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Fernando S. Oliveira, ESSEC Business School, Oliveira@essec.edu 

 

 

Abstract: We analyze how to develop an agent-based system in which agents evolve 

co-evolutionary endogenous rules of behavior by using best response and emotions. 

We show that best response is not sufficient to define complete and consistent rules 

of behavior and we prove that the use of emotions, which complement reason, is 

necessary to learn rules of behavior. We model four different emotions (apathy, 

patience, anger and confidence) which enable the agent to deal with the rewards and 

with others. We propose an algorithm to model automata-based systems 

incorporating rationality and emotions. 
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1. Introduction 

Since the foundation of social sciences with Adam Smith it has been argued that emotions are 

an important determinant of human behavior (Ashrat et al., 2005), even though the 

development of economics has been mainly focused on the rational side of behavior. 

Furthermore, it has been shown by neuroscience that emotions and sentiments play an 

important role in the way people relate to each other and in the processes defining rational 

behavior (Damasio, 1994; Fiedler and Bless, 2000; Capra 2004; Rosati et al., 2007). 

Moreover, the converse is also true, as the ability to explain rationally an event has an impact 

on emotions, e.g., Lazarus (1991). 

For this reason, researchers in artificial intelligence are studying: the interaction between 

emotions and decision making (e.g., Frijda and Swagerman, 1987; Botelho, and Coelho, 

2001; Breazeal, 2002); the development of agents that provide the illusion of life (e.g., Bates, 

1994; Pozanski and Thagard, 2005), that can interact with humans (e.g., Nicholson et al., 

1998; Picard, 2000; Murphy et al., 2002; Gmytrasiewicz and Lisetti, 2002; Marinier and 

Laird, 2004), that can understand the sentiments and mental processes of others (e.g., Carmel 

and Markovitch, 1998; Weld, 1999), and that have “moral sentiments”  (e.g., Bazzan et al., 

2002). 

In this article we study situations in which the agents have incomplete information and, in 

this context, analyze how rationality and emotions are used to learn rules of behavior. We 

show that reason, by itself, may fail to produce rules of behavior for three motives: a) it 

cannot be used to chose an action when there is no information on how the opponents or the 

environment respond; b) it is not useful when the agent has no impact on the system through 

unilateral actions; c) it cannot be used to decide when to change behavior.  
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We test four different emotions as a way to fill the gap left open by rationality. These 

emotions are anger, e.g., Zizzo (2003) (the agent punishes or threats to punish his opponents 

when the outcome of the system is not desirable for him), apathy (the agent does not respond 

to the rewards received from the system), confidence, e.g., Rothovius (2007) (the agent does 

not follow the policy recommended by best response as he believes that, instead, others will 

adapt to his behavior), and patience, e.g., Rosati et al. (2007) (the agent attempts to reward 

his opponents if they change their behavior in order to benefit the community). We chose 

these four emotions as they directly relate to the way the agents act, deal with rewards 

(apathy and patience) and with others (anger and confidence).  

Section 2 gives a general background on automata systems. Section 3 shows how emotions 

are necessary, together with reason, to define rules of behavior. Section 4 presents the 

algorithm used to model the agent-based system. Section 5 presents the computational results 

and Section 6 concludes the paper. 

2. Background on Agent-Based Automata Systems  

A finite automaton (Definition 2.1) is a decision rule consisting of a finite set of states, a 

transition function (which defines the transition between states) and a behavioral function 

(defining how the agent behaves in each state). Each agent i holds a product automaton Pi 

(Definition 2.2) which specifies how the agent models his opponents behavior. An automata 

system (Definition 2.3) describes how agents interact, e.g. Hopcroft and Ullman (1979). 

Definition 2.1: A finite automaton  is a 6-tuple in which  stands 

for the finite non-empty set of internal states of i,  is the initial internal state,  is a non-

empty set of possible actions of agent i, Zi represents a finite non-empty set of possible 
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outcomes of the system,  is a transition function  and  is a behavioral 

function  associating one action with each possible internal state. 

Definition 2.2: The product automaton  represents the model 

the agent i holds of the system. 

Definition 2.3: An automata system is a 5-tuple  in 

which N denotes the number of agents,  is dependent on the actions of each agent, 

,  represents the utility function of agent i, i.e., it is the payoff 

an agent i receives from his action,  represents the agent i’s actions and, for all , 

the action  represents his opponents’ actions.   

From Definition 2.3 it follows that, in a situation with incomplete information, the outcome 

received by an agent is a function of his actions and it is different for each one of them, as 

each agent receives his own outcome. In summary, the interaction between the different 

automata in the system can be described as follows. At stage 1 each agent i plays . At 

a stage t , after receiving an outcome , the state of automaton Ai 

changes from the state  to the state . Then, each agent i chooses a new move, 

.  

In this article we define rationality as the ability to compute the optimal policy by best 

response, Definition 2.4. In automata systems this is achieved by the computation of the best 

response automaton, i.e., a finite automaton that maximizes the total of discounted rewards, 
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e.g. Gilboa (1988) and Banks and Sundaram (1990). In this optimization problem the 

decision variables are agent i’s actions in each state of the product automaton.  

Definition 2.4: Let  represent agent’s i discount factor at time j. In an evolutionary N-

agent automata system each agent aims to maximize the present value of his expected utility, 

i.e., , by choosing his automaton, . 

3. Rationality and Emotions (Anger, Apathy, Confidence, and Patience) 

Next, we define closed automaton (Definition 3.1) which, as shown in Proposition 3.1, does 

not follow from rational choice, i.e., best response.  

Definition 3.1: A finite automaton  is closed if for every state in 

 and every possible reward  there is a transition function  defining the 

subsequent state of the automaton. 

Proposition 3.1: In an automata system with incomplete information best response builds an 

automaton that is not closed. 

Proof. Let  represent agent i’s product automaton. From best 

response, Definition 2.4, it follows that for each state  we choose an action  such 

that . Hence, for each  only the 

optimal action  is defined, and therefore the automaton is incomplete.■ 

There are two main reasons why we need to use emotions to produce rules of behavior: we 

need them to close the automaton (as proved in Proposition 3.1) and to improve coordination 
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among agents when best-response leads to undesirable equilibria that cannot be avoided by 

unilateral actions (i.e., the avoidance of this equilibrium requires behavior coordination 

among agents).  

Let us start by analyzing three different emotions (apathy, patience and anger) that are 

sufficient to close an automaton (we call this the closing function) and can be used when best 

response fails to avoid undesirable equilibria (we call this the adaptation function). It is 

assumed that the adaptation function is applied after best response and the closing function 

have been used. 

When performing the closing function, the emotions are used as follows: a) Apathy, 

, in this state, the automaton always plays the same action independently of the 

rewards received. b) Patience, , in which  is such that  maximizes his 

opponents’ rewards. c) Anger, , where  is a state such that  aims to 

minimize the opponents’ rewards.  

The emotions’ adaptation function can be summarized in the following way: a) Apathy, the 

agent keeps the same behavior  independently of the rewards received. b) 

Patience, the agent chooses , increasing the possible rewards of his 

opponents. c) Anger, the agent punishes his opponent’s deviation by choosing actions that 

minimize their rewards, .  

Another issue that cannot be solved by best response alone arises when an agent chooses 

between adapting to others and waiting for others to adapt to his behavior: each agent decides 

between following best response (optimizing his behavior to his perceptions Pi of the 

automata held by his opponents) or waiting for the other agents to adapt to his behavior. We 
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propose that a fourth emotion (Confidence, Definition 3.2) is important in this case to guide 

the agent’s actions, allowing him to gain credibility (as in Crandall and Goodrich, 2004), and 

to impose the agent’s behavior on others, as best response behavior (if leading to frequent 

automaton switching) decreases the agent’s credibility.  

Definition 3.2: Confidence: an agent i keeps the same automaton, i.e., , not 

adapting by best response, i.e., .  

Let  and  represent the outcomes received by agent i at iteration j, 

respectively by following best-response (i.e., rationality) and by keeping the same automaton 

(i.e., by being confident about his current strategy). Proposition 3.2 shows that, under certain 

circumstances, confidence is necessary for maximizing the present value of the utilities. 

Proposition 3.2: Confidence is a necessary condition for an agent i to maximize 

 if the expected payoff of playing best-response is not higher than the 

expected payoff of keeping the same automaton, i.e., 

. 

Proof. Let  stand for the best-response strategy against the product automaton , 

. Assume that , then agent i expects 

, i.e., he expects best response to lead to 

increased utility. By keeping  he enhances the reputation of his behavior, as for any agent 

 the product automaton depends on the automata used by i. If these automata are 
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stable then  is stable as well. Then, agent j chooses  adapting his behavior 

to agent i’s automaton, , changing the outcomes received by agent i from  to , and 

increasing i’s present value of utility as 

.■  

4. The Evolutionary Automata System and its Properties 

We now present the evolutionary automata system summarized in Table 4.1.  

Table 4.1. The Evolutionary Automata System 

Consider the following notation: : Discount factor for agent i; Di: Data collected by agent i 
during a cycle of interactions with others; : An action of agent i at stage t; : The reward 
of agent i at stage t; : The outcome of the system at stage t. 

While the last iteration is not reached 
 Step 1. Simulate a cycle of interactions 

Each agent makes a move given his current automaton  
    
Compute the new state and the reward of each agent  

   

Step 2. For each agent i infer the opponents’ behavior,  
Step 3. For each agent i compute the new automaton using RE(Ai, Pi, , ), Table 

4.2. 
 

In step 1 we simulate the interaction between the different automata used by the agents. In 

step 2, each agent models the current behavior of his opponents: we assume the agents have 

the ability to learn the correct model; Oliveira (2009) compares three possible algorithms that 

can be used in this task. In step 3, each agent, using the Rationality & Emotions (RE) 

algorithm presented in Table 4.2, computes the strategy to play against his opponents. 
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Table 4.2. Rationality & Emotions (RE) Algorithm, RE(Ai, Pi, , ) 

Consider the notation: Ai: The current agent i’s automaton, ;  
Pi: The product automaton; : Discount factor for agent i, ; Si: Optimal policies 
generated by the automaton Ai; : Optimal value of the automaton used by an agent i at 
time t. 
 
Repeat for each agent: 
Step 1. If the agent has confidence in his current automaton  

Return  and terminate  
Otherwise: go to Step 2  

Step 2. Compute the Algorithm Best-Response : 
2.1 Compute Si the optimal policy play against : 

 

2.2 Compute Ai from the optimal policy Si 
Let g represent the optimal policy such that 

  and   

The automaton Ai has the same number of states as ,  
Compute the initial state and action of Ai,  
Compute the behavior function: assign an action to each state of , 

  

Compute the transition function,  

Step 3. Complete the rule using the closing function of the emotions anger, apathy, and 
patience  

 
Step 4. Apply the adaptation function of the emotions anger, apathy, and patience 

 
 

The RE algorithm starts in Step 1 by applying the confidence emotion, Definition 3.2. Let i 

represent the confidence decay such that , and  represent the probability of using 
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confidence, . This means that an agent, after changing his behavior, 

waits for the other agents to adapt to his new automaton, changing strategy with a probability 

(1- ). Step 2: in step 2.1, having decided to change strategy, an agent computes his best 

response to the product automaton . In step 2.2 the agent builds his new automaton by 

making a one-to-one correspondence between his new automaton, , and the product 

automaton . This correspondence defines the transition function and the behavioral 

function for  that implement the optimal policy to play against . Step 3: the algorithm 

closes the automaton using the emotions: anger, apathy, and patience, 

getting . Step 4: if the agent perceives that best response is not enough 

to avoid an undesirable state, he can change the closed automaton by using the emotions 

anger, apathy, and patience, and deriving .  

5. Simulating the Agent-based Evolutionary Pie Sharing Problem 

We illustrate the concepts presented in this article using the pie sharing problem: each agent 

can bid for a given number of pieces of pie, receiving the number of slices requested if the 

total number of bids by all the agents is less than or equal to the number of slices available 

(and obtaining an utility equal to the number of requested pieces). Otherwise, if the total 

number of pieces requested in total is greater than the total number of slices available then no 

agent gets any piece of pie (obtaining a utility equal to zero).  

We exemplify this game with five agents and a number of pieces of the pie equal to eight and 

ten, in two different scenarios. The parameters are the number of possible slices an agent can 

ask for, , the discount factor = 0.9, and the confidence decay i= 0.9. We 
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simulate nine different scenarios for the possible combination of emotional states for closing 

and adaptation. In the experiments presented in Table 5.1 the closing and adaptation 

functions interact with the number of pieces available. In Table 5.1.a (with ten pieces) the 

null partition (the undesirable state) is not Nash equilibrium; however, in Table 5.1.b (with 

eight pieces) the null partition is Nash equilibrium.  

Table 5.1: Average Number of Pieces of Pie Taken by the Agents 

 

In these simulations patience performed well in its adaptation function, while anger 

performed poorly in adaptation (anger only works if others are patient and accommodate to 

the agent’s demands). However, anger worked well in its closing function, as the threat of 

punishment convinces others not to deviate from equilibrium. The best emotion for closing is 

apathy as it almost always dominates anger and patience (except in the case of ten pieces of 

pie when the best adaptation is achieved by anger).  

Furthermore, we analyze the conditions under which the system converges on the Nash 

equilibrium. Figure 5.1 shows the bids towards which the system converged on, for each 

agent, in the experiment with eight slices of pie, and in the scenario in which each agent 

applies patience for adaptation and apathy for closing (one of the two best combinations).  

apathy anger patience apathy anger patience

apathy 9.8 4.4 9.8 3.9 2.7 7.8

anger 9.8 0.1 9.6 3.9 0 7.8

patience 9.1 4.9 5.6 0.2 0.1 2.3

C
lo

si
ng

eight pieces in total (5.1.b)ten pieces in total (5.1.a)
Adaptation
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Figure 5.1: Automata Behavior: the bidding policy to which the system converged on for 

each agent (1 to 5).  

As depicted in Figure 5.1, this system converged on a cycle of play of length eight, showing 

that the strategies emerging from these simulations are complex and allow all the agents to 

perform better than they would with a simple one state automaton (in this case some of the 

agents would receive one piece of the pie only, in equilibrium), see Figure 5.2. 

 

Figure 5.2: Average Reward per Agent: represents the average reward received by each 

agent (1 to 5) within the cycle toward which the system converged on. 

As illustrated in Figure 5.2, the system converged on a solution where the minimum average 

reward was 1.12 pieces, and therefore all the agents received more than one piece each, on 

average. Moreover, this result is Nash equilibrium as the total number of bids is equal to eight 

0

1

2

3

1 2 3 4 5
Players

B
id
s

 

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5
Players

R
ew
ar
ds



 13 

pieces of pie available (Figure 5.1) and, therefore, no agent can increase his utility by 

unilaterally changing his bids. 

Finally, Figure 5.3 reports the results for the experiment with ten pieces. It shows that the 

relationship between confidence decay, i, and performance is non-linear. For low levels of 

confidence (low confidence decay) the agent tends to adapt too fast to his opponents’ 

behavior, even when to wait would be a better option. Moreover, high confidence gives time 

for the agents to coordinate better their behavior, improving the overall performance of the 

agents. Excessive confidence (very high confidence decay) prevents the agent from 

attempting to optimize his behavior by adapting to others. This shows that there is an optimal 

level of confidence decay that is required to improve the performance of the agents.        

 

Figure 5.3: Total Number of Pieces Received by All the Agents, on Average.  

6. Conclusion 

In this paper we analyze how to develop an agent-based system in which the agents are 

endogenous automata that co-evolve by interacting with each other. At a behavioral level, we 

show that rationality is not sufficient for the maximization of the long-term discounted 
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utilities and that emotions are required for the construction of behavioral rules and for the 

improvement of the long-term performance of the agents. We show that best response, by 

itself, cannot be used: a) To optimize the behavior of the agent when there is no information 

on the opponents’ behavior; b) To choose actions when these do not have an impact on the 

state of the system; c) To decide between using the strategy that best fits the others’ behavior 

and waiting for others to adapt to the agent’s behavior.  

Finally, through the use of simulation we illustrate how emotions, such as anger, apathy, and 

patience, can have a positive impact on the agents’ performance when used correctly. The 

fourth emotion analyzed, confidence, is also important for improving the overall performance 

of the agents. The simulations suggest that there is an optimal level of confidence decay. 
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