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A B S T R A C T 
 

Antibiotic-resistant bacteria have proliferated at an alarming rate as a result of the extensive use of 
antibiotics and the paucity of new medication research. The possibility that an antibiotic-resistant 
bacterial infection would progress to sepsis is one of the major collateral problems affecting people 
with this condition. 31,000 lives were lost due to sepsis in England with costs about two billion pounds 
annually. This research aims to develop and evaluate several classification approaches to improve 
predicting sepsis and reduce the tendency of underdiagnosis in computer-aided predictive tools. 
This research employs medical data sets for patients diagnosed with sepsis, it analyses the efficacy 
of ensemble machine learning techniques compared to non-ensemble machine learning techniques 
and the significance of data balancing and Conditional Tabular Generative Adversarial Nets for data 
augmentation in producing reliable diagnosis. The average F Score obtained by the non-ensemble 
models trained in this paper is 0.83 compared to the ensemble techniques average of 0.94. Non- 
ensemble techniques, such as Decision Tree, achieved an F score of 0.90, an AUC of 0.90 and an 
accuracy of 90%. Histogram-based Gradient Boosting Classification Tree achieved an F score of 
0.96, an AUC of 0.96 and an accuracy of 95%, surpassing the other models tested. Additionally, 
when compared to the current state of the art sepsis prediction models, the models developed in this 
study demonstrated higher average performance in all metrics, indicating reduced bias and improved 
robustness through data balancing and Conditional Tabular Generative Adversarial Nets for data 
augmentation. The study revealed that data balancing and augmentation on the ensemble machine 
learning algorithms boost the efficacy of clinical predictive models and can help clinics decide which 
data types are most important when examining patients and diagnosing sepsis early through intelligent 
human-machine interface. 

 
 

1. Introduction 
Sepsis is a severe illness which is developed when the 

human body’s reaction to a septicity leads to tissue damage 
and organ failure. For prompt and efficient treatment of 
sepsis, early detection is essential, since the mortality rate 
rises considerably with delayed diagnosis [1]. However, 
sepsis may be difficult to diagnose due to its broad and 
often mild symptoms and comorbidities [1]. Traditionally, 
sepsis has been diagnosed by clinical evaluation, laboratory 
testing, and imaging investigations. Research has been done 
in monitoring patients with sepsis using wearable sensor 
monitors in low- and middle-income countries [2]. Despite 
the fact that these techniques may give useful information, 
they may not always be adequate to provide an accurate 
diagnosis [3]. By examining a higher number of 
characteristics and using the power of data-driven 
decision-making, machine learning techniques, such as 
ensemble classifiers, have the potential to increase the 
accuracy of sepsis diagnosis [4]. Ensemble classifiers 
combine the predictions of numerous separate classifiers to 
provide a more accurate and dependable forecast [5]. 
Nonetheless, an imbalance in the class distribution in the 
data might impair the performance of ensemble classifiers 
[6]. Data balancing strategies, such as oversampling and 
under sampling [7], modify the number of samples in each 
class to enhance the classifier’s capacity to learn from the 
data [8]. This research work will discuss 

 

 

the preparation of raw data, the generation of training and 
testing data, as well as the implementation, training, and 
visualization of a sepsis prediction model based on various 
methodologies. 

This work is organized according to the following 
sections: Section 2 will analyze the related literature review 
on sepsis, its risk factors, and biomarkers. In addition, 
research on ensemble classifiers in the medical area will be 
examined. In Section 3, the utilized data set, its 
modifications, and its limits and limitations will be 
addressed in more depth. We provide details of the 
employed machine learning strategies to solve the 
classification issue and describe the models’ architecture. 
In Section 4, the results and comments will be dissected 
and analyzed to offer a fuller picture of the findings of the 
research. In Section 5, based on the study’s results, a 
variety of conclusions and recommendations will be 
presented. 

 
2. Related Work 

Several research studies have investigated the use of ma- 
chine learning techniques, especially ensemble classifiers, 

in the diagnosis of sepsis. For instance, Fleuren et al. [9] 
conducted a comprehensive assessment of machine learning 
algorithms for sepsis detection and discovered that ensemble 
classifiers performed the best among the methods evaluated. 

Several variables may influence the efficacy of ma- 
chine learning approaches for sepsis detection, including the 
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Nomenclature 

𝛼 Intercept of  linear equation  HGBC  Histogram Gradient Boosting Classifier 

𝛽 Gradient of  linear equation  HR  Heart Rate 

𝑋 Independent variable  ICULOS  Intensive Care Unit  Length  of  Stay 

𝑥𝑖 Distance of  the  𝑖 th  instance  KNN  K Nearest Neighbors 

𝑌 Binary target variable  LDA  Linear Discriminant Analysis 

𝜃𝑖 Class of  the  𝑖 th  instance  LR  Logistic Regression 

ADA  AdaBoost Decision Tree  MLP  Multilayer Perceptron 

AUC  Area Under Curve  NSGA‐II  Non‐Dominated Sorting Genetic Algorithm II 

BC  Bagging  Classifier  PTT  Partial Thromboplastin Time 

BUN  Blood Urea Nitrogen  QDA  Quadratic Discriminant Analysis 

CERF  Cox Enhanced Random Forest  Resp  Respiratory  rate 

DBP  Diastolic Blood pressure  RFC  Random Forest Classifier 

DT  Decision Tree  RMSE  Root Mean Square Error 

ETC  Extra Trees Classifier  SC  Stacked Classifier 

GAN  Generative Adversarial Network  SVC  Support Vector Classifier 

GBC  Gradient Boosting Classifier  SVM  Support Vector Machine 

Hct  Hematocrit  VC  Voting Classifier 

Hgb  Hemoglobin  WBC  White Blood Cell Count 

 
 

amount of data used for training, the model’s complexity, 
and the presence of noise or missing values in the data. 
Data balancing strategies, such as oversampling and under- 
sampling, have been suggested as a means of addressing 
class imbalance and enhancing the performance of machine 
learning systems for sepsis detection [7]. 

Mohan et al. [10] examined data from individuals 
diagnosed with sepsis who were monitored from the time 
they were admitted until either they passed away or were 
discharged from the intensive care unit over a two-year 
period. Their purpose was to aid in the development of im- 
proved algorithms by providing observation that resulted in 
mortality from septic shock. Machine learning was utilized 
by Mao et al. [11] To develop a prediction model utilizing 
just six routinely assessed and monitored vital indicators in 
medical institutes. 

2.1. Risk Factors of Septic Shock 
Studies have not shown that demographic factors have a 

major role in septic shock diagnosis. Age, gender, and length 
of stay are the three most significant demographic variables 
included in the data. In the majority of instances, age may 
be utilized as a significant predictor of sepsis risk. [12]. 

2.2. Biomarkers of Septic Shock 
There have been several studies that have investigated the 

use of biomarkers for the diagnosis and prognosis of septic 
shock. For example, Lu et al. [13] developed a predictive 
model that used a combination of biomarker parameters to 
predict the risk of death in patients with septic shock. The 

scientists showed that the model had excellent 
discrimination and calibration and may be used to identify 
trauma patients at high risk for sepsis. Dellinger et al. [14] 
identified several biomarkers that have been proposed as 
indicators of septic shock, including procalcitonin, 
interleukin-6, and lactate. These biomarkers have been 
shown to be associated with the severity and prognosis of 
septic shock and may be useful for identifying patients at 
high risk of developing the condition. 

Other studies have investigated the use of biomarkers 
in combination with clinical and laboratory parameters to 
improve the accuracy of septic shock diagnosis. To aid in 
the diagnosis of sepsis, researchers have developed a Lateral 
Flow Solid-Phase RPA for Sepsis-Related Pathogen 
Detection [15]. Quantitative identification of lactate using 
optical spectroscopy to help in continuous monitoring of 
serum lactate levels as a precondition for sepsis-prone 
patients requiring intensive care [16]. 

2.3. Ensemble Classifiers 
Ensemble classifiers are classifiers which create a 

collection of hypotheses before combining them through 
weighted or unweighted voting [17]. The outcome of 
merging the separate selections is an improvement in 
overall performance and a more precise categorization 
[18]. 

There are three issues that diminish the performance of 
single classifiers: statistical, computational, and 
representational; These issues are handled by merging the 
findings and obtaining a better approximation [17]. 

The computational issue arises when the classification 
algorithm employs local optimization approaches that might 
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Figure 1: The developed approach for sepsis analysis. 

 

get stalled at local minima (optima), preventing the process 
from discovering the optimal hypothesis [18]. 

2.4. Ensemble Classifiers in medicine 
Lavanya and Rani [19] created a bagging-based 

ensemble classifier that was constructed from a collection 
of decision trees to increase the prediction accuracy of 
breast cancer detection. For the diagnosis of cardiac 
autonomic neuropathy, Kelarev et al. [20] utilized 
ensemble classification, and notably the Random Forest 
(RF), to produce a model with better abilities in prediction 
than those built on single classifiers. 

For the purpose of predicting cancer survival, Gupta 
et al. [21] developed three models, each consisting of 400 
SVM ensembles. The research found that using ensemble 
classifiers might improve prediction over traditional 
techniques [21]. Yao et al. [22] introduced a Random 
Forests- based ensemble classification method for predicting 
protein- protein interaction (PPI) networks. 

2.5. Conditional Tabular Generative Adversarial 
Networks 

Data generation plays a crucial role in various domains, 
including computer vision, natural language processing, 
and healthcare. Traditional approaches often rely on hand- 
crafted rules or statistical methods, which may not capture 
the complex underlying patterns of the data. Conditional 
Generative Adversarial Networks (cGANs) offer a 
promising solution by utilizing deep learning techniques to 
generate synthetic data that possesses desired 
characteristics [23]. 

Conditional Tabular Generative Adversarial Nets (CT- 
GAN) is a powerful technique in the field of generative 
adversarial networks (GANs) that specifically focuses on 
generating synthetic tabular data [24]. GANs have gained 
significant attention in recent years for their ability to 
generate realistic data that closely resembles the 
distribution of the training data. However, traditional 
GANs are not well- suited for tabular data generation due to 
the structured nature of such data. CTGAN addresses this 
limitation by incorporating conditional generation, 
allowing users to specify the desired attributes or 
conditions of the synthetic data [25]. This enables CTGAN 
to generate synthetic tabular data 

that not only resembles the distribution of the training data 
but also follows specific attributes or conditions set by the 
user [25]. This makes CTGAN a more suitable option for 
generating tabular data compared to traditional GANs. With 
the ability to generate realistic and customizable synthetic 
data, CTGAN opens up possibilities for various applications 
such as data augmentation, privacy preservation, and data 
analysis. 

 
3. Materials and Methods 

The proposed medical approach for sepsis analysis is 
illustrated in Figure 1. The acquired data sets go through the 
cleaning stage, where the missing parameters are identified, 
and missing data points are rectified. Following the 
dimensionality reduction, the data is split into training and 
testing data sets where several approaches will be 
evaluated. Different experiments have been performed to 
achieve the best approach structure that can generate the 
best performance. 

3.1. Non-Ensemble Machine Learning Algorithms 
3.1.1. Multinomial Logistic Regression 

Multinomial regression is a variant of the binary 
regression model, in which both use logit analysis or 
logistic regression (LR) to get their conclusions. Logit 
analysis is a complement to linear regression and is 
especially beneficial when the response is a categorical 
variable. 
For a binary target variable Y and an Independent Variable 
X, consider the following: 
let: 𝜋(𝑥) =𝑝(𝑌 = 1∣𝑋=𝑥) = 1−𝑝(𝑌 = 0∣𝑋=𝑥), The logit of 
this probability may be expressed in linear form using the 
logistic regression model. 

log ( 
 𝜋(𝑥)  )=𝛼+𝛽𝑥, (1) 

with odds = exp(𝛼+𝛽𝑥), 

The value of 𝛽 is determined by the gradient of the S- 
shaped curve of 𝜋(𝑥). The curve is rising when 𝛽 is positive, 
while the curve is descending when 𝛽 is negative. The 
gradient’s strength is inversely proportional to the strength 
of 𝛽 [26]. 
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3.1.2. Support Vector Machine for classification 
To classify data, SVMs seek the hyperplane in a high- 

dimensional space that most clearly divides the classes [27]. 
Support vectors are the locations that are closest to the 
hyperplane, and the distance between the support vectors 
and the hyperplane is known as the margin. [27]. 

SVMs are particularly effective in cases where the 
number of dimensions is greater than that of the samples 
[27]. With the help of the hyperplane, the data may be 
projected into a lower-dimensional space, where the SVM 
can locate a separation border that was previously 
inaccessible [27]. The usage of support vector machines 
(SVMs) has spread across several fields, from text 
classification to picture classification to bioinformatics [27]. 

Table 1 
Non‐Ensemb le  Model Parameters 

 
 

Model  Hyperparameters 
 

 

LR  ‐ 
SVC  ‐ 
MLP  ‐ 
QDA  ‐ 
KNN  ‐ 
DT  ‐ 

 
 

 

knowledge included in the collection of correctly identified 
points. If 

3.1.3. Multilayer Perceptron 

An MLP is a neural network with numerous layers of 
linked "neurons," which are computational elements that 

𝑖 

we will call 

 

take in data, analyze it, and output a result [28]). Each neuron 
 

m 

layer below it and sends its output to all the neurons in 
the layer above it because the MLP’s layers are completely 

nearest neighbor to 𝑥 
𝑥 is determined to belong to the category 𝜃

′  
of its 

linked [28]. 

MLPs are often used for supervised learning tasks like 
classification and regression [29]. As part of their training, 
MLPs use optimization algorithms like stochastic gradient 
descent to fine-tune the weights of the connections between 
neurons in order to reduce the error between the expected 
and actual output [29]. Multiple-layer perceptrons, or MLPs, 
have been put to use in several fields, such as computer 
vision, NLP, and robotics [29]. 

3.1.4. Quadratic Discriminant Analysis (QDA) 
QDA is based on another technique known as Linear 

Discriminant Analysis (LDA), which is based on the 
assumptions that the data is normally distributed and that 
the classes have identical covariance matrices [30]. 
Different class covariance matrices are acceptable in QDA, 
which may sometimes lead to better performance [30]. 

The purpose of QDA is to discover the decision 
boundary that optimally divides the classes based on their 
means and covariances [30]. The quadratic discriminant 
function, which is a function of the sample features and the 
class means and covariances, determines the quadratic 
decision boundary, as opposed to the linear decision 
boundary used in LDA [30]. QDA has been employed in a 
broad variety of applications, including text classification, 
picture classification, and predictive modelling [30]. 

3.1.5. Nearest Neighbor Classification 
      In a collection of 𝑛 pairings where ( 𝑥1, 𝜃2) ,⋯,( 𝑥1, 𝜃2)  

is predetermined, 𝑥𝑖 takes values in an 𝑋 metric space where 

𝑑 is defined, and 𝜃𝑖 takes values in the {1, 2,⋯,𝑀} set. Every 
𝜃𝑖 is regarded as the indication of the class that the 𝑖th 
instance is a member of, and each 𝑥𝑖 indicates the outcome 
of a set of tests conducted on the individual. 

Given a new pair, (𝑥, 𝜃) in which only the measurement 
𝑥 may be observed, and it is wanted to estimate 𝜃 using the 

nearest neighbor 𝑥’𝑛. If 𝜃’𝑛≠𝜃. an error has occurred. Only 

the nearest neighbors classification is used by the NN rule. 
The remaining 𝑛−1 classifications 𝜃𝑖 are disregarded. 

3.1.6. Decision Tree 
A decision tree is a tree constructed using training data, 

where each leaf node denotes a label of a class and each 
internal node denotes a feature of the data. The classification 
is based on the feature values and the class labels of the 
training data. Decision trees are a popular machine learning 
method due to their interpretability and the ease with which 
they can be implemented [31] 

3.2. Non ensemble model parameters 
Table 1 illustrates the hyper-parameter information for 

the non-ensemble models in which we can see there have 
been no changes from the default parameters. 

3.3. Ensemble Machine Learning Algorithms 
3.3.1. Random Forest 

A random forest is a kind of ensemble machine-learning 
technique in which numerous decision trees work together 
to produce an outcome that is the average of the classes 
produced by the individual trees. [32]. The individual 
decision trees are trained on different parts of the training set 
and use a random subset of the features to make predictions, 
resulting in a diverse set of trees that are able to capture 
different patterns in the data [32]. The use of multiple trees 
allows the random forest to make more accurate 
predictions than any individual tree would be able to make 
on its own [32]. The algorithm’s error rate is proportional to 
the classification strength of each tree and the correlation 
between any two trees. Reducing the number of randomly 
selected qualities affects both the strength of each tree and 
the connection across trees, but increasing the number of 
randomly selected factors has the opposite effect [32]. 

in the MLP’s levels gets input from all the neurons in the 
(3) 

min 𝑑 (𝑥i , 𝑥ሻ
 
= 𝑑 ( 𝑥𝑛, 𝑥) 𝑖= 1, 2,⋯,𝑛. 

 

(2) 
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3.3.2. Extra Trees Classifier 
Extra trees, or extremely randomized trees, is a variant 

of the random forest algorithm [33]. Like random forests, 
extra trees are an ensemble method that consists of multiple 
decision trees. However, the decision trees in an extra 
trees’ classifier are trained using random thresholds for 
each feature, rather than using the best split found during the 
training process as in a standard decision tree [33]. This 
results in a greater diversity of trees in the ensemble, which 
can lead to improved generalization performance [33]. 

3.3.3. AdaBoost Decision Tree 
AdaBoost works by iteratively training weak classifiers 

and giving more weight to the instances that were 
misclassified in the previous iterations [34]. Weak 
classifiers are typically decision trees with a single split, 
known as decision stumps and the final strong classifier is 
the weighted sum of the weak classifiers, with the weight of 
each weak classifier being proportional to its accuracy 
[34]. AdaBoost has been shown to be a powerful and 
effective method for improving the performance of 
decision trees, especially when dealing with imbalanced or 
noisy datasets [34]. 

3.3.4. Bagging Classifier 
According to Breiman et al. [35], In the bagging machine 

learning ensemble approach, many models are trained on 
various randomly chosen portions of the dataset, and the 
models are then combined to create a prediction. Bagging 
is intended to lower the model’s variance by training the in- 
dividual models in parallel and then combining their 
predictions. This can lead to improved generalization 
performance, especially when the training data is noisy or 
has a high variance. Bagging can be applied to any 
machine learning algorithm, but it is particularly effective 
for decision tree- based models, which have a tendency to 
overfit the training data. 

3.3.5. Gradient Boosting Classifier 
The goal of gradient boosting is to sequentially add weak 

learners to the ensemble, in a way that corrects the mistakes 
of the previous models. This is done by fitting the new model 
to the residual errors of the previous model, rather than 
to the original response. The final model is the weighted 
sum of the individual trees, with the weight of each tree 
being determined by the loss function. Gradient boosting 
has been shown to be a powerful and effective method for 
improving decision tree-based model performance, and it 
has seen extensive usage. [36]. 

3.3.6. Histogram Gradient Boosting Classifier 
This classifier uses histograms to approximate the leaf 

values of the trees in the ensemble, rather than using exact 
leaf values as in traditional gradient boosting. This allows 
histogram gradient boosting to handle categorical features 
and large datasets more efficiently than traditional gradient 
boosting. In addition, histogram gradient boosting is more 
resistant to overfitting and can achieve higher predictive 
accuracy with fewer trees. Histogram gradient boosting has 

Table 2 
Ensemble Model Parameters 

 
 

Model  Hyperparameters 
 

 

RFC  criterion = "entropy", max_features=10 
ETC  ‐ 
ADA  ‐ 
BC  ‐ 
GBC  learning_rate = 1 
HGBC  learning_rate = 1 
SC  estimators = estimators 
VC  estimators = estimators 

 
 

 

been shown to be a fast and effective method for improving 
the performance of decision tree-based models, and has been 
used in a wide range of applications [37]. 

3.3.7. Stacked Classifier 
A stacked Classifier (SC) is a strategy for reducing the 

biases of estimators by merging them [38]. Specifically, the 
estimators’ outputs are stacked and fed into a single estimator 
to produce a final prediction. Cross-validation is used to train 
this final estimator [38]. The estimators used in this classifier 
will be comprised of the ensemble classifiers used in this 
research with its final estimator being the logistic regressor 
model. 

3.3.8. Voting Classifier 
Using the results of many base classifiers, a voting 

classifier makes a combined prediction. [18]. The final 
prediction is produced either by majority vote or by 
averaging the predictions of the basic classifiers, which 
may be trained using various algorithms and/or trained on 
separate subsets of the training data. [18]. When the base 
classifiers are varied and have varying strengths, a voting 
classifier may be utilized to increase the performance of a 
single classifier in a straightforward and effective manner 
[18]. The estimators used in this classifier will be 
comprised of the ensemble classifiers used in this research 
with its final estimator being the logistic regressor model. 

3.4. Ensemble model parameters 
Table 2 illustrates the hyper-parameter information for 

the ensemble models. 

3.5. Dataset 
The MIMIC-III dataset is a large database 

containing detailed information on patient demographics, 
vital signs, medications, laboratory test results, and clinical 
notes, among other things [39]. The MIMIC-III dataset is 
widely used in research on critical care and has been used to 
develop machine learning models for a variety of tasks 
[39]. 

The sepsis MIMIC-III dataset is a subset of the MIMIC- 
III dataset that includes only patients with a diagnosis of 
sepsis [1]. The sepsis MIMIC-III dataset includes detailed 
information on the clinical course of the sepsis, including the 
timing and dosage of interventions, as well as the patient’s 
outcomes [1]. The sepsis MIMIC-III dataset is often used 
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Figure 2: Dataset  features and  their usage  frequency  in current  research.  [9] 

 

in research on sepsis and has been used to develop machine 
learning models for predicting patient outcomes and 
identifying sepsis in real-time [1]. 

Patients were monitored from the moment they entered 
the ICU, when t=0 until they were removed from the ICU 
or died. The database comprised 4,683 people aged 15 and 
above who had sepsis or severe sepsis. These patients had 
8,696 admissions, 2,585 of which were due to septic shock. 
The data shown in Figure 3 illustrates the duration of time 
the patients examined in this data set were present, while 
Table 3 shows a summary describing the data set. 

3.5.1. Dataset Limitations 
The dataset is imbalanced with 2932 patients with a 

sepsis diagnosis whereas there are over 37000 patients 
without a sepsis diagnosis. A comprehensive analysis of the 
data set revealed that certain attributes are totally empty, 
indicating that if they are not eliminated, the training set 
will be misled 

Table 3 
Description of the Data Set 

 

Data Set  A  B  Total 

Patients  20,336  20,000  40,336 

Septic patients  1,790  1,142  2,932 
Prevalence  8.80%  5.70%  7.25% 
Rows  739,663  684,508  1,424,171 
Entries  5,536,849  4,950,064  10,486,913 
Density  of  entries  20.60%  19.10%  19.85% 

 

or an improperly functioning model would be generated an 
example of this is shown in Figure 4. 

3.5.2. Dataset Manipulation and Delimitation 
This dataset contains 2932 diagnosed sepsis patients 

compared to 37404 patients without a diagnosis. This is 
resolved by augmenting the sepsis patient data by generating 
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Figure 3: Duration of stay (All patients left, sepsis patients middle, non‐sepsis patients right) 

 

 
Figure 4: Missing vitals for a patient. 

 

2068 sepsis patients and then taking the first 5000 non- 
diagnosed patients and ignoring the remaining 32404 to 
prevent the dataset from prioritizing non-diagnosed patients 
during training. 

Researchers often encounter the difficulty of missing 
data. This dataset includes components with real number 
values, and missing data, which will be filled in using an 
interpolation function that substitutes NaN values with 
values that have no influence on the final result but optimize 
the model. The sum of all attributes will be used to calculate 
the fraction of missing data, and this parameter will be 
adjusted to generate the most effective models. 

The possibility of removing attributes from the training 
process will also be considered based on their correlation to 
the target variable as well as their frequency of use in current 
research as shown in Figure 2 

3.5.3. F score Recall and AUC for model selection 
The F score is a class-balanced accuracy metric since 

it represents the weighted harmonic mean of precision and 
recall. When false negatives and false positives are important 
in the prediction process, the F1-score is utilized. Current 
research shows that most sepsis prediction models for this 
data set are more adept at predicting non-diagnosed patients 
than diagnosed patients [4]. This is due to unbalanced classes 
and the fact that most instances in the data are classified 
as non-sepsis patients leading the accuracy of non-sepsis 
predicted cases to dominate the overall accuracy measure. 

Recall is an important metric for measuring a model’s 
ability to detect positive samples in which the higher the 
recall, the more positive samples are detected. For the 
purpose of machine learning in clinical settings, it can be 
argued that true positives are more important than true 
negatives as an undetected true positive can lead to a 
fatality whereas an undetected true negative is not fatal. 

AUC represents the area under the ROC (Receiver 
Operating Characteristic) curve, which plots the true 
positive rate against the false positive rate at different 
classification thresholds [40] 

3.5.4. Methodology Comparison 
The three works compared in this paper focus on 

predicting and diagnosing sepsis, but they differ in their 
approaches, methodologies, and evaluation metrics. While 
this research aims to improve sepsis prediction and reduce 
underdiagnosis through the use of machine learning 
algorithms. It evaluates ensemble and non-ensemble 
machine learning techniques, employs data balancing and 
augmentation through the use of CTGAN, and reports F 
score, AUC and accuracy as evaluation metrics. El-
Rashidy et al., [41] proposes a multi- stage model for 
sepsis prediction that combines NSGA- II, artificial 
neural networks, and deep learning models. It utilizes 
NSGA-II and neural networks to extract the optimal feature 
subset from patient data. The model consists of a deep 
learning classification model and a multitask regression 
model to predict sepsis, onset time, and blood pressure. It 
uses the MIMIC III real-world dataset and reports accuracy, 
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Table 4 
Attribute correlation  to sepsis diagnosis 

 

Variable  Correlation 

ICULOS  0.39 

Calcium  0.26 
BUN  0.22 
HR  0.21 
Resp  0.20 
Creatinine  0.18 
Temp  0.17 
Hgb  0.17 
Fibrinogen  0.16 
PTT  0.14 
Bilirubin_total  0.14 
Hct  0.12 
HospAdmTime  0.11 
WBC  0.10 
DBP  0.10 

 
Table 5 
Average Model Performance Comparison 

 

Correlation  F  score  Accuracy  Recall  AUC 
 

Top 15  0.89  88  0.89  0.89 

All  Included  0.89  89  0.89  0.89 

 

specificity, sensitivity, AUC, and RMSE as evaluation 
metrics. Darwiche et al., [4] focuses on developing an 
improved method for predicting septic shock. It trains an 
ensemble classifier using the MIMIC-III database and 
incorporates the Cox Hazard model to obtain a risk score. 
The Random Forest ensemble classifier is trained using this 
score and other features. Specific evaluation metrics are not 
mentioned, but the predictive accuracy of the proposed 
CERF method is compared to existing methods. Overall, 
each study presents a unique approach to sepsis prediction 
and diagnosis, show- casing different techniques and 
evaluation criteria. 

 
4. Results 

4.1. Correlation of Sepsis factors 
After quantitative analysis using the pandas Python 

library, we analyzed the dataset and produced Table 4 
which shows us the 15 variables with the highest 
correlation to a sepsis diagnosis. These correlation values 
can give more insight into the type of data to be collected 
for processing in order to aid diagnosis [42]. Table 5 
illustrates that the results attained by selecting the top 15 
correlated attributes for training produces lower 
performance versus selecting for all attributes. Thus, for 
the training and tuning of the final selected model we used 
models trained on all attributes regardless of correlation. 
The missing values in the data are also filled with the mean 
value of each attribute so as to make the data more 
quantitatively meaningful. 

Table 6 
Non‐Ensemb le  Model Performance Results 

 

Model  F Score  Accuracy  Recall  AUC 

LR  0.80  80  0.80  0.80 

SVC  0.79  79  0.79  0.79 
MLP  0.89  87  0.89  0.89 
QDA  0.82  82  0.82  0.82 
KNN  0.81  80  0.81  0.81 
DT  0.90  90  0.90  0.90 
Average  0.84  83  0.84  0.84 

 

4.1.1. Machine Learning Model Evaluation and 
Performance Analysis 

The code performs the training and testing of machine 
learning models to predict and evaluate sepsis. It uses a 
popular library called scikit-learn, which is widely used for 
machine learning in Python. The dataset is divided into two 
parts: a training set and a testing set. The training set is 
utilized in conjunction with 10-fold cross-validation to train 
the models. This approach enables a more efficient 
utilization of the available data, as all observations are 
utilized for both training and validation purposes [43]. 
Additionally, it is less susceptible to variations in the 
precise manner in which the data is partitioned, in 
comparison to alternative methods [44]. The testing set is 
used to evaluate the model’s performance. 

The code follows these steps: 

1. The dataset is prepared and split into input features 
(such as patient information) and the target variable 
(whether a patient has sepsis or not). 

2. using CTGAN the data is augmented to provide more 
data for training and testing. 

3. A portion of the dataset is set aside for testing the 
trained models. 

4. Different machine learning models, such as logistic 
regression, decision trees, and ensemble models, are 
trained using the training data. During the training 
process, the models are subjected to 10-fold cross- 
validation in order to mitigate potential sources of 
unreliability and bias. This approach aims to enhance 
the model’s ability to discern meaningful patterns 
from the available data and generate dependable pre- 
dictions. 

5. After training the models, their performance is 
evaluated using various metrics, including accuracy 
(how often the model is correct), sensitivity (how 
well the model detects positive cases), specificity 
(how well the model detects negative cases), and F-
score (a combined measure of precision and recall). 
These metrics help assess how well the models can 
predict sepsis. 

6. The evaluation results, such as accuracy, sensitivity, 
and specificity, are recorded for further analysis. 

4.2. Model Performance 
Table 6 displays that the Decision Tree model, with 

an accuracy of 90%, an AUC of 0.90, and a F score of 
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Figure 5: Average Performance 

 
 

Table 7 
Ensemble Model Performance Results 

 
 

Model  F  Score  Accuracy  Recall  AUC 

Table 8 
Histogram‐based Gradient Boosting Classification Tree L‐Rate 
Tuning 

RFC  0.95  94  0.95  0.95 
 L‐Rate  F Score  Accuracy  Recall  AUC 

ETC  0.93  92  0.93  0.92  0.10  0.95  95  0.95  0.95 
ADA  0.94  93  0.94  0.94  0.20  0.95  95  0.95  0.95 
BC  0.93  93  0.93  0.93  0.30  0.95  95  0.95  0.95 
GBC  0.93  93  0.93  0.93  0.40  0.95  95  0.95  0.95 
HGBC  0.92  92  0.92  0.92  0.50  0.95  95  0.95  0.95 
SC  0.95  95  0.95  0.95  0.60  0.95  95  0.95  0.95 
VC  0.94  94  0.94  0.94  0.70  0.94  94  0.94  0.94 
Average  0.94  93  0.94  0.94  0.80  0.95  93  0.95  0.95 
      0.90  0.93  93  0.93  0.93 

 

0.90, is the best-performing model among the non-ensemble 
strategies. 

With a F score of 0.95, an AUC of 0.95, and an accuracy 
of 95%, Table 7 demonstrates that the stacking classifier 
model is the best-performing model among the ensemble 
strategies. 

4.3. Further Testing and Tuning 
The results of further testing and tuning for the histogram- 

based Gradient Boosting Classification Tree model are 
presented in Tables 8 and 9. The tables show the 
performance metrics, including F score, accuracy, recall, 
and AUC, for different values of the L-rate and 
regularization (L2) parameters, respectively. 

Table 9 shows the best-performing model from the 
ensemble techniques is the Histogram-based Gradient 
Boosting Classification Tree model with an F Score, 
Accuracy, Recall and AUC of 0.96, 95, 0.96 and 0.96 

respectively. 
Figure 6 shows the confusion matrix for the selected 

model in which we can see that the model is accurate at 
predicting sepsis and non-sepsis patients. 

The findings suggest that there is a possibility of 
enhancing the performance of the model by the 
modification of these hyperparameters. Additionally, it may 
be beneficial to prioritize minimizing instances of non-
detection of sepsis patients, even if it leads to an 
increase in the diagnosis of sepsis patients, as failure to 
do so could have severe consequences. These findings 
emphasize the importance of thorough testing and tuning 
of model hyperparameters to optimize the performance of 
the histogram-based Gradient 
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Figure 6: Confusion Matrix 

 
 

Table 9 
Histogram‐based Gradient Boosting Classification Tree 
regularisation Tuning 

Table 10 
Best Model Performance Comparison 

 

Technique  F  score  Accuracy  Recall  AUC 
 

 

 

 

 

 
the best performance is the HGBC model with 95% in 
Accuracy an F score of 0.96 a Recall of 0.96 and an AUC 
of 0.96. Based on these results the selected model for this 
paper is the HGBC model. 

 

Boosting Classification Tree model. Further exploration and 
fine-tuning of these parameters can lead to improved 
accuracy, F score, recall, and AUC, thus enhancing the 
model’s predictive capabilities and overall effectiveness. 

4.4. Average Performance Comparison 
Figure 5 illustrates the average performance of the 

models created in this paper compared to the CERF 
models created by Darwiche, [4] and the Ensemble DNN 
models by El-Rashidy [41]. The models in this paper 
produce higher average F scores, AUC and Recall showing 
the ability of the machine learning models to produce more 
robust pre- dictions with a lower risk of bias in prediction. 
This paper’s strengths lie in its robust performance, 
potential novelty in reintroducing machine learning 
techniques, and rigorous experimental evaluation. However, 
potential weaknesses include the need for further 
generalizability testing on diverse datasets and real-world 
scenarios, limited comparisons with existing state-of-the-
art methods, and a potential lack of interpretability in the 
proposed models. 

The DT and HGBC models are the only models in Table 
10 comparison using CTGAN for data augmentation with 

5. Conclusion 
The developed ensemble machine learning-based 

algorithm holds substantial importance in the clinical 
sector. By achieving improved efficacy in predictive 
models, it addresses the critical need for accurate disease 
diagnosis and prognosis. This algorithm can potentially 
revolutionize medical practices by assisting clinicians in 
making more informed decisions and providing better 
patient care. 

The research study highlights the necessity of employing 
generative data-balancing techniques such as CTGAN in 
the training process. Imbalanced datasets can lead to biased 
models and under-diagnosis of illnesses, which can have 
severe consequences in certain situations. By demonstrating 
the effectiveness of data balancing and augmentation, the re- 
search emphasizes the need for mitigating bias and ensuring 
accurate predictions in healthcare applications. 

The HGBC model with 95% Accuracy, an F score of 
0.96, a Recall of 0.96, and an AUC of 0.96 had the highest 
performance on the sepsis data. Based on these results, the 
selected model for this paper is the HGBC model, which 
combines multiple base classifiers to improve overall 
prediction performance. The findings provide valuable 
insights for 

L2  F Score  Accuracy  Recall  AUC
DT  0.90  90  0.90  0.90 

1  0.96  95  0.96  0.96  HGBC  0.96  95  0.96  0.96 
2  0.95  95  0.95  0.95  NSGA‐II[41]  ‐  91  0.92  0.91 
3  0.95  95  0.95  0.95  CERF[4]  0.9  95  0.89  ‐ 
4  0.95  95  0.95  0.95      

5  0.95  95  0.95  0.95      

6  0.95  95  0.95  0.95 
7  0.96  95  0.96  0.96 
8  0.96  95  0.96  0.96 

9  0.95  95  0.95  0.95 
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researchers and practitioners in selecting the most effective 
model for sepsis prediction. We suggest that future work 
should focus on gathering more data on risk factors to 
improve disease diagnosis. Additionally, parameter tuning 
is identified as a crucial step to enhance the effectiveness 
of the models. By exploring different datasets, processing 
techniques, and algorithms, the research encourages further 
validation and fine-tuning of predictive models in order to 
optimize their performance. 

The research holds the potential to significantly impact 
clinical practice by providing an effective computer-aided 
medical prediction approach. The developed algorithm, 
coupled with intelligent human-machine interfaces, can aid 
clinicians in early disease detection and improve patient 
outcomes. The research lays the foundation for further 
advancements in computer-aided diagnostics and 
personalized medicine. 
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