in production: an analysis

Figure 2.2 visualizes the time evolution of production in each basket for the three crops considered.

Trends were computed using locally weighted linear regressions (LOESS) for maize and soybean, and

General Additive Models (GAM) for wheat. Each model was fitted by ordinary least squares (OLS)

using the R functions loess and gam for each time series of production for each crop and for each

basket. The objective was not to select the best-fitting model for each one of the baskets, but rather

the best fitting model across baskets for each crop, based on the AIC, by summing the AIC of models

across baskets. LOESS and GAM are both relatively flexible models and in this application they

yielded closely similar results, except that GAM is more sensitive to local extrema (as shown e.g. by

wheat in Figure 2.2). (For trends in harvested area and yield, as well as global trends, see SI, Figures

2.12, 2.13, and 2.14.)

Figure 2.2 plots the series with common x (time) and y (production) axes. It shrinks the time axis, and

sets the y axis to the maximum production for each crop across all baskets. Hence, this visualization

emphasizes contrasts in production among regions. The baskets are sorted by their average production

during 1961–2012. Overall, the three crops present an upward trend in production. Maize trends are

approximately linear and show a correlation between the level of production and the slope of the
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Figure 2.2: Levels and trends in production of maize, soybean and wheat (top to bottom) from 1961
to 2012 in the main producing areas (baskets).
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trend. Soybean time series show acceleration over time (the USA is an exception, with a more linear

trend); production drastically increased from the 1980s onwards, especially in Argentina, Brazil, and

India. As for maize, soybean shows a correlation between the level of production and the slope of the

trend. Trends in wheat production are more complex. In contrast with the other two crops, despite

the overall increase in production, seven out of the ten baskets show reversal or flattening from the

1980s (CS USA, Eastern Europe & Russia) or the 1990s (Northern USA & Canada, Turkey) onwards.

Reversal or flattening are mostly observed in baskets with lower production.

Maize and soybean both show greater variability in the baskets with higher production. The USA

(globally the largest production area for maize and soybean, and fourth for wheat) has the highest

variability across the entire period. The Eastern Europe & Ukraine basket for maize is distinctive

in showing a substantial increase in variability from the 1990s. These observations suggest that the

variability (as indicated visually, by the distributions of the data around the trends) in global maize

and soybean output is mainly contained in one single basket, which is also the biggest producer.

Wheat contrasts with maize and soybean, as all baskets show high variability in production over time.

Eastern Europe & Russia shows by far the highest variability, while most of the variability in total

global production is contained in North America and Europe.

The apparent correlation between slope and level of production (at the start and towards the present)

points to a specialization of producing areas and concentration of production. This can be interpreted

as follows. When a region is engaged into a specific crop, agricultural systems and practices – and the

agricultural economy – develop around that crop. Figure 2.2 depicts several examples. For example,

while initially insignificant, crop production in Central Brazil peaked from the 1980s accompanying

deforestation and expansion of agriculture into the Amazon rainforest. Soybean in India was originally

encouraged to counter malnutrition and protein deficiency; a research e↵ort that began in the 1960s,

along with the processing capacity of oil mills being under-used, created a fertile framework for the

development of a soybean market. Soybean quickly became a suitable crop to meet a shortage of

edible oil and proteins and its production rose thereafter.

An unplanned side-e↵ect of such contingent historical factors, however, seems to be a high degree of

concentration of current production – and along with it, a high degree of variability – of each crop in

a rather small number of baskets.
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2.3.2 Decomposing global crop outputs and variability

Production, yield and area variability contrasts between regions, and between crops

Figure 2.3 presents the distribution of production, area and yield anomalies for maize, soybean and

wheat. The Fligner-Killeen test for homogeneity of variance between baskets, and the correlation

between the mean production (or harvested area, or yield) per basket and the interannual variabil-

ity in production (or harvested area, or yield), are summarized in Tables 2.5, 2.6 and 2.7 in the

Supplementary Information of this chapter (Section 2.6).

Maize: The USA shows the largest amplitude in production anomalies and is roughly 2.5 times larger

in production than the second and third baskets (China and Eastern EU & Ukraine). There is a strong

asymmetry in the USA, with a long tail towards the minimum and higher density in the maximum.

This pattern is found in both area and yield – suggesting that production anomalies are driven by

covariation in yield and area, with many positive anomalies o↵set by more sporadic (low likelihood),

extreme (high impact) losses. The USA contains most of the variability in production. In other baskets

the distribution of production, area and yield are more symmetric. The largest producers show a high

variability in all three variables; the smallest producers show comparatively more variability in area

than in yield. About half of the baskets show a large variability in yield, with the most sensitive

regions being USA, Eastern Europe & Ukraine, Argentina, South Africa and Central Europe.

Soybean shows the lowest variability in the distribution of anomalies in production and yield: about

three to four times lower than the variability of maize yields and between 50 to 80% of the variability

observed in wheat yields. Yield distributions are more similar among baskets than the other two

crops. Most of the variability is concentrated in the top three producers. The variability of soybean

production in the USA seems more influenced by the planted area than by the yield. Argentina's

soybean production is more influenced by variability in yield; southern Brazil shows great variability

in both planted area and yield.

Wheat production shows the second largest variability in production after maize. The largest pro-

ducers show asymmetry in production toward negative values. India and Pakistan, despite being a

major producing region, is distinguished by low variability in production; this is due to both a low

variability in planted area but also, notably, the most stable yields among all the baskets. Eastern

Europe & Russia show the highest variability of all baskets, with high variability in planted area and
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Figure 2.3: (a)–(f) Box plots of production (mt/ha), area (ha) and yield (mt/ha) residuals for maize
(green), soybean (red) and wheat (orange). Residuals are calculated each year for the period 1961–
2012 for each basket (section 2.2.4, equation 2.2). Box plots limits represent the 25th, 50th and 75th
percentiles. The arms extend to the 10th and 90th percentiles. The beans represent the smoothed
density distribution of the data and extend to the maximum and minimum values. Baskets are ordered
by decreasing standard deviation in production.
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compounded by high variability in yield. Australia displays the highest variability in yield. Egypt,

the smallest producer, has a roughly constant planted area but the second largest variability in yield.

The highest interannual variability in wheat yields is concentrated in dry regions with hot summers.

Concentration of production in the topmost baskets

Figure 2.4 depicts the temporal evolution of the Simpson index. Figure 2.5 depicts the evolution of

the spatial distribution of planted areas for each crop and each basket during the study period, as

percentages of the world's total planted area for each crop.

0.0

0.1

0.2

0.3

0.4

0.5

19
60
19
65
19
70
19
75
19
80
19
85
19
90
19
95
20
00
20
05
20
10

(a) Maize

0.0

0.1

0.2

0.3

0.4

0.5

19
60
19
65
19
70
19
75
19
80
19
85
19
90
19
95
20
00
20
05
20
10

(b) Soybean

0.0

0.1

0.2

0.3

0.4

0.5

19
60
19
65
19
70
19
75
19
80
19
85
19
90
19
95
20
00
20
05
20
10

(c) Wheat

Figure 2.4: (a)–(c) Simpson diversity index for maize ((a), green), soybean ((b), red) and wheat ((c),
orange) across all baskets for the period 1961–2012.

Maize shows relative stability in the lowest-producing baskets. The major expansion of maize in the

USA (up by 65%) was bu↵ered by the changes in other baskets. Maize area distributions are marked

by the reallocation of production to China, which displays the steepest increase, gaining roughly 5% of

the world planted areas between 1961 and 2012 (China more than doubled its total cultivated area) as

well as increases in production in Brazil and Africa. In the same period, Eastern Europe and Ukraine

show the biggest loss in percentage of world production, as area expansion ceased. The concentration

of maize in the USA is notable, as the USA also shows the highest variability in maize yield.

Soybean: The higher Simpson index value for soybean (Figure 2.4b) shows that its production is the

most spatially concentrated of the three crops. Moreover, the evolution of the index over time bears

a striking resemblance to the time series of the proportion of soybean worldwide that is grown in the

USA. This high concentration of soybean in the USA necessarily implies a high risk to the global

supply if the US soybean crop were to fail. The index is marked by four structural changes: (a) a
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short increase in concentration until the late 1960s driven by the concentration of production in the

USA; (b) a stagnating trend until the mid 1970s due to unchanging planted area in the USA, together

with a decrease in China and Egypt, balanced by an increase in South America; (c) a downward trend

until the mid 2000s, driven by the increase in planted area in South America, while the rate of area

expansion in the USA declined or even stagnated from 1980 to 1995, accompanied by an increase in

planted area in India, Argentina and Central Brazil; and (d) a stabilizing trend from the mid 2000s

onward. Argentina shows the largest increase in planted area.

Despite the concentration of soybean production, however, there was an overall de-concentration

towards 2012. In 1961, the top three baskets accounted for over 66% of the world acreage and 74% of

the global production of soybean. These numbers declined to 48% (acreage) and 54% (production) in

2012 (SI, Tables 2.3 and 2.4).

Wheat shows a redistribution of planted area over time. The planted area of wheat in India and

Pakistan increased 2.5–fold, while Eastern Europe and Russia showed decreases of about 30%. The

northern USA and Canada show a singular pattern, with a sharp increase (up by 50%) in acreage

between the 1970s and 1995; the acreage then returned to 1970s levels from the 2000s onward. There

was a major reduction of planted area in Eastern Europe and Russia. The concentration of wheat in

the topmost baskets is an issue, given its high yield variability (Figure 2.3).

India's most notable feature in this analysis is to have increased its planted areas of soybean and

wheat so rapidly, to become the single major producer in Asia. China on the other hand stands out

by a massive expansion in just one of the crops, i.e. maize.
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Figure 2.5: Spatio-temporal evolution of the distributions of cultivated areas in % of the total global
cultivated area among baskets between 1961 and 2012 for maize, soybean and wheat.
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2.3.3 Factor dominance in the variability of crop production

Crop production is the product of yield and planted area. The latter is driven by economic factors

including incentives, trades and prices. The acreage is known early in a crop season. Yield variations

however are strongly influenced by climate – about a third of yield variation is due to climate variability,

according to Ray et al. (2015) – as well as by technologies, genotypes, agricultural practices and soil

properties. Because of the structural nature of acreage, its interannual rate of change is expected to

be lower than that of changes in yield, which are more uncertain in spite of the global upward trends

in yield between 1961 and 2012. Shocks in production are thus less likely to stem from shocks in

planted area (e.g. maize in the USA basket in 1983). For the same reason, acreage has been used as

an important proxy for estimating crop production at the beginning of the season, whereas yield is

not known until the harvest.

In this section I decompose the changes in production in changes in yield and changes in area and

enquire as to the leverage of these two variables on the change of production. The goal is to make

progress in the global analysis of systemic risks in global food security, by profiling baskets according

to the dominance of changes in yield, harvested area or both.

Trends, contributions and leverage: Figure 2.6 depicts the evolution of production, yield and

acreage. The trend (blue dotted line) was calculated using the method described in section 2.2.4. The

bottom two bar plots, both colour-coded, represent the contribution and leverage of each factor. The

contribution is a stacked bar plot with dA in brown and dY in yellow.

Eight classes of leverage on production are distinguished by a colour code. Increases in production

are represented in green, pale green, light brown and pale yellow; reductions in red, orange, brown

and yellow. The eight cases are defined as follows:

• Green: increasing production due to area and yield increases, with area dominant.

• Pale green: increasing production due to area and yield increases, with yield dominant.

• Red : declining production due to area and yield decreases, with area dominant.

• Orange: declining production due to area and yield decreases, with yield dominant.

• Light brown: increasing production, with increasing area outweighing declining yield.
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• Brown: declining production, with declining yield outweighing increasing area.

• Pale yellow : increasing production, with increasing yield outweighing declining area.

• Yellow : declining production, with declining yield outweighing increasing area.

Heatmaps: Figure 2.7 shows heatmaps of the frequency of type of leverages for the three crops

considered. The leverages are coded as (1)(2)L, with (1) being the sign of dA and dY (where for

example (++) means both are positive), (2) being the sign of the change in production, and L being

the dominant driver (A for area, Y for yield).

PCA (Figures 2.7b, 2.7d and 2.7f): for maize, Table 2.8 indicates that the first principal component

contrasts the dominance of harvested-area leverage (right side) versus yield leverage (left side). The

second component, although it explains a much smaller proportion of the variance, shows a strong

negative correlation with baskets that experience production losses due to a simultaneous reduction

of harvested area and yield. For soybean, the contributions and correlations are less clear. The

first principal component broadly divides the baskets between those showing production gains due to

a simultaneous increase in yield and harvested area (left side), and those showing production gains

due an increase in yield that compensates for a reduction in harvested area (right side). The second

principal component is mostly explained by a positive covariance in yield and harvested area leading

to a positive gain in production (Table 2.8). The first principal component for wheat contrasts

baskets where production gains are due to a strong leverage of yield (left side) versus those showing

a stronger leverage of harvested area (right side). The second principal component contrasts baskets

with production losses due to both yield and harvested area with other baskets.

At the global level, harvested area is the leading proxy for production

Aggregating at the global level and considering all crops together, production shows a greater positive

correlation with acreage (0.77, p < 0.01) than with yield (0.65, p < 0.01). This correlation appears

in Figures 2.2, 2.12 and 2.13. There is a striking resemblance between the ordering of baskets as a

function of the average production, and their ordering as a function of average harvested area. In

terms of acreage, there was a large predominance of wheat in 1961, representing 90 Mha, followed

by maize (57 Mha) and soybean (16 Mha). Planted areas of wheat increased until the 1980s and have

been on a slight downward slope since then, reaching 106 Mha in 2012. Meanwhile maize and soybean
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showed a steady increase (soybean the fastest), reaching 100 Mha and 70 Mha respectively in 2012.

In terms of yield: maize is the highest yielding crop, while all three crops showed increase in yield,

with maize showing the steepest slope. In terms of production: wheat and maize showed similar

levels of production until 1995, when maize production took o↵ while wheat production declined.

Variations in yield versus area: regional contrasts

A general inference from Figures 2.6 and 2.7 is the heterogeneity of patterns across crops and baskets.

This section does not profile each basket, but rather describes the general features of the topmost

baskets. I let the Figures speak for themselves as regards the finer details. I use the term positive

covariance to refer to the situation when yield and acreage variation have the same sign, and negative

when they have opposite signs.

Maize gains in production display a strong pattern and are mostly influenced by a positive covariance

of yield and acreage, with yield dominant, especially in the largest baskets (USA and China). In

Indonesia, by contrast, gains and losses are mostly driven by changes in acreage (Figures 2.6e, 2.7a

and 2.7b). The Indonesian basket is not of major importance for the production of maize; but this trait

reveals the importance of considering the leverage in a systemic risk analysis, as planting decisions

here apparently outweigh weather-related risks. This trait is also observed in Mexico, where variability

in production is due to a greater leverage of acreage relative to yield.

With regards to losses, the USA and East Africa show a very high potential climate sensitivity as

negative increments in production are mostly due to yield failure, even when acreage increases. Overall,

maize shows a high yield dominance (for both gains and losses), indicating a potential important

sensitivity of the crop to weather impacts or agricultural practices.

Soybean shows a greater heterogeneity across baskets, linked to the changes in soybean production

dynamics described in section 2.3.2. Originally concentrated in the USA, soybean production rapidly

expanded in Southern America and South East Asia, thus production increased due to increasing

acreage. In some baskets including India the change in acreage dominated up to the 2000s, later

becoming almost insignificant as the acreage stabilized.

Production losses for soybean were most often due to yield losses (or crop failures) in the topmost

baskets (USA, Brazil, Argentina). Soybean production in China is small but characterized by large

variability in both yield and acreage.
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For wheat, year-on-year changes in production were influenced by a positive covariance of yield and

acreage, with yield dominant. Egypt provides an exception, characterized by a dominance of acreage

and a low influence of yield. Production changes in Turkey and Australia show a high sensitivity to

interannual yield variations and were particularly a↵ected by crop failures. Argentina shows no strong

pattern.
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Figure 2.6: Maize production (mt), yield (mt/ha), area (ha), yield and area contributions to the
production and leverages (top to bottom of each panel), in the USA, Argentina, East Africa, South
Africa and Indonesia (from top left to bottom right).
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Figure 2.7: Heatmaps and Principal Component Analysis (PCA) of the leverages of yield and area in
baskets, from top to bottom: maize (a)–(b), soybean (c)–(d) and wheat (e)–(f). Variables (leverages)
are colour coded according to their contribution (in percentage) to the first principal component
(Dim1), (see Section 2.6, Table 2.10).
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2.4 Climate sensitivity of crop production

Potential impacts of climate change on yield have been assessed by running “process-based” crop

models with input from climate models. However, there are still large di↵erences among the results

of di↵erent models (Guereña et al. 2001, Busuioc & von Storch 2003, Webb et al. 2013, Rosenzweig

et al. 2014). An alternative approach, adopted here, is based on the empirical analysis of yield data

in relation to agroclimatic variables.

Numbers of hot days (nHotDays) and Killing Degree Days (KDD) have both been shown to be good

proxies for the e↵ect of heat stress on the yields of grain crops generally (Schlenker & Roberts 2006,

2009, Gourdji et al. 2013, Butler & Huybers 2013, 2015, Chavez et al. 2015). These studies have mostly

been focused on national or regional crop production. Extending this approach globally to the case of

maize, soybean and wheat baskets (Figures 2.8, 2.9 and 2.10), a high correlation emerges between the

number of days when temperature exceeds 32�C, and a reduction in yield. The results however are

not identical for every basket, or for every crops. Not every basket shows negative responses – either

to the number of hot days, or the cumulative amount of killing degree days.

The most outstanding feature of the spatial response of yield to heat stress is the strong contrast

between the USA and everywhere else. In all baskets, yield shows an overall response to heat stress that

is either positive or negative, but with spatial variability within the basket. USA maize, USA soybean

and USA/Canada wheat are the only baskets showing a homogeneous negative correlation, and these

baskets present the highest correlations and the greatest proportion of significance (proportion of

pixels in the basket with p < 0.05). In the USA, correlations go up to 0.79, with associated yield

losses that can be as large as 6 metric tons per hectare for maize – about half of the average yield of

a state such as Iowa, a major producer.

Eastern Europe shows the second highest correlation, after the USA, between heat stress and yield

loss, with correlation of 0.78 for maize and 0.64 for wheat. Another important characteristic of the

Eastern European baskets is a west/east dipole with Romania, Bulgaria, Hungary, Slovakia and the

western part of the Ukraine showing negative responses to heat stress, while the rest of the basket

(central and eastern Ukraine, Russia) shows a medium to strong positive correlation of yield with

nHotDays or ⌃KDD for both maize and wheat (up to 0.53 and 0.64 respectively).

In South America the response is relatively homogeneous for maize and soybean. In Brazil, yield

is mostly positively a↵ected by nHotDays and ⌃KDD, while the response is negative in Argentina.
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Wheat in Argentina shows a mixed response.

In Central America, Western Europe, Africa and Asia, the most noticeable trait of the response is

the high heterogeneity of its spatial distribution and amplitude, and a heterogenous response across

crops where baskets overlap. In these four regions, the correlations vary between -0.7 to +0.7, and

the proportion of significance relative to the basket is much lower than in the rest of the world.

Furthermore, and in the same regions, the correlations of yield with nHotDays and ⌃KDD di↵er the

most, and can be of opposite sign – whereas they are mostly of the same order of magnitude and sign

in the other baskets. The India/Pakistan wheat basket illustrates this last point clearly on Figure 2.10:

in Uttar Pradesh and Punjab, the yield response to nHotDays is positive, while the response to ⌃KDD

is negative. The explanation for this counterintuitive behaviour might lie in a positive correlation of

long hot periods with high solar radiation, combined with damage at very high temperatures.

Table 2.1 summarizes the year-to-year changes in critical temperatures (> 32�C) and yield losses over

the di↵erent baskets. More than two-thirds of the largest yield losses (i.e. the largest year-on-year

reduction in yield: Table 2.1) were associated with a positive anomaly of ⌃KDD or nHotDays (64%,

86% and 70% for maize, soybean and wheat respectively) and over 40% were associated with anomalies

greater than 1.5 standard deviations (71%, 50%, 43% for maize, soybean and wheat respectively). Two

further general points can be drawn from Table 2.1. First, the largest losses match record-breaking

heatwave events, as described in Coumou & Rahmstorf (2012). Second, the USA once again appears

as a special case. In all baskets, roughly 50—75% of the largest losses occurred post-2000, whereas in

the USA, 50–75% of the largest losses occurred pre–2000.
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Figure 2.8: Maize yield and heat stress. Correlation between number of hot days and maize yield
(left panels) and ⌃KDD and maize yield (right panels). The coe�cient of correlation used is the
Pearson correlation coe�cient, computed using the linregress function from the Python library
scipy.stats.
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Figure 2.9: Soybean yield and heat stress. Correlation between number of hot days and soybean
yield (left panels) and ⌃KDD and soybean yield (right panels). The coe�cient of correlation used is
the Pearson correlation coe�cient, computed using the linregress function from the Python library
scipy.stats.
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Figure 2.10: Wheat yield and heat stress. Correlation between number of hot days and wheat yield
(left panels) and ⌃KDD and wheat yield (right panels). The coe�cient of correlation used is the
Pearson correlation coe�cient, computed using the linregress function from the Python library
scipy.stats.
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2.5 Discussion and conclusions

This chapter brings new perspectives to the large-scale analysis of crop production dynamics. The

concentration of crops in regions with above-average variability inflates production variability at the

global scale (Figure 2.3 and Table 2.5). Most of the global variation in maize production can be

attributed to the topmost producers, above all the USA; this concentration carries a substantial risk

because of the exceptionally high sensitivity of US maize yield to heat-related stress (Figure 2.8).

Soybean has shown the most significant structural changes of the three crops considered. However

the redistribution of soybean production, with increased in acreage in South America, did not reduce

global production variability – as Brazil and Argentina have shown comparable levels of variability in

production, and even greater variability in yield, than the USA. The contrasting responses to heat-

related stress of Brazil and Argentina nonetheless may alleviate the risk of crop failures induced by

climatic events. For wheat, production interannual variability is generally less contrasted in the top

most producers except for the Eastern Europe & Russia basket. The expansion of wheat cultivation

in China, with muted yield variability, has contributed to stabilizing production. India and Pakistan,

with low variability in both acreage and yield, represent a further potential to decrease systemic risk

to the global production of wheat.

Given their importance in the world supply, a drop in yield in one major basket can substantially

impact global production. Strong correlations between weather patterns and yield variations have

been identified in main producing regions. However I found no significant correlations in food-insecure

regions (mostly Africa), (Figures 2.8, 2.9 and 2.10). This does not mean there is no impact, but

suggests a more nuanced picture. More generally, the concentration of crop production in baskets

represents a risk mainly because of their weight in the world supply, while food-insecure regions

represent a risk because less productive areas are associated with higher risks of drought.

In order to maximise agricultural production, allocating cultivated areas to the highest-yielding re-

gions might seem to be a good strategy. In the context of climate change, however, the resulting

concentration of production increases the systemic risk for global food security. The results of this

chapter highlight the potential benefits of promoting yield and acreage stability over maximizing out-

put. This point is well illustrated by the case of the USA and Eastern European baskets, both of which

show high sensitivity to heat-related stress. East and South East Asia present significant potential for

“deconcentration” of this risk.
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Stock levels are an additional issue. Relative to global consumption, stock levels of major crops have

shown a downward trend. In 2012, the ratio of year-end stocks of wheat to global consumption was

3.5 months – down by half from 1961, with a downward trend of nearly one day of stock resilience

lost every year between 1961 and 2012 (FAOSTAT (2016)). Declining stocks, relative to consumption,

imply decreasing resilience in the global food system even in the absence of climate change.

Given current trends in production versus demand, diets, and concentration of production, there is a

need to improve the resilience of global agriculture and address its main vulnerability, which is climate

change (Ray et al. 2015, Porter et al. 2019). I have drawn attention to the potential gain in resilience

through producing more food on a smaller area, which can be achieved by closing yield gaps. Results

presented in this chapter also suggest the possibility of increasing resilience by diversifying the regions

where major crops are grown.

A few limitations relating to methodological and theoretical choices made in this chapter should be

noted.

The first limitation concerns the choice of the measure of instability. Variance and standard deviation

are commonly used metrics to quantify risk in production (Ben-Ari & Makowski 2014, Ben-Ari et al.

2016). In the present application standard deviation is used to quantify deviation from a trend; its

meaning is therefore contingent, to some extent, on the method used for detrending. There are many

alternative ways to fit a trend (Calderini & Slafer 1998, Iizumi et al. 2013, 2014, Licker et al. 2013,

Ben-Ari & Makowski 2014), each with its advantages and disadvantages. On the other hand, some

studies have indicated that measures of instability or volatility are relatively insensitive to the choice

of detrending method (Ben-Ari & Makowski 2014, Ben-Ari et al. 2016, Cernay et al. 2015). This topic

is treated in greater depth in Chapter 4 where I use an ensemble of time-series models to identify and

quantify “shocks” in production, yield and area.

The second limitation concerns the choice of a common critical temperature threshold of 32�C (Tkdd

as defined in section 2.2.2) for all regions and crops. A review of the literature on temperature

stress e↵ects on maize, soybean and wheat revealed a wide range of cardinal temperatures (that

is, the optimal temperature for crop growth, and the low- and high-temperature thresholds beyond

which negative impacts are seen), as well as the critical temperatures for severe damage (Porter &

Gawith 1999). Variation in all of these quantities is to be expected among crop varieties, and with

agronomic practices (for example, irrigation to support plant growth during periods of superoptimal
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temperatures). Even the critical temperature Tkdd is not constant in reality. The literature supplies

values ranging from 30� to 35�C for maize, 31� to 34�C for soybean, and 31� to 36�C for wheat

(Hesketh et al. 1973, Porter & Gawith 1999, Egli et al. 2005, Schlenker & Roberts 2006, Setiyono

et al. 2007, Cai et al. 2009, Abendroth et al. 2011, Butler & Huybers 2013, 2015, Gourdji et al. 2013,

Asseng et al. 2015, Teixeira et al. 2013, Sánchez et al. 2014, Chavez et al. 2015), thus providing no

evidential basis for the use of di↵erent values for di↵erent crops. Information about the temperature

tolerances of some specific cultivars exists, but by no means all, and in any case there is no global

data source on which cultivars are grown in which areas. Therefore, the pragmatic decision was made

to use a generic value of 32�C for Tkdd, being in the mid-range of published values for all three crops.

It is possible that some of the apparent variation across regions in crop responses to nHotDays and

KDD may be due to variations in Tkdd that could not be accounted for in this analysis.

The final limitation noted here concerns the summation of KDD over an annual period. This is a sim-

plification, but it works on the premise that in spite of the heterogeneity in the crop calendar, growing

phases are aligned to the seasons. Therefore, roughly speaking, crops will face similar temperatures

across the di↵erent development phases, and stresses during the same phases. Heat stress, for example,

is more likely to occur after the vegetative growth phase and in the reproductive development phase;

suboptimal temperatures are most likely to be encountered during the early vegetative growth phase.

In conclusion: I have shown that the concentration of risk in limited regions (baskets) increases

the exposure of the global food supply chain to production shocks, and implies an avoidably large

sensitivity to climate change. I focused on heat stress as this is the most obvious risk to crop production

in currently planted areas subject to a warming climate. In the next chapter I analyse the sensitivity

of major crops to a more complete set of agroclimatic variables, including water stress variables.

2.6 Supplementary information
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C EU E EU & RUS

EGY

TUR

IND & PAK CHN

SE AUS
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Figure 2.11: Maps of baskets for maize (a), soybean (b) and wheat (c). Baskets computed using
the same bounding box share the same colour, with the exception of Europe, where a di↵erent color
scheme is used to better distinguish baskets that are close neighbours or when their contours intersect
(but not overlap by definition).
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Bounding box Basket short name Basket long name

Maize
North America USA United States of America
North America MEX Mexico
South America BRA Brazil
South America ARG Argentina
Europe C EU Central Europe
Europe E EU & UKR Eastern Europe and Ukraine
Africa S AFR South Africa
Africa E AFR East Africa
Africa W AFR West Africa
Asia CHN China
Asia IDN Indonesia

Soybean
North America USA United States of America
South America ARG Argentina
South America S BRA South Brazil
South America C BRA Central Brazil
India IND India
Asia NE CHN North East China
Asia E CHN Eastern China

Wheat
North America N USA & CAN Northern United States and Canada
North America CS USA Central United States of America
South America ARG Argentina
Europe C EU Central Europe
Europe E EU & RUS Eastern Europe and Russia
Europe TUR Turkey
Africa EGY Egypt
India IND & PAK India and Pakistan
Asia CHN China
Australia SE AUS South Eastern Australia

Table 2.2: Baskets: bounding boxes (used in the regionalization method), short names (as used in the
Tables and Figures) and long names.
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Figure 2.12: Levels and trends in area of maize, soybean and wheat (top to bottom) from 1961 to
2012 in the main producing areas (baskets).
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Figure 2.13: Levels and trends in yield of maize, soybean and wheat (top to bottom) from 1961 to
2012 in the main producing areas (baskets).
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Figure 2.14: Temporal evolution of the global (all baskets) production, harvested area and yield
between 1961 and 2012 for maize, soybean and wheat.
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Table 2.6: Fligner Killeen pairwise tests for homogeneity of group variances for maize production
(Figure 2.3).

Baskets Fligner Killeen

Basket (1) Basket (2) p–value Is di↵erent

USA MEX 0.00 TRUE

USA BRA 0.00 TRUE

USA ARG 0.00 TRUE

USA EU C 0.00 TRUE

USA EU E & UKR 0.00 TRUE

USA AFR S 0.00 TRUE

USA AFR E 0.00 TRUE

USA AFR W 0.00 TRUE

USA CHN 0.00 TRUE

USA IDN 0.00 TRUE

MEX BRA 0.00 TRUE

MEX ARG 0.07 FALSE

MEX EU C 0.04 TRUE

MEX EU E & UKR 0.00 TRUE

MEX AFR S 0.00 TRUE

MEX AFR E 0.00 TRUE

MEX AFR W 0.15 FALSE

MEX CHN 0.00 TRUE

MEX IDN 0.00 TRUE

BRA ARG 0.08 FALSE

BRA EU C 0.04 TRUE

BRA EU E & UKR 0.10 FALSE

BRA AFR S 0.21 FALSE

BRA AFR E 0.00 TRUE

BRA AFR W 0.00 TRUE
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Table 2.6: Fligner Killeen pairwise tests (continued)

Basket (1) Basket (2) p–value Is di↵erent

BRA CHN 0.00 TRUE

BRA IDN 0.00 TRUE

ARG EU C 0.76 FALSE

ARG EU E & UKR 0.00 TRUE

ARG AFR S 0.60 FALSE

ARG AFR E 0.00 TRUE

ARG AFR W 0.00 TRUE

ARG CHN 0.00 TRUE

ARG IDN 0.00 TRUE

EU C EU E & UKR 0.00 TRUE

EU C AFR S 0.31 FALSE

EU C AFR E 0.00 TRUE

EU C AFR W 0.00 TRUE

EU C CHN 0.00 TRUE

EU C IDN 0.00 TRUE

EU E & UKR AFR S 0.01 TRUE

EU E & UKR AFR E 0.00 TRUE

EU E & UKR AFR W 0.00 TRUE

EU E & UKR CHN 0.02 TRUE

EU E & UKR IDN 0.00 TRUE

AFR S AFR E 0.00 TRUE

AFR S AFR W 0.00 TRUE

AFR S CHN 0.00 TRUE

AFR S IDN 0.00 TRUE

AFR E AFR W 0.01 TRUE

AFR E CHN 0.00 TRUE

AFR E IDN 0.42 FALSE
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Table 2.6: Fligner Killeen pairwise tests (continued)

Basket (1) Basket (2) p–value Is di↵erent

AFR W CHN 0.00 TRUE

AFR W IDN 0.00 TRUE

CHN IDN 0.00 TRUE

R2 R2-adj intercept intercept.pval y.mean y.mean.pval

Maize
production 0.985 0.984 183682.6361 0.504 0.1332 0.000
harvested area 0.709 0.677 210035.0154 0.039 0.0487 0.001
yield 0.583 0.537 0.0667 0.512 0.0879 0.006

Soybean
production 0.814 0.776 644098.3180 0.135 0.0983 0.005
harvested area 0.645 0.574 240049.8716 0.127 0.0539 0.030
yield 0.190 0.028 0.1083 0.267 0.0534 0.328

Wheat
production 0.648 0.604 797667.2519 0.365 0.0911 0.005
harvested area 0.349 0.268 291232.0267 0.220 0.0356 0.072
yield 0.031 -0.090 0.2248 0.026 0.0138 0.627

Table 2.7: Summary statistics for the correlation between the mean production (or harvested area, or
yield) per basket and the interannual variability in production (or harvested area, or yield).
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Variable Correlation p–value

Maize
Dim1 (++)(+)A 0.950 0.000

(+-)(-)A 0.844 0.001
(+-)(+)Y -0.634 0.036
(+-)(-)Y -0.779 0.005
(++)(+)Y -0.813 0.002

Dim2 (–)(-)Y -0.724 0.012

Soybean
Dim1 (+-)(+)Y 0.986 0.000

(–)(-)A 0.928 0.003
(+-)(-)A 0.857 0.014
(++)(+)A -0.885 0.008

Dim2 (++)(+)Y 0.928 0.003

Wheat
Dim1 (++)(+)Y 0.897 0.000

(+-)(-)Y 0.703 0.023
(++)(+)A -0.839 0.002
(+-)(-)A -0.852 0.002

Dim2 (–)(-)A -0.686 0.029
(–)(-)Y -0.804 0.005

Table 2.8: PCA, correlations variables - dimensions.
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contribution cos2

Individuals Dim 1 Dim 2 Dim 1 Dim 2

Maize
USA 4.324 1.011 0.365 0.016
MEX 3.367 1.166 0.384 0.024
BRA 0.005 1.530 0.003 0.145
ARG 0.043 33.947 0.005 0.729
EU C 2.270 0.418 0.490 0.016
EU E & UKR 0.767 7.185 0.177 0.302
AFR S 8.756 0.000 0.880 0.000
AFR E 4.566 36.122 0.341 0.490
AFR W 0.647 6.404 0.125 0.225
CHN 0.494 0.021 0.061 0.000
IDN 65.671 3.105 0.980 0.008

Soybean
USA 1.238 15.840 0.121 0.413
ARG 6.894 13.759 0.536 0.287
BRA S 3.791 10.824 0.490 0.374
BRA C 9.904 22.282 0.452 0.273
IND 12.091 8.986 0.607 0.121
CHN NE 18.938 13.815 0.789 0.154
CHN E 32.858 0.208 0.941 0.002

Wheat
US N & CAN 0.000 2.966 0.000 0.447
USA CS 5.867 13.258 0.469 0.418
ARG 17.877 0.004 0.814 0.000
EU C 0.206 2.005 0.027 0.105
EU E & RUS 0.000 20.254 0.000 0.868
TUR 13.571 0.390 0.649 0.007
EGY 30.761 21.112 0.776 0.210
IND & PAK 8.281 12.654 0.336 0.202
CHN 5.570 15.214 0.332 0.357
AUS SE 7.867 2.143 0.652 0.070

Table 2.9: PCA, contribution and cos2 (in percentage) of the individuals (baskets) to the first and
second principal components.
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contribution cos2

Variable Dim 1 Dim 2 Dim 1 Dim 2

Maize
(++)(+)A 45.068 5.722 26.345 0.608
(++)(+)Y 12.978 3.555 7.586 0.378
(+-)(+)A 2.065 5.409 1.207 0.575
(+-)(+)Y 3.139 5.998 1.835 0.638
(+-)(-)A 19.677 0.056 11.503 0.006
(+-)(-)Y 13.036 29.466 7.620 3.132
(–)(-)A 1.031 17.950 0.603 1.908
(–)(-)Y 3.006 31.844 1.757 3.385

Soybean
(++)(+)A 33.451 11.018 19.497 1.720
(++)(+)Y 1.525 43.069 0.889 6.724
(+-)(+)A 10.861 15.553 6.331 2.428
(+-)(+)Y 18.829 0.103 10.974 0.016
(+-)(-)A 11.102 8.426 6.471 1.315
(+-)(-)Y 7.116 21.306 4.147 3.326
(–)(-)A 12.169 0.274 7.093 0.043
(–)(-)Y 4.946 0.251 2.883 0.039

Wheat
(++)(+)A 27.974 23.887 10.299 3.464
(++)(+)Y 35.548 6.270 13.087 0.909
(+-)(+)A 4.193 0.892 1.544 0.129
(+-)(+)Y 8.691 12.267 3.200 1.779
(+-)(-)A 9.317 0.185 3.430 0.027
(+-)(-)Y 6.029 0.791 2.220 0.115
(–)(-)A 6.049 23.219 2.227 3.367
(–)(-)Y 2.199 32.489 0.810 4.711

Table 2.10: PCA, contribution and cos2 (in percentage) of the variables (leverages) to the first and
second principal components.
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Figure 2.15: Spatio-temporal evolution of the distributions of production in % of the total global
production among baskets between 1961 and 2012 for maize, soybean and wheat.



Chapter 3

Yield variations and climate

Abstract

It is important to understand better how continuing climate change is likely to influence regional

and global agricultural production. The analysis presented in this chapter is based on the evidence

for actual climate impacts contained in historical time series. It makes use of “plant-centred” vari-

ables (agroclimatic indices) that have been widely used in the analysis of yield-climate relationships.

Calculated from standard meteorological measurements, these are used because they relate to specific

aspects of the environment that influence plant growth. Values of these indices for the main producing

areas (baskets) of maize, soybean and wheat were input to a machine learning model (the Gradient

Boost Machine, GBM) in order to quantify how the regional production of these crops has been af-

fected by climate variations and trends. Functional forms of the crop responses to each variable were

derived from the fitted GBM models to assess regional changes in yield, the climatic sensitivity of

yield, and the risks to agricultural production during the overlapping periods 1979–1999 and 1992–

2012. This analysis revealed strong regional contrasts in the responses of each crop to di↵erent aspects

of climate. Cumulative measures of stress (such as temporal sums of sub- or super-optimal tempera-

tures) emerged as stronger predictors of yield than measures of either the duration or the frequency of

stress events. Measures related to temperature dominated over measures related to water availability.

At the global scale, the impact of three key variables – the sum of killing degree days, the deficit in

growing degree days, and the precipitation sum – on yield was reduced compared to the impacts seen

in specific regions, indicating a degree of bu↵ering due to the di↵erent climatic patterns, and crop

responses, shown by individual regions. Together with global increases in planted area, this bu↵ering

73
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helped to limit production losses. Nonetheless, continuing climate change carries risks, which could be

mitigated by adaptation (including varietal selection and agricultural practices) in major producing

areas and potentially also by re-distribution of the production areas for di↵erent crops.

3.1 Introduction

Contemporary climate change entails global warming (observed and projected increases in mean tem-

peratures, which also imply increasing frequency of high-temperature extremes) and changes in precip-

itation regimes which, in many regions, include both increases in the incidence of intense precipitation

events and increases in the duration and intensity of droughts (Berg et al. 2013, Lobell et al. 2014).

The e↵ects of high temperatures, especially, have been a focus of much agroclimatic research, because

it is well established that extremely high air temperatures can adversely a↵ect plant development and

ultimately crop yield. On the other hand, there appears to be a bias in the recent literature, with

a strong emphasis on these adverse high-temperature impacts and much less on other dimensions of

climate impacts, including the potential alleviation of low-temperature inhibition of crop growth, and

the potential adverse impacts of both heavy rainfall and drought (Schlenker & Roberts 2009, Lobell,

Bänziger, Magorokosho & Vivek 2011, Hussain et al. 2018).

“Stationarity” is the hypothesis that the distribution of a variable holds over time and hence that

the past is a good predictor of the future. A growing body of literature agrees that “stationarity is

dead” (Milly et al. 2008) due to climate change during the past few decades. The most important

causes of recent climate change are anthropogenic, with greenhouse gas increases (due to fossil fuel

burning above all) being the dominant driver at a large scale, but with additional local influences

due to expanding cities and the resulting expansion of the heat-island e↵ect, irrigation, agricultural

expansion (especially when accompanied by deforestation) and reforestation. Meanwhile interannual

variability continues, and introduces a large element of unpredictability. Climate is characterized by

probability distributions of climate variables, and climate change implies that these distributions shift

over time. Changes in the frequency and magnitude of extreme weather events are thus an unavoidable

consequence of climate change, giving rise to concerns about the vulnerability of agricultural systems,

and of society more broadly.

A key point about extreme events, well established in the literature, is that an increase in low-

probability events can have greater impacts than the change in the mean (Hansen et al. 2012). The
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events themselves also become more extreme, and are often described by superlatives – for example the

Horn of Africa in 2011 experienced its “worst” drought in sixty years, Russia in 2010 experienced its

“hottest” summer since 1500, and so on. Figure 3.1 illustrates the link between an observed positive

mean shift in European summer temperatures and the occurrence of “hottest” events. Coumou &

Rahmstorf (2012) nonetheless showed an incomplete picture by (a) emphasizing mid-latitude regions;

(b) not focusing on the main areas of production; and (c) highlighting record-breaking events rather

than the exceedance of thresholds, which is more relevant for most climate impacts. More generally,

despite a voluminous literature, many studies focusing on global climate-change impacts on crops

su↵er from biases towards high-temperature e↵ects, and towards the USA in particular (Schlenker &

Roberts 2006, 2009, Cai et al. 2009, Ummenhofer et al. 2015, Butler & Huybers 2013, 2015, Lobell

et al. 2014, Tigchelaar et al. 2018).

This work aims to bridge a gap in the literature by performing a data-driven global analysis on maize,

soybean and wheat, and quantifying the influence of several agroclimatic variables, relating to di↵erent

aspects of climate, on the weather-driven risks of production loss. In a previous chapter (Chapter 2) I

noted the remarkable regional heterogeneity of crop responses to the sum of killing degree days. Here

I expand that analysis by considering more indices, and screening them for their importance in the

determination of crop yields.

3.2 Material and methods

3.2.1 Datasets

The Gradient Boosting Machines (GBM) was used to analyse the controls on crop yield empirically,

without pre-defining any specific functional forms for these controls. As input to the GBM models,

I have relied on the same datasets described and used in Chapter 2. The crop data come from

global gridded datasets of maize, soybean and wheat production, yield and harvested area with a grid

resolution of five arc minutes, spanning the period 1961 to 2012, and with a temporal resolution of one

year, obtained from the University of Minnesota's Institute on the Environment, Global Landscape

Initiative (Chapter 2, Section 2.2.1). The climate data were obtained from the WATCH-WFDEI

(WFD) climate dataset (Harding et al. 2011, Weedon et al. 2014) which covers the global land area on

a 0.5�grid, with three-hourly temporal resolution spanning the period from 1979 to 2012. From this
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Figure 3.1: Distribution of European summer temperature anomalies between 1500 and 2010. The
upper panel displays the distribution of European (35� N, 70� N; 25� W, 40�) summer temperatures
anomalies during the period 1500–2010 (anomalies relative to a base climatology 1970–1999). The
black line is a Gaussian fit to the histogram in grey. The vertical blue and red lines represent the
temperature anomalies for each year between 1500 and 2010. The lower panel displays the ”running
decadal frequency” of summer temperatures above the 95th percentile, smoothed over a period of ten
years. Extracted from Coumou & Rahmstorf (2012).
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dataset I extracted Tmax,d (the maximum daily temperature on day d), Tmin,d (the minimum daily

temperature on day d) and PPTd (the sum of daily precipitation on day d).

3.2.2 Regionalization

The analysis was performed on the crop baskets as defined in Chapter 2 (Section 2.2.3). Although some

research has shown that irrigation can significantly lower crops' sensitivity to temperature (Butler &

Huybers 2013, 2015), I do not exclude irrigated areas from this analysis, due to lack of data. My

aim is rather to characterize the main e↵ective climate controls in the di↵erent baskets, implicitly

taking into account agricultural practices (including irrigation) and thus providing an appropriate

characterization of risks in the real world.

3.2.3 Agroclimatic variables

The cumulative sum of growing degree days (⌃GDD) correlates with the developmental phases of a

crop (Ritchie & Nesmith 1991, Miller et al. 2001, Parthasarathi et al. 2013). This agroclimatic variable

is used as a proxy for the favourable impact of temperatures on crop production and ultimately yield.

I define GDD on day d as,

GDDd =
T ⇤
min,d + T ⇤

max,d

2
� Tlow (3.1)

where,

T ⇤
max,d =

8
>>>><

>>>>:

Tmax,d if Tlow < Tmax,d < Thigh

Tlow if Tmax,d  Tlow

Thigh if Tmax,d � Thigh

(3.2)

T ⇤
min,d =

8
>>>><

>>>>:

Tmin,d if Tlow < Tmin,d < Thigh

Tlow if Tmin,d  Tlow

Thigh if Tmin,d � Thigh

(3.3)

where Thigh and Tlow are the minimum and maximum temperature thresholds beyond which crop
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growth will be adversely impacted.

The deficit of growing degree days (dGDD) quantifies the accumulation of GDD below a set threshold

during a given time window. In the present study I have used an annual time window. I have also

experimented with defining separate phenological and cropping phases, but this added complexity did

not add substantially to the analysis and is not reported here. In each grid cell, the threshold GDD90

is the 90th percentile of the historical distribution of ⌃GDD during the period 1979–2012. dGDD is

then defined as:

dGDD = GDD90 �
365X

d=1

GDDd (3.4)

To quantify damage due to suboptimal and superoptimal temperatures, respectively, I use two vari-

ables: the sum of freezing degree days (⌃FDD) and the sum of killing degree days (⌃KDD). On day

d, I define FDD and KDD as:

FDDd =

8
><

>:

Tfdd � Tmin,d if Tmin,d < Tfdd

0 if Tmin,d � Tfdd

(3.5)

KDDd =

8
><

>:

Tmax,d � Tkdd if Tmax,d > Tkdd

0 if Tmax,d  Tkdd

(3.6)

where Tfdd and Tkdd are the temperature thresholds for freezing degree days and killing degree days

respectively. ⌃FDD is then obtained by summing daily values (FDDd) over the year, and similarly

for ⌃KDD. I set Tlow and Thigh to 9�C and 29�C according to values found in the literature, which

range form 2�C to 10�C and from 29�C to 35�C, respectively (Hesketh et al. 1973, Porter & Gawith

1999, Egli et al. 2005, Schlenker & Roberts 2006, Setiyono et al. 2007, Cai et al. 2009, Abendroth

et al. 2011, Butler & Huybers 2013, 2015, Gourdji et al. 2013, Asseng et al. 2015, Teixeira et al. 2013,

Sánchez et al. 2014, Chavez et al. 2015, Tigchelaar et al. 2018). I applied a threshold of 8�C for Tfdd

and 32�C for Tkdd, both in the mid-range of values in the literature, which range from 2�C to 9� for

Tfdd and from 31�C to 36�C for Tkdd.

In reality, crops' threshold temperatures for damage depend on genotype. However, even for the

same crop in the same region, there are debates in the literature about the most accurate values of
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these thresholds, and there is no global information on the distribution of genotypes with di↵erent

temperature responses. For this reason, and as discussed in Chapter 2 (Section 2.5), there is no

evidential basis for varying these thresholds between crops or between regions. The values chosen for

high-temperature thresholds are consistent with the observation that mild heat stress begins at around

30�C, progressing to enzyme inhibition and even irreversible damage to photosystems above about

42�C (Salvucci & Crafts-Brandner 2004). Low-temperature thresholds were chosen using similar logic.

High or low temperatures are not the only causes of crop damage. The duration and frequency of

stress can also have an major impact on the final yield. For example, several days at 8�C during

the emergence of maize can have more impact than a single night at < 0�C (Strigens et al. 2013).

To analyse the impact of stress frequency and duration I have used the following measures: the

length of heat waves (lHeatWaves), the number of heat waves (nHeatWaves), the length of cold waves

(lColdWaves) and the number of cold waves (nColdWaves). Heat waves are defined by the number of

consecutive days where Tmax,d � Tkdd. Cold waves are defined by the number of consecutive days

when Tmin,d  Tfdd.

The precipitation deficit (dPPT) quantifies the deficit in total (accumulated) precipitation with respect

to a threshold during a set time window. dPPT is defined analogously to dGDD:

dPPT = PPT90 �
365X

d=1

PPTd (3.7)

To quantify the stress due to the lack or excess of precipitation, as well as the duration and frequency

of such stresses, I have defined the following metrics: the length of dry and wet series (lDrySeries,

lWetSeries) and the number of dry and wet series (nDrySries, nWetSeries). Wet and dry series are

defined analogously to heatwaves and coldwaves. Dry series are consecutive days where PPTd < 1mm;

wet series are consecutive days where PPTd � 1mm. The number of wet and dry series is computed

over a fixed time window of one year.
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3.2.4 Modelling of the responses to climate variables

The Gradient Boosting Machine

Responses to climate variables were modelled using Generalized Boosted Models, using an improve-

ment of Friedman's gradient boosting machine (GBM) (Friedman 2001, 2002) and Freund and Schapire's

adaboost algorithm (Schapire 2013, Natekin & Knoll 2013), implemented in the R package gbm.

Gradient boosting is a tree-based machine learning approach, conceptually similar to random forests.

The method belongs to the broad class of non-parametric regression and classification models, appro-

priate for determining the most e↵ective ensemble of predictors of a given response variable without

requiring any prior assumptions about the shape of the functional relationships, or the distribution of

errors. Explanatory (predictor) variables are classified as a function of their “link” (predictive impor-

tance) with respect to the response variable. The main di↵erences with more traditional tree-based

ensemble methods, such as random forests, lies in the strategy used to build the ensemble. The random

forest approach relies on the averaging of independent trees over the ensemble. The GBM approach

builds an ensemble of many successive “weak trees” so that each tree learns from previous trees. At

each iteration, a newly spawned tree will learn from the errors of the whole previous ensemble and

be sequentially added to that ensemble, progressively boosting the accuracy of the estimate of the

response variable.

The downside of the extreme flexibility provided by GBMs is the challenge of identifying optimal

values for the so-called “hyperparameters”, of which the most important are (a) the number of trees

to fit, (b) the depth of the trees, (c) the rate of learning and (d) sampling and subsampling. GBMs

are computationally expensive and cannot easily be optimized by hand. Instead, a grid search method

is used to find the optimum set of parameters. Parameter ranges and sampling intervals are defined

initially; the model is then computed for every possible combination of values. The optimum parameter

set is the one that yields the lowest root mean squared error of prediction (RMSE) in the response

variable.

Variable importance

To identify the variables having the greatest influence on yield and assess their predictive power, I

computed two importance measures: relative influence and permutation importance. Relative influence



3.2. Material and methods 81

measures the total averaged improvement provided by a variable across all the trees where the variable

is present. The larger the gain (decrease in RMSE), the greater the relative influence of the variable.

Permutation accuracy is computed as follows. For each tree, the Out of Bag (OOB) sample is run

down the tree and the accuracy of the prediction is stored. A random permutation of the values of

each variable is then performed and the prediction accuracy is re-computed iteratively. The resulting

decrease in prediction accuracy is averaged over the trees for each variable in the model. The greater

the decrease in accuracy (increase in RMSE), the more important the variable is considered to be

(Friedman et al. 2001, Breiman 2001).

Partial dependence plots and conditional expectation

Partial dependence plots (PDPs) and individual conditional expectation (ICE) curves provide a frame-

work for the interpretation of changes in the response variable as a function of the predictor variables.

PDPs depict the average change in the response variable as a function of a given predictor varying

over its marginal distribution, while other predictors are fixed at their mean values. Because PDPs

plot an average, their main disadvantage is that they do not reveal interactions between explanatory

variables, and therefore they can potentially hide heterogeneous relationships. ICE plots, by contrast,

visualize the functional dependence of the response variable on the predictor variables for each ob-

servation separately. The advantage of the more complex ICE plots, as used here, is that they can

display heterogeneous relationships, including alternative response “regimes” if they exist.

Functional forms of the responses

Using kernel regressions and Mahalanobis distances on ICE data, I excluded some of the instances,

considered to be outliers, from the response function in order to model the functional response of

yield as a function of each predictor variable. Linear functional forms were fitted using ordinary least-

squares (OLS) regression implemented with the lm package in R. Non-linear functional forms were

fitted using nonlinear least-squares regression implemented with the nls package in R. The adopted

general form of the exponential decay function was:

f(x) = a ⇤ (bx � 1) (3.8)
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where a and b are parameters controlling the curvature and decay of the function. I found a to be

approximately equal to the mean value of the response variable (the yield) at the mean of the marginal

distribution of the predictor variable. The adopted general form of the logistic function was:

f(x) =
L

1 + exp�k⇤(x�x0)
(3.9)

where x0 is the midpoint of the sigmoid curve, L is the maximum value, and k is the logistic growth

rate. The adopted general form of the inverted sigmoid function was:

f(x) = �a ⇤
✓

(xb )
c

1 + (xb )
c

◆
(3.10)

with a the maximum loss, b the mean of the marginal distribution of the predictor variable, and c

the shape parameter. Optimum functions were estimated using Generalized Additive Models (GAMs)

using the R function gam.

3.2.5 Distributions of agroclimatic variables

Distributions of agroclimatic variables were estimated using density histograms for the periods 1979–

1999 and 1992–2012, using the R function hist. The bandwidth BW or bin size was estimated

according to the formula:

BW = min

 
max(x)�min(x)

2 ⇤ (1 + log(n))
,
max(x)�min(x)

2⇤IQR(x)
n�1/3

!
(3.11)

where n is the number of observations for the climate variable, max(x) and min(x) the maximum and

minimum values of x, and IQR the interquartile range. The first formula is one of the many “rules of

thumb” for the optimization of bins in a histogram; the second is the Freedman-Diaconis rule. I used

a mixture of rules, as the Freedman-Diaconis rule overestimated the bin size for gamma distributions

with a short range, while the first formula underestimated the bin size for normal distributions with

a large range.

Climate data show a global warming trend during the past 150 years (Jones et al. 1999); this warming

has been accompanied by an increased incidence of heatwaves (Rahmstorf & Coumou 2011, Hunt-
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ingford et al. 2013). Extensive discussion in the literature has concerned how methodological choices

such as the normalization procedure, the choice of a baseline time period, and the length of the time

period chosen to compute the distributions of anomalies influence estimates of the amount of climate

change that has occurred, as well as the significance of any increase in climate variability. Huntingford

et al. (2013) for example showed that normalizing temperature anomalies, and choosing the baseline

for normalization as pre-1980, creates a biased impression of larger overall increases in both mean

temperatures anomalies and their variability. To avoid some of these problems, I adopted a simple

approach for my main analysis, contrasting two periods each of 20 years' duration (in order to allow

a su�cient sample size within each period) with a small overlap.

3.2.6 Expected yield impact

I define the expected yield impact E(y) of a given climate variable K with bounds Kmin and Kmax,

for the climatology Ci with bounds Ci,min and Ci,max as:

E(y)K =

Z Kmax

Kmin

f(x)dx ⇥
Z Kmax

Kmin

h(x)dx (3.12)

where f(x) is the functional form of the response and h(x) is the density distribution of the climate

variable K.

3.3 Results

3.3.1 Heterogeneity of crop responses to climate: an overview

Tables 3.1, 3.2 and 3.3 present the most important agroclimatic variables influencing the yield of each

crop, in each basket. The first row (blue) indicates the variable making the largest contribution to

the response. The colour intensity represents the percentage of its contribution in the GBM models.

Rows 2 and 3 also display the greatest contribution, but now split as a function of the influence of the

bioclimatic variable on the yield: variables inducing a loss are coloured red, and variables inducing a

gain are coloured green. The percentage contribution is also coded in the colour intensity. Rows 4 to

13 display these contributions as function of the marginal distributions (for di↵erent percentiles). The

contributions are weighted by the yield change, so that variables having a high contribution and a high
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impact on yield are distinguished from variables having a proportionally lower contribution, or a lower

impact on the yield. The results of Tables 3.1, 3.2 and 3.3 are extended by Figures 3.2a, 3.2b and

3.2c, which are heatmaps summarizing the contributions of each bioclimatic variable in each basket,

weighted by the median yield change (in mt/ha) and grouped by temperature and precipitation. The

colour coding is as in Tables 3.1, 3.2 and 3.3. Table 3.4 presents the results in an alternative way –

how frequently, across baskets, the variable is the most important – in order to detect the dominant

variable per crop across all baskets. Table 3.5 aggregates the results of Table 3.4 across crops and

baskets.

The importance of bioclimatic variables and the nature of their impacts on crop yields are shown to

be highly contrasted, both between baskets and between crops. One notable pattern is the importance

of the adverse impact of ⌃KDD on yield in the USA for both maize and soybean, consistent with the

large negative correlation shown in Chapter 2 (Section 2.4). The impact of ⌃KDD on these two crops,

in the USA in particular, has been a focal point in the literature and is often cited in order to highlight

the negative impact of a warming climate on crop yields (Muchow et al. 1990, Schlenker & Roberts

2006, 2009, Schlenker et al. 2013, Cai et al. 2009, Butler & Huybers 2013, 2015, Ummenhofer et al.

2015, Tigchelaar et al. 2018). But although the accumulation of extreme high temperatures induces

yield losses in most baskets for all three crops, the contribution of ⌃KDD and the resulting amplitude

of yield variations induced are far less for wheat and soybean, and even for maize in other regions,

than for maize in the USA.

Globally, deficits in growing degree days (dGDD) – which can be due to either suboptimal or super-

optimal temperatures – seems to be as important as a predictor of yield losses as ⌃KDD. In other

words, the occurrence of temperatures outside the optimum range generally matters as much as (if

not more than) the accumulation of extreme high temperatures. This is especially true for soybean

and wheat.

The conditions favouring particularly high yields are more complex. Accumulated precipitation has a

positive impact on yields up to the third quartile, after which increased precipitation (see for example

soybean in Eastern China) can induce losses. The length of dry series is shown to have a positive

e↵ect on maize yields in Mexico, Brazil and Argentina; the same variable stands out when considered

across baskets and crops. This counterintuitive result might be explained by the fact that dry spring

and summer days provide more solar radiation; while irrigation in some regions, and past precipitation

events (especially in soils with good water-holding capacity), may supply adequate moisture.
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Figure 3.2: Heatmaps of variable importance, based on the permutation importance for (a) maize, (b)
soybean and (c) wheat.
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imp imp.loss imp.gain imp.x.yield⇤ imp.x.loss⇤⇤ imp.x.gain⇤⇤⇤

Maize
dGDD 0.18 0.27 0.09 0.18
lDrySeries 0.09 0.27 0.18 0.27
lHeatWaves 0.09 0.09
nHotDays 0.18 0.09 0.18 0.09 0.18
⌃GDD 0.27 0.18 0.09 0.27 0.18 0.09
⌃KDD 0.27 0.36 0.09 0.36 0.45 0.09
⌃PPT 0.36 0.09 0.36

Soybean
dGDD 0.29 0.43 0.29 0.43
dPPT 0.14 0.14
lColdWaves 0.14 0.14
lDrySeries 0.14 0.14 0.14
lWetSeries 0.14 0.29
nDrySeries 0.14
nWetSeries 0.14
⌃FDD 0.14 0.14
⌃GDD 0.14 0.57 0.14
⌃KDD 0.29 0.29 0.29 0.29
⌃PPT 0.14 0.14 0.29

Wheat
dGDD 0.1 0.20 0.20 0.30
lColdWaves 0.10 0.10 0.10
lDrySeries 0.10 0.10
lHeatWaves 0.10 0.10 0.20
lWetSeries 0.10 0.10
nHotDays 0.10
⌃FDD 0.10 0.10 0.10
⌃GDD 0.4 0.30 0.10 0.30 0.30 0.10
⌃KDD 0.2 0.30 0.10
⌃PPT 0.3 0.10 0.40 0.30 0.10 0.40

⇤ variable importance weighed by yield at p75
⇤⇤ variable importance weighed by yield at p75 for variable variable associated with a yield loss
⇤⇤⇤ variable importance weighed by yield at p75 for variable variable associated with a yield gain

Table 3.4: Frequency of variable importance, based on the permutation importance, and associated
yield losses for each crop across all baskets.
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imp imp.loss imp.gain imp.x.yield⇤ imp.x.loss⇤⇤ imp.x.gain⇤⇤⇤

Temperature
dGDD 0.18 0.29 0.18 0.29
⌃KDD 0.25 0.32 0.04 0.21 0.29 0.04
⌃GDD 0.29 0.18 0.21 0.21 0.18 0.11
lHeatWaves 0.07 0.04 0.11
nHotDays 0.07 0.04 0.07 0.04 0.11
⌃FDD 0.04 0.07 0.04 0.04
lColdWaves 0.04 0.07 0.07

Precipitation
⌃PPT 0.14 0.07 0.29 0.11 0.07 0.36
dPPT 0.04 0.04
lDrySeries 0.04 0.18 0.11 0.18
nDrySeries 0.04
lWetSeries 0.07 0.11
nWetSeries 0.04

⇤ variable importance weighed by yield at p75
⇤⇤ variable importance weighed by yield at p75 for variable associated with a yield loss
⇤⇤⇤ variable importance weighed by yield at p75 for variable associated with a yield gain

Table 3.5: Frequency of variable importance, based on the permutation importance, and associated
yield losses across all crops and baskets.

3.3.2 Distributions and changes of the main climate variables in each region

This section characterizes the statistical distributions of weather data and their changes between 1979–

1999 and 1992–2012. I focus on the climate variables having the greatest importance for yield overall,

namely ⌃KDD, dGDD and ⌃PPT.

Sum of Killing Degree Days

I identified three families of distributions of ⌃KDD in the topmost baskets: gamma, normal, and mixed

normal. In the topmost maize baskets, the distributions of ⌃KDD all belong to the gamma family

with a shape parameter k = 1 (exponential distribution). Soybean and wheat baskets show a greater

heterogeneity, particularly in the shape parameter of the gamma distributions with k varying between

1, 2 (a negative skewed distribution with long tail), and k � 3 (a negatively skewed distribution,

approaching a normal distribution).

Three baskets show distinctive ⌃KDD distributions: Central Brazil soybean, India soybean, and India
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and Pakistan wheat. India and Central Brazil have a higher mean ⌃KDD per year compared to the

other soybean baskets, with 870 and 500 KDD per year respectively during 1992–2012, contrasting

with < 100 KDD elsewhere. Most importantly, in the topmost baskets and across crops, Brazil and

India show the largest increases in mean ⌃KDD between 1979–1999 and 1992–2012, by +86 and +37

KDD/year.

The baskets accounting for the largest share in the production of each crop generally have a low ⌃KDD

– except for India & Pakistan, and Central Brazil. The increase in mean ⌃KDD in these regions from

1979–1999 to 1992–2012, and the fact that crop production is being redistributed and concentrated in

the two areas (Chapter 2, Section 2.3.2), leads to a compounded increase in risk.

Between 1979—1999 and 1992—2012, there was an increase in mean ⌃KDD in 21 out of the 28 baskets

studied. The regions showing reductions in mean ⌃KDD are USA and Argentina. The largest positive

changes in mean ⌃KDD are observed in Eastern Europe, Ukraine and Russia, up by 84% for the wheat

baskets and 95% for the maize baskets. Aggregating across baskets for each crop, there has been an

increase in mean ⌃KDD for all three crops, with maize showing the lowest (+14 KDD) and soybean

the largest (+20 KDD) increase. There were also increases in the standard deviation of ⌃KDD, and

these were greatest for those regions showing the largest increase in mean ⌃KDD.

Sum of Growing Degree Days

Among the three variables investigated, dGDD shows the most significant changes from 1979–1999

to 1992–2012. All baskets saw a reduction in the mean dGDD during the two period compared.

North American and Argentinean baskets are the only exception to these changes, showing non-

significant changes in dGDD. All other baskets experienced a significant reduction of dGDD, roughly

35% from 1979–1999 to 1992–2012 (excluding USA and Argentina). Reductions in mean dGDD were

accompanied by noteworthy changes in the shape of the distributions: generally symmetric, normal

or platykurtic in 1979–1999, they become long-tailed and positively skewed in 1992–2012. Changes in

dGDD were driven by changes in both superoptimal and suboptimal temperatures. While there has

been an increase in mean ⌃KDD across crops and baskets, the reduction in dGDD has mainly been

driven by a reduction in the occurrence of suboptimal temperatures.

Table 3.5 shows that high dGDD has had a negative impact on crop yield as large as that of high

⌃KDD. Observed changes in the statistical distributions of bioclimate variables highlight the fact
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that a change in mean temperature implies not only increased high temperature extremes, but also a

reduction in the occurrence of low temperatures that are suboptimal for growth. The data also show

that increased precipitation and reduced dGDD have at least partially mitigated the negative e↵ects

of extreme high temperatures.

Sum of precipitations

The distributions observed for this variable (⌃PPT) are mainly normal distributions, or from the

gamma family with a shape parameter k � 2. The only exception is Egypt wheat (where k = 1),

characteristic of a very dry area. When considered across crops and baskets, there were no sub-

stantial changes in distribution shapes and family for ⌃PPT except in one region (Argentina) which

experienced a significant increase in precipitation between the two periods.

The mean ⌃PPT in maize and soybean baskets (1150 mm/year) is nearly twice that in wheat baskets

(610 mm/year). ⌃PPT also shows large di↵erences between baskets. The strongest drying trends (in

both absolute amount and percentage) occurred in the wheat baskets of India & Pakistan (–42mm)

and Egypt (-12%). Changes in other baskets were small (-4% to +4%). Mean precipitation increased

in 21 out of the 28 baskets. Maize shows the largest increase (+22 mm) on average across baskets,

contrasting with a slight increase (+4 mm) for soybean and wheat. Only the Central European basket

experienced a decrease in precipitation. The USA and Southern Brazil are of particular interest here.

In the USA, globally the largest producer of both maize and soybean, ⌃KDD has the highest (negative)

importance. But mean ⌃KDD in the USA decreased from 1979–1999 to 1992–2012, while mean ⌃PPT

increased. Southern Brazil, the second or third largest producer of soybean, by contrast experienced

an increase in ⌃KDD and a decrease in ⌃PPT; so in this region, the risks have increased, due to an

unfavourable change in the sign of both variables.

3.3.3 Regional contrasts in crop responses to climate

Figure 3.3 shows the main functional responses of crop yields to the agroclimatic variables studied.

The most prominent general result is the contrasting responses across regions to a given bioclimatic

variable for any given crop. Non-linear relationships of yields to temperatures and precipitation are

observed across baskets and across crops (Figure 3.3).
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Figure 3.3: Examples of the modelled functional forms of the crop responses to the main climate
variables for (from the top left to the bottom right), USA maize and ⌃KDD, Brazil maize and ⌃KDD,
South Africa maize and ⌃KDD, USA soybean and ⌃PPT, North East China soybean and ⌃PPT.
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Sum of Killing Degree Days

Yield responses to variation in ⌃KDD have varied between -4 and +4 mt/ha. Negative impacts

with the form of an exponential decay curve are characteristic in the topmost baskets, i.e. USA

and China (maize), USA (soybean), and EU and Russia (wheat). This result reinforces the point

previously developed in Chapter 2, that the risks of climate-related crop failure are concentrated

geographically. The nonlinearity of the observed functional responses provides additional information

about the sensitivity to extreme temperatures. The topmost baskets show a high sensitivity to ⌃KDD

in the first part of its distribution (below the median) and a low sensitivity in the second part of

the distribution. Taking USA maize as an example, the average sensitivity below the median is

�2.34⇥10�2 mt/ha/KDD, but only �3.0⇥10�3 mt/ha/KDD above the median. The main producers

are thus characterized by sensitivity to a slight increase in the occurrence of climate extremes, but

this response reaches a plateau at higher levels of ⌃KDD. Maize and soybean show a greater response

to ⌃KDD, as large as -4.0 mt/ha for maize and -1.5 mt/ha for soybean, in contrast with -0.5 to -0.8

mt/ha for wheat.

Sum of Growing Degree Days

Yield responses to dGDD show many similarities with the responses to ⌃KDD. Overall, there is a

negative e↵ect of the accumulation of dGDD across baskets and crops. The topmost baskets show a

predominance of nonlinear responses in Brazil and China (maize), USA and China (soybean), Central

EU and India & Pakistan (wheat) while linear responses are shown in the USA, EU and Ukraine for

maize and Southern Brazil for soybean. dGDD ranges with the highest sensitivity for crop yields di↵er

among the regions.

Precipitation Sums

Yield responses to ⌃PPT also vary among crops and regions. The main features of the observed

responses to ⌃PPT are (a) a generally positive e↵ect; (b) the existence of optimum functions; and

(c) low amplitudes, in the range from 0.5 to 2.0 mt/ha. The topmost baskets for maize and soybean

however display positive and logistic yield responses. Wheat yields in the topmost baskets contrast

with maize and soybean. Wheat yields are reduced in response to accumulated precipitation towards
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the high end of the distributions, above the third quartile. In China, remarkably, wheat yields show

an exponentially decaying yield response to accumulated precipitation.

3.3.4 Expected changes in yield and sensitivity

The previous sections identified the main variables influencing crop yields in the main baskets, and

modelled the functional responses of yield to the most important variables. I also analysed changes

in the statistical distributions of these variables between 1979–1999 and 1992–2012. Since I have

computed both a functional response and a change in statistical distributions, I can now compute the

expected impact of each climate variable and the resulting change in yield from one period to the

other. I can also investigate the change in sensitivity and estimate the total production at risk, via

weighting by acreage. For simplicity I take the average acreage in each basket.

Sum of Killing Degree Days

The largest expected loss in yield across climate variables and the main baskets results from ⌃KDD

and is achieved in the USA maize basket with an expected loss of 1.84 mt/ha during 1979–1999 and

1.73 mt/ha during 1992–2012. Expected losses due to ⌃KDD range between 0.14 and 1.84 mt/ha (SI,

Tables 3.6, 3.7 and 3.8). Maize shows the highest weighted average yield loss of the three crops across

regions of productions (–0.7 mt/ha) due to ⌃KDD. The expected impact of killing degree days in

the other two crops is less than half that observed in maize: soybean and wheat respectively showing

expected global yield losses of –0.22 and –0.06 mt/ha.

Of all the regions studied, the USA shows the greatest exposure to ⌃KDD with an expected production

loss of 36 million mt of maize, 2.5 million mt of wheat and 11.3 million metric tons of soybean per

year during the period 1992–2012. The cumulative expected production loss across the three crops in

China, the second region most at risk of ⌃KDD, is estimated to be 15.4 million mt, i.e. only 30% of

the loss expected in the USA. The USA is also the region with the highest sensitivity to KDD with a

sensitivity of nearly –400,000 mt/KDD for maize (–0.02 mt/ha/KDD), –117,000 mt/KDD for soybean

(–0.006 mt/ha/KDD), and –5,000 mt/KDD for wheat (–0.005 mt/ha/KDD). This contrasts with an

average sensitivity in the other baskets of –20,000 mt/KDD, –2500 mt/KDD and –17,000 mt/KDD

for maize, soybean and wheat respectively. The other baskets of interest with a high sensitivity to

⌃KDD are maize in China (–0.015 mt/ha/KDD) and wheat in Central Europe (–0.01 mt/ha/KDD).
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The global sensitivity of maize to KDD during 1992–2012 is estimated at –0.007 mt/ha/KDD, which

is more than three times the sensitivity of wheat and soybean during the same period, and up 14%

from 1979–1999. The global sensitivity of wheat remained stable at –0.002 mt/ha/KDD, while that

of soybean was down 23% from –0.003 mt/ha/KDD in 1979–1999.

When comparing the periods 1979–1999 and 1992–2012, maize once again displays the largest changes

in production at risk due to KDD. China shows the largest increase in loss with an extra 3 million mt

of maize per year estimated to be lost due to KDD in 1992–2012, up 34% from 1979–1999, despite the

29% increase in acreage. Changes in expected losses in the USA are estimated to be around –911,000

mt/year.

The third and fourth largest losses due to ⌃KDD are observed in the Eastern and Western Africa

maize baskets, with an incremental change of production loss of –1.3 and –1.5 million mt per year

respectively. Although not the major producers of maize, the incremental losses in these two regions

roughly equate to the incremental losses of China. The total production lost in the two baskets during

the period 1992–2012 was estimated to be of –9.6 million metric tons of maize, about 26% of what was

lost in the USA, on a third of the area and representing only 1.5% of the average global production

during 1992–2012.

A few baskets show a significant positive impact of ⌃KDD on expected yield: Central EU, Eastern

EU and Ukraine, South Africa for maize and Argentina, Southern Brazil, Central Brazil for soybean.

The three maize baskets have similar profiles with ⌃KDD distributions: gamma with k = 1, and a

low mean compared to the rest of the baskets. A plausible interpretation of the positive impact of

⌃KDD is that warmer years, associated with statistically more hot days, benefit the production of

maize in these areas. This does not mean that more KDD benefit the crops as the yield responses are

non-linear. Considering the Eastern EU and Ukraine response function and ⌃KDD distribution for

example, I observe a positive impact on yield up to the third quartile of the distribution of ⌃KDD and

a negative impact for the last quartile. The soybean baskets of Argentina and Southern Brazil have

many similarities with the maize cases described above: a lower mean in the distribution of ⌃KDD, a

positive impact up to the third quartile and a negative impact thereafter.

A short summary of these results is that there has been an overall increase in losses due to ⌃KDD

between 1979–1999 and 1992–2012. In the latter period, expected losses due to ⌃KDD reached 75

million mt per year. Losses in maize, soybean and wheat baskets accounted for respectively 75.5%,
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16% and 8.5% of this. Compared to the average world production, these losses represent 7.5%, 6.7%

and 1.1% respectively. Across crops, there has been an increase of the total amount of production

exposed to killing degree days and a concentration of this loss within the topmost baskets. Africa

is of particular interest because although not in the topmost baskets, Eastern and Western Africa

show massive losses in production due to ⌃KDD (SI, Table 3.6). These regions still have substantial

scope for yield gap reduction (Mueller et al. 2012, West et al. 2014). However, this analysis questions

at least the suitability of the maize varieties that are currently grown there, or perhaps even the

appropriateness of growing maize there, as opposed to more heat-tolerant crops.

Sum of Growing Degree Days

Deficits in growing degree days universally have a negative impact on crop yields. Compared to ⌃KDD

and ⌃PPT, the e↵ect of dGDD across crops and baskets is much more homogeneous. The deficit was

reduced from 1979–1999 to 1992–2012 in 93% of the baskets, driving an increase in crop yields.

Impacts of dGDD on expected crop yields range between -1.06 and +0.14 mt/ha for the period 1979–

1999, compared to a range of -1.57 to 0.013 mt/ha for the period 1992–2012. The weighted e↵ect on

crop yields across baskets, and weighted changes between 1979–1999 and 1992–2012, rank as follows:

(1) maize baskets at -0.41 mt/ha, up 25% from 1979–1999; (2) soybean baskets at -0.18 mt/ha up 35%

from 1979–1999; and (3) wheat baskets at -0.17 mt/ha, up 32% from 1979–1999. Maize also shows the

greatest sensitivity to dGDD with an average of –0.002 mt/ha/dGDD. The most sensitive baskets are

also the topmost producers, ranked in order of sensitivity: Brazil, Cental EU, China and the USA.

Four out of the 28 baskets studied show a positive impact of dGDD. Three are wheat (USA and

Canada, USA Centre South, South Eastern Australia). The positive impact is moderate and mainly

achieved in the lower part of the distributions of dGDD, below the median. Physiologically, wheat

requires some periods with relatively low temperatures (vernalization), and these three baskets have

smaller median dGDD than the others. Argentina soybean also shows a moderate response. Soybean

does not require periods with low temperatures, however, and I found a positive e↵ect of ⌃KDD and

negative e↵ect of low temperatures in the same basket, suggesting that what benefits the crop in the

basket are higher temperatures and fewer FDD (not shown).

During 1992–2012, the estimated loss of production due to dGDD wordwide was greatly reduced: by

16%, 6% and 32% for maize, soybean and wheat respectively. These losses represent about 5%, 10%
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and 2% of the global production of the three crops.

Sum of precipitation

The greatest expected gains in yield across baskets and crops were achieved in the USA maize basket

with +1.42 mt/ha; about 3.5 times the average gain in other maize baskets at +0.35 mt/ha during the

period 1992–2012. Soybeans and wheat expected yield gains due to cumulative precipitation at +0.2

mt/ha and +0.1 mt/ha respectively during the same period, down 18% and 6% from the previous

period.

Between 1979–1999 and 1992–2012, I find a 10% expected increase in maize yield due to precipitation

increase. Similarly to ⌃KDD, the largest gains in production are achieved in the North American

baskets and China for maize and soybean. In the case of wheat, the Eastern Europe and Russian

baskets both show a high sensitivity to precipitation and high expected production gains due to

precipitation. From 1992–2012 I find an expected average gain in production of +14.7 million mt/yr,

which is 2.5% of the average world production of wheat.

The absolute sensitivity of crop yields to precipitation, however, is an order of magnitude lower than

for ⌃KDD. The highest sensitivity is observed in the Eastern Europe Ukraine and Russian maize

and wheat baskets, with +0.002 mt/ha/mm. The topmost producers of maize and soybean show a

decrease in the expected sensitivity of yield to precipitation. Results for wheat are more nuanced, with

sensitivity increasing in some baskets (USA, India and Pakistan, Australia, Egypt) and decreasing in

others.

The globally positive e↵ect of precipitation on crop yields hides some regional contrasts. In South

Africa, precipitation has a significant negative e↵ect on maize yields (–2.2 mt/ha) while notably, in

the same region, ⌃KDD has a positive impact (+l mt/ha). Maize in South Africa is grown at above

1400 m altitude (Moeletsi 2017) and I can therefore hypothesize that increased precipitation in this

region is associated with mechanical crop damage, and decreased solar radiation due to cloud cover;

while hotter days (and KDD) have a positive impact due to increased solar radiation. Negative e↵ects

of precipitation and positive e↵ects of ⌃KDD are also observed for soybean in Argentina and Southern

Brazil. But the di↵erences in shapes of the yield responses functions to both ⌃PPT and ⌃KDD reveal

highly damaging e↵ects of both temperature and precipitation in these two baskets. A negative impact

of precipitation is also found in the India Pakistan and China wheat baskets. As wheat is sensitive
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to lodging (Berry & Spink 2012), it seems likely that this negative e↵ect is linked to mechanical crop

damage during intense precipitation events.

Overall, globally, precipitation has a positive e↵ect on crop yields, despite some regional deviations

described above. But the increase in mean precipitation between 1979–1999 and 1992–2012 only bene-

fited maize yields, not those of soybean and wheat, which showed reduced yields. The principal reason

is that the acreage of both soybean and wheat increased in regions where the e↵ect of precipitation

on yield is negative, while decreasing in regions where the e↵ect is positive. There are a couple of

regional exceptions to this pattern, however. In some areas an increase in yield outweighed the e↵ect of

a decrease in planted area, as exemplified by the Northern USA and Canada wheat basket. Globally,

increasing precipitation and acreage redistribution between 1979–1999 and 1992–2012 resulted in a

25% increase in the production of maize (about 8% of world production), a 17% increase in soybean

(about 6% of world production), and a 7% decrease in the production of wheat (about 2% of world

production).

3.4 Discussion and conclusions

There is widespread agreement about the particular sensitivity of crops to heat-related stress (Killing

Degree Days and heat waves) in the literature (Butler & Huybers 2015, Chavez et al. 2015, Tigchelaar

et al. 2018), but this is evidently an oversimplification. My analysis has shown that there is no single

model that would fit all countries and represent the diversity of responses shown in the data.

This chapter has expanded on the diversity of yield responses to heat stress noted in Chapter 2. The

GBM approach was used to identify the main climate controls; to model a functional response type

for each crop and basket; and to use the fitted models to assess the impact of climate change. The

results indicate the importance of cumulative stresses, including the accumulated e↵ects of suboptimal

temperatures (the main contributor to variation in dGDD) and precipitation as well as killing degree

days.

The analysis is simplified in the sense that I have not considered that some climate impacts may

be specific to phenological stages, with anthesis, silking, and grain filling often mentioned as critical

(Porter & Semenov 2005, Tao et al. 2006, Semenov 2007, Jones 2013). In exploratory work, however,

I investigated the impact of stresses during specific crop growth-calendar windows by computing the
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agroclimatic variables over planting, early growth, vegetative growth, flowering, drying, harvest stages,

seasons, and other possible divisions; but I found no clear pattern, and obtained very little additional

explanatory power relative to the increased number of parameters (SI, Tables 3.10 and 3.11).

The unusually high sensitivity of the USA baskets, and especially the US maize crop, to the sum of

killing degree days is confirmed in this chapter. Across crops and baskets, the response of all three crops

to superoptimal temperatures and precipitation variability is spatially heterogeneous. This finding

implies that the risks posed by climate change to the agricultural system remain extremely uncertain.

The change in dGDD between the time intervals considered, mainly caused by a reduction in the

incidence of sub-optimal temperatures, shows an important positive impact. E↵ects of precipitation

changes (increases in most regions) have been both positive and negative. In some regions, high

cumulative precipitation results in losses that may be due to physical damage to the crop, as well as

to a potential reduction of sunshine hours.

The combined e↵ects of climate (as expressed by the three most influential agroclimatic variables) on

the production and yield of all three crops show (a) reduced losses and increased gains of production

over time in most baskets, and reduced losses and increased gains of yield in nearly all baskets.

With growing-season temperatures rising, maize yields have been forecast to decline (Schlenker &

Roberts 2006, 2009, Schlenker & Lobell 2010, Lobell, Bänziger, Magorokosho & Vivek 2011, Roberts

& Schlenker 2011). The present study shows more nuanced results, with global crop yields having

improved either though a gain in a few baskets, or a reduction of losses in others (SI, Table 3.9).

The largest yield losses due to superoptimal temperatures are in the USA, which also shows the

most uniform response. The main producing areas in Africa however show a particularly strong risk

exposure to superoptimal temperatures.

These results pose questions of adaptation and varietal suitability. There was no apparent relationship

between the mean temperature of a basket and the heat tolerance/sensitivity of the crops grown there;

only a few baskets showed a decrease in the impact of ⌃KDD on yield between the periods 1979–1999

and 1992–2012; and there was a high within- and between-basket variability in response either to

superoptimal temperatures or to precipitation regimes. These findings suggest that the crop cultivars

grown in some regions may not be optimal for those regions' climate, and also perhaps that there is

scope for improved adaptation to a changing climate through a better selection of cultivars.

On average, the half-life of cultivars in production ranges from five to seven years. Butler & Huybers
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(2015) argued that this turnover is su�cient to allow local adaptation to decadal changes in climate.

This argument is debatable, however, as it does not account for the years of breeding and validation

before a new variety becomes available on the market. A more realistic assessment of the actual

development cycle is about a decade, implying that the rate of improvement by breeding could fall

behind the rate of climate change. Hence, there could be a benefit in seeking genotypes among those

already available (e.g. among hybdrids and landraces). Considering the gene pool already available

and the range of latitudes at which crops are grown, there is a potential for a spatial redistribution of

genotypes, which could contribute to stabilizing crop yields.

In conclusion, I have shown that crop responses to climate change are regionally contrasted, and that

they include – alongside well-documented negative responses to heat stress – positive responses to

warming (mainly due to reductions in the incidence of suboptimal temperatures for crop growth) and

to lengthening dry periods (possibly due to increased solar radiation, provided soil moisture availability

is adequate). Potential reductions in global production have largely been averted, due to the combined

e↵ects of increasing planted area and positive net impacts of climate on yields.

Whereas Chapter 2 (Section 2.4) focused on heat stress, the present chapter has delved more deeply

into the sensitivity of major crops to climate-related stress by exploring a more complete set of

agroclimatic variables. The next chapter will go further in analysing the interannual variability of

agricultural production, by presenting a new approach to characterizing this variability in terms of

shocks (i.e. large, unexpected changes in a time series) and an analysis of their causes.

3.5 Supplementary information
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Table 3.10: Maize crop calendar (extract, crop calendar based on cropping season phases). Data
sources: USDA International Production Assessment Division (IPAD), FAO Famine Early Warning
Systems Network (FEWS NET), FAO Global Information and Early Warning System (GIEWS).

Crop rotation Phase Start End Critical Overlap

USA

1 planting start March March 0 0

1 planting peak April May 0 0

1 growing June July 1 0

1 harvest start August August 1 0

1 harvest peak September October 0 0

1 harvest end November November 0 0

Mexico

1 planting start January January 0 0

1 planting peak February February 1 0

1 growing March May 1 0

1 harvest start May May 1 0

1 harvest peak June June 0 0

1 harvest end July July 0 0

2 planting start April April 0 0

2 planting peak May June 1 0

2 growing July September 1 0

2 harvest start October October 1 0

2 harvest peak November November 0 0

2 harvest end December December 0 0

Brazil

1 planting start September September 0 1

1 planting peak October November 0 1

1 growing December February 1 2

1 harvest start March March 0 0

1 harvest peak March April 0 0
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Table 3.10: Crop calendar maize (continued)

Crop rotation Phase Start End Critical Overlap

1 harvest end April April 0 0

2 planting start January January 0 0

2 planting peak January February 0 0

2 growing March May 1 0

2 harvest start June June 0 0

2 harvest peak July August 0 0

2 harvest end September October 0 0

Argentina

1 planting start September September 0 1

1 planting peak October October 0 1

1 growing November December 1 1

1 harvest start January January 0 0

1 harvest peak February April 0 0

1 harvest end May June 0 0

Central EU

1 planting start March March 0 0

1 planting peak April May 0 0

1 growing June August 1 0

1 harvest start September September 0 0

1 harvest peak September October 0 0

1 harvest end September October 0 0

Eastern EU & Ukraine

1 planting start March March 0 0

1 planting peak April May 0 0

1 growing June August 1 0

1 harvest start September September 0 0

1 harvest peak September October 0 0

1 harvest end September October 0 0
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Table 3.10: Crop calendar maize (continued)

Crop rotation Phase Start End Critical Overlap

South Africa

1 planting start January January 0 0

1 planting peak February February 1 0

1 growing March May 1 0

1 harvest start June June 1 0

1 harvest peak July July 0 0

1 harvest end July July 0 0

East Africa

1 planting start March March 0 0

1 planting peak April April 0 0

1 growing May July 1 0

1 harvest start August August 1 0

1 harvest peak September September 0 0

1 harvest end October October 0 0

West Africa

1 planting start March March 0 0

1 planting peak April April 0 0

1 growing May August 1 0

1 harvest start September September 1 0

1 harvest peak October October 0 0

1 harvest end November November 0 0

China

1 planting start February February 0 0

1 planting peak March April 1 0

1 growing May July 1 0

1 harvest start July July 1 0

1 harvest peak August August 0 0

1 harvest end September September 0 0
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Table 3.10: Crop calendar maize (continued)

Crop rotation Phase Start End Critical Overlap

Indonesia

1 planting start April April 0 0

1 planting peak May May 0 0

1 growing June July 1 0

1 harvest start August August 0 0

1 harvest peak September September 0 0

1 harvest end September September 1 0
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Chapter 4

Quantifying shocks in agricultural time

series

Abstract

The past sixty years have seen a dramatic increase in global agricultural production, driven both

by the increasing demand for food as the population grows, and by the globalization of commodity

markets for major crops. In many regions agriculture has become increasingly tied to market prices

and profit, which could lead to a decoupling of decisions as to what is grown (and where) from the

global food system's function of feeding the world. Decision-making in agriculture is also strongly

influenced by national policies (such as subsidies) and regulations (such as trade agreements). This

complexity may have led to increasing risk to the world food supply, because the various conflicting

interests involved (a) are not aligned with a goal of ensuring global food security, and (b) operate on

di↵erent time scales: national policies, for example, are slow to respond to “shocks” in agricultural

production, whose e↵ects are nonetheless observed rapidly in commodity markets. Major agricultural

shocks make global news; yet understanding of their nature and causes is limited, and left mainly

to expert opinion. This chapter focuses on the statistical identification of shocks (large and rapid

variations of agricultural production – also called “volatility” in financial time series) in historical

agricultural data. I introduce a new approach to shock detection and classification. I make use of

the di↵erent properties of an ensemble of historical time-series models to estimate a likelihood that

each year's data in a time series represents a shock. Noting that shocks are more easily identified

113
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a posteriori (i.e. with the benefit of hindsight) than a priori (i.e. relative to a one-point-ahead

forecast), I also present a second ensemble of models that treats the identification of shocks as a

forecasting problem. To my knowledge, neither of these approaches – quantifying shocks via ensemble

modelling, and identifying shocks relative to a point-ahead forecast – has any parallel in the current

literature. I show the existence of substantial variation in the incidence of shocks across regions, and

di↵erences in what events are identified as shocks by di↵erent models. However, I show that all kinds

of models – including so-called “naive” models – have the ability to capture di↵erent types of shocks.

I find no significant positive trend in the number of “most important” shocks (i.e. those detected by

nearly all models) over the period studied (1961 to 2012). These shocks were generally caused either

by a sudden change in yield, or (about as often) by a sudden change in harvested area, in one or

more major producing regions. This result suggests that the greatest disruption to production is not

necessarily caused by climate events, but can equally be due to policy shifts. Finally, when all shocks

(major and minor) are considered together, the data do show a significant increase in the instability

of agricultural production; however, this trend also is not driven solely by instability in yield.

4.1 Introduction

“It's di�cult to make predictions, especially about the future” (Anon.)

Many time series show variations contingent on both endogenous and exogenous factors. Disentangling

their influences is a challenge. Natural systems are multivariate and complex. They are subject to

stochastic processes such as extreme weather events, floods, diseases and financial crashes. Moreover,

there is no necessary relationship between the frequency of occurrence of a process and its life span.

For example, a short-lived flood in SE Asia happening in an industrialized area could provoke long-

lasting water-table pollution. The tsunami at Fukushima, Japan represents an extreme example of a

short- term event with long-lasting consequences.

In agriculture, endogenous variations may relate to a change in agricultural practices, or in planted

area. Exogenous variations may relate to policy changes, or to macroeconomic shifts. Stochastic

processes, superimposed on endogenous and exogenous variations, include the consequences of weather

variability and climate change. Although farmers have scope to adapt to climate change on a decadal

time scale, they cannot adapt to subseasonal variations (once a crop is planted, it is subject to the

vagaries of the weather), and also very limited scope for adaptation to interannual variations.
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Thus, agricultural production (and with it, commodity prices) may be subject to shocks for various

reasons related to exogenous, endogenous and/or stochastic influences. Time series can be a↵ected

by both permanent and temporary shocks (Atkinson et al. 1997, Lee & Brorsen 2017). Technological

and policy changes can permanently alter the structure of a time series in terms of mean, variance

and stationarity. Clements & Hendry (2006) showed that such permanent and infrequent shocks are

pre-eminent causes of the failure of forecasts based on historical time series.

Serial correlation is a feature of all agricultural time series. Any given agricultural region is more

suitable for particular crops (in terms of competitive advantage) than others. Supply chain infrastruc-

tures, once built, are there to stay. Agriculture is a cultural phenomenon; farmers in any one region

are accustomed to planting specific crops. Models for such time series, and statistics for detecting

structural changes, must take this necessary serial correlation into account (Lloyd 1993, Lin et al.

2015, Lee & Brorsen 2017).

The detection and characterization of shocks is an outlier detection problem (Balke & Fomby 1994,

Atkinson et al. 1997). Given a time series and a fitted model, the aim is to detect what movements,

and of what amplitude, are not accounted for by the fitted model. There is some inevitable subjectivity

here because the model structure depends on choices made by the modeller, and to some extent also

on what is traditional and accepted within a particular field. Many methods exist to detect outliers.

In a regression model, an outlier can be detected by measuring the influence of its removal on the

residual sum of squares in the model. This approach is called deletion diagnostics (Atkinson 1985).

Cook's distance is a metric often used to quantify the influence of a given observation in a regression

model (Cook 1977, Cook & Weisberg 1982).

Shocks can be of several kinds, including “additive shocks” that are simply spikes (lasting just one

timestep); transient shocks that take several timesteps to decay; and level shifts, which are permanent.

However, all shocks are defined by their context (Chandola et al. 2009) and can be characterized a

posteriori by examination of surrounding data. Shock detection is inevitably more accurate when we

have knowledge of what happened before and after the event. But in real time we have no knowledge

of the future. As a result, what is seen a shock today could very well be seen as part of a trend tomor-

row. This is an important practical point. Because it is always easier to characterize a phenomenon

retrospectively than to predict its future evolution, it is very often possible to find putative explana-

tions for a current phenomenon – for example, to associate current changes in commodity prices with

a covariate (such as oil price); but such associations may not stand the test of time.
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Here I present a new approach to shock detection in time series of agricultural production, yields and

harvested area. I compare two ensembles of models. The first ensemble, which I call “historical”, is

composed of a number of existing, widely used models that are computed and fitted on the full time

series from 1961 to 2012. Each model in the ensemble has di↵erent properties. For example, some

models capture more of the underlying trend observed over a longer period of time; others capture

more of the deviations from the trend; some deal with lags explicitly. The second ensemble, which

I call “predictive”, represents a novel approach that treats the detection of shocks as a forecasting

problem. Given a time series, a fitted model, and a set of projections, a shock according to this new

approach is defined simply as a value that we were not expecting from the model's projections (i.e.

the forecast falls outside the confidence intervals of the projection).

The predictive approach is based on the following premises. The shocks are unknown a priori ; struc-

tural changes are also unknown; and each data point is associated with a frequentist likelihood (called

f throughout this chapter) of being a shock. I rely on the pragmatic assumption that a forecast from

an ensemble of models is more accurate and informative than a single model. The influence of specific

model choices is thereby reduced.

An analogy can be drawn with the Delphi process. The “experts” are the models; the consensus is

the average of the models; I am the facilitator. The objective is not to find the “best” forecast model.

Instead the objective is to identify shocks, and then examine (for example) how they correlate with

change in harvested area or yield – and if the latter, then to see whether the change can be associated

with climate statistics, as calculated in previous chapters.

I first examine the results from the historical ensemble. I compare models according to the number of

shocks detected for di↵erent values of f ; analyse the di↵erence in numbers of shocks between baskets

(I retain the definition of baskets used in previous chapters), crops (maize, soybean and wheat), and

the three agricultural variables studied (harvested area, yield per unit area, and total production);

and investigate the trend in the number of shocks over time, per crop and agricultural variable, and

globally for the three crops considered together. The historical ensemble is considered as a benchmark,

since it is run on the full time series. Next, I follow the same schema for the predictive ensemble, and

compare the results with those obtained from the historical ensemble.

Current understanding of the causes of shocks in crop production is surprisingly limited. Yet, because

of their huge importance for global food supplies, it would be valuable to understand them better. Here,
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as in previous chapters, I focus on maize, soybean and wheat. This is primarily because these three

are the most important globally traded crops, in terms of both tonnage and value. In addition, these

crops have multiple uses, including biofuel and animal fodder as well as food for human consumption.

Shocks in their production therefore have the potential to disrupt multiple supply chains, and to have

widespread social and economic consequences.

4.2 Material and methods

Time series can be decomposed into their generating components: trend (a non-seasonal, long-term

pattern), seasonality (a regular and predictable pattern of fluctuation that repeats itself annually and

does not drift over time), cycles (patterns that repeat over time periods longer than one year), and

stochastic variations. Cycles may not be exactly periodic; for example, there is cyclical fluctuation in

stock markets, and in recurring climatic phenomena such as the El Niño-Southern Oscillation. In this

chapter however I conflate seasonal and cyclical phenomena, for the purpose of simplification – because

my focus is on shock detection, rather than on the identification of repeating patterns. Seasonal and

cyclical phenomena are nonetheless taken into account by the models.

Each model consists of a set of equations that describe the realizations (observed values) in the time

series. Some comprise “state components” that describe how unobserved components (or states: level,

trend and seasonality) change over time. Such models are called “state space models”. Autoregressive

integrated moving average (ARIMA) models are of this type. The selection of models for each ensemble

is not arbitrary. Each of the models that I have applied, from the most naive to the most complex,

is commonly used in time series analysis in order to detrend, smooth or forecast (Atkinson et al.

1997, Calderini & Slafer 1998, Lloyd 1993, Chandola et al. 2009, Aljoumani et al. 2012, Iizumi et al.

2013, 2014, Ben-Ari & Makowski 2014, Licker et al. 2013, Ben-Ari et al. 2016, Cernay et al. 2015,

Lee & Brorsen 2017, Maleki et al. 2018). The ensembles were built to encompass the diversity of

models, with the intention of bringing together their strengths as well as their limitations. The

models are all extensively described in the time-series analysis literature. I will therefore not detail

all the mathematics behind them, but rather present their most important properties. The dataset

analysed has already been presented in Chapter 2, section 2.2.1.



118 Chapter 4. Quantifying shocks in agricultural time series

4.2.1 The ensembles

All models included in the historical ensemble are computed over the full time series from 1961 to

2012. Outlier detection is based on the complete set of residuals from each model. For each fit, I

compute the mean and standard deviation of the residuals. I define an outlier as being a point that is

more than two standard deviations away from the mean of the residuals, applying the empirical 68-

95-99.7 rule (these are the approximate percentages of data that fall with one, two and three standard

deviations of the mean of a normal distribution). In addition, a normality test is performed on the

residuals using the Shapiro-Wilks test for normality and implemented via the function shapiro.test

in the R package stats. When the distribution of the residuals does not follow a normal distribution,

I use Chebyshev's inequality (Bienaymé 1853, Tchebichef 1867) to compute the bounds of the random

variable. Outliers are then identified by residuals falling outside the bounds defined by Chebyshev's

inequality for k = 2 (i.e. two standard deviations from the mean).

In the predictive ensemble, models are recursively fitted on subsets of the time series. With t, the

time index of a given data point, between 5 and 51 (1965–2011), the model is fitted on the t � 5 data

points in the time series and a point-ahead-forecast is made for time (t+1). I define a point to be an

outlier when, in a point-ahead-forecast, it falls outside the 95% confidence intervals of the projection

of the model. For one neural network model (described below) these confidence intervals are computed

by simulation. Otherwise the confidence intervals of the projections are computed using the method

forecast in the R package forecast. This method automatically selects the appropriate model to

compute the 95% projection intervals, such that for a h-step forecast, where �̂h is an estimate of the

standard deviation of the h-step forecast distribution, then a 95% prediction interval is given by

yt+h|t ± 1.96⇥ �̂h (4.1)

Below I present each model, and the motivation behind the selection of each model.

4.2.2 Simple Moving Average (SMA)

Some forecasting methods are extremely simple and are sometimes called “naive”, but they can be

surprisingly e↵ective. Simplicity is in fact one of their core advantages. Moving averages are widely

used in fields such as trading, in which they are a fundamental technical indicator that captures trends.
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Variations above or below the moving average are the base that define trading signals, and on which

trading strategies are based. In SMA, forecast future values are simply given by the average of data

within a time window of chosen width.

SMA can be centred (the average is taken in the middle of the window), left (the average is taken

from the following time periods within the window), or right (the average is taken from past time

periods within the window). All observations within the window have equal weight when computing

the average. The narrower the window, the smaller the lag in the fitted values, and the more variation

that is captured. Choosing too small a window means that noise may overwhelm the signal; broader

windows imply a longer lag, but also capture more of any trend that is present. Two important

limitations of SMA are (a) that the amplitude of fitted values can never reach the full peak-to-trough

variation of the underlying series, due to averaging; and (b) extreme historical values can skew the

analysis.

The SMA was selected for its dual property of being a smoother, and its extremely simple approach to

forecasting. I selected four window sizes (3, 5, 7, 9) for both right (equation 4.2) and centred (equation

4.3) moving average options. Moving averages were computed using the following formulas:

ySMA =
yt + yt�1 + · · ·+ yt�(n�1)

n

=
1

n

n�1X

i=0

yn�i

(4.2)

ySMA =
yt�(n/2) + · · ·+ yt+(n/2)

n

=
1

2k + 1

kX

i=�k

yt+i

(4.3)

where y is the fitted value at time t, and n is the size of the window. SMA models, presented in tables

4.1 and 4.5, are named according to their type and window, e.g. ma c3 is a centred moving average

with a window width of 3.
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4.2.3 Exponential Moving Average (EMA)

The exponential moving average lies behind many forecasting methods (Brown 1959, Winters 1960,

Holt 2004). Fitted values and forecasts generated by EMA are temporally weighted averages of past

data points. The weights decay exponentially with distance in time. The EMA puts therefore most

weight on the most recent observations, and as a result, is sensitive to local extreme values. This

sensitivity is not a major issue in the present analysis, however, as (a) this is only one model of an

ensemble; (b) the EMA is computed for the whole time series and not used as a forecasting method,

hence it is not attempting to make a point-ahead forecast based on a current extreme value; (c) I use

a variant of the EMA that factors in and smooths the trend.

The EMA was computed by using the function es from the R package smooth, using a simple expo-

nential smoothing. The degree of smoothing (denoted ) was chosen for each series so as to minimize

the residual sum of squares. In Table 4.1, the model is named ETS.

4.2.4 Polynomial models

Polynomial models are a standard tool in regression analysis. The inclusion of terms with degree

> 1 allows non-linear relationships to be fitted using what is still, mathematically, a linear model.

However, high-degree polynomials can almost fit all data points: the higher the degree chosen, the

better the fit, but the greater the risk of overfitting.

A spline is a piecewise polynomial function, with each piece being locally fitted. Splines are extremely

flexible functions used in a wide range of applications including detrending, modelling arbitrary func-

tions that have no known functional forms, and computer graphics rendering (Hyndman et al. 2005).

A cubic spline is a spline built from piecewise third-degree polynomials. Each piece is computed from

a range of continous values of the output variable (time, in the present case). The length of the ranges

determines the number of the knots and the level of smoothing of the final cubic spline. Because

cubic splines are piecewise fits, there the choice of nodes has an impact on the final fitted model.

The more knots are used, the closer the fit to the data. Theoretically, a cubic spline can be found to

approximate any continuous function, although in practice, there is no simple choice of node that will

give an approximation to a LOESS fit, which I will now introduce.

LOESS stands for locally estimated scatterplot smoothing. LOESS models were introduced by Sav-
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itzky and Golay (Savitzky & Golay 1964). LOESS is a generalization of both moving average and

polynomial regressions (Garimella 2017). It shares with cubic splines the ability to represent compli-

cated functions without the need to know anything about the functional form or the data generation

process. It di↵ers in that it is fitted point-by-point instead of between nodes, using a nearest-neighbour

procedure. LOESS can therefore capture more local variability, and more of the local data structure,

than cubic splines.

In Table 4.1, models are named according to their class, degree and bandwdith. poly 3 is a third-

degree polynomial, and loe 03 is a LOESS model with a smoothing bandwith (the proportion of the

nearest neighbours included in the model) of 0.30. Polynomial and LOESS models were computed

using the functions lm and loess respectively in the R package stats. The cubic spline model,

denoted spline in Table 4.1, was computed using the package splinef from the package forecast in

R, which implements the procedure described by Hyndman et al. (2005). For the splines, the number

of knots was determined by optimization using a maximum likelihood method, described in the same

article.

4.2.5 ARIMA models

Autoregressive Integrated Moving Average (ARIMA) models are one of the most widely used model

categories in time-series analysis and forecasting (Valipour et al. 2013). They are a generalization of

Autoregressive Moving Average (ARMA) models, which address issues of time-lag e↵ects and serial

correlations in time series (Piwowar & LeDrew 2002, El-Gohary & McNames 2007). While smoothing

models are built on the characterization of the trend (with some also taking into account seasonality),

ARIMA models have complementary features, focusing on identifying temporal autocorrelations. Au-

toregressive models, as their name suggests, perform regressions of a variable on to itself – thus they

are a kind of multiple regression model in which lagged values of the variable of interest are included

among the predictors of its current value. Such models shine by their ability to handle a large range

of time-series patterns.

Fitting an ARIMA model requires the specification of three parameters: the number of autoregressive

terms (p), the number of seasonal di↵erences needed to stationarize the series (d) and the number

of lagged forecast errors in the prediction equation (q). Models were fitted using the arima function

in the R package forecast. I followed the same procedure for each time series. This procedure,
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described by Hyndman et al. (2007) and Box et al. (2013), combines unit root tests (tests for whether

a time series is non-stationary), minimization of the Akaike Information Criteria (AIC, an estimator

of the comparative quality of di↵erent statistical models to make predictions on the same dataset)

to determine the orders of the model, the values of p and q and the best model (p, q, d) and finally

maximum likelihood estimation of the model's parameters. When the series presented non-stationarity,

a Box-Cox transformation (Box & Cox 1964) (function boxcox in the R package MASS) was used to

stabilize the variance.

Finally, a State Space ARIMA (SSARIMA) was used in the predictive ensemble. The detailed di↵er-

ences between ARIMA and SSARIMA are beyond the scope of this thesis, but a full comparison is

made by Svetunkov & Boylan (2020). In short, the use of SSARIMA is motivated for time series that

contain few data points, a situation that applies when making point-ahead forecasts for the predictive

approach during the early part of the time series.

4.2.6 Neural network models

Artificial Neural Networks (ANNs) are intended to loosely mimic the decision-making models of the

human brain. The very first ANN model was presented by Frank Rosenblatt, an American psycholo-

gist, in 1957. The simplest possible neural network is mathematically equivalent to a linear regression

model, where the output or forecast is a linear combination of the inputs. More complex networks

include several “hidden layers” juxtaposed between the inputs and outputs. The weights (the coef-

ficients in a linear model) are computed by the network through minimization of a cost function by

iterative methods.

Among all the models used in this chapter, ANN is both the most complex and the most versatile. The

motivation behind the inclusion of an ANN in the predictive ensemble is that ANNs have shown the

ability to represent complex non-linear relationships between the response variable and its predictors

(Raghu et al. 2017), and can approximate any function (Zhang & Qi 2005, Hanin & Sellke 2017,

Hanin 2019). Unlike most of the models presented in this chapter, ANNs are not based on a specific

equation that describes the data generation process. Computing the prediction intervals is therefore

not straightforward – it requires the use of simulations where point-ahead projections are made by

bootstrapping the residuals, either from a defined normal distribution, or from a sampling of the errors

in the historical data. Confidence intervals can thus be obtained by generating a large number (here
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1000) of alternative predictions. A point was considered to be a shock if the one-step-ahead realization

of the time series fell outside the range of the 2.5th and 97.5th percentiles of the range of forecast

values generated by simulation.

ANNs have been used in many fields including environmental time series analysis (Rostami Fasih et al.

2015, Khodadadi et al. 2016). Neural Network Autoregressive (NNAR) models are a type of ANN that

uses the lagged values of the time series as input. NNAR models are a natural choice among ANNs

for the present application, being suited to the analysis of univariate time series (Zhang et al. 1998,

Zhang & Qi 2005) and conceptually related to ARIMA models. NNAR models however di↵er from

ARIMA models in that they do not impose conditions of stationarity on the parameters (Thoplan

2014).

NNAR modelling was implemented with the nnetar function in the R library forecast using a

three-layer feed-forward trained network for one-step-ahead forecasting. Parameters were optimized

by minimization of the model's root-mean-squared error (RMSE).

4.2.7 Naive and Random Walk Forecasts (RWF)

Some time series present no particular structure, with no trend or seasonality, and their properties do

not depend on the time at which a realization occurs. In other words, each data point is independent

of the previous ones; the variable of interest takes independent and random steps up or down. This

is called a “random walk” process. There are many real-world examples of random walk time series.

An example is the daily exchange rate from USD to EUR, which shows almost completely random

day-to-day changes, with zero autocorrelation.

In a random walk without drift, past knowledge of the time series provides no information at all about

the direction of the change in future time steps. A random walk with drift is similar except that the

mean value of the step forward is not zero. Random walk with drift can be an appropriate model for

some time series that contain a long term trend. Because most agricultural time series studied in this

thesis do show long-term trends, I implemented a random walk with drift model, using the function

rwf in the R package forecast.
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4.2.8 Automatic outliers detection: Anomalize and Time Series Outliers

Anomalize is a procedure, developed by Twitter, to automatically detect anomalies in time series.

The procedure is based on a Seasonal Hybrid Extreme Studentized Deviate (S-H-ESD) algorithm,

which builds on the Generalized ESD test for anomaly detection (Rosner 1983, Vieira et al. 2018).

S-H-ESD models can be used to detect both local and global anomalies in univariate time series.

They work through piecewise time series decomposition. The piecewise component is meant to deal

with the extraction of the trend, which – according to Vallis et al. (2014) – is a non-trivial problem

in the presence of shocks. This last point, along with the use of ESD (which addresses smaller

samples and extremes distributions), is the main motivation for including this methodology in the

ensemble. The model was implemented using the function AnomalyDetectionTs from the R package

AnomalyDetection. The maximum number of anomalies that S-H-ESD could detect was set to 20%

by trial and error on a random subset of half of the time series. Adopting this threshold, all identified

anomalies matched observed sudden changes in the series. There was no increase in the number of

anomalies detected past this threshold.

The last model used in the ensemble is an automatic procedure for the detection of time-series outliers

implemented with the function tso, part of the R package tsoutliers. This function implements

a procedure described in Chen & Liu (1993). The procedure was designed to detect non-systematic

changes in time series that are not captured by standard methods. The procedure is based on the joint

estimate of outliers via a combination of ARIMA and structural time series modelling, as detailed in

López-de Lacalle (2016).

4.2.9 Tukey’s Honestly Significant Test (HSD)

Tukey's HSD test is a single-step multiple comparison procedure used to find significant di↵erences

among all possible pairs of means (Steel 1997). It is a generalization of the Student's t-test with

a correction for the family-wise error rate (FWER), which is the probability of making a Type I

error when testing multiple hypotheses. Tukey's HSD is considered a conservative procedure that is

suitable when the samples are of unequal sizes (one motivation to use this methodology here). The

assumptions are that the groups associated with each mean in the test are normally distributed. As

we are working with real-world data, the normal distribution of the groups was sometimes violated,

which is a possible criticism. In most cases, however, this assumption held. Tukey's HSD statistics
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were calculated with a significance level ↵ = .05 and performed with the function HSD.test in the R

package agricolae. Tukey's HSD between groups are represented by letters, so for example if three

groups are shown with the letters a, ab and b, there is a significant di↵erence between groups 1 and

3, but not between 1 and 2 or between 2 and 3.

4.3 Results: the historical ensemble

4.3.1 Comparison of models

Table 4.1 summarizes the total number of shocks (whether positive, i.e. anomalously high values, or

negative, i.e. anomalously low values) detected for each model used in the ensemble, after running

them on the full time series. Since it is not possible to obtain a reliable forecast based on a small set

of data, and because of the required windows for the moving averages being used, I excluded the first

years of data from the analysis. The row entry “At Least 1” contains the results from the ensemble

of models; it is the count, across all models, of the number of shocks that have been detected by at

least one model.

The total number of shocks is aggregated per model, across all times series: (a) all three crops (maize,

soybean, wheat), (b) all three agricultural variables (production, yield, harvested area), and (c) all

baskets (252 univariate time series). Recall that f is the frequency with which a given point in a time

series has been found to be a shock. As an example, ma c3 for f > 0.5: using a centred moving average

with a window of 3 (three data points), 117 data points were categorized as being shocks, under the

condition that each of these data points has been categorized as a shock by at least half of the models

in the ensemble. For each model I present the results of Tukey's HSD test with a significance level

= 0.05.
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f > 0 f > .5 f > .75 f > .9

Model N Tukey N Tukey N Tukey N Tukey

ma c3 235 bcd 117 cde 61 a 27 a
ma c5 230 bcd 146 abc 71 a 29 a
ma c7 207 cd 142 abcd 68 a 29 a
ma c9 191 cd 134 abcde 61 a 28 a
ma r3 241 bcd 121 bcde 66 a 29 a

ma r5 209 cd 124 bcde 70 a 29 a
ma r7 191 cd 106 de 67 a 29 a
ma r9 187 d 101 e 62 a 28 a
loe 02 243 bcd 135 abcde 70 a 29 a
loe 03 243 bcd 155 abc 72 a 29 a

loe 04 237 bcd 160 ab 72 a 29 a
loe 05 234 bcd 159 ab 72 a 29 a
poly 3 225 bcd 134 abcde 63 a 29 a
poly 5 228 bcd 145 abcd 70 a 29 a
splines 176 d 45 f 29 b 15 b

ETS 235 bcd 128 bcde 70 a 29 a
ARIMA 224 bcd 118 cde 69 a 29 a
S-H-ESD 288 b 117 cde 55 a 28 a
TSoutliers 264 bc 98 e 55 a 28 a
At Least 1 846 a 171 a 72 a 29 a

Table 4.1: Total number of detected shocks (N) per model of the historical ensemble and Tukey’s
HSD groups (Tukey), as a function of the frequentist likelihood f .

f > 0 f > .5 f > .75 f > .9

min 176 45 29 15
max 846 171 72 29
mean (SD) 256.70 ± 141.26 (***) 127.80 ± 28.00 (***) 64.75 ± 10.00 (***) 28.00 ± 3.11 (***)
median (IQR) 232.00 (208.50, 241.50) 131.00 (117.00, 145.25) 68.50 (61.75, 70.25) 29.00 (28.00, 29.00)

***: p-value < 0.001 (Tukey’s HSD test for equality of means);

SD: Standard Deviation;

IQR: Interquartile Range;

Table 4.2: Summary statistics of the number of shocks detected by the historical ensemble of models
as a function of the frequentist likelihood f .
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When considering all detected shocks (f > 0), I observed a large variability (Tables 4.1 and 4.2)

between models, which fell into four significantly di↵erent groups. The ensemble represented by “At

Least 1” sits apart from all other models with a larger number of shocks detected (about four times

more shocks). At the other end of the range, with the smallest number of detected shocks, I found two

models (the cubic spline, and right-moving average with a window of 9 years) to be non-significantly

di↵erent. These two models are structurally similar in that they provide a much higher level of

smoothing than a moving average with a small window (in fact, splines and ma r9 present a similar

amount of smoothing on visual inspection of the plots), and capture more trend relative to local

variations.

Variations in the numbers of shocks detected are also found within classes of models. This is true

for the moving average models in particular; here variability is a function of the size of the moving

window, and of its alignment (to the center or the right). I found no significant di↵erences within the

polynomial types of models (poly and cubic splines). The results illustrate that even the simplest and

so-called “naive” models such as moving averages are able to pick up di↵erent levels of shocks. There

was no significant di↵erence between a centered moving average with a window of 3 and the ARIMA

models.

A key general result of this comparison is the convergence of all models as f increases – in other words,

as we consider shocks that are detected by more and more models. With increasing f , (a) the number

of shocks detected decreases for all models; (b) variation among models becomes non-significant (for

f > 0.75, except for the splines model, all models were assigned to the same group by Tukey's HSD

test); and (c) the number of shocks detected by the ensemble converges toward the number detected

by each individual model.

This result indicates that the most frequently detected shocks (hereafter called “major” shocks), which

are also those showing the largest amplitude of change from time (t) to time (t + 1), are robustly

identified irrespective of the nature and complexity of the models used to detect them. In other

words, the models agree on the most important shocks despite their conceptual and mathematical

diversity. However, the use of an ensemble of models allows shocks to be ranked from least important

(f < 0.5) to most important (f > 0.75) according to the proportion of models in which they are

detected.
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4.3.2 Characterization of shocks

Although the raw material for this analysis consists of univariate time series, characterizing shocks in

these series is a multi-dimensional problem involving three crops, three agricultural variables and 28

baskets. I use several visualizations and Tables to show the resulting space-time patterns.

Figure 4.1 depicts the historical occurrence of shocks in four selected maize baskets (from top left

to bottom right: USA, Central EU, Eastern EU & Ukraine and China), as found by the historical

ensemble of models. For each basket, I plot production, yield and harvested area, for easy visual

matching. Each data point is coloured along a blue to red gradient. Blue is for the points that are

less frequently detected by the ensemble of models but are detected at least once; red is for the points

that are detected by all or nearly all models. Each times series is accompanied by a barplot of the

frequency of detection for each of its data points.

The di↵erences between baskets are summarized in Figures 4.3, 4.4 and 4.5, with summary statistics

in Table 4.3. These outputs summarize the group di↵erences for each crop, for di↵erent values of f .

Similarly, di↵erences between crops, and between variables, are summarized in Table 4.4.

4.3.3 Shocks in a temporal perspective

The literature often associates the notion of agricultural shocks, especially in the context of climate

change, to drastic drops in yield or production linked to climate events such as droughts (Easterling

et al. 2000, Rahmstorf & Coumou 2011, Coumou & Rahmstorf 2012, Berry et al. 2014, Butler &

Huybers 2015, Chavez et al. 2015, Ummenhofer et al. 2015, Lesk et al. 2016, Ben-Ari et al. 2016,

Tigchelaar et al. 2018, Porter et al. 2019). Anomalies in real time series however are much more diverse

than this. They can be positive or negative. An example of a positive anomaly would be an increase in

production due to a combination of a large increase in cultivated area and yield improvement. Robust

detection of positive anomalies is just as important as the detection of negative anomalies, since they

reflect more structural changes (increased planted area, crop improvement, yield gap reduction) than

negative ones. Favourable weather will bring the crop close to its maximum potential (which has

a plateau), while bad weather can bring the yield close to zero. In other words, since the response

of crops to weather is non-linear (Chapter 3, Section 3.3.3), the di↵erence between favourable and

extremely favourable weather is less important than the di↵erence between unfavourable and extremely

unfavourable weather (Lobell, Bänziger, Magorokosho & Vivek 2011, Jones 2013).
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A clear relationship can be observed (see Figure 4.1) between the amplitude of a shock (i.e. a substan-

tial deviation at time (t+1) either from the underlying trend, or from the value of the quantity at time

t), and its likelihood of being identified as a shock. This relationship can be confirmed statistically,

as the regression of f against �y (the change of y from time t to time (t + 1)) shows a significant

(p < 0.001) and positive (f = .15 ⇥ �y) relationship between the amplitude of the shock and its

likelihood. The likelihoods show a positively skewed and long-tailed distribution (Figure 4.2) with a

peak in the range 0 < f < .2.

Now consider the USA basket for maize (Figure 4.1a, upper left). Generally the largest shocks in

production coincided with shocks in yield. However, an exception must be made for 1983, when a

negative shock in yield was accompanied by a two-fold reduction in planted area – which, in turn,

can be linked to the act of 1983 that limited maize acreage in the USA. The largest shocks in this

basket were negative shocks. But this is far from being a universal pattern, and this case highlights

how shocks can be a direct consequence of policy.



130 Chapter 4. Quantifying shocks in agricultural time series

10
0

20
0

pr
od

uc
tio

n 
(m

t)
1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

5
7

9
yi

el
d 

(m
t/h

a)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

14
20

ar
ea

 (h
a)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

(a) Maize USA

5
15

25
pr

od
uc

tio
n 

(m
t)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

4
6

8
yi

el
d 

(m
t/h

a)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

1.
8

2.
4

3.
0

ar
ea

 (h
a)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

(b) Maize Central EU

15
30

45
pr

od
uc

tio
n 

(m
t)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

2
3

4
5

yi
el

d 
(m

t/h
a)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

6
8

ar
ea

 (h
a)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

(c) Maize Eastern EU & Ukraine

20
80

14
0

pr
od

uc
tio

n 
(m

t)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

2
4

6
yi

el
d 

(m
t/h

a)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

10
20

ar
ea

 (h
a)

1961 1968 1975 1982 1989 1996 2003 2010

0.
0

0.
4

0.
8

(d) Maize China

Figure 4.1: Maize production (mt), yield (mt/ha), area (ha), and frequentist likelihood of shocks
(histograms) for the historical ensemble, in the USA, Central EU, Eastern EU & Ukraine and China
(from top left to bottom right).
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Figure 4.2: Density distributions and means (dashed vertical lines) of the frequentist likelihood f for
the historical (red) and predictive (blue) ensembles.
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4.3.4 Comparison among crops, variables and baskets

Overall, there appear to be no direct link between shocks in production, yield and area. Shocks are

caused about as often by changes in harvested area as by changes in yield. In a few cases, production

shocks are not caused by either yield or area shocks, but rather by a synergy between them (Table

4.3, Figures 4.3, 4.4 and 4.5).

For f > 0 (i.e. considering all shocks), soybean shows the greatest variability among baskets for all

variables (yield, area and production). Soybean is also characterized by more baskets showing more

area shocks than yield shocks. Soybean also shows significantly more shocks in harvested area than

maize, but no significant di↵erence with wheat. This result does not hold, however, for higher values

of f . The ranking of baskets by the total number of production shocks detected (and the average

number of shocks detected by all models in the ensemble) is not maintained for higher values of f ,

but rather stabilizes for f > 0.5.

For higher values of f (i.e. major shocks), comparing crops:

• Maize shows the greatest variability among baskets in the number of shocks detected. The

shocks identified for maize are primarily in yield and production, rather than area. The baskets

with significantly elevated number of production shocks are Eastern EU & Ukraine (Tukey's HSD

group a), followed by USA and Central Europe (Tukey's group b). These baskets are among the

top five maize producers, so these findings indicate a large global risk for maize production.

• Soybean shows no clear dominance of either yield or area as the driver of production shocks.

The Indian basket (the fifth-ranked producer on average) is distinguished by a larger number of

production shocks than other baskets.

• For wheat, production shocks tend to be caused more by yield than by harvested area, although

this tendency is not clearcut. The basket most at risk for production shocks is Central Europe.

For higher values of f (major shocks), most production shocks are caused by sudden large changes

either in yield or in area. Major shocks in production caused by the combination of yield and area

shocks (see Table 4.3) do occur, but they are relatively rare. This property of the data emphasizes

(a) that production shocks are usually due to a sudden change in one variable only, and (b) that

production shocks are not predominantly caused by yield shocks, nor by area shocks, but rather that
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both are important contributors. Exceptions are some important maize baskets, including the USA,

where major shocks are disproportionately yield-driven.
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Figure 4.3: Maize number of shocks in production (prod.), yield and area (ha) per basket as a function
of the frequentist likelihood f (historical ensemble).
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Figure 4.4: Soybean number of shocks in production (prod.), yield and area (ha) per basket as a
function of the frequentist likelihood f (historical ensemble).
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Figure 4.5: Wheat number of shocks in production (prod.), yield and area (ha) per basket as a
function of the frequentist likelihood f (historical ensemble).
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4.3.5 Global perspective

In this section I consider shocks detected at the global scale (see Table 4.4). In line with the results

discussed above, I find a convergence of the mean of number of shocks in production, harvested

area and yield for larger values of f . For smaller values of f , soybean presents a higher mean and

standard deviation compared to maize and wheat. Nonetheless, overall (for all values of f), there

are no significant di↵erences in the mean number of shocks detected (according to Tukey's HSD test)

between crops, or between variables. There is also no clear dominance of yield-driven shocks over

area-driven shocks.

Considering the length of the time series studied (47 years, after the first five have been removed),

the number of major shocks (f > 0.75) is low, ranging from 1.11 (± 0.33) to 1.5 (± 0.76) shocks in

production – less than one per decade. This result contrasts with a prevalent narrative in the literature

on agricultural production under climate change. Despite a statistically proven increase in risk due

to an increase in climate variability (Huntington 2006, Hansen et al. 2012, Huntingford et al. 2013,

Tigchelaar et al. 2018), the average number of major shocks in production of the most important

crops remains low. This finding motivates the next question: has the incidence of shocks increased

over time? This question is addressed in the following section.

f > 0 f > .5 f > .75 f > .9

mean STD1 IQR2 mean STD IQR mean STD IQR mean STD IQR

Maize
harvestedarea 9.09 2.95 3.50 1.60 0.52 1.00 1.00 0.00 0 1.00 0.00 0.0
production 9.36 3.29 4.00 2.55 1.21 1.00 1.50 0.76 1 1.33 0.58 0.5
yield 10.18 2.71 4.00 2.36 1.29 1.50 1.40 0.52 1 1.29 0.49 0.5

Soybean
harvestedarea 12.57 4.61 7.00 2.29 0.76 1.00 1.50 0.58 1 1.00 0.00 0.0
production 13.00 5.07 6.00 2.43 0.98 1.00 1.20 0.45 0 0.00 0.00 0.0
yield 10.14 3.58 5.00 2.00 0.82 1.00 1.33 0.82 0 1.00 0.00 0.0

Wheat
harvestedarea 10.40 3.81 4.50 1.78 0.44 0.00 1.00 0.00 0 1.00 0.00 0.0
production 8.70 3.68 4.75 1.90 0.88 1.75 1.11 0.33 0 1.00 0.00 0.0
yield 9.00 2.62 2.75 1.90 0.57 0.00 1.00 0.00 0 1.00 0.00 0.0

1 STD: Standard Deviation;
2 IQR: Interquartile Range;

Table 4.4: Summary statistics, per crop and agricultural variable, of the number of shocks detected
by the historical ensemble of models as a function of the frequentist likelihood f .
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4.3.6 Trends over time

The existence (or otherwise) of a temporal trend in the incidence of shocks was examined with a simple

linear model (number-of-shocks versus time). The simplicity of this choice could be debated, but given

the relative rarity of shocks, it is likely a priori that no more complex model could be justified. Tests

were nonetheless also carried out using a more flexible Generalized Additive Model (GAM), but no

additional insight was obtained and the results are therefore not reported here.

Results of these linear regressions are shown in Figure 4.6 for (from top to bottom) maize, soybean

and wheat, for (from left to right) f > 0 and f > 0.75, aggregated for all baskets. Summary statistics

for each linear model, adjusted R2, regression coe�cients and p-values are presented in SI (Section

4.6, Table 4.9). Considering all types of shocks detected by the ensemble (f > 0), there is a significant

increasing trend in the number of shocks over time for all crops, and all agricultural variables. The

largest R2 values are shown for maize production (0.63) and yield (0.66), and soybean production (0.67)

and harvested area (0.57), all with positive and significant (p < 0.01) trends over time. The strongest

positive trend in the number of shocks is for maize yield, consistent with the observation that maize

production shocks tend to be more often yield-driven (see Chapter 2, Section 2.3.3). For soybean,

the increase in harvested-area shocks is in agreement with the large variations and particularly the

increase in planted area described in Chapter 2, especially in the second half of the period.

For all three crops and all agricultural variables, I find significant (p < 0.05) positive trends in both the

number of positive and negative shocks, but only for values of 0 < f < .3 (SI, Section 4.6, Tables 4.9,

4.10, 4.11 and 4.12), a result that suggests an increase in variability rather than an increase in major

shocks. When comparing the slopes, I find no di↵erence between the slopes in negative vs positive

shocks except for soybean yield, which shows a steeper increase in negative than positive shocks. The

trends in positive and negative shocks complement results previously described in Chapter 2 (Sections

2.3.2 and 2.3.3), where I showed that maize showed the largest interannual variability in production,

rooted in a dominance of yield variability over harvested area. Accordingly, maize yield shows a

greater temporal slope in the incidence of shocks in yield (both positive and negative) than shocks in

harvested area (Figures 4.6a, 4.6b, and SI, Section 4.6, Figures 4.11 and 4.13).
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Figure 4.6: Trends in shocks, historical ensemble; linear models of the evolution of the number of shocks
over time, per crop and per agricultural variable, for di↵erent values of the frequentist likelihood f .
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Aggregating all crops together and looking at production, yield and harvested area globally, I again

find significant and positive trends in both positive and negative shocks (SI, Section 4.6, Tables

4.13, 4.14 and 4.15). There are no major di↵erences between positive or negative shocks for each

agricultural variable, although slopes in negative shocks tend to be slightly higher than positive shocks

for production and yield. The temporal slopes for negative shocks are steeper for production and yield

than for harvested area. These findings corroborate results in previous Chapter 2 concerning the

asymmetry in the distributions of residuals toward negative values (Section 2.3.2, Figure 2.3), as

well as the fact that harvested area is of great importance (Section 2.3.3). Interannual variability

(considering all types and magnitudes of shocks) in yield has increased over time, at a slightly faster

rate than harvested area.

As we consider shocks detected by a greater number of models, the proportion of variance explained by

linear trends drops and the upward trend converges toward zero, becoming non-significant (p > 0.05)

for all crops and all agricultural variables at values of f > 0.3. No firm inference can be made from

this analysis, because of the small sample size (i.e. there have been too few major shocks to achieve

statistical significance in the temporal trend). It may be relevant, however, that the positive trend in

number of shocks consistently decreases as f increases.

The linear regression conducted per crop, over all agricultural variables, yields results no di↵erent

from those obtained from separate regressions per crop and per agricultural variable (Figure 4.10 and

Table 4.12). The only noticeable di↵erence is that the upward trend is maintained as significant for f

values up to 0.5.

Maize and soybean show stronger positive trends in the occurrence of shocks compared to wheat;

wheat is influenced by low shock counts at the end of the series. These results are in line with the

previous analysis (per crop and per agricultural variable), and there is a significantly positive trend

in variability (for all shocks), but no major di↵erences among crops.
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Figure 4.7: Trends in shocks, historical ensemble; linear models of the evolution of the number of
shocks over time, per crop, for di↵erent values of the frequentist likelihood f .
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4.4 Results: the predictive ensemble

The ensemble of models used in the predictive approach contains many of the same models used in

the historical approach. After investigation, however, I removed the polynomial regressions (LOESS

and cubic splines models), and the ETS model, from the predictive ensemble because they proved

ill-adapted to this new approach – classifying nearly all points as shocks. On the other hand the

predictive ensemble includes three models that were not included in the historical ensemble, namely

State Space ARIMA, a random walk with drift (RWF), and a neural network specifically suited to

forecasting univariate time series. Two other state space models were tested – ADAM (a dynamic

adaptive model based on ETS and ARIMA processes) and GUM (Generalized Univariate Model), a

model based on a generalization of exponential smoothing – but these proved to make excessive data

demands, i.e. they required as much as half of the time series length simply to fit parameter values.

In all analyses the first five years were removed from the series as there were too few data points to

train any of the models in the ensemble, or to compute their confidence intervals.

The results from the predictive ensemble (Tables 4.5 and 4.6) are similar in many respects to the

results obtained with the historical ensemble. The models showed considerable variation from one

another; and the number of shocks detected converged towards a common value as f increased. The

main di↵erence between the two ensembles lies in the total number of shocks detected, which was

two to five times greater for all values of f . This large increase in the number of detected shocks

can be interpreted as reflecting the predictive models' poor ability to forecast future values. This

interpretation is corroborated by the random walk with drift model, which detected far fewer shocks

than the other models. In other words: many events that appeared immediately as shocks (and were

identified as such by the predictive approach, which precludes knowledge of the future) turn out not

to be so, with the benefit of hindsight, which is allowed in the historical approach.
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f > 0 f > .5 f > .75 f > .9

Model N Tukey N Tukey N Tukey N Tukey

sma 3 522 f 418 bcd 235 a 161 a
sma 5 532 f 406 cd 243 a 160 ab
sma 7 536 f 382 d 225 a 160 ab
sma 9 530 f 346 de 210 a 153 ab
ma c3 1141 d 458 abc 240 a 161 a

ma c5 1480 bc 485 ab 243 a 162 a
ma c7 1533 b 482 abc 244 a 162 a
ma c9 1603 b 488 abc 241 a 162 a
ARIMA 845 e 478 abc 241 a 161 a
SSARIMA 767 e 446 bcd 224 a 154 ab

RWF 344 f 227 e 131 b 106 b
NNAR 1272 cd 411 bcd 214 a 159 ab
At Least 1 2787 a 542 a 245 a 162 a

Table 4.5: Total number of detected shocks (N) per model of the predictive ensemble and Tukey’s
HSD groups (Tukey), as a function of the frequentist likelihood f .

f > 0 f > .5 f > .75 f > .9

min 344 227 131 106
max 2787 542 245 162
mean (SD) 1,068.62 ± 676.79 (***) 428.38 ± 79.89 (***) 225.85 ± 30.85 (***) 155.62 ± 15.2 (***)
median (IQR) 845.00 (532.00, 1,480.00) 446.00 (406.00, 482.00) 240.00 (224.00, 243.00) 161.00 (159.00, 162.00)

***: p-value < 0.001 (Tukey’s HSD test for equality of means);

SD: Standard Deviation;

IQR: Interquartile Range;

Table 4.6: Summary statistics of the number of shocks detected by the predictive ensemble of models
as a function of the frequentist likelihood f .
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There are some more specific di↵erences between the two ensembles, summarized below.

The likelihoods (Figure 4.8) of the identified shocks seem visually to better emphasize the weight of

yield versus harvested area on consequent production shocks. As an example, for the USA and Eastern

EU & Ukraine maize baskets, the predictive ensemble shows a higher density of production and yield

shocks (both less important shocks and major shocks) than harvested area shocks. In addition, in

contrast with the historical ensemble, the likelihoods are more evenly spread across the full range of f .

Their distribution (Figure 4.2) is still positively skewed but the values are more uniformly distributed

for 0.1 < f < 0.5, and the peak is shifted to the right, to the range 0.2–0.4 (as compared to 0.0–0.2 for

the historical ensemble). There is also an enhanced frequency of shocks with high (0.8–1.0) f values.

The historical and predictive approaches generally identify the same major shocks. Nonetheless, a

close look at the time series (e.g. the Eastern EU & Ukraine maize basket) shows that high-amplitude

shocks are better captured by the predictive ensemble.

Table 4.7 summarizes the number of shocks per basket, as detected by the predictive ensemble. Again,

the predictive ensemble shows many similarities to the historical ensemble, with large variability

between baskets for each crop, for the whole range of f . Again, production shocks are most commonly

traceable either to yield or harvested area shocks. However, for intermediate values of f , the predictive

ensemble identifies more shocks related to the combination of yield and harvested area shocks than

the historical ensemble does.
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Figure 4.8: Maize production (mt), yield (mt/ha), area (ha), and frequentist likelihood of shocks
(histograms) for the predictive ensemble, in the USA, Central EU, Eastern EU & Ukraine and China
(from top left to bottom right).
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The large variability among baskets makes it hard to discern a clear geographic pattern. A few baskets

however stand out by having a significantly lower or higher number of shocks than the average, and

some contrasts are indicated that were less clear in the historical analysis:

• For maize, the Central Europe and South African baskets show a significantly lower production

shock count compared to the other baskets. The Brazilian and Indonesian baskets stand out by

showing a much higher number of production shocks than other baskets.

• For soybean, the Argentinean and South and Central Brazil baskets show many more “mid-

level” (0.3 < f < 0.75) shocks as well as major production shocks. In contrast, the North

American baskets (USA and Canada) shows a low shock count for f > 0.5 and the lowest count

of major shocks. The North East China basket shows exceptional stability, with few mid-level

or major shocks.

• For wheat, the Northern American, Central European and India-Pakistan baskets show low

counts of both mid level and major shocks, contrasting with the South East Australian bas-

ket showing the highest variability and major shock counts. This is in line with the reported

sensitivity of the SE Australia wheat basket to production shocks.

Table 4.8 summarizes the shocks detected at the global level (all baskets) for each crop and agricul-

tural variable. The historical approach showed no significant di↵erences (according to Tukey's HSD)

between agricultural variables per crop for di↵erent values of f at the global level. The results from

the predictive approach are little di↵erent, except for maize harvested area at f > .75, which showed

significantly fewer shocks than yield and production. The predictive approach thus confirms the in-

dication in the historical analysis that major maize production shocks have been primarily driven by

yield rather than harvested area.

Results from trend analysis based on the predictive ensemble show the greatest contrast with the

historical ensemble. For both the agricultural variable (per crop) and global-scale crop comparisons,

there is a significant (negative) trend in shocks for f > 0.1 only. However, weakly negative trends

were typical (Figures 4.9 and 4.10, and SI, Section 4.6, Tables 4.16 and 4.17).
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f > 0 f > .5 f > .75 f > .9

mean STD1 IQR2 mean STD IQR mean STD IQR mean STD IQR

Maize
harvestedarea 31.55 5.39 6.50 4.55 2.46 2.00 2.00 1.41 1.0 1.78 1.09 1.00
production 34.82 4.24 4.50 8.09 3.02 3.00 3.91 2.21 2.0 3.22 1.64 2.00
yield 34.09 4.99 6.50 7.91 3.36 4.00 4.18 2.36 3.5 2.78 1.86 3.00

Soybean
harvestedarea 33.43 6.80 11.50 8.00 4.08 6.00 2.71 1.38 2.5 2.33 1.37 2.25
production 36.43 6.55 10.50 11.43 4.16 6.00 4.00 1.63 2.0 2.43 0.53 1.00
yield 33.00 5.35 6.00 6.29 1.98 2.00 3.57 1.27 2.0 2.57 1.40 1.50

Wheat
harvestedarea 31.10 5.95 5.00 4.40 1.78 1.00 1.89 1.27 1.0 1.60 0.89 1.00
production 32.90 4.12 5.50 5.30 1.77 1.75 2.60 1.71 1.0 2.11 1.54 1.00
yield 32.20 3.49 2.75 3.90 2.69 3.50 2.33 1.73 2.0 2.00 1.41 1.25

1 STD: Standard Deviation;
2 IQR: Interquartile Range;

Table 4.8: Summary statistics, per crop and agricultural variable, of the number of shocks detected
by the predictive ensemble of models as a function of the frequentist likelihood f .
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Figure 4.9: Trends in shocks, predictive ensemble; linear models of the evolution of the number of
shocks over time, per crop and per agricultural variable, for di↵erent values of the frequentist likelihood
f .
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Figure 4.10: Trends in shocks, predictive ensemble; linear models of the evolution of the number of
shocks over time, per crop, for di↵erent values of the frequentist likelihood f .

4.5 Discussion and Conclusions

Empirical agricultural datasets, as illustrated in this chapter, are rarely “well-behaved” and commonly

include data points that seem dissonant with the rest of the time series. Such aberrant observations,

depending on the objective of the study (defining the best model, removing seasonality, detrending,

forecasting), as well as the field of study (statistics, economics, data quality), can be labelled by many

di↵erent terms, including disturbances, anomalies, outliers, and shocks – the generic term I have used

here. Outlier detection is a common process in statistical modelling; its purpose is to identify data

points that could create a bias in the model (Guttman & Tiao 1978, Lloyd 1993). The decision as

to whether to include or remove outliers is key, as all models depend on minimizing a loss function

defined on the residuals, which are disproportionately influenced by outliers (Chuang & Lee 2011,

Wang & Zhong 2014). Outliers nontheless constitute important information that may be invaluable,

cannot be ignored, and need to be studied. This is part of the motivation of this chapter, which di↵ers

from other “robust” methods in that I associate “aberrant” data with a likelihood, estimated via the

application of multiple models.

Space and time are essential elements of agricultural data. Here, I have addressed the time component

in two ways: via a historical approach, in which models are fitted using data from both before and

after putative shocks; and a predictive approach, in which models are denied access to data from
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the future. The predictive approach, of course, more closely resembles the situation faced by decision

makers in real time. The space component has been addressed through the definition of baskets, which

are major and geographically separated production areas, determined separately for each crop.

Results obtained for all shocks (f > 0) are not consistent, varying from model to model and between the

historical and predictive ensembles. However, irrespective of the model's complexity, all models have

been shown to capture all types of shocks. So-called “naive” models do not substantively di↵er from

more complex models; they all capture about as many shocks as one another, and show convergence

towards higher values of f . In other words, models with very di↵erent structure all identify a common

set of major shocks. The predictive ensemble, however, captured some finer details at mid-level values

of f ; and showed clearer patterns of di↵erences among baskets.

The full set of identified shocks (f > 0) proved to be various and inconsistent, varying from region to

region, and from crop to crop. Nonetheless, a unifying result in this chapter is that the most important

production shocks (detected by nearly all models) were caused either by a sudden change in yield,

or a sudden change in harvested area. However, not every sudden change in yield or planted area

caused a production shock (consider e.g. the Southern Brazil basket for soybean). Maize was shown

to be more yield-driven than the other crops, and to show on average more shocks and major shocks

in production than soybean or wheat. It remains true that on average, for the time period considered

(1961–2012), the number of major production shocks was small. No positive trend in the number of

shocks over time was found for major shocks. A significant and positive trend in all three crops, and

in all crops together, was detected only when considering all shocks regardless of their importance.

This finding corroborates findings in the literature (Ben-Ari & Makowski 2014, 2016, Tigchelaar et al.

2018) of an increase in the number of anomalies (or variability) over time, but adds the important

nuance that there has been no increase in major shocks.

This conclusion does not take into consideration the increased pressure of demand due to rising

population, and increasing interdependencies due to global trade. It is possible, for these reasons,

that production shocks could have had more “snowballing” e↵ects in recent years than they used to in

the past. This possibility is not addressed in this study. Another issue not considered is the possible

relationship between observed variability and levels of stocks.

This analysis has underlined that production shocks are not linked only to climate variability, but

also to policy shifts. It does not uphold the simple narrative of increasing volatility due to a changing
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climate. However, emerging markets show signs of increased volatility in recent years.

The approach to characterizing shocks presented in this chapter has no equivalent in the literature.

A number of methodological improvements and extensions could be envisaged, including applications

of multivariate and cluster analyses, breakpoint modelling, and a leave-one-model-out approach to

quantify the sensitivity of results to the choice of models. Nonetheless, the ensemble and likelihood

approaches have yielded insights that cannot be found elsewhere; while the comparison of a historical

with a novel, predictive definition of shocks has highlighted the subtle di↵erences between analysis

informed by hindsight, and the interpretation of current events in real time.

4.6 Supplementary Information
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f R2 R2-adj intercept intercept.pval time time.pval

Maize
production 0.00 0.63 0.62 -0.43 0.16 0.09 0.00

0.10 0.36 0.34 0.26 0.64 0.06 0.00
0.20 0.04 0.01 1.22 0.03 0.01 0.29
0.50 0.03 -0.02 0.93 0.21 0.01 0.46
0.75 0.53 0.49 1.00 0.00 0.00 0.05

yield 0.00 0.66 0.65 -0.60 0.07 0.10 0.00
0.10 0.35 0.33 0.03 0.96 0.07 0.00
0.20 0.13 0.09 0.65 0.48 0.04 0.09
0.50 0.11 0.04 0.94 0.19 0.02 0.23
0.75 0.04 -0.10 0.99 0.41 0.02 0.61

harvested area 0.00 0.34 0.32 0.42 0.23 0.06 0.00
0.10 0.05 0.02 1.41 0.00 0.02 0.21
0.20 0.01 -0.04 1.57 0.01 -0.01 0.71
0.50 0.00 -0.09 1.18 0.02 0.00 0.90
0.75 0.44 0.25 1.00 0.00 0.00 0.35

Soybean
production 0.00 0.67 0.67 -0.87 0.01 0.10 0.00

0.10 0.37 0.34 -1.17 0.29 0.10 0.00
0.20 0.40 0.37 -1.19 0.26 0.09 0.00
0.50 0.19 0.09 0.06 0.96 0.04 0.20
0.75 0.52 0.39 1.00 0.00 0.00 0.08

yield 0.00 0.26 0.25 0.40 0.14 0.04 0.00
0.10 0.13 0.09 0.79 0.04 0.02 0.06
0.20 0.12 0.06 0.67 0.20 0.02 0.15
0.50 0.05 -0.06 0.87 0.18 0.01 0.51
0.75 0.55 0.48 1.00 0.00 0.00 0.07

harvested area 0.00 0.57 0.56 -0.22 0.41 0.07 0.00
0.10 0.31 0.29 0.29 0.44 0.04 0.00
0.20 0.14 0.09 0.66 0.15 0.02 0.09
0.50 0.08 0.00 0.81 0.03 0.01 0.32
0.75 0.65 0.56 1.00 0.00 0.00 0.04

Wheat
production 0.00 0.41 0.40 -0.21 0.56 0.07 0.00

0.10 0.26 0.23 0.14 0.84 0.06 0.00
0.20 0.14 0.11 0.29 0.74 0.04 0.07
0.50 0.18 0.10 0.60 0.33 0.02 0.15
0.75 0.00 -0.16 1.17 0.12 0.00 0.90

yield 0.00 0.26 0.25 0.55 0.09 0.04 0.00
0.10 0.05 0.02 1.17 0.01 0.02 0.20
0.20 0.04 0.00 1.02 0.03 0.01 0.30
0.50 0.05 -0.03 1.11 0.04 0.01 0.45
0.75 0.20 0.01 0.57 0.40 0.02 0.37

harvested area 0.00 0.12 0.10 1.21 0.00 0.03 0.01
0.10 0.06 0.03 1.43 0.00 0.01 0.17
0.20 0.10 0.06 1.13 0.00 0.01 0.12
0.50 0.38 0.33 0.62 0.03 0.02 0.02
0.75 0.00 0.00 1.00 0.00 0.00 0.00

Table 4.9: Summary statistics for the linear models of the trends in number of shocks over time (Figure
4.6) for di↵erent values of the frequentist likelihood f (historical ensemble).
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f R2 R2-adj intercept intercept.pval time time.pval

Maize
0.00 0.56 0.55 -0.51 0.31 0.13 0.00
0.10 0.49 0.48 -0.72 0.36 0.12 0.00
0.20 0.24 0.21 0.09 0.91 0.06 0.01
0.30 0.28 0.25 0.48 0.31 0.04 0.01
0.40 0.07 0.02 0.97 0.03 0.01 0.23
0.50 0.01 -0.04 1.14 0.01 0.00 0.64
0.75 0.00 -0.24 1.31 0.29 0.00 0.90

Soybean
0.00 0.37 0.35 -0.11 0.85 0.10 0.00
0.10 0.28 0.26 0.22 0.76 0.07 0.00
0.20 0.22 0.18 0.48 0.58 0.05 0.03
0.30 0.08 0.02 0.82 0.50 0.03 0.28
0.40 0.17 0.11 0.51 0.57 0.04 0.13
0.50 0.12 0.04 0.90 0.21 0.02 0.26
0.75 0.00 0.00 1.00 0.00 0.00 0.00

Wheat
0.00 0.19 0.18 0.93 0.13 0.07 0.00
0.10 0.03 0.00 1.75 0.03 0.02 0.32
0.20 0.03 -0.01 1.34 0.07 0.02 0.36
0.30 0.04 -0.01 1.18 0.11 0.02 0.37
0.40 0.20 0.14 0.39 0.60 0.04 0.07
0.50 0.19 0.11 0.54 0.59 0.04 0.16
0.75 0.01 -0.24 1.50 0.17 0.00 0.86

Table 4.10: Summary statistics for the linear models of the trends in number of positive shocks per
crop over time, for di↵erent values of the frequentist likelihood f (historical ensemble).



156 Chapter 4. Quantifying shocks in agricultural time series

f R2 R2-adj intercept intercept.pval time time.pval

Maize
0.00 0.36 0.35 -0.09 0.89 0.12 0.00
0.10 0.12 0.09 1.22 0.31 0.07 0.05
0.20 0.09 0.06 1.18 0.25 0.05 0.11
0.30 0.08 0.05 1.24 0.26 0.04 0.15
0.40 0.09 0.05 0.98 0.37 0.04 0.15
0.50 0.25 0.20 0.39 0.72 0.07 0.04
0.75 0.02 -0.06 1.37 0.08 0.01 0.62

Soybean
0.00 0.55 0.54 -0.59 0.18 0.11 0.00
0.10 0.36 0.34 -0.54 0.52 0.09 0.00
0.20 0.36 0.33 -0.61 0.52 0.08 0.00
0.30 0.27 0.23 -0.59 0.63 0.08 0.03
0.40 0.18 0.12 0.00 1.00 0.05 0.10
0.50 0.13 0.06 0.32 0.78 0.04 0.20
0.75 0.33 0.20 0.18 0.85 0.04 0.18

Wheat
0.00 0.24 0.23 0.62 0.29 0.08 0.00
0.10 0.19 0.17 0.85 0.23 0.06 0.01
0.20 0.25 0.22 0.51 0.50 0.06 0.01
0.30 0.18 0.14 0.74 0.35 0.05 0.04
0.40 0.19 0.15 0.91 0.16 0.04 0.05
0.50 0.16 0.09 1.02 0.26 0.04 0.15
0.75 0.23 0.03 1.35 0.17 0.02 0.34

Table 4.11: Summary statistics for the linear models of the trends in number of negative shocks per
crop over time, for di↵erent values of the frequentist likelihood f (historical ensemble).
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f R2 R2-adj intercept intercept.pval time time.pval

Maize
0.00 0.73 0.72 -0.61 0.36 0.25 0.00
0.10 0.47 0.45 -0.63 0.55 0.18 0.00
0.20 0.28 0.26 0.30 0.75 0.10 0.00
0.30 0.18 0.16 0.64 0.51 0.07 0.01
0.40 0.14 0.11 0.91 0.30 0.06 0.03
0.50 0.10 0.06 1.17 0.19 0.04 0.11
0.75 0.00 -0.06 1.67 0.12 0.00 0.87
0.90 0.00 -0.14 1.54 0.32 0.01 0.87

Soybean
0.00 0.69 0.69 -0.69 0.25 0.21 0.00
0.10 0.49 0.48 -1.41 0.17 0.17 0.00
0.20 0.43 0.41 -1.09 0.29 0.13 0.00
0.30 0.23 0.20 -0.49 0.72 0.09 0.02
0.40 0.16 0.13 0.32 0.77 0.06 0.05
0.50 0.14 0.10 0.32 0.76 0.05 0.08
0.75 0.25 0.19 0.29 0.63 0.03 0.07
0.90 0.00 0.00 1.00 0.00 0.00 0.00

Wheat
0.00 0.38 0.37 1.55 0.06 0.15 0.00
0.10 0.23 0.21 1.39 0.11 0.09 0.00
0.20 0.26 0.24 0.56 0.52 0.09 0.00
0.30 0.20 0.18 0.80 0.28 0.06 0.01
0.40 0.24 0.22 0.48 0.45 0.06 0.00
0.50 0.20 0.16 0.54 0.53 0.06 0.03
0.75 0.20 0.11 0.91 0.23 0.03 0.17
0.90 0.17 -0.03 0.99 0.17 0.02 0.41

Table 4.12: Summary statistics for the linear models of the trends in number of positive and negative
shocks per crop over time, for di↵erent values of the frequentist likelihood f (historical ensemble).
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f R2 R2-adj intercept intercept.pval time time.pval

Production
0.00 0.63 0.62 -0.78 0.07 0.13 0.00
0.10 0.46 0.44 -1.15 0.20 0.12 0.00
0.20 0.37 0.34 -0.35 0.69 0.08 0.00
0.30 0.37 0.33 -0.63 0.48 0.07 0.00
0.40 0.15 0.10 0.11 0.93 0.05 0.11
0.50 0.11 0.04 0.52 0.66 0.04 0.23
0.75 0.04 -0.09 0.90 0.04 0.01 0.60

Yield
0.00 0.41 0.40 0.31 0.48 0.08 0.00
0.10 0.30 0.27 0.20 0.75 0.06 0.00
0.20 0.13 0.09 0.54 0.42 0.03 0.07
0.30 0.18 0.13 0.55 0.29 0.03 0.06
0.40 0.11 0.06 0.80 0.02 0.01 0.17
0.50 0.05 -0.02 0.90 0.01 0.01 0.41
0.75 0.16 -0.01 0.55 0.43 0.02 0.38

Harvested Area
0.00 0.42 0.41 0.78 0.08 0.09 0.00
0.10 0.24 0.22 1.05 0.01 0.04 0.00
0.20 0.09 0.06 1.01 0.01 0.02 0.09
0.30 0.06 0.02 1.09 0.00 0.01 0.24
0.40 0.10 0.06 0.87 0.01 0.02 0.12
0.50 0.22 0.16 0.80 0.05 0.02 0.08
0.75 0.36 0.15 1.00 0.00 0.00 0.02

Table 4.13: Summary statistics for the linear models of the trends in number of positive shocks per
agricultural variable over time, as detected by the historical ensemble of models, as a function of the
frequentist likelihood f .
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f R2 R2-adj intercept intercept.pval time time.pval

Production
0.00 0.61 0.60 -0.73 0.12 0.13 0.00
0.10 0.35 0.33 -0.66 0.48 0.10 0.00
0.20 0.23 0.20 -0.38 0.74 0.08 0.01
0.30 0.14 0.10 0.32 0.78 0.06 0.07
0.40 0.18 0.13 0.20 0.84 0.05 0.06
0.50 0.20 0.15 0.34 0.71 0.05 0.07
0.75 0.01 -0.10 1.83 0.13 -0.01 0.80

Yield
0.00 0.44 0.43 0.05 0.93 0.10 0.00
0.10 0.22 0.20 0.41 0.54 0.07 0.00
0.20 0.14 0.11 0.70 0.28 0.04 0.03
0.30 0.09 0.05 1.09 0.12 0.03 0.13
0.40 0.04 0.00 1.32 0.09 0.02 0.32
0.50 0.04 -0.01 1.17 0.23 0.02 0.36
0.75 0.00 -0.08 1.54 0.08 0.00 0.96

Harvested Area
0.00 0.40 0.39 0.62 0.11 0.07 0.00
0.10 0.16 0.14 0.82 0.09 0.04 0.01
0.20 0.07 0.03 1.12 0.03 0.02 0.17
0.30 0.06 0.02 1.15 0.04 0.02 0.24
0.40 0.08 0.05 0.94 0.02 0.02 0.15
0.50 0.09 0.04 0.84 0.07 0.02 0.22

Table 4.14: Summary statistics for the linear models of the trends in number of negative shocks per
agricultural variable over time, as detected by the historical ensemble of models, as a function of the
frequentist likelihood f .
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f R2 R2-adj intercept intercept.pval time time.pval

Production
0.00 0.85 0.84 -1.50 0.00 0.26 0.00
0.10 0.60 0.59 -2.57 0.03 0.23 0.00
0.20 0.40 0.38 -1.76 0.20 0.17 0.00
0.30 0.39 0.36 -1.21 0.32 0.13 0.00
0.40 0.30 0.27 -1.00 0.39 0.10 0.00
0.50 0.22 0.18 -0.40 0.75 0.08 0.02
0.75 0.13 0.07 0.63 0.44 0.03 0.16

Yield
0.00 0.69 0.68 0.35 0.52 0.18 0.00
0.10 0.45 0.44 -0.14 0.87 0.14 0.00
0.20 0.25 0.23 0.25 0.79 0.09 0.00
0.30 0.17 0.14 0.62 0.50 0.06 0.02
0.40 0.08 0.04 1.15 0.21 0.04 0.13
0.50 0.16 0.12 0.60 0.52 0.05 0.05
0.75 0.08 0.01 0.90 0.39 0.03 0.30

Harvested Area
0.00 0.59 0.59 1.40 0.02 0.16 0.00
0.10 0.38 0.37 1.36 0.02 0.09 0.00
0.20 0.13 0.11 1.57 0.01 0.04 0.03
0.30 0.11 0.08 1.58 0.01 0.03 0.06
0.40 0.12 0.09 1.40 0.00 0.03 0.05
0.50 0.23 0.20 0.87 0.02 0.03 0.01
0.75 0.05 -0.03 0.94 0.00 0.00 0.46

Table 4.15: Summary statistics for the linear models of the trends in number of positive and negative
shocks per agricultural variable over time, for di↵erent values of the frequentist likelihood f (historical
ensemble).
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Figure 4.11: Trends in positive shocks, historical ensemble; linear models of the evolution of the
number of shocks over time, per crop and per agricultural variable, for di↵erent values of the frequentist
likelihood f .
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Figure 4.12: Trends in positive shocks, historical ensemble; linear models of the evolution of the
number of shocks over time, per crop, for di↵erent values of the frequentist likelihood f .
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Figure 4.13: Trends in negative shocks, historical ensemble; linear models of the evolution of the
number of shocks over time, per crop and per agricultural variable, for di↵erent values of the frequentist
likelihood f .
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Figure 4.14: Trends in negative shocks, historical ensemble; linear models of the evolution of the
number of shocks over time, per crop, for di↵erent values of the frequentist likelihood f .
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f R2 R2-adj intercept intercept.pval time time.pval

Maize
production 0.00 0.020 0.001 6.627 0.000 0.028 0.316

0.10 0.259 0.243 8.594 0.000 -0.067 0.000
0.20 0.011 -0.011 5.691 0.000 -0.013 0.487
0.50 0.112 0.092 1.678 0.000 0.030 0.024
0.75 0.126 0.100 0.942 0.007 0.022 0.034

yield 0.00 0.001 -0.019 7.025 0.000 0.007 0.803
0.10 0.259 0.242 8.222 0.000 -0.063 0.000
0.20 0.115 0.095 6.404 0.000 -0.043 0.020
0.50 0.000 -0.026 2.581 0.000 -0.001 0.968
0.75 0.006 -0.030 1.676 0.008 0.007 0.685

harvested area 0.00 0.003 -0.017 6.378 0.000 0.011 0.685
0.10 0.275 0.259 7.719 0.000 -0.077 0.000
0.20 0.170 0.152 5.310 0.000 -0.046 0.004
0.50 0.002 -0.023 1.688 0.000 0.003 0.759
0.75 0.052 -0.004 1.559 0.000 -0.008 0.348

Soybean
production 0.00 0.000 -0.020 6.385 0.000 -0.002 0.936

0.10 0.372 0.358 7.446 0.000 -0.079 0.000
0.20 0.123 0.103 5.181 0.000 -0.043 0.017
0.50 0.041 0.011 1.615 0.000 0.014 0.246
0.75 0.002 -0.044 1.485 0.001 -0.002 0.853

yield 0.00 0.002 -0.018 5.998 0.000 0.007 0.774
0.10 0.336 0.321 7.312 0.000 -0.077 0.000
0.20 0.086 0.066 4.679 0.000 -0.029 0.045
0.50 0.008 -0.021 1.535 0.000 0.005 0.604
0.75 0.008 -0.047 1.263 0.000 0.003 0.712

harvested area 0.00 0.015 -0.005 6.561 0.000 -0.022 0.385
0.10 0.476 0.465 7.706 0.000 -0.103 0.000
0.20 0.208 0.190 5.098 0.000 -0.058 0.001
0.50 0.165 0.138 2.466 0.000 -0.027 0.019
0.75 0.000 -0.045 1.204 0.000 0.000 0.980

Wheat
production 0.00 0.042 0.023 4.199 0.000 0.027 0.146

0.10 0.006 -0.017 4.551 0.000 -0.007 0.607
0.20 0.020 -0.003 4.224 0.000 -0.016 0.358
0.50 0.074 0.047 3.475 0.000 -0.028 0.108
0.75 0.050 0.006 2.016 0.000 -0.015 0.295

yield 0.00 0.006 -0.014 4.158 0.000 0.011 0.586
0.10 0.245 0.228 5.092 0.000 -0.055 0.000
0.20 0.031 0.009 3.037 0.000 -0.017 0.247
0.50 0.005 -0.027 1.765 0.000 -0.005 0.692
0.75 0.004 -0.041 1.150 0.000 0.002 0.759

harvested area 0.00 0.010 -0.009 4.149 0.000 0.013 0.474
0.10 0.176 0.158 5.055 0.000 -0.046 0.003
0.20 0.159 0.139 4.428 0.000 -0.039 0.007
0.50 0.143 0.114 3.047 0.000 -0.029 0.033
0.75 0.191 0.144 1.995 0.000 -0.026 0.061

Table 4.16: Summary statistics for the linear models of the trends in number of shocks over time
(Figure 4.9) for di↵erent values of the frequentist likelihood f (predictive ensemble).
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f R2 R2-adj intercept intercept.pval time time.pval

Maize
0.00 0.01 -0.01 20.03 0.00 0.05 0.56
0.10 0.40 0.38 24.54 0.00 -0.21 0.00
0.20 0.13 0.11 17.41 0.00 -0.10 0.01
0.30 0.03 0.01 12.02 0.00 -0.05 0.25
0.40 0.00 -0.02 8.51 0.00 0.00 0.94
0.50 0.01 -0.01 5.62 0.00 0.02 0.52
0.75 0.04 0.02 2.23 0.01 0.03 0.19
0.90 0.00 -0.03 1.88 0.00 0.00 0.84

Soybean
0.00 0.00 -0.02 18.94 0.00 -0.02 0.82
0.10 0.56 0.55 22.59 0.00 -0.26 0.00
0.20 0.29 0.27 14.93 0.00 -0.13 0.00
0.30 0.06 0.04 9.10 0.00 -0.05 0.09
0.40 0.01 -0.01 6.02 0.00 -0.02 0.43
0.50 0.01 -0.01 4.68 0.00 -0.02 0.50
0.75 0.00 -0.03 2.74 0.00 -0.01 0.75
0.90 0.00 -0.05 1.95 0.00 0.00 0.86

Wheat
0.00 0.02 0.00 12.51 0.00 0.05 0.33
0.10 0.20 0.18 14.71 0.00 -0.11 0.00
0.20 0.09 0.07 11.32 0.00 -0.08 0.04
0.30 0.04 0.02 8.67 0.00 -0.05 0.19
0.40 0.05 0.02 7.34 0.00 -0.05 0.16
0.50 0.04 0.01 6.55 0.00 -0.05 0.23
0.75 0.11 0.09 4.00 0.00 -0.04 0.05
0.90 0.09 0.05 3.14 0.00 -0.04 0.14

Table 4.17: Summary statistics for the linear models of the trends in number of positive and negative
shocks per crop over time, for di↵erent values of the frequentist likelihood f (predictive ensemble).



Chapter 5

Discussion and conclusions

In this thesis I have adopted a novel, empirical approach to the analysis of crop production and yield,

the impacts of climate on yield, and their potential implications for global food security.

I use the term global food security in reference to global crop production by the main producing areas

(baskets) in relation to global demand, and I focus on the three crops that represent the greatest

volume of traded production – wheat, soybean and maize. For practical reasons, my analysis does not

consider nutritional quality or a↵ordability, which are also important dimensions of food security, but

rather focuses on the most basic aspect, i.e. food supply.

My analysis decomposes food production into its two constituents: planted area, and crop yield per

unit area. The analysis has been made possible by (a) the existence of a comprehensive global data

set of planted areas and crop yields, which has enabled me to consider smaller and more climatically

coherent regions than the national or state level adopted by many published studies; and (b) the

advent of powerful machine learning techniques that can help to identify likely causal relationships.

Underlying my approach is the idea that in-depth study of observations over recent decades can

provide insights into the operation of the global food system in the real world. Results presented in

the thesis support this idea. They indicate that some statements in the recent literature regarding

climate-change impacts are simplistic, and in many cases biased towards specific regions, notably the

USA. The global reality, perhaps unsurprisingly, proves to be considerably more complex and nuanced.

167
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Main conclusions, and some broader inferences

1. There are many complementary ways to improve global food security. These include: potential

gains in resilience through diversification of the regions where particular crops are grown; risk

reduction through change of diets; reductions of food waste at all points in the supply chain;

redistribution of varieties; genetic improvements; and a focus on achieving a stable yield rather

than maximizing yield. I suggest that such developments could, collectively, produce gains in

food security far outweighing both any plausible population increase, and the potential negative

e↵ects of a warmer climate on yields.

2. The yield gap is a useful metric to indicate where improvements could be made. However,

variations in production (which are what matters, from the food-supply perspective) in general

are not well correlated with variations in yield. This decoupling is due to socio-economic factors,

including explicit policies, that can (and frequently do) produce large temporal variations in

planted areas of any given crop. It follows that food security is not just a matter of maximizing

yields. It is also a matter of providing conditions conducive to farmers growing a variety of

crops, across a wider range of countries and environments.

3. High levels of production of a crop in limited regions can amplify price “shocks”, which are

associated with serial correlation in commodity markets. Research aimed solely at maximizing

production in a given region could have perverse, negative consequences. Global food security

would be better served by more distributed measures aimed at stabilizing global markets. Finally,

there is a need for further research on the quantitative characterization of shocks in production

and how they are related to prices.

Implications of the research

Research presented in this thesis supports some statements found in the recent literature, but by no

means all. Here I summarize some main points of agreement and disagreement in order to situate this

work in the broader context of climate-impacts research.

I have emphasized that the risks to global food supplies are amplified by the extreme concentration

(that is, the allocation of a large acreage, relative to the world's total planted area) of crop production

in particular baskets. The major producing regions exert a huge leverage on global crop production.

It follows that (a) the traded volume of production risks not meeting the global demand, and (b) that
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people in low- and middle-income countries, with smaller production, live with an unnecessarily high

risk of food shortages. In Chapter 2, I showed that the risk, as measured by the variability in the

residuals of production, is mostly concentrated in a few baskets – and that these are also the regions

that have the highest mean production and yield. This finding is consistent with Ben-Ari & Makowski

(2014) and Ben-Ari & Makowski (2016), who also demonstrated the concentration of production, and

found a significant and positive relationship across regions between the mean yield and its variability.

The situation is extreme for maize, where yield variability is mostly contained in the USA basket –

which also contains the largest losses. Maize is the crop species that shows the largest inter-basket

di↵erences at the global scale, and the largest interannual variability in production. The concentration

of maize planting in regions showing a large interannual variability of yield increases the risk of negative

shocks to global maize production. This risk could be reduced: Ben-Ari & Makowski (2016), for

example, found that maize's allocation is far from being optimal.

For soybean, the global risk is again mostly contained in the USA, but Argentina and Southern

Brazil are also significant. Soybean and maize are generally planted in similar bioclimatic regions

(Ben-Ari & Makowski 2016); however, their responses to climate variability in regions outside the

USA are di↵erent, opening up the possibility that the concentration of risk could be alleviated by a

redistribution of their acreage.

Only wheat shows a more homogeneous spread of variability between regions. Unlike maize and

soybean, the wheat baskets showing the highest interannual variability in yield are not the regions

with the highest planted area of wheat. Another crucial di↵erence from maize and soybean is that

negative e↵ects of high temperatures, expressed by the ⌃KDD metric, are much less pronounced for

wheat. However, as with maize and soybean, wheat production could still benefit (in the sense of

bu↵ering the interannual variability of global total production) from a redistribution of production

areas, including increased acreage in India and China (Chapter 2, Section 2.4, Figure 2.10). Chapters

2 and 3 support and amplify the findings by Ben-Ari & Makowski (2014) and Ben-Ari & Makowski

(2016), that there is a potential to increase average production – without increasing either interannual

variability or average yield – by optimization of crop allocation in the world's most productive regions,

and redistributing acreage towards regions with a lower sensitivity to super-optimal temperatures.

Yield contrasts between regions can be explained to a significant extent by di↵erences in cropping

systems: topography, soil heterogeneity and erosion (Si & Farrell 2004, Amundson et al. 2015), in-
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tensification practices, inputs, irrigation, and mechanization of farming (Neumann et al. 2010). Yet,

when projecting the impacts of climate changes, much of the literature (especially the most highly cited

segments) focuses on temperature e↵ects rather than any other climatic and atmospheric influences

(solar radiation, precipitation, CO2, evapotranspiration) (Lobell & Field 2007, Lobell, Schlenker &

Costa-Roberts 2011, Lobell, Bänziger, Magorokosho & Vivek 2011, Iizumi et al. 2013, Schlenker et al.

2013, Butler & Huybers 2013, 2015, Tigchelaar et al. 2018); and cropping systems are largely ignored.

It certainly is important to consider temperature e↵ects: an increase in the incidence of super-optimal

temperatures is projected, and high temperatures negatively impact plant development through a

variety of mechanisms including reduced grain filling, increased water use and reduced fertility (Lobell

& Burke 2009, Jones 2013, Sánchez et al. 2014, Tigchelaar et al. 2018). It has been hypothesized that

the negative impacts of projected warming on yield will outweigh the negative e↵ect of precipitation

changes (Lobell & Burke 2008, Tigchelaar et al. 2018). It has also been proposed that contrasts in

yield and its interannual variability due to cropping systems will dwindle as yield gaps are reduced

(Grassini et al. 2013).

In this thesis I, too, have adopted a strong focus on temperature. However, my analysis has considered

a wider range of controls on crop yield. I have shown moreover that the negative e↵ect of high

temperature on crop yields is by no means universal, with di↵erent responses shown by di↵erent crops

and in di↵erent regions. In some cases, the impact of high temperatures is positive. Semenov (2007)

previously argued that a warmer climate might benefit crops whose phenological stages are mainly

determined by the temperature sums.

It follows that the appropriate strategy for plant breeding is not simply to try to increase heat tolerance.

Guilpart et al. (2020) supplies further support to the arguments that (a) a climate change-driven

increase in temperatures can have a positive outcome, depending on the crop and where it is growing,

and (b) there would be a benefit from diversification of the regions of production. Guilpart et al. (2020)

also showed that scenarios of moderate to intense climate change have the potential to “improve

Europe's soybean self-su�ciency” while having beneficial side-e↵ects, including a reduction of the

economic driving forces for deforestation and biodiversity in South America, and reducing fertilizer

use in Europe through the incorporation of a leguminous plant in crop rotations.

My results indicate that some high-profile projections of (negative) climate-change impacts on crop

yields are flawed, because they fail to consider the global picture. E↵ects of high temperatures and

drought on crop yields di↵er, sometimes in sign, among crops and regions. Heat deficits during
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the growing season can (for some crops and regions) be at least as detrimental as extreme high

temperatures. Crop yields in the real world are therefore likely to show gains as well as losses due to

climate change.

Further to the temperature impact, results from Chapter 3 show that longer dry periods have a

positive e↵ect on maize yields in Mexico, Brazil and Argentina. The same variable also stands out

when considered across baskets and crops. This (surprising) finding calls into question the common

view that regular precipitation provides the most favourable climate for crop growth. It contrasts with

the simplistic narrative that climate change means crop failure. It may be that the alternation of wet

days and longer dry periods is favourable to crop yield, at least up to a certain optimum.

Crop responses to heat stress and the results from chapters 2 and 3 suggest that there is a concentration

of risk in the most productive baskets. This situation potentially translates into an increase in the

exposure and sensitivity of the global food supply chain to production shocks, including those caused

by climatic events. Nonetheless, for the period considered (1961–2012) – a period that includes e↵ect

of a warming climate (Hansen et al. 2012, Huntingford et al. 2013, Lobell & Burke 2008, 2009, Lobell,

Schlenker & Costa-Roberts 2011, Butler & Huybers 2013) – I found no significant increase in the

incidence of major production shocks. This result applies for all three crops studied and in the two

approaches proposed to identify shocks (Chapter 4). There was however a positive trend in production

variability, as signified by less important shocks.

These findings are in line with Tigchelaar et al. (2018), who found no significant positive trend in

maize production shocks. These authors nonetheless asserted that future global warming (based on

scenarios and simulations of climate change) will lead to an increase in the “probability of synchronized

maize production shocks”. I will consider this conclusion further, as my analysis suggests that it is

not well-founded.

Biases in the current literature?

A key limitation of Tigchelaar et al. (2018) is that the future projection is based entirely on the maize

temperature-yield relationship as observed in the USA. I have shown in this thesis that except for

maize and soybean in the USA, the response to temperature is not a simple decline, and that the

e↵ect of warming can even be positive (e.g. South Africa, Chapter 3, Figure 3.3c). I have also shown

that the functional forms of the response to ⌃KDD for maize vary by region (Figure 3.3). Thus, for
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example, maize in the USA has an exponentially declining response to increasing ⌃KDD, while maize

in Brazil has a sigmoid response. Such di↵erences suggest that (a) the real-world response of yield

in the cultivated area may di↵er from responses measured under laboratory conditions or plot trials,

and (b) that yield responses can include plateaus – in other words, over some range of temperatures,

damage does not necessarily increase as stress increases.

I suggest that Tigchelaar et al. (2018) exemplifies a bias in the current literature towards an excessive

focus on temperature e↵ects on maize in the USA, resulting in extrapolations to the rest of the world

that are not defensible in a global perspective. Tigchelaar et al. (2018) also make a general recom-

mendation of breeding for heat tolerance. This is a simplistic conclusion. It neglects the likelihood

of trade-o↵s (breeding for a specific trait is usually at the expense of yield). More fundamentally, it

assumes that the desired response to climate change is to develop crop varieties that allow the planted

area to remain in the same place.

Predicting future crop failures based on present interannual variability (Lobell, Schlenker & Costa-

Roberts 2011, Tigchelaar et al. 2018) is problematic more generally, for the following reasons.

• It implies that farmers will not adapt to changes in climate – for example, by growing di↵erent

crops that are better adapted to the changed climate. Moore & Lobell (2014) have shown that

long-term responses of crop yield to climate are broader than responses based on interannual

variability, supporting my argument against relying on short-term signals (to which farmers

cannot adapt) to predict longer-term impacts.

• It disregards the fact that statistical relationships solely based on temperature and precipitation

might not hold under future conditions. These include higher CO2 (allowing water saving in all

rainfed crops, including C4 crops such as maize, and increasing the productivity of C3 crops) and

di↵erent precipitation regimes, such as projected increases in the length of dry periods, which

may sometimes be beneficial (Chapter 3).

• It does not factor in regionally specific crop responses, and ignores the heterogeneity of climatic

responses shown by the data from di↵erent regions (Chapter 3).

• It encourages a focus on yield, and explaining production as a function of yield. Findings in this

thesis highlight the fact that variations in planted area can be equally important in explaining

variations and shocks in crop production (Chapters 2 and 4).
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The importance of planted area

The decomposition of agricultural production by leverages (Chapter 2) and shocks (Chapter 4) has

provided clear evidence that interannual variability in production is not only driven by yield. For

many baskets, interannual variability is driven by a positive covariance of yield and planted acreage

(harvested area being a fairly constant fraction of the planted acreage), especially for maize and

wheat. In other baskets, such as Indonesia and Mexico, gains and losses are primarily driven by area

rather than yield. For the largest shocks, yield-driven shocks and area-driven shocks are independent

events. Therefore, any analysis of systemic risk should include consideration of the drivers of planting

decisions, with equal weight to the drivers of crop yields.

Harvested area is determined not only by climatic suitability, but also by socio-economic factors.

Production of a given crop naturally tends to be concentrated in the regions that are suited for them

to be grown and where they have a competitive advantage (in terms of economics, as well as yield).

Policy can also drive planting. Agriculture is heavily subsidized, and interwined with policies, in

many countries. For example, the USA has declared agriculture a matter of national security. With

changes in climate, bioclimatic regions will shift, and other regions can become productive even as

some existing regions become less productive for a given crop. These shifts may be encouraged, or

discouraged, by political decisions.

Over the past 60 years agricultural production has increased to meet rapidly rising global demand,

with exponential expansion in many areas of the world (Chapter 2). Production dynamics (Chapter 2,

Figure 2.2) show a universal positive trend in production for all crops and almost no signs of levelling

o↵ during the period studied. The associated figures for trends in yield and acreage show that yield

has been increasing in all baskets (Chapter 2, Figures 2.12 and 2.13). Meanwhile, planted area is

levelling o↵ or even declining in many baskets (6 out of 11 for maize, 2 out of 7 for soybean, and 9

out of 10 for wheat). The implications of this phenomenon could be considered in one of two ways.

It could be that the potential for agricultural expansion lies in the largest producers, which are those

where the acreage is still increasing and that have the highest yield. Alternatively, however, there

may be a large potential for diversification in countries where the acreage is no longer increasing. This

possibility merits serious examination, because it could possibly allow the global food system to adapt

to climate change in a way that both decreases volatility in global food supplies, and avoids placing

excessive reliance on plant breeding for heat tolerance – which may be a misplaced strategy, as I have
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argued above.

In summary, agricultural production might be maximized by a precise matching of production areas

with regions of highest suitability for each crop (Beddow et al. 2010, Ben-Ari & Makowski 2014, 2016)

– but this is not the optimal strategy in terms of food security, because the resulting concentration of

production increases systemic risk. The results presented in this thesis highlight the potential benefits

of promoting yield and acreage stability over maximizing output. The decomposition of year-by-year

production changes into leverages, as well as the analysis on shocks, highlighted the importance of

yield, but also showed the importance of the positive covariation of yield and cultivated area. This

result points to a potential to stabilize yield through a better planning of crop rotations to maintain the

total planted area in the baskets. In principle, incentives could be applied to decorrelate rotations from

global or regional market prices. But this is a hypothetical scenario, which presumes that scientific

analysis could translate into real-world economics and politics.

As shown in the trend analysis (Chapter 2, Section 2.3.1), there has been an explosion of agriculture

through the world; crops have become a traded commodity; infrastructures, developed around spe-

cific crops, limit flexibility; and other factors including national self-su�ciency, land tenure systems,

planning regulations, and measures to protect or increase biodiversity all come into play. There is no

internationally agreed agricultural policy, beyond trade agreements or market regulations that are not

primarily aimed at promoting food security. Agricultural insurance is currently the least developed

field of all insurances; the protection gap is the highest of any insured sector; and country-specific reg-

ulations make it virtually impossible to work toward an international solution. Yet my analysis leads

inexorably to the conclusion that international coordination could promote a more e↵ective approach

to climate-change impacts than relying on plant-breeding strategies that focus on adaptation in situ

to rising temperatures.

Limitations, and potential for future research

The decomposition of agricultural production time series into yield and area components is a novel

feature of this thesis. I have shown that part of the interannual variability in production is rooted in the

covariation of yield and harvested area, while major shocks are usually attributable to either one or the

other. This is a new finding, although some authors have touched on it (e.g. Lesk et al. (2016)). This

research could be extended e.g. by combining the leverage methods with yield variance decomposition



175

into three sub-components, as proposed by (Ben-Ari & Makowski 2014), to account for the spatial

spread of global production in the leverages; and by running the methodology developed for shocks

on the leverage components themselves, which could bring further granularity to the understanding

of shocks.

The use of machine learning to capture complex relationships is not new, but to my knowledge there

has been no previous attempt to use machine learning specifically to investigate the importance of

agroclimatic variables on yield. My analysis of potential causes focused on climatic influences on yield,

rather than on economic and policy influences on planted area. Such influences could be quantified

by means of national or subnational metrics such as the level of subsidies, the size of landholdings,

and the proportion of agriculture in gross domestic product. This could be a potentially fruitful

area for quantitative social-science research on the global food system and might help to illuminate,

for example, why basket-scale responses of production to climate variability can be di↵erent from

theoretically expected responses.

The Chapter 4 presents a novel methodology. To the best of my knowledge, this is the first application

of ensemble modelling and frequentist likelihood characterization of interannual variability and shocks

in agricultural production. An obvious limitation is the method's dependence on the subjective choice

of models, and its reliance on the “widsom of crowds” assumption that an ensemble of disparate

models together performs better than any single model. However, this chapter showed a number of

apparently robust characteristics of the time series analysed, and highlighted the important di↵erence

between attribution with and without hindsight. The methodology could certainly be refined, and

extended to considering time series together using multivariate techniques.
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