
OLIVEIRA, F.S. 2010. Limitations of learning in automata-based systems. European journal of operational research
[online], 203(3), pages 684-691. Available from: https://doi.org/10.1016/j.ejor.2009.08.018

This is the accepted manuscript version of the above article. The published version of record is
available from the journal website: https://doi.org/10.1016/j.ejor.2009.08.018

This document was downloaded from
https://openair.rgu.ac.uk

Limitations of learning in automata-based
systems.

OLIVEIRA, F.S.

2010

https://doi.org/10.1016/j.ejor.2009.08.018
https://doi.org/10.1016/j.ejor.2009.08.018

1

European Journal of Operational Research, 203 (3): 684-691, 2010.

Limitations of Learning in Automata-Based

Systems

Fernando Oliveira, ESSEC Business School, oliveira@essec.edu

In this article, we aim to analyze the limitations of learning in automata-based systems by intro-

ducing the L+ algorithm to replicate quasi-perfect learning, i.e., a situation in which the learner

can get the correct answer to any of his queries. This extreme assumption allows the generaliza-

tion of any limitations of the learning algorithm to less sophisticated learning systems. We ana-

lyze the conditions under which the L+ infers the correct automaton and when it fails to do so. In

the context of the repeated we exemplify how the L+ may fail to learn the

correct automaton. We prove that a sufficient condition for the L+ algorithm to learn the correct

automaton is to use a large number of look-ahead steps. Finally, we test empirically, in the prod-

uct differentiation problem, that the computational time of the L+ algorithm is polynomial on the

number of states but exponential on the number of agents.

Key words: artificial intelligence; knowledge-based systems; learning; multi-agent systems.

1. Introduction

If we abandon the perfect rationality paradigm in favor of models of bounded rationality and

learning, one first question we need to answer is: how do people and organizations learn? How

complex are their learning processes? Several articles have addressed this issue (e.g., Weiss,

1995; Carmel and Markovitch, 1998, 1999; Donkers et al., 2005; Wainer et al., 2007; Pendhar-

kar, 2007), however, none of these seems to capture the way sophisticated organizations (which

are complex structures composed by intelligent agents) learn. In this article we modify an algo-

rithm developed by Angluin (1987), the L*, which enables perfect learning in the context of fi-

nite automata, to create a learning algorithm, the L+, which enables quasi-perfect learning. The

L+ captures how a sophisticated organization learns, as it is always able to infer the correct solu-

tion to any query.

2

Automata-based systems have been used in several areas of operational research, for example: to

study how commuters choose alternative roads, van Ackere and Larsen (2004); to solve the

shortest path problem with forbidden paths, Villeneuve and Desaulniers (2005); to develop clas-

sification systems, Gérard et al. (2005); to model asset trading in an electricity market, Bunn and

Oliveira (2007, 2008); to model real-options, Oliveira (2009); to represent complex Markov sys-

tems, e.g., Stewart et al. (1995), Uysal and Dayar (1998), Gusak et al. (2003), Sbeity et al.

(2008); and to model human-computer interaction, Gmytrasiewicz and Lisetti (2002), and bila-

teral negotiation, Vassileva and Mudgal (2002).

In this article, we study models of learning that infer automata, i.e., the behavior rules of a given

subject (e.g., Shen, 1994; Mor et al., 1996; Carmel and Markovitch, 1996, 1998, 1999; Donkers

et al., 2005), for two reasons: first, we can adapt the L* to model quasi-perfect learning; second,

it has been shown that models of learning, when having discrete states and actions, can be

represented as automata (e.g., Gérard et al., 2005), therefore, a good understanding of the latter is

important to model learning behavior. In this context, the introduction of the L+ has the same

procedural complexity as the modification of the Angluin (1987) L* algorithm made by Carmel

and Markovitch (1996) to develop the US-L* (unsupervised L*), which differed from the L* by

considering that there is no teacher to guide and answer the queries of the learner (as assumed by

Angluin). In our case, the L+ algorithm assumes that there is no teacher but it allows the agent to

always get the correct answer to any of his queries. Therefore, in terms of its learning abilities,

the L+ is placed between the US-L* and the L* (which represents perfect learning). Moreover, in

Proposition 5.6 we show that, under certain conditions, the L+ behaves as the L*.

Why is our modification to the L* important? First, the L+ algorithm allows the learner to get the

best possible answer to his queries. This is arguably the case of the learning abilities of the com-

plex and sophisticated organizations which we aim to model. The limitations of information im-

posed by the US-L* are realistic to model how a learner behaves in a poker game, for example,

but not to model how a firm learns in the real world. The importance of the L+ is not the algo-

rithm itself, as it is very similar to the US-L* and to the L*, but the idea that by a simple modifi-

cation of the L* we are able to model quasi-perfect learning. Second, the L+ recognizes the im-

portance of the query, i.e., it is important to know what to ask. This is the main difference when

compared to the L*, in which the answers and the questions are given to the learner by a benevo-

3

lent teacher. Third, the use of the L+ allows the modeling of learning in situations in which the

agent has a very limited number of opportunities to interact with the system. (For example, a

government cannot interact with the system often when deciding to build a nuclear power plant,

to invest in a new defense system, or to nationalize banks.) In this case we cannot use reinforce-

ment learning (e.g., Bertsekas and Tstsiklis, 1996) as it assumes that the learner can interact with

the system a very large number of times.

In this article, we analyze the conditions under which the L+ infers a correct model and when it

fails to do so, and we study its main properties. As in all the instances in which the L+ algorithm

fails to infer the correct model the US-L* also fails, by analyzing the limitations of the L+ we also

expose the boundaries of the US-L*. We show that the automata generated by L+ are always

closed (the L* also generates closed automata but not the US-L*), which we prove to be a basic

condition for optimal behavior. We analyze how the L+ may fail to learn the correct automaton in

the ; this result suggests that this simple game requires perfect learn-

ing for the Nash equilibrium to hold. We prove that a sufficient condition for the L+ to approx-

imate perfect learning is to include a large enough number of look-ahead steps. Finally, we test

empirically that the computational time of the L+ algorithm is polynomial on the number of

states, but exponential on the number of agents (this applies also to the US-L* and L*).

We proceed in section 2 by introducing the basic concepts in automata systems. In section 3 we

review the literature in automata inference. In section 4 we describe the L+ algorithm and in sec-

tion 5 we analyze its properties. Section 6 presents an application of the L+ algorithm to the

product differentiation problem. Section 7 concludes the paper.

2. Basic Concepts in Automata Systems

This section formalizes the basic concepts in the automata literature. A very good introduction to

the topic is Hopcroft and Ullman (1979). We start by defining deterministic finite automaton

(Definition 2.1). Throughout the inistic Finite

4

Definition 2.1: A deterministic finite automaton iiiiiii ZqQA ,,,,, 0 is a 6-tuple in which:

a) Qi stands for a finite non-empty set of states of the automaton; b) 0
iq is the initial internal

state; c) i is a non-empty set of possible actions of agent i; d) Zi represents a finite non-empty

set of possible outcomes of the system, in which each i iz Z is dependent on the actions of each

agent, Niii aaaZz ,...,,...,1 ; e) i is a transition function :i i i iQ Z Q ; f) i is a be-

havioral function :i i iQ associating an action to each possible internal state.

Definition 2.1 is both correct and complete as it is necessary and sufficient to describe any de-

terministic finite automaton. However, in section 5 we show that a finite automaton can be com-

puted as a result of an explicit optimization process which requires the definition of a utility

measure ui over the outcomes, in which iiu u z represents the utility function of agent i, i.e.,

it is the utility an agent i receives from the outcome zi. The branch of research concerned with the

computation of the optimal automaton, which is not the topic of this paper, and it is only briefly

used in Proposition 5.1, includes the computation of best response automata (e.g., Banks and

Sundaram, 1990; Piccione, 1992; Gilboa, 1988) and the analysis of algorithmic complexity (e.g.,

Papadimitriou, 1992; Ben-Porath, 1990; Freund et al., 1995).

The behavior of an automata-based system is defined by its individual components, i.e., by the

automaton used by each agent. A system of automata can be described by a product automaton

(Definition 2.2) in which the states are the combination of the states of the individual automata.

Definition 2.2: The product automaton of N automata is a 6-tuple ,,,,, 0 ZqQW that de-

fines how the environment behaves, where 1 2 ... NQ Q Q Q , Nqqqq
0

2

0

1

0
...0 ,

1 2 ... N , NZZZZ 21 , ':Q Q , :Q .

In this article we introduce the concept of residual product automaton (Definition 2.3). In order

for an agent to model the problem he only needs to infer the residual product automaton which

describes his opponents, as the structure of an automata-based system is an automaton itself.

5

Definition 2.3: The residual product automaton of the system mimiiimimii ZqQM ,,,,, 0

represents a model of all N-i agents, in which Niimi QQQQQ 111 ,

Nii qqqqqmi
0

1

0

1

0

1

0
......0 , miimimi QQ: and imimi ZQ: .

The residual product automaton Mi is derived from the product automaton W by removing all the

states associated to agent i and replacing the transition function depending on all the actions from

all the agents by a transition function that depends only on agent i ctions, i.e.,

miimimi QQ: (this function changed when compared to Definition 2.1 as the state transi-

tion is a function of i actions). The behavioral function imimi ZQ: has also been modified

as the outcomes (and not the actions) are a function of the state.

A second concept we introduce in this article is the perceived residual product automaton, Pi

(Definition 2.4) which describes the residual product automaton learned by an agent i. Its struc-

ture is similar to the Mi, as it is assumed that an agent correctly observes the outcomes iz and he

knows his own actions i .

Definition 2.4: The perceived residual product automaton pipiiipipii ZqQP ,,,,, 0

represents the model an agent infers from his opponents, in which piipipi QQ: and

ipipi ZQ: .

How can an agent infer a model of the residual product automaton? To answer this question, be-

fore we proceed, in section 3 we revise the literature on automata inference.

3. Inferring Models of Deterministic Finite Automata

This section reviews the inference problem, i.e., how to learn the automaton generating a given

stream of data. We concentrate our description on active learning (e.g., Angluin, 1987) as pas-

sive learning (e.g., Gold, 1978) is not used in the L+ algorithm. In active learning an agent has

the ability to influence the input generation process, i.e., he is able to select the inputs supplied to

the automaton generating the data. Angluin (1987) showed that a learning algorithm provided

with counterexamples, and with the possibility of controlling the inputs to the target automaton

6

on any specific type of input, can learn the target automaton in polynomial time (this algorithm

was named L*). We present the basic concepts of the L* adapted to the residual product automa-

ton.

An agent i attempts to infer a residual product automaton Mi. This learner holds a nonempty set

of actions i , which are the inputs for the residual product automaton. The learner i, in order to

infer Mi, maintains an observation table (S, E, T), see Definition 3.1, in which S is a non-empty

finite pre-fixed closed set of strings (a set of strings in which all the initial elements of the strings

are in the set), and E is a nonempty suffix-closed set of strings called tests (a set of strings in

which all the final elements of the strings are in the set). A string, in this case, represents a suc-

cession of actions.

Definition 3.1: T is a finite two-dimensional table with one row for each element of the set

iS S and one column for each element of E, in which ii SssS ,: .

In the observation table the agent records the outcomes received from interacting with Mi for

every possible sequence (string) of actions chosen in the previous history. Additionally, the table

also records all the predictions about the future behavior of Mi, by describing the outcomes from

choosing the actions in E.

Before proceeding, we define the row operator, which represents the content of a line in table T.

For example, row(s) represents the ordered set of outcomes for string s and each one of the tests

in E, in which for each Ee we compute esT , , i.e., the outcome of a string of actions se. The

row operator represents a sequence of these outcomes for the tests: 12121 ...,...,,, eeeeee E ,

which define a suffix-closed set of strings (in which represents the empty string). I.e., the row

operator summarizes the content of a row in the table (each row is an ordered sequence of out-

comes which are a function of the past actions for that specific row and tests used in the table).

The examples in section 4 help to clarify these concepts. The task of the learning algorithm is to

infer an observation table T which is consistent and closed: see Definitions 3.2 and 3.3.

Definition 3.2: An observation table is said to be consistent if for any two elements Sss 21, ,

such that, 21 srowsrow , and for all actions i , srowsrow 21 .

7

This procedure checks that, for any two strings s1 and s2 in S and for every test and action, any

extension of s1 and s2 has the same output. This consistency requirement implies that the

agent holds a model that, for every state, does not forecast different transitions for the same ac-

tion. When this model is not consistent an additional test is added to E. We repeat this process

until the table is such that for any two strings with the same row operator outcome (s1 and s2 in S)

any extension in the set iS still has the same outcome.

Definition 3.3: An observation table is said closed if, for each element i iS , there is an ob-

servation Ss such that irow row s .

In order to verify that a table is closed, we check that for any string i iS (the extensions of

S) there is an element in S such that it contains exactly the same outcomes as i . In other words,

if a model is closed every state of the automaton in iS is already represented in S. The closure

requirement implies that an agent computes a forecast for every action in every state of the au-

tomaton.

In summary, the L* can be described as follows. Given a stream of data received during the inte-

ractions with the environment, a learner builds a table T that represents the perceived residual

product automaton, Pi. This table contains the whole set of data, both the observed stream of ac-

tions and their outcomes, and the forecasted actions with the expected outcomes. Thus, in table

T, S represents the stream of actions played by agent i (and the table contains the received out-

comes) whilst iS represents the forecasted stream of actions (and the table T itself contains the

expected outcomes).

4. The L+ Algorithm

The L+ algorithm, Table 1, modifies * and Carmel and Marko (1996)

US-L* in order to model problems in which, even though there is no teacher, the agent is able to

always get the correct answer to any query. (However, since there is no benevolent teacher the

agent does not know which questions to ask.) The L+ is applied to model systems with N automa-

ta by using the concept of residual product-automaton (introduced in Section 2). Note that, by

8

using this same formalization, both the L* and the US-L* can be adapted to model N-automata

systems.

Table 1: The L+ Algorithm

Algorithm iDL
Di: Data collected by agent i

Pi: The perceived residual product automaton model consistent with Di
i : Set of possible actions of agent i

(,)i s

 : Empty string

S: Non-empty finite pre-fixed closed set of strings

E: Non-empty finite suffix closed set of strings, called tests

T: Finite two dimensional table

Step 1. Initialize (S, E, T)

S All prefixes of Di

s S and i if s S then sSS ii

E

is S S the table value is set using forecasting queries: ,, ssT .

Step 2. Check consistency

While (S, E, T) is not consistent,

Find 1 2,s s S , i and e E

Such that row(s1) = row(s2) and 1 2(,) (,)T s e T s e , eEE

is S S the table value is set using forecasting queries:

esesT ,, .

Step 3. Check the automaton is closed

While (S, E, T) is not closed

Find is S such that for all 's S 'row s row s : sSS

i , ssSS ii \

The table value is set using forecasting queries

e E , esesT ,, .

Return Pi(S, E, T)

(s, e):- returns the correct outcome of the example i (s, e)

9

In step 1 we initialize a table T containing all the prefixes of Di and the empty test set E ,

and we build the set iS containing all the possible extensions of the strings in S by using the

actions i . Then table iSS (see Definition 3.1) is completed using the query function

esesT ,, , which returns the outcome of example i (s, e).

In step 2 we check that the model inferred in step 1 is consistent (see Definition 3.2). Having

checked that table T is consistent we can then proceed to confirm that it is also closed (see Defi-

nition 3.3), step 3. As in the L*, the model inferred by the L+ is always closed, this is not the

case of the model inferred by the US-L*.

This section proceeds by presenting three different examples illustrating how the L+ algorithm

works under different settings.

4.1. The L+ Fails to Learn the Correct Model

Assume that the learner chooses between two possible actions ,i a b with two possible out-

comes observed by i, 1,0iZ . In all the examples we assume that the learning agent observes

the aggregated behavior of his opponents but not the individual actions. For example, if we have

two opponents, then at each state of the residual product automaton we have one of four possible

aa, ab, ba, bb. The agent observes the aggregated be-

havior of mi , for example mi (aa)= mi (bb) = 1 and mi (ab) = mi (ba) = 0.

Let Table 2.a) describe the residual product automaton mimiiimimii ZqQM ,,,,, 0 and Ta-

ble 2.b) represent agent i product automaton

pipiiipipii ZqQP ,,,,, 01 .

Table 2: a) The Residual Automaton Mi b) Perceived Residual Automaton iP1

10

In Table 2.a), mi represents the transition function, showing how the internal state changes, due

to the actions of the agent, from the one in column Qmi to a new state. mi stands for the beha-

vioral function, specifying the outcomes of the residual product automaton, in each one of the

states in Qmi. In Table 2.b) iP1 is compatible with the available data ,0 , ,0 , ,0iD a ab ,

i.e., iP1 could have been the automaton generating Di. In his next move, the agent chooses b spe-

cifying a string abb and receiving a counterexample (,1)i abb , which makes him revise the

inferred model.

The inference process starts with the construction of the table (S, E, T) as shown in Table 3 (it

includes an extra column Qpi which classifies each row into the corresponding state of the mod-

el). The algorithm proceeds as described in Table 1. As a first step agent i checks the consistency

and closure of the new model. The model in Table 3 is not consistent as row() = row(ab) but

() ()row b row abb , i.e., the same action b, applied in the same state, piq1 , leads to a different

outcome.

In order to solve the inconsistency, agent i adds another test, action b, to the tests set E. Table

4.a) represents the new model (S, E, T) closed and consistent with the new data. Table 4.b)

represents the new perceived residual product automaton iP2 .

This example shows that the L+ can lead to inference errors, even though the agent was able to

answer his own queries correctly. This shows that the ability to ask important questions is a

component of perfect learning (as in the L*).

Q mi a b

0
0
0
1
1

mi

mi

miq1
miq1

miq 2
miq 2

miq3
miq 4

miq3
miq5

miq 4
miq 4

miq 2
miq3

miq5
miq1

miq5

Q pi a b

0

pi

pi

piq1
piq1

piq1

11

Table 3: (S, E, T) Revised Table

Table 4: a) (S, E, T) Table b) Perceived Residual Automaton iP2

4.2. L+ Learns the Correct Model of a Finite Automaton

Let us look at a modified version of the previous example. Let Table 2.b) represent agent i i-

tial perceived residual product automaton iP1 . Once again, this model is compatible with the

available data: 0,,0, aDi . In this example, Table 5.a) describes the residual product au-

tomaton iM . The main feature of this automaton is that it chooses a different action in each state.

E Q pi

0
S a 0

ab 0
abb 1
b 0
aa 0

aba 0
abba 0
abbb 0

piq1
piq1
piq1
piq 2
piq1
piq1
piq1
piq1
piq1

iS

Q pi

0 0
S a 0 0

ab 0 1
abb 1 0
b 0 1
aa 0 0

aba 0 1

abba 0 1

abbb 0 1

E

b
piq1
piq1
piq2
piq3
piq2
piq1
piq2
piq2
piq2

iS

Q pi a b

0
0
1

pi

pi

piq1
piq1

piq 2
piq2

piq2
piq3

piq 3
piq 2

piq 2

12

Agent i plays b, specifies a string ab and receives a counterexample 1,abi , which makes

him revise the inferred model, constructing the table (S, E, T) as shown in Table 5.b).

Table 5: a) The Residual Automaton Mi b) (S, E, T) Revised Table

The model in Table 5.b) is not closed as abb leads to a state in which actions are unknown. The

agent needs to analyze more actions to close the table, including abbb and abbba in S, the result

is in Table 6, which is closed, consistent and correctly represents the automaton in Table 5.a).

Table 6: (S, E, T) Revised Table

E Q pi

0
S a 0

ab 1
b 1
aa 0

aba 0
abb 3

piq1
piq1
piq 2
piq 2
piq1
piq1
piq 4

iS

E Q mi

0
S a 0

ab 1
abb 3
abbb 2
abbba 4
b 1
aa 0
aba 0
abba 1
abbbb 3
abbbaa 0
abbbab 4

1
miq

1
miq

2
mq

4
mq

3
mq

5
mq

2
mq

1
miq

1
miq

2
mq

4
mq

1
miq

5
mq

iS

Q mi a b

0
1
2
3
4

mi

mi

miq1
miq1

miq2
miq2

miq
3

miq4
miq3

miq
5

miq4
miq4

miq 2
miq
3

miq5
miq1

miq
5

13

4.3. The L+

In this section w problem two prisoners (A and B) were

accomplices in a crime. Each one of them can confess the crime or not. If both agents confess,

i.e. play Defect (D) then they go to prison for four years. If only one of them confesses (chooses

D) and the other cooperates (chooses C), the agent that confesses serves no time, while the agent

that cooperates gets five years in prison. If none of them confesses (both play C) then each one

gets two years in prison. Table 7 represents the payoff matrix.

Table 7: Payoff Matrix

W s dilemma, as presented in Carmel and Markovitch (1996), as

they have used this game as a test bed for the US-L* algorithm. In this version of the game, two

players interact repeatedly playing the same game. This may seem surreal in the case of a true

pr dilemma but it may resemble real-world situations such as, for example, e-

collaboration (Cai and Kock, 2009) and investment games (Oliveira, 2009).

As shown in Rubinstein (1986) a pure strategy for the

represented by a deterministic finite automaton. Let Table 8 stand for the automaton used by

agent A to play a pure strategy in the agent resi-

dual product automaton, BM). The question is: can agent B infer the correct residual automaton

representing A s behavior? This is important as it restricts B

Table 8: The Residual Product Automaton MB

C D
C (2, 2) (5, 0)
D (0, 5) (4, 4)

B

A

Q mB C D

C
D
D

mB

mB

mBq1
mBq1

mBq 2
mBq 2

mBq3
mBq 2

mBq3
mBq1

mBq3

14

In games with n agent cannot afford to repeat

the game a very high number of times in order to learn the optimal action at each state using

reinforcement learning (e.g., Bertsekas and Tstsiklis, 1996). When using reinforcement-learning

an agent attempts non-optimal actions in order to explore the strategy space even though these

may, for example, lead the opponent to forever play D (if there was such a sink state in the au-

tomaton): in such situation not only the learning algorithm fails to learn the optimal strategy but

it leads to the worst possible outcome.

In reality, in such situations the agents may learn not by acting but by studying, analyzing, en-

quiring, i.e., by asking the right questions. Such a process of inquiry can be emulated by the L+.

hat, before committing the first crime, the crim-

inal enquires about the character (i.e., automaton) of his accomplice and learns as much as he can

about his behavior. This learning by query provides an explanation for cooperation in the prison-

 even when the Nash equilibrium of the game is defection: by using learning by

query the potential criminal associates only with accomplices which he can trust to cooperate in

case they are caught. Next, we illustrate how the L+ can be used to imitate this learning process.

Let Table 9 represent agent B BP1 . This model is

compatible with the available data CCCDB ,,, .

Table 9: The Perceived Residual Product Automaton BP1

Agent B plays D, as he thinks that agent A will always cooperate, and therefore generates a string

CD and gets a counterexample DCDB , , which makes him revise the inferred model, con-

structing the table (S, E, T), Table 10.a). The model represented in Table 10.a) is closed and con-

sistent but represents the automaton in Table 10.b), which is not correct. This shows that the
* for a prisoner to learn the correct au-

tomaton.

Q pB C D

C

pB

pB

pBq1
pBq1

pBq1

15

Table 10: a) (S, E, T) Revised Table b) The Perceived Residual Automaton BP2

Next, in section 5 we generalize these findings, providing an analysis of the L+ algorithm.

5. Analysis of the L+ Algorithm

We now analyze the properties of the L+ algorithm. First, we justify why an automaton needs to

be closed and consistent. If an agent wants to optimize his behavior he needs to maximize the

present value of his utility, i.e., i
t

i
t

i
tii

i
t

i
t

i
tti aqVzuqV ,*

1,
*
, , where *

,tiV represents the

value an agent receives by playing against Mi, and i stands for the discount factor. In Proposi-

tion 5.1 we prove that the ability of an agent to infer a closed and consistent model (Pi) is a ne-

cessary condition to compute *
,tiV . The proof is based on the observation that if the inferred au-

tomaton is not closed and consistent the agent cannot compute the best response due to an ill de-

fined transition function.

Proposition 5.1: Let equation i
t

i
t

i
tii

i
t

i
t

i
tti aqVzuqV ,*

1,
*
, represent the present value of

agent a-

bility of an agent to infer a closed and consistent model (Pi) of the residual product automaton.

[Proof is in the online appendix.]

E Q pB

C
S C C

CD D
D D
CC C

CDC D
CDD D

pBq1
pBq1
pBq 2
pBq 2
pBq1
pBq 2
pBq 2

iS Q pB C D

C
D

pB

pB

pBq1
pBq1

pBq 2
pBq 2

pBq 2
pBq 2

16

Therefore, the ability of an agent to describe the problem as an automaton is a necessary condi-

tion for optimal behavior. Consequently, as the US-L* does not always generate closed automata

it precludes optimal behavior by the learning agent (meaning that in these type of games optimal

behavior may not be possible), this necessary condition is always met when we use the L+ (or the

L*) as the inferred automata are always closed and consistent, as shown in Proposition 5.2.

Proposition 5.2. Under L+, for any set of data Di there is at least one closed and consistent au-

tomaton capable of generating Di. [Proof is in the online appendix.]

However, even though the L+ always infers a closed and consistent model, it may not describe

the complete residual product automaton, as shown in Proposition 5.3. We prove that an automa-

ton closed, consistent and compatible with a set of data Di can be extended into an automaton

with a larger number of states and compatible with Di.

Proposition 5.3. Let mimiiimimii ZqQM ,,,,, 0 represent a closed and consistent automa-

ton compatible with the data Di. It is always possible to find an automaton

hihiiihihii ZqQH ,,,,, 0 , also closed, consistent and compatible with the data Di, such that

himi QQ , himi qq 00 , himi and for which: a) for every state it follows that qq himi .

b) For every string iDs and every for every state himi QQq it follows that

aqaq himi ,, . [Proof is in the online appendix.]

In the rest of this section we analyze the conditions under which the L+ algorithm infers a correct

model and when it fails to do so. Proposition 5.4 shows that when no state has the same output

the L+ algorithm is able to infer the correct automaton. In Proposition 5.4, for simplification, we

adopt a representation of the transition function on a string s=a1a2 n sqq mimi ,01 in which

q1 is the state reached from miq0 after playing, sequentially a1a2 n.

Proposition 5.4: Let iD , (,)i s represent an example of the residual product automa-

sqq mimi ,01 . Let the residual

product automaton mimiiimimii ZqQM ,,,,, 0 be such that for every state miQqq 21, ,

17

12 qq mimi . Under L+, the inferred automaton, Pi, is equal to Mi. [Proof is in the online

appendix.]

As suggested by examples 4.1 and 4.3, for automata in which the same action is played in differ-

ent states it may be impossible to infer the correct automaton using L+. In Proposition 5.5 we ge-

neralize this finding.

Proposition 5.5: Let the automaton mimiiimimii ZqQM ,,,,, 0 be such that for some states

miQqq 21, , 21 qq mimi . Further let s represent a string of actions such that

sqq mimi ,01 and iDs . Under L+, if there is at least one action a such that aqq mi ,12

and iDsa then Pi Mi. [Proof is in the online appendix.]

We next give a sufficient condition for correct automata learning using the L+. It follows from

Proposition 5.5 that a simple way of disguising a strategy is to introduce a fake action after each

correct state. In this case, the forward looking abilities of the L+ are not sufficient to ensure that

the correct automaton is revealed. Therefore, only by looking beyond the states required to build

the closed and consistent model will an agent learn his oppon strategies. The number of

look-ahead steps necessary to infer the correct automaton is described in Proposition 5.6.

Proposition 5.6: Let the automaton mimiiimimii ZqQM ,,,,, 0 be such that R is size of the

longer sequence of actions starting in miq0 without encountering a state with an outcome not yet

observed since state miq0 . If the learner uses a test set composed of strings representing every

possible sequence of actions with at least length R, then the residual product automaton will al-

ways be revealed, i.e., Pi iM1 . [Proof is in the online appendix.]

However, as shown by Proposition 5.7, the number of strings is an exponential function of the

step size R. If the R is too large then it is not computationally possible to discover the correct au-

tomaton.

18

Proposition 5.7: Let # represent the number of actions. The number of strings in a set E with a

look-ahead testing ability of R steps equals R# . The total number of elements in table T

equals
#1

#1
#

R

 . [Proof is in the online appendix.]

Next, we apply the L+ algorithm to the analysis of the product differentiation problem.

6. An Application of the L+ Algorithm to the Product Differentiation Problem

We illustrate the L+ algorithm in the product differentiation problem (e.g., Hsu and Wang, 2004;

Mallik and Chhajed, 2006) in which a learner attempts to infer the residual product automaton of

a system with three and five other agents (respectively in two different sets of experiments) when

deciding how to position his product (high, low, and niche segments). At each stage, the outcome

used in revising decisions is profit (classified as high, normal or low).

The behavior function of each one of these automata was generated randomly, i.e., each state

was assigned a random segment at each stage. We have generated 15000 different problems for

the experiments with five agents and 8800 different problems for the experiment with three

agents. We have evaluated the complexity of the inferred automata and the time required to infer

these automata (in computer seconds, standardize to 100 as the maximum in each set of experi-

ments). (The model was coded in SICStus Prolog 4.0.) In Figures 1 and 2 we represent the rela-

tionship between the number of states in each residual product automaton and the computational

time required to infer the model. The maximum number of states was about 5000 and 1750 for

the experiments with five and three agents, respectively.

19

Figure 1: Computation time in the experiments with three agents (standardized to maximum
100).

Figure 2: Computation time in the experiments with five agents (standardized to maximum 100).

The volatility of the computational time increases with the number of states (this is due to a

greater uncertainty in the complexity of the automata). Moreover, there is a pattern in the worst

case computational time. In Figure 3 we plot the worst case computational times for both sets of

experiments.

20

Figure 3: Maximum computation time in the experiments with three and five agents.

The worst case computational time is polynomial on the number of states: a regression of the

worst time on the number of states can be fitted as a polynomial of order three and five, respec-

tively, to the experiments with the same number of agents, both R2-adjusted are about 99%. This

means that the computational time is exponential on the number of agents. We can, therefore,

conclude that the US-L*, the L+, and the L* algorithms can only be applied in problems with a

relatively small number of agents, or in problems with a large number of very simple agents (as

the overall complexity of each model depends both on the number of agents and on their com-

plexity).

7. Conclusions

If we abandon perfect rationality which model of learning can we use to model organizational

behavior? We propose the use of a modification of Angluin (1987) L* algorithm, the L+, which

enables the modeling of quasi-perfect learning. The main contribution of this article is to study

the properties of quasi-perfect learning, analyzing the conditions under which it fails or succeeds

to infer the correct model.

Through the analysis of the properties of the L+ we show that: there is at least one possible auto-

maton capable of generating any data set; a close and consistent model of an automaton may not

be a complete description of the correct automaton; if the same action is played in different states

the L+ may fail to learn the correct automaton; in the context of the repeated pri

21

the L+ may also fail to learn the correct automaton, which suggests that only perfect learners can

collect the necessary information to play the Nash equilibrium. Furthermore, we show that a suf-

ficient condition for the L+ to approximate perfect learning (the L*) is to consider a large enough

number of look-ahead steps. Moreover, we show that closure of an automaton is a necessary

condition for optimal behavior. (The L* and the L+ algorithms infer closed automata but this is

not the case of the US-L*.) Finally, we have tested empirically, in the product differentiation

problem, that the computation time for the L+ algorithm is polynomial on the number of states,

but exponential on the number of agents (the same applies to the US-L* and L* algorithms),

which suggests that these algorithms can only be used in systems with a small number of agents

or with a large number of very simple agents.

References

Information and

Computation, vol. 75, pp. 87-106.

Games

Games and Economic Behavior, vol. 2, pp. 97-117.

Ben- g a Best Response Automaton in Repeated

Games Games and Economic Behavior, vol. 2: pp. 1-12.

Bertsekas, D. P., and J. N. Tsitsiklis, Neuro-Dynamic Programming. Athena Scientific, Belmont,

Mass, 1996.

Bunn, D. W., and F. S. Oliveira. Modeling the Impact of Market Interventions on the

Strategic Evolution of Electricity Markets," Operations Research, 56 (5): 1116-1130.

Bunn, D. W., and F. S. Oliveira. 2007. "Agent-Based Analysis of Technological Diversification

and Specialisation in Electricity Markets," European Journal of Operational Research, 181

(3): 1265-1278.

Cai, G, and N. Kock. 2009. "An Evolutionary Game Theoretic Perspective on e-collaboration:

The collaboration effort and media relativeness," European Journal of Operational Re-

search, 194: 821-833.

-based Learning in Mul-

ti- Autonomous Agents and Multi-agent Systems, 2: 141 172.

22

Pruning algorithms for multi-model adversary search

Artificial Intelligence, 99 (2): 325 355.

in Proceedings of The

Thirteenth National Conference on Artificial Intelligence, Portland, Oregon, 1996, pp. 62-

67.

functions in Opponent- Theoretical Computer Science 349 (2): 245-267.

Freund, Y. , M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, and R. E. Schapi o-

rithms for Learning to Play Repeated Games Against Computationally Bounded Adversa-

in Proceedings of the 36th IEEE Symposium on the Foundations of Computer

Science, 1995, pp. 332-341.

Gérard, P., J.-A. Meyer, and O. Sigaud Combining latent learning with dynamic pro-

European Journal of Operational

Research, 160: 614-637.

-Response Automata in Repeated Game

Journal of Economic Theory, vol. 45, pp. 342-352.

Information and

Control, vol. 37, pp. 302-320.

l-

in Game Theory and Decision Theory in Agent-Based Systems, Ed. S. Parsons, P. J.

Gmytrasiewicz, and M. Wooldridge, 2002, pp. 81-95.

Gusak, O., T. Dayar, J.-M. Fourneau. -time stochastic automata

European Journal of Operational Research, 148: 436-451.

Hopcroft, J. E., and J. D. Ullman, Introduction to Automata Theory, Languages and Computa-

tion. Addison-Wesley, Mass, 1979.

Hsu, H.-M., and W.- a-

European Journal of Operational Research, 156: 183 193.

a-

European Journal of Operational Research, 172: 430 452.

23

Mor, Y. , C. V. Goldman, a y-

in Lecture Notes in Artificial Intelligence, G. Weiss and S. Sen, Eds., Vol.

1042, Springer Verlag, 1996.

-up Design of Strategic Options as Finite A Computa-

tional management Science, forthcoming.

Agent Games and Econom-

ic Behavior, vol. 4, pp. 122 131.

ve intelligent sys-

Decision Support Systems 43 (2007): 1014-1030.

Journal of Economic

Theory, vol. 56, pp. 180-193.

Journal of Eco-

nomic Theory, vol. 39, pp. 83-96.

-type distributions in stochastic

European Journal of Operational Research, 186: 1008-1028.

rning deterministic finite automata using local distinguishing

in Computational Learning Theory and Natural Learning Systems, T.

Petsche, S. Judd and S. Hanson, MIT Press.

 of stochastic automata

European Journal of Operational Research, 86: 503-525.

Uysal, E., and T. Dayar. t-

European Journal of Operational Research, 110: 166-186.

van Ackere, A., E. R. Larsen. 2004. -organizing behaviour in the presence of negative ex-

European Journal of Operational

Research, 157: 501 513

complete and Uncertain Informa-

Game Theory and Decision Theory in Agent-Based Systems, Ed. S. Parsons, P. J.

Gmytrasiewicz, and M. Wooldridge, 2002, 337-353.

Villeneuve, D, and G. Desaulniers.

European Journal of Operational Research, 165: 97-107.

24

Wainer, J., P. R. Ferreira, E. R. Constantino 2007. -agent

negotia Decision Support Systems 44: 285-297.

-Agent Systems: Some Remarks and a Bibliogra-

Adaptation and Learning in Multiagent Systems. G. Weiss and S. Sen, Ed. Sprin-

ger, 1995: 1-21.

Online Appendix

Proposition 5.1: Let equation i
t

i
t

i
tii

i
t

i
t

i
tti aqVzuqV ,*

1,
*
, represent the present value of

a-

bility of an agent to infer a closed and consistent model (Pi) of the residual product automaton.

Proof. Closure: Assume that the model inferred by agent i is not closed, i.e., for some states

pi pi
oq Q this agent cannot forecast the output of some of his actions. Assume also that i

ta is the

action that this agent i cannot forecast. Consequently, it is impossible for agent i to compute the

transition function 1 , ,pi pi pi i
t o t tq q a , and therefore it is not possible to compute *

,tiV . Consisten-

cy: Assume that the model inferred by an agent i is not consistent, i.e., for some states pi pi
oq Q

the same action i
ta implies different transitions, e.g., 1, 1 , ,pi pi pi i

t o t tq q a and 2, 1 , ,pi pi pi i
t o t tq q a .

Once again, the function *
,tiV is ill defined. Q.E.D.

Proposition 5.2. Under L+, for any set of data Di there is at least one closed and consistent au-

tomaton capable of generating Di.

Proof. Under L+, for a given set of prefix-closed set of strings Di, the consistency loop classifies

the different strings into classes. Within each class an action always generates the same out-

come. Therefore, we can define a transition function piipipi QQ: such that for any class

pipi
k Qq and any action i

ia a unique transition is defined into another class pipi
k Qq 1 . If

there is at least one class in the observation table (S, E, T) such that a transition is not defined,

i.e., if there is a class which belongs to S i but not to S, then the closure loop computes the tran-

25

sitions pi for any of such classes: the L+ algorithm terminates when for each class there is a

well defined transition. Moreover, in order for the automaton to be well defined we still need to

show that the L+ algorithm, for any set of prefix-closed set of strings Di, correctly computes the

behavioral function pi , mapping a state into actions ipipi ZQ: . This function is com-

puted by picking up the value in the first column of table T, for each class in S. Q.E.D.

Proposition 5.3. Let mimiiimimii ZqQM ,,,,, 0 represent a closed and consistent automa-

ton compatible with the data Di. It is always possible to find an automaton

hihiiihihii ZqQH ,,,,, 0 , also closed, consistent and compatible with the data Di, such that

himi QQ , himi qq 00 , himi and for which: (a) for every state it follows that

qq himi . (b) For every string iDs and every for every state himi QQq it follows

that aqaq himi ,, .

Proof. This proof proceeds by analyzing a possible way of building

hihiiihihii ZqQH ,,,,, 0 out of mimiiimimii ZqQM ,,,,, 0 . Assume that Mi is known

and make himi qq 00 . As a first step, choose a new action hia not in mi and a new state hiq not

in miQ and build the state and action sets for automaton Hi as: himihi qQQ and

himihi a . Consequently himi QQ and himi . Moreover, for each state miQq

compute the transition for the new action hia : hihi aqq ,1 such that for some states hiqq1 .

Then, for the new state hiq specify the behavioral function, hihi q and for every possible ac-

tion a specify and the transition function, aqq hihi ,1 , in which q1 represents a state in hiQ

.In conclusion, none of the initial transitions or behaviors is altered and qq himi ,

aqaq himi ,, and himi QQ and himi . Q.E.D.

Proposition 5.4: Let iD , (,)i s represent an example of the residual product automa-

sqq mimi ,01 . Let the residual

26

product automaton mimiiimimii ZqQM ,,,,, 0 be such that for every state miQqq 21, ,

12 qq mimi . Under L+, the inferred automaton, Pi, is equal to Mi.

Proof. As iD for any initial example, under L+, the initial observation table (S, E, T) is

consistent. Moreover, for every state miQqq 21, , there is at least an ia , such that another

state is reached from the initial one, i.e., aqq mi ,12 . Consequently, from the definition of

closure, it follows that the table (S, E, T) is not closed. Furthermore, in order to close the table,

the string is S such sqq mimi ,01 is transferred from S i into S, and then expanded for

closure, i.e., i , ssSS ii \ . Once again, for as long as miQS there is at

least a class Sq1 such that for some ia , we have aqq mi ,12 and 12 qq mimi

and Sq2 , as for any new reached state q2, 2qmi is not in the current set of outputs used by

the automaton. In conclusion, only when for every class in S a closed and consistent transition is

computed (and therefore every row in S i is represented by a class in S) does the algorithm ter-

minate. This implies that the residual product automaton has been inferred. Q.E.D.

Proposition 5.5: Let the automaton mimiiimimii ZqQM ,,,,, 0 be such that for some states

miQqq 21, , 21 qq mimi . Further let s represent a string of actions such that

sqq mimi ,01 and iDs . Under L+, if there is at least one action a such that aqq mi ,12

and iDsa then Pi Mi.

Proof. Let iDs and iDsa , under L+, within the consistency loop, string s is extended for all

possible actions (one of them being action a). Then, as sqq mimi ,01 , aqq mi ,12 and

21 qq mimi the row for string sa is wrongly classified in the same class as string s, (even

though they belong to different states) and therefore the automaton is incorrectly inferred. Q.E.D.

27

Proposition 5.6: Let the automaton mimiiimimii ZqQM ,,,,, 0 be such that R is size of the

longer sequence of actions starting in miq0 without encountering a state with an outcome not yet

observed since state miq0 . If the learner uses a test set composed of strings representing every

possible sequence of actions with at least length R, then the residual product automaton will al-

ways be revealed, i.e., Pi iM .

Proof. Let iDs , for all j let ij Dsa , and let E have all the strings representing every possi-

ble sequence of actions with at least length R. Then, under L+, within the consistency loop, string

s is tested for all possible sequence of actions of length R (one of them being the string aj aj+1

aj+(R-1) aj+R). Then, as sqq mij ,0 , and for any k, 11, kjkjmikj aqq and as the test

with string aj aj+1 aj+(R-1) aj+R will always encounter an outcome not yet in the set S, in order

to close the inference table a new state is discovered after every move. As the algorithm is check-

ing consistency R steps ahead the correct automaton is always revealed. Q.E.D.

Proposition 5.7: Let # represent the number of actions. The number of strings in a set E with

a look-ahead testing ability of R steps equals R# . Moreover, the total number of elements in

table T equals
#1

#1
#

R

Proof. In a string of size R each one of its components can assume # possible values. There-

fore, there are R# possible strings of length R. As the set of tests E is suffix closed, it also

contains all the possible strings of size R-1, R-2 1. Therefore, in order to complete table T we

need to compute the outcome of each one of these strings. The number of these strings is equal to

121 #...### RRR which is equivalent to
#1

#1
#

R

. Q.E.D.

	coversheet_template
	OLIVEIRA 2010 Limitations of learning in automata

