
OLIVEIRA, F.S. 2018. A creativity support system based on causal mapping. Journal of computer information systems
[online], 58(2), pages 99-109. Available from: https://doi.org/10.1080/08874417.2016.1202089

This is the accepted manuscript version of the above article. The published version of record is
available from the journal website: https://doi.org/10.1080/08874417.2016.1202089

This document was downloaded from
https://openair.rgu.ac.uk

A creativity support system based on causal
mapping.

OLIVEIRA, F.S.

2018

https://doi.org/10.1080/08874417.2016.1202089
https://doi.org/10.1080/08874417.2016.1202089

Fernando S. Oliveira (2018) A Creativity Support System Based on Causal Mapping, Journal of
Computer Information Systems, 58:2, 99-109, DOI:
10.1080/08874417.2016.1202089

A Creativity Support System Based on Causal

Mapping

Fernando S. Oliveira

ESSEC Business School, Cergy-Pontoise, France

Abstract: Theory development is a very complex process that requires crea?vity and highly specialized analy?cal skills. This ar?cle
presents a new algorithm, based on causal mapping, for assis?ng in the crea?on of qualita?ve theories. This algorithm is able to conjecture
and prove new theorems, to test for consistency and completeness of the theory, and to derive meta-theorems comparing the different
concepts in it. The use of the algorithm is exemplified in developing a theory to explain structural iner?a in organiza?ons.

KEYWORDS: Ar%ficial intelligence; causal mapping; computa%onal crea%vity; knowledge management; logic modeling

Introduc3on

The development of computer programs capable of enhancing
creativity has the potential to significantly have an impact on
the evolution of human societies [3]. For example, it has been
shown that greater employee creativity is associated with better
business excellence [28, 46] and that creativity-enhancing
decision support systems can be used to improve the creative
response of their users [e.g., 27, 29, 46–48, 52, 63] contributing
to value creation. (However, Cheung et al. [13] have reported
that the use of repository databases for knowledge re-use can
be detrimental for the creative output of the most skilled
individuals.) Examples of successful applications of creativity
supporting systems include, among others, the modeling of
analogical reasoning [12], new product development [39], task
location scouting [52], and internet-based methods to conduct
creativity sessions [4].

Cognitive mapping techniques [e.g., 25, 26, 49, 64, 72] that
aim to extract subjective knowledge from individuals, and to
represent them in a graphical way, have been used in
developing creativity supporting systems. There are several
different cognitive mapping techniques used in practice [e.g.,
25, 26, 64]. Causal maps [e.g., 2, 1, 31, 33, 53] aim to represent
the concepts and the causal relationships between them,
allowing the modeling of complex chains of arguments [53].
Concept maps attempt to identify the relationships (which can
be bidirectional) between the different concepts (which do not
need to represent causality) and aim to generate ideas and to
help in knowledge development by integrating old and new
knowledge. Semantic maps are used to explore an idea by
listing other ideas connected to it, and are helpful in obtaining
a better understanding of an individual’s belief system; these
are also known as mind maps [e.g., 11]. Influence diagrams are

graphical models used to represent complex decision processes,
based on uncertain information, allowing the development of
probabilistic models (based on Bayesian networks) from expert
knowledge [e.g., 5, 14, 23]. An in-depth discussion of cognitive
mapping, and respective techniques, can be found in
References [26] and [64].

This article is focused on causal maps [e.g., 2, 33, 53].
Eden’s [26, p. 1] definition of causal maps (Eden actually calls
them “cause maps”) is the following: these maps are networks
of nodes and arrows where the direction of the arrow from one
node to its neighbor implies believed causality. As explained by
Siau and Tan [64], these causal maps represent a set of causal
relationships between constructs within a belief system. These
causal maps may not relate to individual cognition as they may
represent, instead, the beliefs of a group of individuals or, as in
the problem addressed in this article, a theory commonly shared
by the scientific community to explain a phenomenon.

The study of how researchers interact with each other, and
with the object of their studies, in scientific research, is one of
the issues addressed by the new paradigm research methods
[e.g., 38, 60, 61] that see people as co-creating their reality
through participation. As summarized in Reference [61], from
the perspective of these research methods, there are at least four
kinds of knowledge: (i) experiential, gained through direct
interaction with the others or things; (ii) practical, the
knowledge of how to do something; (iii) presentational, the
process by which we order our tacit experiential knowledge into
a pattern (it works as a “bridge” between experiential and
propositional knowledge); (iv) propositional, the knowledge
about something expressed in statements and theories. As
emphasized by the new paradigm research methods, if the
propositions are generated exclusively by a researcher who is

https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08874417.2016.1202089

not involved in the experience being researched, and are
derived without taking into account the practical and
experiential knowledge of the subjects, the findings are not
valid.

From the perspective of the new paradigm research methods,
propositional knowledge cannot give an absolute account of
what there is, it can only give a mediated, subjective, and inter-
subjective account of reality; that is, reality is considered a
social construct. The validity of such knowledge requires the
researcher to use critical subjectivity, that is, to recognize the
subjective nature of knowledge, and to accept that subjectivity
is part of the experiential articulation of reality, and to use this
self-reflection when producing propositional knowledge.

The causal map techniques analyzed in this article are used
to assist in the production of propositional knowledge and, in
conjunction with the logic-based algorithm proposed in this
article, they allow the development of consistent, sound, and
complete theories, helping in the transformation of practical
and experiential knowledge into propositions. Moreover, the
use of causal maps also allows the surfacing of tacit knowledge
(possibly multidisciplinary), and the analysis of the
relationships between a very large number of concepts
(possibly contradictory), keeping the causality link. In this
context, the analysis of causal maps with logic tools, as
proposed in this article, has the advantage of being able to
detect contradictions and to find patterns in the causal links, and
to discover incompleteness in the causal explanations. For all
these reasons, the use of logic tools, together with causal maps,
may help in knowledge creation by allowing the researchers to
develop a stronger critical subjectivity, as required by the new
paradigm research methods [e.g., 38, 60, 61].

Interesting enough, even logic can be, to a certain extent,
subjective. Most specifically, material implication [e.g., 73] can
be difficult to interpret and to translate into current speech in
theory formation, possibly introducing a degree of subjectivity
in the expression of theories, due to its wellknown paradoxes:
whenever the antecedent is false, the conditional is true;
whenever the consequent is true, the conditional is true. For this
reason, the methodology followed in this article uses causal
implication [10, 37]. In causal implication, all the propositions
mean “causality sufficiency” as described by Burks [10]. This
means that the antecedent may contain irrelevant conditions for
the causal relationship to hold and still the proposition is
correct. Henderson [37] exemplifies the difference between
material and causal implications: the proposition “If my dog has
a white tail it will die” is false in causal implication, but it is
true in material implication, when the dog does not have a white
tail.

The problem addressed in this article is the one of using
computational algorithms to help in improving the quality of
the theories produced (in terms of transparency of causal
relationships and absence of contradictions) with resource to
causal maps, to maintaining consistency in complex networks.
Most importantly, given the possible complexity of the causal
map, there are potentially many insights that can be proved
from the basic causal relationships between the different

concepts that are difficult to deduce. This creative process
requires, first and foremost, the ability to generate new
conjectures (these are the possible causal relationships that
have not been stated in the causal map but are implicit in it) and
then the procedure to prove that the conjectures do hold true in
the network of causal relationships considered in the theory.
When these conjectures become theorems (i.e., when they are
proved to be true in the context of the base theory), these
relationships become explicit in the causal map.

Additionally, causal maps enable a better identification of
the interactions between different concepts, revealing the
existence of common factors to explain them, enabling the
discovery of causal rules of behavior previously unknown to
the researcher and, as in the case of the meta-theorems
presented in this article, leading to the creation of new concepts.
These meta-theorems represent causal patterns in the data that
explain the joint emergence of a set of consequences. In terms
of the causal diagram, this corresponds to the construction of a
new set of concepts and causal relationships between them (this
is a meta-graph, developed using as base the causal diagram).

To this effect, this article presents a creativity supporting
system for theory development. The article discusses the use of
causal maps as ways to develop theories, proposing an
algorithm for theory development and testing. The proposed
algorithm uses first-order predicate logic [69, 70] and, through
a process of inference from the basic axioms of the theory, it is
able to develop a set of new theorems that are theoretically
consistent (i.e., the theory is contradiction-free), sound (i.e., all
the inferences in the theory and logically correct), and
contingent (i.e., the theory is falsifiable and not based on
tautologies).

As an application of our methodology, we analyze the inertia
fragment of organizational theory [35, 77]. The methodology
used in the article is similar to the logic approach used in the
literature [e.g., 41, 57], but it differs from it in clear ways: the
algorithm is able not only to create theorems relating multiple
properties to one property but also meta-theorems relating
multiple properties to multiple properties. These meta-
theorems, by pulling together multiple properties in the
consequent part of the conditional relationship, are indeed
creating new concepts, and not just new relationships between
concepts. Moreover, the methodology is based on causal
implication and not on material implication. The causal maps
used in this article also differ from the methodology in
References [11, 14, 21, 23, 25–27, 53, 55, 64], as we tend to
rely on tables to represent the relationship between the
variables, instead of graphical representations, which,
nonetheless, may be used by the researcher as a supporting tool.

The article is organized as follows. The next section gives a
background on computational creativity. Then an algorithm for
theory development is presented. “An application to the
analysis of structural inertia in organizations” discusses the
basic premises of the inertia fragment of the theory of
organizational ecology, and applies the algorithm to the
analysis and development of this theory. The last section
concludes the article.

Background on computa/onal crea/vity

Creativity has long been recognized as an important factor to
explain the success of people and organizations. For example,
Edward de Bono’s [21] work on creative and lateral thinking
has looked at the implications of creativity-enhancing methods
on the management of organizations that want to unleash the
creative power of their collaborators. It is, therefore, evident
that tools capable of enhancing individual and organizational
creativity have an important social value. This creative process
can result both from the exploration and transformation of
conceptual spaces, for example, by using reasoning by analogy
[59, 64], or be the product of an incremental problem-solving
process that does not arise from conceptual restructuring [e.g.,
8, 9].

Boden [9] has identified three types of creativity: (i)
combinatorial creativity, involving novel (improbable)
combination of familiar ideas, which she exemplifies with Jape
[7]; (ii) exploratory creativity, representing the generation of
novel ideas by the exploration of structured conceptual spaces,
which Boden exemplifies with the classics AARON [50],
Bacon [43], and EMI [18]; (iii) transformational creativity,
involving the transformation of some dimension(s) of the
conceptual space, so that new ideas can be generated which
could not have arisen before, which she exemplifies with AM
and Eurisko [44]. Exploratory creativity is very well adapted to
classical artificial intelligence methods, for example, Harvey
[36] developed SAGA, a model that adapts the basic genetic
algorithms framework for discovery and exploration tasks;
Pereira et al. [58] proposed genetic algorithms for generation
and neural nets for evaluation of new ideas; Bentley [6] used
evolutionary algorithms for creative exploration.

It is, therefore, evident that Boden’s definition of creativity
is still subjective, that is, a given idea can be classified either as
creative or not, depending on the process used to achieve it
(intentional purpose), [e.g., 71]. Wiggins [74] has attempted to
clarify Boden’s ideas on creativity by proposing a formalization
of this concept, to enable a detailed comparison of systems that
exhibit behavior that in humans would be called creative.
Wiggins has concluded that Boden’s concept of creativity, even
though subjective, is rather powerful in allowing the assessment
of the creative potential of different systems.

Wiggins’ framework starts by defining the universe of
possibilities (the multi-dimensional space), the basic axioms
defining it, and its conceptual spaces. These conceptual spaces
are generated by two distinct rule sets that allow the definition
of their boundaries and the search of new concepts to be added
to them. Nonetheless, subjectivity is also present in Wiggins’
framework, due to the need to use evaluation rules to assess
“quality, according to whatever criteria we may consider
appropriate” [74, p. 453]. For this reason, Wiggins’ framework,
even though representing an important step to formalizing
Boden’s creativity concept (and, in this sense, illustrating how
the concepts can be translated into computational procedures),
very naturally, still retains the subjective aspects attached to the
evaluation of novelty.

This issue, the evaluation of novel ideas, is indeed one of the
major problems faced by the research in computational
creativity, as it is always problematic to assess the outputs of
the system in terms of creative contribution (as it is difficult, in
general, to assess the creativity of a person). This issue has been
addressed by Colton [15], who developed a system in which a
conjecture generation model, HR [16], interacts with a theorem
proving system, Otter [51], in order to discard the conjectures
produced by HR that are trivial for the Otter to prove. The HR
has information about the domain studied, including objects of
interest, initial concepts, and examples. The HR is able to build
new concepts and to make conjectures [15, 16]. Colton’s HR
has been extended by Pease et al. [56] to allow the production
of conjectures with known counterexamples, to include the
analysis of faulty conjectures, and to use a multi-agent
approach in which agents are able to request and communicate
with each other. Under this approach, the threshold considered
to assess novelty is the one of discarding trivial conjectures.
Hence, novel ideas are not creative if they do not pass this
minimum threshold.

Regarding the evaluation problem, a second school of
thought argues that the creative process is as a social-cultural
construct that cannot be replicated by a closed system within a
single agent [19, 20]. This is an important point as if, by
definition, creativity implies the creation of something new,
however, it is not possible to create something from nothing,
and the creation needs to be appreciated by someone who
knows its value. This issue was addressed by Garfield et al. [30]
who haveanalyzed how individual creativity is influenced by
exposure to others, and have explained how the types of
techniques used in teamwork have a significant impact on
creativity. Therefore, from this perspective, creativity is a
process that can be observed only at the intersection where
individuals, domains, and fields interact. A model of creativity
that takes this into account was proposed by Saunders and Gero
[62], based on a multi-agent system in which agents interact to
generate creative ideas, and by Zou and Yilmaz [78] to study
the behavior of global participatory science communities.

The review of the work on computational creativity clearly
identifies the subjectivity of the evaluation process as one of the
main issues faced by the researchers in the area. This issue, so
far, has been dealt with by developing algorithms that have the
ability to self-select (to a certain extent) the concepts produced,
and by using agent-based systems where the ideas are produced
collectively by the interaction between the different algorithms.
For this reason, the creativity support system presented in this
article aims to helping in theory development by assisting the
researcher in the production of new theorems. The researcher is
the ultimate judge of the quality of the results produced by the
algorithm.

As seen from our review, there are very different approaches
to using computer software for enhancing creativity, including
analogical reasoning [12], cognitive mapping [e.g., 2, 11, 25,
26, 33, 64, 72], group decision support systems [17, 37, 42, 54,
67], and evolutionary algorithms [6, 58]. Obviously, these
different methods have strengths and weaknesses and tend to be

chosen depending on the specific context in which they are
employed. The specific approach followed in this article aims
to helping researchers and practitioners in developing causal
models when formalizing theories or when analyzing a
problem, they may face in a business environment. For this
reason, the methodology proposed is based on two components:
(i) the exploration of possible logical contradictions in the
causal maps, helping in developing consistent and sound views
of the problem; and (ii) the identification of new relationships
between known concepts, and in the construction of new
concepts, based on currently consistent, sound, and complete
causal maps.

The next section presents an algorithm for automated theory
development and testing.

An algorithm for automated theory development and
tes/ng

The algorithm aims to assist in the production of new
qualitative theories. The production of such theories can be
very complex due to the large number of concepts involved, the
possible requirement to integrate concepts from different areas
of knowledge, and the subjective meaning and sophistication of
the natural language used in their formulation. For these
reasons, a creativity support algorithm can assist in theory
development by: (i) clarifying the meaning of the previously
held assumptions and theorems, with theconsequent increasein
theobjectivityofthe theories produced; (ii) by checking
consistency between the assumptions and theorems produced;
(iii) by enabling the creation of new theorems from the basic
assumptions.

A theory has been defined as a set of sentences not
necessarily closed [75]. Such a theory can be generated with the
help of a computational algorithm for theory development and
revision [e.g., 22, 32, 34, 75]. In order to formalize a given
theory using first-order predicate logic, start by defining: (i)
variables – these are the basic components of the theory; (ii)
predicates – names of the concepts or properties (i.e.,
relationships between variables), or names of the constraints on
a given variable; (iii) connective symbols which stand for the
words used to combine different statements, in this case the
symbols stand for, respectively, “not,” “and,”
“or,” and “causal implication”.

The algorithm proposed in this article was developed using
Prolog [65, 66]: this is a specialized language for programming
in logic which allows an easy representation of recursive
reasoning, and a fast development of the interpreter used to
build the causal map representing a given theory. This language
uses first-order predicate logic as its base and all the sentences
are presented in the conditional format, that is, as implications
[e.g., 69, 70]. The use of first-order predicate logic enables the
simplification of the mathematical representation of the
formulas, rending them easier to read and understandable by a
wider audience.

The algorithm includes two main components: (i) a theory
tester, and (ii) a theorem generator. Whereas the theory tester

checks the initial theory for completeness and consistency, the
theorem generator creates new theorems, and meta-theorems,
from the initial knowledge. The algorithm starts by checking
that the theory is complete. (A theory is said to be complete if
every theorem in the theory can be proved by deduction from
the assumptions.) Then, it analyzes the consistency of the initial
theory. The initial theory can have theorems or assumptions that
are contradictory. In this case, the theory tester identifies, and
corrects, these inconsistencies.

The algorithm then proceeds with the theorem generator. It
looks at all known concepts in the theory and, by a process of
deduction, collects and puts together all the properties used to
prove the relationship under analysis taking, simultaneously,
into account the assumptions required for the new theorem to
hold. Finally, the theorems and assumptions are analyzed in
order to develop meta-theorems relating multiple properties,
creating, in effect, new concepts. These meta-theorems are a
complement to ordinary theorems that only compare basic
objects.

Before proceeding, it is useful to clarify where the original
concepts and causal relationships between them come from. If
the problem addressed is the creation, and development, of a
consistent, sound, and complete theory, the original concepts,
and basic relationships between them, are defined by the
researcher using his/her knowledge of the problem and taking
into consideration the issues he/she aims to explain with the
theory.
The theory tester

The theory tester is an automated theorem prover with an
extension to correct the theory when inconsistencies are found.
First, it checks if the theory is complete, i.e., every theorem in
the theory must be proved from other theorems and
assumptions. The procedure used to check completeness is
prove(Goal, Result), presented in Table 1, in which Goal is a
property of the objects in the theory, and Result equals “T” if
the Goal is proved true and “F”, otherwise:this procedurechecks
if a given theorem (Goal)can be proved from the known
theorems and facts. All the concepts in the theory are tested.

The algorithm considers three different cases in its attempt
to solve prove (Goal, Result). First, if Goal is a fact in the
theory, then the problem is solved as true, T. Second, if Goal is
an implication with a body composed of other Goals, then the
algorithm recursively needs to prove that the body in the
implication for Goal is true. Finally, if there is at least one
element in the body of the implication for Goal that fails, then
the proof of Goal fails.

The procedure used to analyze the body of Goal is described
in step (2). In order to prove a given conjecture, the algorithms
is required to prove every single argument (A to Z) in the
“body” of that conjecture: this is achieved by using the
procedure solve (Goal_body,Result) in Table 1. For this
purpose, it calls the procedure solve(A ^ B ^ ... ^ Z, Result) that
identifies the conditions for the main Goal to be true and then
proves these conditions, one by one. If the proof was successful
the procedure returns Result = T. If the procedure failed to
prove one of the conditions then, if the condition is proved to

to the large number of concepts involved, the possible require-
ment to integrate concepts from different areas of knowledge, and
the subjective meaning and sophistication of the natural language
used in their formulation. For these reasons, a creativity support
algorithm can assist in theory development by: (i) clarifying the
meaning of the previously held assumptions and theorems, with
the consequent increase in the objectivity of the theories produced;
(ii) by checking consistency between the assumptions and theo-
rems produced; (iii) by enabling the creation of new theorems
from the basic assumptions.

A theory has been defined as a set of sentences not necessarily
closed [75]. Such a theory can be generated with the help of a
computational algorithm for theory development and revision
[e.g., 22, 32, 34, 75]. In order to formalize a given theory using
first-order predicate logic, start by defining: (i) variables – these
are the basic components of the theory; (ii) predicates – names of
the concepts or properties (i.e., relationships between variables), or
names of the constraints on a given variable; (iii) connective
symbols which stand for the words used to combine different
statements, in this case the symbols :, ^ , _ , ! stand for,
respectively, “not,” “and,” “or,” and “causal implication”.

The algorithm proposed in this article was developed using
Prolog [65, 66]: this is a specialized language for programming in
logic which allows an easy representation of recursive reasoning,
and a fast development of the interpreter used to build the causal
map representing a given theory. This language uses first-order
predicate logic as its base and all the sentences are presented in the
conditional format, that is, as implications [e.g., 69, 70]. The use of
first-order predicate logic enables the simplification of the math-
ematical representation of the formulas, rending them easier to
read and understandable by a wider audience.

The algorithm includes two main components: (i) a theory
tester, and (ii) a theorem generator. Whereas the theory tester
checks the initial theory for completeness and consistency, the
theorem generator creates new theorems, and meta-theorems,
from the initial knowledge. The algorithm starts by checking
that the theory is complete. (A theory is said to be complete if
every theorem in the theory can be proved by deduction from the
assumptions.) Then, it analyzes the consistency of the initial
theory. The initial theory can have theorems or assumptions that
are contradictory. In this case, the theory tester identifies, and
corrects, these inconsistencies.

The algorithm then proceeds with the theorem generator. It
looks at all known concepts in the theory and, by a process of
deduction, collects and puts together all the properties used to
prove the relationship under analysis taking, simultaneously, into
account the assumptions required for the new theorem to hold.
Finally, the theorems and assumptions are analyzed in order to
develop meta-theorems relating multiple properties, creating, in
effect, new concepts. These meta-theorems are a complement to
ordinary theorems that only compare basic objects.

Before proceeding, it is useful to clarify where the original
concepts and causal relationships between them come from. If
the problem addressed is the creation, and development, of a
consistent, sound, and complete theory, the original concepts,
and basic relationships between them, are defined by the
researcher using his/her knowledge of the problem and taking
into consideration the issues he/she aims to explain with the
theory.

The theory tester

The theory tester is an automated theorem prover with an exten-
sion to correct the theory when inconsistencies are found. First, it
checks if the theory is complete, i.e., every theorem in the theory
must be proved from other theorems and assumptions. The
procedure used to check completeness is prove(Goal, Result),
presented in Table 1, in which Goal is a property of the objects
in the theory, and Result equals “T” if the Goal is proved true and
“F”, otherwise: this procedure checks if a given theorem (Goal) can
be proved from the known theorems and facts. All the concepts in
the theory are tested.

The algorithm considers three different cases in its attempt to
solve prove(Goal, Result). First, if Goal is a fact in the theory, then
the problem is solved as true, T. Second, if Goal is an implication
with a body composed of other Goals, then the algorithm recur-
sively needs to prove that the body in the implication for Goal is
true. Finally, if there is at least one element in the body of the
implication for Goal that fails, then the proof of Goal fails.

The procedure used to analyze the body of Goal is described in
step (2). In order to prove a given conjecture, the algorithms is
required to prove every single argument (A to Z) in the “body” of
that conjecture: this is achieved by using the procedure solve
(Goal_body,Result) in Table 1. For this purpose, it calls the pro-
cedure solve(A ^ B ^ . . . ^ Z, Result) that identifies the conditions
for themain Goal to be true and then proves these conditions, one
by one. If the proof was successful the procedure returns Result =
T. If the procedure failed to prove one of the conditions then, if the
condition is proved to be false, the procedure terminates with
Result = F; otherwise, if the condition is not known to be true or
false (i.e., there is no supportive fact or counterexample), then the
condition is added as a fact to the theory (as it is subsumed by one
of its theorems and not known to be false).

In step (3) the algorithm checks the presence of inconsis-
tencies in the base theory. First, (3.a) verifies that, for every
assumption and theorem in the theory its negation is not true.
Second, (3.b) detects another source of contradiction not
prevented by the previous test, :p! p, as this proposition
is considered true under material implication rules [e.g., 73].
Under material implication rules if the precedent is false, the
implication rule is evaluated as true. In the case of derivation
of causal implication rules, this implication cannot be

Table 1. The prove(Goal, Result) procedure.

(1) prove(Goal, Result): Prove Goal getting a Result (T if the Goal is proved or
F, otherwise).
(1.a) If fact(Goal) ! Result = T.
(1.b) Else If (Goal_body ! Goal) and solve(Goal_body, T) ! Result = T.
(1.c) Else Result = F.

(2) solve(A ^ B ^ . . . ^ Z, Result): Decompose the Goals in the body of the rule
into several goals, A ^ B ^ . . . ^ Z, and prove each one of them.
(2.a.A) prove(A, ResultA)
(2.a.B) prove(B, ResultB)
(2.a.Z) prove(Z, ResultZ)
(2.b) Result = ResultA ^ ResultB ^ . . . ^ ResultZ.

(3) Detect inconsistencies in the theory:
(3.a) Prove that, for every concept in the model, we do not have,

simultaneously, p! qand p! :q as true.
(3.b) Detect any implications of the type :p! p.

(4) Correct inconsistencies
(4.a) Remove inconsistent theorems and assumptions
(4.b) Add to the theory as a fact any concept completely removed in 4.a, if

it is required to prove any other assumption or theorem.

102 F. S. OLIVEIRA

be false, the procedure terminates with Result = F; otherwise,
if the condition is not known to be true or false (i.e., there is no
supportive fact or counterexample), then the condition is added
as a fact to the theory (as it is subsumed by one of its theorems
and not known to be false).

In step (3) the algorithm checks the presence of
inconsistencies in the base theory. First, (3.a) verifies that, for
every assumption and theorem in the theory its negation is not
true. Second, (3.b) detects another source of contradiction not
prevented by the previous test, , as this proposition is
considered true under material implication rules [e.g., 73].
Under material implication rules if the precedent is false, the
implication rule is evaluated as true. In the case of derivation of
causal implication rules, this implication cannot be accepted as
true as the absence of a precedent (which is interpreted as a false
statement) does not, in general, cause the subsequent to be true.

In step (4), if it finds inconsistent theorems or assumptions,
it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in the
causal map: and p is a fact, then in step
(3.b) the causal implications are both
removed. From the remaining rules (and p is a fact), we
cannot prove the truthfulness of the causal implication .
For this reason, we need to add to the theory the fact that
assumption q is known to be true. Obviously, the model
produced depends on this additional assumption. If it is known,
as a fact, that q is always false, or that one of the two causal
implications is correct, one of these can be
added to the base set of assumptions, and the theory tester is
used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties to
multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure is
presented in Table 2.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of the
meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses with
different precedents (but some of them in common) may have
the same consequence if some of the common precedents
dominate all others. C-equivalence is more restrictive than the
principle of sufficiency, as it imposes that the declared
antecedents are exactly the same in the compared concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then,
in (2.a), for each one of these concepts q, it finds all the

properties used to prove them. (These properties
are the other concepts used to prove the q.) Then, in (2.b), it
finds all the conditions used to prove the
relationship . These conditions
are a subset of all the conditions used to prove q. (This subset
includes only the conditions not required by the properties

.) As the proof of the theorems is primarily based on
concepts (properties), the theorem generator can produce
concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem .

to the large number of concepts involved, the possible require-
ment to integrate concepts from different areas of knowledge, and
the subjective meaning and sophistication of the natural language
used in their formulation. For these reasons, a creativity support
algorithm can assist in theory development by: (i) clarifying the
meaning of the previously held assumptions and theorems, with
the consequent increase in the objectivity of the theories produced;
(ii) by checking consistency between the assumptions and theo-
rems produced; (iii) by enabling the creation of new theorems
from the basic assumptions.

A theory has been defined as a set of sentences not necessarily
closed [75]. Such a theory can be generated with the help of a
computational algorithm for theory development and revision
[e.g., 22, 32, 34, 75]. In order to formalize a given theory using
first-order predicate logic, start by defining: (i) variables – these
are the basic components of the theory; (ii) predicates – names of
the concepts or properties (i.e., relationships between variables), or
names of the constraints on a given variable; (iii) connective
symbols which stand for the words used to combine different
statements, in this case the symbols :, ^ , _ , ! stand for,
respectively, “not,” “and,” “or,” and “causal implication”.

The algorithm proposed in this article was developed using
Prolog [65, 66]: this is a specialized language for programming in
logic which allows an easy representation of recursive reasoning,
and a fast development of the interpreter used to build the causal
map representing a given theory. This language uses first-order
predicate logic as its base and all the sentences are presented in the
conditional format, that is, as implications [e.g., 69, 70]. The use of
first-order predicate logic enables the simplification of the math-
ematical representation of the formulas, rending them easier to
read and understandable by a wider audience.

The algorithm includes two main components: (i) a theory
tester, and (ii) a theorem generator. Whereas the theory tester
checks the initial theory for completeness and consistency, the
theorem generator creates new theorems, and meta-theorems,
from the initial knowledge. The algorithm starts by checking
that the theory is complete. (A theory is said to be complete if
every theorem in the theory can be proved by deduction from the
assumptions.) Then, it analyzes the consistency of the initial
theory. The initial theory can have theorems or assumptions that
are contradictory. In this case, the theory tester identifies, and
corrects, these inconsistencies.

The algorithm then proceeds with the theorem generator. It
looks at all known concepts in the theory and, by a process of
deduction, collects and puts together all the properties used to
prove the relationship under analysis taking, simultaneously, into
account the assumptions required for the new theorem to hold.
Finally, the theorems and assumptions are analyzed in order to
develop meta-theorems relating multiple properties, creating, in
effect, new concepts. These meta-theorems are a complement to
ordinary theorems that only compare basic objects.

Before proceeding, it is useful to clarify where the original
concepts and causal relationships between them come from. If
the problem addressed is the creation, and development, of a
consistent, sound, and complete theory, the original concepts,
and basic relationships between them, are defined by the
researcher using his/her knowledge of the problem and taking
into consideration the issues he/she aims to explain with the
theory.

The theory tester

The theory tester is an automated theorem prover with an exten-
sion to correct the theory when inconsistencies are found. First, it
checks if the theory is complete, i.e., every theorem in the theory
must be proved from other theorems and assumptions. The
procedure used to check completeness is prove(Goal, Result),
presented in Table 1, in which Goal is a property of the objects
in the theory, and Result equals “T” if the Goal is proved true and
“F”, otherwise: this procedure checks if a given theorem (Goal) can
be proved from the known theorems and facts. All the concepts in
the theory are tested.

The algorithm considers three different cases in its attempt to
solve prove(Goal, Result). First, if Goal is a fact in the theory, then
the problem is solved as true, T. Second, if Goal is an implication
with a body composed of other Goals, then the algorithm recur-
sively needs to prove that the body in the implication for Goal is
true. Finally, if there is at least one element in the body of the
implication for Goal that fails, then the proof of Goal fails.

The procedure used to analyze the body of Goal is described in
step (2). In order to prove a given conjecture, the algorithms is
required to prove every single argument (A to Z) in the “body” of
that conjecture: this is achieved by using the procedure solve
(Goal_body,Result) in Table 1. For this purpose, it calls the pro-
cedure solve(A ^ B ^ . . . ^ Z, Result) that identifies the conditions
for themain Goal to be true and then proves these conditions, one
by one. If the proof was successful the procedure returns Result =
T. If the procedure failed to prove one of the conditions then, if the
condition is proved to be false, the procedure terminates with
Result = F; otherwise, if the condition is not known to be true or
false (i.e., there is no supportive fact or counterexample), then the
condition is added as a fact to the theory (as it is subsumed by one
of its theorems and not known to be false).

In step (3) the algorithm checks the presence of inconsis-
tencies in the base theory. First, (3.a) verifies that, for every
assumption and theorem in the theory its negation is not true.
Second, (3.b) detects another source of contradiction not
prevented by the previous test, :p! p, as this proposition
is considered true under material implication rules [e.g., 73].
Under material implication rules if the precedent is false, the
implication rule is evaluated as true. In the case of derivation
of causal implication rules, this implication cannot be

Table 1. The prove(Goal, Result) procedure.

(1) prove(Goal, Result): Prove Goal getting a Result (T if the Goal is proved or
F, otherwise).
(1.a) If fact(Goal) ! Result = T.
(1.b) Else If (Goal_body ! Goal) and solve(Goal_body, T) ! Result = T.
(1.c) Else Result = F.

(2) solve(A ^ B ^ . . . ^ Z, Result): Decompose the Goals in the body of the rule
into several goals, A ^ B ^ . . . ^ Z, and prove each one of them.
(2.a.A) prove(A, ResultA)
(2.a.B) prove(B, ResultB)
(2.a.Z) prove(Z, ResultZ)
(2.b) Result = ResultA ^ ResultB ^ . . . ^ ResultZ.

(3) Detect inconsistencies in the theory:
(3.a) Prove that, for every concept in the model, we do not have,

simultaneously, p! qand p! :q as true.
(3.b) Detect any implications of the type :p! p.

(4) Correct inconsistencies
(4.a) Remove inconsistent theorems and assumptions
(4.b) Add to the theory as a fact any concept completely removed in 4.a, if

it is required to prove any other assumption or theorem.

102 F. S. OLIVEIRA

to the large number of concepts involved, the possible require-
ment to integrate concepts from different areas of knowledge, and
the subjective meaning and sophistication of the natural language
used in their formulation. For these reasons, a creativity support
algorithm can assist in theory development by: (i) clarifying the
meaning of the previously held assumptions and theorems, with
the consequent increase in the objectivity of the theories produced;
(ii) by checking consistency between the assumptions and theo-
rems produced; (iii) by enabling the creation of new theorems
from the basic assumptions.

A theory has been defined as a set of sentences not necessarily
closed [75]. Such a theory can be generated with the help of a
computational algorithm for theory development and revision
[e.g., 22, 32, 34, 75]. In order to formalize a given theory using
first-order predicate logic, start by defining: (i) variables – these
are the basic components of the theory; (ii) predicates – names of
the concepts or properties (i.e., relationships between variables), or
names of the constraints on a given variable; (iii) connective
symbols which stand for the words used to combine different
statements, in this case the symbols :, ^ , _ , ! stand for,
respectively, “not,” “and,” “or,” and “causal implication”.

The algorithm proposed in this article was developed using
Prolog [65, 66]: this is a specialized language for programming in
logic which allows an easy representation of recursive reasoning,
and a fast development of the interpreter used to build the causal
map representing a given theory. This language uses first-order
predicate logic as its base and all the sentences are presented in the
conditional format, that is, as implications [e.g., 69, 70]. The use of
first-order predicate logic enables the simplification of the math-
ematical representation of the formulas, rending them easier to
read and understandable by a wider audience.

The algorithm includes two main components: (i) a theory
tester, and (ii) a theorem generator. Whereas the theory tester
checks the initial theory for completeness and consistency, the
theorem generator creates new theorems, and meta-theorems,
from the initial knowledge. The algorithm starts by checking
that the theory is complete. (A theory is said to be complete if
every theorem in the theory can be proved by deduction from the
assumptions.) Then, it analyzes the consistency of the initial
theory. The initial theory can have theorems or assumptions that
are contradictory. In this case, the theory tester identifies, and
corrects, these inconsistencies.

The algorithm then proceeds with the theorem generator. It
looks at all known concepts in the theory and, by a process of
deduction, collects and puts together all the properties used to
prove the relationship under analysis taking, simultaneously, into
account the assumptions required for the new theorem to hold.
Finally, the theorems and assumptions are analyzed in order to
develop meta-theorems relating multiple properties, creating, in
effect, new concepts. These meta-theorems are a complement to
ordinary theorems that only compare basic objects.

Before proceeding, it is useful to clarify where the original
concepts and causal relationships between them come from. If
the problem addressed is the creation, and development, of a
consistent, sound, and complete theory, the original concepts,
and basic relationships between them, are defined by the
researcher using his/her knowledge of the problem and taking
into consideration the issues he/she aims to explain with the
theory.

The theory tester

The theory tester is an automated theorem prover with an exten-
sion to correct the theory when inconsistencies are found. First, it
checks if the theory is complete, i.e., every theorem in the theory
must be proved from other theorems and assumptions. The
procedure used to check completeness is prove(Goal, Result),
presented in Table 1, in which Goal is a property of the objects
in the theory, and Result equals “T” if the Goal is proved true and
“F”, otherwise: this procedure checks if a given theorem (Goal) can
be proved from the known theorems and facts. All the concepts in
the theory are tested.

The algorithm considers three different cases in its attempt to
solve prove(Goal, Result). First, if Goal is a fact in the theory, then
the problem is solved as true, T. Second, if Goal is an implication
with a body composed of other Goals, then the algorithm recur-
sively needs to prove that the body in the implication for Goal is
true. Finally, if there is at least one element in the body of the
implication for Goal that fails, then the proof of Goal fails.

The procedure used to analyze the body of Goal is described in
step (2). In order to prove a given conjecture, the algorithms is
required to prove every single argument (A to Z) in the “body” of
that conjecture: this is achieved by using the procedure solve
(Goal_body,Result) in Table 1. For this purpose, it calls the pro-
cedure solve(A ^ B ^ . . . ^ Z, Result) that identifies the conditions
for themain Goal to be true and then proves these conditions, one
by one. If the proof was successful the procedure returns Result =
T. If the procedure failed to prove one of the conditions then, if the
condition is proved to be false, the procedure terminates with
Result = F; otherwise, if the condition is not known to be true or
false (i.e., there is no supportive fact or counterexample), then the
condition is added as a fact to the theory (as it is subsumed by one
of its theorems and not known to be false).

In step (3) the algorithm checks the presence of inconsis-
tencies in the base theory. First, (3.a) verifies that, for every
assumption and theorem in the theory its negation is not true.
Second, (3.b) detects another source of contradiction not
prevented by the previous test, :p! p, as this proposition
is considered true under material implication rules [e.g., 73].
Under material implication rules if the precedent is false, the
implication rule is evaluated as true. In the case of derivation
of causal implication rules, this implication cannot be

Table 1. The prove(Goal, Result) procedure.

(1) prove(Goal, Result): Prove Goal getting a Result (T if the Goal is proved or
F, otherwise).
(1.a) If fact(Goal) ! Result = T.
(1.b) Else If (Goal_body ! Goal) and solve(Goal_body, T) ! Result = T.
(1.c) Else Result = F.

(2) solve(A ^ B ^ . . . ^ Z, Result): Decompose the Goals in the body of the rule
into several goals, A ^ B ^ . . . ^ Z, and prove each one of them.
(2.a.A) prove(A, ResultA)
(2.a.B) prove(B, ResultB)
(2.a.Z) prove(Z, ResultZ)
(2.b) Result = ResultA ^ ResultB ^ . . . ^ ResultZ.

(3) Detect inconsistencies in the theory:
(3.a) Prove that, for every concept in the model, we do not have,

simultaneously, p! qand p! :q as true.
(3.b) Detect any implications of the type :p! p.

(4) Correct inconsistencies
(4.a) Remove inconsistent theorems and assumptions
(4.b) Add to the theory as a fact any concept completely removed in 4.a, if

it is required to prove any other assumption or theorem.

102 F. S. OLIVEIRA

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103
accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the
propositions for every consequent qi; (ii) compare these
propositions for the different consequents, to find common
causal effects; (iii) create a new concept, which is the
conjunction of all the consequents with the same causal
explanations, and write down the meta theorem

. In terms of the
causal map, this corresponds to the construction of an
alternative view of the problem in which in a new causal map
(a meta-map) the new concept replaces all the consequents that
were put together in that consequent. Finally, it collects all the
new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental proper1es of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theorems
and meta-theorems that are correct and consistent with the base
theory? The answer is yes, as proved in Propositions 1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in the
precedent properties for other concepts subsumed in the original
concept. Let, without loss of generality,

represent the basic
properties. Then, the new theorem

Propositions 1 and 2 are important as they guarantee that,
after the theory tester (Table 1) assures that there is no
contradiction in the base theory, the theorem generator (Table
2) can construct conjectures and prove them, both as theorems
and meta-theorems, and that the new enlarged theory is
consistent, sound, and complete. These two mechanisms
(theory tester and theorem generator) search in the space of
concepts. The theory tester may challenge the user of the
system (e.g., a researcher) to find explanations for the
inconsistencies, possibly requiring the re-writing of some of the
propositions in the base theory, and raising questions about the
current knowledge. The theorem generator proves new
propositions and creates new concepts (the meta-theorems) that
the user may find innovative and challenging (this second case,
possibly the most constructive one, would prompt a revision of
the base theory).

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

accepted as true as the absence of a precedent (which is
interpreted as a false statement) does not, in general, cause
the subsequent to be true.

In step (4), if it finds inconsistent theorems or assump-
tions, it corrects them. First, step (4.a) removes the conflicting
theorems and assumptions from the theory: this removal may
cause logical inconsistencies in other concepts whose proof
depends on the removed theorems and assumptions. For this
reason, in step (4.b), any concept in the removed properties
(assumptions and theorems) that is not part of the theory is
added as a fact (i.e., an assumption that is known to be true) if
it is required to prove other theorems in the theory. For
example, if the following causal implications are found in
the causal map: p! q, p! :q, q! c and p is a fact, then
in step (3.b) the causal implications p! q and p! :q are
both removed. From the remaining rules (q! c and p is a
fact), we cannot prove the truthfulness of the causal implica-
tion q! c. For this reason, we need to add to the theory the
fact that assumption q is known to be true. Obviously, the
model produced depends on this additional assumption. If it
is known, as a fact, that q is always false, or that one of the two
causal implications p! q, p! :q is correct, one of these can
be added to the base set of assumptions, and the theory tester
is used again on the new set of assumptions.

The theorem generator

The theorem generator, as defined here, aims to develop
concise theorems, easy to read and understand, which relate
multiple properties to one property of the objects analyzed,
minimizing the description of the sufficient conditions for the
relationship to hold. Furthermore, it contains one operator for
deriving meta-theorems, that is, concepts based on other
concepts in a given theory (which relate multiple properties
to multiple properties): conditional theory equivalence (C-
equivalence, Definition 1). The theorem generator procedure
is presented in Table 2.

Definition 1 (C-equivalence): The concepts q1; . . . ; qQ are said
C-equivalent if for some instances of the theory with conditionals
c1; . . . ; cM and propertiesp1; . . . ; pN , for all i in 1. . .Q, it is
true c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qi.

C-equivalence postulates that any two conditions that have
the same causal antecedent are equivalent. First, it should be
noted that this definition is helpful in identifying the common
causes of observed phenomena, enabling the construction of
the meta-theorems discussed next. Moreover, C-equivalence is
related with the principle of sufficiency in causal implication
[10, 37]. As reported, under causal implication two clauses
with different precedents (but some of them in common) may
have the same consequence if some of the common prece-
dents dominate all others. C-equivalence is more restrictive
than the principle of sufficiency, as it imposes that the
declared antecedents are exactly the same in the compared
concepts.

The theorem generator in step (1) collects the concepts in the
complete and consistent theory analyzed (Base_theory). Then, in
(2.a), for each one of these concepts q, it finds all the properties
p1; . . . ; pN used to prove them. (These properties are the other

concepts used to prove the q.) Then, in (2.b), it finds all the
conditions c1; . . . ; cM used to prove the relationship
p1 ^ . . . ^ pN ! q. These conditions c1; . . . ; cM are a subset of
all the conditions used to prove q. (This subset includes only the
conditions not required by the propertiesp1; . . . ; pN .) As the
proof of the theorems is primarily based on concepts (properties),
the theorem generator can produce concise theories. Then, in (2.
c), the algorithm puts together the properties and conditions to
produce the final theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

In step (3), the algorithm applies the C-equivalence operator
to the analysis of the basic theory deriving the meta-theorems
summarizing the relationship between the different concepts in
the theory. The application of the C-equivalence operation
requires the following steps: (i) get the list of all the propositions
for every consequent qi; (ii) compare these propositions for the
different consequents, to find common causal effects; (iii) create
a new concept, which is the conjunction of all the consequents
with the same causal explanations, and write down the meta-
theorem c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF . In
terms of the causal map, this corresponds to the construction
of an alternative view of the problem in which in a new causal
map (a meta-map) the new concept replaces all the consequents
that were put together in that consequent. Finally, it collects all
the new theorems and meta-theorems created to return a set of
New_theorems.

Fundamental properties of the algorithm

A fundamental question we need to answer regarding the
behavior of the algorithm is: can the algorithm create theo-
rems and meta-theorems that are correct and consistent with
the base theory? The answer is yes, as proved in Propositions
1 and 2.

Proposition 1: The theorem generator, when applied to a complete
and consistent theory, creates correct and consistent theorems.

Proof: Let c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ! q represent an original
proposition (theorem or assumption) associated to concept q. As
this proposition is sound, we know that when c1; . . . ; cK ; p1; . . . ; pZ
is true then q is true as well. Furthermore, as the basic theory is
consistent, then there are no contradictions in the precedent of
proposition q. In order to produce the new theorem, we look in
the precedent properties for other concepts subsumed in the original

Table 2. The generator(Base_theory, New_theorems) procedure.

q: consequent in a given assumption or theorem, which represents a concept
c1; . . . ; cM : constraints on the organizations under which a given
assumption or theorem is true p1; . . . ; pN : properties or concepts that are
precedents in a given assumption or theorem
Base_theory= qjqconsistentandcorrectf g
generator(Base_theory, New_theorems): generate New_theorems starting
from a given complete and consistent Base_theory.

(1) Find all the consequents q in the Base_theory
(2) For each consequent q:

(2.a) Find all the properties p1; . . . ; pN used to prove q.
(2.b) For each consequent q, find all the constraints c1; . . . ; cM used to

prove the implication p1 ^ . . . ^ pN ! q.
(2.c) Return a new theorem: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q.

(3) Find all the concepts q1; . . . qFthat are C-Equivalent and return the meta-
theorems of the form: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qF .

(4) Return all the new theorems and meta-theorems for this theory,
New_theorems.

JOURNAL OF COMPUTER INFORMATION SYSTEMS 103

concept. Let, without loss of generality,
p1ðp11; . . . ; p1kÞ; . . . ; pZðpZ1; . . . ; pZLÞ represent the basic properties
(concepts) used to prove p1; . . . ; pZ. Then, the new theorem
will be c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ^ p11 ^ . . . ^ p1K ^ . . .^
pZ1 ^ . . . ^ pZL ! q. By definition of completeness, and as each
one of the properties p1; . . . ; pZ; p11; . . . ; p1K ; ::pZ1; . . . ; pZL are in
the original theory, they all are sound and can be proved from the
basic assumptions. As p11; . . . ; p1K are in the precedent for p1 they
are consistent with each other, moreover, as pZ1; . . . ; pZL are in the
precedent for pZ they are also consistent with each other. Finally, as q
has been proved correct, and p1; . . . ; pZ are consistent, then the
respective precedents are also consistent with each other, that is,
pZ1; . . . ; pZL are consistent with pZ1; . . . ; pZL. In conclusion, c1 ^
. . . ^ cK ^ p1 ^ . . . ^ pZ ^ p11 ^ . . . ^ p1K ^ . . . ^ pZ1 ^ . . . ^
pZL ! q is true, as all the elements of the precedent are true and
consistent with each other.

Proposition 2: Let c1; . . . ; cM represent conditionals and
p1; . . . ; pN the properties for which C-equivalence holds for a set
of concepts q1; . . . ; qQ. Then, the theorem generator, when applied
to a complete and consistent theory, creates correct and consistent
meta-theorems of the form c1 ^ . . . ^ cM ^ p1 ^ . . . ^
pN ! q1 ^ . . . ^ qQ.

Proof: From Definition 1, if Q concepts are C-equivalent then, for
the respective conditionals c1; . . . ; cM and properties p1; . . . ; pN ,
we have c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1,. . .,
c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qQ. From the rules of implication
[e.g., 69, 70], it follows that we can rewrite these propositions
as : c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pNð Þ _ q1 . . .: c1 ^ . . . ^ cM ^ p1ð
^ . . . ^ pNÞ _ qQ. If all these propositions are simultaneously
true then, by the rules of the interception (and operator), it
follows that their interception is also true, and therefore, we get
: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pNð Þ _ q1½ $ ^ . . . ^ : c1 ^ . . . ^ cM^ð½
p1 ^ . . . ^ pNÞ _ qQ$: This proposition, by the distributive laws, is
equivalent to : c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pNð Þ _ q1 ^ . . . ^ qQð Þ,
which from the rules of implication is equivalent to c1 ^ . . . ^
cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qQ.

Propositions 1 and 2 are important as they guarantee that,
after the theory tester (Table 1) assures that there is no
contradiction in the base theory, the theorem generator
(Table 2) can construct conjectures and prove them, both as
theorems and meta-theorems, and that the new enlarged
theory is consistent, sound, and complete. These two mechan-
isms (theory tester and theorem generator) search in the space
of concepts. The theory tester may challenge the user of the
system (e.g., a researcher) to find explanations to the incon-
sistencies, possibly requiring the re-writing of some of the
propositions in the base theory, and raising the questions
about the current knowledge. The theorem generator proves
new propositions and creates new concepts (the meta-theo-
rems) that the user may find innovative and challenging (this
second case, possibly the most constructive one, would
prompt a revision of the base theory).

An application to the analysis of structural inertia in
organizations

This section applies the algorithm to analyzing the theory of
structural inertia in organizations by Hannan and Freeman
[35], illustrating how this creativity supporting system enables
the researcher to clarify the concepts and to state the interac-
tions between them as causal maps, represented in a table
format. This theory has had a very important impact in the
area of organizational behavior and social sciences, in general,

and it has been reported in the past in References [57, 77] to
have some issues regarding the correct way of interpreting the
meaning of some of its propositions.

The theory of structural inertia in organizations was first
written in an informal way, using assumptions and theorems,
which gives a basic framework to start with and, as the initial
theory had some consistency issues, it is a good test set for the
algorithm. A first difficulty faced when translating this theory
into first-order predicate logic is the identification of the con-
cepts involved and, sometimes, the interpretation of the subjec-
tive meaning of the words used in the assumptions, and
theorems, of the original theory. This subjectivity may rend the
process of representing the original ideas as causal relationships
very difficult indeed. In this context, the use of causal implication
has the main advantage of being clearer to understand, and less
subject to misinterpretation, than material implication.

The theory of structural inertia in organizational ecology
[35] can be very briefly summarized as follows. The factors
generating inertia are internal (e.g., sunk costs in plants,
equipment, and personnel and the tendency for precedents
to become normative standards), external (e.g., barriers to
enter and exit, legal), and political, as change may lead to
lower institutional support. Hannan and Freeman aimed to
clarify the meaning of structural inertia within organizational
ecology, and to derive theorems relating inertia to the selec-
tion of organizations, within an evolutionary model. They
postulated that there are two main competences that deter-
mine the firms’ performance: reliability and accountability.
(Reliability represents the capability to produce collective out-
comes of a given quality, repeatedly. Accountability means
that organizations are able to document how resources are
used and to reconstruct sequences of decisions, rules, and
actions that lead to a particular result.) In order for an
organization to be reliable it requires reproducibility (i.e.,
the ability to continually reproduce its structure), which is
attained through a process of institutionalization and by
creating highly standardized routines. With this institutiona-
lization and increased reproducibility arises increased inertia
and aversion to change.

Translating the original theory into first-order predicate
logic

The original theory [35] is based on 10 different assumptions, 9
of which have been adapted to a causal implication framework as
summarized in Table 3. A1 – organizations with higher reliability
and accountability have higher survival chances; A2 – organiza-
tionswith higher reliability and accountability have higher repro-
ducibility; A3 – reorganization-free organizations with higher
reproducibility have higher inertia; A4a – older reorganization-
free organizations have higher reliability; A4b – older reorgani-
zation-free organizations have higher accountability; A5 – larger
organizations of the same class have higher inertia; A6 – the
process of attempting reorganization lowers reliability of perfor-
mance; A7 – larger organizations have a higher chance of survi-
val; A9 – reorganizing organizations of the same class with faster
re-organization processes have higher survival chances; A10 –
simpler organizations of the same class have faster reorganization
processes. Assumption A8 (“structural reorganization increases

104 F. S. OLIVEIRA

concept. Let, without loss of generality,
p1ðp11; . . . ; p1kÞ; . . . ; pZðpZ1; . . . ; pZLÞ represent the basic properties
(concepts) used to prove p1; . . . ; pZ. Then, the new theorem
will be c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ^ p11 ^ . . . ^ p1K ^ . . .^
pZ1 ^ . . . ^ pZL ! q. By definition of completeness, and as each
one of the properties p1; . . . ; pZ; p11; . . . ; p1K ; ::pZ1; . . . ; pZL are in
the original theory, they all are sound and can be proved from the
basic assumptions. As p11; . . . ; p1K are in the precedent for p1 they
are consistent with each other, moreover, as pZ1; . . . ; pZL are in the
precedent for pZ they are also consistent with each other. Finally, as q
has been proved correct, and p1; . . . ; pZ are consistent, then the
respective precedents are also consistent with each other, that is,
pZ1; . . . ; pZL are consistent with pZ1; . . . ; pZL. In conclusion, c1 ^
. . . ^ cK ^ p1 ^ . . . ^ pZ ^ p11 ^ . . . ^ p1K ^ . . . ^ pZ1 ^ . . . ^
pZL ! q is true, as all the elements of the precedent are true and
consistent with each other.

Proposition 2: Let c1; . . . ; cM represent conditionals and
p1; . . . ; pN the properties for which C-equivalence holds for a set
of concepts q1; . . . ; qQ. Then, the theorem generator, when applied
to a complete and consistent theory, creates correct and consistent
meta-theorems of the form c1 ^ . . . ^ cM ^ p1 ^ . . . ^
pN ! q1 ^ . . . ^ qQ.

Proof: From Definition 1, if Q concepts are C-equivalent then, for
the respective conditionals c1; . . . ; cM and properties p1; . . . ; pN ,
we have c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1,. . .,
c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qQ. From the rules of implication
[e.g., 69, 70], it follows that we can rewrite these propositions
as : c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pNð Þ _ q1 . . .: c1 ^ . . . ^ cM ^ p1ð
^ . . . ^ pNÞ _ qQ. If all these propositions are simultaneously
true then, by the rules of the interception (and operator), it
follows that their interception is also true, and therefore, we get
: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pNð Þ _ q1½ $ ^ . . . ^ : c1 ^ . . . ^ cM^ð½
p1 ^ . . . ^ pNÞ _ qQ$: This proposition, by the distributive laws, is
equivalent to : c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pNð Þ _ q1 ^ . . . ^ qQð Þ,
which from the rules of implication is equivalent to c1 ^ . . . ^
cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qQ.

Propositions 1 and 2 are important as they guarantee that,
after the theory tester (Table 1) assures that there is no
contradiction in the base theory, the theorem generator
(Table 2) can construct conjectures and prove them, both as
theorems and meta-theorems, and that the new enlarged
theory is consistent, sound, and complete. These two mechan-
isms (theory tester and theorem generator) search in the space
of concepts. The theory tester may challenge the user of the
system (e.g., a researcher) to find explanations to the incon-
sistencies, possibly requiring the re-writing of some of the
propositions in the base theory, and raising the questions
about the current knowledge. The theorem generator proves
new propositions and creates new concepts (the meta-theo-
rems) that the user may find innovative and challenging (this
second case, possibly the most constructive one, would
prompt a revision of the base theory).

An application to the analysis of structural inertia in
organizations

This section applies the algorithm to analyzing the theory of
structural inertia in organizations by Hannan and Freeman
[35], illustrating how this creativity supporting system enables
the researcher to clarify the concepts and to state the interac-
tions between them as causal maps, represented in a table
format. This theory has had a very important impact in the
area of organizational behavior and social sciences, in general,

and it has been reported in the past in References [57, 77] to
have some issues regarding the correct way of interpreting the
meaning of some of its propositions.

The theory of structural inertia in organizations was first
written in an informal way, using assumptions and theorems,
which gives a basic framework to start with and, as the initial
theory had some consistency issues, it is a good test set for the
algorithm. A first difficulty faced when translating this theory
into first-order predicate logic is the identification of the con-
cepts involved and, sometimes, the interpretation of the subjec-
tive meaning of the words used in the assumptions, and
theorems, of the original theory. This subjectivity may rend the
process of representing the original ideas as causal relationships
very difficult indeed. In this context, the use of causal implication
has the main advantage of being clearer to understand, and less
subject to misinterpretation, than material implication.

The theory of structural inertia in organizational ecology
[35] can be very briefly summarized as follows. The factors
generating inertia are internal (e.g., sunk costs in plants,
equipment, and personnel and the tendency for precedents
to become normative standards), external (e.g., barriers to
enter and exit, legal), and political, as change may lead to
lower institutional support. Hannan and Freeman aimed to
clarify the meaning of structural inertia within organizational
ecology, and to derive theorems relating inertia to the selec-
tion of organizations, within an evolutionary model. They
postulated that there are two main competences that deter-
mine the firms’ performance: reliability and accountability.
(Reliability represents the capability to produce collective out-
comes of a given quality, repeatedly. Accountability means
that organizations are able to document how resources are
used and to reconstruct sequences of decisions, rules, and
actions that lead to a particular result.) In order for an
organization to be reliable it requires reproducibility (i.e.,
the ability to continually reproduce its structure), which is
attained through a process of institutionalization and by
creating highly standardized routines. With this institutiona-
lization and increased reproducibility arises increased inertia
and aversion to change.

Translating the original theory into first-order predicate
logic

The original theory [35] is based on 10 different assumptions, 9
of which have been adapted to a causal implication framework as
summarized in Table 3. A1 – organizations with higher reliability
and accountability have higher survival chances; A2 – organiza-
tionswith higher reliability and accountability have higher repro-
ducibility; A3 – reorganization-free organizations with higher
reproducibility have higher inertia; A4a – older reorganization-
free organizations have higher reliability; A4b – older reorgani-
zation-free organizations have higher accountability; A5 – larger
organizations of the same class have higher inertia; A6 – the
process of attempting reorganization lowers reliability of perfor-
mance; A7 – larger organizations have a higher chance of survi-
val; A9 – reorganizing organizations of the same class with faster
re-organization processes have higher survival chances; A10 –
simpler organizations of the same class have faster reorganization
processes. Assumption A8 (“structural reorganization increases

104 F. S. OLIVEIRA

concept. Let, without loss of generality,
p1ðp11; . . . ; p1kÞ; . . . ; pZðpZ1; . . . ; pZLÞ represent the basic properties
(concepts) used to prove p1; . . . ; pZ. Then, the new theorem
will be c1 ^ . . . ^ cK ^ p1 ^ . . . ^ pZ ^ p11 ^ . . . ^ p1K ^ . . .^
pZ1 ^ . . . ^ pZL ! q. By definition of completeness, and as each
one of the properties p1; . . . ; pZ; p11; . . . ; p1K ; ::pZ1; . . . ; pZL are in
the original theory, they all are sound and can be proved from the
basic assumptions. As p11; . . . ; p1K are in the precedent for p1 they
are consistent with each other, moreover, as pZ1; . . . ; pZL are in the
precedent for pZ they are also consistent with each other. Finally, as q
has been proved correct, and p1; . . . ; pZ are consistent, then the
respective precedents are also consistent with each other, that is,
pZ1; . . . ; pZL are consistent with pZ1; . . . ; pZL. In conclusion, c1 ^
. . . ^ cK ^ p1 ^ . . . ^ pZ ^ p11 ^ . . . ^ p1K ^ . . . ^ pZ1 ^ . . . ^
pZL ! q is true, as all the elements of the precedent are true and
consistent with each other.

Proposition 2: Let c1; . . . ; cM represent conditionals and
p1; . . . ; pN the properties for which C-equivalence holds for a set
of concepts q1; . . . ; qQ. Then, the theorem generator, when applied
to a complete and consistent theory, creates correct and consistent
meta-theorems of the form c1 ^ . . . ^ cM ^ p1 ^ . . . ^
pN ! q1 ^ . . . ^ qQ.

Proof: From Definition 1, if Q concepts are C-equivalent then, for
the respective conditionals c1; . . . ; cM and properties p1; . . . ; pN ,
we have c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! q1,. . .,
c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pN ! qQ. From the rules of implication
[e.g., 69, 70], it follows that we can rewrite these propositions
as : c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pNð Þ _ q1 . . .: c1 ^ . . . ^ cM ^ p1ð
^ . . . ^ pNÞ _ qQ. If all these propositions are simultaneously
true then, by the rules of the interception (and operator), it
follows that their interception is also true, and therefore, we get
: c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pNð Þ _ q1½ $ ^ . . . ^ : c1 ^ . . . ^ cM^ð½
p1 ^ . . . ^ pNÞ _ qQ$: This proposition, by the distributive laws, is
equivalent to : c1 ^ . . . ^ cM ^ p1 ^ . . . ^ pNð Þ _ q1 ^ . . . ^ qQð Þ,
which from the rules of implication is equivalent to c1 ^ . . . ^
cM ^ p1 ^ . . . ^ pN ! q1 ^ . . . ^ qQ.

Propositions 1 and 2 are important as they guarantee that,
after the theory tester (Table 1) assures that there is no
contradiction in the base theory, the theorem generator
(Table 2) can construct conjectures and prove them, both as
theorems and meta-theorems, and that the new enlarged
theory is consistent, sound, and complete. These two mechan-
isms (theory tester and theorem generator) search in the space
of concepts. The theory tester may challenge the user of the
system (e.g., a researcher) to find explanations to the incon-
sistencies, possibly requiring the re-writing of some of the
propositions in the base theory, and raising the questions
about the current knowledge. The theorem generator proves
new propositions and creates new concepts (the meta-theo-
rems) that the user may find innovative and challenging (this
second case, possibly the most constructive one, would
prompt a revision of the base theory).

An application to the analysis of structural inertia in
organizations

This section applies the algorithm to analyzing the theory of
structural inertia in organizations by Hannan and Freeman
[35], illustrating how this creativity supporting system enables
the researcher to clarify the concepts and to state the interac-
tions between them as causal maps, represented in a table
format. This theory has had a very important impact in the
area of organizational behavior and social sciences, in general,

and it has been reported in the past in References [57, 77] to
have some issues regarding the correct way of interpreting the
meaning of some of its propositions.

The theory of structural inertia in organizations was first
written in an informal way, using assumptions and theorems,
which gives a basic framework to start with and, as the initial
theory had some consistency issues, it is a good test set for the
algorithm. A first difficulty faced when translating this theory
into first-order predicate logic is the identification of the con-
cepts involved and, sometimes, the interpretation of the subjec-
tive meaning of the words used in the assumptions, and
theorems, of the original theory. This subjectivity may rend the
process of representing the original ideas as causal relationships
very difficult indeed. In this context, the use of causal implication
has the main advantage of being clearer to understand, and less
subject to misinterpretation, than material implication.

The theory of structural inertia in organizational ecology
[35] can be very briefly summarized as follows. The factors
generating inertia are internal (e.g., sunk costs in plants,
equipment, and personnel and the tendency for precedents
to become normative standards), external (e.g., barriers to
enter and exit, legal), and political, as change may lead to
lower institutional support. Hannan and Freeman aimed to
clarify the meaning of structural inertia within organizational
ecology, and to derive theorems relating inertia to the selec-
tion of organizations, within an evolutionary model. They
postulated that there are two main competences that deter-
mine the firms’ performance: reliability and accountability.
(Reliability represents the capability to produce collective out-
comes of a given quality, repeatedly. Accountability means
that organizations are able to document how resources are
used and to reconstruct sequences of decisions, rules, and
actions that lead to a particular result.) In order for an
organization to be reliable it requires reproducibility (i.e.,
the ability to continually reproduce its structure), which is
attained through a process of institutionalization and by
creating highly standardized routines. With this institutiona-
lization and increased reproducibility arises increased inertia
and aversion to change.

Translating the original theory into first-order predicate
logic

The original theory [35] is based on 10 different assumptions, 9
of which have been adapted to a causal implication framework as
summarized in Table 3. A1 – organizations with higher reliability
and accountability have higher survival chances; A2 – organiza-
tionswith higher reliability and accountability have higher repro-
ducibility; A3 – reorganization-free organizations with higher
reproducibility have higher inertia; A4a – older reorganization-
free organizations have higher reliability; A4b – older reorgani-
zation-free organizations have higher accountability; A5 – larger
organizations of the same class have higher inertia; A6 – the
process of attempting reorganization lowers reliability of perfor-
mance; A7 – larger organizations have a higher chance of survi-
val; A9 – reorganizing organizations of the same class with faster
re-organization processes have higher survival chances; A10 –
simpler organizations of the same class have faster reorganization
processes. Assumption A8 (“structural reorganization increases

104 F. S. OLIVEIRA

An applica/on to the analysis of structural iner/a in
organiza/ons

This section applies the algorithm to analyzing the theory of
structural inertia in organizations by Hannan and Freeman [35],
illustrating how this creativity-supporting system enables the
researcher to clarify the concepts and to state the interactions
between them as causal maps, represented in a table format.
This theory has had a very important impact in the area of
organizational behavior and social sciences, in general, and it
has been reported in the past in References [57, 77] to have
some issues regarding the correct way of interpreting the
meaning of some of its propositions.

The theory of structural inertia in organizations was first
written in an informal way, using assumptions and theorems,
which gives a basic framework to start with and, as the initial
theory had some consistency issues, it is a good test set for the
algorithm. A first difficulty faced when translating this theory
into first-order predicate logic is the identification of the
concepts involved and, sometimes, the interpretation of the
subjective meaning of the words used in the assumptions, and
theorems, of the original theory. This subjectivity may rend the
process of representing the original ideas as causal relationships
very difficult indeed. In this context, the use of causal
implication has the main advantage of being clearer to
understand, and less subject to misinterpretation, than material
implication.

The theory of structural inertia in organizational ecology
[35] can be very briefly summarized as follows. The factors
generating inertia are internal (e.g., sunk costs in plants,
equipment, and personnel and the tendency for precedents to
become normative standards), external (e.g., barriers to enter
and exit, legal), and political, as change may lead to lower
institutional support. Hannan and Freeman aimed to clarify the
meaning of structural inertia within organizational ecology, and
to derive theorems relating inertia to the selection of
organizations, within an evolutionary model. They postulated
that there are two main competences that determine the firms’
performance: reliability and accountability. (Reliability
represents the capability to produce collective outcomes of a
given quality, repeatedly. Accountability means that
organizations are able to document how resources are used and
to reconstruct sequences of decisions, rules, and actions that
lead to a particular result.) In order for an organization to be
reliable it requires reproducibility (i.e., the ability to continually
reproduce its structure), which is attained through a process of
institutionalization and by creating highly standardized
routines. With this institutionalization and increased
reproducibility arises increased inertia and aversion to change.

Transla1ng the original theory into first-order predicate logic

The original theory [35] is based on 10 different assumptions,
9 of which have been adapted to a causal implication
framework as summarized in Table 3.

A1 – organizations with higher reliability and accountability
have higher survival chances; A2 – organizations
withhigherreliabilityandaccountabilityhavehigherreproducibili
ty; A3 – reorganization-free organizations with higher
reproducibility have higher inertia; A4a – older
reorganizationfree organizations have higher reliability; A4b –
older reorganization-free organizations have higher
accountability; A5 – larger organizations of the same class have
higher inertia; A6 – the process of attempting reorganization
lowers reliability of performance; A7 – larger organizations
have a higher chance of survival; A9 – reorganizing
organizations of the same class with faster re-organization
processes have higher survival chances; A10 –
simplerorganizations ofthesameclass havefasterreorganization
processes. Assumption A8 (“structural reorganization increases
the death rate of new organizations”) was removed from the
base theory as it was not used to prove any result [35, 57], that
is, there was no theorem proved using this assumption and,
therefore, there is no reason to keep it in the base theory.

Table 3 summarizes the causal relationships used as starting
blocks of the causal map. The coding of the theory itself is very
simple: the user only needs to write the propositions, as listed
in Table 3, in a text file. Then the computer program parses the
propositions in the text file, builds its internal database, and
starts the theory tester and the theorem generator, as described
in An Algorithm for Automated Theory Development and
Testing section. (For more complex models, a graphical
interface may be used to directly translate causal maps into
propositions.)

The concepts used in the analysis of this theory are the
following: higher_survival(X,Y), higher_inertia(X,Y),
higher_reprod(X,Y), to express the concepts by which
organization X has, respectively, higher chance of survival,
higher inertia, and higher reproducibility than organization Y;
higher_account(X, Y), higher_reliab(X,Y), which say that
organization X has higher accountability and is more reliable
than organization Y, respectively; same_class(X,Y), X and Y
are in the same class; older(X,Y), X is older than Y;
simpler(X,Y), X is simpler than Y. We have one single
constraint reorg(X), which means that organization X is re-
organizing.

It is evident from the discussion above that the process of
translating a theory into a causal implication framework is a
difficult one as, on the one hand, the theory originally described
in “natural language” may not fit exactly into a causal map

the death rate of new organizations”) was removed from the base
theory as it was not used to prove any result [35, 57], that is, there
was no theorem proved using this assumption and, therefore,
there is no reason to keep it in the base theory.

Table 3 summarizes the causal relationships used as start-
ing blocks of the causal map. The coding of the theory itself is
very simple: the user only needs to write the propositions, as
listed in Table 3, in a text file. Then the computer program
parses the propositions in the text file, builds its internal
database, and starts the theory tester and the theorem gen-
erator, as described in An Algorithm for Automated Theory
Development and Testing section. (For more complex models,
a graphical interface may be used to directly translate causal
maps into propositions.)

The concepts used in the analysis of this theory are the
following: higher_survival(X,Y), higher_inertia(X,Y), higher_-
reprod(X,Y), to express the concepts by which organization X
has, respectively, higher chance of survival, higher inertia, and
higher reproducibility than organization Y; higher_account(X,
Y), higher_reliab(X,Y), which say that organization X has
higher accountability and is more reliable than organization
Y, respectively; same_class(X,Y), X and Y are in the same
class; older(X,Y), X is older than Y; simpler(X,Y), X is simpler
than Y. We have one single constraint reorg(X), which means
that organization X is re-organizing.

It is evident from the discussion above that the process of
translating a theory into a causal implication framework is a
difficult one as, on the one hand, the theory originally
described in “natural language” may not fit exactly into a
causal map framework and, on the other hand, some of the
richness of the description, and of the subtleties in the original
theory, may be lost in the translation process. The main
advantage of using causal maps is the writing of a more
concise theory (e.g., assumption A8 was dropped), and a
clear, objective, set of assumptions on which additional theo-
rems can be conjectured and proved. It should also be noted
that the assumptions reported in Table 3 were also the pro-
duct of the theory tester that was used many times until a
consistent, sound, and complete theory, in the causal form,
was produced. Even after such a theory was derived, it was
subsequently revised in order to facilitate the conjecture, and
proof, of innovative and meaningful theorems.

In the original theory [35], there are five theorems, which,
following References [41, 57] can be rewritten as follows: (T1)
reorganization-free organizations with higher inertia have
higher survival chances; (T2) the inertia of reorganization-
free organizations increases with age; (T3) the survival
chances of reorganization-free organizations increases with

age; (T4) the chance of survival of reorganization-free orga-
nizations is higher than the one of reorganizing organizations;
(T5) more complex organizations of the same class have lower
survival chances after re-organizations of the same type. It
should be noted that the original theory was written in a non-
formal way and without using the concept of causal implica-
tion. The base theory in Table 3 is now used to prove the new
theorems that, then, can be compared with the ones in
Reference [35] to assess the ability of the algorithm to gen-
erate creative insights in a given topic.

Deriving new theorems to explain structural inertia

By applying the algorithm to the basic assumptions, seven
new theorems were derived, as presented in Table 4, which
summarize the new causal relationships (AT is used to dis-
tinguish these theorems from the ones in the original theory).
Of these theorems, AT2, AT3, AT4, and AT5 are also in the
original theory [35], represented by the corresponding theo-
rem with the same number. When the organizations are not
going through a process of re-organization, older organiza-
tions have higher structural inertia (AT2), have higher prob-
ability of survival (AT3), and have higher reproducibility of
the internal structure (AT7). Theorem AT7 corresponds to
assumption A4 in the original theory.

However, an organization which is not re-organizing, and
which has higher accountability standards than a re-organiz-
ing organization, has a higher probability of survival (AT4).
AT4 corresponds to theorem T4 in the original theory, with
the additional condition, regarding accountability, which was
not considered by Hannan and Freeman. When both organi-
zations are reorganizing, if they belong to the same class, the
simpler organization has a higher probability of surviving the
re-organization process (AT5).

The algorithm derives two new theorems AT1 and AT6,
both of which provide a novel, and valuable, insight into
structural inertia in organizations. AT1 states that when two
organizations are not re-organizing the organization that has,
simultaneously, higher reliability and higher accountability
exhibits higher structural inertia. This means that the core
concepts for the success of an organization (reliability and
accountability) are also creating high levels of structural iner-
tia (which may prevent an organization from adapting to an
environmental change). AT6 addresses the causes of higher
reproducibility of the internal structures: a re-organizing
organization, if it has higher accountability standards than a
re-organizing organization, then it also exhibits higher repro-
ducibility of internal structures (AT6). In Table 5, we sum-
marize how each theorem was derived. An interesting case is

Table 3. Causal table for the assumptions.

A1: higher_survival(X,Y) higher_reliab(X,Y) ^ higher_account(X,Y)
A2: higher_reprod(X,Y) higher_reliab(X,Y) ^ higher_account(X,Y)
A3: higher_inertia(X,Y) :reorg(X) ^ : reorg(Y) ^ higher_reprod(X,Y)
A4a: higher_reliab(X,Y) :reorg(Y) ^ :reorg(Y) ^ older(X,Y)
A4b: higher_account(X,Y) :reorg(Y) ^ :reorg(Y) ^ older(X,Y)
A5: higher_inertia(X,Y) same_class(X,Y) ^ larger(X,Y)
A6: higher_reliab(X,Y) :reorg(X) ^ reorg(Y)
A7: higher_survival(X,Y) larger(X,Y)
A9: higher_survival(X,Y) same_class(X,Y) ^ reorg(X) ^ reorg(Y) ^

faster_reorg(X,Y)
A10: faster_reorg(X,Y) same_class(X,Y) ^ simpler(X,Y)

Table 4. Causal table of derived theorems.

AT1: higher_inertia(X,Y) :reorg(X) ^ :reorg(Y) ^ higher_reliab(X,Y) ^
higher_account(X, Y)

AT2: higher_inertia(X, Y) :reorg(X) ^ :reorg(Y) ^ older(X, Y)
AT3: higher_survival (X,Y) :reorg(Y) ^ :reorg(Y) ^ older(X,Y)
AT4: higher_survival(X, Y) :reorg(X) ^ reorg(Y) ^ higher_account(X, Y)
AT5: higher_survival(X,Y) same_class(X,Y) ^ reorg(X) ^ reorg(Y) ^
simpler(X,Y)

AT6: higher_reprod(X,Y) :reorg(X) ^ reorg(Y) ^ higher_account(X,Y)
AT7: higher_reprod (X,Y) :reorg(Y) ^ :reorg(Y) ^ older(X,Y)

JOURNAL OF COMPUTER INFORMATION SYSTEMS 105

framework and, on the other hand, some of the richness of the
description, and of the subtleties in the original theory, may be
lost in the translation process. The main advantage of using
causal maps is the writing of a more concise theory (e.g.,
assumption A8 was dropped), and a clear, objective, set of
assumptions on which additional theorems can be conjectured
and proved. It should also be noted that the assumptions
reported in Table 3 were also the product of the theory tester
that was used many times until a consistent, sound, and
complete theory, in the causal form, was produced. Even after
such a theory was derived, it was subsequently revised in order
to facilitate the conjecture, and proof, of innovative and
meaningful theorems.

In the original theory [35], there are five theorems, which,
following References [41, 57] can be rewritten as follows: (T1)
reorganization-free organizations with higher inertia have
higher survival chances; (T2) the inertia of reorganization free
organizations increases with age; (T3) the survival chances of
reorganization-free organizations increases with age; (T4) the
chance of survival of reorganization-free organizations is
higher than the one of reorganizing organizations; (T5) more
complex organizations of the same class have lower survival
chances after re-organizations of the same type. It should be
noted that the original theory was written in a nonformal way
and without using the concept of causal implication. The base
theory in Table 3 is now used to prove the new theorems that,
then, can be compared with the ones in Reference [35] to assess
the ability of the algorithm to generate creative insights in a
given topic.

Deriving new theorems to explain structural iner1a

By applying the algorithm to the basic assumptions, seven new
theorems were derived, as presented in Table 4, which
summarize the new causal relationships (AT is used to
distinguish these theorems from the ones in the original theory).
Of these theorems, AT2, AT3, AT4, and AT5 are also in the
original theory [35], represented by the corresponding theorem
with the same number. When the organizations are not going
through a process of re-organization, older organizations have
higher structural inertia (AT2), have higher probability of
survival (AT3), and have higher reproducibility of the internal
structure (AT7). Theorem AT7 corresponds to assumption A4 in
the original theory.

However, an organization which is not re-organizing, and
which has higher accountability standards than a re-organizing
organization, has a higher probability of survival (AT4). AT4
corresponds to theorem T4 in the original theory, with the
additional condition, regarding accountability, which was not
considered by Hannan and Freeman. When both organizations
are reorganizing, if they belong to the same class, the simpler
organization has a higher probability of surviving the re-
organization process (AT5).

The algorithm derives two new theorems AT1 and AT6, both

of which provide a novel, and valuable, insight into structural
inertia in organizations. AT1 states that when two organizations
are not re-organizing the organization that has, simultaneously,
higher reliability and higher accountability exhibits higher
structural inertia. This means that the core concepts for the
success of an organization (reliability and accountability) are
also creating high levels of structural inertia (which may
prevent an organization from adapting to an environmental
change). AT6 addresses the causes of higher reproducibility of
the internal structures: a re-organizing organization, if it has
higher accountability standards than a re-organizing
organization, then it also exhibits higher reproducibility of
internal structures (AT6). In	Table	5,	we	summarize	how	each	
theorem	 was	 derived.	 An	 interesting	 case	 is	 theorem T2,
which was proved using assumption A3 and theorem AT7.

Additionally, the algorithm was also able to derive the meta-
theorems presented in Table 6, which result from the
comparison of all the assumptions and theorems in the theory.
These meta-theorems are based on the concept of C-
equivalence and attempt to build complex causal relationships
in which the same set of antecedents can, simultaneously, cause
a set of consequences. These meta-theorems, therefore,
correspond to the creation of potentially new concepts (each
one of the sets of consequences) that have only one cause (the
common set of antecedents).

In Table 6 meta-theorems MT1 and MT2 describe different
situations in which an organization that has higher inertia also
has a higher chance of survival. MT1 (derived from A1 and
AT1) shows that the two core competencies of organizations,
reliability and accountability, lead both to higher survival
chances and higher inertia. This result shows that inertia is
neither a consequence nor a cause of selection, but rather that
both inertia and selection are the result of the same evolutionary
forces: reliability and accountability. MT2 (derived from A5
and AT7) reinforces this conclusion as it proves that larger
organizations, of the same class, have simultaneously higher
inertia and higher chances of survival. These two meta-

the death rate of new organizations”) was removed from the base
theory as it was not used to prove any result [35, 57], that is, there
was no theorem proved using this assumption and, therefore,
there is no reason to keep it in the base theory.

Table 3 summarizes the causal relationships used as start-
ing blocks of the causal map. The coding of the theory itself is
very simple: the user only needs to write the propositions, as
listed in Table 3, in a text file. Then the computer program
parses the propositions in the text file, builds its internal
database, and starts the theory tester and the theorem gen-
erator, as described in An Algorithm for Automated Theory
Development and Testing section. (For more complex models,
a graphical interface may be used to directly translate causal
maps into propositions.)

The concepts used in the analysis of this theory are the
following: higher_survival(X,Y), higher_inertia(X,Y), higher_-
reprod(X,Y), to express the concepts by which organization X
has, respectively, higher chance of survival, higher inertia, and
higher reproducibility than organization Y; higher_account(X,
Y), higher_reliab(X,Y), which say that organization X has
higher accountability and is more reliable than organization
Y, respectively; same_class(X,Y), X and Y are in the same
class; older(X,Y), X is older than Y; simpler(X,Y), X is simpler
than Y. We have one single constraint reorg(X), which means
that organization X is re-organizing.

It is evident from the discussion above that the process of
translating a theory into a causal implication framework is a
difficult one as, on the one hand, the theory originally
described in “natural language” may not fit exactly into a
causal map framework and, on the other hand, some of the
richness of the description, and of the subtleties in the original
theory, may be lost in the translation process. The main
advantage of using causal maps is the writing of a more
concise theory (e.g., assumption A8 was dropped), and a
clear, objective, set of assumptions on which additional theo-
rems can be conjectured and proved. It should also be noted
that the assumptions reported in Table 3 were also the pro-
duct of the theory tester that was used many times until a
consistent, sound, and complete theory, in the causal form,
was produced. Even after such a theory was derived, it was
subsequently revised in order to facilitate the conjecture, and
proof, of innovative and meaningful theorems.

In the original theory [35], there are five theorems, which,
following References [41, 57] can be rewritten as follows: (T1)
reorganization-free organizations with higher inertia have
higher survival chances; (T2) the inertia of reorganization-
free organizations increases with age; (T3) the survival
chances of reorganization-free organizations increases with

age; (T4) the chance of survival of reorganization-free orga-
nizations is higher than the one of reorganizing organizations;
(T5) more complex organizations of the same class have lower
survival chances after re-organizations of the same type. It
should be noted that the original theory was written in a non-
formal way and without using the concept of causal implica-
tion. The base theory in Table 3 is now used to prove the new
theorems that, then, can be compared with the ones in
Reference [35] to assess the ability of the algorithm to gen-
erate creative insights in a given topic.

Deriving new theorems to explain structural inertia

By applying the algorithm to the basic assumptions, seven
new theorems were derived, as presented in Table 4, which
summarize the new causal relationships (AT is used to dis-
tinguish these theorems from the ones in the original theory).
Of these theorems, AT2, AT3, AT4, and AT5 are also in the
original theory [35], represented by the corresponding theo-
rem with the same number. When the organizations are not
going through a process of re-organization, older organiza-
tions have higher structural inertia (AT2), have higher prob-
ability of survival (AT3), and have higher reproducibility of
the internal structure (AT7). Theorem AT7 corresponds to
assumption A4 in the original theory.

However, an organization which is not re-organizing, and
which has higher accountability standards than a re-organiz-
ing organization, has a higher probability of survival (AT4).
AT4 corresponds to theorem T4 in the original theory, with
the additional condition, regarding accountability, which was
not considered by Hannan and Freeman. When both organi-
zations are reorganizing, if they belong to the same class, the
simpler organization has a higher probability of surviving the
re-organization process (AT5).

The algorithm derives two new theorems AT1 and AT6,
both of which provide a novel, and valuable, insight into
structural inertia in organizations. AT1 states that when two
organizations are not re-organizing the organization that has,
simultaneously, higher reliability and higher accountability
exhibits higher structural inertia. This means that the core
concepts for the success of an organization (reliability and
accountability) are also creating high levels of structural iner-
tia (which may prevent an organization from adapting to an
environmental change). AT6 addresses the causes of higher
reproducibility of the internal structures: a re-organizing
organization, if it has higher accountability standards than a
re-organizing organization, then it also exhibits higher repro-
ducibility of internal structures (AT6). In Table 5, we sum-
marize how each theorem was derived. An interesting case is

Table 3. Causal table for the assumptions.

A1: higher_survival(X,Y) higher_reliab(X,Y) ^ higher_account(X,Y)
A2: higher_reprod(X,Y) higher_reliab(X,Y) ^ higher_account(X,Y)
A3: higher_inertia(X,Y) :reorg(X) ^ : reorg(Y) ^ higher_reprod(X,Y)
A4a: higher_reliab(X,Y) :reorg(Y) ^ :reorg(Y) ^ older(X,Y)
A4b: higher_account(X,Y) :reorg(Y) ^ :reorg(Y) ^ older(X,Y)
A5: higher_inertia(X,Y) same_class(X,Y) ^ larger(X,Y)
A6: higher_reliab(X,Y) :reorg(X) ^ reorg(Y)
A7: higher_survival(X,Y) larger(X,Y)
A9: higher_survival(X,Y) same_class(X,Y) ^ reorg(X) ^ reorg(Y) ^

faster_reorg(X,Y)
A10: faster_reorg(X,Y) same_class(X,Y) ^ simpler(X,Y)

Table 4. Causal table of derived theorems.

AT1: higher_inertia(X,Y) :reorg(X) ^ :reorg(Y) ^ higher_reliab(X,Y) ^
higher_account(X, Y)

AT2: higher_inertia(X, Y) :reorg(X) ^ :reorg(Y) ^ older(X, Y)
AT3: higher_survival (X,Y) :reorg(Y) ^ :reorg(Y) ^ older(X,Y)
AT4: higher_survival(X, Y) :reorg(X) ^ reorg(Y) ^ higher_account(X, Y)
AT5: higher_survival(X,Y) same_class(X,Y) ^ reorg(X) ^ reorg(Y) ^
simpler(X,Y)

AT6: higher_reprod(X,Y) :reorg(X) ^ reorg(Y) ^ higher_account(X,Y)
AT7: higher_reprod (X,Y) :reorg(Y) ^ :reorg(Y) ^ older(X,Y)

JOURNAL OF COMPUTER INFORMATION SYSTEMS 105

theorem T2, which was proved using assumption A3 and
theorem AT7.

Additionally, the algorithm was also able to derive the
meta-theorems presented in Table 6, which result from the
comparison of all the assumptions and theorems in the the-
ory. These meta-theorems are based on the concept of
C-equivalence and attempt to build complex causal relation-
ships in which the same set of antecedents can, simulta-
neously, cause a set of consequences. These meta-theorems,
therefore, correspond to the creation of potentially new con-
cepts (each one of the sets of consequences) that have only
one cause (the common set of antecedents).

In Table 6 meta-theorems MT1 and MT2 describe different
situations in which an organization that has higher inertia also
has a higher chance of survival. MT1 (derived from A1 and
AT1) shows that the two core competencies of organizations,
reliability and accountability, lead both to higher survival
chances and higher inertia. This result shows that inertia is
neither a consequence nor a cause of selection, but rather that
both inertia and selection are the result of the same evolu-
tionary forces: reliability and accountability. MT2 (derived
from A5 and AT7) reinforces this conclusion as it proves
that larger organizations, of the same class, have simulta-
neously higher inertia and higher chances of survival. These
two meta-theorems correspond to the creation of a new con-
cept which can be described as higher_survival_inertia(X,Y)
stating that some organizations have simultaneously a higher
chance of survival, and higher inertia, than others.

There is a further interesting contribution of meta-theorem
MT1 to explain the meaning of “selection” in the original
theorem T1. Hannan and Freeman [35, p. 162] state that
reproducibility is a sufficient condition for existence of iner-
tia, and that reliability and accountability lead to higher selec-
tion (as these require higher reproducibility, it follows that
higher reliability and higher accountability lead to higher
inertia). Therefore, inertia is a bi-product of selection. This
analysis clarifies the original theorem T1: it does not say that
inertia leads to selection. It says that organizations with highly
reproducible structures and, therefore, reliable and accounta-
ble, have higher inertia and higher chances of survival. Inertia

is a by-product of reliability and accountability that lead to
higher reproducibility and higher chances of survival. For this
reason, a better interpretation of this theorem would be T1*,
which corresponds to meta-theorem MT1.

Theorem T1*: Reorganization-free organizations with
higher reliability and accountability have, simultaneously,
higher inertia and higher survival chances.

Theorem T1* allows a comparison of different organizations,
identifying under which conditions one has higher inertia, and
higher chances of survival, than another. Most importantly, it
clearly states that, under certain conditions, selection and inertia
emerge together (even though there is no causal relationship
between them). The advantage of theorem T1* is that it breaks
any causal relationship between inertia and selection.

In this interpretation, the original theorem T1 was proved
correct from the original assumptions, therefore, the most
important result in [35] is indeed correct, without requiring
any extra assumptions. This is an important result, given
Young’s [77] criticism of the original theorem. This result
was achieved by re-interpreting the theorem and by using
meta-theorems that were able to compare multiple properties
with multiple properties.

A second concept is described by meta-theorems MT3 and
MT4: organizations that simultaneously exhibit higher survi-
val and higher reproducibility, higher_survival_reprod(X,Y).
MT3 (derived from A1 and A2) states that any organization
having higher reliability and accountability than another also
exhibits higher reproducibility and a higher chance of survi-
val. MT4 (derived from AT4 and AT6) states that any non-
reorganizing organization with higher accountability than a
reorganizing organization has higher reproducibility and a
higher chance of survival. Again, there is no causal implica-
tion from chance of survival to reproducibility (or vice versa).

Finally, MT5 (derived from AT2, AT3, and AT7) introduces
the third new concept that describes organizations which, simul-
taneously, exhibit higher inertia, higher reproducibility, andhigher
chances of survival, higher_survival_inertia_reprod(X,Y). This
meta-theorem shows that older organizations, when reorganiza-
tion free, have survived because they excelled at main drivers of
survival (reliability and accountability), both of which assume
higher reproducibility, which leads to higher inertia. However,
there are no direct implications between chances of survival,
inertia, and reproducibility.

Table 7 summarizes how themeta-theorems were derived. The
meta-theorems do not compare the organizations under analysis
(as do the theorems) but the properties of these organizations. The
algorithm has derived five different meta-theorems, denoted MT,
which relate to the concepts of higher survival, higher inertia, and
higher reproducibility. These five meta-theorems, together with
theorem AT6, represent an innovative insight into organizational
ecology, and are the result of transformational creativity [9]. The
algorithm was able to look into the space of possible theorems,
searching in a different area of the conceptual space, and trans-
forming the basic concepts into new ones.

Conclusions and discussion

Creativity supporting systems have been shown to enhance
the creativity of their users and the value of the organizations

Table 5. Summary of the precedents for each theorem.

Theorems Precedents

AT1 A2, A3
AT2 A3, AT7
AT3 A1, A4a, A4b
AT4 A1, A6
AT5 A9, A10
AT6 A2, A6
AT7 A2, A4a, A4b

Table 6. Causal table of derived meta-theorems.

MT1: higher_survival(X, Y) ^ higher_inertia(X,Y) :reorg(X) ^ :reorg(Y)
^ higher_reliab(X,Y) ^ higher_account(X, Y)

MT2: higher_survival(X, Y) ^ higher_inertia(X,Y) same_class(X,Y) ^
larger(X,Y)

MT3: higher_survival(X, Y) ^ higher_reprod (X,Y) higher_reliab(X,Y) ^
higher_account(X,Y)

MT4: higher_survival(X, Y) ^ higher_reprod(X,Y) :reorg(X) ^ reorg(Y)
^ higher_account(X,Y)

MT5: higher_survival(X, Y) ^ higher_inertia(X,Y) ^ higher_reprod(X,Y)
 :reorg(X) ^ :reorg(Y) ^ higher_reliab(X,Y) ^ higher_account(X,Y)

106 F. S. OLIVEIRA

theorems correspond to the creation of a new concept which can
be described as higher_survival_inertia(X,Y) stating that some
organizations have simultaneously a higher chance of survival,
and higher inertia, than others.

There is a further interesting contribution of meta-theorem

MT1 to explain the meaning of “selection” in the original
theorem T1. Hannan and Freeman [35, p. 162] state that
reproducibility is a sufficient condition for existence of inertia,
and that reliability and accountability lead to higher selection
(as these require higher reproducibility, it follows that higher
reliability and higher accountability lead to higher inertia).
Therefore, inertia is a bi-product of selection. This analysis
clarifies the original theorem T1: it does not say that inertia
leads to selection. It says that organizations with highly
reproducible structures and, therefore, reliable and accountable,
have higher inertia and higher chances of survival. Inertia is a
by-product of reliability and accountability that lead to higher
reproducibility and higher chances of survival. For this reason,
a better interpretation of this theorem would be T1*, which
corresponds to meta-theorem MT1.

Theorem T1*: Reorganization-free organizations with

higher reliability and accountability have, simultaneously,
higher inertia and higher survival chances.

Theorem T1* allows a comparison of different

organizations, identifying under which conditions one has
higher inertia, and higher chances of survival, than another.
Most importantly, it clearly states that, under certain conditions,
selection and inertia emerge together (even though there is no
causal relationship between them). The advantage of theorem
T1* is that it breaks any causal relationship between inertia and
selection.

In this interpretation, the original theorem T1 was proved
correct from the original assumptions, therefore, the most
important result in [35] is indeed correct, without requiring any
extra assumptions. This is an important result, given Young’s
[77] criticism of the original theorem. This result was achieved
by re-interpreting the theorem and by using meta-theorems that
were able to compare multiple properties with multiple
properties.

A second concept is described by meta-theorems MT3 and
MT4: organizations that simultaneously exhibit higher survival
and higher reproducibility, higher_survival_reprod(X,Y). MT3
(derived from A1 and A2) states that any organization having
higher reliability and accountability than another also exhibits

higher reproducibility and a higher chance of survival. MT4
(derived from AT4 and AT6) states that any nonreorganizing
organization with higher accountability than a reorganizing
organization has higher reproducibility and a higher chance of
survival. Again, there is no causal implication from chance of
survival to reproducibility (or vice versa).
Finally,	 MT5	 (derived	 from	 AT2,	 AT3,	 and	 AT7)	

introduces	 the	 third	 new	 concept	 that	 describes	
organizations	which,	simultaneously,	exhibit	higher	inertia,	
higher	 reproducibility,	 and	 higher	 chances	 of	 survival,	
higher_survival_inertia_reprod(X,Y).	 This	 meta-theorem	
shows	that	older	organizations,	when	reorganization-free,	
have	survived	because	they	excelled	at	the	main	drivers	of	
survival	 (reliability	 and	 accountability),	 both	 of	 which	
assume	 higher	 reproducibility,	 which	 leads	 to	 higher	
inertia.	However,	there	are	no	direct	implications	between	
chances	of	survival,	inertia,	and	reproducibility.	

Table 7 summarizes how the meta-theorems were derived.
The meta-theorems do not compare the organizations under
analysis (as do the theorems) but the properties of these
organizations. The algorithm has derived five different meta-
theorems, denoted MT, which relate to the concepts of higher
survival, higher inertia, and higher reproducibility. These five
meta-theorems, together with theorem AT6, represent an
innovative insight into organizational ecology, and are the
result of transformational creativity [9]. The algorithm was able
to look into the space of possible theorems, searching in a
different area of the conceptual space, and transforming the
basic concepts into new ones.

Conclusions and discussion

Creativity-supporting systems have been shown to enhance the
creativity of their users and the value of the organizations
using them. This article proposes an algorithm, based on causal
maps, to assist in the development of qualitative theories. The
algorithm can test the basic axioms of the theory for
contradictions, and to explore the relationship between these
concepts to prove new theorems on a specific area of
knowledge. The algorithm and the process of writing down the
basic axioms of the theory in a causal format have shown to be
useful in the identification of contradictions in the base theory
that were solved by re-writing the basic axioms; most
importantly, it was able to produce new theorems. Nonetheless,
the selection and evaluation of these theorems’ rests with the
users.

The algorithm was applied to the analysis of structural
inertia [35] and was able to prove theorems T2, T3, T4, and T5

theorem T2, which was proved using assumption A3 and
theorem AT7.

Additionally, the algorithm was also able to derive the
meta-theorems presented in Table 6, which result from the
comparison of all the assumptions and theorems in the the-
ory. These meta-theorems are based on the concept of
C-equivalence and attempt to build complex causal relation-
ships in which the same set of antecedents can, simulta-
neously, cause a set of consequences. These meta-theorems,
therefore, correspond to the creation of potentially new con-
cepts (each one of the sets of consequences) that have only
one cause (the common set of antecedents).

In Table 6 meta-theorems MT1 and MT2 describe different
situations in which an organization that has higher inertia also
has a higher chance of survival. MT1 (derived from A1 and
AT1) shows that the two core competencies of organizations,
reliability and accountability, lead both to higher survival
chances and higher inertia. This result shows that inertia is
neither a consequence nor a cause of selection, but rather that
both inertia and selection are the result of the same evolu-
tionary forces: reliability and accountability. MT2 (derived
from A5 and AT7) reinforces this conclusion as it proves
that larger organizations, of the same class, have simulta-
neously higher inertia and higher chances of survival. These
two meta-theorems correspond to the creation of a new con-
cept which can be described as higher_survival_inertia(X,Y)
stating that some organizations have simultaneously a higher
chance of survival, and higher inertia, than others.

There is a further interesting contribution of meta-theorem
MT1 to explain the meaning of “selection” in the original
theorem T1. Hannan and Freeman [35, p. 162] state that
reproducibility is a sufficient condition for existence of iner-
tia, and that reliability and accountability lead to higher selec-
tion (as these require higher reproducibility, it follows that
higher reliability and higher accountability lead to higher
inertia). Therefore, inertia is a bi-product of selection. This
analysis clarifies the original theorem T1: it does not say that
inertia leads to selection. It says that organizations with highly
reproducible structures and, therefore, reliable and accounta-
ble, have higher inertia and higher chances of survival. Inertia

is a by-product of reliability and accountability that lead to
higher reproducibility and higher chances of survival. For this
reason, a better interpretation of this theorem would be T1*,
which corresponds to meta-theorem MT1.

Theorem T1*: Reorganization-free organizations with
higher reliability and accountability have, simultaneously,
higher inertia and higher survival chances.

Theorem T1* allows a comparison of different organizations,
identifying under which conditions one has higher inertia, and
higher chances of survival, than another. Most importantly, it
clearly states that, under certain conditions, selection and inertia
emerge together (even though there is no causal relationship
between them). The advantage of theorem T1* is that it breaks
any causal relationship between inertia and selection.

In this interpretation, the original theorem T1 was proved
correct from the original assumptions, therefore, the most
important result in [35] is indeed correct, without requiring
any extra assumptions. This is an important result, given
Young’s [77] criticism of the original theorem. This result
was achieved by re-interpreting the theorem and by using
meta-theorems that were able to compare multiple properties
with multiple properties.

A second concept is described by meta-theorems MT3 and
MT4: organizations that simultaneously exhibit higher survi-
val and higher reproducibility, higher_survival_reprod(X,Y).
MT3 (derived from A1 and A2) states that any organization
having higher reliability and accountability than another also
exhibits higher reproducibility and a higher chance of survi-
val. MT4 (derived from AT4 and AT6) states that any non-
reorganizing organization with higher accountability than a
reorganizing organization has higher reproducibility and a
higher chance of survival. Again, there is no causal implica-
tion from chance of survival to reproducibility (or vice versa).

Finally, MT5 (derived from AT2, AT3, and AT7) introduces
the third new concept that describes organizations which, simul-
taneously, exhibit higher inertia, higher reproducibility, andhigher
chances of survival, higher_survival_inertia_reprod(X,Y). This
meta-theorem shows that older organizations, when reorganiza-
tion free, have survived because they excelled at main drivers of
survival (reliability and accountability), both of which assume
higher reproducibility, which leads to higher inertia. However,
there are no direct implications between chances of survival,
inertia, and reproducibility.

Table 7 summarizes how themeta-theorems were derived. The
meta-theorems do not compare the organizations under analysis
(as do the theorems) but the properties of these organizations. The
algorithm has derived five different meta-theorems, denoted MT,
which relate to the concepts of higher survival, higher inertia, and
higher reproducibility. These five meta-theorems, together with
theorem AT6, represent an innovative insight into organizational
ecology, and are the result of transformational creativity [9]. The
algorithm was able to look into the space of possible theorems,
searching in a different area of the conceptual space, and trans-
forming the basic concepts into new ones.

Conclusions and discussion

Creativity supporting systems have been shown to enhance
the creativity of their users and the value of the organizations

Table 5. Summary of the precedents for each theorem.

Theorems Precedents

AT1 A2, A3
AT2 A3, AT7
AT3 A1, A4a, A4b
AT4 A1, A6
AT5 A9, A10
AT6 A2, A6
AT7 A2, A4a, A4b

Table 6. Causal table of derived meta-theorems.

MT1: higher_survival(X, Y) ^ higher_inertia(X,Y) :reorg(X) ^ :reorg(Y)
^ higher_reliab(X,Y) ^ higher_account(X, Y)

MT2: higher_survival(X, Y) ^ higher_inertia(X,Y) same_class(X,Y) ^
larger(X,Y)

MT3: higher_survival(X, Y) ^ higher_reprod (X,Y) higher_reliab(X,Y) ^
higher_account(X,Y)

MT4: higher_survival(X, Y) ^ higher_reprod(X,Y) :reorg(X) ^ reorg(Y)
^ higher_account(X,Y)

MT5: higher_survival(X, Y) ^ higher_inertia(X,Y) ^ higher_reprod(X,Y)
 :reorg(X) ^ :reorg(Y) ^ higher_reliab(X,Y) ^ higher_account(X,Y)

106 F. S. OLIVEIRA

using them. This article proposes an algorithm, based on
causal maps, to assist in the development of qualitative the-
ories. The algorithm is able to test the basic axioms of the
theory for contradictions, and to explore the relationship
between these concepts to prove new theorems on a specific
area of knowledge. The algorithm and the process of writing
down the basic axioms of the theory in a causal format have
shown to be useful in the identification of contradictions in
the base theory that were solved by re-writing the basic
axioms; most importantly, it was able to produce new theo-
rems. Nonetheless, the selection and evaluation of these the-
orems rests with the users.

The algorithm was applied to the analysis of structural
inertia [35] and was able to prove theorems T2, T3, T4, and
T5 of the original theory, and it produced two new theorems,
AT1 and AT6, relating higher accountability to higher repro-
ducibility. It has also shown that theorem AT7 corresponds to
the original assumption 4, which was replaced in the base
theory. Moreover, the algorithm was able to produce five new
meta-theorems to explain how the main drivers of organiza-
tional evolution (reliability, accountability), together with size
can, simultaneously, lead to higher chances of survival, higher
inertia, and higher reproducibility. Of these, possibly the most
important one is MT1 that explains how, with the use of the
algorithm, theorem T1 in the original theory was “saved,” by
proving, as a meta-theorem, that reorganization-free organi-
zations with higher reliability and accountability have, simul-
taneously, higher inertia and higher survival chances.

One of the features of the modeling process is the use of
tables to summarize the causal map; these tables have the
advantage of allowing a compact representation of the cau-
sal relationships but they do not have the visual impact of a
causal map. This disadvantage can be surpassed by using
the causal diagram in the interaction with the users of the
system and the table format as an additional support in the
modeling process. Another feature of the modeling frame-
work presented in this article is the use of causal logic. This
was a deliberate choice, as it allows a clearer description of
the theories and the use of causality as the connection
between concepts. However, some theories cannot be trans-
lated into causal maps and, in this case, other cognitive
mapping techniques are required instead, such as concept
mapping, semantic maps, or influence diagrams, moreover,
in such cases, another type of logic needs to be used to
analyze the theory.

Even though the article has focused on the use of causal
maps to create new theory, it is possible that this same tool
can be used with other goals. For example, in the context of
analyzing the shared beliefs of the individuals in a group, [e.g.,
17, 24, 25, 37, 40, 42, 54, 67, 68, 76], and in helping in the

structuring of collective intelligence [45], the algorithm may
find contradictions in the different representations of the
problem and may be able to find new causal relationships,
improving the outcome from the group exercise. Another area
in which the use of the proposed algorithm may produce
interesting results is in the support to brainstorming sessions
[55]. It may be envisioned that brainstorming can be used as a
complement to the theorem generator by creating conjectures
that would be integrated in the basic theory to create a new,
consistent, complete, and sound set of causal relationships
and concepts.

A limitation of the methodology proposed in this article is
the reliance on an initial set of axioms and theorems in order
to develop new theorems, which limits the ability of the
theorem generator to create new theories. A possible exten-
sion to the current framework might include the use of
datasets to assess the value of the currently held theories
and to derived data-based theorems.

References

[1] Aikenhead G, Farahbakhsh K, Halbe J, Adamowski J. Application
of process mapping and causal loop diagramming to enhance
engagement in pollution prevention in small to medium size
enterprises: case study of a dairy processing facility. J Cleaner
Prod. 2015;102:275–284.

[2] Ali N, Chater N, Oaksford M. The mental representation of causal
conditional reasoning: mental or causal models. Cognition
2011;119:403–418.

[3] Amabile TM, Khaire M. Creativity and the role of the leader. Harv
Bus Rev. 2008;86(10):100–109.

[4] Baaken T, Kliewe T. Creativity techniques using online facilities.
Int J Bus Social Sci. 2012;3(1):165–172.

[5] Bielza C, Gómez M, Shenoy PP. Modeling challenges with influ-
ence diagrams: constructing probability and utility models. Decis
Support Syst 2010;49:354–364.

[6] Bentley PJ. Exploring component-based representations - the
secret of creativity by evolution? In Proc. of the Fourth
International Conference on Adaptive Computing in Design and
Manufacture (ACDM 2000), April 26th–28th, University of
Plymouth, UK. I. C. Parmee (ed.), 2000, 161–172.

[7] Binsted, K. Machine Humour: an implemented model of puns,
Ph.D. Thesis, University of Edinburgh, 1996.

[8] Boden MA. Modelling creativity: reply to reviewers. Artificial
Intelligence 1995;79:161–182.

[9] Boden MA. Creativity and artificial intelligence. Artif Intell.
1998;103:347–356.

[10] Burks AW. The logic of causal propositions. Mind, New Series
1951;60(239):363–382.

[11] Buzan A. The mind map book, unlock your creativity, boost your
memory, change your life. Pearson, Harlow, GB, 1993.

[12] Chen Z. Generating suggestions through document structure
mapping. Decis Support Syst 1996;16:297–314.

[13] Cheung P-K, Chau PYK, Au AKK. Does knowledge reuse make a
creative person more creative? Decis Support Syst. 2008;45:219–
227.

[14] Cobb BR. 2009. Efficiency of influence diagram models with
continuous decision variables. Decis Support Syst. 2009;48:257–
266.

[15] Colton S. Making conjectures about maple functions. In proceed-
ings of AISC/Calculemus’02, LNAI 2385, Springer. 2002 Available
from http://www.doc.ic.ac.uk/~sgc/publications.html

[16] Colton S. The HR program for theorem generation. Proceedings
of CADE’02, Copenhagen, Denmark, 2002. Available from http://
www.doc.ic.ac.uk/~sgc/publications.html.

Table 7. Summary of the precedents for each meta-theorem.

Theorems Precedents

MT1 A1, AT1
MT2 A5, A7
MT3 A1, A2
MT4 AT4, AT6
MT5 AT2, AT3, AT7

JOURNAL OF COMPUTER INFORMATION SYSTEMS 107

of the original theory, and it produced two new theorems, AT1
and AT6, relating higher accountability to higher
reproducibility. It has also shown that theorem AT7 corresponds
to the original assumption 4, which was replaced in the base
theory. Moreover, the algorithm was able to produce five new
meta-theorems to explain how the main drivers of
organizational evolution (reliability, accountability), together
with size can, simultaneously, lead to higher chances of
survival, higher inertia, and higher reproducibility. Of these,
possibly the most important one is MT1 which explains how,
with the use of the algorithm, theorem T1 in the original theory
was “saved,” by proving, as a meta-theorem, that
reorganization-free organizations with higher reliability and
accountability have, simultaneously, higher inertia and higher
survival chances.

One of the features of the modelling process is the use of
tables to summarize the causal map; these tables have the
advantage of allowing a compact representation of the causal
relationships, but they do not have the visual impact of a causal
map. This disadvantage can be surpassed by using the causal
diagram in the interaction with the users of the system and the
table format as additional support in the modelling process.
Another feature of the modelling framework presented in this
article is the use of causal logic. This was a deliberate choice,
as it allows a clearer description of the theories and the use of
causality as the connection between concepts. However, some
theories cannot be translated into causal maps, and, in this case,
other cognitive mapping techniques are required instead, such
as concept mapping, semantic maps, or influence diagrams,
moreover, in such cases, another type of logic needs to be used
to analyze the theory.

Even though the article has focused on the use of causal
maps to create a new theory, it is possible that this same tool
can be used with other goals. For example, in the context of
analyzing the shared beliefs of the individuals in a group, [e.g.,
17, 24, 25, 37, 40, 42, 54, 67, 68, 76], and in helping in the
structuring of collective intelligence [45], the algorithm may
find contradictions in the different representations of the
problem and may be able to find new causal relationships,
improving the outcome from the group exercise. Another area
in which the use of the proposed algorithm may produce
interesting results is in the support of brainstorming sessions
[55]. It may be envisioned that brainstorming can be used as a
complement to the theorem generator by creating conjectures
that would be integrated into the basic theory to create a new,
consistent, complete, and sound set of causal relationships and
concepts.

A limitation of the methodology proposed in this article is
the reliance on an initial set of axioms and theorems in order to
develop new theorems, which limits the ability of the theorem
generator to create new theories. A possible extension to the
current framework might include the use of datasets to assess
the value of the currently held theories and to derive data-based
theorems.

References
[1] Aikenhead G, Farahbakhsh K, Halbe J, Adamowski J. Application

of process mapping and causal loop diagramming to enhance
engagement in pollution prevention in small to medium size
enterprises: case study of a dairy processing facility. J Cleaner Prod.
2015;102:275–284.

[2] Ali N, Chater N, Oaksford M. The mental representation of causal
conditional reasoning: mental or causal models. Cognition
2011;119:403–418.

[3] Amabile TM, Khaire M. Creativity and the role of the leader. Harv
Bus Rev. 2008;86(10):100–109.

[4] Baaken T, Kliewe T. Creativity techniques using online facilities.
Int J Bus Social Sci. 2012;3(1):165–172.

[5] Bielza C, Gómez M, Shenoy PP. Modeling challenges with
influence diagrams: constructing probability and utility models.
Decis Support Syst 2010;49:354–364.

[6] Bentley PJ. Exploring component-based representations - the secret
of creativity by evolution? In Proc. of the Fourth International
Conference on Adaptive Computing in Design and Manufacture
(ACDM 2000), April 26th–28th, University of Plymouth, UK. I. C.
Parmee (ed.), 2000, 161–172.

[7] Binsted, K. Machine Humour: an implemented model of puns,
Ph.D. Thesis, University of Edinburgh, 1996.

[8] Boden MA. Modelling creativity: reply to reviewers. Artificial
Intelligence 1995;79:161–182.

[9] Boden MA. Creativity and artificial intelligence. Artif Intell.
1998;103:347–356.

[10] Burks AW. The logic of causal propositions. Mind, New Series
1951;60(239):363–382.

[11] Buzan A. The mind map book, unlock your creativity, boost your
memory, change your life. Pearson, Harlow, GB, 1993.

[12] Chen Z. Generating suggestions through document structure
mapping. Decis Support Syst 1996;16:297–314.

[13] Cheung P-K, Chau PYK, Au AKK. Does knowledge reuse make a
creative person more creative? Decis Support Syst. 2008;45:219–
227.

[14] Cobb BR. 2009. Efficiency of influence diagram models with
continuous decision variables. Decis Support Syst. 2009;48:257–
266.

[15] Colton S. Making conjectures about maple functions. In
proceedings of AISC/Calculemus’02, LNAI 2385, Springer. 2002
Available from http://www.doc.ic.ac.uk/~sgc/publications.html

[16] Colton S. The HR program for theorem generation. Proceedings of
CADE’02, Copenhagen, Denmark, 2002. Available from http://
www.doc.ic.ac.uk/~sgc/publications.html.

[17] Connolly T, Jessup LM, Valacich JS. Effects of anonymity and
evaluative tone on idea generation in computer-mediated groups.
Manage Sci. 1990;36(6):689–703.

[18] Cope D. Computers and musical style. Oxford, UK: Oxford
University Press.

[19] Csikszentmihalyi M. Handbook of creativity. Cambridge, UK:
Cambridge University Press.

[20] Csikszentmihalyi M. Creativity and genius: a systems perspective.
In Steptoe A Editor. Genius and the Mind: Studies of Creativity and
Temperament. Oxford University Press, 1998, p. 39–64.

[21] de Bono E. Simplicity. London: Penguin Books, 1999.
[22] Dell’Acqua P, Pereira LM. Preferential theory revision. J Appl

Logic 2007;5:586–601.
[23] Detwarasiti A, Shachter RD. Influence diagrams for team decision

analysis. Decis Anal. 2005;2(4):207–228.
[24] Desthieux G, Joerin F, Lebreton M. Ulysse: a qualitative tool for

eliciting mental models of complex systems. Methodological
approach and application to regional development in Atlantic
Canada. Syst Dyn Rev 2010;26(2):163–192.

http://www.doc.ic.ac.uk/~sgc/publications.html
http://www.doc.ic.ac.uk/~sgc/publications.html
http://www.doc.ic.ac.uk/~sgc/publications.html
http://www.doc.ic.ac.uk/~sgc/publications.html

[25] Eden C, Ackermann F. Cognitive mapping expert views for policy

analysis in the public sector. Eur J Oper Res 2004;152:615–630.
[26] Eden C. Analyzing cognitive maps to help structure issues or

problems. Eur J Oper Res 2004;159:673–686.
[27] Elam JJ, Mead M. Can software influence creativity?. Inf Syst Res.

1990;1(1):1–22.
[28] Eskildsen J, Dahlgaard J, Norgaard A. The impact of creativity and

learning on business excellence, Total Qual Manage. 1999;10(4–
5):523–529.

[29] Forgionne G, NewMan J. 2007. An experiment on the effectiveness
of creativity enhancing decision-making support systems. Decis
Support Syst. 2007;42:2126–2136.

[30] Garfield MJ, Taylor NJ, Dennis AR, Satzinger JW. 2001 Research
report: modifying paradigms – individual differences, creativity
techniques, and exposure to ideas in group idea generation. Inf.
Syst. Res. 2001;12(3):322–333.

[31] Ghobadi S, Mathiassen L. 2016. Perceived barriers to effective
knowledge sharing in agile software teams. Inf. Syst. J. 2016;26
(2):95–125.

[32] Goldsmith JR, Sloan H, Szorényi B, Turán G. Theory revision with
queries: horn, read-once, and parity formulas. Artif Intell.
2004;156:139–176.

[33] Goldvarg E,Johnson-Laird PN. Naive causality: a mental model
theory of causal meaning and reasoning. Cognit Sci. 2001;25:565–
610.

[34] Greiner R. The complexity of revising logic programs. J Logic
Program. 1999;40:273–298.

[35] Hannan MT, Freeman J. Structural inertia and organizational
change. Am Sociological Rev. 1984;49:149–164.

[36] Harvey I. The artificial evolution of adaptive behaviour. PhD
Thesis. 1995. Available from http://www.cogs.susx.ac.uk/users/
inmanh/inman_thesis.html

[37] Henderson GP. Causal implication. Mind, New Series 1954;63
(252):504–518.

[38] Heron J, Reason P. A participatory inquiry paradigm. Qual Inq.
1997;3(3):274–294.

[39] Husig S, Kohn S. Computer aided innovation – state of the art from
a new product development perspective. Comput Ind.
2009;60:551–562.

[40] Jessup LM, Connolly T, Galegher J. The effects of anonymity on
gdss group process with an idea-generating task. MIS Q. 1990;
14(3):313–321.

[41] Kamps J, Masuch M. Partial deductive closure: logical simulation
and management science. Manage Sci. 1997;43(9):1229–1245.

[42] Langfield-Smith K. Exploring the need for a shared cognitive map.
Journal of Management Studies, 1992;29(3):349–368.

[43] Langley P, Simon HA, Bradshaw, Zytkow JM. Scientific discovery:
computational explorations of the creative process. Cambridge,
MA: MIT Press; 1987.

[44] Lenat DB. The role of heuristics in learning by discovery: three
case studies. In: Michalski RS, Carbonell JG, Mitchell TM. Editors.

Machine Learning: An Artificial Intelligence Approach, Tioga, Palo
Alto, CA, 1983, p. 243–306.

[45] Maciulienè M, Skarzauskienè A. Emergence of collective
intelligence in online communities. J Bus Res. 2016;69:1718–1724.

[46] Malaga RA. The effect of stimulus modes and associative distance
in individual creativity support systems. Decis Support Syst.
2000;29:125–141.

[47] Massetti B. 1996. An empirical examination of the value of
creativity support systems on idea generation. MIS Q
1996;20(1):83–97.

[48] Marakas GM, Elam JL. Creativity enhancement in problem
solving:

through software or process? Manage Sci. 1997;43(8):1136–1146.

[49] May J, Lending D. A conceptual model for communicating an
integrated information systems curriculum. J Comput Inf Syst.
2015;60(4):20–28.

[50] McCorduck P. Aaron’s code. San Francisco, CA: W. H. Freeman;
1991.

[51] McCune W. The otter user’s guide, Technical Report ANL/90/9,
Argonne National Laboratories, 1990.

[52] Muller-Wienbergen F, Muller O, Seidel S, Becker J. 2011. Leaving
the beaten tracks in creative work-A design theory for systems that
support convergent and divergent thinking. J Assoc Inf Syst.
2011;12(11):714–740.

[53] Montibeller G, Belton V. Causal maps and the evaluation of
decision options: a review. Journal of the Operational Research
Society 2006;57(7):779–791.

[54] Nunamaker JF, Jr., Applegate LM, Konsynski BR. Facilitating
group creativity: experience with a group decision support system.
J Manage Inf Syst. 1987;3(4):5–19.

[55] Osborn AF. Your creative power: How to use imagination. New
York: Scribners; 1952.

[56] Pease A, Colton S, Smaill A, Lee J. Lakatos and machine creativity.
In Proceedings of the ECAI Creativity Systems Workshop, 2002.

[57] Peli G, Bruggeman J, Masuch M, Nuallain BO. A logical approach
to formalizing organizational ecology. Am Sociological Rev.
1994;59(4):571–593.

[58] Pereira FC, Machado P, Cardoso A. Darwinci: creating bridges to
creativity. In: de Oliveira FM Editor. Advances in Artificial
Intelligence, Procs. of the 14th. Brazilian Symposium on

Artificial Intelligence, SBIA’98, Porto Alegre, Brazil, Lecture Notes
in Artificial Intelligence, LNAI-1515, pp. 239–248, Springer-Verlag,
November, 1998.

[59] Rajkumar TM, Baliga BR, Yadav SB. Systems to support reasoning
by analogy. J Comput Inf Syst. 1994;36(4):81–87.

[60] Reason P, Rowan J editors. Human inquiry: a sourcebook of new
paradigm research. Chichester, UK: Wiley; 1981.

[61] Reason P. Three approaches to participative inquiry. In: Denzin
NK, Lincoln YS. editors. Handbook of Qualitative Research, Sage:
Thousand Oaks, 1994, p. 324–339.

[62] Saunders R, Gero JS. Artificial creativity: A synthetic approach to
the study of creative behaviour. In: Gero JS. editor. Computational
and Cognitive Models of Creative Design V, Key Centre of Design
Computing and Cognition, University of Sydney, Sydney, 2001,
113–139.

[63] Shneiderman B. Creating creativity: user interfaces for supporting
innovation. ACM Trans Comput Hum Interact. 2000;7(1):114–138.

[64] Siau K, Tan X. Use of cognitive mapping techniques in information
systems development. J Comput Inf Syst. (Summer),

2008:49–57.
[65] SICStus Prolog. 2016. Available from http://www.sics.se/isl/sic

stuswww/site/index.html
[66] Stirling L, Shapiro E. The art of prolog: advanced programming

techniques. London: MIT Press; 1994.
[67] Tegarden DP, Tegarden LF, Sheetz SD. Cognitive mapping in a top

management team: surfacing and analyzing cognitive diversity
using causal maps. Group Decis Negotiation 2009;18:537–566.

[68] Tegarden DP, Sheetz SD. Group cognitive mapping: a methodology
and system for capturing and evaluating managerial and
organization cognition. Omega 2003;31:113–125.

[69] Thayse A. From standard logic to logic programming. introducing
a logic based approach to artificial intelligence. Chichester: John
Wiley & Sons; 1988.

[70] Thayse A. From modal logic to deductive databases. Introducing a
Logic Based Approach to Artificial Intelligence. Chichester: John
Wiley & Sons, 1989.

[71] Thornton C. A quantitative reconstruction of boden’s creativity
theory. 2005. Available from http://www.cogs.susx.ac.uk/users/
christ/.index-Papers.html

http://www.cogs.susx.ac.uk/users/inmanh/inman_thesis.html
http://www.cogs.susx.ac.uk/users/inmanh/inman_thesis.html
http://www.cogs.susx.ac.uk/users/inmanh/inman_thesis.html
http://www.sics.se/isl/sicstuswww/site/index.html
http://www.sics.se/isl/sicstuswww/site/index.html
http://www.sics.se/isl/sicstuswww/site/index.html
http://www.cogs.susx.ac.uk/users/christ/.index-Papers.html
http://www.cogs.susx.ac.uk/users/christ/.index-Papers.html
http://www.cogs.susx.ac.uk/users/christ/.index-Papers.html

[72] Vandenbosch B, Higgins C. Information acquisition and mental

models: an investigation into the relationship between behaviour
and learning. Inf Syst Res. 1996;7(2):198–214.

[73] Velleman DJ. How to prove it. a structured approach. New York:
Cambridge University Press; 1994.

[74] Wiggins GA. A preliminary framework for description, analysis
and comparison of creative systems. Knowledge-Based Syst.
2006;19:449–458.

[75] Witteveen C, van der Hoek W. Recovery of (non)monotonic
theories. Artif Intell. 1998;106:139–159.

[76] Yen J, Fan X, Sun S, Hanratty T, Dumer J. 2006. Agents with shared
mental model for enhancing tem decision making. Decis Support
Syst. 2006;41:634–653.

[77] Young RC. Is population ecology a useful paradigm for the study
of?” Am J Sociology 1988;94:1–24.

[78] Zou G, Yilmaz L. Dynamics of knowledge creation in global
participatory science communities: open innovation communities
from a network perspective. Comput. Math. Organ. Theory

2011;17:35–58.

	coversheet_template
	OLIVEIRA 2018 A creativity support system

