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Abstract 

Water fingerprinting is an innovative surveillance tool, that can provide key data on both the 

environment and human health. It has significant relevance for research in the One Health domain, 

which is based on the concept that human health is closely entwined with animal and environmental 

health. In this thesis, wastewater epidemiology (WBE) was explored as a route for assessing many 

aspects of public health, including infectious disease spread and monitoring use of antimicrobials.  

The next section of the thesis explored developing novel analytical methods for WBE, focusing on 

oxidative stress biomarkers as a biomarker for general public health. Liquid chromatography coupled 

to mass spectrometry was utilised to explore four endogenous biomarkers of public health in 

wastewater. Application of the developed method resulted in, for the first time, HNE-MA being 

successfully observed and quantified within wastewater over a study period of a week (displayed 

average daily loads per capita of 48.9 ± 4.1 mg//day/1000inh).  This highlighted that HNE-MA could 

be used as a potential oxidative stress biomarker in future urban water fingerprinting studies. 

The next two chapters explored the potential for WBE to be utilised for AMR surveillance. A 

longitudinal study of two urban catchment areas (one city and one small town) for a range of 

antimicrobials and their metabolites were investigated in this study. In total 17 parent antimicrobials 

and 8 metabolites were consistently quantifiable in the wastewater of both catchment areas across the 

13-month period. ARGs levels in wastewater were also explored in the city of Bath. Data triangulation 

was undertaken to explore relationships between antimicrobial agents and corresponding ARGs. Results 

demonstrated that ermB, sul1 and intI1 observed no statistically significant loads in winter versus 

summer. In the second part of this study, correction factors were applied to antimicrobials to back-

calculate consumption at the community level and compared with prescription data. This work has 

demonstrated the potential for WBE to be used to establish baselines for antimicrobial usage in 

communities, providing community-wide surveillance and evidence for informing public health 

interventions. 

Finally, this thesis explored the environmental aspect of water fingerprinting, investigating river water 

sampling for global monitoring campaigns. This study explored use of a new integrated powerless, in-

situ multi-mode extraction (iMME) sampler, with the aim of maintaining the integrity of a diverse range 

of >100 CECs via immobilization to polymeric and glass fibre materials, without access to a power 

supply or cold chain. 
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1 Overview and objectives of the thesis  

1.1 Overview 

The world is encountering multiple and urgent health challenges. Medical breakthroughs including the 

discovery and wide-spread dissemination of antimicrobials and development of novel vaccines have 

elevated society’s ability to prevent and treat infectious diseases. Yet considerable threats and 

challenges still exist in modern medicine.  The emergence and re-emergence of infectious diseases and 

accelerated rates of antimicrobial resistance are well-recognised public health threats. Alarming trends 

in the prevalence of non-communicable diseases have also been reported, with global rises in rates of 

cardiovascular diseases and diabetes. The novel coronavirus pandemic has had wide reaching and 

unprecedented impacts globally and has bought to the forefront questions on societies ability to respond 

rapidly to health threats and challenges. Furthermore, the changing landscape of the current world, with 

rapid and uncontrolled urbanisation, political strife and climate change further threaten public health 

and are recognised key drivers in the exacerbation of many diseases.  

It is well-recognised that public health surveillance is critical for the prevention, intervention and 

control for both communicable and non-communicable diseases. Yet whilst current methods for public 

health surveillance exist, they are often lacking. They are often based on a small fraction of the 

population and not timely enough to respond to rapid changes. An important aspect of public health 

surveillance that is challenging for current systems is consideration of the environment. Public and 

environmental health are inherently linked, with individuals exposed to a diverse number of chemicals 

every day, with chronic long-term exposure effects not understood. The ability to monitor both the 

health of the environment and public health can allow exposure and effect to be explored as well as 

building an understanding of the anthropogenic input into our environment.  

This thesis aims to investigate the potential of water fingerprinting as an effective tool for community 

disease surveillance, and the ability to provide complimentary evidence to current surveillance tools. 

Briefly, the analysis of chemical or biological markers in various water environments can provide a 

characteristic fingerprint that can inform on the environment in question. A popular branch of water 

fingerprinting is wastewater-based epidemiology (WBE), where influent (untreated) wastewater can be 

considered a pooled urine sample of a community that contributes. Several major advantages of this 

technique include population-wide data, the ability for timely results and the broad range of markers 

relating to public health to be investigated. The focus of water fingerprinting studies depends on the 

water in question, influent wastewater can reveal more about the specific health status of a community 

whereas surface waters for example, can reveal data about ecosystem health and potential community 

exposure. This thesis, with a focus on wastewater for infectious diseases and AMR, will set out to 

establish whether WBE is an effective tool for public health surveillance. To achieve this the following 

objectives have been established: 
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1.2 Objective 1 

To give a critical perspective into how infectious disease surveillance is currently achieved and how 

novel WBE techniques could be utilised to provide complimentary infectious disease and antimicrobial 

resistance (AMR) data. To discuss recent advancements of WBE and to identify key gaps and 

challenges in current research. Finally, to propose recommendations into areas of work needing focus 

to apply WBE wide-scale for both infectious disease and AMR surveillance.  

1.3 Objective 2 

To establish a broader overview of WBE and how it could be used to support public health in the wake 

of the novel coronavirus (COVID-19) pandemic. This report will ascertain what has already been 

successfully applied in the field of WBE and how this has informed regional, national and international 

policy and public health making. To also identify active and developing areas of WBE, and how this 

could feed into current and future public health and policy issues.   

1.4 Objective 3 

To explore new analytical methodologies for novel biomarkers of health in wastewater, focusing on 

endogenous biomarkers (biomarkers formed in the body as a response to biological processes). 

Specifically, biomarkers linked to oxidative stress and inflammation, biomarkers more broadly 

associated with many diseases and lifestyle choices.  

1.5 Objective 4 

To explore the use of WBE for AMR surveillance and understand the relationships between AAs and 

ARGs. This will be achieved by a longitudinal study in two different catchment areas to investigate 

spatial differences and temporal trends of AAs in wastewater, and what impact, if any, has on 

corresponding ARGs. Novel analytical techniques will be utilised to explore AA and ARG presence in 

wastewater.  

1.6 Objective 5  

A case study to explore WBE as a tool for assessing AA consumption at the community level and 

whether variation in usages at the prescription level can be reflected in a community’s wastewater. To 

investigate relationships between parent AAs and metabolites in wastewater to build baseline ratios and 

to determine any cases direct disposal of pharmaceuticals.   

1.7 Objective 6 

To investigate novel and cost-effective in-situ sampling methodologies for sampling rivers in under-

resourced areas, and to explore limitations of analyte stability during sampling and transport. This is 

relevant for global sampling campaigns, where sampling in remote locations poses challenges with a 

lack of access to the cold chain for shipping and storage. 
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2 Future perspectives of wastewater-based epidemiology: monitoring 

infectious disease spread and resistance to the community level  

 

Natalie Simsa,b, Barbara Kasprzyk-Horderna,b* 

aDepartment of Chemistry, University of Bath, Bath BA2 7AY, UK 

bCentre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 

7AY, UK 

*Corresponding author: b.kasprzyk-hordern@bath.ac.uk 

2.1 Abstract 

Infectious diseases are acknowledged as one of the most critical threats to global public health today. 

Climate change, unprecedented population growth with accelerated rates of antimicrobial resistance, 

have resulted in both the emergence of novel pathogenic organisms and the re-emergence of infections 

that were once controlled. The consequences have led to an increased vulnerability to infectious diseases 

globally. The ability to rapidly monitor the spread of diseases is key for prevention, intervention and 

control, however several limitations exist for current surveillance systems and the capacity to cope with 

the rapid population growth and environmental changes. Wastewater-Based Epidemiology (WBE) is a 

new epidemiology tool that has potential to act as a complementary approach for current infectious 

disease surveillance systems and an early warning system for disease outbreaks. WBE postulates that 

through the analysis of population pooled wastewater, infectious disease and resistance spread, the 

emergence of new disease outbreak to the community level can be monitored comprehensively and in 

real-time. This manuscript provides critical overview of current infectious disease surveillance status, 

as well as it introduces WBE and its recent advancements. It also provides recommendations for further 

development required for WBE application as an effective tool for infectious disease surveillance.  

Key Words. Wastewater-based epidemiology, wastewater fingerprinting, infectious diseases, 

antimicrobial-resistance, public health 

2.2 Introduction 

Even with the advancement of infectious disease surveillance over the last century, communicable 

diseases still pose significant risks to public health. On the World Health Organisations (WHO) top 10 

threats to global health in 2019, four are directly on infectious diseases: pandemic influenza, HIV, 

dengue and another for high-threat pathogens such as Ebola (World Health Organisation, 2019). 

Emerging infectious diseases caused by novel pathogenic organisms are of notable concern, it was 

highlighted by WHO that since the 1970s, over 1,500 new pathogens were discovered and nearly 40 

new infectious diseases have been identified (World Health Organisation, 2018b). Many of these have 

mailto:b.kasprzyk-hordern@bath.ac.uk
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severely impacted communities, with several major outbreaks occurring within the last 20 years 

including severe acute respiratory syndrome (SARS) (2002-2003), Ebola (2014–2016), H1N1flu/swine 

flu (2009-2010), Zika virus (2015-2016) and COVID-19 (2019-2020) (World Health Organisation, 

2020a).  Two others on this list are regarding the prevention and treatment of infectious disease, one 

being hesitation to vaccinate and the other the rise in antimicrobial resistance (AMR), both have been 

linked to the re-emergence of communicable diseases. 

There are a number of drivers affecting the emergence and re-emergence of infectious diseases 

(Woolhouse and Gowtage-Sequeria, 2005). These range from climate change, poverty and 

unprecedented population increases with uncontrolled urbanisation. Another driver is globalisation 

linked with tourism and trade, resulting in a strong network of air links. With regards to international 

flights it has been highlighted that the incubation period of any human disease is still longer than the 

lengthiest aviation time for any international flight (Frenk and Gómez-Dantés, 2002). Outbreaks are 

therefore not confined to one geographic location but are less than 24 hours away from being a threat 

somewhere else. 

Another key factor for the re-emergence of infectious diseases has been linked with drug resistant 

pathogens. Whilst microbial evolution happens naturally, inappropriate usage of antimicrobials puts 

additional selective pressures and further facilitates rates of resistance (Allen et al., 2010; Andersson 

and Hughes, 2014). Whilst antibiotics tends to be focused on in discussions of AMR, rising cases of 

both fungal and viral resistances still pose significant threats (Fisher et al., 2018). For example, Candida 

auris, an emerging multidrug resistant yeast, is a cause of major hospital acquired infection with high 

associated mortality, having only first been identified in 2009 it has resistance to all clinically available 

antifungals (Lockhart et al., 2017).  

The rising rate of resistance has resulted in AMR being hailed as one of the biggest public health risks 

threatening medicine in the 21st century (O’Neill, 2014).  Increasing concerns of AMR have led to the 

establishment of the Global Antimicrobial Resistance Surveillance System (GLASS) in 2015 by WHO 

with the aims of sharing information on a global scale to strengthen data and aid decision making on 

national and international actions (World Health Organisation, 2015b). Whilst the recent report (2017-

2018) has revealed detailed results with participation from over 60 countries, several limitations in the 

study were discussed (World Health Organisation, 2018a). It was recognized that there was a lack of 

sampling strategy leading to selection bias, also patient samples are typically taken from those that have 

sought out medical care and hence might not be representative for a population. It was further 

highlighted the need to move away from laboratory data to include epidemiological and population 

data.  
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2.3 Current Infection Disease Surveillance Techniques and their Limitations 

Threats of (re)emerging infectious diseases along with rising rates of AMR reinforce that infectious 

disease surveillance is still an integral component of public health today. This has given rise to the 

ability to monitor spatial and temporal trends of diseases. 

2.3.1 Disease monitoring 

There are several techniques with a range of advantages and disadvantages currently used for infectious 

disease surveillance (Table 1). Disease monitoring (which is often disease specific), can vary 

significantly with country and will depend upon the resources and sophistication of the public health 

services and facilities available (Thacker et al., 2006). The information collected can be provided to 

WHO, who have the authority to lead the global surveillance of infectious diseases. WHO have had an 

integral role in infectious disease surveillance, as well as leading international surveillance networks, 

e.g. influenza surveillance. They also provide international coordination of epidemic responses in 

diseases that pose significant public health risks. Examples of conventional routes to monitoring 

diseases are based upon existing resources, such as mortality and morbidity rates, prescription and 

hospital admission data. Whilst these are valuable source of information for surveillance purposes,  they 

do suffer from bias, resource insensitivity and costs (Bauer, 2008). 
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Table 1. Routes to assessing public health and infectious disease surveillance techniques with advantages and disadvantages 

Technique Examples Advantages Disadvantages References 

Sentinel 

Surveillance 

GP’s reporting cases of 

influenza 

Making use of an efficient system that is already in place 

Increase communication within communities 

Can help detecting larger health problems in a population 

Rare and novel microbes occurrences are likely to be missed, e.g. new 

emerging virus 

Often focus on specific diseases  

(Lee et al., 

2010) 

Lab-based 

surveillance 
 

Increased knowledge transfer between epidemiologists and 

microbiology laboratories 

Detailed information found on specific details of microbe e.g. 

virulence   

Requires significant facilities, resources, trained staff and good 

communication links. 

Central reference laboratory is needed for standardisation and support 

If pathogens are rare, can lead to staff being complacent 

Selection bias on which samples are sent to the laboratory  

(Choi, 

2012) 

Questionnaires 

or surveys 

Recurrent or cross-

sectional surveys  

Can collect data for multiple diseases or exposures at one time  

Capability for local, national or international level  

Standardised methods utilised and high quality data often obtained 

Flexibility in questions asked 

Build up trends if survey is done repeatedly   

Bias 

More information about public health 

Expensive – costs will vary on sample size, time period of survey  

Time delay to results  

If optional might not get a good response – might not be representative 

of whole populations  

Results can be difficult to interpret 

(Thacker 

and 

Berkelman, 

1988) 

Search engine 

trends  

Google Flu Trends 

(http://google.com/trends/)  

Rapid obtainment of results  

Effective for large populations of web users   

Potential to track epidemics or diseases with high prevalence in a 

population 

Difficult to determine if individuals searching are having symptoms or 

googling as concerned or to find out more 

Requires internet access, not as suitable for developing countries  

Differences in language backgrounds can lead to different words to 

describe symptoms being googled 

Diseases with low prevalence won’t spike enough to notice  

(Carneiro 

and 

Mylonakis, 

2009) 

Mortality and 

morbidity rates 

Deaths recorded for 

diseases like Ebola or 

influenza  

Inexpensive and well-established system of reporting  

Death certificates are legally required in most countries  

Can aid in monitoring the progression of an epidemic  

If deaths from a particular cause are too low, mortality statistics 

potentially don’t reflect accurate incidence of the disease  

Long delays in getting results  

Significant variation into how death certificates are filled 

Passive form of surveillance  

(Choi, 

2012) 

Hospital 

admission data 

ED-based surveillance for 

The 

Emerging Infectious 

Disease Surveillance 

Network 

Can provide data on severity of injury, new emerging infectious 

disease and drug abuse 

Help identify if changes in healthcare are needed  

Potential early flagging of bioterrorism attack  

Significant human and resource investment for setting up system and 

connecting with public health system  

Confidentiality challenges in sharing information to public health 

agencies  

Compliance of often busy emergency department staff to fill in data 

Need to standardise data collection    

(Hirshon, 

2000) 

http://google.com/trends/
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Many of the current systems in place are forms of passive surveillance that have disadvantages. For 

example, in countries with less developed health services, morbidity might be higher than assumed due 

to people failing to report to a healthcare service due to lack of access. This combined with the fact that 

sometimes in epidemics the laboratory facilities can become easily overwhelmed – the consequence of 

such is that these cases are not reported. The 2009 swine flu epidemic caused by a H1N1 influenza virus 

spread rapidly to more than 214 countries in the space of a few months. Whilst it was estimated that 

several million people were infected with over 18,400 confirmed laboratory deaths worldwide reported 

by August 2010 (World Health Organisation, 2010b), it is believed that this is a gross underestimation. 

Reported studies in the literature have estimated through modelling techniques that there could have 

been as many as 10-15 times this amount, with up to 203,000 respiratory deaths (Dawood et al., 2012; 

Simonsen et al., 2013).  Dawood et al. projected around 80 % of these deaths occurring in Southeast 

Asia and Africa, the causes for underestimation have been attributed to poor reporting due to the 

overwhelming number of cases.  

2.3.2 Infectious disease surveillance in growing urbanised nations.  

The problems underlying infectious disease surveillance will only be exacerbated. Current predictions 

have estimated a global population growth of 26 % from 7.7 billion 2019 to 9.7 billion in 2050, with 68 

% of the global population expected to be urban (United Nations Department of Economic and Social 

Affairs, 2019). With the current unprecedented rises in population size, there will undoubtedly be 

further challenges (but also opportunities) in rapid health surveillance and response. 

Therefore there is a need for a surveillance technique that (i) provides comprehensive and objective 

data, (ii) gives results in real-time, (iii) is flexible, (iv) able to monitor multiple diseases, even those that 

are rare, (v) is scalable and cost effective (vi) could be applied in low resource settings. Furthermore, 

the surveillance system needs to have comprehensive data collection systems regarding emergence of 

new diseases and re-emergence of old diseases, the threat of imported diseases or pathogens, and the 

emergence of multidrug or pan-drug resistant organisms. It has also been highlighted in the literature 

that monitoring clinics and laboratories for informing on public health is not sufficient, and there should 

also be an aspect of environmental monitoring of potential hazards (Nsubuga et al., 2006).  Therefore, 

a surveillance technique that could also encompass environmental exposure would be invaluable in 

providing comprehensive exposure status and disease outcomes. A new surveillance technique utilising 

water fingerprinting is under the development to provide objective and comprehensive evaluation of 

both public and environmental health status in real-time.  
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2.4 Water Fingerprinting via Wastewater-Based Epidemiology – a new paradigm in public health 

assessment 

Wastewater-Based Epidemiology (WBE) is a new approach utilised to give comprehensive health 

information on communities. The concept is primarily based upon the extraction, detection and then 

subsequent analysis and interpretation of chemical and/or biological compounds. These compounds, 

often referred to as biomarkers, could be harmful chemicals such as food toxicants and/or specific 

human excretion products (e.g. metabolites or endogenously formed chemicals as a result of exposure 

to  and/or disease) that can be linked to the community as they are held within geographically defined 

water catchment areas (watersheds) to which whole populations contribute. Water sources that can be 

analysed are any that fall within the urban areas’ catchment, and can include surface waters, domestic 

water sources and wastewaters. The results can then be used to give information on the community 

itself and its health, or environmental exposure. Wastewater is a popular and critical medium used in 

water fingerprinting. Often referred to as wastewater-based epidemiology (WBE), this technique can 

give an unbiased reflection on the community’s health and lifestyle habits due to the rich source of 

biological and chemical information it contains (Kasprzyk-Hordern et al., 2014). 

 

2.4.1 Wastewater-based epidemiology (WBE) – the basics 

WBE postulates that endogenous and exogenous urinary human biomarkers identified and quantified 

in wastewater can give a reflection of the population’s health in (near)-real time (Figure 1). Wastewater 

(untreated) is usually collected from wastewater treatment plants (WWTP) as WWTPs serve 

communities located in well-defined geographical sewerage catchment areas. Usually, one WWTP 

serves a town or a city. Importantly, as a whole population contributes to wastewater collected by any 

WWTP, wastewater from this community can be considered as its pooled urine.  

 

Figure 1. Graphical representation of the wastewater-based epidemiology (WBE) concept 
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A critical consideration in WBE are wastewater flow rates which are key to account for due to the wide 

variations in influent flows (e.g. wet weather causing dilution). The consequence is of such that when 

reporting upon the presence of a compound, it is typical to report as the daily loads in wastewater 

(mg/day). Furthermore, to normalise and allow comparisons for cities in different geographic locations, 

with varying population size, the daily loads per capita may be reported instead (mg/day/1000 

inhabitants). This process of back calculation of community-wide drug consumption or exposure to 

chemical factors can provide un-biased reflection of key aspects of public health. For example, the 

monitoring of pharmaceutical or illicit drugs in wastewater can detect subtle changes in trends in usage 

and consumption in a community. Furthermore, not only could spatial and temporal trends be 

established but such data could be monitored in real time, allowing deviations from usual trends to be 

spotted early. This offers several advantages over biomonitoring techniques which focus on small target 

groups due to expenses and logistical challenges such as ethical considerations, as WBE is done on a 

population-wide scale, the anonymity of individuals is maintained. Water fingerprinting can also offer 

more timely analysis than other traditional based public health approaches. This would allow public 

services to respond more rapidly and potential health interventions to be employed. 

 

2.4.2 WBE and international collaboration  

The field of WBE is a rapidly growing one and has experienced enormous successes since the idea was 

first conceived by Daughton in 2001 who hypothesised that the analysis of drug residues in wastewater 

could be linked back to population usage (Daughton, 2001). This was then first achieved in 2005 by 

Zuccato who successfully extracted and quantified cocaine in both wastewater and surface water and to 

investigate cocaine usage in the community (Zuccato et al., 2005).  

A large number of international long-term monitoring initiative have since been established worldwide 

with the most active networks in Europe (Thomas et al., 2012; European Monitoring Centre for Drugs 

and Drug Addiction, 2016), Australia (Lai et al., 2016, 2018; Tscharke et al., 2016; Choi et al., 2019; 

O’Brien, Grant, et al., 2019)  and in the USA (Halden et al., 2019).  The successes of WBE that have 

been demonstrated on global scales have given rise to discussions on future outlooks for the technique 

(Thomas and Reid, 2011; Kasprzyk-Hordern et al., 2014; Choi, Tscharke, et al., 2018; Daughton, 2018). 

Initially, work was entirely focused upon illicit drug usage, including heroin, cocaine and 

methamphetamines (Castiglioni et al., 2006; Boleda, Galceran and Ventura, 2007; Kasprzyk-Hordern, 

Dinsdale and Guwy, 2008; Zuccato et al., 2008)  but have since expanded to include a diverse range of 

other endogenous biomarkers, varying from ones linked to lifestyle choices such as alcohol 

consumption (Reid et al., 2011; Rodríguez-Álvarez, Rodil, Cela, et al., 2014; Boogaerts et al., 2016), 

tobacco (Rodríguez-Álvarez, Rodil, Rico, et al., 2014; Castiglioni et al., 2015; Tscharke, White and 

Gerber, 2016; Lai et al., 2017) and psychoactive substances (Mardal and Meyer, 2014; Reid, Derry and 
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Thomas, 2014; Kinyua et al., 2015). Others have investigated general health through oxidative stress 

markers (Ryu, Reid and Thomas, 2015; Ryu et al., 2016; Sims, Rice and Kasprzyk-Hordern, 2019). 

Additionally, the analysis of metabolic urinary biomarkers of exposure in wastewater can reveal critical 

information upon community-wide exposure to external stressors accounted in everyday life. Examples 

of which can be exposure to chemical compounds such as endocrine disrupters, compounds that are 

known to effect hormone regulation, but that are typically not regulated (Testai et al., 2013). Chemicals 

found in personal care products and consumer products, including UV filters in sunscreen, plasticizers, 

flame retardants and pesticides are suspected or known endocrine disruptors. Frameworks investigating 

community exposure to such compounds have been developed through analysis of exposure metabolites 

within wastewater, results of which have already provided comprehensive international population-

wide exposure data for pesticides (Rousis et al., 2017), flame retardants (Been et al., 2017, 2018), 

carcinogens linked to tobacco (Lai et al., 2017), UV filters (Lopardo et al., 2018), mycotoxins (Gracia-

Lor et al., 2020) and BPA (Lopardo et al., 2019). 

 

2.5 Challenges of wastewater-based epidemiology  

2.5.1 Complexity of wastewater matrix 

Whilst conceptually WBE is very simple and clearly offers attractive advantages for the monitoring of 

public health, there are some challenges to be considered. For example, not only are the levels of 

biomarkers far more dilute in wastewater, especially in comparison to urine, but the wastewater matrix 

itself provides a complex environment to work in (Daughton, 2012). As previously mentioned, 

wastewater contains a diverse abundance of chemical and biological targets which can give incredibly 

detailed information about the population that contributes. However, a drawback to having such a large 

amount of information is in the successful extraction from the matrix itself and the subsequent analysis 

of specific targets can be difficult. Extraction methods such as solid phase extraction and immunoassay 

techniques along with sophisticated analytical tools such as advanced mass spectrometry have allowed 

for the analysis of a wide number of compounds (Petrie, Barden and Kasprzyk-Hordern, 2015). Recent 

developments in sensing approaches could enable measurements on site, which would allow the system 

to provide information on public health in real time (Yang, Kasprzyk-Hordern, et al., 2015; Yang et al., 

2016, 2017).  

 

2.5.2 Estimation of population size  

Another challenge associated with WBE is the problem posed by dynamic populations (e.g. population 

fluctuations due to tourism and commuters) (Ort et al., 2014). Typically the standard approach is for 

levels of certain endogenous biomarkers in humans, such as cortisol or cotinine, to be calculated as 

daily loads which have been normalised to the population. This enables inter-city comparison (Chen et 
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al., 2014).  However, there are difficulties in estimating the population size of individual WWTP 

catchments. This can result in unaccounted for, unique population fluctuations that, whilst having 

negligible impact on the levels of biomarkers in large populations (>100,000 people), they might 

contribute to higher uncertainties in smaller populations.  

There are several techniques that can be employed to reduce to the source of uncertainties associated 

with population size. Investigating certain hydrochemical parameters which have well-established 

methods of analysis, such as chemical oxygen demand (COD), biological oxygen demand (BOD) or 

ammonium (NH4
+) can aid in estimating populations contributing to a WWTP catchment at a particular 

time period (van Nuijs et al., 2011; Been et al., 2014). These however can be influenced by the 

composition of wastewater. The other uncertainties associated with the technique briefly mentioned 

above with regards to sample collection and analytical variability amongst a couple of others, have all 

been extensively discussed in a number of reviews (Ort, Lawrence, Rieckermann, et al., 2010; 

Castiglioni et al., 2013; Ort et al., 2014). However, SCORE and the EMDCCA have demonstrated that 

with recognition of the limitations of the technique, that the development and adoption of a reliable, 

standardised method will give reliability and credibility to the studies and allow spatial and temporal 

comparisons to be made.  

Uncertainties within population size will also pose problems for infectious disease surveillance within 

wastewater, as the presence of tourists or commuters within a catchment area could make it challenging 

to monitor the actual emergence of an infection within that community For example it would be 

impossible to distinguish whether the presence of a virus in wastewater had stemmed from a visitor(s) 

passing though or from within the community itself. Arguably however, the presence of a virus in 

wastewater, whether from a resident in the catchment area or not, still provides critical information as 

members within the population may have been unknowingly exposed to the infected individual. This 

could indicate towards potential disease emergence within the community, allowing valuable time for 

appropriate preparation and response to be put into place.  

 

3.5.3 Desirable Characteristics in Biomarkers  

Endogenous and exogenous biomarkers in wastewater, when chosen carefully, can give key information 

with regards to health of a population. Along with some of the limitations of WBE touched upon above, 

there are also certain criteria that must be fulfilled for a biomarker to be considered in WBE techniques. 

For example, the biomarker in question must mostly be excreted via urine and concentrations of the 

biomarker must be in ng L-1 for downstream detection of the biomarker in wastewater (Chen et al., 

2014). Another vital characteristic is that the biomarker needs to be stable, not only in the sewage system 

but also during the process of sampling and storage (McCall et al., 2016). Biomarkers also need to be 

unique to human metabolism and ideally the metabolism process involving the biomarker would be 
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well understood. This ensures that the biomarker in question has only  originated from human sources, 

as opposed to exogenous ones (potential contamination of animals in the sewage system or from 

microbes present in wastewater) (Daughton, 2012). With regards to the sewage system, wastewater is 

home to an extensive range of complex microbial communities that are challenging to characterise and 

will vary geographically. As of such, there is a high risk of microbial degradation or transformation of 

chemical compounds. In fact, biological treatment in wastewater treatment plants, such as trickle bed 

filters, are home to these diverse microbial communities which play a key role for the breakdown of 

many organic compounds (Kraigher et al., 2008). 

 

2.6 Water fingerprinting for community-wide infectious disease diagnostics  

WBE has already demonstrated successes in monitoring drug consumption, lifestyle choices and 

population-wide exposure. Several studies have discussed the future of WBE and the expansion to 

include biomarkers linked to other aspects of public health, including diet, stress, and biological based 

monitoring linked with illness (Gracia-Lor et al., 2017; Choi, Tscharke, et al., 2018; Daughton, 2018). 

Due to the wide array of endogenous chemical and biological urinary biomarkers linked with disease, 

there is clearly huge potential for WBE to be utilised to monitor infectious diseases and the spread of 

epidemics at the community level (Table 2).  
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Table 2. Proposed key biomarkers for use in WBE to monitor spread of infectious diseases to the community level.  

 

Biomarker 

Groups 

Biomarker Examples Treatment/indicator of Reported Concentrations Reference  

Biomarkers of 

intervention 

 

Antibiotics  

   

e.g. Drugs and 

metabolites 

Sulfamethoxazole  

n-Acetyl sulfamethoxazole 
Urinary tract infections, bronchitis 

<3 – 3100 ng/L (INF) 

360 ± 110 ng/L (INF) 

(Kasprzyk-Hordern, Dinsdale and Guwy, 

2009; Hijosa-Valsero et al., 2011; Guerra et 

al., 2014) 

 
Azithromycin  

n-Demethyl azithromycin 

Pneumonia. middle ear infections, strep 

throat and intestinal infectios 

269- 22,730 ng/L (INF) 

<30-74 ng/L (INF) 

 

(Senta et al., 2019) 

 

 
Clarithromycin  

n- Demethyl clarithromycin 

Pneumonia, skin infections, H. pylori 

infection, and Lyme disease. 

111- 10,491 ng/L (INF) 

13-1559 ng/L (INF) 

(Senta et al., 2019) 

 

 
Ciprofloxacin 

 

Respiratory tract infections, skin 

infections, gastroenteritis 

17-2500 ng/L (INF) 

 
(Guerra et al., 2014) 

 
Erythromycin 

 

Respiratory tract infections 

 

14 – 10,025 ng/L (INF) 

 

(Kasprzyk-Hordern, Dinsdale and Guwy, 

2009; Guerra et al., 2014) 

 
Trimethoprim 

 

Urinary tract infections 

 

464–6796 ng/L (INF) 

 

(Roberts and Thomas, 2006; Kasprzyk-

Hordern, Dinsdale and Guwy, 2009) 

 Antivirals     

 
Oseltamivir phosphate  

Oseltamivir carboxylate 

Flu virus (influenza) 

 

5–529 ng/L (INF) 

28–1213 ng/L (INF) 

(Leknes, Sturtzel and Dye, 2012; Takanami et 

al., 2012) 

 
Acyclovir 

Carboxy-acyclovir 

Herpes simplex virus infections, chicken 

pox, shingles 

1780 ng/L (INF) 

490 - 3420 ng/L (INF) 

(Prasse et al., 2010; Funke, Prasse and 

Ternes, 2016) 

 
Emtricitabine  

Carboxy-emtricitabine 

HIV 

 

100 – 980 ng/L (INF) 

24- 250 ng/L (INF) 

(Funke, Prasse and Ternes, 2016) 
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Lamivudine,  

Carboxy lamivudine 

HIV/AIDs, hepatitis B 

 

52 - 720 ng/L (INF) 

25-84 ng/L (INF) 

(Prasse et al., 2010; Funke, Prasse and 

Ternes, 2016) 

 
Abacavir 

Carboxy-abacavir 
HIV/AIDs 

21- 140 ng/L (INF) 

41 -560 ng/L (INF) 
(Funke, Prasse and Ternes, 2016) 

 Zanamivir Flu virus (influenza) 16.3-27.8 ng/L (INF) (Takanami et al., 2012) 

 Zidovudine HIV/AIDs 310 - 380 ng/L (INF) (Prasse et al., 2010) 

 Nevirapine HIV/AIDs 4.8 - 21.8 ng/L (INF) (Prasse et al., 2010) 

 
Antifungals 

 
   

 Ketaconcazole  Skin infections 
16 ng/L(INF) 

 

(Huang et al., 2010) 

 

 
Miconazole 

 

Skin infections 

 

5.2 – 1583 ng/L (INF) 

 

(Kasprzyk-Hordern, Dinsdale and Guwy, 

2009; Huang et al., 2010; Guerra et al., 2014) 

 
Clotrimazole  

 

Skin and vaginal infections 

 

23-33 ng/L (INF) 

 

(Roberts and Thomas, 2006; Huang et al., 

2010) 

 
Painkillers 

 
   

 
Acetaminophen 

 

Painkiller 

 

5529-500,000 ng/L(INF) 

 

(Roberts and Thomas, 2006; Guerra et al., 

2014) 

 Ibuprofen Painkiller 968-45,000 ng/L(INF) 

(Roberts and Thomas, 2006; Kasprzyk-

Hordern, Dinsdale and Guwy, 2009; Guerra 

et al., 2014) 

Biochemical 

markers linked 

with physiological 

response 

C-reactive protein (CRP) 

 

Inflammation 

 

0.54-2.76 μg/mL (Urine) 

 

(Stuveling et al., 2003) 

 

e.g. Biomarkers of 

inflammation 
Interlukin-6 (IL-6) Inflammation in urinary tract infections 

1.6-5.28 pg/mL(Urine) 

 
(Roilides et al., 1999; Renata et al., 2013) 
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Interlukin-8 (IL-8) 

 
Inflammation in urinary tract infections 

7-12 pg/mL (Urine) 

 

(Taha, 2003) 

 

 
Lipoarabinomannan (LAM)  

 

Potential indicator of tuberculosis in HIV 

infected patients 

15 pg/mL to several hundred 

ng/mL(Urine) 

 

(Boehme et al., 2005; Savolainen et al., 2013; 

Hamasur et al., 2015) 

 IP-10 
Potential indicator of tuberculosis and 

pneumonia 
5-110 pg/mL (Urine) 

(Cannas et al., 2010; Kim et al., 2018) 

 

Pathogenic 

organisms 

Bacterial DNA 

 
   

 

e.g. Pathogenic 

genetic material/ 

DNA/RNA 

Klebsiella pneumoniae 

 

Pneumonia, UTI, bacteremia and 

endophthalmitis 

6.31-6.56 log gene copies/100mL 

(INF) 

(Shannon et al., 2007) 

 

 
Pseudomonas aeruginosa 

 

Pneumonia, UTI, gastrointestinal 

infections 

4.31-4.38 log gene copies/100 mL 

(INF) 

(Shannon et al., 2007) 

 

 
Enterococcus faecalis 

 
UTIs, bacteremia, septicemia 

4.66-4.85 log gene copies/100 mL 

(INF) 

(Shannon et al., 2007) 

 

 
Viral DNA/RNA  

 
   

 Norovirus (GI) 
Gastroenteritis 

 

<10-3500 viral genomes/L (INF) 

 

(Hellmér et al., 2014) 

 

 Norovirus (GII) 
Gastroenteritis 

 

12.4×103-320×103 viral genomes/L 

(INF) 

 

(Hellmér et al., 2014) 

 

 
Influenza A 

 

Respiratory infection 

 

2.6 × 105 genome copies/L (INF) 

 

(Heijnen and Medema, 2011) 

 

 
Dengue 

 

Severe flu-like illness 

 

4-5 x 10-1 PFU/mL(Urine) 

 

(Poloni et al., 2010) 

 

 
Zika  

 
Mild infection, microcephaly 

0.7–220.106 copies/mL (Urine) 

 

(Gourinat et al., 2015) 

 

 
Hepatitis A 

 

Liver infection 

 

<10-1500 viral genomes/L (INF) 

 

(Hellmér et al., 2014) 

 

 
Severe acute respiratory 

syndrome (SARS CoV) 

Respiratory infection 

 

<1x101-106.5 (Faeces) 

 

(Poon et al., 2004) 

 

 

 

Fungal DNA  

 

   

 

Candida species  

Aspergillus (Aspergillus 

fumigatus, Aspergillus niger and 

Aspergillus flavus) 

 

Candidiasis 

Chronic pulmonary aspergillosis, 

pulmonary and nasal allergies, asthma, 

pneumonitis 

 

Detected* (INF) 

 

(Assress et al., 2019) 
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Parasites  

 
   

 
Giardia lambli 

 

Small intestine infections 

 

2,653 - 13,408 cysts/litre (INF) 

 

(Guy et al., 2003) 

 

 Cryptosporidium Gastrointestinal illness 1 - 120 oocysts/litre (INF) 
(Wallis et al., 1996) 

 

Biological 

response 

 

mcr-1  

 

Colistin resistance 

 

8.11 × 101 cell equivalents/100 ng 

DNA (INF) 

(Hembach et al., 2017) 

 

e.g. Antibiotic 

resistant genes 

mecA 

 

Methicillin resistance 

 
1x101- ~5x104 genes/100 mL(INF) 

(Börjesson et al., 2009) 

 

 
ermB 

 
Erythromycin resistance 105.2-107 copies/mL(INF) 

(Wang et al., 2015) 

 

 
sul1  

 
Sulphonamide resistance 

105.46–107.54 copies/mL(INF) 

 

(Munir, Wong and Xagoraraki, 2011; Wang 

et al., 2015) 

 

 blaOXA-1 

 

Beta-lactam resistance 

 

105.4-107.3 copies/mL (INF) 

 

(Wang et al., 2015) 

 

 

tetW Tetracycline resistance 104.2–107.4 copies/mL (INF) 

(Munir, Wong and Xagoraraki, 2011; Wang 

et al., 2015) 

 

INF: Influent wastewater (U): Urine. PFU: Plaque forming units (measure of number of infectious particles).UTI: Urinary tract infection *Via sequencing  
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WBE could be utilised as a complementary surveillance technique which can give rapid, reliable 

information on a population that can inform what diseases are present in a community and could aid in 

monitoring disease outbreaks. It is of paramount importance to choose a wide-ranging panel of markers 

providing information on (i) pathogenic organisms (bacteria and viruses), (ii) biochemical markers 

linked with physiological response (endogenous markers e.g. biomarkers of inflammation including 

small molecules and proteins), (iii) markers of intervention (pharmaceuticals and their metabolites) 

biological response, (iv) markers of antimicrobial resistance.  

 

2.6.1 Markers of pathogenic organisms  

An example of a key biological marker are pathogenic DNA/RNA residues from bacteria, viruses and 

fungi. The detection in influent wastewater would suggest human sources and hence indicate what 

diseases are circulating within a population.  Whilst risk factors for emerging infectious diseases have 

highlighted resistant bacteria as a concern, viruses pose a significant threat due to their high mutation 

rates and ability to adapt to new host, e.g. humans. This is particularly in the case of RNA viruses, 

where higher nucleotide substitution rates can result in this rapid adaption and spreading in new host 

populations (Woolhouse and Gowtage-Sequeria, 2005). The potential of wastewater to be used for viral 

surveillance has been discussed in literature (Wigginton, Ye and Ellenberg, 2015; Barras, 2018; O’Brien 

and Xagoraraki, 2019a). Wastewater surveillance has already demonstrated promising results with the 

potential for retrospective prediction of disease outbreaks of  hepatitis A and norovirus (Hellmér et al., 

2014). Influenza in wastewater was also investigated during the H1N1 (swine) flu virus outbreak, whilst 

influenza A viruses were detected in sewage, the pandemic H1N1 virus however was not detected 

(Heijnen and Medema, 2011). Furthermore, environmental surveillance of polio in wastewater has been 

utilised since the 1980s, decades before when the term “wastewater-based epidemiology” was coined, 

with Finland (Hovi et al., 2012) Israel (Roberts, 2013) and Senegal (Ndiaye, Diop and Diop, 2014) all 

successfully analysing sewage samples in order to assess polio circulating within populations. WHO 

have also released guidelines for employing environmental sampling to monitor polio in wastewater 

samples (World Health Organisation, 2003b).The complexity of a wastewater matrix is not only 

challenging for the extraction and quantification of chemical compounds, similar problems are apparent 

for biological biomarkers. Composition of wastewater contains a diverse range of PCR inhibitors 

including fats, proteins and humic and fulvic acids, which can cause problems later during downstream 

processing during PCR. The availability of different commercial extraction kits for DNA/RNA has 

demonstrated sometimes variable efficiencies and consistencies when extracting from PCR inhibitor 

rich samples, including wastewater and sediments (Mumy and Findlay, 2004; Walden, Carbonero and 

Zhang, 2017). This results in challenges when making meaningful comparisons across different studies 

and in establishing spatial and temporal trends. However, advancements of molecular biology 

techniques offer new routes for the analysis of genetic material, including digital PCR (dPCR) and next 
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generation sequencing techniques. In dPCR, the absolute quantification of target genes is calculated 

using Poisson distribution statistics via the partitioning of DNA/RNA samples into tens and thousands 

of reaction wells.  Due to this partitioning effect, PCR inhibitory substances have demonstrated to have 

less of an effect in environmental samples, including wastewater, when analysed via dPCR (Rački et 

al., 2014). Critical evaluation of dPCR and its suitability for certain sample types have been discussed 

by Salipante et al (Salipante and Jerome, 2020).  

Next generation sequencing is another promising technology, providing a wealth of information on the 

complex microbial communities in samples, including identification of the diverse range of pathogens 

and resistance genes present. In particular, analysis of the viruses present via metagenomics has been 

highlighted as providing potentially key information on novel pathogens as well as re-emerging 

infectious diseases and AMR (Fernandez-Cassi et al., 2018; Aarestrup and Woolhouse, 2020). Whilst 

standardisation of protocols of metagenomics remain a challenge, the continued advancements in the 

technology combined with decreasing costs sequencing have the potential to revolutionise both 

pathogen and resistance surveillance in wastewater.  

 

2.6.2 Biochemical markers linked with physiological response 

Protein based inflammation biomarkers represent a vital group of endogenous markers. Urine 

proteomics has attracted much interest in the last decade as has been evidenced to contain an abundant 

source of proteins. Urine for diagnosis purposes is desirable not only due to the non-invasive nature of 

testing but because of the previously untapped source of potential disease and health biomarkers (Zhao 

et al., 2017). Some which could be sensitive to changes in the body and could be early indicators of 

disease. Whilst only a handful of proteins are currently utilised in clinics, it has been previously 

highlighted that this is not a limitation for WBE, as purposes here are not for diagnostic analysis 

(Daughton, 2018).  Urinary inflammation biomarkers that are indicative of inflammation include C-

reactive proteins (CRP) and interleukins including IL-6 and IL-8, have been highlighted as promising 

candidates for use in WBE (Rice and Kasprzyk-Hordern, 2019). Urinary CRP levels are routinely 

utilised in clinics and in human biomonitoring studies, e.g. to investigate renal function abnormalities 

within a population (Stuveling et al., 2003). Other proteins that have previously been suggested for 

WBE include vitamin D binding proteins,  which are prognostic biomarkers for kidney disease due to 

their significantly elevated levels occurring in the urine of infected individuals (Daughton, 2018). 

Increased interest into urine proteomics for non-invasive clinical tests is a growing area and with it will 

bring greater understanding of the proteins present in urine. Whilst it is widely considered that 

proteomics in WBE would offer invaluable new insight into public health of communities, the analysis 

of proteins in wastewater however is still underexplored (Rice and Kasprzyk-Hordern, 2019). The 

extraction and analysis of these larger biomolecules from wastewater poses new analytical challenges 
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due to the complexity of the matrix, and questions regarding stability of proteins in the sewage systems 

are yet to be investigated.  

 

2.6.3 Markers of pharmacological intervention   

Biomarkers of intervention encompass pharmaceuticals used to treat infectious diseases or ones used to 

lessen the symptoms. As previously mentioned WBE has been successful at monitoring drug usage, and 

as many infectious diseases are seasonal, there are potentially interesting opportunities for trends to be 

established in wastewater. Regarding antibiotics, a handful of studies have demonstrated seasonal 

patterns for several antibiotics, including clarithromycin, erythromycin and  ciprofloxacin with higher 

loads typically observed over winter (Coutu et al., 2013; Golovko et al., 2014). This is in line with the 

use of these antibiotics for respiratory infections where cases tend to peak in winter-early spring. In 

areas where prescription data is not widely available or antimicrobial medications can be bought over 

the counter with ease.  

WBE could provide a route for monitoring antimicrobial usage within a community which otherwise 

might go unobserved. With rising rates of AMR, the importance of understanding consumption habits 

in a community is critical, one of the major advantages of WBE is the potential to distinguish differences 

between prescription and consumption of a pharmaceutical. Investigating ratios of parent compounds 

to respective metabolites or ratios between compound enantiomers in wastewater can inform on whether 

levels have originated from human excretion or from direct disposal of a pharmaceutical into the sewage 

system (Petrie et al., 2016). Furthermore the availability of pharmacokinetics data and excretion rates 

can allow back calculation to the estimated amounts of a pharmaceutical that a population has ingested 

(Zuccato et al., 2008). This ability to distinguish between prescribed, disposed and consumed is 

important as just because a pharmaceutical is prescribed does not necessarily mean it is used. Delayed 

prescribing is a strategy by which a general practitioner (GP) will make a prescription available but will 

ask the patient to delay from using in order to see if symptoms improve first. The initiative has been 

evidenced to successfully reduce antibiotic usage in a handful of countries, including New Zealand, 

Norway and England (Spurling et al., 2013). The use of WBE could therefore give valuable insight into 

the amounts of antimicrobials a population has actually consumed.  

It is well recognised that  WWTPs are  hotspots for resistance and the long term effects of exposing 

microbes to sub-inhibitory concentrations of antibiotics in wastewater streams is not well understood 

(Michael et al., 2013; Andersson and Hughes, 2014). Furthermore, current antibiotic metabolites tend 

to be overlooked in wastewater analysis with parent compounds mainly focused on.  The analysis of 

metabolites however could potentially provide information on antibiotic compliance in a community.  

When compared to antibiotics, the prescription pattern of antivirals can differ as they are often less 

commonly prescribed on a day-to-day basis. For example, antivirals like Tamiflu® and Relenza®, are 
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stockpiled globally and are then deployed during pandemic periods which can result in high proportion 

of a community taking the drug in a short time window which is reflected in wastewater (Singer et al., 

2007). During the H1N1 influenza virus pandemic in 2009, Tamiflu® (oseltamivir phosphate) was 

heavily prescribed globally in response. It has been reported that oseltamivir carboxylate, a biologically 

active and persistent metabolite of oseltamivir phosphate, was observed in surface waters during peaks 

of the outbreak (Leknes, Sturtzel and Dye, 2012). This was due to increased loads of the metabolite in 

wastewater, which is widely known to not be readily removed by conventional WWTPs.  

The monitoring of drugs like antivirals and their metabolites not only informs upon drug compliance 

and the progression of an outbreak at the community level, but like with antibiotics, could provide 

critical information with regards to resistance. The presence of these drugs or their metabolised forms 

in low levels in the environment could cause irreversible effects to the viral genome resulting in resistant 

effects. For example, it has been highlighted the guts of wildfowl could be potential oseltamivir 

carboxylate-resistance hotspots due to exposure to the metabolite in surface waters (Singer et al., 2007). 

The rapid spreading of the H1N1 virus and the ease of which viruses can become resistant to antivirals 

stress the importance of population-wide surveillance tools and again the importance of combining 

chemical analysis with biological. Furthermore, whilst a number of antiviral drugs have been detected 

in water bodies, there is still a knowledge gap of understanding the environmental and resistant impacts 

their presence has in wastewater streams, especially as they tend to pass through WWTP unchanged 

(Jain et al., 2013). 

 

2.6.4 Markers of antimicrobial resistance 

Markers of antimicrobial resistance are another group of key biological biomarkers. The analysis of 

antimicrobial resistant genes in influent wastewater could provide a broader perspective of the resistant 

genes present within a population. This together with viral and bacterial monitoring arguably gives a 

more representative reflection of health of a community, as currently much of the understanding of both 

diseases and resistance circulating within in a community are based upon clinical samples. The results 

from clinics are often from a very small proportion of the population who are ill and hence not 

representative of the population as a whole, as many people can be carriers of a disease or a resistant 

gene and not experience symptoms (asymptomatic in case of diseases).  As previously mentioned, it 

was highlighted by WHO’s GLASS programme that a limitation is that current samples are focused on 

a clinical level and more epidemiological information on a population scale are needed for AMR 

surveillance purposes (World Health Organisation, 2018a). 

WBE could aid in providing this population-wide information, to date a diverse range of ARGs have 

been studied and reported on in wastewater, typically through qPCR techniques (Zhang, Zhang and 

Fang, 2009; Mao et al., 2015; Rodriguez-Mozaz et al., 2015; Sun et al., 2016). Only a handful of studies 



35 
 

to date have investigated relationships  between the levels of antibiotics and abundance of ARGs in 

wastewater streams,  Correlations observed between antibiotic and respective resistant gene levels have 

been antibiotic dependant with some correlations observed (Gao, Munir and Xagoraraki, 2012; Novo 

et al., 2013; Rodriguez-Mozaz et al., 2015; Xu et al., 2015). However, it is generally recognised that 

the relationship between antibiotic concentrations and resistance in wastewater is complex with further 

studies needed. Furthermore, focus tends to be upon more common antibiotics resistances, such as 

sulphonamides, tetracyclines and quinolones, hence there is still a knowledge gap regarding other 

antimicrobial classes of AMR genes, including those associated with antifungal resistance. The effects 

of seasonality upon ARGs in wastewater is another underexplored area, though Caucci et al. reported 

strong seasonal abundances of ARGs within wastewater, with higher levels observed in Autumn and 

Winter which coincided with increased antibiotic prescribing in those months (Caucci et al., 2016).  

Further work is needed to consolidate the impacts of antimicrobial prescribing at the community level 

on the abundance of ARGs in wastewater, particularly if this is to be utilised for epidemiology purposes. 

Establishing this link is recognised as challenging as several factors will potentially influence the 

abundance of ARGs in sewers other than the selective pressures from antimicrobials being prescribed. 

For example the environmental conditions in sewers has been shown to potentially impact ARG 

abundance, including temperature, metal pollutants and changes in composition of microbial 

communities (Novo et al., 2013; Sun et al., 2016; Jiao et al., 2018). 

 

2.7 Ethical considerations  

As with many other scientific innovations, WBE is not immune to misuse and misrepresentation. As 

WBE does not collect data on individuals, the ethical risks are low. However, it will be necessary to 

manage privacy issues and the potential for stigmatisation of certain societal groups. The ethical aspects 

of WBE have been discussed elsewhere ((http://score-cost.eu/ethical-guidelines-for-wbe/)). It is 

generally accepted that populations over >10,000 is enough to give anonymity and will pose no risk to 

smaller groups of people. This is also relevant in the case of publications to reduce any risk of media 

misinterpreting the publication’s finding.  

Expanding WBE to include infectious diseases will pose new challenges to the ethical considerations, 

particularly with regards to disease outbreaks. With regards to pathogen monitoring in wastewater, 

population size will be important. It has been highlighted by WHO for the case of monitoring polio in 

wastewater, that large populations may decrease sample sensitivity and therefore sampling from 

subgroups may be required (World Health Organisation, 2003b). As infectious diseases, such as polio, 

spread rapidly in urban areas, the sampling of subgroups might also provide faster interventions by 

public health authorities. However, sampling from smaller subgroups in cities could lead to stigmatism 

of vulnerable groups.  

http://score-cost.eu/ethical-guidelines-for-wbe/
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Furthermore, outbreaks and the subsequent handling of them will differ between developing and 

developed countries due to the availability of resources and the quality of health and regulatory 

infrastructures in place. However, any outbreak, regardless of geographic location are fragile situations. 

Thus, care must be taken in the reporting of diseases being investigated within a community and social 

understanding of the situations will be crucial. For example, fear-trigged behaviours have been 

attributed as one of the major contributing factors to the spread of Ebola in Western Africa (Shultz et 

al., 2016). Stigmatism surrounding individuals infected with Ebola combined with a sense of distrust 

in health services and treatment centres resulted in efforts to hide cases. This exacerbated the Ebola 

spread, as there was a decreased chance of survival of those infected with home treatment and increased 

chances of infecting family members or carers which would in turn extended to the community.  

Similar ethical issues have also been observed with  outbreaks such as SARS, influenza and 

tuberculosis, which has resulted in WHO publishing the first comprehensive international ethics 

guidelines on public health surveillance in 2017 (World Health Organisation, 2017b). These can be 

appropriately adapted to different social, economic and epidemiological circumstances. As WBE 

continues to expand in the direction of disease monitoring, ethics should be considered and developed 

alongside.  Ethic guidelines will need to be adaptable, and consider factors such geographic location, 

population and the biomarkers to be monitored to enable further development of this field. 

 

2.8 Conclusions 

It is widely acknowledged that effective surveillance systems are key for the rapid intervention and 

control of infectious disease outbreaks. There is also a requirement for population-wide surveillance 

information to compliment current clinical data. WBE has demonstrated significant promise in 

providing information on community-wide exposure and health status comprehensively and in near 

real-time. The importance of effective surveillance has been highlighted recently with the case of the 

novel coronavirus (COVID-19). On the 31 December 2019, a number of causes of pneumonia of an 

unknown cause were detected in Wuhan City in China. Just a week later on 7 January Chinese officials 

had reported a novel strain of the coronavirus (World Health Organisation, 2020b). Even with early 

intervention measures of quarantining cities in China and travel bans, on 3 March 2020 the number of 

confirmed cases were 90,892 across 73 countries with severe outbreaks occurring in South Korea, Iran 

and Italy (World Health Organisation, 2020c).  Along with the current routes of global surveillance for 

the virus, WBE, if implemented, could track spread of the virus and, if linked with effective response 

system, could help with management. However, in order to successfully apply WBE in infectious 

disease surveillance, rapid advancements are required to tackle some of key challenges. These include: 

- complexity of wastewater matrix and the need for new biomarker extraction techniques, 
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- difficulties in accurate estimation of population size to account for temporal population size 

fluctuations, 

- non-existent biomarker discovery pipeline for both chemical and biological markers   

- lack of analytical tools for cost-effective, sensitive, selective and multi-residue analysis of 

wide-ranging biomarker groups spanning from genes through to proteins and whole 

microorganisms.   
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3.2 Executive Summary  

The rapid spread of severe acute respiratory syndrome coronavirus (SARS-CoVID-2) has devasted and 

overwhelmed public health systems across the world. The analysis of SARS-CoVID-2 in wastewater, 

via a technique known as wastewater-based epidemiology (WBE), has shown significant promise for 

monitoring disease spread. As a result, rapid and considerable infrastructure has been established to 

sample and analyse wastewater in the UK and internationally to track outbreaks. Whilst WBE is a 

relatively new field, the technique has expanded and developed over the past couple of decades to 

inform on varying aspects of public health. The aim of this project was to review the literature on what 

other areas WBE could be used to inform on public health.   

3.2.1 Aims and objectives  

1) Determine the existing and potential applications for WBE 

2) Outline where wastewater-monitoring is already being used, and for what purpose  

3) Highlight applications that are well-established, and which are potentially promising  

4) Identify the research gaps  

5) Determine the ethical considerations of WBE, what has been done already and what needs to 

be done  

3.2.2 Key findings  

The review of the national and international literature on WBE found: 

• WBE is a relatively new field and many of the studies to date have been proof of concept. Only 

very few applications of WBE exist that are ready to be implemented now 1) estimation of 

community wide illicit drug usage 2) estimation of lifestyle chemical usage, e.g. alcohol, 

nicotine and caffeine 

 

• Infectious disease tracking has historically been successful for monitoring potential polio cases 

within communities. WBE networks for SARS-CoVID-2 surveillance have been established 

regionally, nationally and internationally. Further research is needed to establish what virus 

loads indicate 

 

• Disease prevalence in a community for both non-communicable and communicable diseases 

have been estimated by pharmaceutical usage. Key to this is the analysis of both parent 

compounds and metabolites to determine consumption or direct disposal into a sewaer system 

 

• Recent studies have shown promise for WBE to monitor prevalence of allergies or asthma 

burden in a population linked with environmental factors 
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• WBE has clear potential to estimate of community-wide exposure to hazardous chemicals, 

including pesticides and plasticizers 

 

• The analysis of endogenous biomarkers (e.g. markers of inflammation or stress) in WBE would 

give valuable information on many aspects of public health and community lifestyles. However, 

very few endogenous biomarkers have been studied in WBE. Further work is needed in this 

area to identify suitable and representative biomarkers 

 

• Research gaps in WBE include a lack of understanding regarding stability, representative 

metabolites in wastewater and a lack of understanding of metabolism to undergo back-

calculation of exposure  

 

• As WBE continues to advance, the ethical considerations must be established and kept up-to-

date with developments 

 

3.2.3 Recommendations 

WBE is a relatively new field. There are only a very few technology ready applications. These include 

estimation of community wide illicit drugs, lifestyle chemical usage (alcohol, nicotine and caffeine), 

infectious disease tracking and estimation of disease prevalence based on pharmaceutical usage (for 

diabetes, cardiovascular disease or mental health conditions). Required infrastructure includes 

specialised staff to undertake sampling and sample preparation as well as an investment in 

instrumentation. There is a clear potential to apply WBE to estimate community-wide exposure to 

hazardous chemicals (including pesticides and industrial chemicals) or the prevalence of non-

communicable disease (including asthma). However, further essential research is required to fully 

appreciate WBE’s potential to transform community-wide heath assessment. These include: (1) 

Fundamental research on a new biomarker base to inform public health status. (2) Novel approaches 

towards population equivalent estimation. (3) Novel approaches towards sampling. (4) Novel 

approaches towards analysis and sensing. (5) Modelling and statistical analysis are required to fully 

appreciate spatiotemporal variability in large scale datasets. 
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3.3 Introduction 

Wastewater-based epidemiology (WBE) has received increasing attention over the past year across the 

world. In the UK, local, regional and national wastewater monitoring programmes were established in 

2020 to detect severe acute respiratory syndrome coronavirus (SARS-CoVID-2) patterns in human 

sewage to monitor outbreaks. This concerted effort between UK, Scottish and Welsh government, water 

companies, universities and research institutes has seen considerable investment into establishing the 

infrastructure, methodology and resources needed to sample, analyse, and interpret data from WBE. 

Whilst coronavirus has so far been the primary focus of these programmes, it is widely acknowledged 

that wastewater contains a diverse amount of chemical and biological information that can be used for 

wider public health purposes. The aim of this project was to review the literature on where else WBE 

could be utilised to inform public health.  

3.3.1 What is wastewater-based epidemiology 

WBE is a field that combines multiple disciplines, bringing together scientists and engineers. It is a 

technique where wastewater is analysed to give information on the communities within a wastewater 

catchment. Epidemiology is the study of the distribution and patterns of disease and health in defined 

populations, and WBE is using wastewater for this purpose. WBE is achieved through the analysis of 

indicators of health and disease, known as biomarkers, that have been excreted from individuals in a 

community into the sewer system. Biomarkers are broadly defined as a characteristic that can be 

objectively measured and quantified as an indicator of biological response (World Health Organisation, 

2001). These can be: (i) exogenous biomarkers (also known as external agents, stressors) such as 

pharmaceuticals consumed to treat diseases, air contaminants, food toxicants, or genetic material (e.g. 

DNA or RNA) from bacteria or viruses causing an infection and (ii) endogenous biomarkers (formed 

in humans) such as markers of inflammation or stress. They can be found in elevated or reduced levels 

in the body, for example in blood, tissues, faeces or urine.  

3.3.2 The concept of wastewater-based epidemiology 

WBE is conceptionally very simple. Influent wastewater (untreated, raw sewage) can be considered a 

pooled urine and faeces sample of the community that contributes (figure 1). The total amounts of 

analysed biomarkers in wastewater can be linked back to the community via back-calculations to 

calculate the daily amounts or daily doses per 1000 people. Pharmaceuticals are popular biomarkers in 

WBE, as many pass through the body unchanged or excreted as metabolites. It is for this reason that 

the inclusion of metabolites of drugs in WBE can add a further dimension. The ratios between parent 

drugs and their corresponding metabolites in wastewater can be used to see if drugs have been consumed 

rather than directly disposed of (Petrie et al., 2016). This is particularly the case when the metabolism 

of a drug is well-understood. 
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Figure 1. Graphical representation of the wastewater-based epidemiology (WBE) concept 

There are several requirements for the quantification of biomarkers in WBE to be achieved. Firstly, that 

samples collected are 24-hour composite samples (Ort, Lawrence, Reungoat, et al., 2010). This is where 

individual samples are taken at hourly time intervals over a 24-hour period using autosamplers. These 

hourly samples are combined to represent community’s wastewater over a calendar day. In contrast, 

grab samples are the process of taking a single sample from a time point and this can give valuable 

information about a specific snapshot in a moment of time. In the case of viruses, grab samples can be 

a cost-effective route of estimating disease prevalence in a community at a particular moment, 

potentially acting as an early warning system.  

Secondly, is an understanding of the population size of the community. Population estimates are 

considered one of the largest uncertainties in WBE (Castiglioni et al., 2013). Wastewater treatment 

plants (WWTPs) treat a well-defined catchment area and have an understanding of general population 

size. However, fluctuations in catchment area including commuting and travel, result in challenges 

identifying number of individuals contributing to a WWTP. Accurate population estimates are vital for 

back calculations in WBE, for example intake of particular pharmaceuticals or exposure to certain 

toxins per 1000 people. Population sizes are also essential for normalising biomarker loads in 

wastewater to allow comparisons between different-sized communities. The uncertainties surrounding 

population estimates have led to an active and developing field of WBE (van Nuijs et al., 2011; Been 

et al., 2014; Thai et al., 2019; Pandopulos et al., 2021).  

Many biomarkers have been proposed as potentials to estimate population size. Hydrochemical 

parameters, including biological and chemical oxygen demand and ammonia have been traditionally 

used (van Nuijs et al., 2011; Been et al., 2014). Potential candidates have been expanded to include 
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certain pharmaceuticals (O’Brien et al., 2014; Rico, Andrés-Costa and Picó, 2017), artificial sweeteners 

(O’Brien et al., 2014; Rico, Andrés-Costa and Picó, 2017), creatinine (Brewer et al., 2012) and even 

DNA (Yang, D’Auriac, et al., 2015). However, limitations still exist for many of the proposed 

population biomarkers. These have included stability issues, plus amounts in wastewater can be 

influenced by industrial discharge and cultural behaviours in communities (Lin et al., 2019). This can 

lead to potentially misrepresentative estimates on population size. 

Finally the flow rates of influent wastewater are essential, as concentrations of a specific biomarker in 

wastewater can be instead calculated as normalised daily mass loads. Concentrations of biomarkers 

could appear more dilute due to higher volumes of water in the sewage systems (e.g. increased rainfall 

or increased community water usage). Higher flow rates could therefore skew biomarkers 

concentrations to read lower than they are. Accounting for both population size and flowrates allows 

the comparison of different sized communities to be achieved.  

The ability to analyse diverse and numerous biomarkers from a single influent sample allows for many 

different aspects of public health to be studied. Furthermore, sampling wastewater periodically can 

allow long-term trends to be established for a community. The analysis of which could therefore reveal 

critical information for public health that is complimentary to current routes, for example assessing the 

effectiveness of public health interventions. 

Part of WBEs growing popularity is due to its ability to overcome challenges that conventional routes 

to assessing public health have. Examples of conventional routes include existing sources such as 

mortality and morbidity rates, prescription and hospital and admission data. Another is human 

biomonitoring studies (HBMs), where small representative samples from a population give samples 

(e.g., blood or urine) (Barr, 2008). Whilst all are valuable sources of public health information, there 

are several limitations. They can be biased, resource intensive and may involve lengthy ethical 

procedures (Bauer, 2008). Furthermore, these existing strategies are fragmented with different health 

issues considered distinct areas. There is often no easy mechanism for sharing of data between or being 

able to respond rapidly to upcoming health threats. WBE on the other hand can allow for real-time 

monitoring, with the ability to address the changing landscape of public health. Plus, as wastewater is 

from all the sewered community an overall reflection of health can be achieved.  

3.3.3 Methodology for wastewater-based epidemiology 

In WBE, biomarkers need to be extracted from wastewater before analysis. This poses several extraction 

and analytical challenges. Biomarkers are often in low concentration in wastewater plus the complex 

composition of wastewater, containing a diverse source of chemical and biological biomarkers, can 

pose problems for extraction and analysis (Daughton, 2012; Chen et al., 2014). Sample preparation 

usually includes a filtering and preconcentration step to ensure biomarker concentrations are in high 

enough levels to be quantified. This is usually achieved for chemical target biomarkers via methods 
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including solid phase extraction and immunoassay approaches. The analytical technique of choice for 

WBE has been liquid chromatography-tandem mass spectrometry (Hernández et al., 2018). This 

technique has demonstrated the ability to create diverse multi-compound methods for analysis in water 

environments (Petrie et al., 2015; Proctor et al., 2019). For the extraction of biological based 

biomarkers, such as DNA and RNA, numerous commercial kits exist on the market allowing for the 

extraction of genetic material from samples. Analysis for these has been achieved through next 

generation DNA sequencing and quantitative PCR (q-PCR). These have allowed for non-targeted and 

targeted screening of a wide range of genetic targets, including viruses, bacteria and resistance genes 

(Hellmér et al., 2014; Newton et al., 2015; Diemert and Yan, 2019; Huijbers, Larsson and Flach, 2020).  

3.3.4 Biomarker selection  

For biomarkers to be used in WBE there are several key criteria that need to be met (Daughton, 2012; 

Chen et al., 2014) 1) biomarker levels need to be high enough to quantify in wastewater 2) biomarkers 

need to be characteristic to the exposure or disease/health status in question, for example they are 

released via human excretion and not formed in the sewer system 3) Excretion from humans is well 

understood, this is essential for back calculations  4) Stable in wastewater and in transport and storage.  

3.3.5 Background of wastewater-based epidemiology 

WBE has become a well-established field over the past two decades. The concept that the analysis of 

drug residues in wastewater could be linked back to a community was first theorised by Daughton in 

2001 (Daughton, 2001). This was achieved by Zuccato in 2005 (Zuccato et al., 2005), who focused on 

cocaine in both wastewater and linked it back to the community. The first international network, 

SCORE (https://score-cost.eu/) was established in 2010. The approach was adopted by EMCDDA 

(https://www.emcdda.europa.eu/topics/pods/waste-water-analysis_en) to enable measurement of illicit 

drugs in Europe. This has led to a global standardised system with regular sampling campaigns taking 

place on annual basis (https://score-cost.eu/monitoring/interlab/) (https://score-cost.eu/monitoring/).  

Since then, many global networks of long-term wastewater monitoring have been established. These 

include: Australia Network, Underworld, The Spanish Network of Wastewater-Based Epidemiology.  

Recently, WBE has seen a surge of attention for its ability to monitor genetic material from SARS-

CoVID-2 as a means for tracking infections in a community (Daughton, 2020; Foladori et al., 2020; 

Kitajima et al., 2020; Polo et al., 2020). Popularity has grown largely due to the ability to give a whole 

community perspective from capturing input from asymptomatic carriers, and the potential to predict 

outbreaks. Several national and international collaborations have been established to further knowledge 

in using coronavirus in wastewater to monitor community spread.  

Whilst popularity to WBE has increased, other benefits for widespread monitoring for wastewater have 

not always received as much attention as they could outside the academic community. Whilst the 

potential uses and benefits of WBE for public health have been widely acknowledged in the scientific 

https://score-cost.eu/monitoring/interlab/
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literature (Thomas and Reid, 2011; Kasprzyk-Hordern et al., 2014; Choi, Tscharke, et al., 2018; 

Daughton, 2018; Vitale, Morales Suárez-Varela and Picó, 2021), there has sometimes been a gap 

between translating this research to implementing programmes nationally. The wide-spread 

implementation of the infrastructure to monitor SARS-CoVID-2 provides an opportunity to expand out 

on the analysis on wastewater samples collected to other recognised biomarkers. Not only could this 

provide key public health information by complementing current surveillance techniques, but also 

provide novel routes to assess public health interventions.  

3.4 Current Research  

The review presents the broad and diverse field of WBE and what has been achieved to date, Table 1 

presents a small selection of biomarkers examples that have been used in WBE in each area of use. This 

is by no means an extensive list and only includes a very small example of biomarkers for each section. 
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Table 1: Example biomarkers and usage in WBE  

Biomarkers 

of… 

Potential 

Biomarkers 

Biomarker Examples Treatment/indicator of Reference of wastewater study  

Infectious 

Disease  

Antimicrobials 

and metabolites 

Clarithromycin  Pneumonia, skin infections treatment  (Proctor et al., 2019; Senta et al., 2019; Escolà 

Casas et al., 2021) 

n-Desmethyl clarithromycin Metabolite of clarithromycin  (Senta et al., 2019) 

Sulfamethoxole   Urinary tract infections, bronchitis (Kasprzyk-Hordern, Dinsdale and Guwy, 2009; 

Guerra et al., 2014; Proctor et al., 2019; Escolà 

Casas et al., 2021) 

n-Acetyl sulfamethoxazole Metabolite of sulfamethoxazole  (Escolà Casas et al., 2021) 

Oseltamivir phosphate Influenza treatment  (Leknes, Sturtzel and Dye, 2012; Takanami et 

al., 2012) 

Oseltamivir carboxylate Metabolite of oseltamivir phosphate (Leknes, Sturtzel and Dye, 2012; Takanami et 

al., 2012) 

Acyclovir Herpes simplex virus infections and shingles (Prasse et al., 2010; Funke, Prasse and Ternes, 

2016) 

Carboxy-acyclovi  Metabolite of acyclovir (Funke, Prasse and Ternes, 2016) 

Ketoconazole Skin infection fungal treatment  (Huang et al., 2010; Proctor et al., 2019) 

Miconazole Skin infection fungal treatment  (Kasprzyk-Hordern, Dinsdale and Guwy, 2009; 

Guerra et al., 2014) 

Pathogenic 

DNA/RNA 

Poliomyelitis (polio) Infection that can affect the central nervous system (viral) (Ndiaye, Diop and Diop, 2014) 

Severe acute respiratory syndrome 

(SARS-CoVID-2) 

Respiratory infection (viral)  (Medema et al., 2020; W. Ahmed et al., 2020) 

Norovirus (GI/GII) Gastroenteritis (viral) (Hellmér et al., 2014) 

Influenza A Respiratory infection (viral) (Heijnen and Medema, 2011) 

Klebsiella pneumoniae Pneumonia, UTI, bacteraemia and endophthalmitis (bacteria) (Shannon et al., 2007) 

Enterococcus faecalis UTIs, bacteraemia, septicaemia (bacteria) (Shannon et al., 2007) 
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Salmonella enterica Fever, vomiting and abdominal pain (bacteria) (Yan et al., 2018; Diemert and Yan, 2019) 

Candida spp Candidiasis (fungal) (Assress et al., 2019) 

Cryptosporidium Gastrointestinal illness (parasite) (Wallis et al., 1996) 

Giardia lambli Small intestine infections (parasite) (Guy et al., 2003) 

Antimicrobial 

resistance 

(AMR) 

Antibiotic 

resistant genes  

ermB Erythromycin resistance (Wang et al., 2015) 

sul1 Sulphonamide resistance (Wang et al., 2015) 

mcr-1 Colistin resistance (Hembach et al., 2017) 

qnrS  Quinolone resistance  (Castrignanò et al., 2020) 

Mental Health 

and well-being  

 

Drugs and 

metabolites 

 

 

 

 

 

 

Fluoxetine  SSRI antidepressant  (Petrie et al., 2015; van Nuijs et al., 2015; 

Boogaerts et al., 2019; Escolà Casas et al., 2021; 

Kasprzyk-Hordern et al., 2021) 

Norfluoxetine  Metabolite of fluoxetine  (Petrie et al., 2016; Escolà Casas et al., 2021; 

Kasprzyk-Hordern et al., 2021) 

Venlafaxine  SSRI antidepressant  (Lai et al., 2011; van Nuijs et al., 2015; 

Boogaerts et al., 2019; Rice et al., 2020; Escolà 

Casas et al., 2021; Kasprzyk-Hordern et al., 

2021) 

Desmethylvenlafaxine Metabolite of venlafaxine  (Boogaerts et al., 2019; Kasprzyk-Hordern et 

al., 2021) 

Citalopram SSRI antidepressant (van Nuijs et al., 2015; Boogaerts et al., 2019; 

Riva et al., 2020; Escolà Casas et al., 2021; 

Kasprzyk-Hordern et al., 2021) 

Norcitalopram  Metabolite of citalopram  (Boogaerts et al., 2019) 

n-Desmethylcitalopram Metabolite of citalopram (Riva et al., 2020; Kasprzyk-Hordern et al., 

2021) 

Mirtazapine  Antidepressant  (Boogaerts et al., 2019) 
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Obesity and 

Cardiovascular 

disease   

Drugs and 

metabolites  

 

 

Atenolol  High blood pressure  (Lai et al., 2011; Petrie et al., 2015; van Nuijs et 

al., 2015; Proctor et al., 2019; Escolà Casas et 

al., 2021) 

Metformin  Diabetes drug (van Nuijs et al., 2015; Proctor et al., 2019; Xiao 

et al., 2019; Kasprzyk-Hordern et al., 2021) 

Oxypurinol Metabolite of allopurinol (gout treatment) (F. Ahmed et al., 2020) 

DNA  Bacteroides spp.  

Faecalibacterium spp 

Faecal bacteria (Newton et al., 2015) 

Asthma/allergie

s 

Drugs and 

metabolites 

Salbutamol Preventative inhalers for asthma (Fattore et al., 2016) 

Cetirizine Antihistamine, used to relieve mild allergy symptoms  (Harman, Reid and Thomas, 2011; Proctor et al., 

2019) 

Fexofenadine Antihistamine, used to relieve mild allergy symptoms (Choi, O’Brien, et al., 2018; Proctor et al., 2019) 

 Endogenous 

biomarker  

1,4‑methylimidazole acetic acid Indicator of histamine turnover  (Choi, O’Brien, et al., 2018) 

Lifestyle 

Factors  

 

Illicit drugs  

 

Cocaine  Stimulant  (Zuccato et al., 2005, 2008; van Nuijs et al., 

2011; González-Mariño et al., 2020; Rice et al., 

2020; Kasprzyk-Hordern et al., 2021) 

Benzoylecgonine Metabolite of cocaine  (Zuccato et al., 2008; van Nuijs et al., 2011; 

González-Mariño et al., 2020; Rice et al., 2020; 

Kasprzyk-Hordern et al., 2021) 

Cocaethylene Metabolite formed when cocaine and ethanol are consumed 

together 

(Mastroianni, Lopez de Alda and Barcelo, 2014) 

Amphetamine  Stimulant  (Zuccato et al., 2008; González-Mariño et al., 

2020; Rice et al., 2020; Kasprzyk-Hordern et al., 

2021) 

New Psychoactive 

substances (NPS) 

Methcathinone 

Mephedrone 

Stimulant, similar activity to amphetamine (synthetic 

cathinones) 

(González-Mariño et al., 2016; Castiglioni et al., 

2021) 

(Rice et al., 2020) 
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Methoxetamine Stimulant, similar activity to ketamine  (Rice et al., 2020) 

Para-methoxyamphetamine (PMA) Psychoactive drug with similar effects to MDMA 

(phenethylamine) 

(Castiglioni et al., 2021) 

Smoking  Nicotine  Predominantly found in tobacco  (Proctor et al., 2019; Rice et al., 2020) 

Cotinine  Metabolite of nicotine (Rodríguez-Álvarez, Rodil, Rico, et al., 2014; 

Castiglioni et al., 2015; Proctor et al., 2019; Rice 

et al., 2020; Kasprzyk-Hordern et al., 2021) 

Hydroxy-cotinine  Metabolite of nicotine  (Rodríguez-Álvarez, Rodil, Rico, et al., 2014; 

Castiglioni et al., 2015; Kasprzyk-Hordern et 

al., 2021) 

Anatabine (ANATA) Tobacco related toxicant/carcinogens (Tscharke, White and Gerber, 2016) 

Anabasine (ANABA) Tobacco related toxicant/carcinogens (Tscharke, White and Gerber, 2016) 

Alcohol  Ethyl sulphate Metabolite of alcohol consumption  (Mastroianni, Lopez de Alda and Barcelo, 2014; 

Baz-Lomba et al., 2016; Boogaerts et al., 2016) 

Diet  Caffeine  Stimulant, found in coffee   (Proctor et al., 2019; Rice et al., 2020; 

Kasprzyk-Hordern et al., 2021) 

1,7-dimethylxanthine Metabolite of caffeine  (Proctor et al., 2019; Rice et al., 2020; 

Kasprzyk-Hordern et al., 2021) 

Enterodiol and enterolactones Fibre indicator (Choi et al., 2019, 2020) 

Proline betaine Citrus consumption indicator  (Choi et al., 2019, 2020) 

N-methyl-2-pyridone-5-carboxamide 

(2PY) and N-methyl-4-pyridone3-

carboxamide (4PY) 

Vitamin B metabolite, formed via consumption of 

nicotinamide (a major B3 vitamer) 

(Choi et al., 2019, 2020) 

4-pyridoxic acid Dietary vitamin B6 intake biomarker  (Choi et al., 2019, 2020) 

Acesulfame, saccharin, and sucralose Artificial sweeteners (Choi et al., 2019) 

Exposure  Plasticizers/ 

phthalates  

Bisphenol A (BPA) Plasticizer  (Lopardo et al., 2018, 2019; Wang et al., 2020) 

BPA sulphate  Metabolite of BPA (Lopardo et al., 2019; Wang et al., 2020; 

Kasprzyk-Hordern et al., 2021) 
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Monoethyl phthalate (MEP) Metabolite of diethyl phthalate (DEP) exposure (González-Mariño et al., 2017, 2021; Du et al., 

2018; Tang et al., 2020) 

Monomethyl phthalate (MMP) Metabolite of dimethyl phthalate (DMP) exposure  (González-Mariño et al., 2017, 2021; Du et al., 

2018; Tang et al., 2020) 

Mono-i-butyl phthalate (MiBP) Metabolite of di-iso-butyl phthalate (DiBP) exposure  (González-Mariño et al., 2017, 2021; Du et al., 

2018; Tang et al., 2020) 

Pesticides  Atrazine desisopropyl (DIA) Metabolite of triazine pesticide exposure (Rousis, Zuccato and Castiglioni, 2016, 2017) 

Dimethyl thiophosphate (DMTP) Metabolite of organophosphate pesticide exposure  (Rousis, Zuccato and Castiglioni, 2016, 2017) 

3-phenoxybenzoic acid (3-PBA) Metabolite of pyrethroid pesticide exposure  (Rousis, Zuccato and Castiglioni, 2016, 2017; 

Rousis et al., 2017; Kasprzyk-Hordern et al., 

2021) 

Flame retardants Tris (2-butoxyethyl) phosphate 

(TBOEP) 

Parent flame retardant (O’Brien et al., 2015) 

Bis(2-butoxyethyl) phosphate 

(BBOEP) 

Metabolite of TBOEP exposure (Been et al., 2017) 

Bis(2-butoxyetyl) 3’-hydroxy-2-

butoxyethyl phosphate (HO-TBOEP) 

Metabolite of TBOEP exposure  (Been et al., 2017) 

Mycotoxins  Deoxynivalenol (DON) 

Fumonisins B1, B2 and B3 

Toxicants commonly in grains (e.g., corn, wheat, oats) (Gracia-Lor et al., 2020) 

Endogenous 

Biomarkers  

Oxidative stress  8-iso-PGF2α Indicator of oxidative stress  (Ryu, Reid and Thomas, 2015; Ryu et al., 2016; 

Bowers and Subedi, 2021) 

Population size  Hydrochemical 

markers 

Chemical oxygen demand (COD) and 

Biological oxygen demand (BOD) 

Population equivalent (van Nuijs et al., 2011) 

Ammonia (NH4
+) Population equivalent (Been et al., 2014) 

Endogenous 

biomarkers 

Homovanillic acid (HVA) and 

vanillylmandelic acid (VMA) 

Metabolites of dopamine, adrenaline and noradrenaline (Pandopulos et al., 2021) 

Abbreviations: UTI: urinary tract infection. SSRI: Selective serotonin reuptake inhibitor. ssp: species  
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3.5 Lifestyle choices   

3.5.1 Illicit drugs  

Scotland’s rising illicit drug usage has been highlighted as a public health crisis. There was an estimated 

55,800-58,900 people in Scotland with a drug usage problem in 2018 (NHS Scotland Information 

Services Division, 2019). Furthermore, an estimated 1,264 people died from drug related causes in 

2019, a rise from 1,187 in 2018 (National Records of Scotland, 2020). This value was highlighted as 

higher than any other European country and over three times that of the UK as a whole. Estimating 

illicit drug prevalence in a community is widely acknowledged as being challenging, particularly as 

drug usage is associated with hidden and stigmatised behaviours. Traditional assessment of illicit drug 

usage in a community includes surveys, police seizures and hospital admissions (Kraus et al., 2003). 

Whilst these methods provide key public health information, they have several limitations. They can be 

time consuming and struggle to deliver up-to-date information in the changeable nature of illicit drug 

usage. Relying on these methods alone may result in the full picture of a community’s drug usage 

problem being missed. These concerns have been highlighted by the UK Drug Policy Commission 

(UKDPC), it is recognised that drug usage is likely underreported and the full scope of a community’s 

drug usage problem is underestimated (Reuter and Stevens, 2007). 

The analysis of illicit drug residues in wastewater has demonstrated to be a dynamic and robust drug 

monitoring tool, with the ability to provide timely information on drug use patterns. The successes of 

WBE in this field have resulted in the EMCDDA establishing this technique as a novel and established 

drug use indicator (European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), 2016). A 

broad number of illicit drugs and metabolites have been investigated in wastewater, including cocaine, 

heroin, methamphetamines and the respective metabolites across the world (Castiglioni et al., 2006; 

Boleda, Galceran and Ventura, 2007; Kasprzyk-Hordern, Dinsdale and Guwy, 2008; Zuccato et al., 

2008). Studies have not only demonstrated drug use trends that have been consistent with other drug 

monitoring approaches but the ability to coordinate international studies through standardised 

approaches.   

3.5.2 New psychoactive substances  

WBE has continued to grow in this field, informing on the rising trend in usage of novel psychoactive 

substances (NPS). NPS, previously named ‘legal highs’ are drugs designed to mimic the effects of 

illegal substances such as cocaine or ecstasy (Stephenson and Richardson, 2014). It is estimated that 

NPS first appeared in the UK drug market in 2008/2009. The challenges associated with NPS, compared 

to more “traditional” illicit drugs, are the large number of new compounds and the rapidness that these 

can enter and leave the market (Peacock et al., 2019). 

Several studies have analysed NPS in wastewater to link back with community (González-Mariño et 

al., 2016; Bade et al., 2020, 2021). One of the most extensive studies to date, published in 2021, reported 



81 
 

wastewater results from 22 cities across 14 European countries over two years (Castiglioni et al., 2021). 

This study investigated 30 NPS, including synthetic cathinones and phenethylamines alongside the 

more “traditional” illicit drugs (e.g. cocaine, MDMA and methamphetamine). Results demonstrated 

that spatial and temporal trends of different NPS could be established and that WBE could inform on 

the rapid changes in drug usage in the community. It has been highlighted there are challenges back-

calculating NPS consumption in a community due to the limited information on human metabolism for 

NPS (Castiglioni et al., 2021). This is contrast to many illicit drugs where metabolism is well known 

and reported. Further studies are therefore needed to identify the most suitable biomarkers for NPS 

consumption. However, initial work has clearly demonstrated WBE’s ability to reflect trends of NPS 

usage over time and in different catchment areas.  Thereby overcoming  some of the  challenges that 

traditional techniques experience in monitoring the dynamic and complex behaviours of drug usage.  

3.5.3 Monitoring illicit drug and new psychoactive trends  

The ability to monitor long-term trends in WBE for lifestyle factors can allow the effectiveness of policy 

interventions to be assessed. One UK-based study investigated in wastewater the trends of illicit and 

licit drug consumption between 2014-2018 in one city (Rice et al., 2020). Mephedrone was classified 

as a class B drug in 2010. Whilst mephedrone was quantified in wastewater the first two years of this 

study, after 2015 it was no longer detected. The lack of mephedrone detected could demonstrate a 

delayed shift upon illicit drug choice after implementing the new drug classification. Another policy 

intervention was the regulation of NPS in 2016. Results in wastewater here observed an increased 

amount of more “traditional” drugs of abuse including cocaine and ketamine. WBE can reflect the 

complexities of regulation with regards to illicit drugs, as restrictions of one class can lead to increased 

use of another, as potentially observed in this study. WBE provides valuable near-real time monitoring 

for illicit drug consumption that can aid in complementing and filling gaps for current routes of 

assessing usage. This can provide evidence to allow policy makers to make informed decisions.  

It should be noted that WBE can aid in identifying correlations in both licit and illicit drugs, indicating 

poly-drug usage. One recent study in China identified strong correlations indicting polydrug usage 

patterns between several pairs of illicit drugs, including heroin and cocaine, methcathione and ketamine 

(Liu et al., 2021). Another study observed correlations between antidepressants and opioids 

(methadone, codeine and tramadol), potentially reflecting polydrug use of patients prescribed opioids 

also prescribed antidepressants (Choi et al., 2019). Certain metabolites could also indicate co-

consumption. Benzoylecgonine is the main metabolite for cocaine, but cocaethylene can be formed too 

when cocaine and ethanol (alcohol) are consumed together. Wastewater loads of cocaethylene has 

shown strong positive correlations to other metabolites of alcohol and cocaine in wastewater 

(Mastroianni, Lopez de Alda and Barcelo, 2014). This relevance is highlighted as one of the causes of 

increased drug deaths in Scotland is attributed to the consumption of two or more drugs at the same 

time. The Scottish Government has reported that of the 1,264 deaths linked to illicit drugs in 2019, 94 
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% of these deaths were of people who took more than one substance (National Records of Scotland, 

2020).  

3.5.4 Alcohol consumption and smoking  

WBE has been used to investigate other lifestyle choices, including for alcohol consumption and 

prevalence of smoking. It is recognised that smoking and alcohol consumption are amongst the most 

significant risk factors for disease burden in the UK (UK Government, 2019a). Increased disease risk 

includes cancers, heart and liver diseases. Both alcohol consumption and smoking rates are typically 

assessed by general population surveys and sale statistics. In the case of alcohol, stockpiling, 

international buying and consumption of illegal alcohol cannot be assessed by these routes.  

WBE analysis for these two areas relies on the analysis of metabolites in wastewater. For alcohol 

consumption, the metabolite of ethanol, ethyl sulphate, has mostly been applied in WBE (Mastroianni, 

Lopez de Alda and Barcelo, 2014; Baz-Lomba et al., 2016; Boogaerts et al., 2016). Back calculations 

of ethyl sulphate in wastewater can give values of L per 1000 people per day. Monitoring these levels 

over longer periods of time can demonstrate strong weekly trends, with clear differences between 

weekdays and weekends and variations in alcohol consumption can be observed in different cities. 

Smoking on the other hand uses nicotine and its metabolites, cotinine and hydroxycotinine in WBE 

(Rodríguez-Álvarez, Rodil, Rico, et al., 2014; Castiglioni et al., 2015). Back-calculations here can 

calculate number of cigarettes per 1000 people per day. Recent research has also identified two further 

biomarkers linked to tobacco, anatabine and anabasine (Tscharke, White and Gerber, 2016). These are 

urinary biomarkers that are excreted as a by-product of smoking and are specific to tobacco (unlike 

nicotine which can be found in nicotine patches and gum). WBE monitoring for both tobacco and 

alcohol consumption has successfully demonstrated its applicability in monitoring spatio-temporal 

trends in both local, national and international scales. The accurate monitoring of alcohol consumption 

and smoking in a community is essential if related health policies are to be evaluated. 

3.5.5 Diet  

Diet is another area of WBE that has been proposed in the last decade (Thomas and Reid, 2011; 

Daughton, 2012, 2018; Choi, Tscharke, et al., 2018). Diet is key for maintaining good health and well-

being, a poor diet been associated with many health conditions and diseases. It is also linked to with 

sociodemographic patterns, with lower socioeconomic groups having poorer diets, for example lower 

fruit and vegetable intake (Maguire and Monsivais, 2015). Several biomarkers associated with diet in 

wastewater, including metabolites of fibre and fruits consumption and vitamins has been investigated 

in Australia (Choi et al., 2019). However a follow up study highlighted that whilst many urinary 

biomarkers associated with diet have been identified, many have been found to not be stable enough to 

be used in WBE and many experience significant degradation in the sewer system (Choi et al., 2020). 

Instead, several biomarkers were identified to be useful for qualitative/semi-quantitative work and back-
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calculations were in good agreement with literature values. These included enterodiol and enterolactone 

(indicators of fibre intake) and proline beta (indicator of citrus consumption) which could be used as a 

proxy for a healthy diet.  

3.6 Monitoring behavioural changes and external stresses 

WBE reveals unique insight and perspective of a community’s lifestyle choices. Recent studies of WBE 

have been utilised to monitor how communities cope with certain environmental and social stresses. 

With one study investigating trends and correlations of both licit and illicit drugs in a defined period of 

economic stress and social strain (Thomaidis et al., 2016). Another study identified correlations 

between increased environmental temperature with increased usage of artificial sweeteners (e.g. 

acesulfame) in wastewater (Phung et al., 2017).  

Furthermore, WBE not only gives insight upon behavioural patterns associated with drug consumption, 

but also with attitudes surrounding disposal of medications. Unused medications should be returned to 

pharmacies to be incinerated and disposed of. It is known however that people can incorrectly dispose 

of unused medications, ending up in landfill or put down sink or toilet to end up in wastewater treatment 

system (Tong, Peake and Braund, 2011). The ability to distinguish between consumption and direct 

disposal of the commonly prescribed antidepressant, fluoxetine has been investigated in wastewater 

(Petrie et al., 2016). This is done by understanding the chemical structures in the prescribed formulation 

of the parent drug and the ratios between parent and metabolite (norfluoxetine) excreted by an 

individual. It is expected the ratios between fluoxetine and norfluoxetine in wastewater will be at a 

constant level when the parent drug has been consumed. An irregularly high level of fluoxetine in 

wastewater one day where the norfluoxetine levels remains low, indicates a significant amount of the 

parent drug has been dumped rather than consumed. Back-calculation done in this study estimated the 

equivalent fluoxetine loads for around 900 tablets directly dumped into sewage system. 

3.7 Communicable Diseases 

Whilst monitoring for SARS-CoVID-2 in wastewater has attracted increasing attention during the past 

year. Using wastewater for disease surveillance is not a new concept and has been well discussed in the 

literature (Wigginton, Ye and Ellenberg, 2015; Barras, 2018; O’Brien and Xagoraraki, 2019b). 

Environmental surveillance of polio in wastewater for example has been established (World Health 

Organisation, 2003b; Hovi et al., 2012; Roberts, 2013). Others have retrospectively predicted outbreaks 

of hepatitis A and norovirus in wastewater (Hellmér et al., 2014) and influenza has also been detected 

in wastewater (Heijnen and Medema, 2011). Though notably less common, WBE has also been applied 

to monitor bacterial infections (Yan et al., 2018). For example, prevalence of enteric Salmonella in a 

population, causing sickness and diarrhoea, was monitored in Hawaii (Diemert and Yan, 2019). 

Researchers could observe elevated levels of a particular Salmonella strain in wastewater 

simultaneously with a clinically reported outbreak. Results also showed same strain re-emerged as a 
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dominant species in wastewater a year later, potentially indicating a new outbreak of Salmonella in the 

community that was not detected by clinics.  

Many of these mentioned studies have used genetic material from pathogens, e.g. DNA or RNA, to 

monitor spread in a community. However the benefit of including the analysis of other relevant 

biomarkers with genetic material of pathogen in question has been highlighted as more effective route 

to assessing disease spread at the community level (Daughton, 2020). Whilst the genetic material of a 

pathogen can be a very specific biomarker and have the potential to act as an early warning system, 

there are limitations as recognised by the literature (Daughton, 2020; Foladori et al., 2020; Kitajima et 

al., 2020; Polo et al., 2020). For example, with regards to coronavirus RNA, the amounts individuals 

excrete can be variable (Joynt and Wu, 2020). This can cause challenges with back-calculating RNA 

levels quantified in wastewater to the number of individuals potentially infected at the community level 

(Kitajima et al., 2020). This can be further complicated with the questionability on whether the genetic 

material present in wastewater has come from an active virus or from someone who has recently 

recovered from the virus (Daughton, 2020). This could result in overestimation of prevalence of the 

disease at the community level. Whilst these discussions have focused on coronavirus, they are 

applicable for other diseases monitored via WBE too. Other potential limitations that have been 

previously discussed prior to coronavirus are stability of the genetic material in wastewater, variability 

in sampling approaches and the low efficiency for virus concentration methods (Girones et al., 2010).  

It is considered that analysing other biomarkers associated with diseases, including pharmaceuticals 

and endogenous biomarkers (e.g. inflammation) could help overcome some of these discussed 

limitations (Daughton, 2020). For example, pharmaceuticals used to treat specific diseases and 

corresponding metabolites can be a good reflection for disease presence in a community. Prevalence of 

hepatitis B has been done using the antiviral drug lamivudine (Hou et al., 2020). The limitations are 

recognised that prescribed drugs may not always be disease specific, in the case of lamivudine it is also 

prescribed for human immunodeficiency viruses (HIV) treatment, and it is impossible to distinguish 

whether treatment is from hepatitis B or HIV. This study also did not look at metabolites of lamivudine. 

Therefore, some of the levels of lamivudine observed could have resulted from direct disposal of 

lamivudine into the sewage system via toilet or sink rather than consumption. Endogenous biomarkers 

of disease and health are discussed later in this review.  

3.8 Antimicrobial Resistance  

Antimicrobial resistance (AMR) has been hailed as one of the greatest threats to public health risks 

threatening medicine in the 21st century (O’Neill, 2014). Antimicrobial resistance is defined by WHO 

as  “microorganisms such as bacteria, viruses, fungi and parasites change in ways that render the 

medications used to cure the infections they cause ineffective”(World Health Organisation, 2017a). 

This process occurs naturally but is further accelerated by inappropriate use of medicines. The 
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consequences of AMR are significant, and could result in easily treated infections being fatal (Bush et 

al., 2011). It has been estimated by 2050 there could be as many as 10 million deaths per year attributed 

to AMR (O’Neill, 2014). Poor surveillance has been highlighted as one of the critical problems 

regarding AMR. The Global Antimicrobial Resistance Surveillance System (GLASS) in 2015 by WHO 

was established with the aims of sharing information on the global scale to strengthen data and aid 

decision making on national and international actions (World Health Organisation, 2015a). Several 

limitations of current AMR surveillance were highlighted, including selection bias in samples and 

inconsistent global coverage. The result was a call to include AMR data from whole populations and 

not just from clinical studies alone. 

Scotland’s Antimicrobial Prescription Group (SAPG) (https://www.sapg.scot/) was established in 2008 

with a primary aim to coordinate a national framework for antimicrobial stewardship. SAPG have 

developed surveillance systems and ensured standardised information on antimicrobial use and 

resistance that is accessible to NHS boards. In 2019, the Scottish One Health Antimicrobial Use and 

Antimicrobial Resistance report was published by Antimicrobial Resistance and Healthcare Associated 

Infection (ARHAI) Scotland (Antimicrobial Resistance and Healthcare Associated Infection (ARHAI), 

2020). This report provides information on antibiotic use and resistance to antibiotics in Scotland during 

2019. It supports the five-year United Kingdom National Action Plan and a 20-year vision for 

containing and controlling AMR (UK Government, 2019b). Currently, much surveillance is based on 

clinical data and prescription data. WBE provides an opportunity as a complimentary technique to 

achieve a whole population approach to tackling AMR. 

3.8.1 Patient compliance to pharmaceuticals   

Prescription data in the UK is easily accessible, however just because a medication has been prescribed 

does not necessarily mean it was consumed. Patient compliance to medical treatments is known to vary. 

In the case of antibiotics, individuals often feel recovered before the end of a prescribed dose.  The 

result this can be individuals do not complete the course of antibiotics, potentially leading to both 

stockpiling of leftover doses and self-prescribing at a later date. It has been previously highlighted that 

up to a third of patients do not comply to antibiotic treatment instructions and a quarter use doses 

leftover from previous treatment (Kardas et al., 2005). Leftover antibiotics are a key driver for AMR 

and non-compliance not only promotes resistance but has serious implications of costs of healthcare 

(Hughes et al., 2001). Estimating patient compliance is challenging, as it relies on self-reported 

questionnaires and counting leftover doses in clinics but results from these can be biased.  

Whist numerous WBE studies exist for investigating licit and illicit drug consumption, only a handful 

of studies to date  have compared spatial and temporal trends of pharmaceuticals and matched these to 

predicted concentrations (Lai et al., 2011; Baz-Lomba et al., 2016; Rice et al., 2020; Riva et al., 2020; 

Escolà Casas et al., 2021; Kasprzyk-Hordern et al., 2021). This requires a knowledge of prescription 

https://www.sapg.scot/
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data, formulations, excretion rates and can be utilised to investigate overall adherence of medications 

in a population. Whilst these studies have looked at a broad range of pharmaceuticals, a couple of these 

studies have included antibiotics (Escolà Casas et al., 2021; Kasprzyk-Hordern et al., 2021). It is key 

that both parent compounds and metabolites are considered in wastewater analysis for two reasons 1) 

in the case for antimicrobials specifically both have implications for promoting resistance in bacteria in 

WWTPs 2) in the case of pharmaceuticals more generally, the ratio between parent and metabolite is 

key for assessing if a pharmaceutical has been consumed (e.g. compliance can be investigated) or if it 

has directly been disposed of. An understanding of antibiotics in wastewater is important, as unlike 

other contaminants where cut off points can be identified, sub-lethal concentrations of antibiotics in 

wastewater can promote resistance (Jury et al., 2011).  

3.8.2 Antimicrobial resistance surveillance  

It has been proposed that the combined wastewater surveillance of antibiotics and metabolites with 

pathogens and antibiotic resistance genes (ARGs) could be a proxy for regional AMR and how changes 

can occur overtime (Kwak et al., 2015; Larsson et al., 2018). The presence of ARGs in wastewater will 

be complex, some genes may be excreted from the human community contributing and others will be 

from the diverse microbial communities found in wastewater. These microbial communities will be 

influenced from years of exposure to sub-lethal concentrations of multiple antibiotics and metabolites 

in wastewater. Furthermore, the varying consumption patterns in human populations will result in 

unique microbial communities in wastewater between different geographic locations. WBE also allows 

analysis of cofactors in wastewater. These include other micro-contaminants such as heavy metals and 

biocides (e.g., disinfectants), that can have a role in promoting or facilitating antimicrobial resistance 

in microorganisms (Baker-Austin et al., 2006; Tello, Austin and Telfer, 2012).  

There are numerous studies in the literature investigating AMR surveillance in wastewater (Gao, Munir 

and Xagoraraki, 2012; Novo et al., 2013; Rodriguez-Mozaz et al., 2015; Raven et al., 2019; Castrignanò 

et al., 2020). Recent studies have also demonstrated strong relationships existing between wastewater 

and clinical resistance prevalence, indicating wastewaters ability to potentially predict resistance in 

clinics (Pärnänen et al., 2019; Huijbers, Larsson and Flach, 2020).  

Due to the complexities of antibiotic pollution and impacts on resistance, robust surveillance methods 

are needed to assess resistance on a clinical level. Overall whilst total antibiotic usage has decreased by 

7.6 % since 2015 in Scotland (ARHAI Scotland, 2020), it is recognised that   there is more to be done 

if the UK’s overall goal to reduce antibiotic usage in humans by 15 % by 2024 is to be achieved (UK 

Government, 2019b). The ability of WBE to monitor long term trends will be key for AMR surveillance, 

as observing population-wide trends over several years will be required. Whilst the direct impact of 

interventions may be observed via reduced antimicrobial and metabolite levels in wastewater, to see the 

impacts interventions have on resistance in microbial communities in wastewater and environment may 
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occur over many years. Having effective WBE in place to monitor antimicrobials, genes and cofactors 

will not only allow effective population-wide surveillance to be achieved but also allow interventions 

on the community scale to be monitored. Such data would be complimentary to current surveillance in 

Scotland where a national surveillance programme for monitoring AMR in clinically important 

pathogens was established in 2009 (based on the European Antimicrobial Resistance Surveillance 

System) (Nathwani et al., 2011). 

3.9 Non-communicable diseases and well-being  

3.9.1 Mental health  

Mental health has been identified as one of the main causes of disease burden worldwide. The COVID-

19 pandemic has exacerbated mental health issues in the UK. Evidence has indicated a worsening of 

mental health in the first national lockdown on the 23rd March 2020, with UK government identifying 

psychological distress, anxiety and depressive symptoms peaking in April 2020 (Public Health England, 

2021). Isolation was identified as a significant contributor to rising rates of mental health services and 

access to medications. Antidepressant usage in a population is typically based on prescription data and 

general population surveys (Thacker and Berkelman, 1988; Cadarette and Wong, 2015). Whilst UK is 

fortunate to have easily accessible prescription data, the limitations with current routes include reporting 

bias for population surveys and as previously touched upon with antibiotics, whilst a drug has been 

prescribed does not necessarily mean it has been consumed. These limitations can potentially be 

attributed to fears of stigmatism surrounding issues with mental health. 

Many studies have included antidepressants in multi-compound analytical methods in wastewater 

(Petrie et al., 2015; Thomaidis et al., 2016; Boogaerts et al., 2019; Choi et al., 2019; Proctor et al., 

2019). One recent study focused entirely on antidepressants for WBE, developing an analytical method 

for 27 commonly prescribed antidepressants with several metabolites (Boogaerts et al., 2019). Back 

calculations for popular antidepressants including citalopram, venlafaxine and mirtazapine from 

wastewater sampled from four WWTPs in Belgium demonstrated the mass loads agreed with 

prescription data. Two UK-based studies investigated a broad selection of pharmaceuticals including 

antidepressants in WBE  and linked back to prescription data (Rice et al., 2020; Kasprzyk-Hordern et 

al., 2021).  

One of these UK-based studies monitored wastewater trends of both licit and illicit drugs in one city in 

the South-West of England between 2014-2018 (Rice et al., 2020). The ability to monitor long-term 

consumption trends by WBE were demonstrated here. For example, significantly increased levels of 

the antidepressant venlafaxine in wastewater reflected increases in prescriptions at the catchment level. 

Interestingly, wastewater loads of venlafaxine were in higher amounts then the concentrations predicted 

from prescription data. Rates of antidepressant prescription were rising in the decades prior to the study 

period and were expected to continue increasing (Mars et al., 2017). The UK has been experiencing a 
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period of political economic austerity since 2010 including across the period of 2014–2018, and under 

similar circumstances in other European countries this has led to an increase in prescriptions of 

antidepressants and other drugs to treat mental health (Thomaidis et al., 2016). In line with expectations, 

venlafaxine prescription rates did increase significantly each year, although prescription rates of other 

antidepressants (amitriptyline and fluoxetine) did not change significantly from 2014 to 2018. 

Increasing demand for antidepressants coupled with the online availability of venlafaxine and its 

relatively lower cost, compared to NHS prescriptions, could explain the mismatch between prescription 

and wastewater data. Ultimately, the reason behind the discrepancy in wastewater and prescription data 

is unclear, but what is important is that the trends in both of them are the same, which helps to provide 

important context to the results. 

A significant advantage of WBE over conventional routes is the ability to gain health information from 

the whole population. A limitation of monitoring pharmaceuticals alone in wastewater for estimating 

disease prevalence is that a portion of the population could be missed. For example, those who are 

experiencing mental health problems but have not sought out medical help or have chosen non-

pharmaceutical therapies. Residues of antidepressants and metabolites in wastewater would imply an 

origin of an individual who has sought out help from a medical health professional and had 

antidepressants prescribed. However due to the stigmatism that still surrounds mental health problems 

today, it is highly likely a portion of the population who experience mental health problems will be 

missed.  

The analysis of endogenous biomarkers that are elevated or decreased in urine when an individual is 

experiencing mental stress would be valuable for WBE (Daughton, 2012). It should be noted there are 

no routine diagnostics on urine analysis for mental health disorders. At a clinical level, several studies 

have investigated urinary metabolites that could be linked to mental health (Zheng et al., 2013, 2016; 

Shimanoe et al., 2021). However there has currently been no studies of endogenous biomarkers of 

mental health in wastewater, further research is needed to identify urinary biomarkers indicative of 

mental health that are suitable for WBE.  

3.9.2 Obesity and cardiovascular diseases  

The UK is experiencing growing problems of obesity with an estimated 63 % of adults over a healthy 

weight and a half of these living with obesity (Public Health England, 2019). Scotland has been 

identified as having some of the highest obesity levels among the Organisation of Economic Co-

operation and Development (OECD) countries (ScotPHO Public Health Information for Scotland, 

2020). Obesity increases risks of developing certain diseases, including type 2 diabetes, high blood 

pressure and certain cancers (GOV.UK, 2017). Higher levels of obesity have been correlated to lower 

socio-economic status and links between lower self-esteem and mental wellbeing have been identified. 

Failure to address growing rates of obesity results in greater pressure on the NHS. It was estimated that 
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the NHS spent £6.1 billion on overweight and obesity-related health in 2014-2015, with these UK-wide 

NHS costs projected to reach £9.7 billion by 2050 (GOV.UK, 2017).  

Wastewater monitoring provides a multifaceted approach to assessing population-wide cardiovascular 

diseases and associated conditions. For example, analysis of antidiabetic drugs in wastewater have been 

good indicators of disease prevalence in the community. Metformin is a first-line medication for type 2 

diabetes and helps lower blood sugar levels. One study used metformin as a biomarker in wastewater 

to assess trends of type 2 diabetes over a period of four years, with results showing increasing trends 

that matched prevalence results estimated from traditional surveys (Xiao et al., 2019). Linking into 

earlier discussions of how wastewater can provide information on a communities’ diet, a large-scale 

study in Australia assessed the prevalence of gout in a population using WBE (F. Ahmed et al., 2020). 

Gout is a type of arthritis that can cause severe joint pain and has many risk factors including obesity 

and diet. Researchers analysed oxypurinol, a main urinary metabolite of the first-line gout treatment 

allopurinol, in the wastewater collected from 75 WWTPs. Many multi-residue analysis methods have 

been developed that include pharmaceuticals associated with cardiovascular diseases in wastewater 

exist in the literature (Petrie et al., 2015; Choi et al., 2019; Proctor et al., 2019; Escolà Casas et al., 

2021). 

It is not just pharmaceuticals and metabolites in wastewater that can give key population-wide 

information on cardiovascular diseases. The analysis of fragments of DNA from bacteria that reside in 

an individual’s gut can also be used. It has been previously highlighted in the literature that several 

bacterial species that reside in the human gut microbiome (the community of microorganisms living 

together), are enough to differentiate between an obese individual and a lean one (Le Chatelier et al., 

2013). Following on from this it was theorised that the human faecal microbiome could therefore 

potentially act as proxy to the human gut microbiome. One study analysed the bacterial communities in 

wastewater via gene sequencing from 71 cities in the US and found good predictors of estimated levels  

of obesity within the community (Newton et al., 2015). The analysis of biomarkers associated with 

obesity including pharmaceuticals and gut bacteria via WBE can act as an additional epidemiology tool 

to provide real time monitoring of community health. Disease prevalence and trends can be monitored 

long-term allowing the effectiveness of public health interventions to be assessed, providing up-to-date 

evidence for policy makers to make informed decisions.  

As with antibiotics, patient compliance to medication is also another area of concern. On average, a 

course of antibiotics will typically last 5 days,  in contrast many treatments associated with non-

communicable diseases, including diabetes, tend to be long-term (Kardas et al., 2005; Muszbek et al., 

2008). It was previously highlighted that nearly 9 % of all cardiovascular diseases in Europe are 

attributed to poor adherence with medical treatments (Muszbek et al., 2008).  It has further been 

estimated that in developed countries, compliance to long-term treatments does not succeed 50 % 
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(World Health Organisation, 2003a). As previously mentioned, only a handful of WBE studies to date 

have matched long-term trends and spatial differences with predicted concentrations calculated from 

prescription and excretion data (Lai et al., 2011; Baz-Lomba et al., 2016; Rice et al., 2020; Riva et al., 

2020; Escolà Casas et al., 2021; Kasprzyk-Hordern et al., 2021). Whilst a relatively new area to WBE, 

these studies have shown potential with matching wastewater data to predicted values. Results could be 

invaluable for measuring community compliance for both long-term conditions, including diabetes and 

mental health problems and short-term treatments, such as antimicrobials.  

3.9.3 Asthma and allergies  

WBE has also been applied to monitor both asthma and allergies and have correlated levels with 

environmental factors. One example of this is estimating a populations burden to hay fever (allergic 

rhinitis) through wastewater. This can be achieved by monitoring medications used to treat hay fever. 

For example, cetirizine and fexofenadine are antihistamines and are common ingredients in over-the-

counter hay fever medications. One study in Oslo demonstrated positive correlations between 

seasonal pollen and cetirizine levels in wastewater, with much higher loads observed in summer when 

compared to winter (Harman, Reid and Thomas, 2011). Another study used WBE to investigate 

population hay fever burden with fexofenadine and 1,4‑methylimidazole acetic acid (MIAA)  (Choi, 

O’Brien, et al., 2018). MIAA is an endogenous urinary biomarker released by the body in response to 

histamine.  Results demonstrated strong correlations between the two, indicating histamine burden is 

linked with fexofenadine intake.  

A community’s asthma burden associated with air pollution is another area of WBE that has shown 

promise in recent years. In the UK, air pollution has been identified as one of the largest risks to public 

health, with the annual mortality of human-made air pollution in the UK is roughly equivalent to 

between 28,000 and 36,000 deaths every year (Public Health England, 2020). It has been estimated that 

between 2017 and 2025, the total cost to the NHS and social care system of air pollutants will be £1.6 

billion (Public Health England, 2020). Air pollution has been linked to many health conditions, 

including exacerbation of asthma, increases in respiratory and cardiovascular diseases, lung cancer and 

recent research affecting the brain causing dementia. Growing concerns of air pollution have led to 

clean air initiatives across the UK, including Scotland’s  Cleaner air for Scotland strategy for the next 

five years to improve air quality (Scottish Government, 2020). 

Whilst particulate matter is one way to directly monitor effects of interventions for air pollution, there 

is not always a clear link to assessing the public health impacts in real time. There are often delays in 

getting information of hospital admissions or prescriptions associated with air pollution and this may 

reflect only a small percentage of the population effected. WBE have demonstrated asthma burden in a 

population using the medication salbutamol as an indicator for asthma. Salbutamol is the active 

pharmaceutical in inhalers, acting as a bronchodilator which helps relax the muscles of the airways in 
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the lungs. Salbutamol inhalers are known as reliver inhalers, as they give quick relief from breathing 

problems when required. As asthma is exacerbated by air pollution, salbutamol in wastewater is 

therefore a good indicator of when someone might have experienced symptoms and used one to relieve 

them. Inhaler usage is challenging to assess from prescription data alone as whilst inhalers have been 

prescribed, there is no information to when they have been used. This is added to the fact that NHS 

advice is to replace inhalers every six months, even if not empty. Salbutamol levels in wastewater can 

therefore reflect in near-real time a community to relieve symptoms via salbutamol inhalers. The 

relationship between salbutamol in wastewater and air pollution was investigated via a study in Milan 

(Fattore et al., 2016). Increased levels of airborne particulate matter with increased levels of salbutamol 

in wastewater were observed, indicating exacerbated asthma symptoms on days with higher levels of 

air pollution. WBE could therefore provide novel insight into estimation of allergy and asthma burden 

in a population much quicker than current public health monitoring tools. Further work has been 

identified as broadening the medications to analyse in wastewater to cover more hay fever and asthma 

medications.  

3.10 Exposure of chemicals 

An area of WBE that is currently under development is for monitoring community exposure to various 

chemicals. Currently human biomonitoring (HBM) studies are the main tool for assessing exposure for 

many classes of compounds, including pesticides and bisphenol A (BPA) (Barr, 2008; Dekant and 

Völkel, 2008). Limitations to HBM include stringent and lengthy ethical procedures, samples can be 

invasive (e.g., sampling blood) and excretion profiles of biomarkers can vary throughout the day (Bauer, 

2008). The results from HBM will also only provide a snapshot of population exposure at a particular 

moment of time. In contrast, WBE can help overcome some of these limitations by being reflective of 

whole populations over a period of time. Whilst WBE would not replace HBMs, it can provide an 

efficient and cost-effective approach to complement them. 

3.10.1 Pesticide exposure   

Exposure to pesticides has been associated with neurological conditions including Parkinson’s disease, 

cancer and sperm DNA damage (Allen and Levy, 2013; Saillenfait, Ndiaye and Sabaté, 2015). Whilst 

it has been reported that overall pesticide usage has declined in Scotland since 2018, 98 % of arable 

crops were still treated with a pesticide in 2018 (Scottish Government, 2019).  There is currently a lack 

of pesticide exposure information for the general population in the UK, as many pesticide exposure 

studies have been focused on exposure farm workers might experience (Sleeuwenhoek et al., 2007). 

Whilst farmers may experience exposure from direct application of pesticide, the general population is 

exposed to pesticides through diet and through living close to agricultural areas where spraying occurs 

(Aprea, 2012). One study to date has investigated urinary biomarkers of pesticide exposure of residents 

in the UK, including East Lothian in Scotland (a major arable area) (Galea et al., 2015). Results 

demonstrated that were was no evidence of increased urinary biomarker excretion in residents following 



92 
 

spray events. However, levels observed in urine were in agreement with other studies done 

internationally, indicating diet is a likely source of pesticide exposure. It was recognised however that 

pesticides have short half-lives in the body which presents a challenge for HBM data, as urine samples 

would need to be collected within a 24-hour period from a spray event ideally.  

WBE could again be used to overcome this limitation. The first studies using WBE to investigate 

population exposure to pesticides was in 2016 and 2017 and have demonstrated regional differences 

and comparable results with HBMs (Rousis, Zuccato and Castiglioni, 2016, 2017). The most extensive 

study to date investigated population exposure to three classes of pesticides (triazines, 

organophosphates and pyrethroids) across eight cities across Europe (Rousis et al., 2017). A selection 

of 15 urinary metabolites of pesticide exposure were evaluated in wastewater. Back-calculated intake 

of pesticides were compared with national statistics on insecticide sales for each country. The results 

indicated higher levels of a countries insecticide sales can lead to higher population exposure to 

pesticides. The back-calculated pesticide intake values were compared to results from HBM studies 

previously done, demonstrating comparable results and indicating WBE could be a cost-effective 

solution to population monitoring of pesticide exposure.  

Another UK-based study assessed pesticide exposure via WBE for pyrethroid pesticides on five cities 

in the South-West (Kasprzyk-Hordern et al., 2021). This study demonstrated geographic differences 

between cities indicating different levels of pesticide exposure depending upon location. Whilst there 

is a push for reducing reliance of pesticide usage on crops, unprecedented population growth and 

climate change continues to put stress on food production. Due to the variance in exposure experienced 

in cities observed in WBE studies so far, the importance of assessing pesticide exposure across multiple 

locations is key to highlighting vulnerable populations. In the UK, studies utilising WBE to investigate 

pesticide exposure in communities has only been achieved in the South-west of England. Expanding 

out to multiple-cities could provide complementary data and build upon HBM work previously done in 

the UK. Long-term monitoring trends could expand on knowledge on population exposure through both 

diet and potential spraying effects.   

3.10.2 Industrial chemicals exposure (bisphenol A, phthalates and flame retardants)  

Exposure to industrial chemicals that individuals come across in everyday life is another area showing 

promise for WBE. Bisphenol A (BPA) is a common plasticizer which has been evidenced to have 

endocrine disrupting properties. Endocrine disrupting chemicals interfere with hormone regulation 

which can affect health and reproduction in both humans and animals (World Health Organisation, 

2010a) Diet has been highlighted as a major source of exposure, e.g. due to leaching from plastic 

packaging into food (Mustieles et al., 2020). Flame retardants are another class of chemicals used 

increasingly in consumer products yet have been associated with several human health problems 

including suspected carcinogens and concerns of neurodevelopment issues (Dishaw et al., 2011; van 
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der Veen and de Boer, 2012). There is a lack of evidence on exposure to such chemicals and long-term 

effects of exposure are not fully understood. Growing evidence of the negative effects of BPA have led 

to replacements by other bisphenols, such as bisphenol S (Mustieles et al., 2020). However, these have 

also demonstrated to have endocrine disrupting properties. The growing areas of concern have catalysed 

Scotland’s environmental charity, Fidra, to have designated projects for tackling both bisphenols and 

flame retardants in everyday products (https://www.fidra.org.uk/projects/). It is recognised there is an 

urgent need for cost-effective monitoring tools to timely assess human exposure for a range of 

chemicals. Not only can this inform upon current risks on exposure to chemicals in everyday use, but 

also assess exposure to potential chemical replacements.  

There have been several studies of WBE for assessing community exposure of BPA (Lopardo et al., 

2018, 2019; Wang et al., 2020; Kasprzyk-Hordern et al., 2021), phthalates (González-Mariño et al., 

2017, 2021; Du et al., 2018; Tang et al., 2020) and for flame retardants (O’Brien et al., 2015; Been et 

al., 2017). One study investigated community exposure of certain flame retardants and plasticizers 

across five cities in Europe (Been et al., 2018). In the UK, several studies have been done investigative 

community exposure for BPA via WBE, similar to pesticides these studies have only been done in the 

South-west of the UK (Lopardo et al., 2018, 2019; Kasprzyk-Hordern et al., 2021). One study 

investigated BPA sulphate as a characteristic urinary metabolite of BPA exposure in wastewater of five 

major WWTPs. Results from this study demonstrated varying levels of BPA exposure between sites, 

with two of the five observing higher BPA sulphate loads corresponding to higher intakes of BPA. 

These were estimated to be well above the tolerable daily intake threshold set by the European Food 

Safety Authority (European Food Safety Authority (EFSA), 2015). As there are limited studies 

currently on chemical exposure to varying classes of compounds in the UK more evidence is needed 

for effective policy interventions. WBE could be applied as a cost-effective and timely tool to help 

identify vulnerable populations to chemical exposure.  

3.10.3 Mycotoxin exposure  

Exposure to mycotoxins in a community’s diet is another area of promise for WBE. Mycotoxins are 

toxic compounds naturally produced via funguses that grow on food like cereals. Exposure to 

mycotoxins have shown harmful effects on both human and animal health, with links to cancers, birth 

defects and gastrointestinal disorders (Bhat et al., 1997; Hussein and Brasel, 2001; Fung and Clark, 

2004). Due to the associated risks, maximum acceptable limits have been established for some 

mycotoxins in food (European Union, 2006). However, it is widely acknowledged gaps on the impacts 

of climate change and the prevalence of mycotoxins. Altered temperatures, increased rainfall could 

allow fungal species to be more prevalent or allow strains to evolve (Skelsey and Newton, 2015).   

The main cereals grown in Scotland are barely (malting purposes) and oats (food and animal feed). It 

has been previously highlighted by that the main mycotoxin producing fungi of concern from a Scotland 

https://www.fidra.org.uk/projects/
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and a wider UK perspective are the Fusarium spp (Food Standards Scotland, 2015). Infection of 

Fusarium spp causes Fusarium head blight, producing the mycotoxins deoxynivalenol (DON) and 

zearalenone (ZON). Due to the robust nature and stability of mycotoxins they have been reported to 

pass into, fermented products including beer but not distilled products like whiskey (Food Standards 

Scotland, 2015). This has caused concern for malting brewers regarding fungal contamination as this 

can impact quality and flavour of final product (Nielsen et al., 2014). Due to growing concerns of 

mycotoxin exposure, a number of urinary HBM studies have been investigated across the world 

(Tuanny Franco et al., 2019). In the UK,  a handful of HBM studies have investigated mycotoxins in 

urine, these studies have focused on DON and urinary metabolites (Wells et al., 2017; Papageorgiou, 

Wells, Williams, K. L. M. White, et al., 2018; Papageorgiou, Wells, Williams, K. White, et al., 2018). 

Results from these studies reported certain groups in the UK, including young children and adolescents 

may be exceeding current limits of DON.  Limitations with studies have been recognised as 

uncertainties with estimating mycotoxin dietary intake and the small number of communities been 

investigated. There is therefore a need for larger-scale and longer-term studies to address population 

exposure to a range of mycotoxins.  

WBE has recently been applied to assess community exposure mycotoxins in four cities in Spain and 

Italy (Gracia-Lor et al., 2020). A selection of eleven urinary mycotoxins, including DON and 

fumonisins B1, B2 and B3 were investigated. It was reported that DON intake estimates that were back-

calculated by WBE, were close to reported values in HBM studies. Whilst this new area of work for 

WBE, has study has demonstrated initial promise of using wastewater to assess as a community intake 

of mycotoxins, complimentary to current HBM approaches.  

3.11 Endogenous biomarkers linked with disease or health status   

As mentioned previously, endogenous biomarkers are produced by an individual’s metabolism in 

response to either a disease or health status. For example, these could be biomarkers of inflammation 

or stress that are produced in the body in response to a disease. An earlier example of an endogenous 

biomarker applied in WBE was MIAA, a urinary biomarker released by the body in response to 

histamine. This was analysed alongside the hay fever medications in wastewater to estimate hay fever 

burden in a population. (Choi, O’Brien, et al., 2018) The benefits of broadening WBE to include 

endogenous biomarkers has been well-discussed in the literature (Choi, Tscharke, et al., 2018; 

Daughton, 2020; Rice et al., 2020; Sims and Kasprzyk-Hordern, 2020). Daughton presented the Sewage 

Chemical-Information mining (SCIM) approach for this purpose (Daughton, 2012, 2018). Here the 

analysis of endogenous biomarkers in wastewater could reveal novel insight into general health or 

disease status in the community. Biomarkers analysed could be indicative of certain states, such as 

stress, inflammation or disease and the types of biomarkers could vary, including small molecules, 

proteins, sugars and lipids.  
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Oxidative stress has previously been highlighted as promising biomarkers for use in WBE, with 

isoprostanes highlighted as ideal candidates (Daughton, 2012). Oxidative stress is when there is an 

imbalance of free radicals and antioxidants in the body, the result of which can lead to cell and tissue 

damage. Whilst it’s involved in natural processes such as aging, it is also linked to many diseases and 

lifestyle choices (e.g. smoking). Oxidative stress is a relatively new area for WBE, with a few studies 

discussing its potential use in WBE (Daughton, 2012; Ryu, Reid and Thomas, 2015).  One study has 

investigated the isoprostane oxidative stress biomarker, 8-iso-PGF2α, for its suitability as a marker of 

health (Ryu et al., 2016). Wastewater from 11 cities in Europe was analysed alongside metabolites of 

tobacco smoking (hydroxycotinine) and alcohol consumption (ethyl sulphate) to investigate potential 

correlations. Results reported strong correlations of 8-iso-PGF2α with tobacco consumption across 

studied cities. A follow up study investigated in-sewer stability of several isoprostanes and confirmed 

suitable stability for WBE (O’Brien, Choi, et al., 2019). A more recent study in the US investigated 

several isoprostane isomers in wastewater to monitor community stress during the COVID-19 pandemic 

(Bowers and Subedi, 2021).  

With regards to monitoring infectious disease spread at the community level via WBE, it has been 

highlighted by Daughton that WBE should not be limited to monitoring the infectious genetic material 

alone. Instead WBE should be expanded out to targeting endogenous biomarkers that are significantly 

elevated in a diseased state (Daughton, 2020). The benefits of expanding out WBE to indirect, more 

generic markers of infection were highlighted as reduced costs for analysis and potentially such 

biomarkers could be better indicators of infection, possibly resulting in a better early warning system. 

Furthermore, in the case of COVID-19 much uncertainty lies in variability of viral excretion (Joynt and 

Wu, 2020). Analysing indirect biomarkers of inflammation alongside genetic material could therefore 

help account for this. This information would be valuable as many diseases, both infectious and non-

communicable, involve inflammatory damage and oxidative stress. There is still much work to be done 

in this field for expanding out WBE to include multiple endogenous markers to link back to public 

health.  There is currently a lack of endogenous biomarkers reflecting chronic disease state (e.g. 

diabetes) and for well-being. However, with the growing field of metabolomics, it is expected more 

urinary endogenous biomarkers will continue to be identified.  

3.12 Future Outlook  

3.12.1 Environmental considerations  

WBE uses analytical tools, infrastructure and knowledge base that were developed with environmental 

monitoring in mind. These include: liquid chromatography and mass spectrometry instrumentation that 

is widely used for quantitative analysis of regulated and emerging contaminants in water or composite 

samplers that are widely used at inlets and outlets of WWTPs to determine efficiency of wastewater 

treatment processes. There comes an opportunity for the development of an integrated local, regional 
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or a national monitoring system focussed on whole river catchments to deliver critical information on 

both environmental and public health. Historically environmental health was evaluated independently 

of public health issues. This is counterproductive as environmental health is directly interlinked with 

public health, ie. environmental deterioration including pollution and loss of biodiversity has direct 

impact on public health.  

As an example, a recent project undertaken in South-West of England designed an integrated sampling 

regime and developed analytical methods focussed on >100 chemicals in the River Avon Catchment in 

South West England (Kasprzyk-Hordern et al., 2021). A total of five WWTPs serving five towns and 

cities, covering an area of approximately 2,000 km2 and the population of ~1.5 million (this constitutes 

>75% of the overall population in the catchment).  Samples collected from wastewater influent and 

effluent allowed for verification of efficiency of treatment processes and identified problematic 

pollutants (also those of emerging nature or recommended for regulation, i.e. included on EU 

watchlists) that might require further attention. Samples from receiving river water allowed for the 

evaluation of environmental risks (paper in preparation). Wastewater influent was used to inform public 

health status: pharmaceuticals from wide-ranging groups were used as proxies to inform prevalence of 

NCD (i.e. cardiovascular disease, diabetes, asthma) (paper in preparation) as well as antibiotic usage 

and prevalence of resistance genes. Spatiotemporal trends in chemical intake were observed as a result 

of occupational exposure (higher bisphenol A (BPA) intake during weekday), and lifestyle choices 

(higher cocaine and pyrethroid pesticides intake during weekend). WBE is not intended to estimate 

individual exposure to chemicals. It can however provide estimates at a community level, and as a 

result, it has the potential to be developed into an early warning system, a powerful tool for large scale 

screening studies identifying communities at risk and in need of high-resolution individual testing at a 

localised scale. 

3.12.2 Ethical Considerations  

WBE is currently subject to rapid developments. Is has been successfully applied in national and 

international SARS-CoV-2 surveillance. WBE is now acknowledged as one of epidemiology tools, 

hence, ethical considerations should also apply, especially when applying near-source tracking. Ethical 

guidelines exist only for WBE’s first application, estimation of illicit drug usage via WBE, currently 

utilised by EMCDDA to estimate drug use trends in the EU (https://score-cost.eu/wp-

content/uploads/sites/118/2016/11/WBE-ethical-guidelines-FINAL-March-2016-.pdf).  

There are key issues that need careful consideration especially in the context of near source tracking 

that is widely applied in SARS-CoV2 surveillance.  For example, sampling from small communities 

could lead to stigmatisation of vulnerable groups. If data is made available to the public, this could lead 

to results being misused and misconstrued in the media. The ethical protocols first established for WBE 

regarding illicit drugs, established that sampling from population sizes >10,000 was large enough to 
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ensure stigmatisation of smaller groups is avoided. This same protection might therefore not be 

extended for population sizes under this number. Sampling wastewater from small communities is 

possible but ethical procedures need to be put in place and it is essential that data is anonymised. To 

mitigate the risks of stigmatisation the following key points need to be established before sampling 

takes place i) clear aims and objectives of the sampling, ii) what biomarkers will be investigated and 

what possible implications these have, iii) population size of the community iv) who will have access 

to this data and how will this data be used. 

The concerns regarding the ethics and legalities surrounding WBE are valid, several discussions exist 

upon ethics on illicit drugs in WBE (Hall et al., 2012; Prichard et al., 2014, 2017; Lancaster et al., 2019) 

and more recently on SARS-CoV-2 (Gable, Ram and Ram, 2020). It is important that WBE should be 

treated and utilised as any other epidemiological tool and subjected to ethical review and scrutiny. In 

the context of the rapidly developing surveillance of SARS-CoV2 in wastewater, national and 

international ethical guidelines are urgently needed. Furthermore, these will need to be reviewed and 

updated, if wastewater samples collected are analysed for a broader set biomarkers. WBE as a tool to 

rapidly inform on public health can offer significant benefits and attraction, as observed by the recent 

surge of popularity in monitoring COVID-19 outbreaks. It is vital however that with these rapid 

developments occurring in WBE, that ethical considerations are not left behind.   

3.13 Policy Relevance 

WBE is relevant to a number of policy areas within Scottish Government, primarily health-related, but 

also with links to other fields. This section provides a brief (nonexhaustive) overview of where WBE 

and existing policies may interact.  

Lifestyle choices including use of illicit drugs, alcohol and tobacco as well as diet and mental health all 

feature significantly in Scotland’s Public Health Priorities strategy (Scottish Government, 2018a) 

implemented by the Population Health Directorate.  

Data on illicit drug use currently focuses on information relating to drug offences and court proceedings, 

the use of drugs in prisons and prevalence studies and surveys (ScotPHO, 2021). By its nature, illicit 

drug use is likely to be underreported and difficult to monitor effectively. The ability to detect drug 

metabolites through WBE could provide enhanced surveillance at a population or even community level 

and thus provide additional data reinforcing the existing drug use policy framework.  

A key policy document with respect to alcohol consumption is the “The Alcohol Framework 2018” 

(Scottish Government, 2018b). The potential for WBE to strengthen framework lies in the need for 

“establishment of a research and evidence network” (Alcohol Focus Scotland, 2017). Policy documents 

highlight the need to seek to improve sources of data, noting limitations of that currently gathered and 
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the need for it to be rationalised against other data sources. WBE provides an opportunity to augment 

this existing monitoring of alcohol markers.  

The Scottish Government is committed to reducing tobacco smoking and associated disease. The 

current relevant policy document in this respect is the five- year “Raising Scotland’s Tobacco-free 

Generation: our tobacco control action plan 2018” (Scottish Government, 2018c), with an ambition for 

a tobacco-free Scotland by 2034 (Priority 4) (Scottish Government, 2018a).  

The use of WBE to identify populations with elevated usage of illicit drugs, alcohol or tobacco may 

help to target priority geographical areas for intervention, feeding into Public Health Priority 4 – “A 

Scotland where we reduce the use of and harm from alcohol, tobacco andother drugs”. The success of 

this priority depends upon understanding what drives consumption – thus WBEbased markers for these 

lifestyle choices could facilitate linkage with potential socioeconomic determinants of a given 

wastewater-producing population. Further, it feeds into Priority 2 “A Scotland where we flourish in our 

early years” and Priority 1 “A Scotland where we live in vibrant, health and safe places and 

communities” with on-going risk to children’s health and wellbeing through substance abuse, indoor 

air quality and parental modelling of smoking behaviour.  

WBE-based indicators for diet could help to underpin the Scottish Government’s obesity strategy, 

published in 2018: “A Healthier Future: Scotland’s Diet and Healthy Weight Delivery Plan” (ScotPHO, 

2020). This specifically mentions a commitment to evidence-based policy (Scottish Government, 

2018d) which could be further supported by WBE-monitoring of dietary markers for obesity or 

metabolites associated with specific food types, for example, enhancing the existing list of obesity 

indicators (Scottish Government, 2018e). It also highlights the need for both population-wide measures 

and targeted support to families most at risk. Similarly, the detection of metformin as a biomarker for 

Type 2 diabetes may feed into the strategy plan “A Healthier Future: type 2 Diabetes prevention, early 

detection and intervention framework” (Scottish Government, 2018f). WBE could potentially 

contribute to understanding both the national picture for such health issues and identifying at risk 

populations. Since dietary markers can highlight other lifestyle choices which may be influenced by 

wider issues (for example the relationship identified between increased prevalence of artificial 

sweeteners and environmental temperature (Phung et al., 2017) use of WBE may even link into 

environmental policy areas such as climate change targets (Scottish Government, 2020b). Other dietary 

markers may be relevant to the Heart Disease Improvement Plan – particularly as consideration is given 

to at risk (e.g. socially deprived) populations (Scottish Government, 2014a), the identification and 

surveillance of which may be supported by WBE.  

Monitoring the prevalence of metabolites associated with antidepressants, anti-anxiety drugs and other 

prescription medications for mental health conditions, or indeed biomarkers directly associated with 

mental stress, is applicable to the Scottish Government’s Mental Health Strategy (Scottish Government, 
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2017) in particular a key policy objective identified under the “What Research Matters for Mental 

Health Policy in Scotland” paper which is to “Achieve better outcomes which can be measured” 

(Mitchell and Kearney, 2015).  

Scotland’s Public Health Priority 1 includes making “improvements to the quality of the air we breathe” 

(Scottish Government, 2018a). Because air pollution is harmful to health, markers for asthma drug 

metabolites in wastewater not only support health policies but also have the potential to support 

strategies such as “Cleaner air for Scotland - 2” (Scottish Government, 2020a) accurately predicting the 

health benefits of further reducing air pollution is complex, therefore additional sources of data in this 

arena may be helpful.  

Communicable diseases are a major policy area in which WBE could be pertinent to data collection. 

Health Protection Scotland (HPS) undertakes surveillance of a number of key bacterial and viral 

pathogens which cause communicable disease and are also shed in faeces. Examples include Norovirus, 

Campylobacter, E. coli O157, Toxoplasma and Hepatitis (Heath Protection Scotland, 2015). Outbreak 

identification and control is also undertaken by HPS and HPS integrates with animal and environmental 

health organisations to forms part of the “One-Health” approach to protecting Scotland from infection 

hazards. WBE offers the potential to apply either DNA-based or isolation/whole genome sequence-

based approaches to assist outbreak investigation or as a means of population-level surveillance of 

specific organisms and/ or strains, thus feeding directly into the Scottish Health Protection Network’s 

“A Public Health Microbiology Strategy for Scotland” (Health Protection Scotland, 2018) and The 

Human Animal Infections and Risk Surveillance (HAIRS) (a multi-agency cross-government horizon 

scanning and risk assessment group of which Scottish Government and Health Protection Scotland are 

a part (Public Health England, 2015).  

Scotland’s Antimicrobial Prescription Group (SAPG, 2021) was established in 2008 with a primary aim 

to coordinate a national framework for antimicrobial stewardship. SAPG have developed surveillance 

systems and ensured standardised information on antimicrobial use and resistance that is accessible to 

NHS boards. In 2019, the Scottish One Health Antimicrobial Use and Antimicrobial Resistance report 

was published by Antimicrobial Resistance and Healthcare Associated Infection (ARHAI) Scotland 

(Antimicrobial Resistance and Healthcare Associated Infection (ARHAI), 2020). This report provided 

information on antibiotic use and resistance to antibiotics in Scotland during 2019. Alongside initiatives 

such as the One Health Breakthrough Partnership (a collaboration between NHS Highland, Scottish 

Water, SEPA, MedSmart, James Hutton Institute, University of the Highlands and Islands, Glasgow 

Caledonian University) which reports to Scottish Government (Scottish Parliament, 2020) - these 

provide join-up between public health, veterinary and environmental aspects of AMR. They support the 

five-year United Kingdom National Action Plan and a 20-year vision for containing and controlling 

AMR (UK Government, 2019b). Currently, much surveillance is based on clinical data and prescription 
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data. WBE provides an opportunity as a complimentary technique to achieve a whole population 

approach to tackling AMR in a multifaceted way because it is possible to detect antimicrobial resistance 

genes, antibiotic residues and metabolites and co-selecting compounds such as heavy metals or personal 

care products. Further, if employed to better understand patient compliance with pharmaceutical 

prescriptions including antibiotics, through detection of parent compound-metabolite ratios in 

wastewater, WBE can further underpin the AMR strategies mentioned above.  

WBE has potential to complement current practices in identifying and monitoring exposure to 

chemicals, for example accompanying the SASA Pesticide Survey data, relevant to the code of practice 

for using plant protection products in Scotland (Scottish Executive and Health and Safety Commission, 

2007). In addition, understanding the prevalence of endocrine disrupting chemicals such as bisphenol 

A (common in food packaging), phthalates (household and personal care products) flame retardants 

(furnishings) could support related statutory instruments and policy groups. Examples include the 

Materials and Articles in Contact with Food (Scotland) Amendment Regulations (Scottish Statutory 

Instruments, 2019) and the Scottish Chemical Policy Network (UK Chemicals Stakeholder Forum, 

2020), supporting understanding of dietary mycotoxin exposure may augment surveillance of food 

products undertaken by Food Standards Scotland (Munro and Gratz, 2018) and is pertinent to the 

Contaminants in Food (Scotland) Regulation (Scottish Statutory Instruments, 2013). This review 

focusses primarily on the association of wastewater-based determinants as markers for population-

based health status. However, many wastewater associated markers and chemicals directly or indirectly 

impact receiving waters and as such are relevant to a range of water-related environmental policies and 

plans including the Scotland River Basins Standards Directive (Scottish Government, 2014b), River 

Basin Management Plans (SEPA, 2021) and a raft of regulations under the water environment 

legislation (Scottish Government, 2018g). 

3.14 Recommendations and conclusions  

WBE is a relatively new field. There are only a very few technology ready applications. These include: 

1 Estimation of community wide illicit drug usage (currently applied by EMCDDA in the EU 

and internationally (e.g. in Australia and in the US). Required infrastructure includes 

specialised staff to undertake sampling and sample preparation as well as an investment in 

instrumentation (liquid chromatography coupled with mass spectrometry). 

2 Estimation of lifestyle chemical usage: alcohol, nicotine and caffeine. Required infrastructure: 

as above 

3 Infectious disease tracking (e.g. polio, SARS-CoV-2). Required infrastructure includes 

specialised staff to undertake sampling and sample preparation as well as analysis with PCR 

and sequencing 
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4 Estimation of disease prevalence based on pharmaceutical usage. Required infrastructure 

includes specialised staff to undertake sampling and sample preparation as well as an 

investment in instrumentation (liquid chromatography coupled with mass spectrometry) 

5 There are research gaps though. These include lack of understanding of stability of 

pharmaceuticals and their metabolites in wastewater, lack of understanding of metabolism to 

undertake back-calculation of exposure 

There is a clear potential to apply WBE in: 

1. Estimation of community-wide exposure to hazardous chemicals. Some initial work indicates 

that wastewater can provide information on community wide exposure to pesticides and 

industrial chemicals, which are linked with either occupational exposure or lifestyle choices. 

2. Prevalence of non-communicable disease (NCD). Current WBE approaches allow for 

estimation of pharmaceutical usage to treat, e.g. diabetes, cardiovascular disease or mental 

health conditions.  

However, further research is required to fully appreciate WBE’s potential to transform community-

wide heath assessment. These include: 

1. Research on a new biomarker base to inform public health status (to expand WBE applications) 

2. Novel approaches towards population equivalent estimation. These are required to undertake 

spatiotemporal quantitative analysis of community wide exposure or public health status (to 

provide more accurate WBE measurements)  

3. Investment in new infrastructure might be required in terms of sampling and wastewater flow 

measurements to enable meaningful quantitative analysis of chemical markers (to provide more 

accurate WBE measurements). 

4. Novel approaches towards sampling to allow for truly representative sample to be obtained. 

Current approaches utilise 24h composite samplers. These samplers are mainly deployed at 

wastewater treatment plants. New sampling approaches might be required when sampling near 

source (to provide more accurate WBE measurements). 

5. Novel approaches towards analysis and sensing as wastewater analysis of biomarkers required 

highly selective and sensitive techniques (to provide more accurate WBE measurements and to 

expand WBE applications). 

6. Modelling and statistical analysis required to fully appreciate spatiotemporal variability in large 

scale datasets (to provide more accurate WBE measurements). 
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4.1 Abstract 

Reported herein is the development of an analytical method for the detection of four oxidative stress 

biomarkers in wastewater using ultra-high-performance liquid chromatography coupled with tandem 

mass spectrometry (UHPLC-MS/MS) and solid phase extraction (SPE). The following four biomarkers 

of oxidative stress and lipid peroxidation have been investigated: hydroxynonenal - mercapturic acid 

(HNE-MA), 8-iso-prostglandin F2beta (8-iso-PGF2β), 8-nitroguanine (8-NO2Gua) and 8-hydroxy-2-

deoxyguanosine (8-OHdG). The method showed very good performance: accuracy (>87 %), precision 

(>90 %), method quantification limits (1.3 -3.0 ng L-1) and biomarker stability in wastewater in the case 

of HNE-MA, 8-OHdG and 8-iso-PGF2β. In contrast, 8-NO2Gua was found to be less stable in 

wastewater, which affected its method performance: accuracy (>63 %), precision (>91 %) and method 

quantification limits (85.3 ng L-1).  Application of the developed method resulted in, for the first time, 

HNE-MA being successfully observed and quantified within wastewater over a study period of a week 

(displayed average daily loads per capita of 48.9 ± 4.1 mg/1000/people/day).  8-iso-PGF2β was detected 

with good intensity but could not be quantified due to co-elution with other isomers. 8-OHdG was 

detected, albeit at <MQL. This study demonstrates the potential for expanding on the possible 

endogenous biomarkers of health used in urban water fingerprinting to aid in measuring health in near-

real time on a community-wide scale.  

Keywords: oxidative stress; biomarkers; wastewater; urban water fingerprinting 

 

4.2 Introduction 

Wastewater-based epidemiology is a rapidly developing and innovative technique that analyses human 

metabolic excretion products in the wastewater of a defined population (Daughton, 2001). The 

wastewater of a community is an incredibly valuable, yet traditionally under-estimated, source of 

knowledge. The analysis of targeted aspects of biological and chemical information wastewater 

contains can offer a unique reflection of health upon the population that contributes. The concept of 
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WBE has already experienced enormous successes from communities to international scales to evaluate 

and compare trends in illicit drug usage (Zuccato et al., 2005; Castiglioni et al., 2006; Thomas et al., 

2012), pharmaceuticals (Baker, Barron and Kasprzyk-Hordern, 2014), alcohol (Reid et al., 2011; 

Mastroianni, Lopez de Alda and Barcelo, 2014; Boogaerts et al., 2016) and tobacco consumption 

(Rodríguez-Álvarez, Rodil, Rico, et al., 2014; Castiglioni et al., 2015; Tscharke, White and Gerber, 

2016).  Recently the potential for WBE to evaluate and monitor community-wide public health has been 

highlighted by analysing endogenous urinary biomarkers of human health and disease (Daughton, 2012; 

Kasprzyk-Hordern et al., 2014; Gracia-Lor et al., 2017).   

Currently monitoring public health is done via conventional epidemiological studies. These are based 

upon existing resources including morbidity data, prescription rates and questionnaires (Thacker et al., 

2006; Daughton, 2012). However the results from such sources of information can be subject to bias 

and are not always representative of a whole community, hence can give misleading results. One of the 

crucial disadvantages of current approaches is there is no capacity for real-time monitoring of health on 

a community-scale. This results in difficulties in establishing trends in a population’s health and causes 

serious issues in implementing appropriate and effective healthcare interventions.  

An increasingly popular branch of epidemiology studies based upon the assessment of human exposure 

to external factors such as environmental pollution is human biomonitoring. This technique involves 

the detection and analysis of biomarkers of interest in biological samples of individuals. Such samples 

can include saliva, blood, tissue or excretion products. (Needham, Calafat and Barr, 2007). However 

this process is expensive and time-consuming and results in only a small portion of a population being 

investigated which might not be representative of a population as a whole (Bauer, 2008). Furthermore 

such techniques require samples from thousands of patients in a defined geographic location and the 

selection of a control group for comparison can be challenging.  

A possible solution to these drawbacks is to use WBE as complementary tool to conventional public 

health assessments (Kasprzyk-Hordern et al., 2014).  The ability to analyse and monitor endogenous 

biomarkers of disease within the wastewater of a community in near-real time could offer an unbiased, 

reflection of the health of the population that contributes. It has been proposed that the evaluation of 

oxidative stress biomarkers could give key information upon the health status of a community 

(Daughton, 2012). Oxidative stress is defined as the imbalance between reactive oxygen species and 

the ability of the body to counteract with antioxidants (Birben et al., 2012). It is a key characteristic of 

many acute and chronic diseases including stroke (Ozkul et al., 2007), heart disease (Dhalla, 2000), 

cancers and respiratory infections (Bauer et al., 2012) as well as being an indicator for certain lifestyle 

factors such as excessive smoking and alcohol consumption (Meagher et al., 1999; Epplein et al., 2009). 

Indications of oxidative stress are often reflected through elevated levels of specific biomarkers within 

parts of body, including blood plasma, and urine. Higher levels of oxidative stress biomarkers in 

individuals within populations have not only been linked with various diseases and lifestyle factors but 
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have also been correlated with environmental exposure, for example air pollution (Risom, Møller and 

Loft, 2005; Lodovici and Bigagli, 2011). As a result, not only could measurement of cumulative stress 

give information about the general health of a community but could also give valuable data on the 

exposure to external factors such as anthropogenic pollution, an area of study where still very little is 

known.  

In particular, a handful of key oxidative stress biomarkers have been well-studied within urine, with 

various analytical methods developed for 8-iso-prostaglandin F2alpha (8-iso-PGF2α), 8-nitroguaninne 

(8-NO2Gua) and 8-hydroxy-2-deoxyguanosine (8-OHdG) and hydroxynonenal - mercapturic acid 

(HNE-MA) (Berdeaux et al., 2006; Klawitter et al., 2011; Wu et al., 2016). However, to date only one 

biomarker of oxidative stress has been observed and quantified by WBE techniques in wastewater (Ryu, 

Reid and Thomas, 2015). Wastewater analysis poses many challenges as the matrix itself has 

significantly higher complexity and interchangeability in comparison to urine. Furthermore with regards 

to the biomarkers themselves the concentrations in wastewater are far lower (sub-ppt levels) than those 

observed in urine (e.g. ng/mg of creatinine for 8-OHdG(Wu et al., 2004)). Urinary 8-iso-PGF2α is 

formed within the body from the oxidation of arachidonic acid and is widely-recognised reliable 

biomarker of oxidative stress with elevated levels typically observed within urine [12, 31–33]. In a 

unique study by Ryu et al. 8-iso-PGF2α was successfully extracted from wastewater samples using 

highly specific immunoassay approaches (Ryu, Reid and Thomas, 2015). A further study demonstrated 

8-iso-PGF2α correlated with the major metabolite of smoking in wastewater across 11 cities in Europe 

(Ryu et al., 2016). 

This paper aimed to develop an analytical method using ultra-high-performance liquid chromatography 

mass spectrometry (UHPLC-MS) to analyse, for the first time, four biomarkers of oxidative stress 8-

iso-prostglandin F2beta (8-iso-PGF2β), HNE-MA, 8-NO2Gua and 8-OHdG from wastewater through 

application of solid phase extraction (SPE) techniques. 8-OHdG and 8-NO2Gua are reliable markers of 

oxidative DNA and nitrative DNA damage respectively. Reactive oxygen species (ROS) produced as a 

result of oxidative stress can not only damage DNA but also cause destruction of the cell membranes 

in a process known as lipid peroxidation. The urinary biomarker HNE-MA is a key indicator of cell 

membrane damage and 8-iso-PGF2β in an isomer of the reliable oxidative stress marker 8-iso-PGF2α.  

 

4.3 Materials and methods 

4.3.1 Materials 

A total of four biomarkers were selected for method development due to their acknowledged indication 

of oxidative stress within urine (Wu et al., 2016). The standard 8-OHdG was bought from Sigma 

Aldrich (UK), its respective internal standard 15N5-8-OHdG along with 8-NO2Gua were purchased from 

Santa Cruz Biotechnologies (UK). The standards 8-iso-PGF2β, HNE-MA and the internal standard 

HNE-MA-d3 were bought from Cayman Chemicals (US). Stock solutions of selected biomarkers were 
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made up by dissolving solid samples in MeOH and all stock solutions were kept in the dark at – 80 C. 

Working solutions were diluted from the stock solutions to make up the desired concentrations in 80:20 

H2O:MeOH. Solvents such as MeOH and toluene were HPLC grade and purchased from Sigma Aldrich. 

To remove the risk of basic functional groups reacting with silanols on glass surfaces, all glassware was 

deactivated using 5% dimethylchlorosilane (DMDCS) in toluene. The silanisation of glass occurred by 

rinsing with DMDCS before washing twice with toluene and three times with MeOH.  

4.3.2 Solid-phase extraction  

The solid-phase extraction (SPE) procedure  followed the protocol previously published by Petrie et al. 

(Petrie et al., 2015). For all extractions, Oasis HLB (Waters, hydrophilic-lipophilic-balanced) cartridges 

(60 mg, 3 mL) were conditioned with 2 mL of MeOH followed by 2 mL of deionised water (pH 7.5) 

for equilibration. Influent wastewater was aliquoted into 100 mL samples before spiking with internal 

standard solutions (final concentrations of 100 ng and 500 ng for HNE-MA-d3 and 15N5-8-OHdG 

respectively). Spiked influent wastewater samples were then filtered through GF/F filters before loading 

onto the pre-conditioned HLB cartridges at a flow rate of < 1 mL min-1. Once loaded, cartridges were 

left to dry under vacuum for 30 minutes. Elution of analytes occurred using 4 mL of MeOH at a steady 

flow rate of 1 mL min-1. Once eluted, samples were evaporated till dry under N2, 40 C using TurboVap 

evaporator (Caliper, UK) this was then followed by reconstitution with 500 µL of 80:20 H2O: MeOH. 

Samples were transferred to polypropylene vials and 20 µL of sample were injected into the Waters 

Acquity UPLC system. A graphical representation of the extraction procedures and analytical 

methodology has been detailed (Figure 1).  

Fig. 1. Summary of the wastewater sample preparation and extraction followed by analytical method 

details.  
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4.4 Liquid chromatography coupled with tandem mass spectrometry 

Liquid chromatography was performed using a Waters Acquity UPLC system which was coupled to 

the Xevo TQD Triple Quadrupole Mass Spectrometer. (Waters, UK) Due to ionisation preference of 

the chosen biomarkers, two methods have been developed for this study. 8-OHdG ionised in ESI 

positive mode whereas HNE-MA, 8-iso-PGF2β and 8-NO2Gua ionised preferentially in ESI negative 

mode (Table 1). Both methods used a reversed-phase BEH C18 column (150 × 1.0 mm, 1.7 μm particle 

size) (Waters, UK) with a 0.2 μm, 2.1 mm in-line column filter (Water, UK) maintained at 25 °C. 

Mobile phase used in ESI negative was as follows: A; 80:20 H2O:MeOH with 1 mM NH4F (mobile 

phase A) and 5:95 H2O:MeOH with 1 mM NH4F (mobile phase B) with the following gradient: 100 

%A (0.5 min) – 40 % (2 min) – 0 %A (5.5 min). Mobile phase used in ESI positive was as follows: A; 

80:20 H2O:MeOH with 5 mM NH4OAc and 0.3 % CH3COOH (mobile phase A) and MeOH (mobile 

phase B) with the following gradient: 100 %A reduced to 10 % over 20 min. The mobile phase flow 

rate was kept constant at 0.04 mL min−1 and a 20 μL injection volume was used in both methods. 

Table 1 Target biomarkers with MS parameter details and fragment details plus internal standards used  

Compound/Internal 

Standard 

Biomarker of… MRM Mass 

transition (m/z) 

Cone Voltage (v) Collision Energy 

(v) 

ESI 

8-OHdG 

 

 

15N5-8-OHdG 

Oxidative DNA 

damage 

284.0 → 168.1 

284.0 → 140.2 

 

289.1 → 173.2 

 

45 18 

30 

 

18 

Positive 

 

HNE-MA 

 

 

HNE-MA (d3) 

Lipid peroxidation 318.1 → 171.1 

318.1 → 143.1 

 

321.5 → 174.2 

32 22 

24 

 

22 

Negative 

8-NO2Gua Nitrative DNA 

damage 

194.9 → 178.1 

194.9 → 153.1 

40 15 

15 

Negative 

8-Iso-PGF2β Lipid peroxidation 353.4 → 193.2 

353.4 → 247.3 

53 22 

22 

Negative 

 

MassLynx 4.1 (Waters, UK) was used to control the LCMS system. TargetLynx (Waters, Manchester, 

UK) was used for data processing. The mass spectrometer was operated in the multiple reaction 

monitoring (MRM) mode. [M-H]- and [M+H]+ were selected as molecular ions in ESI- and ESI+ 

respectively. MRM transitions and ESI parameters were obtained after direct infusion of each standard 

at a concentration of 100 µg L-1 in the mass spectrometer. Optimised ESI parameters were as follows: 

capillary voltage 3.0 kV in ESI positive and 3.2 kV in ESI negative. The source temperature was 150 

oC and the desolvation temperature was 400 oC. Nitrogen was used as nebulising and desolvation gas. 

The cone gas flow was 100 L h-1 and the desolvation gas flow was 550 L h-1. Argon was used as the 

collision gas. Optimised MS/MS parameters can be found in Table 1. Two MRM transitions, one for 
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quantification and one for confirmation) were chosen for each compound. Only one MRM transition 

was selected for labelled internal standards.  

The chosen methods were successful in the identification of 8-OHdG and achieved good separation of 

the negatively ionised biomarkers with elution at different retention times all within the first 10 minutes 

of the run. Separation and identification of the quantifying mass fragment for each biomarker were 

successfully observed (Figure 2). With regards to internal standards to allow quantification of target 

biomarkers in samples, a deuterated form of HNE-MA (HNE-MA-d3) was used for all three of the 

biomarkers ionised in negative mode. For 8-OHdG, a nitrogen labelled 8-OHdG (15N5-8-OHdG) was 

used as the internal standard in positive mode.  

 

Fig. 2. LC chromatograms and proposed structures of the quantifying mass fragment ions in mobile 

phase (80:20 H2O:MeOH). a) 8-iso-PGF2β, m/z: 353.4 → 193.2 b) HNE-MA, m/z: 318.1 → 171.1 c) 

8-NO2Gua, m/z: 194.9 → 177.8 d) 8-OHdG, m/z: 284.0 → 168.1. Target analytes spiked at 500 µg L-

1. 

4.5 Wastewater Sample Collection 

Influent wastewater samples were collected via 24 h composite samples across a seven day period from 

a wastewater treatment plant in the South-West of England serving a population equivalent ∼ 886,650. 

Once collected, samples were stored and transported upon ice to the laboratory for extraction and 

analysis. To account for both flows and population equivalent, daily loads per capita in 

mg/1000/people/day were calculated (Equation 1).  

𝐷𝑎𝑖𝑙𝑦 𝐿𝑜𝑎𝑑 𝑝𝑒𝑟 𝐶𝑎𝑝𝑖𝑡𝑎 = 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑥 𝑓𝑙𝑜𝑤 (𝑚3)𝑥 1000 𝑥 (
1000

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
)   Equation 1 

4.6 Method Validation 

To establish regions of linearity, a triplicate injection of a 17-point calibration curve with concentrations 

ranging from 0.01-1000 µg L-1 was done for each compound. To determine inter- and intra- day 
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accuracy and precision triplicate injections of three different concentrations were prepared within a 24 

h period across three separate days. New solutions were made up for each separate day, the three 

different concentrations were 10 µg L-1 (50 µg L-1 for 8-OHdG), 100 µg L-1 and 500 µg L-1. Precision 

was calculated using relative standard deviation (RSD) for replicate injections (n=6).  Method inter- 

and intra-day accuracy and precision were also established via the spiking of target biomarkers at initial 

concentrations of 0.5 µg L-1 and 1.25 µg L-1 into 100 mL of influent wastewater before the SPE step. 

Extracted samples were then injected in duplicate across a 24-hour period and averages across the two 

concentrations were used to establish intra-day method accuracy and precision (n=3 injected in 

duplicate). To determine method inter-day accuracy and precision, fresh influent wastewater samples 

were prepared by spiking again at 0.5 µg L-1 and 1.25 µg L-1 and extracting before injecting as described 

above, across a further two 24 hour periods. 

Instrument detection limits (IDL) and instrument quantification limits (IQL) were established by the 

lowest concentrations which gave signal to noise ratios ≥ 3 and ≥ 10 respectively. The method detection 

limit (MDL) was calculated using the following: 

𝑀𝐷𝐿 =
𝐼𝐷𝐿 𝑥 100

𝑅𝑒𝑐 𝑥 𝐶𝐹
        Equation 2 

where IDL is the instrumental limit of detection, Rec is the relative SPE recovery of the analyte in 

wastewater and CF in the SPE concentration factor. 

Method recoveries for each compound were determined by spiking of known amounts of analytes 

before extraction into 100 mL allotted influent wastewater samples at two different concentrations of 

individual analytes (0.5 µg L-1 and 1.25 µg L-1) with internal standards spiked into each sample at 100 

ng and 500 ng for HNE-MA-d3 and 15N5-8-OHdG respectively. Method recoveries have been calculated 

as corrected recoveries (i.e. taking the internal standard concentration into consideration). This is 

calculated by the ratio of the concentration of target analytes in wastewater solutions when spiked before 

SPE (minus the concentration of analyte in the blank wastewater sample), divided by the standard 

mobile phase concentration (Equation 3).  

𝑀𝑒𝑡ℎ𝑜𝑑 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑒𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (
𝐴𝑠𝑝𝑖𝑘𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑆𝑃𝐸−𝐴𝑏𝑙𝑎𝑛𝑘

𝐴𝑚𝑜𝑏𝑖𝑙𝑒 𝑝ℎ𝑎𝑠𝑒
) 𝑥 100 %    Equation 3 

To determine matrix suppression, the ratio of the concentration of target analytes in wastewater samples 

spiked after SPE (minus the concentration of the analyte in the blank wastewater sample) is divided 

with the standard mobile phase sample concentration (Equation 4). 

𝑀𝑎𝑡𝑟𝑖𝑥 𝑆𝑢𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  (1 −
𝐴𝑠𝑝𝑖𝑘𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑆𝑃𝐸− 𝐴𝑏𝑙𝑎𝑛𝑘

𝐴𝑚𝑜𝑏𝑖𝑙𝑒 𝑝ℎ𝑎𝑠𝑒
) 𝑥 100 %    Equation 4 

4.7 Biomarker stability in wastewater  

To assess the stability of the target analytes within wastewater a 24 h wastewater stability study was 

performed. A total of four 2 L reactors of influent wastewater was used, two of which were kept at 17 
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C with the other two kept at 4 C to determine if any degradation occurred at two different 

temperatures. Each reactor was spiked with each target analyte to determine a final concentration of 

250 µg L-1. After initial analyte spiking, 2 x 50 mL samples were taken from each reactor and spiked 

with respective internal standards before filtering and SPE extraction to give concentration at time 0. 

After which a further five sampling points were taken across the 24 h (0, 2, 4, 6, 12, 24 h) with 2 x 50 

mL samples taken from each reactor at the time point. For calculating average concentration of target 

analytes at each sampling point, the average of both the two samples was taken at each time point along 

with the average across duplicate reactors. Errors were calculated using the standard deviation of 

concentrations across duplicate reactors and duplicate samples (n=4). 

4.8 Results and discussion  

4.8.1 Method Validation  

4.8.1.1 LC-MS Validation Parameters 

Regarding the calibration curves, the mean coefficients of determination (R2) gave excellent linearity 

with values ≥0.997 for all four biomarkers over the concentration range investigated (0–500 µg L-1 or 

0–1000 µg L-1) (Table 2). However, not all biomarkers displayed acceptable linearity (R2 ≥0.997) across 

the entire concentration range studied. 8-NO2Gua required two calibration curves, 0.1-100 µg L-1 and 

100-1000 µg L-1 at R2 at 0.998 and 0.999 respectively. Intra- and inter-day accuracy exhibited 

acceptable ranges of 94-107 % for all biomarkers. Regarding intra- and inter-day precision, all four 

biomarkers displayed very small deviations giving >97 % for all biomarkers investigated.  

Instrument detection limits (IDL) were as low as 0.01 µg L-1 for both HNE-MA and 8-NO2Gua and 

0.05 µg L-1 for 8-iso-PGF2β. Instrument quantification limits (IQLs) were generally low at <0.5 µg L-1. 

8-OHdG displayed slightly poorer sensitivities at 1 µg L-1 for detection and 5 µg L-1 for quantification. 

Table 2 Instrument performance data detailing linearity including instrument detection limits (IDLs) 

and instrument quantification limits (IQLs) and intra- and inter- day accuracy and precision for all 

biomarkers studied 

Compound 
Internal 

Standard 

Linearity 

IDL 

[µg L-1] 

IQL 

[µg L-1] 

Intra-day instrument 

performance 

Inter-day instrument 

performance 

Range 

[µg L-1] 
R2 

Accuracy 

[%] 

Precision 

[%] 
Accuracy [%] Precision [%] 

8-OHdG 

15N5-8-

OHdG 
5-500 0.997 1 5 95.6 97.7 97.1 97.5 

HNE-MA HNE-MA-d3 0.5-1000 0.999 0.01 0.5 103 98.4 106 98.1 

8-NO2Gua HNE-MA-d3 
0.1-100 

100-1000 

0.998 

0.997 
0.01 0.1 107 97.7 94.1 97.3 

8-Iso-PGF2β HNE-MA-d3 0.5-1000 0.999 0.05 0.5 99.2 97.8 101 98.8 

 



141 
 

4.8.1.2 SPE-LC-MS Validation Parameters 

Regarding method sensitivity within wastewater matrices, method detection limits (MDLs) of <0.2 ng 

L-1 were achieved for HNE-MA, 8-iso-PGF2β and 8-NO2Gua, . HNE-MA in particular gave excellent 

method sensitivity with an MDL at 0.0590 ng L-1. Method quantification limits (MQLs) for the same 

three biomarkers were also <3 ng L-1. 8-OHdG on the other hand gave slightly poorer method sensitivity 

(17.1 ng L-1 and 85.3 ng L-1 for MDL and MQL respectively), 

Results from method recoveries are all reported as corrected recoveries (i.e. the internal standards have 

been considered). HNE-MA gave excellent recoveries with minimal matrix suppression across the two 

concentrations studied (85 % and 17 % averages respectively over 0.5 and 1.25 µg L-1). Signal 

enhancement was observed for 8-iso-PGF2β (-67 % and -55 % at 0.5 and 1.25 µg L-1 respectively) and 

high method recoveries were exhibited (142 % and 147 % at 0.5 and 1.25 µg L-1 respectively). This is 

attributed to the challenges in identifying 8-iso-PGF2β amongst the peaks it occurs in within the 

unspiked wastewater sample. With regards to 8-OHdG and 8-NO2Gua, both had lower but reproducible 

Method recoveries (average recoveries of 32 % and 65 % respectively across 0.5 and 1.25 µg L-1). 

Furthermore both compounds were moderately susceptible to a wastewater matrix, with 8-OHdG 

average of 47 % signal suppression and 8-NO2Gua at 46 % across 0.5 and 1.25 µg L-1. Regarding 

method accuracy, HNE-MA had excellent method accuracy results across the three days studied with 

101 % for inter-day accuracy (Table 3). The higher but consistent method accuracies observed for 8-

iso-PGF2β at 140 % and 134 % for intra- and inter-day are attributed to again being unable to identify 

the biomarker peak in the un-spiked wastewater samples. Therefore concentrations of this biomarker 

already present in real wastewater samples were not accounted for in calculations. 8-NO2Gua exhibited 

acceptable method accuracies at 88.9 % for inter-day whilst 8-OHdG displayed low method accuracies 

at 64.1 % for inter-day. The lower method accuracies observed for 8-OHdG is a reflection of the 

challenges of analysing this biomarker in real wastewater samples, further evidenced by the results of 

matrix effects and method recoveries (Table 3).  Regarding method precision, both inter- and intra-day 

precision gave acceptable ranges of 90-96 % for all four biomarkers studied. 
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Table 3 Method performance data detailing method detection limits (MDLs) and method quantification 

limits (MQLs), Method recoveries and matrix effects, intra- and inter-day accuracy and precision for 

all biomarkers studied (n = 3 injected in duplicate) 

Compound 

Method 

linearity 

[ng L-1] 

MDL 

[ng L-1] 

MQL 

[ ng L-1] 

Method 

recoveries 

[%] 

Matrix effects 

[%] 

Intra-day method 

performance 

Inter-day 

method performance 

0.5 

[µg L-1] 

1.25 

[µg L-1] 

0.5 

[µg L-1] 

1.25 

[µg L-1] 

Accuracy 

[%] 

Precision 

[%] 

Accuracy 

[%] 

Precision 

[%] 

HNE-MA 3.0-5903 0.06 3.0 83.4 86.0 18.0 15.9 91.2 95.1 101 95.6 

8-Iso-PGF2β 1.7-3455 0.17 1.7 142 147 -67.2 -55.2 140 95.2 134 94.4 

8-NO2Gua 1.3-13123 0.13 1.3 67.9 61.3 48.6 44.2 86.5 90.4 88.9 90.2 

8-OHdG 85.3-8532 17.1 85.3 29.0 35.1 53.0 40.5 63.2 91.8 64.1 92.5 

  

4.8.2 8-Iso-PGF2β and its isomers  

Interestingly when studying 8-iso-PGF2β in wastewater, instead of a clearly resolved peak that is 

observed within the mobile phase, there is a broad, poorly resolved series of peaks eluting between 6-

10 min in wastewater. However when spiked with the target analyte at initial concentrations of 0.5 µg 

L-1 and 1.25 µg L-1, 8- iso-PGF2β can be identified amongst the series of peaks (Figure 3). A possible 

explanation for this observation could be due to the presence of a wide range of F2-isoprostane 

compounds in wastewater. 8-iso-PGF2β belongs to a large family of prostaglandin-like isomers known 

as the isoprostanes. The isoprostanes are metabolic products of the peroxidation of the arachidonic acid 

via a free radical catalysed mechanism (Cracowski and Durand, 2006). Fatty acids like arachidonic acid 

occur with relative abundance in human cells and are crucial components as they facilitate the proper 

formation and function of cell membranes. From the peroxidation of arachidonic acid, four classes of 

F2-isoprostanes may be formed (Berdeaux et al., 2006). The F2-isoprostane regioisomer compromises 

of eight diastereoisomers that arise to 64 different F2-isoprostanes. So if 8-iso-PGF2β is present in 

wastewater then it is highly likely the other isomers excreted in urine will also be present. SPE is widely 

recognised as a non-specific extraction technique, and with the combination of Oasis HLB cartridges 

will ultimately result in the extraction of a wide number of compounds including those with similar 

chemistries. Furthermore such similar isomers are likely to have matching mass fragment peaks hence 

the potential elution of different fragment ions around the target analytes potentially resulting in the 

interference observed. 
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Fig. 3. LC chromatograms of the quantifying mass fragment ions of each target biomarker in influent 

wastewater samples a) initial spiked analyte concentration of 0.5 µg L-1 b) initial spiked analyte 

concentration of 0.5 µg L-1 c) unspiked wastewater d) internal standards: HNE-MA-d3 (spiked at 100 

ng L-1) or 15N5-8-OHdG (spiked at 500 ng L-1). 

It should be noted that it is recognised in the literature of the lack of clarity in whether a number of 

analytical methods for F2-IsoPs in biological matrices are specific for a single isomer or whether it is 

capturing numerous isobaric species (Tsikas et al., 2003; Schwedhelm et al., 2007; Halliwell and Lee, 

2010). For example, Davies et al. demonstrated various dinor, dihydro F2-IsoP metabolite species being 

captured within a single chromatographic peak in urine samples via tandem LC-MS techniques (Davies 

et al., 2006). Due to the significant number of various stereo- and regio-isomers of the F2-IsoP family, 

the analytical challenges of separation and reliability of peaks given are well recognised within 

biological matrices such as urine. It is unsurprising therefore that such difficulties are similarly observed 

within more complex matrices such as wastewater. However such challenges have been overcome in 

WBE, as previously mentioned Ryu et al. used highly selective immunoassay techniques to capture 8-

iso-PGF2α from wastewater to give a single isomer species (Ryu, Reid and Thomas, 2015). 

However it is important to study the isoPs as a group in WBE, particularly as it is not currently known 

which isomer indicates oxidative stress the best or even which isomer is most abundant in urine. This 

idea was partially explored in an extensive review by Daughton reviewing the potential of isoPs for use 

in WBE, in particular it was highlighted that F2t-IsoPs including 8-iso-PGF2α was one of the first ones 

to became widely available to purchase, hence much of the early studies are based upon this (Daughton, 

2012). Indeed it has been widely agreed that the study of isoPs as a marker of oxidative stress in clinical 

studies should be studied as a group and metabolites should also be included (Nourooz-Zadeh et al., 
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2006; Taylor, Bruno and Traber, 2008; Nikolaidis, Kyparos and Vrabas, 2011). This would not only 

reduce complications of variability of excretion amounts thereby improving reliability, but by capturing 

and studying the F2-isoprostanes could help in creating a standardised analytical method for use both 

in clinical fields and WBE. Further work is currently undertaken by the authors to identify and quantify 

all relevant F2-isoprostanes. 

4.8.3 Stability of biomarkers in wastewater  

Whilst the behaviours of target biomarkers in clinical matrices, for example in urine, are well reported 

(Wu et al., 2016), the stability and presence of such compounds have not been previously reported in 

wastewater (with the exception of 8-iso-PGF2α). Results from the 24-hour wastewater biomarker 

stability study displayed positive results for the majority of the biomarkers studied (Figure 4). HNE-

MA, 8-OHdG and 8-iso-PGF2β all demonstrated high stabilities with little degradation at both 4 C and 

17 C in wastewater over the 24 hour period (>90 % of the concentration spiked at t 0 h remaining at 

time period 24 hours). Interestingly for 8-NO2Gua, significant degradation was observed over the 24 

hour period with both reactors at 4 C and 17 C with 68 %  and 10 %  of the concentration spiked at t 

0 h remaining at 24 hours respectively. This indicates that 8-NO2Gua, however useful as a biomarker, 

might show low stability in wastewater. Conversely initial screening of the biomarkers in wastewater 

has shown 8-NO2Gua to be successfully detected and quantifiable at a concentration of 0.0832 ± 0.519 

µg L-1, n=3 (Figure 3).  

  

  

 

Fig. 4. Stability of each target biomarker in influent wastewater incubated at 17 C and 4 C (n=4) over 

24 hours. Initial analyte spiking of 1.25 µg L-1 within each 2 L reactor (final concentration in 500 µL at 

t=0, 250 µg L-1).  
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4.8.4 Wastewater analysis  

When spiked into wastewater, all four biomarkers were detected and quantified at their characteristic 

retention times of 7.45, 3.5, 8.22 and 4.11 min for HNE-MA, 8-NO2Gua, 8-iso-PGF2β and 8-OHdG 

respectively (Figure 3). To further test the validated method, a sampling campaign compromising of 

24-hour composite influent wastewater samples were studied over seven days. As markers of oxidative 

stress and lipid peroxidation, it was assumed that daily loads of target analytes would not experience 

significant weekly variations and should give relatively stable concentrations across the sampling 

period. Results demonstrated that HNE-MA gave excellent resolved peaks on all days of the campaign 

and could be quantified every day. Using influent flowrates and the population of the WWTP, daily 

loads per capita of HNE-MA were calculated (Figure 5). Observed levels of HNE-MA averaged at 48.9 

± 4.07 mg/1000/people/day across seven days sampled. 8-iso-PGF2β was detected with good intensity 

but was found amongst the broad series of peaks as previously mentioned. 8-OHdG was detected, albeit 

at <LOQ.  8-NO2Gua on the other hand was not detected on any of the seven days investigated, as 

previously mentioned this might be attributed to its low stability within wastewater samples. A potential 

factor of why this biomarker was observed in previous screening of wastewater samples could be 

dilution (e.g. wetter weather causing variable flows). This shall be addressed in future work to verify 

the results, in particular due to the stability of biomarker investigation into whether grab sample over 

composite samples would be more appropriate. 

 

 

Fig. 5. Daily loads per capita and concentration of HNE-MA in influent wastewater over period of 

29/11/2017-05/11/2017. 24 h composite samples used with errors calculated by standard deviation 

(n=4). 
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4.9 Conclusion 

To conclude, we have reported, for the first time, the development of an analytical method using SPE 

and UHPLC-MS/MS techniques for the detection and quantification of four biomarkers of oxidative 

stress in wastewater. The method showed very good performance: accuracy (>87 %), precision (>90 

%), method quantification limits (1.3 -3.0 ng L-1) and biomarker stability in wastewater for HNE-MA, 

8-OHdG and 8-iso-PGF2β. In contrast, 8-NO2Gua was found to be less stable in wastewater (68 % and 

10 % of the concentration spiked at t 0 h remaining at 24 hours respectively at 4 C and 17 C), which 

affected its method performance: accuracy (>63 %), precision (>91 %), method quantification limits 

(85.3 ng L-1).  All four biomarkers were detected within wastewater samples but full quantification of 

only HNE-MA was carried out. HNE-MA was quantified in wastewater at levels averaging at 48.9 ± 

4.1 mg/1000/people/day.  8-iso-PGF2β was detected within the broad series of peaks as previously 

mentioned, further work is required in order to investigate separation. 8-OHdG was detected, albeit at 

<MQL due to relatively low MQL for this biomarker. To the authors’ knowledge, HNE-MA has never 

been observed and quantified successfully in wastewater before. Further work is required to fully 

evaluate suitability of 8-NO2Gua as a biomarker due to its low stability. More extensive sample 

preparation utilising sorbents of higher selectivity and higher concentration factor should be also 

considered to allow for full quantification of 8-OHdG and 8-iso-PGF2β 
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Abstract 

This longitudinal study provides insight into antimicrobial agents (AA) usage within two communities 

in the Southwest of the UK, one city (Bath) and one town (Keynsham) over 13 months randomised 

monitoring programme of community and hospital wastewater. AAs, including metabolites, from a 

range of different classes were quantified over the study period. Average loads of AAs were higher in 

Bath than for Keynsham which reflected the larger population. Several AAs experienced seasonal 

fluctuations, such as the macrolides erythromycin and clarithromycin that were found in higher loads 

in the winter, whilst other AA levels, including sulfamethoxazole and sulfapyridine, stayed consistent 

over the study period. A small number of antimicrobial resistant genes (ARGs) were also studied within 

the city area, in order to determine how closely the abundance of these genes correlates with the levels 

of relevant AAs. Interestingly, and as opposed to antibiotics, ARGs were found to be less variable, 

which indicates that fluctuations in antibiotic usage might either not directly affect ARG levels or this 

process spans beyond the 13-month monitoring period. However, it is important to note that weekly 

positive correlations between individual associated AAs and ARGs were observed where seasonal 

variability in AA use was reported: ermB and macrolides clarithromycin and N-desmethyl 

clarithromycin, N-acetyl sulfapyridine and sul1 and ofloxacin and qnrS. Gene loads normalised to 16S 

rRNA (gene load per microbe) were positively correlated to the gene loads normalised to the human 

population (gene load per capita), which indicates, yet again, that the abundance of microorganisms is 

proportional to the size of human population and that the community size is a major driver of ARG 

levels in wastewater. Comparison of hospital and community wastewater showed higher number of 

AAs and their metabolites, their frequency of occurrence and concentrations in hospital wastewater. 

This is likely due to, with shorter sewage residence time, lower volume of flow and concentration of 

individuals at the source requiring AAs when compared to community wastewater. Examples include: 

linezolid (used only in severe bacterial infections) and amoxicillin (widely used, also in community but 

with very low wastewater stability) that were found only in hospital wastewater. ciprofloxacin, 

sulfamethoxazole, trimethoprim, and metronidazole, macrolides were found at much higher 

concentrations in hospital wastewater while tetracycline and oxytetracycline, as well as antiretrovirals, 

had an opposite trend. In contrast, comparable concentrations of resistant genes were observed in both 

community and hospital wastewater. This supports the hypothesis that AMR levels are more of an 

endemic nature, developing over time in individual communities. Both hospital and community 

wastewater had AAs that exceeded PNEC values (e.g. clarithromycin, ciprofloxacin. In general, though, 

hospital effluents had a greater number of quantifiable AAs exceeding PNECs (e.g. sulfamethoxazole, 

erythromycin, trimethoprim).  Hospitals are therefore an important consideration in AMR surveillance 

as could be high risk areas for AMR. 
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1. Introduction  

The evolution and spread of antimicrobial resistance (AMR) limits therapeutic options for a broad range 

of infectious diseases, and poses a global threat to public health (World Health Organisation, 2020). 

Whilst genes conferring resistance have evolved naturally prior to the administration of antimicrobial 

agents (AAs), the inappropriate use of these drugs dramatically accelerated the spread of resistance 

genes across different species, settings and geographical locations. It has been estimated in 2019 that 

there were 4.95 million deaths associated with bacterial AMR infections, including 1.27 million deaths 

directly attributed to resistant bacteria (Murray et al., 2022). These rising global rates of AMR have 

stressed the importance of effective surveillance systems for understanding the burden of resistance and 

identifying new or re-emerging threats. Effective surveillance can also feedback into evidence-based 

policy making and evaluate the effectiveness of public health interventions. As highlighted by WHO’s 

GLASS report (World Health Organisation, 2018), there are clear disparities in AMR surveillance 

between different countries, due to limited resources and infrastructure. There is also a recognised lack 

of population-wide surveillance data regarding AMR, highlighting a need to develop both cost-effective 

and standardised population-wide surveillance AMR systems.  

A promising tool for monitoring community-wide AMR surveillance is wastewater-based 

epidemiology (WBE). Wastewater treatment plants (WWTPs) serve a well-defined community, 

capturing all the excretion products of this population. These excretion products contain biomarkers of 

pathogens, pharmaceuticals and other indicators of population health. Estimates of exposure to 

pathogens, or consumption of pharmaceuticals, can be made by quantifying these biomarkers in influent 

(untreated) wastewater, whilst accounting for flow rates and population size. The resulting data 

complement evidence generated through traditional public health approaches.  

WBE as a public health tool has clear advantages; it not only provides anonymous population-wide data 

but is also relatively inexpensive and gives rapid results. In the case of AMR, analysis of AA residues 

in wastewater can inform on consumption within the community. This can be valuable where 

prescription data is not easily obtainable, or where AAs are available over-the-counter or online. 

Complimentary to the analysis of AAs, the analysis of resistance genes or co-factors (constituents in 

wastewater that can co-select for resistance) can also provide key information on the presence of 

resistant bacterial communities in wastewater. The ability of WBE to give rapid results provides the 

potential for rapid responses. In the case of AMR, WBE also holds to the promise of evaluating the 

effectiveness of antimicrobial policy. However, WBE is not without its challenges. Estimation of 

population sizes and biomarker suitability pose problems, and remain an active area of research (Been 

et al., 2014; Chen et al., 2014; Choi et al., 2020; Daughton, 2018).  

An overview of WBE studies focusing on the presence of AAs is given in Table 1. WBE has been used 

to investigate AA usage in flu season (Zhang et al., 2019) and even to demonstrate changing 

consumption patterns in the wake of the COVID-19 pandemic (Galani et al., 2021). Furthermore, 

combining analysis of AAs with ARGs can reveal how AA usage impacts on the presence of ARGs. 

For example, areas with higher quinolone consumption, driven by population size, were found to have 

a higher prevalence of qnrS gene, which encodes resistance to this antibiotic (Castrignanò et al., 2020). 

Similar results were observed for other AAs and their respective resistance genes (macrolides and ermB, 

sulfamethoxazole and sul1, chloramphenicol and catA) (Elder et al., 2021).  

The development of advanced DNA sequencing techniques offers a promising approach for monitoring 

the abundance of ARGs in the environment (Guo et al., 2017; Hendriksen et al., 2019; Lanza et al., 

2018; Petrovich et al., 2020; Riquelme et al., 2021). High throughput quantitative polymerase chain 

reaction (qPCR) has also been utilised to reflect expected clinical resistance trends across Europe 
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(Pärnänen et al., 2019). Complexities of AMR require all proxies (e.g. antimicrobials, genes, co-factors) 

to be studied simultaneously to give a full picture of AMR prevalence at a community level. 

Table 1. Overview of studies focused primarily on AAs in WBE  

AAs 

investigated  

Metabolites 

investigated  

Genes 

investigated 

Number of sites 

and location  

Sampling 

duration 

Reference  

21 AAs  - - 8 WWTPs, 

Beijing, China   

1 day (Zhang et al., 

2019) 

6 AAs - - 4 megacities, 

China 

 (Yuan et al., 

2016) 

11 AAs (mainly 

quinolones) 

Desethylene-

ciprofloxacin, 

qnrS 7 European cities  7 days  (Castrignanò et 

al., 2020) 

16 AAs (4 

classes) 

- qnrS, ermB, 

sul1 and catA 

5 cities, South-

West, UK  

7 days (Elder et al., 

2021) 

 

25 AAs - - Athens, Greece 7 days, pre-

pandemic  

15 days in 2020 

(Galani et al., 

2021) 

45 AAs Anhydro erythromycin 

Acetylsulfamethoxazole  

Metagenomic 

untargeted 

shotgun 

sequencing  

12 WWTPs, 6 

countries  

14 influent 

samples each 

site 

(Riquelme et al., 

2021; Singh et al., 

2019) 

 

Due to the multifaceted nature of AMR, the One Health approach has proved a valuable framework for 

tackling this complex issue. One Health aims at holistic understanding and management of public and 

environmental health, and has been successfully adopted in AMR research with considerable global 

human and animal health, food security, and safety impacts.  One Health studies aim to incorporate a 

dynamic set of biological, chemical, and socioeconomic indicators that are difficult to unravel. Whilst 

AA and ARG analysis have been undertaken internationally (Hendriksen et al., 2019; Pärnänen et al., 

2019; Petrovich et al., 2020) many studies focus on shorter sampling periods with inconclusive results 

regarding AA-ARG correlations. Longer term wastewater monitoring of AAs will capture both 

fluctuating and consistent consumption patterns between seasons, and can therefore complement e 

prescription data. Evidence can also be generated on the relationship between the abundance of AAs 

and associated ARGs in these communities.  

The aim of this paper is to: 

1. Provide better understanding of AA-ARG associations in the context of a longitudinal 1-year 

monitoring of two contrasting communities; Bath: 120,113 inhabitants (inh) and Keynsham: 

21,247 inh, for a suite of AAs and their metabolites (AA/met), and corresponding ARGs. 

2. Undertake data triangulation to understand relationships between AA/met levels and 

corresponding ARGs; as well as water quality indicators (WQIs-see SI) in the context of 

seasonal AA use. 

3. Provie better understanding of AA and ARG contributions in hospital vs community 

wastewater and their associations in the two types of wastewater. 

4. To understand the role of wastewater in the dissemination of AMR, and to explore measured 

vs predicted no effect concentrations (PNECs) of AAs in both community and hospital 

wastewater.  

 

 

 

2. Materials and Methods  
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2.1 Materials and target compounds 

AAs were selected for this study as they cover a broad and diverse range of classes with both parent 

compounds and metabolites. Table 1 shows the AAs and metabolites investigated during this project 

along with AA abbreviations used in this paper. More detailed information regarding AAs and 

metabolites, along with internal standards used,  may be found in the supplementary information (Table 

S1 and S2). This method has previously been developed by Holton and Kasprzyk-Hordern (2021), and 

full method development details may be found there. Analytical standards and deuterated (stable 

isotope–labelled) standards were obtained from Sigma-Aldrich (Gillingham, UK), TRC (Toronto, 

Canada), LGC (Middlesex, UK), or MCE (Cambridge, UK). The methanol used was HPLC-grade 

(Sigma-Aldrich), the water was of 18.2 MΩ quality (Elga, Marlow, UK); and the purity of formic acid, 

used as the mobile-phase additive, was >95% (Sigma-Aldrich). Glassware was deactivated using 5% 

dimethylchlorosilane in toluene (Sigma-Aldrich) to avoid losses via adsorption. Oasis HLB (60 mg, 3 

mL) SPE cartridges, polypropylene LC vials, and Whatman GF/F 0.7-μm filters were purchased from 

Waters (Manchester, UK). 

Table 1: AA targets investigated in this study, ordered by class groupings, table adapted from Holton 

and Kasprzyk-Hordern, 2021, https://rdcu.be/cxqhT 

Grouping Chemical Abbrev 

Sulphonamide & Sulfadiazine SDZ 

Trimethoprim Sulfapyridine SPY 

 Sulfamethoxazole SMX 

 Sulfasalazine SLZ 

 Trimethoprim TMP 

 N-acetyl sulfadiazine  aSDZ 

 N-acetyl sulfapyridine  aSPY 

 N-acetyl sulfamethoxazole  aSMX 

 4-hydroxy-trimethoprim  hTMP 

Macrolide Azithromycin AZM 

& Lincosamide Erythromycin ERY 

 Clarithromycin CLR 

 Clindamycin CLI 

 N-desmethyl azithromycin  dmAZM 

 N-desmethyl erythromycin A  dmERY 

 N-desmethyl clarithromycin  dmCLR 

 N-desmethyl clindamycin  dmCLI 

β-lactams   
Penicillin Amoxicillin AMX 

 Ampicillin AMP 

 Flucloxacillin FLX 

 Penicillin G PenG 

 Penicillin V PenV 

 Amoxicilloic acid AMXa 

 Ampicilloic acid AMPa 

 Penicilloic G acid PenGa  

Cephalosporin Cefalexin LEX 

 Cefixime CFM 

 Ceftiofur CTF 

 Ceftriaxone CRO 

Monobactam Aztreonam ATM 

Carbapenem Imipenem IPM 

 Meropenem MEM 

Quinolone Besifloxacin BSF 

 Ciprofloxacin CIP 

 Danofloxacin DFX 

 Enrofloxacin ENR 

 Flumequine FLU 

 Gatifloxacin GAT 

 Lomefloxacin LOM 

 Moxifloxacin MXF 

 Nadifloxacin NAD 

 Nalidixic acid NAL 

 Norfloxacin NOR 

 Ofloxacin (Levofloxacin) * OFX 

https://rdcu.be/cxqhT
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 Prulifloxacin PFLX 

 Sarafloxacin SRF 

 Desethylene ciprofloxacin deCIP 

 Hydroxy-norfloxacin  hNOR 

 Ofloxacin N-oxide OFXo 

 Desmethyl-ofloxacin  dmOFX 

 Ulifloxacin UFX 

TB (1st line) Isoniazid INH 

 Pyrazinamide PZA 

 Ethambutol EMB 

 Rifampicin RMP 

 Rifabutin RFB 

 Isonicotinic acid INa 

 Acetyl-isoniazid  aINH 

 5-Hydroxy-pyrazinoic acid  hPZA 

 25-desacetyl rifampicin  daRMP 

 25-O-desacetyl rifabutin  daRFB 

TB (MDR) Capreomycin IA  CAPIa 

 Capreomycin IB  CAPIb 

 Gentamycin C1  GEN1 

 Gentamycin C1a  GEN1a 

 Gentamycin C2 C2a C2b  GEN2 

 Kanamycin A  KAN 

 Streptomycin A  STR 

 D-cycloserine DCS 

TB (other) Delamanid DMD 

 Bedaquiline BDQ 

 Linezolid LZD 

 Thalidomide THAL 

OTHER   
Amphenicol Chloramphenicol CHL 

 Florfenicol FLO 

 2-Amino-1-(4-nitrophenyl)-1,3-propanediol ANP 

Cycline Doxycycline  DOX 

 Oxytetracycline OTC 

 Tetracycline TET 

Nitrofuran Nitrofurantoin NIT 

 1-(2-nitrobenzylidenamino)-2,4-imidazolidinedione NPAHD 

Azole Metronidazole MTZ 

 Ketoconazole KTC 

 Hydroxy-metronidazole  hMTZ 

 Deacetyl-ketoconazole  daKTC 

Antiretroviral Emtricitabine FTC 

 Lamivudine 3TC 

Multi-drug resistant (MDR), tuberculosis (TB), LC-MS method is not chiral (*) 

2.2 Sampling  

2.2.1 Wastewater Treatment Plants 

This study investigated two wastewater treatment (WWTP) sites in the South West of the UK over a 

sampling period between 2018-2019 (figure 1). The WWTPs serve the city of Bath, with a population 

equivalent of 120,113 and the town of Keynsham with a population equivalent of 21,247. Both sites are 

surrounded by agricultural areas and have limited contribution from industrial input (<1%). WWTP 

Bath does have input from a major hospital in the catchment area. 24-hour composite samplers, set up 

for flow proportional sampling every 15 minutes, were used to sample screened, but untreated, influent 

wastewater. Samples were transported on ice to the laboratory for processing. 
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Site 

Sewer 

residence 

timea (h) 

Population served 
(population equivalents) 

Industrial contributions 

to population 

equivalents 

Mean flow 
(m3 d-1) 

Bath <0.5-9 120,113 1.2 % 33178 
Keynsham <0.5-2 21,247 0.1 % 3316 

                        aunder typical summer flows 

Figure 1. Catchment map and site information of studied WWTPs 

2.2.2 Hospital effluent sampling  

Effluent wastewater samples were collected from a hospital within the catchment area of Bath. Samples 

were collected over five consecutive days (5th-9th August 2019) from a hospital outlet that accounts for 

approximately 60% of the total wastewater originating from this hospital. This is a medium-sized 

hospital (>700 beds and a catchment of 500,000 people). Between the hospital and the WWTP serving 

Bath is 10 km of sewer pipeline. Hospital effluent samples were collected by 24 h composite samplers 

set to time-proportional, with 50 mL collected every 15 minutes. Collected samples were transported 

on ice to the laboratory to be processed (< 1 h).  

2.2.3 Water quality indicators and flow measured, in WWTPs  

A range of water quality/sanitary indicators (WQIs: BOD, COD, Suspended solids, Chloride, Ortophos, 

T Phosphorous, suspended organic carbon, Ammonia as N, metals: Al, Fe, Mn) were analysed at 

Wessex Water at certain sampling points over the studied period in both Bath and Keynsham. Full 

experimental details may be found in the supplementary.  Influent wastewater flows and rainfall over 

the studied period in both catchment areas were also reported (figure S1). Discussion on WQI, AA and 

ARG associations is available in SI. 

2.2.4 Population equivalent estimation 

The population equivalent of those served by the WWTP (PE-WW) was estimated by Wessex Water 

(Table 2). By multiplying the number of properties in the catchment area by occupancy rate (set at 

district level), the resident population estimate was determined. The resident population also considers 

the number of multi-occupancy residencies that fall within the catchment area, including care homes, 

residential schools, university halls, and military bases. As a UNESCO world heritage site, Bath has a 

thriving tourism input. Tourists were considered as non-resident population, and due to challenges 

estimating input of day-trippers to the catchment area, they were not included.  
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By utilising WQIs, other inputs to the wastewater stream could be calculated. This included commercial 

waste; determined by considering supply flow to commercial properties and estimates of 60 g BOD per 

capita per day. Tankard waste imports were determined via the amount of COD present in the known 

volume of waste and, assuming 120 g COD per capita per day. 

Table 2. Populations equivalents used in the study (2018/9) 

Wessex Water  

Population Data  

Calculation of PE-WW  

City/Town served  Bath  Keynsham  

Year 2018 2019 2018 2019 

Domestic-Billed Properties 43,611 45,274 8,028 9,144 

Average Household Size 2.23 2.25 2.23 2.25 

Resident Population Estimate 97,253 101,866 17,902 20,572 

Adjustment for Care Homes 1,411 1,411 315 315 

Adjustment for Universities 

Adjustment for Schools/Colleges 

5,800 

800 

5,800 

800 

0 

0 

0 

0 

Non-Resident Population 7,250 7,250 123 123 

Commercial PE 2,026 2,006 222 222 

Trade Effluent PE 1,139 980 0 13 

Tankered Waste PE 0 0 0 0 

Total PE served by WWTP 115,679 120,113 18,562 21,247 

 

2.3 Chemical analysis – AA and metabolite quantification 

2.3.1. Sample preparation  

Collected influent wastewater samples were transported on ice to the lab (<1 hr). On arrival, samples 

were portioned into 50 mL and spiked with 50 ng of each internal standard and shaken. Samples were 

then filtered through GF/F filters (Whatman, UK). Solid phase extraction (SPE) was used to extract 

target AAs from wastewater, Oasis HLB cartridges were preconditioned using 2 mL of MeOH followed 

by 2 mL of MilLi-Q H2O at a flowrate of 1 mL min-1. Wastewater filtrates were then loaded onto the 

preconditioned cartridges at a rate of 5 mL min-1. Cartridges were dried for at least 30 minutes under 

vacuum. For the elution step, 4 mL of MeOH at a rate of 1 mL min-1 with the eluate collected in silanised 

glass vials. Eluates were then dried at 40 °C under N2 via a TurboVap evaporator. Dried residues were 

reconstituted with 500 μL of 80:20 H2O: MeOH and transferred into polypropylene vials and kept at -

18 °C until analysis. Further details on the method can be found in Holton and Kasprzyk-Hordern, 2021. 

2.3.2 Analyte Quantification 

Full analytical method validation and instrument conditions may be found in Holton and Kasprzyk-

Hordern (Holton and Kasprzyk-Hordern, 2021). For the analysis of target AAs, ultra-performance 

liquid chromatography (UPLC) coupled with a XEVO triple quadrupole mass spectrometer (TQD-MS). 

The analytical method is in total 19 minutes long and the column used was a reverse phase BEH C18 

column (50 x 2.1 mm, 1.7 μm). For separation of target AAs, mobile phase A consisted of 95:5 

H2O:MeOH with 0.1 % formic acid with mobile phase B as 100 % MeOH. Flowrate was set at 0.2 mL 

min-1 and injection volume was 20 μL. Mobile phase starting conditions were 0 % B (held for 1 minute), 

then a gradual gradient to 40 % B (8.5 minutes), gradient up to 100 % B (3.5 minutes), hold of 100 % 

B (3 minutes) and finally dropping back to 0 % B (0.5 minutes).  

Regarding mass spectrometry conditions, briefly the method was achieved in ESI positive mode with 

the source desolvation temperature at 400 °C. Nitrogen was used as the nebulising and desolvation gas 

and argon was used as the collision gas. For gas flows, the desolvation gas was at 1000 L h-1 and the 

cone gas was at 100 L h-1. 
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2.4. Biological analysis – ARG quantification 

Four ARGs were selected to monitor in Bath, according to previous work done in the catchment area 

for both genes and associated AAs and due to their clinical importance (Elder et al., 2021). The selected 

genes were ermB (macrolide resistance), sul1 (sulphonamide resistance), qnrS (fluoroquinolone 

resistance), and intI1 (potential marker of anthropogenic pollution). An additional two genes were 

investigated in hospital effluent, tetW (tetracycline resistance) and blaTEM (resistance to β-lactams), to 

explore the relationships between AAs and ARGs. To quantify these genes, digital PCR (dPCR) was 

utilised. An additional couple of wastewater samples were analysed by DNA sequencing, an untargeted 

approach to provide comprehensive metagenomic information and to characterise the bacterial 

communities and genes present in the selected wastewater samples 

2.4.1 DNA extraction  

To investigate temporal trends of ARGs, four wastewater samples per month from Bath were chosen to 

investigate selected ARGs using digital PCR (dPCR). Of these samples, two were selected to further 

investigate using DNA sequencing (one wastewater sample from November 2018 and one sample from 

March 2019). Influent wastewater samples (100 mL) were filtered through Nalgene™ Sterile Analytical 

Filter Units (Thermo Scientific, UK) containing 0.2 μm cellulose filter papers. DNA was then extracted 

from the membrane directly from the filter paper using FastDNA SPIN Kit for Soil (MP Bio, UK). The 

amount of extracted DNA was determined using a Qubit 4 Fluorometer (Thermo Scientific, UK). DNA 

was kept at -20 °C before further analysis.  

2.4.2 DNA sequencing and metagenomic analysis  

Extracted DNA from the samples was sent to MicrobesNG (Birmingham, UK) where Illumina HiSeq 

sequencing (rapid run, 2×250 bp paired end reads) was conducted with in-house quality control (adapter 

trimming with Trimmomatic v0.30, with a sliding window quality score cut-off value of Q15). 

Taxonomical profiling was performed with Kraken2 2.0.8 and Bracken 2.5 (Lu et al., 2017) using the 

Genome taxonomy database for improved performance (GTDB) (Méric et al., 2019). ARG relevant to 

the antibiotics chosen to select for antibiotic resistant bacteria in this study were identified using the 

Comprehensive Antibiotic Resistance Database (CARD) and Resistance Gene Identifier (RGI; 5.1.1). 

An inhouse R script was used to process the metagenomic data. Low abundance taxa were filtered using 

a pre-processing step by removing Operational Taxonomic Units (OTUs) that had non-zero values in ≤ 

10% of samples. 

2.4.3 Digital PCR  

Digital PCR (dPCR) analysis was performed using a the QuantStudio® 3D Digital PCR System 

(Thermo Scientific, UK). The dPCR reaction was made up according to manufacturer instructions of 

QuantStudio® 3D Digital PCR Master Mix, appropriate TaqMan™ primers with MGB probes, sterile 

water, and DNA sample. Due to similarities in gene abundance in wastewater samples, intI1 and sul1 

were duplexed allowing quantification of both genes on one chip with intI1 having this in FAM™ dye 

and sul1 with VIC® dye.  The mixture was then portioned onto dPCR chip wells and sealed.  

The thermo cycling conditions chosen for PCR involved: a temperature ramp to 95 °C, 10 min hold; a 

reduction to 60 °C for 2 min; before increasing to 98 °C for 30 sec. This cycle between 60 °C and 98 

°C was repeated 40 times to allow for efficient gene amplification. The system was then lowered to 60 

°C and held for 2 min, before cooling to room temperature. After cooling, each chip was processed 

using the QuantStudio 3D Digital PCR system chip reader. To analyse chips, the AnalysisSuite™ 

software was used for quantification of the target gene. Each DNA sample was run in duplicate for each 

gene investigated.  
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2.4.4 Quality control dPCR  

Negative controls for dPCR were achieved using sterile water (DNA blanks) to confirm non-

amplification. For positive process controls, 10 µL of TaqMan™ Universal DNA Spike in Control 

(Thermo Fisher) was spiked into the lysis step of the DNA extraction kit. Six extracts of the same 

wastewater sample were spiked to assess recovery efficiency of the extraction kit, giving an average 

recovery of 41 ± 12 % (figure S2). 

2.5 Statistical calculations   

P values were calculated via paired sample T tests, to investigate any seasonal effects of AAs and ARGs. 

By combining sample data, the seasons considered were winter (November ’18, December ‘18 and 

January ’19), spring (February ’19, March ’19 and April ’19) and summer (May ’19, June ’19 and July 

’19). Statistical significance in all tests was defined as p ≤ 0.05. Pearson correlation coefficients were 

used to investigate potential relationships between ARG and AA abundance. Positive correlations were 

considered >0.5 and negative correlations were considered <-0.05. Statistical significance testing was 

performed to highlight correlation results that were significant. 

3. Results and discussion  

3.1 AAs and their metabolites in a longitudinal study of two contrasting urban areas 

3.1.1 Absolute AA concentrations  

A diverse range of AAs and metabolites were observed and quantified across the 13-month sampling 

period. In total, 17 parent AAs and 8 metabolites were quantified consistently in wastewater in both 

sites during the sampling period. AAs and metabolites from the macrolide and sulphonamide classes 

were well represented, with AAs from the aminoglycoside not detected once during the sampling 

period. Average wastewater concentrations for the consistently quantified AAs and metabolites were 

reported at 0.50 ± 0.58 ng/L for Bath and 0.52 ± 0.75 ng/L for Keynsham over all studied months. 

Whilst the concentration of AAs and respective metabolites in wastewater will be impacted by 

consumption patterns at the community level, variable wastewater flowrates will also have an impact, 

highlighting the importance of normalising concentrations with flowrates when monitoring both spatial 

and temporal trends.  

3.1.2 AA loads   

3.1.2.1 Spatial variability  

To account for variable flows, daily loads of AAs were calculated. This allowed for further comparisons 

between different months e.g., AA seasonality (figure 2). Full breakdowns of AA loads in both Bath 

and Keynsham may be found in the SI for individual points and average monthly loads. In general, AA 

average loads were higher in Bath than for Keynsham which coincides with a larger population. The 

estimated population equivalent for Bath is ∼5.7 x bigger than compared to Keynsham, which indicates 

that AA loads are population size driven. 

Regarding high abundance in wastewater, SPY was observed in high levels in both Bath and Keynsham 

respectively (43.1 ± 16.4 g/day and 5.6 ± 3.1 g/day). This corresponded with high levels of aSPY, with 

32.0 ± 13.0 and 1.4 ± 1.13 g/day in the two sites respectively. As previously mentioned, SPY is no 

longer prescribed for human use in the UK, but is continued to be used as a veterinary medication. Both 

SPY and aSPY however are major metabolites of SLZ, which is prescribed for humans as an anti-

inflammatory. In wastewater, SLZ had lower average loads than its respective metabolites, at 7.41 ± 

5.10 and 0.94 ± 0.63 g/day in Bath and Keynsham, previous work has demonstrated SLZ has lower 

recovery and stability comparatively to its two metabolites (Holton et al., 2022). It is likely that SPY 
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and aSPY residues will be present in influent from a combination of consumption of SLZ on the 

community level and other sources, including agricultural run-off of SPY into the sewage system.  

3.1.2.2 Temporal variability 

Total loads of AAs and metabolites in wastewater were generally higher in winter when compared to 

summer (figure 2). Statistical significance was gauged using T-tests to compare the three seasons for 

which most data was available; winter 2018/19, spring 2019 and summer 2019 (table S3). SPY had one 

of the lowest temporal variabilities across the three seasons in both Bath and Keynsham (average loads, 

winter: 47.1 ± 17.6 and 6.6 ± 2.9 g/day, spring: 39.6 ± 15.8 and 5.0 ± 3.8 g/day, summer: 43.5 ± 16.9 

and 6.7 ± 2.9 g/day for Bath and Keynsham respectively, all p>0.05). In Bath, SMX also had low 

temporal variability across the three seasons, with 14.7 ± 5.0 g/day, 14.3 ± 5.7 g/day and 15.5 ± 4.8 

g/day in winter, spring, and summer respectively (on average a 5 % change between seasons, p > 0.05). 

In contrast, slightly higher loads of SMX were observed in Keynsham in summer than in winter (0.68 

± 0.54 g/day vs 1.40 ± 0.71 g/day, p≤0.05), which may reflect differences in prescribing practices across 

the catchment. 

AAs that displayed statistically significant higher loads in winter than in summer included MTZ, SLZ, 

LEX, TET, OTC, CIP, TMP, and the metabolites hMTZ and AMXa (table S3). The AAs with some of 

the highest variabilities across the three seasons in Bath and Keynsham were the macrolides CLR and 

ERY. Statistically significant differences were observed when loads peaked in winter 2018/19 at an 

average load of 32.8 ± 8.7 and 2.4 ± 2.0 g/day for Bath and Keynsham respectively, compared to 

summer loads of 14.5 ± 4.2 and 0.8 ± 0.4 g/day (p≤0.05). Similar observations could be observed for 

CLR and ERY’s major metabolites dmCLR and dmERY. As mentioned previously, CLR and ERY are 

known to have higher prescribing in winter months, when respiratory illness peaks in the UK. 

Respiratory infections tend to follow predictable seasonal patterns in temperate climates (Price et al., 

2019). In colder months, individuals spend more time in enclosed spaces indoors which can lead to 

increases in the spread of infectious diseases. As a result, the total prescribed AA mass is often higher 

in winter- particularly for macrolide, penicillins and cephalosporin classes (Curtis et al., 2019). 

Furthermore, lower loads of ERY in wastewater, compared to CLR,  may be due to the preferences of 

prescribing CLR over ERY due to better tissue penetration, fewer side effects and greater patient 

compliance (Amsden, 1996). 
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Figure 2. Scatter plots of average daily loads of AAs and metabolites in influent wastewater of Bath 

and Keynsham over the sampled period in 2018-2019 

0

10

20

30

40

27/10/2018 04/02/2019 15/05/2019 23/08/2019 01/12/2019

L
o
ad

s 
g
/d

ay

Bath Tetracycline
Oxytetracycline

0

2

4

6

8

03/08/2018 11/11/2018 19/02/2019 30/05/2019 07/09/2019 16/12/2019

L
o
ad

s 
g
/d

ay

Keynsham
Tetracycline

Oxytetracycline

0

20

40

60

80

27/10/2018 04/02/2019 15/05/2019 23/08/2019 01/12/2019

L
o
ad

s 
g
/d

ay

Bath
Ciprofloxacin

0

5

10

03/08/2018 11/11/2018 19/02/2019 30/05/2019 07/09/2019 16/12/2019

L
o
ad

s 
g
/d

ay

Keynsham

Ciprofloxacin

0

2

4

6

8

27/10/2018 04/02/2019 15/05/2019 23/08/2019 01/12/2019

L
o

ad
s 

g
/d

ay

Bath
Ofloxacin (Levofloxacin)

0

0.2

0.4

0.6

0.8

03/08/2018 11/11/2018 19/02/2019 30/05/2019 07/09/2019 16/12/2019

L
o

ad
s 

g
/d

ay

Keynsham Ofloxacin (Levofloxacin)

0

20

40

60

27/10/2018 04/02/2019 15/05/2019 23/08/2019 01/12/2019

L
o

ad
s 

g
/d

ay

Bath Lamivudine

Emtricitabine

0

2

4

6

03/08/2018 11/11/2018 19/02/2019 30/05/2019 07/09/2019 16/12/2019

L
o

ad
s 

g
/d

ay

Keynsham Lamivudine

Emtricitabine

0

10

20

30

27/10/2018 04/02/2019 15/05/2019 23/08/2019 01/12/2019

L
o

ad
s 

g
/d

ay

Bath
Cefalexin

0

5

10

03/08/2018 11/11/2018 19/02/2019 30/05/2019 07/09/2019 16/12/2019

L
o

ad
s 

g
/d

ay

Keynsham
Cefalexin

0

100

200

300

27/10/2018 04/02/2019 15/05/2019 23/08/2019 01/12/2019

L
o
ad

s 
g
/d

ay

Bath
Isonicotinic acid

0

20

40

03/08/2018 11/11/2018 19/02/2019 30/05/2019 07/09/2019 16/12/2019

L
o
ad

s 
g
/d

ay

Keynsham
Isonicotinic acid

0

100

200

300

27/10/2018 04/02/2019 15/05/2019 23/08/2019 01/12/2019

L
o
ad

s 
g
/d

ay

Bath 5-Hydroxy-pyrazinoic acid

0

20

40

60

80

100

03/08/2018 11/11/2018 19/02/2019 30/05/2019 07/09/2019 16/12/2019

L
o
ad

s 
g
/d

ay

Keynsham
5-Hydroxy-pyrazinoic acid



167 
 

Previous work has been undertaken in the same catchment areas (Elder et al., 2021), whilst this study 

in 2015 investigated only a few AAs and a very short (one week) monitoring time, it allowed crossover 

comparison with this work (figure S3). Whilst lower daily averages were observed for SMX in Bath in 

2015 and for CLR in Keynsham in 2018/19, results were comparable for the other AAs between the 

two sampling periods. For example, CIP 17.0 ± 8.9 g/day (2018/19) vs 10.2 ± 5.7 g/day (2015) in Bath, 

with Keynsham CIP levels averaging 2.5 ± 1.5 g/day (2018/19) vs 2.0 ± 1.6 g/day (2015).  

3.2. Temporal variability of ARGs in Bath 

3.2.1 DNA sequencing  

3.2.1.1 Taxonomic profiling  

Metagenomic sequencing was performed on two influent wastewater samples collected from Bath, one 

in November 2018 and other from March 2019. These two samples generated 12.5 million and 15.7 

million paired end reads of average length of 247 and 245 base pairs respectively. After quality control 

and duplicate reads removal the samples contained 5,045,358 and 2,885,808 paired end reads of average 

length 239 and 232 respectively. Taxonomic profiling of each dataset revealed high bacterial diversity 

with a total of 509 bacterial species detected in November 2018 and 848 in March 2019. Taxonomic 

differences have been graphically represented (figure 3), however care must be taken drawing 

conclusions regarding differences in these samples due to the limited number of samples collected (n=1 

each month). Proteobacteria was the dominant phyla in both samples (at 46% and 47% of total phyla 

detected for November and March respectively), with the next dominant reported as Firmicutes, at 25% 

in both samples. These are both frequently reported as the dominant phyla in influent wastewater (Lee 

et al., 2015; McLellan et al., 2010). It has been reported in several studies that horizontal transfer of 

resistance genes occurs in several bacterial phyla, including Proteobacteria, Firmicutes and 

Bacteroidetes (Hu et al., 2016). Furthermore, these phyla are known to be significant reservoirs of 

mobile ARGs and integrons (Hu et al., 2016; Huerta et al., 2013). The high density of bacteria in influent 

wastewater coupled with the chronic exposure to sublethal concentrations of AAs have led to WWTPs 

as hotspots for AMR (Karkman et al., 2018; Rizzo et al., 2013). Regarding potential pathogens of 

concern, the bacteria Pseudomonas aeruginosa was detected in March 2019. The carbapenem resistant 

Pseudomonas aeruginosa, is a pathogen that has been highlighted by WHO as a bacterial species where 

there is a critical need to develop new AAs to treat infections (World Health Organisation, 2017).  

 



168 
 

 

 

Figure 3. Taxonomical comparisons are shown between two metagenomic wastewater samples 

collected from Bath, one sample was collected in November 2018 and the other was collected in March 

2019. Taxa shown as colours were found to be abundant at the corresponding sampling time points, 

while grey nodes indicate taxa that were found in similar proportions at each site. The depth of the 

colour indicates the log2 ratio of median abundances between the two groups. Red taxa represent higher 

abundance in November 2018 and blue taxa represent higher abundance in March 2019. The node size 

indicates the number of OTUs included. 

3.2.1.2 Resistance gene profiling  

In total, 46 ARGs were identified across the two wastewater samples, demonstrating a broad range of 

resistance across different AA classes (table S4). Of the 46 ARGs identified, the highest percentage of 

ARGs was predicted to confer resistance to aminoglycosides and tetracycline classes. With 29% and 

17% of the total ARGs detected for November 2018 being associated with aminoglycosides and 

tetracyclines respectively, with 17% and 23% reported for March 2019 (figure 4). Other dominant 

ARGs were observed for macrolide resistance at 13% and 12% for Nov 2018 and March 2019 

respectively. The resistance mechanisms of identified resistance genes in wastewater samples were also 

explored. The two samples gave very similar compositions, with the dominant resistance mechanisms 

demonstrated as antimicrobial inactivation at 40% and 46% for November 2018 and March 2019 

respectively. This was followed by antimicrobial target protection at 28% and 19% for November 2018 

and March 2019.  
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Figure 4. Composition of resistance gene class types present in influent wastewater November 2018 

(A) and March 2019 (B), below composition of resistance gene mechanism types in November 2018 

(C) and March 2019 (D) 

3.2.2 Absolute concentrations of ARGs quantified with dPCR 

Investigated ARGs were quantified in all wastewater samples extracted from Bath only (table S5). ermB 

was the highest prevalence in extracted samples, with an average concentration of 4.3E+09 ± 1.7E+09 

copies/L across the sampling period respectively. The genes intI1 and sul1 were next prevalent and had 

similar concentration averages again at 5.8E+07 ± 2.1E+07 and 5.5E+07 ± 1.9E+07 copies/L. 

Regarding lowest prevalence, qnrS was the lowest detected gene, at an average concentration of 

2.0E+06 ± 1.8E+06 copies/L. With regards to a previous study done in this catchment area in 2015 on 

three of the same ARGs studied, similar trends in concentrations were observed (ermB > sul1 > qnrS) 

(Elder et al., 2021). Regarding concentration, higher values were observed during this study in 2019 ( 

ermB: 1.8E+08 ± 1.5E+08, sul1: 5.4E+05 ± 3.1E+05 and qnrS: 2.3E+05 ± 10.0E+04 copies/L). 

Variations could be due to a number of reasons including changes in flows, changes in population size, 

and differences in extraction methodology. 
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3.2.3 Daily loads of AAs and ARGs 

Flowrates were also taken into account to give gene loads (table S6). The overall distribution of ARG 

loads and the corresponding resistance AA classes were investigated over the studied period (figure 5). 

AAs from the sulphonamide class were the most prevalent, averaging 63 ± 24 g/day, with macrolides 

and lincosamides following at 26 ± 12 g/day. Quinolones AAs had the lowest prevalence in comparison 

at 20 ± 11 g/day in wastewater. The inclusion of AA metabolites within AA classes did not change this 

overall trend (sulphonamides > macrolides and lincosamides > quinolones), but macrolide and 

sulphonamides class averages did increase to 100 ± 39 g/day and 36 ± 15 g/day respectively. Quinolone 

metabolites were rarely detected, which may be because CIP and OFX are often excreted as parent 

compounds at 30-65% (Bergan et al., 1988) and 73% (Lode et al., 1987) respectively. Another factor 

could be the limited stability of quinolone metabolites in wastewater; it has previously been reported 

degradation between 29-62%, depending on the metabolite, after 24 hours at room temperature (Holton 

et al., 2022). In comparison, dmCLR and the acetyl sulphonamides reported higher stability in the same 

study. With dmCLR demonstrating little to no degradation in wastewater over a 24 hour period at room 

temperature, and sulphonamide metabolites exhibiting degradation between 10-30% over the same time 

period  (Holton et al., 2022). 

  

  
 

Figure 5. A) Box plots of absolute loads of ARGs (copies/day) in wastewater across the sampling period 

B) Box plots of absolute loads of 16S rRNA and intI1 in wastewater C) box plots of total cumulative 

loads of associated parent AAs (g/day) across the sampling period (metabolites have been removed) D) 

box plots of total cumulative loads AAs including metabolites. AAs and metabolites included in each 

class for C) and D) each class are detailed in table S1. 

When investigating seasonal changes or ARGs in wastewater, ermB, sul1 and intI1 observed no 

statistically significant different loads in winter 2018/19 when compared to summer 2019 (table S7). 

Other studies have observed similar results with regards to ARGs in wastewater. One study 

investigating seasonal variation of mecA gene abundance in wastewater (which  confers -lactam 

resistance in  methicillin resistant Staphylococcus aureus (MRSA)), reported variations over a year 

sampling but no obvious seasonal trend (Börjesson et al., 2009). Another study investigated 295 ARGs 

and mobile genetic elements, including resistance associated with tetracyclines, sulphonamides and 

macrolides, observed no significant seasonal variation of ARGs, except the absolute abundance of genes 

peaked during the spring (Zheng et al., 2020). In comparison, qnrS in this study was present in 
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significantly higher loads in summer than in winter (p=0.0018). Further work is required to understand 

this phenomenon.  

Due to relatively stable ARG levels across 13 months monitoring time, limited correlations were 

observed between absolute loads of ARGs and total loads of associated AAs by class (figure 6). 

However, correlations between individual associated AAs and ARGs demonstrated some potential 

correlations where seasonal variability was reported (table S8). Statistically significant positive 

correlations were observed for ermB and the average monthly loads of the macrolides CLR and dmCLR 

(p=0.45, 0.48 and 0.58 for CLR, dmCLR r≤0.05). Other statistically significant correlations again 

showed weakly positive correlations between aSPY and sul1 (p=0.28, r≤0.05) and OFX and qnrS 

(p=0.35, r≤0.05). A limitation here is that only a small number of ARGs were selected in this study, 

with one chosen representative ARG from each class. Expanding on the number of ARGs for each class 

would give a wider picture on overall resistance.  

 

 

 
Figure 6. Daily loads of AAs by class and total loads of associated ARGs in influent wastewater in the 

studied period. Error bars represent standard deviation, n=2. A) macrolides and lincosamides AAs and 

ermB gene loads B) sulphonamide AAs and sul1 gene loads C) quinolone AAs and qnrS gene loads.  
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Several studies have investigated relationships in environmental settings between certain AA classes 

and respective genes in wastewater (Huerta et al., 2013). For instance, correlations between abundance 

of TET genes and tetracycline levels (Li et al., 2015; Xu et al., 2015) and sul genes and sulphonamides 

(Gao et al., 2012). Regarding macrolides, Rodriguez-Mozaz et al. reported significant positive 

correlations between CIP and qnrS, OFX and qnrS, CLR and ermB, and SMX and sul1 in wastewater 

streams, but no significant correlation between AZM and ermB (Rodriguez-Mozaz et al., 2015). Other 

studies however have observed weak correlations, or not statistically significant relationships,  between 

TET genes and tetracyclines (Gao et al., 2012) and sul genes and sulphonamides (Xu et al., 2015).  

AGR levels in this study (other than qnrS) did not exhibit seasonal variation. Statistical tests in this 

study have demonstrated that for several AAs, the levels do not change much (or at all), it is therefore 

not expected to observe significant seasonal changes in ARG levels. This longitudinal study focused on 

temporal observations of changes to daily AAs and ARGs loads. The population remains relatively 

constant (<±20%) as the city of Bath is studied across only a 13-month period.  This is opposed to our 

previous studies which studied more locations with varying population sizes but focused on a shorter 

time period (Castrignanò et al., 2020; Elder et al., 2021). Elder et al. observed positive correlations 

between fluoroquinolones and qnrS loads between different locations (r = 0.997, p < 0.004) (Elder et 

al., 2021). The study also observed strong positive correlations between macrolide AAs and ermB 

(r=0.928, p <0.0002). However, it was highlighted that strong positive correlations were observed with 

both AA and gene loads with population size. It was theorised that correlations between AAs and gene 

loads are likely linked to population size as a key driving force. Furthermore in the case for ermB, it has 

been reported that abundance of this gene in influent wastewater could be heavily influenced by the 

presence of ermB in common gut bacteria (Pallares-Vega et al., 2021). Other studies have found that 

global variation between gene abundance strongly correlates with socio-economic, environmental, and 

health factors (Hendriksen et al., 2019), but these do not vary significantly between these two 

neighbouring sites.  

In this study, <±20% population change might occur at certain times in Bath due to student population 

and visitors to the city. This change is within method uncertainties, and as such, might not lead to a 

measurable, statistically significant difference e.g. between seasons. The results presented here support 

our hypothesis that human population and its size, is a significant driver of AA and ARG levels in the 

environment. In conclusion, ARG levels show higher spatial inter-city rather than temporal intra-city 

variability which indicates their endemic, community driven nature rather than short term fluctuations 

in season driven AA usage. 

3.2.4 Population and 16S normalised  

To make fair comparisons between datasets and to aid in accounting for variabilities in the extraction 

protocol, gene loads can be normalised to 16S rRNA to measure the estimated abundance of 

microorganisms present in the sample and to investigate possible selection occurring (table S6). 

Relative correlations of ARGs (normalised to 16S rRNA) with associated AAs were also investigated 

(table S8 and S9). In general, normalising each of the gene targets to 16S rRNA did not change the 

patterns of gene loads observed across samples. Gene loads were also normalised to the human 

population of Bath to calculate gene loads per capita; these were positively correlated to gene loads 

normalised by 16S rRNA (figure 7). This observation is an important one. It indicates that the abundance 

of microorganisms is proportional to the size of human population (as already shown in our previous 

paper (Elder et al., 2021) and Kasprzyk-Hordern et al. (Kasprzyk-Hordern et al., 2022) where strong 

linear correlation was observed between 16S rRNA and population size: R2 = 0.8786, r = 0.9373 p value: 

0.018657). Our data this further confirm that community size is a major driver of ARG levels in 

wastewater. 
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r =0.56, p≤0.05 

 

r=0.41. p≤0.05 

 
r=0.77, p≤0.05 

 
r=0.46, p≤0.05 

Figure 7. Average daily loads of ARGs normalised to 16S rRNA and human population size (loads per 

capita) 

3.2.5. intI1 and ARGs  

Relative abundance of intI1, the clinical class 1 integron-integrase gene, has been previously suggested 

as a suitable proxy for anthropogenic pollution (Gaze et al., 2011; Gillings et al., 2015). This has been 

attributed to its association to a diverse number of genes that confer resistance to AAs, metals and 

disinfectants, plus it can be found in a number of bacteria (pathogenic and non-pathogenic). The 

abundance of this gene can also change rapidly due to changes in the environment, as host cells have 
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B) sul1 Average daily sul1 load (16S rRNA norm.)
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C) qnrS Average daily qnrS load (16S rRNA norm.)
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rapid generation time and adapt to selective pressures of the environment. Recent work has also 

proposed that clinical intI1 could be used to indicate the abundance of ARGs and to monitor the removal 

of ARGs in the wastewater treatment process (Zheng et al. 2020). 

A common characteristic of intI1 is its occurrence alongside sulphonamide resistance (M. Gillings et 

al. 2008). As a result, positive correlations are usually  observed between abundances of intI1 and sul1  

in wastewater (Makowska et al., 2016; Zieliński et al., 2021). Results in this study showed agreement 

with this, demonstrating strong positive correlations between absolute and relative wastewater loads of 

intI1 and sul1 (r = 0.90, p = < 0.05 absolute loads, r = 0.90, p = <0.05 relative loads). Correlations of 

intI1 with other genes investigated were not observed (table S8 and S9). 

3.3. Hospital input into AA and ARG levels in city wastewater 

A range of AAs covering different classes were quantifiable in hospital effluent (table S10). Regarding 

ARGs, all seven targets were quantifiable in all samples (S11 and S12). The most prevalent ARG in 

hospital effluent was ermB, at 5.04E+09 ± 2.11E+09 copies/L; with qnrS having the lowest prevalence 

2.96E+06 ± 2.92E+06 copies/L (figure 8). The two additional genes investigated in hospital effluent, 

TetM and bla-TEM, had similar abundances in general, at 8.71E+06 ± 5.05E+06 and 6.38E+06 ± 

5.00E+06 copies/L respectively. Finally, the ARGs, qnrS and tetM both had low prevalence when 

compared to other studied genes and observed similar concentrations to each other in hospital effluent.   
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Figure 8. Box plot of concentrations in A) ARGs in hospital effluent; B) 16S rRNA and intI1 in hospital 

effluent; C) ARGs in community wastewater (Bath), August 2019; D) 16S rRNA and intI1 in community 

wastewater (Bath), August 2019; E) total AAs grouped by class with metabolites removed in hospital 

effluent; F) total AAs grouped by class with respective metabolites included in hospital effluent; G) 

total AAs grouped by class with metabolites removed in community wastewater (Bath) in August; and 

H) total AAs grouped by class with respective metabolites included in community wastewater (Bath) 

in August. 

The overall abundances of AAs linked to the ARGs studied in hospital effluent vs community 

wastewater were also considered (figure 8). Concentrations of total AAs classes in hospital effluent 

were generally higher than community wastewater. Focusing on hospital effluent, the macrolides and 

lincosamides were measured at the highest abundance, with five-day averages at 50 ± 43 μg/L and 30 

± 24 μg/L, with and without metabolites respectively. Excluding metabolites, AAs from the beta-lactam 

class reported the next highest loads with five-day averages at 9 ± 8 μg/L, followed by those in the 

sulphonamide class at 3 ± 2 μg/L. When including metabolites, due to elevated levels of aSMX on the 

06/08/2019 (147 ± 14 μg/L), sulphonamides observed the highest average after macrolides at 40 ± 67 

μg/L with beta-lactams at 11 ± 7 μg/L. Quinolone and tetracycline AA were in the lowest abundance in 

hospital effluent giving five-day averages at 1.0 ± 1.6 μg/L and 0.02 ± 0.03 μg/L.  

Interestingly, several AAs were present in hospital effluent that were not observed at all or with very 

low frequency in community wastewater, likely due to dilution of hospital wastewater with communal 
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discharge (table S12). Many AAs and metabolites were also observed in high concentrations. This is 

likely due to, with shorter sewage residence time, lower volume of flow and concentration of individuals 

at the source requiring AAs. LZD is an oxazolidinone antibiotic which is used in severe bacterial 

infections in the UK. It is often prescribed in hospital environments as it requires specialist supervision 

(National Institute for Health and Care Excellence, n.d.). It can be used to treat serious respiratory illness 

(pneumonia) and to treat skin and soft tissue infections caused by methicillin resistant Staphylococcus 

aureus (MRSA). It has also been identified by WHO as a recommended treatment of multi-resistant TB 

(World Health Organisation, 2019). Whilst LZD was not detected in community wastewater, three of 

the hospital effluent samples observed levels between 0.03 and 5.2 μg/L. AMX on the other hand is 

prescribed in both community and hospital settings and is a popular AA due to its effectiveness against 

both gram-negative and gram-positive infections. AMX was not detected in any samples in community 

wastewater but was quantifiable in all hospital effluent samples, ranging between 0.3 and 6.0 μg/L. The 

absence of AMX in community wastewater is likely due to lack of stability of the constrained beta-

lactam ring (Hirte et al., 2016).  

Fluoroquinolones are frequently found at  high  levels in  hospital effluents, particularly in comparison 

to municipal wastewater (Rodriguez-Mozaz et al., 2015; Varela et al., 2014). Fluroquinolone AAs are 

used to treat a range of infections, from, combined with their stability and they are often excreted as 

parent compounds in urine (30-85%) (Novelli and Rosi, 2017), explains their high prevalence in 

environmental matrices. Regarding CIP, the average levels in hospital effluent for the five days were 

reported at 0.9 ± 1.6 µg/L, in comparison to the yearly average of CIP in community wastewater at 0.52 

± 0.24 µg/L.  The highest concentrations of CIP were reported on the 06/08/2019 in hospital effluent at 

3.9 ± 0.5 μg/L. Similar variable concentrations of CIP have been reported elsewhere in hospital effluents 

(Aydin et al., 2019; Varela et al., 2014; Verlicchi et al., 2012), with some studies reporting significantly 

higher quantities, ranging 101-236 µg/L (Diwan et al., 2010; Lindberg et al., 2004). 

Other AAs in higher concentrations in hospital effluent (relative to community wastewater) included 

SMX, TMP, and MTZ. With SMX ranging from 0.22-.4.23 µg/L and TMP between 0.6-7.6 µg/L, these 

corresponding high levels are likely as SMX and TMP are often co-prescribed together. These are in 

range with other reports of hospital effluents; SMX has been reported between 0.15-373 µg/L (Aydin 

et al., 2019; Lindberg et al., 2004; Rodriguez-Mozaz et al., 2015; Verlicchi et al., 2012) and TMP at 

0.14 and 7.6 µg/L (Lindberg et al., 2004; Rodriguez-Mozaz et al., 2015; Verlicchi et al., 2012). MTZ 

ranged from 10.2-17.1 µg/L in hospital effluent. High quantities of MTZ have also been reported in 

hospital streams in Sweden (Lindberg et al., 2004), Spain (Gómez et al., 2006) and Vietnam (Lien et 

al., 2016). High levels in hospital effluent were also noted with respective metabolites aSMX (0.7-146.6 

µg/L) and hMTZ (6.8-37.6 µg/L). Whilst higher concentrations were often observed for hospital 

wastewater when compared with community wastewater, several AAs had the opposite trend. For 

example, TET and OTC had lower concentrations reported in hospital effluent when compared to 

community wastewater, with OTC at 0.05 ± 0.03 and 0.24 ± 0.16 µg/L, respectively; and TET at 0.03 

± 0.01 and 0.13 ± 0.08 µg/L. This could be attributed to the specific AA usage, TET and OTC are not 

typically associated with hospitals in the UK, being largely used to treat chlamydia and skin conditions, 

such as acne and rosacea. 

Plotting sample composition by AA class for samples collected in August 2019 (figure 9) demonstrated 

a high percentage of macrolides in hospital effluent (43%) compared to community wastewater influent 

(12%). Interestingly a higher percentage composition of sulphonamides was observed for community 

wastewater (37%) versus hospital effluent (15%). A similar trend was noted for antiretrovirals, with 

AAs of this class making up 7% of community wastewater, compared to <1% of hospital effluent. By 

comparing percentage catchment prescription versus hospital prescriptions in August 2019 (figure 12), 

the percentage of sulphonamides prescribed in hospitals was significantly higher than in the wider 

catchment (57% versus 33% respectively). Prescriptions of macrolides however were lower in hospital 

prescribing (2%) in comparison to community prescribing (7%). Why the same composition patterns 



177 
 

were not reflected in wastewater is likely due to various reasons, including metabolism and degradation 

of AAs in wastewater, as well as patient compliance. 

When comparing between community wastewater and hospital effluent in August 2019, comparable 

concentrations of resistant genes were observed (figure S4). A similar observation has been reported 

with Rodriguez-Mozaz et al., where the absolute concentration of  genes blaTEM, qnrS, ermB, sul1, 

and tetW had comparable abundances between hospital and urban wastewater (Rodriguez-Mozaz et al., 

2015). Furthermore, when investigating relationships between ARGs in hospital effluent, no clear 

relationship was established (table S13 and S14). This supports the theory that AMR levels are more of 

an endemic nature, developing over time in individual communities. This is also reflected in the low 

variability of AA prescribing. 

AAs  

Community wastewater (Bath WWTP influent) Hospital wastewater  

  

Catchment Prescription  Hospital prescription 

 
 

Figure 9. Comparisons in concentration composition of AA classes in community (A) and hospital (B) 

wastewater (n=1) in August 2019. C) Percentage comparison of prescriptions by AA class of RUH 

versus the rest of the catchment in August 2019.  

3.4. Wastewater as a hotspot of AMR: measured vs predicted no effect concentrations 

It is considered that the exposure of sublethal concentrations of AAs to bacterial communities present 

in wastewater streams could lead to selective pressures of ARGs and could influence the microbial 

ecology (Chow et al., 2021). However, this relationship between AAs and ARGs, particularly in aquatic 

environments (wastewater, surface waters etc) is not always clear. Predicted no effect concentrations 

(PNECs), have been considered to explore whether AA levels are high enough to influence ARG 
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abundance – they predict the concentration that a chemical, if exceeded, will likely cause adverse effects 

in an ecosystem. This can be used to investigate whether hospital effluent poses a higher risk, compared 

to community wastewater. PNECs often guide environmental risk assessments and, in the case of AMR, 

identify the risk of AAs in environmental matrices.  

The PNEC table consists of two different values; (1) PNEC-Minimum inhibitory concentration (PNEC-

MIC), published by Bengtsson-palme and Larsson (Bengtsson-Palme and Larsson, 2016), based on 

resistance promotion, and derived from EUCAST breakpoint data for AAs; (2) Environmental PNEC 

(PNEC-ENV),  based on eco-toxicology, and intended to protect ecological systems. The lowest of the 

two PNEC values are used to regulate environmental AA levels. Hospitals have previously been 

highlighted as an area of concern. One study measuring particularly high AA burdens estimated 44% 

of AAs exceeded the PNEC values (Booth et al., 2020). This was in comparison to municipal 

wastewater, with 9% of AAs exceeding PNECs.  

Average concentrations across the sampling period, for both hospital and community wastewater, have 

been compared with the PNEC values (Table 3). A handful of AAs were reported to have concentrations 

that fell below PNEC values for both hospital and community wastewater, including TET, OTC, and 

CHL. However, several AAs exceeded the PNEC in both communal and hospital wastewater, including 

CLR with average concentrations 0.47 ± 0.32 and 0.72 ± 0.31 μg/L in hospital and domestic wastewater 

respectively, above the PNEC of 0.08 μg/L. Similar observations were observed for CIP, with average 

concentrations 0.93 ± 1.66 and 0.52 ± 0.24 μg/L in hospital and domestic wastewater, again above the 

PNEC value of 0.064 μg/L. Both CIP and CLR have been previously reported to exceed the PNEC 

values, in a range of environmental matrices including hospital, municipal and surface waters (Booth 

et al., 2020; Hartmann et al., 1998). The levels exceeding PNEC values could have the potential to 

promote AMR.   

Table 3. Average concentrations of AAs in hospital effluent (five days sampled) and Bath (community) 

wastewater over the year along with respective PNEC values 

Bath Average Wastewater Concentration ug/L  PNEC ug/L    

AA Hospital  Community  PNEC-MIC PNEC-ENV Lowest PNEC  

Chloramphenicol  0.18 ± 0.09 0.15 ± 0.17 8 N/A 8 

Sulfamethoxazole 1.47 ± 1.58 0.46 ± 0.19 16 0.6 0.6 

Azithromycin 39.5 ± 41.56 0.31 ± 0.30 0.25 0.02 0.02 

Clarithromycin 0.47 ± 0.32 0.72 ± 0.31 0.25 0.08 0.08 

Erythromycin 2.20 ± 2.31 0.06 ± 0.05 1 0.5 0.5 

Ciprofloxacin 0.93 ± 1.66 0.52 ± 0.24 0.064 0.57 0.064 

Ofloxacin 0.04 ± 0.05 0.04 ± 0.03 0.5 (levofloxacin)  10 0.5 (levofloxacin)  

Amoxicillin 11.13 ± 8.92 - 0.25 N/A 0.25 

Clindamycin 0.27 ± 0.43 0.04 ± 0.02 1 0.1 0.1 

Metronidazole 12.49 ± 3.40 0.23 ± 0.09 0.125 N/A 0.125 

Nitrofurantoin 0.52 ± 0.51 - 64 N/A 64 

Oxytetracycline 0.05 ± 0.03 0.24 ± 0.16 0.5 18 0.5 

Tetracycline 0.03 ± 0.01 0.13 ± 0.08 1 3.2 1 

Ethambutol 0.07 ± 0.05 0.11 ± 0.12 2 N/A 2 

Sulfadiazine  - 0.008 ± 0.007 N/A 13 13 

Trimethoprim  3.25 ± 2.76 0.33 ± 0.12 0.5 100 0.5 

Flucloxacillin  5.66 ± 5.97 0.44 ± 0.23    

* Highlighted values exceed the lowest PNEC value  
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Several AAs exceeded PNECs in hospital effluent, but often fell below in community wastewater (table 

S15). For example, AA concentrations in hospital and community wastewater respectively: SMX 1.47 

±1.58 and 0.46 ± 0.19 μg/L, PNEC of 0.6 μg/L; ERY 2.20 ± 2.31 vs 0.06 ± 0.05 μg/L, PNEC of 0.5 

μg/L; and TMP 3.25 ± 2.76 and 0.33 ± 0.12 μg/L, PNEC at 0.5 μg/L.  Thus for certain AAs, hospital 

effluents could pose a greater risk of selective pressures of ARGs. The hospital effluent contribution to 

Bath will likely contribute a small amount to the overall wastewater reaching the WWTP, however the 

unique environment that hospital effluents constitute (with concentrated AAs exceeding PNECs), 

highlights the importance of including hospitals in AMR surveillance. 

However, previous work by Stanton et al. has observed that environmental concentrations of macrolide 

AAs (ERY, CLR, and AZM) do not positively select for resistance genes (Stanton et al., 2020). Instead, 

lowest observable effect concentrations in this study for macrolides were significantly higher than 

PNECs and the measured environmental concentrations. In this case, it was theorised that PNECs for 

macrolides could be underestimated when considering combined exposure effects. The same study also 

demonstrated for CIP, (whilst no significant selection of qnrS was observed), positive selection of intI1 

at environmentally relevant concentrations were demonstrated (> 7.8 and <15.6 µg/L). Due to this the 

authors theorised the likelihood that genes conferring resistance to different antimicrobials may also be 

co-selected by CIP, due to intI1 association (e.g. sul1 gene is frequently found on the class 1 integrons 

backbones). Results such as these could potentially indicate AA levels do not drive ARG levels in 

wastewater. This study has not only highlighted the need for compound specific assessment for selective 

potential of genes, but also that further research is essential for more informed AA and ARG regulation, 

for both environmental and public health purposes. 

4. Conclusions  

The manuscript presented results form a 13-month longitudinal study (with randomised sampling of 4 

samples per week) aimed at providing insight into antimicrobial agents (AA) usage within two 

communities in the South West of the UK: Bath (120K inh city) and smaller Keynsham (30K inh town), 

and ARGs prevalence in community and hospital wastewaters with an overarching aim to test if there 

are correlations between AB usage and AGR prevalence. The key conclusions are as follows: 

1. AA loads were higher in Bath than in Keynsham, corresponding to the larger population, 

indicating that AA usage is population size driven.  

2. Several AAs in wastewater had higher loads in winter when compared to summer, including 

macrolide AAs and metabolites, aligning with increases in winter respiratory infections. In 

contrast, AAs such as sulfamethoxazole and sulfapyridine, stayed consistent over the study 

period. 

3. As opposed to antibiotics, ARGs were found to be less variable, which indicates that 

fluctuations in antibiotic usage might either not directly affect ARG levels or this process spans 

beyond the 13-month monitoring period. However, it is important to note that weekly positive 

correlations between individual associated AAs and ARGs were observed where seasonal 

variability in AB use was reported: ermB and macrolides CLR and dmCLR (p=0.45, 0.48 and 

0.58 for CLR, dmCLR r≤0.05), aSPY and sul1 (p=0.28, r≤0.05) and OFX and qnrS (p=0.35, 

r≤0.05).  

4. Gene loads normalised to 16S rRNA (gene load per microbe) were positively correlated to the 

gene loads normalised to the human population (gene load per capita), which indicates, yet 

again, that the abundance of microorganisms is proportional to the size of human population 

and that the community size is a major driver of ARG levels in wastewater. 

5. ARG levels show higher spatial inter-city rather than temporal intra-city variability which 

indicates their endemic, community driven nature rather than impacts from short term 

fluctuations in season driven AB usage. 
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6. Comparison of hospital and community wastewater showed higher number of AAs and their 

metabolites, their frequency of occurrence and concentrations in hospital wastewater. This is 

likely due to, with shorter sewage residence time, lower volume of flow and concentration of 

individuals at the source requiring AAs when compared to community wastewater. Examples 

include: LZD (used only in severe bacterial infections) and AMX (widely used, also in 

community but with very low wastewater stability) that were found only in hospital wastewater. 

CIP, SMX, TMP, and MTZ, macrolides were found at much higher concentrations in hospital 

wastewater while TET and OTC, as well as antiretrovirals had an opposite trend as these AAs 

are used in communities to treat milder conditions. In contrast, comparable concentrations of 

resistant genes were observed in both community and hospital wastewater. This supports the 

hypothesis that AMR levels are more of an endemic nature, developing over time in individual 

communities.  

7.  

Both hospital and community wastewater had AAs that exceeded PNEC values (e.g. CLR, 

CIP). In general, though, hospital effluents had a greater number of quantifiable AAs 

exceeding PNECs (e.g. SMX, ERY, TMP).  Hospitals are therefore an important 

consideration in AMR surveillance as could be high risk areas for AMR.  
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Water quality indicators (WQIs) methodology 

Water quality indicators (WQIs) were analysed at Wessex Water. An Aquakem (Thermo Scientific) 

analyser was used for the quantitative measurement of water quality indicators, with the exception of 

COD. COD was analysed spectrophotometrically. Briefly, samples, either shaken or settled, were 

oxidised in tubes with chromic acid, a mixture of potassium dichromate, sulphuric acid in the presence 

of silver sulphate as a catalyst and mercuric ions to counteract interference from chloride.  The sealed 

tubes are heated to 150 °C for three hours, cooled, and the degree of oxidation determined by 

spectrophotometry.  The procedure is calibrated by processing a solution of potassium hydrogen 

phthalate as a standard material. 

Al, Fe and Mn were analysed via inductively coupled plasma mass spectrometry (ICP/MS), firstly 

digestion of sample at 80 ± 5C overnight in an acidic medium occurs to bring the metals into solution. 

Turbid samples are filtered by digestion before diluting and dosed with internal standard (Scandium, 

Gallium, Indium and Thallium). Al: Limits of quantification (LOQ),  0.01 mg/L, range: 0.01-2.00 mg/L. 

Fe: LOQ, 0.02 mg/L, range: 0.01-2.00 mg/L. Mn: LOQ, 0.001 mg/L, range: 0.001-0.500 mg/L. 

Dissolved organic carbon (DOC) and total organic carbon (TOC). A SKALAR analyser was utilised 

for the analysis of dissolved organic carbon (DOC) and for total organic carbon (TOC). For TOC, 

samples are acidified to pH <3 to allow for the removal of all inorganic carbon prior to a digestion step. 

Digestion is achieved by pumping the digested mixture into a quartz mixing coil around a ultraviolet 

(UV) light source. Following this, dialysis is performed where a dialyzer separates the sample stream 

with the colour reagent stream by a CO2 semi-permeable membrane. For dissolved organic carbon, an 

aliquot of samples are first filtered through a 0.4 μm GF/F Glass Microfiber Filters Diameter 47 mm. 

Limit of detection (LOD) is 0.4 mg/L with LOQ of 0.45 mg/L, range: 0-12 mg/L. Suspended solids: a 

known volume of sample is filtered through a previously washed, dried and weighed filter paper. After 

drying, the filter paper is re-weighed and the suspended solids deposited on the paper can be calculated. 

LOD, 5 mg/L if 200 mL of sample is filtered and 2 mg/L if 1000 mL of sample is filtered.  

Biological oxygen demand (BOD): samples are diluted as necessary before incubating at 20  0.5 °C 

in the dark for five days (117.5 ± 4.5 hrs). Following this, the sample is then seeded with bacteria of 

appropriate activity. The concentration of dissolved oxygen in the sample can then be determined both 

before and after the incubation period. The difference between these two readings can be used to 

calculate the BOD of the sample.  

Phosphorus levels was determined via inductively couple plasma optical emission spectrometry (ICP-

OES) using an Agilent 5110 system. Calibration range, 0-2 ppm. 

 

Ammonia N: utilises ammonia reaction with sodium salicylate and hypochlorite ions, which are 

generated in situ by the alkaline hydrolysis of sodium dichloroisocyanurate.  The absorbance of a blue 

product formed at pH 12.6 in the presence of sodium nitroprusside is measured spectrophotometrically 

at 660 nm and related to the ammonia concentration in the sample by means of a calibration curve 

(LOQ, 0.02 mg/L, range: 0.02-100 mg/L). 

N total (TON): Nitrate is reduced to nitrite by hydrazine under alkaline conditions, using copper (II) 

ions as a catalyst.  The total nitrite is then treated with sulphanilamide and N-1-

naphthylethylenediamine dihydrochloride under acidic conditions (in the presence of orthophosphoric 

acid). The absorbance of a characteristic pink azo – dye is measured spectrophotometrically at 540 nm 

and related to the total oxidised nitrogen concentration in the sample by means of a calibration curve 

(LOQ, 0.3 mg/L, range: 0.3-50 mg/L). 

Nitrite:  The diazotisation of sulphanilamide by nitrite in the presence of orthophosphoric acid, at pH 

1.9, leads to the formation of an azo-dye with N-1-napthylethylenediamine.  Its absorbance is then 
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measured at 540 nm and is related to the nitrite concentration by means of a calibration curve (LOQ, 

0.03 mg/L, range: 0.03-10 mg/L). 

Nitrate: Nitrate is calculated using TON minus Nitrite.  The calculation takes place after the samples 

have been analysed for both chemistries.  

Ortophosphate:  Orthophosphate ions react with a solution containing molybdic acid, ascorbic acid and 

antimony (II) ions in the presence of acid, to form a 12-molybdophosphoric acid.  This is reduced in 

situ to a blue heteropoly compound (phosphomolybdenum blue) in which antimony is incorporated.  

The absorbance of the compound is measured spectrophotometrically at 880 nm and related to the 

orthophosphate concentration in the sample by means of a calibration curve.  Soluble reactive 

phosphorus uses the same method as above, but the sample is filtered through a 0.45µm filter prior to 

analysing (LOQ, 0.06 mg/L, range 0.6-20 mg/L).  

Chloride: Chloride ions were mixed with acid chloride colour reagent containing mercury (II) 

thiocyanate.  The released thiocyanate ions then react in acid solution with iron (III) nitrate to give a 

reddish-brown coloured iron (III) thiocyanate complex.  The resulting intensity of the stable colour 

produced is measured at a wavelength of 480 nm and is related to the chloride concentration by means 

of a calibration curve (LOQ 1 mg/L, range 1-1000 mg/L). 

Results in studied sampling period:  

Bath  

 

 

  

Keynsham  
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Figure 8. WQIs for Bath and Keynsham, plotted with two point moving averages trendlines.  
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Table S1: Chemical information of AA targets, ordered by class groupings, table taken from Holton and Kasprzyk-Hordern, 2021, https://rdcu.be/cxqhT  

        

        
Grouping Chemical Abbrev Class A Class B CAS No. Salt form θ Molec. Formula M.I. mass Supplier 

Sulfonamide & Sulfadiazine SDZ Sulfonamide Parent 68-35-9  C10H10N4O2S 250.05 
Sigma-

Aldrich 

Trimethoprim Sulfapyridine SPY Sulfonamide Parent 144-83-2  C11H11N3O2S 249.06 
Sigma-
Aldrich 

 Sulfamethoxazole SMX Sulfonamide Parent 723-46-6  C10H11N3O3S 253.05 
Sigma-

Aldrich 

 Sulfasalazine SLZ Sulfonamides Parent 599-79-1  C18H14N4O5S 398.07 
Sigma-

Aldrich 

 Trimethoprim TMP Trimethoprim  Parent 738-70-5  C14H18N4O3 290.14 
Sigma-
Aldrich 

 N-acetyl sulfadiazine  aSDZ Sulfonamide Metabolite 127-74-2  C12H12N4O3S 292.06 TRC 
 N-acetyl sulfapyridine  aSPY Sulfonamide Metabolite 19077-98-6  C13H13N3O3S 291.07 TRC 
 N-acetyl sulfamethoxazole  aSMX Sulfonamide Metabolite 21312-10-7  C12H13N3O4S 295.06 TRC 
 4-hydroxy-trimethoprim  hTMP Trimethoprim Metabolite 112678-48-5  C14H18N4O4 306.13 TRC 

Macrolide Azithromycin AZM Macrolide Parent 83905-01-5  C38H72N2O12 748.51 LCG 

& Lincomycin Erythromycin ERY Macrolide Parent 114-07-8  C37H67NO13 733.46 
Sigma-

Aldrich 

 Clarithromycin CLR Macrolide Parent 81103-11-9  C38H69NO13 747.48 
Sigma-

Aldrich 

 Clindamycin CLI Lincomycin Parent 18323-44-9 Hydrochloride C18H33ClN2O5S 424.18 
Sigma-
Aldrich 

 N-desmethyl azithromycin  
dmAZ

M 
Macrolide Metabolite 172617-84-4  C37H70N2O12 734.49 TRC 

 N-desmethyl erythromycin A  
dmER

Y 
Macrolide Metabolite 992-62-1  C36H65NO13 719.45 TRC 

 N-desmethyl clarithromycin  dmCLR Macrolide Metabolite 101666-68-6  C37H67NO13 733.46 TRC 
 N-desmethyl clindamycin  dmCLI Lincomycin Metabolite 22431-45-4  C17H31ClN2O5S 410.16 TRC 

β-LACTAMS          

Penicillin Amoxicillin AMX Penicillin Parent 26787-78-0  C16H19N3O5S 365.10 Fluka 
 Ampicillin AMP Penicillin Parent 69-53-4 Trihydrate C16H19N3O4S 349.11 Fluka 
 Flucloxacillin FLX Penicillin Parent 5250-39-5 Sodium C19H17ClFN3O5S 453.06 Fluka 
 Penicillin G PenG Penicillin Parent 113-98-4 Sodium C16H18N2O4S 334.10 Fluka 

 Penicillin V PenV Penicillin Parent 132-98-9 Potassium C16H18N2O5S 350.09 
Sigma-
Aldrich 

 Amoxicilloic acid AMXa Penicillin Metabolite 42947-63-7 ¥ Trisodium salt C16H21N3O6S 383.12 TRC 
 Ampicilloic acid AMPa Penicillin Metabolite 32746-94-4  C16H21N3O5S 367.12 TRC 
 Penicilloic G acid PenGa  Penicillin Metabolite 11039-68-2  C9H14N2O5S 262.06 TRC 

Cefalosporin Cefalexin LEX Cefalosporin Parent 23325-78-2 Monohydrate C16H17N3O4S 347.09 Fluka 

https://rdcu.be/cxqhT


192 
 

 Cefixime CFM Cefalosporin Parent 79350-37-1 Trihydrate C16H15N5O7S2 453.04 Fluka 
 Ceftiofur CTF Cefalosporin Parent 104010-37-9  C19H17N5O7S3 523.03 Fluka 

 Ceftriaxone CRO Cefalosporin Parent 104376-79-6 Disodium hemi(heptahydrate) C18H18N8O7S3 554.05 
Sigma-
Aldrich 

Monobactam Aztreonam ATM Monobactam Parent 78110-38-0  C13H17N5O8S2 435.05 TRC 

Carbapenem 
Imipenem IPM Carbapenem Parent 64221-86-9  C12H17N3O4S 299.09 

Sigma-
Aldrich 

 Meropenem MEM Carbapenem Parent 119478-56-7 Trihydrate C17H25N3O5S 383.15 
Sigma-

Aldrich 

Quinolone Besifloxacin BSF Quinolone Parent 405165-61-9 Hydrochloride C19H21ClFN3O3 393.13 MCE 
 Ciprofloxacin CIP Quinolone Parent/Metab. 85721-33-1  C17H18FN3O3 331.13 Fluka 
 Danofloxacin DFX Quinolone Parent 119478-55-6 Mesylate C19H20FN3O3 357.15 LCG 

 Enrofloxacin ENR Quinolone Parent 93106-60-6  C19H22FN3O3 359.16 
Sigma-

Aldrich 
 Flumequine FLU Quinolone Parent 42835-25-6  C14H12FNO3 261.08 Fluka 
 Gatifloxacin GAT Quinolone Parent 112811-59-3  C19H22FN3O4 375.16 TRC 

 Lomefloxacin LOM Quinolone Parent 98079-52-8 Hydrochloride C17H19F2N3O3 351.14 
Sigma-
Aldrich 

 Moxifloxacin MXF Quinolone Parent 268545-13-7 Hydrochloride C21H24FN3O4 401.18 MCE 
 Nadifloxacin NAD Quinolone Parent 124858-35-1  C19H21FN2O4 360.15 MCE 

 Nalidixic acid NAL Quinolone Parent 389-08-2 Sodium C12H12N2O3 232.08 
Sigma-

Aldrich 

 Norfloxacin NOR Quinolone Parent 70458-96-7  C16H18FN3O3 319.13 
Sigma-

Aldrich 

 Ofloxacin (Levofloxacin) * OFX Quinolone Parent 82419-36-1  C18H20FN3O4 361.14 
Sigma-
Aldrich 

 Prulifloxacin PFLX Quinolone 
Parent 

(prodrug) 
123447-62-1  C21H20FN3O6S 461.11 

Sigma-

Aldrich 
Grouping Chemical Abbrev Class A Class B CAS No. Salt form θ Molec. Formula M.I. mass Supplier 

 Sarafloxacin SRF Quinolone Parent 91296-87-6 Hydrochloride C20H17F2N3O3 385.12 
Sigma-

Aldrich 
 Desethylene ciprofloxacin deCIP Quinolone Metabolite 528851-31-2 Hydrochloride C15H16FN3O3 305.12 TRC 
 Hydroxy-norfloxacin  hNOR Quinolone Metabolite 109142-49-6  C16H18FN3O4 335.13 TRC 
 Ofloxacin N-oxide OFXo Quinolone Metabolite 104721-52-0 Acetic acid salt C18H20FN3O5 377.14 TRC 

 Desmethyl-ofloxacin  
dmOF

X 
Quinolone Metabolite 82419-52-1  C17H18FN3O4 347.13 TRC 

 Ulifloxacin UFX Quinolone Metabolite  112984-60-8  C16H16FN3O3S 349.09 TRC 

TB (1st line) Isoniazid INH Isoniazid Parent 54-85-3  C6H7N3O 137.06 
Sigma-

Aldrich 

 Pyrazinamide PZA Pyrazinamide Parent 98-96-4  C5H5N3O 123.04 
Sigma-
Aldrich 

 Ethambutol EMB Ethambutol Parent 74-55-5 Dihydrochloride C10H24N2O2 204.18 
Sigma-
Aldrich 

 Rifampicin RMP Rifamycin Parent 13292-46-1  C43H58N4O12 822.41 
Sigma-

Aldrich 
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 Rifabutin RFB Rifamycin Parent 72559-06-9  C46H62N4O11 846.44 
Sigma-
Aldrich 

 Isonicotinic acid INa Isoniazid Metabolite 55-22-1  C6H5NO2 123.03 
Sigma-

Aldrich 

 Acetyl-isoniazid  aINH Isoniazid Metabolite 1078-38-2  C8H9N3O2 179.07 
Sigma-

Aldrich 

 5-Hydroxy-pyrazinoic acid  hPZA Pyrazinamide Metabolite 34604-60-9  C5H4N2O3 140.02 
Sigma-
Aldrich 

 25-desacetyl rifampicin  daRMP Rifamycin Metabolite 16783-99-6  C41H56N4O11 780.39 
Sigma-

Aldrich 

 25-O-desacetyl rifabutin  daRFB Rifamycin Metabolite 100324-63-8  C44H60N4O10 804.43 TRC 

TB (MDR) Capreomycin IA ≠ CAPIa Aminoglycoside Parent 1405-37-4 Sulfate  C25H44N14O8 668.35 TRC 

 Capreomycin IB ≠ CAPIb Aminoglycoside Parent 1405-37-4 Sulfate  C25H44N14O7 652.35 TRC 

 Gentamycin C1 ≠ GEN1 Aminoglycoside Parent 1405-41-0  Sulfate salt hydrate C21H43N5O7 477.32 Fluka 

 Gentamycin C1a ≠ GEN1a Aminoglycoside Parent 1405-41-0  Sulfate salt hydrate C19H39N5O7 449.28 Fluka 

 Gentamycin C2 C2a C2b ≠ GEN2 Aminoglycoside Parent 1405-41-0  Sulfate salt hydrate C20H43N5O7 465.32 Fluka 

 Kanamycin A ≠ KAN Aminoglycoside Parent 25389-94-0 Sulfate C18H36N4O11 484.24 
Sigma-
Aldrich 

 Streptomycin A ≠ STR Aminoglycoside Parent 3810-74-0 Sulfate C21H39N7O12 581.27 
Sigma-

Aldrich 

 D-cycloserine DCS Isoxazole Parent/Metab. 68-41-7  C3H6N2O2 102.04 TRC 

TB (other) Delamanid DMD Nitroimidazole Parent 681492-22-8  C25H25F3N4O6 534.17 
Sigma-

Aldrich 

 Bedaquiline BDQ Diarylquinoline Parent 843663-66-1  C32H31BrN2O2 554.16 
Sigma-

Aldrich 

 Linezolid LZD Oxazolidinone Parent 165800-03-3  C16H20FN3O4 337.14 
Sigma-
Aldrich 

 Thalidomide THAL Thalidomide Parent 50-35-1  C13H10N2O4 258.06 
Sigma-

Aldrich 
OTHER          

Amphenicol Chloramphenicol CHL Amphenicol Parent 56-75-7  C11H12Cl2N2O5 322.01 
Sigma-

Aldrich 

 Florfenicol FLO Amphenicol Parent 73231-34-2  C12H14Cl2FNO4S 357.00 MCE 

 2-Amino-1-(4-nitrophenyl)-1,3-propanediol ANP Amphenicol Metabolite 2964-48-9  C9H12N2O4 212.08 
Sigma-
Aldrich 

Cycline Doxycycline  DOX Cycline Parent 24390-14-5 Hyclate C22H24N2O8 444.15 
Sigma-

Aldrich 
 Oxytetracycline OTC Cycline Parent 2058-46-0 Hydrochloride C22H24N2O9 460.15 TRC 

 Tetracycline TET Cycline Parent 64-75-5 Hydrochloride C22H24N2O8 444.15 
Sigma-

Aldrich 

Nitrofuran Nitrofurantoin NIT Nitrofuran Parent 67-20-9  C8H6N4O5 238.03 
Sigma-

Aldrich 

 1-(2-nitrobenzylidenamino)-2,4-
imidazolidinedione 

NPAH
D 

Nitrofuran Metabolite 623145-57-3  C10H8N4O4 248.05 TRC 

Azole Metronidazole MTZ Azole Parent 443-48-1  C6H9N3O3 171.06 
Sigma-

Aldrich 
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 Ketoconazole KTC Azole Parent 65277-42-1  C26H28Cl2N4O4 530.15 
Sigma-
Aldrich 

 Hydroxy-metronidazole  hMTZ Azole Metabolite 1215071-08-1  C6H9N3O4 187.06 TRC 
 Deacetyl-ketoconazole  daKTC Azole Metabolite 67914-61-8  C24H26Cl2N4O3 488.14 TRC 

Antiretroviral Emtricitabine FTC ARV Parent 143491-57-0  C8H10FN3O3S 247.04 TRC 
 Lamivudine 3TC ARV Parent 134678-17-4  C8H11N3O3S 229.05 TRC 
 

 

  

Monoisotopic mass (M.I. mass), multi-drug resistant (MDR), tuberculosis (TB), nucleoside reverse transcriptase inhibitor (NRTI) 

LC-MS method is not chiral (*); one standard used for all forms within the drug complex (≠); CAS for chiral free acid (¥); salt corrections considered in all calculations, i.e., analysis of the free base (θ) 
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Table S2. Internal standards used along with instrument and method detection limits (IDLs and MDLs) 

and instrument and method quantification limits (IQLs and MQLs) table adapted from Holton and 

Kasprzyk-Hordern, 2021, https://rdcu.be/cxqhT 

   Mobile phase (ng L-1) Influent wastewater (ng L-1) 

Class Abbrev Internal Standard  IDL IQL MDL MQL 

Sulfonamide & SDZ Sulfamethoxazole D4 0.015 0.050 0.230 0.76 

Trimethoprim SPY Sulfamethoxazole D4 0.003 0.010 0.026 0.088 

 SMX Sulfamethoxazole D4 0.002 0.005 0.014 0.046 

 SLZ Sulfamethoxazole D4 1.500 5.000 5.130 17.09 

 TMP Trimethoprim D9 0.150 0.500 0.970 3.22 

 aSDZ Sulfamethoxazole D4 0.021 0.070 0.230 0.77 

 aSPY Sulfamethoxazole D4 0.167 0.556 1.350 4.51 

 aSMX Sulfamethoxazole D4 0.019 0.063 0.200 0.66 

 hTMP Trimethoprim D9 0.004 0.013 0.030 0.1 

Macrolide AZM Clarithromycin D3 0.015 0.050 - - 

& Lincomycin ERY Clarithromycin D3 0.002 0.005 0.016 0.053 

 CLR Clarithromycin D3 0.002 0.005 0.014 0.046 

 CLI Flumequine 13C3 0.150 0.500 - - 

 dmAZM Clarithromycin D3 0.375 1.250 - - 

 dmERY Clarithromycin D3 0.002 0.007 0.020 0.07 

 dmCLR Clarithromycin D3 0.005 0.017 0.070 0.25 

 dmCLI Flumequine 13C3 0.002 0.005 - - 

β-LACTAMS AMX Sulfamethoxazole D4 1.500 5.000 - - 

Penicillin AMP Ampicillin D5 1.500 5.000 55.600 185 

 FLX Flumequine 13C3 0.150 0.500 1.630 5.45 

 PenG Penicillin G D7 0.150 0.500 5.470 18.2 

 PenV Penicillin G D7 3.000 10.000 81.300 271 

 AMXa Sulfamethoxazole D4 0.300 1.000 146.000 488 

 AMPa Ampicillin D5 0.150 0.500 31.800 106 

 PenGa  Penicillin G D7 0.150 0.500 15.400 51.5 

Cefalosporin LEX Trimethoprim D9 0.375 1.250 5.910 19.7 

 CFM Trimethoprim D9 1.500 5.000 13.200 44 

 CTF Flumequine 13C3 0.150 0.500 - - 

 CRO Trimethoprim D9 7.500 25.000 48.400 161 

Monobactam ATM Trimethoprim D9 0.300 1.000 - - 

Carbapenem IPM Metronidazole D4 1.500 5.000 - - 

 MEM Trimethoprim D9 1.500 5.000 - - 

Quinolone BSF Flumequine 13C3 0.375 1.250 3.150 10.5 

 CIP Desmethyl-ofloxacin D8 0.150 0.500 1.130 3.77 

 DFX Desmethyl-ofloxacin D8 1.500 5.000 13.900 46.3 

 ENR Desmethyl-ofloxacin D8 0.030 0.100 0.250 0.82 

 FLU Flumequine 13C3 0.003 0.010 0.030 0.1 

 GAT Desmethyl-ofloxacin D8 0.003 0.010 0.030 0.09 

 LOM Desmethyl-ofloxacin D8 0.030 0.100 0.280 0.95 

 MXF Desmethyl-ofloxacin D8 0.375 1.250 3.040 10.1 

 NAD Flumequine 13C3 0.300 1.000 2.680 8.92 

https://rdcu.be/cxqhT
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 NAL Flumequine 13C3 0.003 0.010 0.030 0.11 

 NOR Desmethyl-ofloxacin D8 0.003 0.010 0.021 0.069 

 OFX Desmethyl-ofloxacin D8 0.030 0.100 0.410 1.37 

 PFLX Desmethyl-ofloxacin D8 0.300 1.000 1.780 5.95 

 SRF Desmethyl-ofloxacin D8 0.150 0.500 1.500 5.01 

 deCIP Desmethyl-ofloxacin D8 0.150 0.500 1.440 4.82 

 hNOR Desmethyl-ofloxacin D8 3.600 12.000 38.600 129 

 OFXo Desmethyl-ofloxacin D8 3.600 12.000 36.500 122 

 dmOFX Desmethyl-ofloxacin D8 0.150 0.500 1.340 4.45 

 UFX Desmethyl-ofloxacin D8 1.500 5.000 11.400 38.1 

TB DRUGS INH Isoniazid D4 0.150 0.500 1.520 5.06 

TB (1st line) PZA Metronidazole D4 1.500 5.000 - - 

 EMB Metronidazole D4 0.003 0.010 0.130 0.42 

 RMP Rifabutin D7 0.375 1.250 - - 

 RFB Rifabutin D7 0.150 0.500 1.680 5.62 

 INa Isoniazid D4 0.150 0.500 7.200 24 

 aINH Isoniazid D4 0.150 0.500 3.580 11.9 

 hPZA Metronidazole D4 0.030 0.100 - - 

 daRMP Rifabutin D7 1.500 5.000 15.000 50 

 daRFB Rifabutin D7 0.030 0.100 0.330 1.11 

TB (MDR) CAPIa Metronidazole D4 6.621 22.071 4528.000 15094 

 CAPIb Metronidazole D4 6.621 22.071 - - 

 GEN1 Metronidazole D4 2.820 9.400 - - 

 GEN1a Metronidazole D4 2.070 6.900 - - 

 GEN2 Metronidazole D4 5.250 17.500 - - 

 KAN Metronidazole D4 3.563 11.875 - - 

 STR Metronidazole D4 12.000 40.000 2650.000 8835 

 DCS Metronidazole D4 0.150 0.500 - - 

TB (other) DMD Rifabutin D7 0.150 0.500 - - 

 BDQ Rifabutin D7 1.500 5.000 - - 

 LZD Chloramphenicol D5 0.030 0.100 0.270 0.89 

 THAL Trimethoprim D9 0.300 1.000 3.480 11.6 

OTHER CHL Chloramphenicol D5 0.150 0.500 1.310 4.35 

Amphenicol FLO Chloramphenicol D5 3.000 10.000 21.900 73.1 

 ANP Metronidazole D4 1.500 5.000 42.300 141 

Cycline DOX Rifabutin D7 0.375 1.250 12.700 42.2 

 OTC Desmethyl-ofloxacin D8 0.300 1.000 6.350 21.2 

 TET Desmethyl-ofloxacin D8 0.150 0.500 1.700 5.66 

Nitrofuran NIT Nitrofurantoin 13C3 0.300 1.000 3.460 11.54 

 NPAHD Chloramphenicol D5 0.030 0.100 0.350 1.18 

Azole MTZ Metronidazole D4 0.030 0.100 0.270 0.91 

 KTC Flumequine 13C3 0.003 0.010 0.030 0.1 

 hMTZ Metronidazole D4 0.030 0.100 1.010 3.38 

 daKTC Flumequine 13C3 0.375 1.250 - - 

Antiviral  FTC Metronidazole D4 0.150 0.500 1.570 5.24 

 3TC Metronidazole D4 0.300 1.000 9.510 31.7 
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Figure S1. Influent wastewater flow data (m3/day) and daily rainfall data (mm) for Bath and 

Keynsham over the days that were sampled only during the sampling period of 2018-2019.  

 

 

 

 

Figure S2: Recovery efficiency (%) of TaqMan™ Universal DNA Spike in Control from one 

wastewater sample extracted out six times (rep = replicates)  
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Table S3. p values for seasonal T-test results for AAs in Bath and Keynsham 

 Saltford   Keynsham    

 

Winter '18 vs 

Summer '19 

Winter '18 vs 

Spring '19 

Spring '19 vs 

Summer '19 

Winter '18 vs 

Summer '19 

Winter '18 vs 

Spring '19 

Spring '19 vs 

Summer '19 

CLR 0.0000 0.0004 0.0017 0.0000 0.0328 0.9634 

dmCLR 0.0000 0.0293 0.0017 0.0185 0.2547 0.9684 

ERY 0.0007 0.0000 0.0000 0.0001 0.1987 0.0002 

dmERY 0.0000 0.0789 0.0061 - - - 

INa 0.0002 0.0000 0.0117 0.0000 0.0000 0.8644 

HPZA 0.9101 0.8481 0.9217 0.1570 0.3625 0.0874 

MTZ 0.7254 0.0012 0.3003 0.0019 0.1314 0.4331 

hMTZ 0.0111 0.0000 0.0889 0.0053 0.0126 0.9513 

KTC 0.0008 0.0365 0.6252 0.0047 0.0039 0.5656 

Lam 0.6512 0.0028 0.0339 0.0236 0.1215 0.7903 

EMT 0.3880 0.0001 0.0130 0.9540 0.0570 0.1380 

SPY 0.4669 0.1470 0.4605 0.7779 0.1261 0.0862 

aSPY 0.0000 0.0072 0.0916 0.1446 0.0789 0.0330 

SMX 0.5769 0.7892 0.4421 0.0003 0.1416 0.3101 

aSMX 0.0010 0.1419 0.3336 0.0999 0.9581 0.1659 

SLZ 0.0966 0.2900 0.0080 0.6975 0.0854 0.2104 

FLX 0.1050 0.0446 0.6838 0.3324 0.0112 0.0195 

Tet 0.0000 0.3600 0.0004 0.0040 0.0003 0.7901 

OTC 0.0000 0.2852 0.0011 0.0277 0.0014 0.6613 

CIP  0.0000 0.0016 0.5434 0.1224 0.0001 0.0035 

OFX 0.3925 0.0644 0.8748 0.0002 0.2191 0.0005 

TMP 0.0003 0.0273 0.1310 0.0046 0.1290 0.6980 

Cli 0.0005 0.0728 0.3654 0.4820 0.0039 0.0841 

dmCLI 0.9452 0.8982 0.8562 0.1524 0.0002 0.0442 

 

*Statistically significant results are shown in bold (p ≤ 0.05) 

 

 

 

 

Figure S3. Comparison of averaged daily loads of AAs from 2015 (one week average) versus 2018/19 

(12/13 months average for Bath and Keynsham respectively). 
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Table S4. ARG profiling from metagenomic sequencing data of influent wastewater sampled from Bath in November 2018 and March 2019. The % mapped 

donates the % coverage of each gene by the reads of each sample  

     % mapped, only >80% shown 

Antibiotic Class  Gene Family* Resistance Mechanism* Observed Pathogen** Gene  29/03/2019 13/11/2018 

Aminoglycoside antibiotic ANT(2'') antibiotic inactivation Pseudomonas aeruginosa ANT(2'')-Ia 100 100 

 APH(2'') antibiotic inactivation Enterococcus gallinarum APH(2'')-IIIa 100  

 APH(3'') antibiotic inactivation Pseudomonas aeruginosa APH(3'')-Ib 100 100 

 APH(3') antibiotic inactivation Campylobacter coli APH(3')-IIIa 100  

 APH(6) antibiotic inactivation Pseudomonas aeruginosa APH(6)-Id 100 100 

 ANT(3'') antibiotic inactivation Pseudomonas aeruginosa aadA11  100 

 ANT(3'') antibiotic inactivation Acinetobacter lwoffii aadA27 100 100 

 ANT(3'') antibiotic inactivation Pseudomonas aeruginosa aadA6  100 

 ANT(3'') antibiotic inactivation Pseudomonas aeruginosa aadA6/aadA10 81 95 

 ANT(3'') antibiotic inactivation Escherichia coli aadA  82 

Rifamycin antibiotic 
rifamycin-resistant beta-subunit of RNA 

polymerase (rpoB) 

antibiotic target alteration; antibiotic 

target replacement 
Bifidobacterium adolescentis 

Bifidobacterium adolescentis 

rpoB conferring resistance to 

rifampicin 

97 88 

Penam CARB beta-lactamase antibiotic inactivation Acinetobacter baumannii CARB-10 96  

 RCP beta-lactamase antibiotic inactivation Rhodobacter capsulatus RCP-1 100  

Mupirocin 

antibiotic resistant isoleucyl-tRNA 

synthetase (ileS) antibiotic target alteration Bifidobacterium bifidum 

Bifidobacteria intrinsic ileS 

conferring resistance to 

mupirocin 82  

Phenicol antibiotic chloramphenicol acetyltransferase (CAT) antibiotic inactivation Campylobacter coli 

Campylobacter coli 

chloramphenicol 

acetyltransferase 82 . 

Macrolide antibiotic macrolide esterase antibiotic inactivation Riemerella anatipestifer EreD 100  

 
major facilitator superfamily (MFS) 

antibiotic efflux pump antibiotic efflux Photobacterium damselae mefC 100 98 

 macrolide phosphotransferase (MPH) antibiotic inactivation uncultured bacterium mphE 100 100 

 macrolide phosphotransferase (MPH) antibiotic inactivation Photobacterium damselae mphG 100 100 

Peptide antibiotic 

intrinsic colistin resistant 

phosphoethanolamine transferase antibiotic target alteration Moraxella osloensis ICR-Mo 100 97 

 

undecaprenyl pyrophosphate related 

proteins antibiotic target alteration Escherichia coli bacA 89  

Fluoroquinolone antibiotic quinolone resistance protein (qnr) antibiotic target protection Salmonella enterica QnrS2 88  
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small multidrug resistance (SMR) 

antibiotic efflux pump antibiotic efflux Vibrio cholerae qacH 100 100 

Lincosamide antibiotic 

lincosamide nucleotidyltransferase 

(LNU) antibiotic inactivation Enterococcus faecium lnuB 90  

 
lincosamide nucleotidyltransferase 

(LNU) antibiotic inactivation Enterococcus faecalis lnuG 88  

Sulfonamide antibiotic sulfonamide resistant sul antibiotic target replacement Vibrio fluvialis sul1  98 

Tetracycline antibiotic 

major facilitator superfamily (MFS) 

antibiotic efflux pump antibiotic efflux Acinetobacter sp. tet(39) 100 100 

 

major facilitator superfamily (MFS) 

antibiotic efflux pump antibiotic efflux uncultured bacterium tet(40) 97  

 
major facilitator superfamily (MFS) 

antibiotic efflux pump antibiotic efflux Aeromonas salmonicida tet(C) 100 80 

 

tetracycline-resistant ribosomal 

protection protein antibiotic target protection uncultured bacterium tet(W/N/W) 86  

 
tetracycline-resistant ribosomal 

protection protein antibiotic target protection Staphylococcus aureus tetM 98 100 

 

tetracycline-resistant ribosomal 

protection protein antibiotic target protection Campylobacter jejuni tetO 100 89 

 

tetracycline-resistant ribosomal 

protection protein antibiotic target protection Bacteroides fragilis tetQ 98  

 
tetracycline-resistant ribosomal 

protection protein antibiotic target protection Butyrivibrio fibrisolvens tetW 100 100 

Nucleoside antibiotic; acridine dye 

major facilitator superfamily (MFS) 

antibiotic efflux pump antibiotic efflux Escherichia coli mdtP  81 

Multidrug resistance       
macrolide antibiotic; fluoroquinolone 

antibiotic; penam 

resistance-nodulation-cell division 

(RND) antibiotic efflux pump antibiotic efflux Escherichia coli CRP  91 

macrolide antibiotic; lincosamide antibiotic; 

streptogramin antibiotic 

Erm 23S ribosomal RNA 

methyltransferase antibiotic target alteration Enterococcus faecium ErmB 100 100 

macrolide antibiotic; lincosamide antibiotic; 

streptogramin antibiotic; tetracycline 

antibiotic; oxazolidinone antibiotic; phenicol 

antibiotic; pleuromutilin antibiotic 

ABC-F ATP-binding cassette ribosomal 

protection protein antibiotic target protection Enterococcus faecalis lsaE 100 100 

macrolide antibiotic; lincosamide antibiotic; 

streptogramin antibiotic; tetracycline 

antibiotic; oxazolidinone antibiotic; phenicol 

antibiotic; pleuromutilin antibiotic 

ABC-F ATP-binding cassette ribosomal 

protection protein antibiotic target protection Streptococcus pyogenes mel 100 100 

macrolide antibiotic; lincosamide antibiotic; 

streptogramin antibiotic; tetracycline 

antibiotic; oxazolidinone antibiotic; phenicol 

antibiotic; pleuromutilin antibiotic 

ABC-F ATP-binding cassette ribosomal 

protection protein antibiotic target protection Acinetobacter baumannii msrE 100 100 

fluoroquinolone antibiotic; cephalosporin; 

glycylcycline; penam; tetracycline antibiotic; 

rifamycin antibiotic; phenicol antibiotic; 

triclosan 

resistance-nodulation-cell division 

(RND) antibiotic efflux pump antibiotic efflux Escherichia coli Escherichia coli acrA 85  
fluoroquinolone antibiotic; cephalosporin; 

glycylcycline; penam; tetracycline antibiotic; 

rifamycin antibiotic; phenicol antibiotic; 

triclosan 

resistance-nodulation-cell division 

(RND) antibiotic efflux pump antibiotic efflux Escherichia coli Escherichia coli acrA 85  

cephalosporin; penam NPS beta-lactamase antibiotic inactivation Pseudomonas aeruginosa NPS-1  86 

cephalosporin; penam OXA beta-lactamase antibiotic inactivation Acinetobacter johnsonii OXA-211 92 84 
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cephalosporin; penam OXA beta-lactamase antibiotic inactivation Acinetobacter johnsonii OXA-333 98  

cephalosporin; penam OXA beta-lactamase antibiotic inactivation Citrobacter freundii OXA-101  83 

cephalosporin; penam OXA beta-lactamase antibiotic inactivation Pseudomonas aeruginosa OXA-205 83  

*Drug class, gene family and resistance mechanisms are filds in CARD database and describe the corresponding AMR genes. **Observed pathogen is a 

known pathogen of public health importance that harbours that gene. This does not mean that this gene was found in this pathogen or couldn’t be found 

elsewhere  
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Table S5. Absolute (not 16S rRNA normalised) concentrations and loads of ARGs in wastewater in Bath  

 16S rRNA     ermB    sul1     IntI1    qnrS    

Date  Copies/L STD 

Daily loads  

average  

copies/day 

STD Copies/L STD 

Daily  

loads  

average  

copies/day 

STD Copies/L STD 

Daily  

loads  

average 

copies/day  

STD Copies/L STD 

Daily loads  

average 

copies/day  

STD Copies/L STD 

Daily loads  

average 

copies/day  

STD 

05/11/18 3.49E+09 8.53E+08 9.61E+13 2.34E+13 4.66E+09 7.11E+08 1.28E+14 1.95E+13 7.30E+07 3.38E+07 2.01E+12 9.30E+11 6.27E+07 8.52E+06 1.72E+12 2.34E+11 1.69E+06 2.98E+05 4.64E+10 8.20E+09 

06/11/18 4.01E+09 1.79E+08 1.02E+14 4.56E+12 3.38E+09 1.11E+09 8.62E+13 2.83E+13 4.83E+07 1.10E+06 1.23E+12 2.81E+10 7.32E+07 1.47E+07 1.87E+12 3.74E+11 6.82E+05 2.57E+05 1.74E+10 6.55E+09 

11/11/18 6.19E+09 4.24E+07 2.79E+14 1.91E+12 6.16E+09 2.55E+08 2.78E+14 1.15E+13 6.86E+07 1.12E+07 3.09E+12 5.06E+11 6.49E+07 8.51E+06 2.92E+12 3.83E+11 9.27E+05 1.23E+05 4.17E+10 5.55E+09 

25/11/18 6.65E+09 8.84E+08 1.78E+14 2.37E+13 6.20E+09 3.31E+08 1.66E+14 8.89E+12 7.22E+07 2.82E+07 1.94E+12 7.55E+11 7.46E+07 7.67E+06 2.00E+12 2.06E+11 8.76E+05 2.16E+05 2.35E+10 5.80E+09 

02/12/18 5.77E+09 1.08E+09 2.64E+14 4.95E+13 4.96E+09 2.92E+09 2.26E+14 1.33E+14 4.00E+07 2.78E+07 1.83E+12 1.27E+12 8.26E+06 7.04E+06 3.77E+11 3.22E+11 5.20E+05 4.04E+05 2.38E+10 1.85E+10 

03/12/18 3.57E+09 1.58E+09 1.60E+14 7.10E+13 5.29E+09 8.42E+08 2.38E+14 3.78E+13 4.67E+07 1.62E+06 2.10E+12 7.27E+10 7.06E+07 0.00E+00 3.17E+12 0.00E+00 1.40E+06 5.10E+04 6.29E+10 2.29E+09 

12/12/18 4.78E+09 1.30E+09 1.85E+14 5.03E+13 2.14E+09 2.36E+09 8.28E+13 9.13E+13 6.21E+07 2.04E+07 2.40E+12 7.90E+11 6.98E+07 9.20E+06 2.70E+12 3.56E+11 6.23E+05 1.17E+05 2.41E+10 4.54E+09 

19/12/18 5.89E+09 1.15E+09 2.53E+14 4.92E+13 3.31E+09 1.79E+09 1.43E+14 7.68E+13 6.46E+07 2.46E+07 2.78E+12 1.06E+12 4.88E+07 3.07E+06 2.10E+12 1.32E+11 5.23E+05 8.87E+04 2.25E+10 3.81E+09 

07//01/19 5.13E+09 5.63E+08 1.43E+14 1.57E+13 3.58E+09 4.26E+08 9.95E+13 1.19E+13 6.70E+07 6.40E+06 1.86E+12 1.78E+11 5.68E+07 9.05E+06 1.58E+12 2.52E+11 2.34E+06 4.80E+05 6.50E+10 1.34E+10 

15/01/19 4.56E+09 1.16E+09 1.24E+14 3.15E+13 4.80E+09 2.70E+08 1.31E+14 7.37E+12 4.78E+07 3.44E+07 1.30E+12 9.39E+11 1.95E+07 7.13E+06 5.32E+11 1.94E+11 7.73E+05 2.03E+05 2.11E+10 5.54E+09 

21/01/19 5.49E+09 1.80E+09 1.55E+14 5.09E+13 6.39E+09 1.42E+09 1.81E+14 4.02E+13 6.50E+07 5.77E+06 1.84E+12 1.63E+11 6.27E+07 7.59E+06 1.77E+12 2.15E+11 3.32E+06 2.61E+05 9.40E+10 7.38E+09 

23/01/19 5.84E+09 5.83E+08 1.83E+14 1.83E+13 4.15E+09 1.71E+08 1.30E+14 5.34E+12 5.73E+07 3.02E+07 1.79E+12 9.47E+11 4.32E+07 3.19E+07 1.35E+12 1.00E+12 1.57E+06 2.89E+03 4.92E+10 9.06E+07 

10/02/19 4.18E+09 1.20E+09 1.92E+14 5.53E+13 6.53E+09 6.60E+08 3.00E+14 3.04E+13 5.45E+07 2.52E+07 2.51E+12 1.16E+12 5.47E+07 1.37E+07 2.52E+12 6.30E+11 1.34E+06 6.35E+05 6.15E+10 2.92E+10 

11/02/19 4.58E+09 1.80E+08 1.99E+14 7.83E+12 2.29E+09 7.99E+08 9.97E+13 3.48E+13 9.26E+07 4.89E+07 4.03E+12 2.13E+12 7.06E+07 4.05E+07 3.07E+12 1.76E+12 1.06E+06 2.83E+04 4.60E+10 1.23E+09 

17/02/19 6.59E+09 1.31E+09 2.35E+14 4.67E+13 4.47E+09 1.06E+09 1.60E+14 3.79E+13 3.78E+07 1.18E+07 1.35E+12 4.23E+11 4.07E+07 1.70E+07 1.45E+12 6.06E+11 7.53E+05 1.02E+05 2.69E+10 3.63E+09 

25/02/19 6.84E+09 2.24E+09 2.07E+14 6.77E+13 5.61E+09 1.27E+09 1.70E+14 3.86E+13 5.84E+07 1.89E+07 1.77E+12 5.74E+11 2.07E+07 2.84E+07 6.28E+11 8.61E+11 8.68E+05 4.01E+04 2.63E+10 1.21E+09 

01/03/19 3.71E+09 3.11E+08 1.06E+14 8.88E+12 6.07E+09 1.61E+08 1.74E+14 4.60E+12 3.75E+07 4.41E+06 1.07E+12 1.26E+11 4.30E+07 5.54E+06 1.23E+12 1.58E+11 1.31E+06 4.55E+05 3.76E+10 1.30E+10 

10/03/19 5.40E+09 6.66E+08 2.42E+14 2.98E+13 6.03E+09 1.44E+09 2.70E+14 6.47E+13 3.52E+07 3.02E+07 1.58E+12 1.35E+12 1.90E+07 1.27E+07 8.50E+11 5.70E+11 6.70E+05 2.46E+04 3.00E+10 1.10E+09 

17/03/19 4.32E+09 9.26E+08 1.96E+14 4.19E+13 2.80E+09 7.99E+07 1.27E+14 3.62E+12 3.65E+07 5.64E+06 1.66E+12 2.55E+11 3.81E+07 4.45E+06 1.72E+12 2.02E+11 3.53E+05 3.24E+04 1.60E+10 1.47E+09 

29/03/19 5.22E+09 1.89E+08 1.52E+14 5.49E+12 5.57E+09 1.72E+09 1.62E+14 4.98E+13 5.57E+07 1.47E+06 1.62E+12 4.27E+10 4.62E+07 6.94E+06 1.34E+12 2.01E+11 1.10E+06 2.21E+04 3.20E+10 6.40E+08 

07/04/19 7.50E+09 2.20E+09 3.19E+14 9.37E+13 3.04E+09 8.69E+08 1.29E+14 3.69E+13 4.32E+06 4.23E+06 1.83E+11 1.80E+11 2.84E+07 3.03E+07 1.20E+12 1.29E+12 5.25E+05 6.36E+05 2.23E+10 2.70E+10 

08/04/19 3.71E+09 2.78E+08 1.13E+14 8.43E+12 2.27E+09 5.90E+08 6.90E+13 1.79E+13 5.06E+07 3.28E+06 1.53E+12 9.94E+10 4.78E+07 7.73E+06 1.45E+12 2.34E+11 1.02E+06 2.25E+05 3.10E+10 6.81E+09 

15/04/19 6.50E+09 1.29E+09 1.80E+14 3.57E+13 5.74E+09 5.08E+08 1.59E+14 1.40E+13 5.80E+07 1.25E+07 1.60E+12 3.45E+11 5.55E+07 1.67E+07 1.54E+12 4.61E+11 2.05E+06 3.89E+04 5.67E+10 1.08E+09 

29/04/19 5.52E+09 3.25E+07 1.44E+14 8.45E+11 1.65E+09 1.65E+08 4.28E+13 4.30E+12 6.05E+07 1.83E+07 1.57E+12 4.77E+11 5.36E+07 9.16E+06 1.39E+12 2.38E+11 3.49E+05 1.76E+05 9.07E+09 4.59E+09 

09/05/19 8.77E+09 7.01E+08 3.71E+14 2.96E+13 1.19E+09 1.30E+08 5.01E+13 5.48E+12 3.25E+07 7.18E+05 1.37E+12 3.03E+10 2.88E+07 1.07E+06 1.22E+12 4.54E+10 2.69E+05 1.84E+04 1.14E+10 7.79E+08 
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10/05/19 5.30E+09 1.42E+09 1.65E+14 4.43E+13 9.06E+08 1.39E+08 2.83E+13 4.33E+12 4.13E+07 1.55E+07 1.29E+12 4.84E+11 4.16E+07 1.11E+07 1.30E+12 3.46E+11 7.89E+05 2.96E+04 2.46E+10 9.24E+08 

20/05/19 4.91E+09 1.19E+09 1.26E+14 3.05E+13 2.36E+09 7.94E+07 6.05E+13 2.04E+12 4.21E+07 1.04E+07 1.08E+12 2.66E+11 4.43E+07 5.11E+06 1.14E+12 1.31E+11 5.65E+05 7.51E+04 1.45E+10 1.93E+09 

21/05/19 3.20E+09 1.02E+08 8.21E+13 2.61E+12 4.75E+09 1.20E+09 1.22E+14 3.07E+13 6.57E+07 1.86E+07 1.68E+12 4.78E+11 6.16E+07 1.35E+07 1.58E+12 3.46E+11 1.73E+06 3.08E+05 4.44E+10 7.90E+09 

17/06/19 5.56E+09 1.51E+08 1.58E+14 4.27E+12 5.25E+09 4.30E+08 1.49E+14 1.22E+13 7.59E+07 1.14E+07 2.15E+12 3.22E+11 6.55E+07 8.91E+05 1.86E+12 2.53E+10 3.51E+06 4.75E+05 9.96E+10 1.35E+10 

18/06/19 6.87E+09 4.08E+08 1.96E+14 1.16E+13 6.02E+09 1.15E+09 1.72E+14 3.28E+13 6.25E+07 1.02E+07 1.78E+12 2.90E+11 5.51E+07 1.67E+06 1.57E+12 4.76E+10 4.48E+06 9.11E+04 1.28E+11 2.60E+09 

19/06/19 7.77E+09 1.06E+09 2.07E+14 2.83E+13 3.56E+09 2.03E+08 9.45E+13 5.41E+12 7.76E+07 1.76E+07 2.06E+12 4.69E+11 8.13E+07 2.35E+07 2.16E+12 6.24E+11 1.68E+06 2.33E+05 4.46E+10 6.18E+09 

25/06/19 3.90E+09 5.78E+07 1.29E+14 1.91E+12 5.38E+09 6.72E+08 1.78E+14 2.22E+13 5.13E+07 2.76E+05 1.70E+12 9.15E+09 5.85E+07 1.36E+07 1.94E+12 4.50E+11 2.78E+06 4.99E+05 9.21E+10 1.65E+10 

30/06/19 2.58E+09 4.59E+08 5.94E+13 1.05E+13 3.78E+09 5.08E+08 8.70E+13 1.17E+13 7.32E+07 1.93E+07 1.68E+12 4.44E+11 7.11E+07 1.15E+07 1.63E+12 2.64E+11 2.56E+06 1.94E+05 5.89E+10 4.46E+09 

01/07/19 2.69E+09 3.69E+08 6.54E+13 8.97E+12 5.26E+09 1.58E+09 1.28E+14 3.84E+13 5.14E+07 2.19E+06 1.25E+12 5.32E+10 6.63E+07 1.61E+07 1.61E+12 3.92E+11 5.92E+06 2.37E+06 1.44E+11 5.77E+10 

05/07/19 4.56E+09 5.70E+08 1.07E+14 1.34E+13 4.71E+09 1.31E+09 1.11E+14 3.09E+13 7.70E+07 1.33E+07 1.81E+12 3.14E+11 6.82E+07 8.47E+06 1.61E+12 2.00E+11 3.33E+06 1.18E+05 7.86E+10 2.77E+09 

10/07/19 6.01E+09 7.53E+07 1.47E+14 1.84E+12 7.24E+09 8.89E+08 1.77E+14 2.18E+13 7.01E+07 3.42E+06 1.72E+12 8.37E+10 6.37E+07 2.13E+06 1.56E+12 5.21E+10 6.45E+06 4.37E+05 1.58E+11 1.07E+10 

22/07/19 3.56E+09 1.18E+09 8.73E+13 2.90E+13 5.62E+09 9.06E+08 1.38E+14 2.22E+13 6.71E+07 7.81E+06 1.65E+12 1.92E+11 5.78E+07 3.84E+06 1.42E+12 9.42E+10 4.70E+05 1.99E+04 1.15E+10 4.89E+08 

07/08/19 4.28E+09 7.07E+08 9.77E+13 1.61E+13 5.29E+09 6.46E+08 1.21E+14 1.47E+13 8.29E+07 2.02E+06 1.89E+12 4.60E+10 7.37E+07 4.09E+06 1.68E+12 9.33E+10 5.65E+06 1.55E+05 1.29E+11 3.54E+09 

08/08/19 5.64E+09 1.61E+08 1.33E+14 3.78E+12 4.27E+09 1.70E+08 1.01E+14 3.99E+12 3.87E+07 3.51E+06 9.10E+11 8.25E+10 5.17E+07 6.29E+06 1.22E+12 1.48E+11 5.77E+06 1.92E+05 1.36E+11 4.53E+09 

19/08/19 7.18E+09 4.52E+08 1.97E+14 1.24E+13 6.17E+09 2.62E+09 1.69E+14 7.18E+13 3.91E+07 8.77E+06 1.07E+12 2.41E+11 4.63E+07 9.21E+06 1.27E+12 2.53E+11 1.76E+06 2.40E+05 4.82E+10 6.58E+09 

20/08/19 7.93E+09 6.16E+08 3.27E+14 2.54E+13 4.91E+09 8.73E+08 2.03E+14 3.60E+13 7.58E+07 3.86E+07 3.13E+12 1.59E+12 5.74E+07 1.24E+07 2.37E+12 5.11E+11 3.26E+06 1.05E+05 1.35E+11 4.35E+09 

22/10/19 7.09E+09 1.98E+08 2.10E+14 5.85E+12 4.13E+09 7.55E+08 1.22E+14 2.23E+13 6.29E+07 1.58E+07 1.86E+12 4.68E+11 6.56E+07 1.13E+07 1.94E+12 3.34E+11 1.28E+06 1.59E+05 3.78E+10 4.72E+09 

23/10/19 9.35E+09 1.18E+09 2.99E+14 3.79E+13 2.78E+09 1.87E+07 8.91E+13 5.97E+11 5.76E+07 2.83E+06 1.84E+12 9.05E+10 5.56E+07 1.46E+05 1.78E+12 4.66E+09 2.79E+06 2.49E+03 8.92E+10 7.96E+07 

28/10/19 4.98E+09 8.36E+08 1.99E+14 3.35E+13 3.00E+09 1.77E+09 1.20E+14 7.09E+13 8.10E+07 5.60E+06 3.24E+12 2.24E+11 7.01E+07 5.88E+06 2.80E+12 2.35E+11 5.08E+06 4.56E+05 2.03E+11 1.83E+10 

29/10/19 5.13E+09 2.22E+09 1.86E+14 8.04E+13 2.95E+09 1.02E+09 1.07E+14 3.70E+13 6.01E+07 1.59E+07 2.18E+12 5.78E+11 5.89E+07 1.85E+07 2.13E+12 6.68E+11 4.28E+06 3.22E+05 1.55E+11 1.17E+10 

02/12/19 8.24E+09 1.97E+07 3.60E+14 8.62E+11 3.55E+09 1.77E+09 1.55E+14 7.74E+13 5.93E+07 6.69E+06 2.59E+12 2.92E+11 6.56E+07 9.57E+06 2.87E+12 4.18E+11 3.56E+06 3.81E+04 1.55E+11 1.66E+09 

05/12/19 6.15E+09 5.92E+08 2.21E+14 2.13E+13 3.45E+09 3.83E+08 1.24E+14 1.38E+13 4.94E+07 1.31E+07 1.77E+12 4.70E+11 4.74E+07 4.53E+06 1.70E+12 1.63E+11 1.67E+06 7.32E+04 6.00E+10 2.63E+09 

07/12/19 5.14E+09 8.51E+08 2.21E+14 3.65E+13 2.50E+09 2.97E+08 1.07E+14 1.28E+13 6.08E+07 4.75E+06 2.61E+12 2.04E+11 6.01E+07 1.17E+07 2.58E+12 5.02E+11 8.98E+05 1.55E+04 3.86E+10 6.66E+08 

08/12/19 6.50E+09 1.38E+09 3.00E+14 6.35E+13 4.76E+09 6.81E+08 2.20E+14 3.15E+13 5.58E+07 1.60E+07 2.58E+12 7.39E+11 5.85E+07 1.39E+07 2.70E+12 6.43E+11 1.11E+06 2.06E+04 5.11E+10 9.51E+08 

09/12/19 5.52E+09 7.30E+08 2.41E+14 3.19E+13 5.57E+09 6.64E+08 2.43E+14 2.90E+13 6.93E+07 2.57E+07 3.03E+12 1.12E+12 7.55E+07 9.04E+06 3.30E+12 3.95E+11 1.12E+06 4.86E+05 4.87E+10 2.12E+10 

Average:  5.49E+09 7.94E+08 1.86E+14 2.76E+13 4.33E+09 8.56E+08 1.43E+14 2.94E+13 5.75E+07 1.40E+07 1.89E+12 4.88E+11 5.45E+07 1.07E+07 1.79E+12 3.65E+11 1.99E+06 2.41E+05 6.17E+10 7.60E+09 
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Table S6. Relative loads of ARGs (16S rRNA normalised) and daily loads per capita of ARGs (absolute gene loads normalised to Bath city population size) in 

wastewater 

 ermB    sul1     IntI1    qnrS    

Date  

Relative daily 

loads 

copies/day  

STD 

Daily loads 

per capita 

copies/day  

STD 

Relative 

daily loads 

copies/day  

STD 

Daily loads 

per capita 

copies/day  

STD 

Relative 

daily loads 

copies/day  

STD 

Daily loads 

per capita 

copies/day  

STD 

Relative 

daily loads 

copies/day  

STD 

Daily loads 

per capita 

copies/day  

STD 

05/11/2018 1.35E+00 1.25E-01 1.07E+12 1.63E+11 2.03E-02 4.72E-03 1.67E+10 7.74E+09 1.88E-02 7.02E-03 1.43E+10 1.95E+09 4.86E-04 3.33E-05 3.86E+08 6.83E+07 

06/11/2018 8.23E-01 2.35E-01 7.18E+11 2.36E+11 1.18E-02 8.02E-04 1.02E+10 2.34E+08 1.79E-02 2.79E-03 1.55E+10 3.11E+09 1.69E-04 7.05E-05 1.45E+08 5.45E+07 

11/11/2018 9.97E-01 4.81E-02 2.31E+12 9.57E+10 1.11E-02 1.89E-03 2.57E+10 4.21E+09 1.05E-02 1.45E-03 2.43E+10 3.19E+09 1.50E-04 2.09E-05 3.48E+08 4.62E+07 

25/11/2018 9.37E-01 7.47E-02 1.38E+12 7.40E+10 1.07E-02 2.82E-03 1.61E+10 6.29E+09 1.12E-02 3.40E-04 1.67E+10 1.71E+09 1.31E-04 1.51E-05 1.96E+08 4.83E+07 

02/12/2018 8.26E-01 3.50E-01 1.89E+12 1.11E+12 6.60E-03 3.58E-03 1.52E+10 1.06E+10 1.34E-03 9.69E-04 3.14E+09 2.68E+09 9.85E-05 8.85E-05 1.98E+08 1.54E+08 

03/12/2018 1.70E+00 9.88E-01 1.98E+12 3.15E+11 1.44E-02 5.91E-03 1.75E+10 6.05E+08 2.19E-02 9.69E-03 2.64E+10 0.00E+00 4.31E-04 1.76E-04 5.24E+08 1.91E+07 

12/12/2018 3.95E-01 3.86E-01 6.89E+11 7.60E+11 1.41E-02 8.10E-03 2.00E+10 6.57E+09 1.54E-02 6.13E-03 2.25E+10 2.96E+09 1.39E-04 6.23E-05 2.01E+08 3.78E+07 

19/12/2018 5.43E-01 1.97E-01 1.19E+12 6.39E+11 1.08E-02 2.08E-03 2.31E+10 8.80E+09 8.49E-03 2.17E-03 1.75E+10 1.10E+09 9.19E-05 3.29E-05 1.87E+08 3.17E+07 

07//01/2019 7.33E-01 1.06E-02 8.29E+11 9.87E+10 1.38E-02 1.29E-04 1.55E+10 1.48E+09 1.18E-02 3.09E-03 1.32E+10 2.10E+09 4.88E-04 1.50E-04 5.41E+08 1.11E+08 

15/01/2019 1.08E+00 2.15E-01 1.09E+12 6.13E+10 1.18E-02 1.05E-02 1.08E+10 7.82E+09 4.62E-03 2.74E-03 4.43E+09 1.62E+09 1.69E-04 1.56E-06 1.76E+08 4.61E+07 

21/01/2019 1.18E+00 1.29E-01 1.50E+12 3.34E+11 1.27E-02 5.21E-03 1.53E+10 1.36E+09 1.23E-02 5.41E-03 1.48E+10 1.79E+09 6.47E-04 2.60E-04 7.82E+08 6.14E+07 

23/01/2019 7.12E-01 4.20E-02 1.08E+12 4.45E+10 1.01E-02 6.19E-03 1.49E+10 7.88E+09 7.71E-03 6.24E-03 1.13E+10 8.33E+09 2.70E-04 2.75E-05 4.10E+08 7.54E+05 

10/02/2019 1.65E+00 6.32E-01 2.50E+12 2.53E+11 1.27E-02 2.36E-03 2.09E+10 9.63E+09 1.31E-02 5.05E-04 2.10E+10 5.25E+09 3.11E-04 6.25E-05 5.12E+08 2.43E+08 

11/02/2019 5.05E-01 1.94E-01 8.30E+11 2.89E+11 2.00E-02 9.90E-03 3.35E+10 1.77E+10 1.53E-02 8.25E-03 2.56E+10 1.47E+10 2.31E-04 1.53E-05 3.83E+08 1.02E+07 

17/02/2019 6.76E-01 2.68E-02 1.33E+12 3.15E+11 6.04E-03 3.00E-03 1.12E+10 3.52E+09 6.57E-03 3.88E-03 1.21E+10 5.05E+09 1.15E-04 7.41E-06 2.24E+08 3.02E+07 

25/02/2019 8.98E-01 4.80E-01 1.42E+12 3.21E+11 9.49E-03 5.87E-03 1.47E+10 4.78E+09 2.49E-03 3.34E-03 5.23E+09 7.17E+09 1.33E-04 3.76E-05 2.19E+08 1.01E+07 

01/03/2019 1.65E+00 1.81E-01 1.45E+12 3.83E+10 1.01E-02 3.43E-04 8.93E+09 1.05E+09 1.17E-02 2.48E-03 1.02E+10 1.32E+09 3.50E-04 9.34E-05 3.13E+08 1.08E+08 

10/03/2019 1.14E+00 4.08E-01 2.25E+12 5.39E+11 6.21E-03 4.81E-03 1.31E+10 1.12E+10 3.39E-03 1.94E-03 7.08E+09 4.75E+09 1.25E-04 2.00E-05 2.50E+08 9.19E+06 

17/03/2019 6.65E-01 1.61E-01 1.06E+12 3.01E+10 8.51E-03 5.17E-04 1.38E+10 2.13E+09 8.90E-03 8.75E-04 1.44E+10 1.68E+09 8.44E-05 2.55E-05 1.33E+08 1.22E+07 

29/03/2019 1.07E+00 3.68E-01 1.35E+12 4.15E+11 1.07E-02 1.04E-04 1.34E+10 3.56E+08 8.87E-03 1.65E-03 1.12E+10 1.67E+09 2.11E-04 3.44E-06 2.67E+08 5.33E+06 

07/04/2019 5.79E-01 3.61E-01 1.08E+12 3.08E+11 6.38E-04 4.76E-04 1.53E+09 1.50E+09 6.14E-03 7.38E-03 1.00E+10 1.07E+10 7.35E-05 7.98E-05 1.86E+08 2.25E+08 

08/04/2019 6.21E-01 2.06E-01 5.74E+11 1.49E+11 1.37E-02 1.91E-03 1.28E+10 8.28E+08 1.30E-02 3.05E-03 1.21E+10 1.95E+09 2.74E-04 4.00E-05 2.58E+08 5.67E+07 

15/04/2019 9.08E-01 2.59E-01 1.32E+12 1.17E+11 9.30E-03 3.77E-03 1.34E+10 2.88E+09 8.98E-03 4.35E-03 1.28E+10 3.84E+09 3.21E-04 5.79E-05 4.72E+08 8.96E+06 

29/04/2019 2.98E-01 2.82E-02 3.56E+11 3.58E+10 1.09E-02 3.26E-03 1.31E+10 3.97E+09 9.69E-03 1.60E-03 1.16E+10 1.98E+09 6.30E-05 3.16E-05 7.55E+07 3.82E+07 

09/05/2019 1.36E-01 2.57E-02 4.17E+11 4.56E+10 3.71E-03 2.15E-04 1.14E+10 2.53E+08 3.29E-03 1.40E-04 1.01E+10 3.78E+08 3.09E-05 4.57E-06 9.47E+07 6.49E+06 
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10/05/2019 1.81E-01 7.46E-02 2.35E+11 3.60E+10 8.48E-03 5.20E-03 1.07E+10 4.03E+09 8.44E-03 4.36E-03 1.08E+10 2.88E+09 1.55E-04 4.71E-05 2.05E+08 7.69E+06 

20/05/2019 4.97E-01 1.37E-01 5.04E+11 1.69E+10 8.59E-03 3.21E-05 9.00E+09 2.21E+09 9.18E-03 1.18E-03 9.46E+09 1.09E+09 1.17E-04 1.30E-05 1.21E+08 1.60E+07 

21/05/2019 1.49E+00 4.21E-01 1.01E+12 2.55E+11 2.04E-02 5.17E-03 1.40E+10 3.98E+09 1.92E-02 3.60E-03 1.31E+10 2.88E+09 5.40E-04 7.90E-05 3.70E+08 6.57E+07 

17/06/2019 9.46E-01 1.03E-01 1.24E+12 1.02E+11 1.36E-02 1.67E-03 1.79E+10 2.68E+09 1.18E-02 4.80E-04 1.55E+10 2.11E+08 6.33E-04 1.03E-04 8.29E+08 1.12E+08 

18/06/2019 9.21E-01 2.32E-01 1.43E+12 2.73E+11 9.55E-03 2.14E-03 1.48E+10 2.42E+09 8.39E-03 7.73E-04 1.31E+10 3.96E+08 6.82E-04 2.84E-05 1.06E+09 2.16E+07 

19/06/2019 4.64E-01 8.96E-02 7.87E+11 4.50E+10 1.02E-02 3.67E-03 1.72E+10 3.90E+09 1.08E-02 4.49E-03 1.80E+10 5.19E+09 2.16E-04 4.02E-07 3.71E+08 5.15E+07 

25/06/2019 1.38E+00 1.52E-01 1.48E+12 1.85E+11 1.32E-02 2.66E-04 1.41E+10 7.62E+07 1.50E-02 3.27E-03 1.61E+10 3.74E+09 7.14E-04 1.18E-04 7.67E+08 1.37E+08 

30/06/2019 1.51E+00 4.64E-01 7.24E+11 9.72E+10 2.95E-02 1.27E-02 1.40E+10 3.69E+09 2.83E-02 9.47E-03 1.36E+10 2.19E+09 1.01E-03 2.55E-04 4.90E+08 3.71E+07 

01/07/2019 2.01E+00 8.63E-01 1.07E+12 3.20E+11 1.93E-02 3.46E-03 1.04E+10 4.43E+08 2.44E-02 2.63E-03 1.34E+10 3.26E+09 2.16E-03 5.85E-04 1.20E+09 4.80E+08 

05/07/2019 1.06E+00 4.20E-01 9.23E+11 2.58E+11 1.72E-02 5.08E-03 1.51E+10 2.62E+09 1.52E-02 3.76E-03 1.34E+10 1.66E+09 7.39E-04 1.18E-04 6.54E+08 2.31E+07 

10/07/2019 1.21E+00 1.63E-01 1.48E+12 1.81E+11 1.17E-02 7.16E-04 1.43E+10 6.97E+08 1.06E-02 4.87E-04 1.30E+10 4.34E+08 1.07E-03 5.93E-05 1.31E+09 8.91E+07 

22/07/2019 1.63E+00 2.86E-01 1.15E+12 1.85E+11 1.96E-02 4.31E-03 1.37E+10 1.59E+09 1.70E-02 4.58E-03 1.18E+10 7.84E+08 1.41E-04 5.24E-05 9.60E+07 4.07E+06 

07/08/2019 1.27E+00 3.60E-01 1.01E+12 1.23E+11 1.96E-02 2.76E-03 1.58E+10 3.83E+08 1.74E-02 1.91E-03 1.40E+10 7.77E+08 1.34E-03 2.57E-04 1.07E+09 2.95E+07 

08/08/2019 7.58E-01 8.52E-03 8.37E+11 3.33E+10 6.87E-03 8.18E-04 7.58E+09 6.87E+08 9.19E-03 1.38E-03 1.01E+10 1.23E+09 1.02E-03 4.97E-06 1.13E+09 3.77E+07 

19/08/2019 8.72E-01 4.19E-01 1.41E+12 5.98E+11 5.48E-03 1.56E-03 8.93E+09 2.00E+09 6.50E-03 1.69E-03 1.06E+10 2.10E+09 2.46E-04 4.88E-05 4.01E+08 5.48E+07 

20/08/2019 6.25E-01 1.59E-01 1.69E+12 3.00E+11 9.78E-03 5.63E-03 2.61E+10 1.33E+10 7.32E-03 2.13E-03 1.97E+10 4.25E+09 4.14E-04 4.54E-05 1.12E+09 3.63E+07 

22/10/2019 5.81E-01 9.03E-02 1.02E+12 1.86E+11 8.91E-03 2.48E-03 1.55E+10 3.89E+09 9.28E-03 1.85E-03 1.62E+10 2.78E+09 1.80E-04 2.75E-05 3.15E+08 3.93E+07 

23/10/2019 3.00E-01 4.00E-02 7.42E+11 4.97E+09 6.22E-03 1.09E-03 1.53E+10 7.53E+08 5.99E-03 7.74E-04 1.48E+10 3.88E+07 3.00E-04 3.83E-05 7.42E+08 6.63E+05 

28/10/2019 5.81E-01 2.58E-01 1.00E+12 5.90E+11 1.66E-02 3.91E-03 2.70E+10 1.87E+09 1.44E-02 3.60E-03 2.33E+10 1.96E+09 1.03E-03 8.10E-05 1.69E+09 1.52E+08 

29/10/2019 6.82E-01 4.95E-01 8.90E+11 3.08E+11 1.22E-02 2.16E-03 1.81E+10 4.81E+09 1.18E-02 1.52E-03 1.78E+10 5.57E+09 9.36E-04 4.68E-04 1.29E+09 9.70E+07 

02/12/2019 4.31E-01 2.16E-01 1.29E+12 6.44E+11 7.19E-03 7.94E-04 2.16E+10 2.43E+09 7.96E-03 1.14E-03 2.39E+10 3.48E+09 4.32E-04 3.59E-06 1.29E+09 1.39E+07 

05/12/2019 5.66E-01 1.17E-01 1.03E+12 1.15E+11 7.97E-03 1.36E-03 1.48E+10 3.91E+09 7.71E-03 6.08E-06 1.42E+10 1.35E+09 2.81E-04 1.51E-05 5.15E+08 2.19E+07 

07/12/2019 4.87E-01 2.28E-02 8.92E+11 1.06E+11 1.19E-02 1.05E-03 2.17E+10 1.70E+09 1.17E-02 3.46E-04 2.15E+10 4.18E+09 1.77E-04 2.63E-05 3.21E+08 5.54E+06 

08/12/2019 7.60E-01 2.66E-01 1.83E+12 2.62E+11 8.52E-03 6.56E-04 2.15E+10 6.15E+09 8.98E-03 2.40E-04 2.25E+10 5.35E+09 1.75E-04 4.01E-05 4.26E+08 7.92E+06 

09/12/2019 1.03E+00 2.56E-01 2.03E+12 2.41E+11 1.24E-02 3.02E-03 2.52E+10 9.34E+09 1.39E-02 3.48E-03 2.75E+10 3.29E+09 1.98E-04 6.19E-05 4.06E+08 1.77E+08 

Average:  8.86E-01 2.45E-01 1.19E+12 2.45E+11 1.17E-02 3.20E-03 1.57E+10 4.06E+09 1.13E-02 2.93E-03 1.49E+10 3.04E+09 4.10E-04 7.99E-05 5.14E+08 6.32E+07 
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Table S7. Seasonal T-tests for ARGs studied in influent wastewater in Bath, comparing winter 

2018/19 and summer 2019 

Winter 18/19: Summer 19 

p values 
 

Relative (16S rRNA 

normalised) loads 
Absolute loads 

ermB 0.108 0.149 

sul1 0.136 0.084 

qnrS 0.002 0.001 

intI1 0.067 0.385 

 

*Statistically significant results (p≤0.05) shown in bold  

 

Table S8: Pearson correlations coefficients of ARGs and AAs quantified in influent wastewater from 

Bath (every sample) 

 

*Statistically significant results (p≤0.05) only shown 

 

 

 

 

 

16S rRNA ermB intI1 sul1 qnrS ermB (16S normal ised) intI1 (16S normal ised sul1 (16S normal ised qnrS (16S normal ised) 

16S rRNA 1.000 0.265 0.248 0.306 -0.040 -0.873 -0.318 -0.281 -0.315

ermB 0.265 1.000 0.236 0.297 0.087 -0.280 0.139 0.146 0.023

intI1 0.248 0.236 1.000 0.772 0.268 -0.228 0.746 0.623 0.178

sul1 0.306 0.297 0.772 1.000 0.225 -0.314 0.512 0.714 0.077

qnrS -0.040 0.087 0.268 0.225 1.000 0.109 0.204 0.162 0.867

ermB (16S normal ised) -0.873 -0.280 -0.228 -0.314 0.109 0.364 0.325 0.444

intI1 (16S normal ised -0.318 0.139 0.746 0.512 0.204 0.364 1.000 0.861 0.386

sul1 (16S normal ised -0.281 0.146 0.623 0.714 0.162 0.325 0.861 1.000 0.311

qnrS (16S normal ised) -0.315 0.023 0.178 0.077 0.867 0.444 0.386 0.311 1.000

ERY 0.267 -0.002 0.064 0.113 -0.308 -0.271 -0.158 -0.123 -0.282

CLR 0.363 0.309 0.116 0.222 -0.242 -0.394 -0.023 0.099 -0.254

dmERY 0.705 0.458 0.229 0.338 -0.246 -0.608 0.040 0.116 -0.238

dmCLR 0.206 0.282 0.046 0.131 -0.240 -0.242 0.021 0.141 -0.188

INa 0.223 0.110 0.166 0.188 -0.034 -0.301 0.039 0.052 -0.083

hPZA -0.132 0.356 -0.171 0.208 0.867 0.187 -0.075 0.041 -0.292

MTZ 0.190 0.356 -0.021 0.136 0.034 -0.266 -0.075 0.087 -0.055

KTC -0.036 0.349 -0.171 -0.151 0.018 -0.048 -0.079 -0.047 0.043

hMTZ 0.327 0.245 0.115 0.208 0.310 -0.338 -0.074 0.010 0.111

3TC -0.264 0.190 -0.111 -0.016 0.075 0.187 0.026 0.120 0.135

FTC -0.144 0.122 -0.104 0.055 0.228 0.098 -0.075 0.063 0.174

SPY 0.179 0.085 0.091 0.181 0.374 -0.141 -0.099 0.041 0.245

SMX 0.109 0.020 -0.141 -0.036 0.120 -0.093 -0.228 -0.106 0.045

SLZ -0.017 0.108 -0.131 -0.081 0.311 0.018 -0.122 -0.086 0.287

aSPY 0.179 0.335 0.065 0.216 -0.027 -0.212 0.008 0.215 -0.037

aSMX 0.176 0.197 -0.093 -0.018 0.028 -0.204 -0.163 -0.079 -0.029

FLX -0.174 0.059 -0.128 0.001 0.149 0.235 0.026 0.210 0.217

AMXa 0.380 0.535 0.422 0.365 0.166 -0.489 0.000 -0.016 -0.116

TET 0.076 0.265 -0.319 -0.096 -0.414 -0.186 -0.217 -0.045 -0.344

OTC -0.079 0.200 -0.378 -0.220 -0.322 -0.029 -0.245 -0.120 -0.235

CIP 0.191 0.378 0.112 0.135 -0.127 -0.279 0.079 0.115 -0.143

OFX 0.058 0.091 0.067 0.121 0.107 -0.072 0.016 0.080 0.052

TMP 0.119 0.044 0.000 0.192 -0.154 -0.233 -0.041 0.157 -0.128

NPAHD 0.274 0.228 0.141 0.159 -0.185 -0.349 0.001 0.007 -0.198

CLI 0.288 0.312 0.050 0.221 0.027 -0.266 -0.031 0.153 -0.038

dmCLI -0.135 0.015 -0.205 -0.157 0.189 0.141 -0.142 -0.064 0.216
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Table S9: Pearson correlations coefficients of ARGs and AAs quantified in influent wastewater from 

Bath (using monthly averages) 

*Statistically significant results (p≤0.05) shown in bold  

 

 

 

 

16S rRNA ermB intI1 sul1 qnrS ermB (16S normal ised) intI1 (16S normal ised sul1 (16S normal ised qnrS (16S normal ised) 

16S rRNA 1.000 0.089 0.637 0.595 -0.105 -0.946 0.191 0.164 -0.387

ermB 0.089 1.000 0.404 0.543 -0.123 -0.203 0.504 0.574 -0.143

intI1 0.637 0.404 1.000 0.898 0.243 -0.518 0.766 0.650 0.080

sul1 0.595 0.543 0.898 1.000 0.218 -0.568 0.756 0.820 0.067

qnrS -0.105 -0.123 0.243 0.218 1.000 0.201 0.085 0.064 0.929

ermB (16S normal ised) -0.946 -0.203 -0.518 -0.568 0.201 1.000 -0.092 -0.162 0.488

intI1 (16S normal ised 0.191 0.504 0.766 0.756 0.085 -0.092 1.000 0.900 0.152

sul1 (16S normal ised 0.164 0.574 0.650 0.820 0.064 -0.162 0.900 1.000 0.129

qnrS (16S normal ised) -0.387 -0.143 0.080 0.067 0.929 0.488 0.152 0.129 1.000

ERY 0.276 0.115 0.059 0.053 -0.783 -0.387 0.076 0.009 -0.696

CLR 0.204 0.448 0.052 0.264 -0.447 -0.438 0.013 0.269 -0.478

dmERY 0.818 0.580 0.514 0.648 -0.524 -0.901 0.349 0.424 -0.650

dmCLR -0.016 0.479 -0.156 0.089 -0.616 -0.239 0.020 0.277 -0.548

INa 0.534 0.437 0.562 0.651 0.240 -0.521 0.307 0.383 0.066

hPZA -0.639 0.064 -0.715 -0.532 0.040 0.420 -0.406 -0.218 0.243

MTZ 0.058 0.555 0.002 0.330 -0.082 -0.308 0.130 0.430 -0.063

KTC -0.302 0.586 -0.376 -0.066 -0.229 0.076 -0.114 0.174 -0.120

hMTZ 0.393 0.340 0.412 0.598 0.491 -0.505 0.171 0.328 0.307

3TC -0.612 0.348 -0.262 -0.105 0.181 0.548 0.078 0.216 0.376

FTC -0.506 0.367 -0.236 0.068 0.387 0.351 0.024 0.290 0.497

SPY 0.116 0.197 -0.109 0.118 0.482 -0.229 -0.389 -0.131 0.320

SMX -0.129 0.211 -0.225 -0.045 0.334 0.017 -0.322 -0.096 0.283

SLZ -0.537 0.192 -0.259 -0.096 0.323 0.520 0.025 0.209 0.523

aSPY 0.148 0.515 -0.055 0.278 -0.191 -0.375 -0.073 0.295 -0.228

aSMX -0.057 0.425 -0.269 0.013 -0.080 -0.172 -0.231 0.051 -0.104

FLX -0.219 0.541 -0.060 0.195 0.192 0.060 0.018 0.309 0.254

AMXa 0.341 0.572 0.388 0.514 0.150 -0.469 0.226 0.295 0.005

TET -0.044 0.414 -0.319 -0.098 -0.728 -0.179 -0.043 0.154 -0.623

OTC -0.351 0.319 -0.509 -0.272 -0.534 0.122 -0.239 -0.002 -0.400

CIP 0.218 0.800 0.291 0.537 -0.204 -0.408 0.339 0.568 -0.230

OFX 0.005 0.302 0.220 0.308 0.353 -0.006 0.244 0.368 0.426

TMP 0.124 0.402 -0.028 0.252 -0.121 -0.289 -0.075 0.234 -0.166

NPAHD 0.106 0.482 0.145 0.347 -0.411 -0.321 0.214 0.365 -0.385

CLI 0.146 0.429 0.119 0.342 0.172 -0.359 -0.021 0.208 0.071

dmCLI -0.491 0.036 -0.604 -0.404 0.170 0.282 -0.586 -0.328 0.204
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Table S10: Overall concentration of AAs in hospital effluent from a hospital that resides within the city of Bath’s catchment area, collected in August 2019 

  05/08/2019  06/08/2019  07/08/2019  08/08/2019  09/08/2019  Weekly average  

Class Abbrev 

Concentratio

n ug/L STD Dev 

Concentration 

ug/L STD Dev 

Concentration 

ug/L Std Dev 

Concentration 

ug/L STD 

Concentratio

n ug/L STD 

Concentration 

ug/L STD 

Sulfonamide 

& SDZ - - - - - - - - - - - - 

Trimethoprim SPY 0.49 0.03 2.05 0.15 4.11 0.49 0.24 0.06 0.20 0.02 1.42 1.69 

 SMX 0.22 0.03 4.23 0.22 1.06 0.13 0.96 0.30 0.88 0.03 1.47 1.58 

 SLZ - - - - - - - - - - - - 

 TMP 0.58 0.23 7.63 1.56 2.18 0.65 4.10 1.65 1.75 0.09 3.25 2.76 

 aSDZ - - - - - - 0.02 - - - 0.02 - 

 aSPY 0.26 0.03 3.21 0.24 2.81 0.32 0.30 0.07 0.16 0.01 1.35 1.53 

 aSMX 0.72 0.29 146.58 13.93 2.15 0.18 2.73 0.77 0.92 0.22 30.62 

64.8

3 

 hTMP - - 0.01 0.00 - - 0.00 0.00 0.00 - 0.01 0.00 

Macrolide AZM 53.09 3.41 45.74 21.28 25.15 10.67 5.50 - 12.58 3.14 28.41 
20.5

9 

& 

Lincomycin ERY 0.67 0.12 6.10 1.34 0.58 0.10 2.47 1.56 1.15 0.29 2.20 2.31 

 CLR 0.81 0.17 0.45 - 0.60 0.06 0.05 0.02 - - 0.47 0.32 

 CLI 3.30 0.18 0.17 0.04 0.68 0.42 0.08 0.02 0.10 0.02 0.87 1.38 

 dmAZM 55.33 2.45 33.88 6.78 - - - - 23.95 2.62 37.72 

16.0

4 

 dmERY 0.78 0.13 1.40 0.20 - - 0.13 0.10 0.13 0.05 0.61 0.61 

 dmCLR 0.14 - - - 0.18 0.07 0.02 0.00 0.06 - 0.10 0.07 

 dmCLI 0.02 - - - - - 0.02 0.00 - - 0.02 0.00 

β-LACTAMS AMX 5.28 0.31 6.16 2.22 0.32 0.15 0.61 0.43 6.18 5.19 3.71 2.98 

Penicillin AMP - - - - - - - - - - - - 

 FLX 2.85 0.14 16.02 3.45 1.08 0.38 5.18 1.85 3.18 1.56 5.66 5.97 

 PenG - - - - - - - - - - - - 

 PenV - - - - - - - - - - - - 

 AMXa 1.02 0.08 0.97 0.16 1.50 0.16 1.15 0.39 1.33 0.21 1.19 0.22 

 AMPa - - - - 0.12 0.02 0.18 0.03 - - 0.15 0.04 

 PenGa  - - - - - - - - - - - - 
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Cefalosporin LEX - - - - 2.09 0.48 - - - - 2.09 - 

 CFM 0.47 - - - - - - - - - 0.47 - 

 CTF - - - - - - - - - - - - 

 CRO - - 6.14 0.77 1.33 0.31 3.47 1.90 - - 3.65 2.41 

Monobactam ATM - - - - - - - - - - - - 

Carbapenem IPM 0.88 0.00 1.02 0.15 - - 0.78 0.34 0.88 0.08 0.89 0.10 

 MEM - - - - - - - - - - - - 

Quinolone BSF - - - - - - - - - - - - 

 CIP 0.11 0.04 3.89 0.49 0.29 0.06 0.22 0.07 0.13 0.05 0.93 1.66 

 DFX - - - - - - - - - - - - 

 ENR - - - - - - - - - - - - 

 FLU - - - - - - - - - - - - 

 GAT - - - - - - - - - - - - 

 LOM - - - - - - - - - - - - 

 MXF - - - - - - - - - - - - 

 NAD - - - - - - - - - - - - 

 NAL - - - - - - - - - - - - 

 NOR - - - - - - - - - - - - 

 OFX 0.11 0.00 0.01 0.01 - - 0.03 0.03 0.03 0.02 0.04 0.05 

 PFLX - - - - - - - - - - - - 

 SRF - - - - - - - - - - - - 

 deCIP - - - - - - - - - - - - 

 hNOR - - - - - - - - - - - - 

 OFXo - - - - - - - - - - - - 

 dmOFX - - - - - - - - - - - - 

 UFX - - - - - - - - - - - - 

TB DRUGS INH - - - - - - - - - - - - 

TB (1st line) PZA - - - - 0.06 0.01 - - 0.11 0.00 0.09 0.04 

 EMB 0.05 0.01 0.05 0.01 0.16 0.03 0.05 0.02 0.04 0.01 0.07 0.05 

 RMP - - - - - - - - - - - - 
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 RFB - - - - - - - - - - - - 

 INa 2.91 0.13 2.10 0.16 1.28 0.37 3.27 0.50 5.15 0.64 2.94 1.46 

 aINH - - - - - - - - - - - - 

 hPZA 0.72 0.18 1.68 0.07 0.70 - - - - - 1.04 0.56 

 daRMP - - - - - - - - - - - - 

 daRFB - - - - - - - - - - - - 

TB (MDR) CAPIa - - - - - - - - - - - - 

 CAPIb - - - - - - - - - - - - 

 GEN1 - - - - - - - - - - - - 

 GEN1a - - - - - - - - - - - - 

 GEN2 - - - - - - - - - - - - 

 KAN - - - - - - - - - - - - 

 STR - - - - - - - - - - - - 

 DCS 0.02 0.01 0.02 0.00 0.01 0.00 0.01 0.01 0.01 - 0.01 0.01 

TB (other) DMD - - - - - - - - - - - - 

 BDQ - - - - - - - - - - - - 

 LZD - - - - 5.22 0.25 0.03 0.01 0.25 0.00 1.83 2.94 

 THAL - - - - - - - - - - - - 

OTHER CHL 0.23 - 0.30 0.35 0.11 - 0.11 0.03 0.13 0.05 0.18 0.09 

Amphenicol FLO - - - - - - - - - - - - 

 ANP - - - - - - - - - - - - 

Cycline DOX - - - - - - - - - - - - 

 OTC 0.07 0.02 - - - - - - - - 0.07 - 

 TET - - - - 0.03 0.01 - - 0.02 0.01 0.03 0.01 

Nitrofuran NIT - - - - - - - - - - - - 

 NPAHD - - - - - - - - - - - - 

Azole MTZ 10.24 0.09 15.13 0.93 9.74 0.10 10.21 3.14 17.14 2.35 12.49 3.40 

 KTC - - - - - - - - - - - - 

 hMTZ 11.41 0.61 37.56 0.31 11.17 1.27 6.83 2.02 25.80 2.71 18.55 
12.8

1 
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 daKTC - - - - - - - - - - - - 

Antiviral  FTC - - 0.31 0.13 - - - - 0.56 0.09 0.43 0.18 

 3TC - - - - 0.10 - - - 0.12 - 0.11 0.01 

 

 

 

 

 

 

 

Figure S4. Comparison of absolute concentrations of ARGs in hospital effluent (sampled August 2019) and the averaged ARG concentration from Bath influent 

wastewater collected during August 2019. 
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Table S11: Absolute concentration of 16S rRNA and ARGs in hospital effluent collected in August 2019 

Gene 
Associated 

Resistance  

05/08/2019 06/08/2019 07/08/2019 08/08/2019 09/08/2019 Weekly Average 

Copies/L STD Copies/L STD Copies/L STD Copies/L STD Copies/L STD copies/L STD 

16S rRNA N/A 3979612000 587807261 5944449000 335602778 4451028750 682760741 3781230250 1533251100 5539616250 68685171 4739187250 957994515 

ermB Macrolide 3820612250 355052811 6456516500 2187016220 7306832750 2566327743 5540123750 302372648 2065687400 2343965783 5037954530 2105266876 

sul1 Sulfonamide  87993801 10172295 74501406 273879 75533661 30616792 70360206 13240951 46025175 589960 70882850 15376002 

qnrS Quinolone  505327 80660 7514092 271095 4247888 59374 1250486 191179 1299921 150133 2963543 2919849 

intI1  Anthropogenic 

pollution  
90262935 23609612 52540257 7957145 78545166 15475049 57812370 53398 69860014 2396180 69804148 15303718 

tetM Tetracycline  3641760 463725 9941167 216685 3913100 598508 10350742 359487 15729617 861394 8715277 5054206 

blaTEM β-lactamase 340282 935 3343961 339632 5573404 128675 9724635 1857762 12893507 3600023 6375158 4998964 

 

Table S12. Relative concentrations of ARGs in hospital effluent (normalised to 16S rRNA) collected in August 2019 

Gene 
Associated 

Resistance  

05/08/2019 06/08/2019 07/08/2019 08/08/2019 09/08/2019 Weekly Average   

Copies/L STD Copies/L STD Copies/L STD Copies/L STD Copies/L STD Copies/L STD 

ermB Macrolide 9.77E-01 2.34E-01 1.08E+00 3.07E-01 1.62E+00 3.29E-01 1.61E+00 7.34E-01 3.76E-01 4.28E-01 1.13E+00 5.16E-01 

sul1 Sulfonamide  2.25E-02 5.89E-03 1.26E-02 6.63E-04 1.77E-02 9.59E-03 1.95E-02 4.41E-03 8.31E-03 2.10E-04 1.61E-02 5.68E-03 

qnrS Quinolone  1.27E-04 1.53E-06 1.27E-03 1.17E-04 9.65E-04 1.35E-04 3.72E-04 2.01E-04 2.35E-04 2.42E-05 5.93E-04 4.97E-04 

intI1 
Anthropogenic 
pollution  2.25E-02 2.61E-03 8.89E-03 1.84E-03 1.76E-02 7.79E-04 1.67E-02 6.77E-03 1.26E-02 3.65E-04 1.57E-02 5.15E-03 

TetM Tetracycline  9.16E-04 1.88E-05 1.68E-03 1.31E-04 8.79E-04 3.95E-07 2.96E-03 1.11E-03 2.84E-03 1.91E-04 1.85E-03 1.01E-03 

blaTEM β-lactamase 8.64E-05 1.25E-05 5.65E-04 8.90E-05 1.27E-03 2.24E-04 2.69E-03 6.01E-04 2.33E-03 6.79E-04 1.39E-03 1.12E-03 
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Table S13: Pearson correlations of ARGs concentrations in hospital effluent across five sampling days 

 16Sr RNA ermB intI1 sul1  qnrS tetM bla-tem 

16Sr RNA  -0.11 -0.28 0.53 0.67 -0.54 -0.39 

ermB -0.11  -0.28 0.53 0.67 -0.54 -0.39 

intI1 -0.47 -0.28  0.35 -0.54 -0.60 -0.39 

sul1  -0.50 0.53 0.35  0.13 -0.90 -0.92 

qnrS 0.65 0.67 -0.54 0.13  -0.04 -0.28 

tetM 0.56 -0.54 -0.60 -0.90 -0.04  0.81 

bla-tem 0.17 -0.39 -0.39 -0.92 -0.28 0.81  

 

*Statistically significant results are shown in bold (p ≤ 0.05) 

Table S14: Pearson correlations of concentrations of ARGs normalised to 16S rRNA in hospital effluent 

across five sampling days  

 ermB intI1 sul1  qnrS tetM bla-tem 

ermB  0.28 0.64 0.37 -0.25 0.05 

intI1 0.28  0.84 -0.60 -0.43 -0.22 

sul1  0.64 0.84  -0.24 -0.48 -0.34 

qnrS 0.37 -0.60 -0.24  -0.32 -0.28 

tetM -0.25 -0.43 -0.48 -0.32  0.86 

bla-tem 0.05 -0.22 -0.34 -0.28 0.86  

 

*Statistically significant results are shown in bold (p ≤ 0.05) 
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Abstract  

Antimicrobial resistance (AMR) is one of the most significant global health threats. Inappropriate and 

over-usage of antimicrobial agents (AAs) is a major driver for AMR. Wastewater-based epidemiology 

(WBE) is a promising tool for monitoring AA usage in communities. Two urban catchment areas have 

been investigated in this study, one city and one small town in the Southwest of the UK over a 13-

month period in 2018-2019. Per capita daily intake of 17 AAs and metabolites has been estimated and 

obtained estimates were triangulated with catchment specific AA prescription data to understand AA 

usage patterns (both seasons driven prescription and AA prescription compliance). Results have 

demonstrated positive correlations for all quantifiable parent AAs and metabolites in wastewater, and 

spatial variability in AA usage was observed even in neighbouring urban areas. WBE and catchment 

specific prescription data showed similar seasonal trends but with low correlation in intake. The reasons 

might be variable prescribing patterns, prescription/intake outside the studied catchment, and/or lack of 

patient compliance. WBE proved useful in differentiating between consumption vs topical usage and/or 

direct disposal of unused AA. WBE is superior to prescription data as it provides information on AAs 

prescribed outside of the monitoring catchment. However, data triangulation, of both prescription data 

and wastewater data, provides the most comprehensive approach to understanding AA usage in 

communities.  

Keywords: Wastewater-based epidemiology (WBE), antimicrobials, antibiotics, antivirals, 

Antimicrobial resistance (AMR) prescription 

1. Introduction  

Antimicrobial resistance (AMR) is an ongoing and growing global health crisis, causing increases in 

mortality, higher risks of routine medical procedures, and increased economic burden (World Health 

Organisation, 2015). AMR surveillance is key to understand the extent of resistance, developing and 

monitoring effective intervention strategies as well as identifying new and emerging resistance threats. 

In response to growing resistance, the World Health Organisation (WHO) launched the Global 

Antimicrobial Resistance and Use Surveillance System (GLASS) in 2015, with the aim of establishing 

the first global collaborative effort to standardise AMR surveillance (WHO, 2015). Participation in the 

programme has grown from 729 surveillance sites in 22 countries in 2017, to 24 803 surveillance sites 

in 70 countries reported in 2019 (World Health Organisation, 2021). Whilst this shows positive trends, 

the high rates of resistance observed stress the importance of ongoing and harmonised global AMR 

surveillance. Furthermore, concerns and predictions have highlighted that the COVID-19 outbreak 

could further exacerbate AMR (Rezasoltani et al., 2020), and decreases in surveillance capacity could 

reduce the ability to provide AMR data during the pandemic (Tomczyk et al., 2021).   

The ability to monitor antimicrobial agents (AAs) usage (as well as patterns of prescribing and patient 

prescription compliance) is critical for AMR surveillance. Whilst AA prescription data can provide 

valuable insight, several challenges exist to estimating true consumption: i) prescription data may not 

mailto:B.Kasprzyk-Hordern@bath.ac.uk


218 
 

be easily accessible for both primary and secondary care; ii) prescription data does not account for AAs 

that can be purchased over the counter or online; iii) just because an AA is prescribed, does not 

necessarily mean it has been consumed; and iv) consumption/excretion of AAs may happen in a 

different catchment to prescription. Compliance to AA is a well-regarded problem, with one study 

reporting over 1/3 of patients not completing the AA course (Kardas et al., 2005), or individuals 

reporting stopping treatment before course has finished due to feeling better or having side-effects 

(Pechere, 2000). Studies have shown that individuals not only admit to not finishing courses of 

treatment but they also admit stockpiling for self-prescribing at a later date (Kardas et al., 2005; Pechère, 

2001). 

Wastewater-based epidemiology (WBE) provides a multifaceted approach to community-wide public 

health monitoring and is a powerful tool for estimating near-real time monitoring of pharmaceutical 

consumption (Sims and Kasprzyk-Hordern, 2020). The concept is based primarily on the assumption 

that pharmaceuticals consumed within a community will be excreted either unchanged (parent) and/or 

as a mixture of metabolites into the sewage system. By measuring these pharmaceutical residues, 

otherwise known as biomarkers, in influent (untreated) wastewater, back-calculation can be applied to 

estimate consumption at the community level. WBE has been utilized to inform on a wide range of 

diverse public health, including illicit drugs (Castiglioni et al., 2006; Zuccato et al., 2005) 

pharmaceuticals (Kasprzyk-Hordern et al., 2008), tobacco (Castiglioni et al., 2015; Lai et al., 2017; 

Rodríguez-Álvarez et al., 2014) and alcohol (Boogaerts et al., 2016; Reid et al., 2011); as well as 

exposure to chemicals such as pesticides (Rousis et al., 2017), industrial chemicals (Been et al., 2017; 

Lopardo et al., 2019) or personal care products (Lopardo et al., 2018).  

Due to the dynamic nature of AMR and the growing requirement for up-to-date and harmonised 

surveillance data, WBE could be an appropriate community-wide estimation tool for providing 

complimentary information to GLASS. Applying WBE in this context could not only allow monitoring 

of local to international trends of AAs, allowing spatial and temporal trends to be established; but could 

provide baselines for community AA usage and assess effectiveness of intervention strategies. Thereby, 

offering potential evidence and support for AMR policy decisions. The combined analysis of parent 

compound and metabolite in wastewater could also give information about community compliance to 

AAs as well as incidents of pharmaceuticals being directly disposed of into the sewage system 

(Kasprzyk-Hordern et al., 2021; Petrie et al., 2016).     

A handful of studies have investigated back-calculation of biomarkers to compare with prescription 

rates at the community level (Baz-Lomba et al., 2016; Escolà Casas et al., 2021; van Nuijs et al., 2015; 

Zhang et al., 2019). One study focusing on four pharmaceuticals and respective metabolites of non-

communicable diseases, investigated WBE to assess compliance to pharmaceuticals within a 

community (Riva et al., 2020). Estimating back-calculation of pharmaceuticals from wastewater and 

exploring elements of community compliance or incorrect disposal is not without its challenges. Several 

critical aspects have to be considered: i) establishing relationships between parent AAs and metabolites, 

ii) understanding human metabolism and establishment and use of metabolic transformation correction 

factors (CFs), iii) understanding stability of both AAs and their metabolites in wastewater, iv) 

appreciating all possible sources of AAs, e.g., veterinary usage. Prior to this study,  a systematic review 

from our  group has  published a series of CFs for AAs (Holton et al., 2022) as well as a new PrAna 

tool was developed to monitor community prescriptions in selected catchment (Jagadeesan et al., 2022).  

In this study, validated CFs and catchment prescription data have been applied in a longitudinal one-

year study of AA usage in two urban areas from the Southwest England: 120K city of Bath and 21K 

town Keynsham). The primary aims of this study were to: 

1. Explore relationships between daily loads of AAs and their metabolites across a longitudinal 

study in two contrasting urban areas in Southwest England. 
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2. Understand spatiotemporal changes to AA/metabolite ratios to inform usage patterns of AAs 

(e.g. oral vs topical) as well as identify any direct disposal events.  

3. Estimate AA intake in the studied catchments using WBE and compare with prescription data 

to understand prescription compliance and spatiotemporal prescription-AA consumption trends 
 

2. Materials and Method  

2.1 Target Analytes  

For the study, 58 AAs and 26 metabolites were investigated using a method that has previously been 

developed within the group (Holton and Kasprzyk-Hordern, 2021) covering a broad range of AA classes 

(table 1), further chemical information on targets may be found in the supplementary information (table 

S1). Analytical standards and internal standards (deuterated labelled standards) were purchased from 

the following companies: Sigma-Aldrich (Gillingham, UK), TRC (Toronto, Canada), LGC (Middlesex, 

UK), or MCE (Cambridge, UK).  All methanol (MeOH) used was HPLC-grade and formic acid (>95 

% purity), were both obtained from Sigma-Aldrich. All glassware used in this project was deactivated 

using 5 % dimethylchlorosilane in toluene to avoid any loss of target analytes via adsorption. Regarding 

solid phase extraction (SPE), Oasis HLB (60 mg, 3 mL) cartridges were used for the extraction of target 

analytes, purchased from Waters (Manchester, UK). Polypropylene LC vials, along with Whatman 

GF/F 0.7 μm filters, were also obtained from Waters.  

Table 1: AA targets investigated in this study, ordered by class groupings, table adapted from Holton 

and Kasprzyk-Hordern, 2021, https://rdcu.be/cxqhT 

Grouping  Chemical Abbrev 

Sulphonamide &  Sulfadiazine SDZ 

Trimethoprim  Sulfapyridine SPY 

  Sulfamethoxazole SMX 

  Sulfasalazine SLZ 

  Trimethoprim TMP 

  N-acetyl sulfadiazine  aSDZ 

  N-acetyl sulfapyridine  aSPY 

  N-acetyl sulfamethoxazole  aSMX 

  4-hydroxy-trimethoprim  hTMP 

Macrolide  Azithromycin AZM 

& Lincosamide  Erythromycin ERY 

  Clarithromycin CLR 

  Clindamycin CLI 

  N-desmethyl azithromycin  dmAZM 

  N-desmethyl erythromycin A  dmERY 

  N-desmethyl clarithromycin  dmCLR 

  N-desmethyl clindamycin  dmCLI 

β-lactams    

Penicillin  Amoxicillin AMX 

  Ampicillin AMP 

  Flucloxacillin FLX 

  Penicillin G PenG 

  Penicillin V PenV 

  Amoxicilloic acid AMXa 

https://rdcu.be/cxqhT
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  Ampicilloic acid AMPa 

  Penicilloic G acid PenGa  

Cephalosporin  Cefalexin LEX 

  Cefixime CFM 

  Ceftiofur CTF 

  Ceftriaxone CRO 

Monobactam  Aztreonam ATM 

Carbapenem  Imipenem IPM 

  Meropenem MEM 

Quinolone  Besifloxacin BSF 

  Ciprofloxacin CIP 

  Danofloxacin DFX 

  Enrofloxacin ENR 

  Flumequine FLU 

  Gatifloxacin GAT 

  Lomefloxacin LOM 

  Moxifloxacin MXF 

  Nadifloxacin NAD 

  Nalidixic acid NAL 

  Norfloxacin NOR 

  Ofloxacin (Levofloxacin) * OFX 

  Prulifloxacin PFLX 

  Sarafloxacin SRF 

  Desethylene ciprofloxacin deCIP 

  Hydroxy-norfloxacin  hNOR 

  Ofloxacin N-oxide OFXo 

  Desmethyl-ofloxacin  dmOFX 

  Ulifloxacin UFX 

TB (1st line)  Isoniazid INH 

  Pyrazinamide PZA 

  Ethambutol EMB 

  Rifampicin RMP 

  Rifabutin RFB 

  Isonicotinic acid INa 

  Acetyl-isoniazid  aINH 

  5-Hydroxy-pyrazinoic acid  hPZA 

  25-desacetyl rifampicin  daRMP 

  25-O-desacetyl rifabutin  daRFB 

TB (MDR)  Capreomycin IA  CAPIa 

  Capreomycin IB  CAPIb 

  Gentamycin C1  GEN1 

  Gentamycin C1a  GEN1a 

  Gentamycin C2 C2a C2b  GEN2 

  Kanamycin A  KAN 

  Streptomycin A  STR 

  D-cycloserine DCS 
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TB (other)  Delamanid DMD 

  Bedaquiline BDQ 

  Linezolid LZD 

  Thalidomide THAL 

OTHER    

Amphenicol  Chloramphenicol CHL 

  Florfenicol FLO 

  2-Amino-1-(4-nitrophenyl)-1,3-propanediol ANP 

Cycline  Doxycycline  DOX 

  Oxytetracycline OTC 

  Tetracycline TET 

Nitrofuran  Nitrofurantoin NIT 

  1-(2-nitrobenzylidenamino)-2,4-imidazolidinedione NPAHD 

Azole  Metronidazole MTZ 

  Ketoconazole KTC 

  Hydroxy-metronidazole  hMTZ 

  Deacetyl-ketoconazole  daKTC 

Antiretroviral  Emtricitabine FTC 

  Lamivudine 3TC 

 

Multi-drug resistant (MDR), tuberculosis (TB), LC-MS method is not chiral (*) 

2.2 Sampling sites and sample collection 

Two wastewater treatment plants (WWTPs), corresponding to two catchment areas, were selected for 

this project. This study has previously been reported in Sims et al. (Sims et al., 2022). Both sites are 

within the Southwest of the UK and are a close distance from each other (figure 1). First, is the city of 

Bath with a population of 120,113 and second is a small town called Keynsham, population estimation 

of 21,247. Both sites have limited contribution from industry waste (<1 %). Bath, a UNESCO heritage 

world site, is popular with tourism, and has two Universities residing in its catchment area. Keynsham 

resides between Bath and the city of Bristol and so observes less tourism in general but will likely have 

a commuter input.  

Influent (untreated) wastewater was collected using 24-hour composite flow proportional samplers for 

this project. Samples were collected every 15 minutes over the 24-hour period with composite samples 

combined, to create one 24-hour sample, before being transported on ice to the laboratory for sample 

processing (<1 hour). Wastewater samples were collected over a 13-month period between 2018-2019. 
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Site 

Sewer 

residence 

timea (h) 

Population served 
(population equivalents) 

Industrial contributions 

to population 

equivalents 

Mean flow 
(m3 d-1) 

Bath <0.5-9 120,113 1.2 % 33178 

Keynsham <0.5-2 21,247 0.1 % 3316 
   aunder typical summer flows 

Figure 1. Site information of studied WWTPs 

2.3 Sample preparation and analysis  

2.3.1 Sample Preparation  

Influent wastewater samples that arrived at the lab were portioned into 50 mL samples and spiked with 

50 ng of internal standard spiking mix (50 µL of a 1 µg mL−1 internal standard mix in MeOH). Samples 

were then frozen at this point, prior to the next steps. Samples, when fully defrosted, were filtered via 

GF/F filters before loading onto preconditioned Oasis HLB cartridges (2 mL of MeOH followed by 2 

mL of miliq H2O). Preconditioning of cartridges occurred at a rate of 1 mL min-1 and samples were 

loaded at a rate of 5 mL min-1. Once loaded, samples were dried under vacuum for at least 30 minutes. 

Elution from SPE cartridges was achieved using 4 mL of MeOH at a rate of 1 mL min-1. The extracts 

were then dried under N2 using a TurboVap evaporator (Caliper, UK) at 40 °C. Reconstitution into 

polypropylene vials occurred with 500 μL of 80:20 H2O: MeOH. Samples were then stored at -18 °C 

until analysis.  

2.3.2 Liquid Chromatography  

Full method development and analytical procedures have been previously described (Holton and 

Kasprzyk-Hordern, 2021). Internal standard assignment and instrument and method performance may 

be found in the supplementary information (table S2). Briefly, liquid chromatography-mass 

spectrometry was achieved using a Waters, Acquity UPLC system coupled to a XEVO triple quadrupole 

mass spectrometer. A reverse phase BEH C18 column (50 x 2.1 mm x 1.7 μm) was used. Mobile phase 

A consisted of 95:5 H2O:MeOH with 0.1 % formic acid and mobile phase B was 100 % MeOH. The 

total method is 19 minutes long. An injection volume was 20 µL and flow rate was at 0.2 mL min-1. 

Starting conditions were 0 % B (1 min), followed by 8.5 min gradient to 40 % B, 3.5 min gradient to 

100 % B, 3 min hold, before dropping back to 0 % B.  
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2.3.3 Mass Spectrometry  

As previously mentioned, a XEVO triple quadrupole mass spectrometer was used. This method was in 

ESI positive mode. The source desolvation temperature was at 400 °C. Regarding gas flows, the cone 

gas was at 100 L h-1 and the desolvation gas was at 1000 L h-1. Argon was used as the collision gas and 

nitrogen for the nebulising and desolvation gas. Full breakdown on specific compounds transitions and 

collision cell energies may be found in Holton et al. (Holton and Kasprzyk-Hordern, 2021).  

2.4 AA Intake calculations and correction factors 

2.4.1 Correction factors  

Correction factors (CFs) (table 2) have been previously calculated in a systematic pharmacokinetic 

review by Holton. et al. (Holton et al., 2022). To acheieve representative results, the number of 

observations performed in each study was used for weighting calculated CF values. These CFs are 

utilised to calculate drug intake in a community, PNDI, by using the amount of AA and/or metabolites 

detected in wastewater and correcting for human excretion percentage. SPY has been included in this 

study but it is of note that this AA is no longer prescribed for use in humans in the UK. It is however, a 

major vetrinary pharmaceutical. SPY and aSPY are both major metabolites for SLZ, which is prescribed 

for humans in the UK as an anti-inflammatory.  

Table 2. Target AA CFs, adapted from Holton et al. (Holton et al., 2022) 

    

Metabolite  Abbrev.    CF  

Sulfamethoxazole  SMX    6.57  

Acetyl sulfamethoxazole  aSMX    1.96  

Trimethoprim  TMP    1.58  

Hydroxy trimethoprim  hTMP    24.77  

Sulfadiazine  SDZ    2.68  

Acetyl sulfadiazine  aSDZ    3.88  

Sulfasalazine   SLZ    6.25   

Sulfapyridine SPY [SLZ]    11.96   

Acetyl sulfapyridine  aSPY [SLZ]    3.62  

Sulfapyridine  SPY    4.67  

Acetyl sulfapyridine  aSPY [SPY]    2.91  

Metronidazole  MTZ    3.98   

Hydroxy metronidazole  hMTZ    3.66  

Clindamycin  CLI    9.07   

Desmethyl clindamycin  dmCLI    19.62  

Clarithromycin  CLR    2.92   

Desmethyl clarithromycin  dmCLR    18.20   

Ciprofloxacin  CIP    1.99   

Desethylene ciprofloxacin  deCIP    77.08   

Ofloxacin  OFX    1.25   

Desmethyl ofloxacin  dmOFX    29.23   

N-oxide ofloxacin  oOFX    95.76  

Norfloxacin  NOR    2.33   

Hydroxy norfloxacin  hNOR    1904.57  

Lamivudine  3TC    1.45  
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Emtricitabine  FTC    1.29   

Oxytetracycline  OTC    4.43  

Tetracycline  TET    1.55   

Doxycycline  DOX    1.22  

Nitrofurantoin  NIT    2.90  

1-(2-nitrobenzylidenamino)-2,4-
imidazolidinedione   

NPAHD    -  

 

2.4.2 AA Intake calculations and population normalisation 

Daily mass loads (DLs, g day-1) of AAs were calculated to account for variable wastewater flows. This 

was done by multiplying the total concentrations of AAs (mg L-1) in wastewater over the 24-hour period 

by daily wastewater flow rates (L day-1) 

𝐷𝐿𝑠𝐴𝑛𝑎𝑙𝑦𝑡𝑒 (𝑔 𝑑𝑎𝑦−1) = 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐴𝑛𝑎𝑙𝑦𝑡𝑒  (𝑔 𝐿−1) ∗ 𝑑𝑎𝑖𝑙𝑦 𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤 (𝐿 𝑑𝑎𝑦−1) 

DLs (g day-1) of AAs could then be further normalised to population size of the two catchment areas 

studied in this project to give population normalised daily loads, PNDLs (mg 1000inh-1 day-1). This 

allows for the fair comparison between different sized communities.  

𝑃𝑁𝐷𝐿𝐴𝑛𝑎𝑙𝑦𝑡𝑒  (𝑚𝑔 1000𝑖𝑛ℎ−1 𝑑𝑎𝑦−1) =  
𝐷𝑎𝑖𝑙𝑦 𝑚𝑎𝑠𝑠 𝑙𝑜𝑎𝑑 𝑜𝑓 𝐴𝐴 (𝑚𝑔 𝑑𝑎𝑦−1)

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑊𝑊𝑇𝑃
∗ 1000 

To calculate population normalised daily intakes, PNDI (mg 1000inh-1 day-1), correction factors (CFs) 

were taken into account using:  

𝑃𝑁𝐷𝐼𝐴𝐴 (𝑚𝑔 1000𝑖𝑛ℎ−1 𝑑𝑎𝑦−1) = 𝑃𝑁𝐷𝐿𝐴𝑛𝑎𝑙𝑦𝑡𝑒  (𝑚𝑔 1000𝑖𝑛ℎ−1 𝑑𝑎𝑦−1) ∗ 𝐶𝐹𝐴𝑛𝑎𝑙𝑦𝑡𝑒) 

Where CF were calculated using:  

𝐶𝐹 =  

𝑀𝑊𝐴𝐴

𝑀𝑊𝐴𝑛𝑎𝑙𝑦𝑡𝑒

% 𝐸𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝐴𝑛𝑎𝑙𝑦𝑡𝑒

∗ 100 

Where MWAA and MWAnalyte are the molecular weights of the parent AA and the molecular weights of 

the analyte (either parent compound of respective metabolite). CFs were previously calculated in 

Holton. et al. (Holton et al., 2022). The % ExcretionAnalyte is the percentage of the target analyte (parent 

or metabolite) excreted in urine or faeces.   

2.5 Prescription tool  

An R package, PrAna  (Jagadeesan et al., 2022),  was utilised to extract total prescription quantities of 

the pharmaceuticals for the WWTP catchments for the study period 2018 and 2019. This R package 

generates list of general practices (GPs) and the total prescription quantity of pharmaceuticals inside 

each WWTP catchment, specific to a study period. This R package uses England-level monthly 

prescription datasets and GP information (such as GP name, address, and postcode), provided by NHS 

Digital. 

2.6 Population equivalent estimation  

A population equivalent (PE-NHS) for the each WWTP catchment was estimated, by the number of 

people registered in the general practices (GPs) located inside each WWTP catchment zone. Individual 

GP information, such as postcode and number of people registered, were obtained from NHS Digital 

(https://digital.nhs.uk/). WWTPs catchment maps were provided by Wessex Water. Briefly, an R (Ihaka 

and Gentleman, 1996) package was used, PrAna (Jagadeesan et al., 2022)  and WWTPs catchment maps 

https://digital.nhs.uk/
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to identify the GPs located inside each WWTPs catchments. The number of patients registered for these 

GPs were then calculated using R, an open-source software for statistical computing and graphics.  

Water utility estimates (table 3) were used to calculate population equivalents in wastewater (PE-WW). 

The resident population estimate was calculated by multiplying the occupancy rate with the number of 

properties residing in the designated catchment area. Multi-occupancy buildings were also taken into 

consideration, including care-homes and university halls. Other additional inputs into the wastewater 

stream were also considered (e.g. commercial or industrial waste) by using certain water quality 

indicators (WQIs). For example, industrial PE was calculated via the supply flow to commercial 

properties and using estimates of 60 g biological oxygen demand (BOD) per capita per day. Chemical 

oxygen demand (COD) was used to calculate input from tankard waste, by observing the amount of 

COD present in the known volume of waste (assumption that there was 120 g of COD per capita per 

day).  

Table 3. Populations equivalents used in the study (2018/19), wastewater (above) and NHS data 

(below) 

Wessex Water  

Population Data  

PE-WW  

City/Town served  Bath  Keynsham  

Year 2018 2019 2018 2019 

Domestic-Billed Properties 43,611 45,274 8,028 9,144 

Average Household Size 2.23 2.25 2.23 2.25 

Resident Population Estimate 97,253 101,866 17,902 20,572 

Adjustment for Care Homes 1,411 1,411 315 315 

Adjustment for Universities 

Adjustment for 

Schools/Colleges 

5,800 

800 

5,800 

800 

0 

0 

0 

0 

Non-Resident Population 7,250 7,250 123 123 

Commercial PE 2,026 2,006 222 222 

Trade Effluent PE 1,139 980 0 13 

Tankered Waste PE 0 0 0 0 

Total PE served by WWTP 115,679 120,113 18,562 21,247 

 

PE-NHS 

Bath Keynsham  

2018 2019 2018 2019 

116,030 (SD 770) 118,598(SD 248) 24,640 (SD 284) 25,272(SD 214) 

 

2.7 Statistical analysis  

Pearson correlation coefficients were used to explore the potential relationships between parent 

compounds/metabolites and catchment prescription data. P values were calculated, via paired sample T 

tests, to investigate statistical significance in longitudinal trends in AAs and metabolites. Statistical 

significance in all tests was defined as p ≤ 0.05. 

3. Results and Discussion 

3.1.  Abundance of AAs in a 13-months intercity longitudinal study 

A total number of 58 parent AAs and 26 metabolites were tested in two contrasting catchments (>100K 

inhabitants in the city of Bath and <20K inhabitants in the town Keynsham) over 13 months. A diverse 

range of AAs (17 parent AAs and 8 metabolites) was quantified in the wastewater of both communities. 

AA average loads were, as expected, higher in Bath than in Keynsham (on average 83 ± 24% higher) 

as AA loads are population size driven. Full breakdowns of loads of all studied AAs can be found in 



226 
 

Sims et al.(Sims et al., 2022). Seasonal variability of a handful of AAs across different classes was also 

observed, including MTZ, SLZ, LEX, CIP, and CLR reporting higher loads in winter versus summer. 

Other AAs reported low temporal variability during the studied period, including the sulphonamides 

SMX and SPY. A common observation was that the total prescribed AA mass in winter was higher than 

in summer - particularly for the macrolide, penicillins and cephalosporin classes (Curtis et al., 2019). 

3.2 Correlations of AA/Metabolites in wastewater  

The relationship between parent compounds and metabolites have been investigated further (figure 2), 

including calculating ratios for individual sampling points for the two catchment areas. Applying 

correlation statistics between AAs and associated metabolites showed mostly strong correlations in 

mass loads for both Bath and Keynsham (table 4). CLR and its major metabolite dmCLR demonstrated 

the strongest correlations (r=0.9, p≤0.05 and r=0.8, p≤0.05 for Bath and Keynsham, respectively).  

Furthermore, correlations between AAs that are prescribed as a combination were also observed. For 

example, SMX and TMP are commonly prescribed together in the UK as a combination known as co-

trimoxazole (National Institute for Health and Care Excellence, n.d.). This is due to the different 

mechanisms of action and combined ability to tackle infections to reduce emerging AA resistance. 

Positive correlations were observed between SMX and TMP (r value 0.5 and 0.6 for Bath and 

Keynsham respectively, both p values ≤0.05), aSMX and TMP (r value 0.6 for both Bath and 

Keynsham, p values ≤0.05). Furthermore, co-trimoxazole is one-part TMP to five parts SMX. On 

average, whilst loads of SMX in wastewater were higher in general than TMP, the ratio between loads 

of SMX:TMP were 1.41 ± 0.50 and 2.83 ± 2.41 for Bath and Keynsham, respectively. Reasoning why 

the ratio between the two is lower than expected could be due to differing metabolism patterns of SMX 

and TMP, and that TMP can be prescribed by itself.   
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Figure 2. Daily loads (g/day) of parent AAs and respective metabolites in influent wastewater in Bath 

and Keynsham  

Table 4. Pearson correlation coefficients (r value) of parent compound and respective metabolite, all 

correlations were statistically significant (p≤0.05) 

Parent AA + 

metabolite 

Bath Keynsham  

 r value Average ratio 

AA/metabolite  

r value Average ratio 

AA/metabolite  

CLR + dmCLR 0.90 2.74 ± 0.63  0.79 2.81 ± 0.90 

MTZ + hMTZ 0.71 1.70 ± 0.68  0.75 2.07 ± 1.21  

SPY + aSPY 0.70 1.45 ± 0.53  0.44 5.00 ± 3.29  

SLZ + SPY 0.49 0.34 ± 0.22 0.39 0.39 ± 0.23 

SLZ + aSPY 0.55 0.46 ± 0.33 0.40 1.90 ± 1.53 

SMX + aSMX  0.76 2.40 ± 1.23  0.60 2.52 ± 1.96 

CLI + dmCLI 0.60 17.05 ± 6.01 0.91 7.20 ± 3.67 

SMX + TMP* 0.51 1.44 ± 0.52  0.42 0.82 ± 0.57  

*not parent/metabolite, but two AAs frequently co-prescribed; ± standard deviation  

3.3 Catchment comparison of AA/metabolite ratios to verify consumption vs topical application  

The comparison of ratios between AA/metabolites in the two sites was investigated (figure 3). Ratios 

between parent and metabolites will be important for determining consumption of AAs, however many 

AAs can be prescribed topically as creams or gels. Full breakdown of formulations of prescription data 

for both sites have been presented (table S3), Due to the presence of outliers, medians were also 

calculated.  In general, median values were close to that of the average, demonstrating normal 

distribution (table 5). The ratio of CLR/dmCLR in Bath and Keynsham had concordant results, of 2.74 
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± 0.63 and 2.81 ± 0.90 respectively. This is potentially attributed to both CLR and dmCLR having 

demonstrated good stability in wastewater, with minimal degradation over a 24-hour period at room 

temperature (Holton et al., 2022). 

 

 

 

 

 

 
 

 
 

Figure 3. Comparison of ratios and the average ratio across the sampling period of AA/metabolite in 

Bath and Keynsham 
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Ratios between SLZ/SPY were consistent in both Bath and Keynsham, at 0.15 ± 0.11 and 0.16 ± 0.11 

respectively. SPY and aSPY are both active, major metabolites of SLZ consumption (a prescribed anti-

inflammatory). Ratios of SLZ/aSPY and SPY/aSPY did observe statistical differences between the two 

catchment sites, with Keynsham having higher ratios in both (figure 3). This corresponds to lower levels 

of aSPY in Keynsham (PNDLs Bath:268 ± 109 mg-1 1000inh day-1 vs Keynsham: 65 ± 53 mg-1 1000inh 

day-1). This could be attributed to stability. Whilst SPY was reportedly stable in wastewater at room 

temperature (24 hour: 93.0 ± 7.6%), aSPY demonstrated a drop to 75.4 ± 6.0% after 24 hours (Holton 

et al., 2022).  SLZ observed similar stability to aSPY, reporting a drop to 73.4 ± 5.4% after 24 hours.  

These dissimilarities observed in ratio, between the two catchment sites, could be attributed to the 

differences in sewage systems. Resident times for Bath vary between <0.5-9 hours, and for Keynsham 

between <0.5-2 hours. Bath also has a larger sewage system with an anoxic transport pipe that carries 

most of the community wastewater to the WWTP. Further studies are needed to better understand 

potential biodegradation within the sewage system. SLZ had similar PNDLs (Bath: 50.0 ± 44.3 

Keynsham: 38.8 ± 32.4 g/day). It is worth mentioning that SLZ is prescribed purely in tablet form and 

is not utilised topically in the UK (National Institute for Health and Care Excellence, n.d.). Complexities 

will arise for these compounds; as, whilst SPY is no longer prescribed for human use, it is still used in 

veterinary practices. The Southwest of England, where both catchments reside, has a strong agricultural 

presence. Hence, SPY and aSPY could be present in influent wastewater because of run-off, rather than 

from consumption of SLZ at the community level.  

The ratio between CLI and its metabolite dmCLI was higher than the other AAs/metabolites observed 

in this study at 7.10 ± 2.51 and 7.20 ± 3.67 for Bath and Keynsham, respectively. A previous study has 

demonstrated a lack of stability for these compounds, with degradation of over 80% reported for both  

CLI and dmCLI in wastewater after 24 hours (Holton et al., 2022). As degradation was similar for both 

CLI and dmCLI, it might be theorised that the ratios should have been lower. Stability could be an 

important factor here, as the standard deviations are large. However,  CLI creams can be applied 

topically, as a first-line acne treatment and for the treatment of bacterial vaginosis. When investigating 

the breakdown between oral versus topical prescriptions, CLI was predominately prescribed in  topical 

form (figure S1). Bath reported an average of 0.11 kg/month of oral prescriptions versus 0.052 kg/month 

of topical prescriptions. Keynsham reported 0.096 kg/month of oral versus 0.044 kg/month of topical 

prescriptions. Whilst, in general, the monthly oral prescriptions outweighed topical, November and 

December 2019 in both catchment sites observed similar prescribing for both (~0.059 kg/month for 

both Bath and Keynsham). This could therefore also cause higher levels of parent compound in 

comparison to the metabolite, hence could also push this ratio up. Whilst contribution from topical AAs 

could be low, understanding the breakdown of prescription data (topical versus oral) is still important 

when back calculating consumption at the community level. For other AA/metabolites that have 

previously demonstrated good stability in wastewater, e.g. CLR and dmCLR, concordance in the ratios 

between the two catchment sites is observed. The importance of biomarker stability is therefore 

highlighted again, especially for comparing between different communities. Different catchment areas 

will likely have unique conditions in the sewage pipes which could be facilitating faster degradation or 

transformation of either parent or metabolite. Again, more studies on fate of AAs and metabolites from 

source to WWTP could provide invaluable insight to these potential processes. However, by comparing 

the ratios of stable biomarkers between different catchment areas, WBE has promising potential to 

provide highly accurate data and comparisons.  
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Table 4. Ratio averages and medians of Bath and Keynsham for AA/metabolites in wastewater  

 Bath   Keynsham   Statistical difference Urinary excretion ratio  

(parent/metabolite) 
AA/metabolite ratio Average STD Median Average STD Median p value 

CLR/dmCLR 
2.74 0.63 2.59 2.81 0.90 2.81 1.43E-01 6.12 

CLI/dmCLI 7.10 2.51 6.65 7.20 3.67 6.01 
4.57E-01 2.09 

SMX/aSMX 
2.40 1.23 2.20 2.52 1.96 1.92 3.47E-01 0.35 

SMX/TMP* 
1.44 0.52 1.38 0.82 0.57 0.68 <0.01 N/A 

MTZ/hMTZ 
1.70 0.68 1.67 2.07 1.21 1.71 <0.01 1.03 

SLZ/SPY 
0.15 0.11 0.14 0.16 0.11 0.12 3.88E-01 1.20 

SLZ/aSPY 
0.18 0.13 0.18 0.74 0.75 0.60 <0.01 0.42 

SPY/aSPY 
1.45 0.53 1.38 5.00 3.29 4.17 <0.01 0.73 

Statistically significant values are in bold. 

3.3.1 Potential direct disposal events  

Exploring ratios between parent and metabolites in wastewater can give insight into potential disposal 

events into the sewage system. Regarding MTZ/hMTZ, the ratios for Keynsham were slightly higher 

than for Bath, and whilst comparable, the difference was statistically significant (p≤0.05). The averaged 

ratio for MTZ/hMTZ in Bath was 1.70 ± 0.68, and for Keynsham it was 2.07 ± 1.27. Comparing these 

ratios to the urinary ratio-excretion (parent/metabolite), MTZ/hMTZ had the closest match, with a ratio 

of 1.03 (table 4). Both parent and metabolite exhibited similar levels of degradation by ~40% in 

wastewater over 24 hours (Holton et al., 2022). Interestingly, on the 28/02/2019 in Keynsham, 

MTZ/hMTZ had a ratio of 9.37 ± 0.14.  The parent MTZ levels observed were 82.6 ± 2.2 mg 1000inh-

1 day-1 with hMTZ levels recorded only at 8.82 ± 0.36 mg 1000inh-1 day-1. Whilst this was not the 

highest MTZ level recorded over the sampling period, it was still above average (average PNDL, MTZ: 

28.4 ± 23.4 mg 1000inh-1 day-1). Several days measured ~100 mg 1000inh-1 day-1 for MTZ, but these 

days observed corresponding high levels of hMTZ (e.g. 09/02/2019, MTZ: 113.51 ± 0.21 mg 1000inh-

1 day-1, hMTZ: 74.5 ± 1.45 mg 1000inh-1 day-1, ratio 1.52 ± 0.03).  This suggest an event of potential 

direct disposal. However, MTZ is used to treat a range of infections in the UK including of the skin, 

rosacea and other conditions such as bacterial vaginosis. Of note is that MTZ can be prescribed as a gel 

or a cream, as well as tablets. The type of MTZ, the dose and treatment time will vary on the type and 

severity of infection. Some infections can be treated with a single dose tablet, with the standard length 

of treatment for oral tablets tends to be 5-7 days with people usually feeling better within a few days. 

Rosacea requires a longer treatment time, using the cream twice a day for 2 months. Treatments applied 

topically will result in significantly different metabolism in the body. Hence, the proportion of MTZ 

prescriptions in gel or tablet form could impact observed ratios in wastewater. However, MTZ in both 

Keynsham and Bath was predominantly prescribed in oral form in comparison to topical form during 

the sampling period (figure S1). With Bath reporting on average 0.45 kg/month of tablets and capsules 

prescribed, versus 0.016 kg/month of creams and gels: and Keynsham reporting on average 0.39 

kg/month of tablets capsules, versus 0.013 kg/month of creams and gel. Topical treatments of AAs tend 

to contain a lower dose than tablet or capsule form and are applied more frequently, so potential run off 

into the sewage system (e.g. from showering) may result in a low and consistent contribution to the 

overall AA level observed in wastewater.   

Previous work done in the catchment area has demonstrated several potential disposal events of 

pharmaceuticals, including fluoxetine (Petrie et al., 2016); and carbamazepine, propranolol and 

diltiazem (Kasprzyk-Hordern et al., 2021). It has previously been reported that incorrect disposal 

practices of pharmaceuticals is a global issue, where unused pharmaceuticals are disposed of into sinks, 

toilets, or rubbish bins (Tong et al., 2011). antimicrobialswere likely disposed of down the sewage 
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system. However, due to the nature of AA prescribing (intermittent rather than continuous) as well as 

variable oral, intravenous or topical applications, it is more difficult to pinpoint all the disposal events. 

Education and awareness of the environmental risks of incorrect disposal is essential to ensure unused 

AAs do not unnecessarily end up in the sewar system.    

3.4 Population normalised AAs, temporal and spatial differences – data triangulation with 

catchment demographics and prescribing patterns 

To understand spatial and temporal variability of AA usage in the two catchment areas, AA loads in 

wastewater were normalised to population size (PNDLs) to allow a representative comparison 

(appendix 1). When comparing overall distribution of AA and metabolite loads per capita between Bath 

and Keynsham, similar usage of AAs in the two communities can be observed (figure S2). When 

investigating annual trends with monthly averages (figure S3), higher population normalised loads of 

AAs could be observed for Bath in general all year round when compared to Keynsham. For example, 

monthly averages of SMX were found consistently higher in Bath in comparison to Keynsham 

throughout the sampling period by 60 ± 17% (with overall year averages 121 ± 43 vs 45 ± 36 

mg/1000inh/day respectively). Unsurprisingly, aSMX followed a similar trend with population 

normalised loads as its parent compound, with ~60 % higher each month in Bath when compared to 

Keynsham. Similar results of consistent higher loads per capita in Bath were observed for MTZ and the 

two antiviral drugs 3TC and FTC (51 ± 22, 54 ± 20, and 53 ± 9 % higher each month in Bath vs 

Keynsham, respectively).  

A less consistent inter-city trend was observed for CLR. Over the winter months, monthly averages of 

PNDls of CLR were significantly higher in Bath when compared to Keynsham (p≤0.05). Between 

December 2018-February 2019, CLR averaged 273 ± 72 mg 1000inh-1 day-1 in Bath vs 176 ±51 mg 

1000inh-1 day-1 in Keynsham (77% difference). In contrast, in summer, PNDLs were much lower, and 

comparable between the two sites: with CLR averaging 121 ± 35 and 102 mg 1000inh-1 day-1 in Bath 

and Keynsham, respectively (19% difference). Whilst it is known that macrolide prescriptions often 

peak in winter, more macrolide AAs were prescribed per person in winter in Bath than Keynsham. 

Respiratory infections do tend to follow predictable fluctuations, with colder months leading to rapid 

spreading of infections, due to individuals spending increased time in enclosed spaces indoors (Price et 

al., 2019). Furthermore, the spread of infections occurs much quicker in urbanised areas, such as cities, 

due to higher population densities and an increased amount of shared air space (Alirol et al., 2011). 

Potentially, the reason why Bath had more CLR prescribed per person in winter could be due to more 

rapid spreading of viral infections in a city versus a town.  

It has also been highlighted that spatial differences in AA prescribing do occur. Higher AA prescribing 

rates have been associated with a higher proportion of patients over 65 and under 18, larger population 

sizes,  ruralness, and deprivation (Curtis et al., 2019; Devine et al., 2021; Thomson et al., 2020). 

Comparing age demographics between the two sites (figure S4), Keynsham and Bath had a similar 

percentage of younger children (0-9 years old) at 10%. Regarding the older population, Keynsham had 

a slightly higher proportion in the 65-95+ age bracket, at 24%, with Bath reporting 16%. Perhaps 

unsurprisingly, Bath had a higher proportion of younger adults (20-34) around 29%, with Keynsham at 

18%. This is in line with the strong university presence in Bath, with two universities residing in the 

catchment area.  

Regarding spatial trends, whilst seasonality of certain diseases will influence AA usage, fluctuating 

populations will also play a role here. Bath will have population fluctuations due to tourism and an 

active student population (equating to an estimated 7,250 and 5,800, respectively, additional to the 

calculated resident PE (table 2)). Whilst university students will typically be away over summer months 

(June-September), this is considered peak season for tourism. It is estimated that populations 

fluctuations in Bath will be around ±20%. Considering the high uncertainties associated with 
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wastewater sampling, it is unlikely the effects of a variable population at this scale will have a visible 

and notable impact upon AA levels.  

Whilst Keynsham has a significantly reduced non-residential input in comparison to Bath, there will be 

fluctuations in the population from those commuting. Keynsham is in close proximity to two cities 

(Bristol and Bath), resulting in additional contribution to respective WWTPs. Population fluctuations 

due to commuting however, will be occurring all year round so Keynsham is likely considered a more 

stable population in comparison to Bath.  

3.5 Comparison of WBE to prescription data – patient compliance 

Catchment prescription data for both Bath and Keynsham was also compared with PNDLs in 

wastewater (figure 4). Interestingly for Keynsham, TET and OFX  had months where these were not 

prescribed by GPs in the catchment area, but were still quantifiable in wastewater. Looking at average 

prescribing lengths of these AAs, TET can be prescribed long-term for the treatment of acne and 

rosacea, both requiring longer treatment times of minimum 12 weeks for acne and 6-12 weeks for 

rosacea. OFX is used in the treatment of different infections including taken orally for the treatment of 

urinary tract infections (UTIs), and lower respiratory infections but also can be found in eye drops for 

the treatment of certain infections. OFX tends to be prescribed in much shorter lengths in comparison 

to TET (days rather than months). Their detection in wastewater during those periods could be attributed 

to many reasons, including individuals registered to GPs outside the catchment area, delayed 

prescriptions (in the case of UTIs) or potential self-prescribing. This does highlight the complexity of 

estimating community usage from wastewater, but also how using prescription data at face value does 

not always necessarily give the reflection of what is being actually used in the community.  

  

  

 
 

0

200

400

600

800

1000

0

100

200

300

400

500

600

700

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath
PNDP, CLR

PNDL CLR

PNDL dmCLR

0

200

400

600

800

1000

0

100

200

300

400

500

600

700

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

al
is

ed
 d

ai
ly

 l
o
ad

s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

ay
 

Keynsham
CLR Prescription

PNDL CLR

PNDL dmCLR

0

100

200

300

400

500

600

0

20

40

60

80

100

120

140

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath
PNDP, ERY

PNDL ERY

0

100

200

300

400

500

600

0

20

40

60

80

100

120

140
P

o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Keynsham
ERY Prescription

PNDL ERY

0

20

40

60

80

100

120

140

160

0

5

10

15

20

25

P
o
p
u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0
0
in

h
/d

a
y

P
o
p
u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0
0
in

h
/d

a
y
 

Bath
PNDP, CLI

PNDL CLI

PNDL dmCLI

0

20

40

60

80

100

120

140

160

0

5

10

15

20

25

P
o
p
u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0
0
in

h
/d

a
y

P
o
p
u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0
0
in

h
/d

a
y
 

Keynsham
CLI Prescription

PNDL CLI

PNDL dmCLI



234 
 

 
 

 
 

 

 

  

 
 

 
 

0

50

100

150

200

0

20

40

60

80

100

120

140

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath
PNDP, MTZ

PNDL MTZ

PNDL hMTZ

0

50

100

150

200

250

300

0

20

40

60

80

100

120

140

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0
0
in

h
/d

ay
 

Keynsham
MTZ Prescription

PNDL MTZ

PNDL hMTZ

0

50

100

150

200

0

50

100

150

200

250

300

P
o
p

u
la

ti
o
n
 n

o
rm

a
lo

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

lo
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 Bath

PNDP, SMX

PNDL SMX

PNDL aSMX

0

50

100

150

200

0

50

100

150

200

250

300

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 p

re
sc

ri
p

ti
o
n
 

(P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0
0
in

h
/d

ay
 

Keynsham
SMX Prescription

PNDL SMX

PNDL aSMX

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

100

200

300

400

500

600

700

800

900

1000

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath
PNDP, SLZ

PNDL SLZ

PNDL SPY

PNDL aSPY

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

100

200

300

400

500

600

700

800

900

1000

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 p

re
sc

ri
p

ti
o
n
 

(P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 

m
g
/1

0
0

0
in

h
/d

a
y
 

Keynsham
Prescription SLZ

PNDL SLZ

PNDL SPY

PNDL aSPY

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350

400

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath
PNDP, TMP

PNDL TMP

0

50

100

150

200

250

300

350

0

50

100

150

200

250

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

ay
 

Keynsham TMP Prescription

PNDL TMP

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

P
o
p
u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

al
is

ed
 d

ai
ly

 l
o
ad

s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath
PNDP, OFX

PNDL OFX

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

P
o
p
u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p
u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Keynsham OFX Prescription

PNDL OFX

0

50

100

150

200

250

300

0

100

200

300

400

500

600

700

0
5

/1
1
/2

…

0
5

/1
2
/2

…

0
5
/0

1
/2

…

0
5

/0
2
/2

…

0
5

/0
3
/2

…

0
5

/0
4
/2

…

0
5

/0
5
/2

…

0
5

/0
6
/2

…

0
5
/0

7
/2

…

0
5

/0
8
/2

…

0
5

/0
9
/2

…

0
5

/1
0
/2

…

0
5

/1
1
/2

…

0
5

/1
2
/2

…

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0
0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0
0
in

h
/d

a
y
 

Bath PNDP, CIP

PNDL CIP

0

50

100

150

200

250

300

0

100

200

300

400

500

600

700

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0
0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

ay
 

Keynsham
CIP Prescription

PNDL CIP



235 
 

 
 

  

 
 

  

 
 

Figure 4. Comparison of PNDLs (mg/1000inh/day) to the monthly catchment prescription data that 

has been normalised to the population size (mg/1000inh/day).  

To further investigate relationships between AAs in wastewater and prescribing patterns, correlations 

between average monthly loads in wastewater with the abundance of AAs prescribed in each catchment 

per month were investigated. CLR in Bath had strong positive correlation (r value 0.90, p≤0.05) between 

wastewater loads and prescription data. As previously mentioned, CLR has demonstrated strong 

seasonal changes, with prescription rates being higher in winter months when compared to summer 

(figure 4). However, whilst catchment prescribing rates for CLR peaked in Keynsham during winter, 

correlations between prescription and loads were low with no statistical significance (r value 0.05, p 

0

50

100

150

200

250

300

0

50

100

150

200

250

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0
0
in

h
/d

ay

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

lo
ad

s 
(P

N
D

L
) 

m
g
/1

0
0
0
in

h
/d

ay
 Bath PNDP, TET

PNDL TET

0

50

100

150

200

250

300

0

50

100

150

200

250

P
o
p

u
la

ti
o
n
 n

o
ra

m
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Keynsham TET prescriptions

PNDL TET

0

200

400

600

800

1000

1200

1400

0

50

100

150

200

250

300

350

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 

p
re

sc
ri

p
ti

o
n
 d

a
ta

 m
g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath PNDP, OTC

PNDL OTC

0

200

400

600

800

1000

1200

1400

0

50

100

150

200

250

300

350

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Keynsham OTC prescriptions

PNDL OTC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

50

100

150

200

250

300

350

400

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath
PNDP, FLX

PNDL FLX

0

1000

2000

3000

4000

5000

0

50

100

150

200

250

300

350

400

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0
0
in

h
/d

ay
 

Keynsham FLX Prescription

PNDL FLX

0

20

40

60

80

100

0

500

1000

1500

2000

2500

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 p

re
sc

ri
p

ti
o
n
 

(P
N

D
P

) 
k
g
/m

o
n
th

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath
PNDP, KTC

PNDL KTC

0

20

40

60

80

100

0

500

1000

1500

2000

2500

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Keynsham KTC Prescriptions

PNDL KTC

0

20

40

60

80

100

120

140

160

0

5

10

15

20

25

P
o
p
u

la
ti

o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

ay

P
o
p
u

la
ti

o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Bath
PNDP, CLI

PNDL CLI

PNDL dmCLI

0

20

40

60

80

100

120

140

160

0

5

10

15

20

25

P
o
p

u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 

p
re

sc
ri

p
ti

o
n
 (

P
N

D
P

) 
m

g
/1

0
0

0
in

h
/d

a
y

P
o
p
u
la

ti
o
n
 n

o
rm

a
li

se
d
 d

a
il

y
 l

o
a
d
s 

(P
N

D
L

) 
m

g
/1

0
0

0
in

h
/d

a
y
 

Keynsham
CLI Prescription

PNDL CLI

PNDL dmCLI



236 
 

value ≥0.05). Keynsham is a commuter town, so reasoning for this could be partially explained due to 

fluctuating populations with individuals being prescribed AAs in the catchment area but working 

outside the catchment area in the cities in close proximity.  

Table 5 Correlations of average monthly loads of parent AAs to average monthly catchment prescribing  

 Bath Keynsham r value 

AA r value  

CLR  0.90 -0.05 

dmCLR 0.83 -0.13 

ERY 0.28 0,22 

MTZ 0.11 -0.16 

hMTZ -0.01 -0.14 

FLX -0.07 0.05 

SMX 0.02 0.17 

aSMX 0.10 0.52 

TMP 0.13 0.51 

SLZ -0.19 -0.07 

SDZ -0.08 - 

CIP 0.23 -0.30 

OFX 0.21 -0.10 

CLI -0.05 0.21 

dmCLI 0.53 0.34 

TET 0.35 0.19 

OTC 0.49 0.23 

KTC -0.16 -0.31 

Statistically significant values are in bold.  

Weaker correlations between wastewater and prescription data could be partially due to the nature of 

AA prescribing, with shorter courses for some AAs, some lasting days with others lasting months. 

Whilst prescribing data is an invaluable source of information for identifying prescribing patterns and 

trends, it does not necessarily give a true representation of how AAs are being used in the community. 

Items prescribed by a GP could be consumed, stock-piled or disposed of. Furthermore, AA compliance 

could be a further issue, as previously mentioned one survey identified 1/3 of patients not fully 

complying to AA treatment  with 1/4 admitting to stockpiling of AAs to use at a later date (Kardas et 

al., 2005). For AAs that are not stable, and as a result are rarely observed in wastewater (e.g. penicillins), 

prescription data can give valuable insight.  

Notably, two antivirals FTC and 3TC were monitored in influent wastewater of both sites, however 

prescriptions of these were not found in the catchment region. It could be that these antivirals were 

prescribed outside the catchment region or could be from an unknown source. A similar observation 

was observed for several tuberculosis (TB) drugs, including metabolites hPZA and INa. The usual 

course of treatment is two antibiotics (isoniazid and rifampicin) for six months, along with additional 

two antibiotics (pyrazinamide and ethambutol) for the first two months of the six-month period (NHS, 

n.d.). These are often prescribed in combination due to challenges of multi-drug resistance with many 

TB infections. Of note is that there are no drugs licensed in the UK for treating animals, and so presence 

in community wastewater likely originates from human sources (Animal and Plant Health Agency, 

2017). Further work is required to fully understand this phenomenon. 

3.6 AA Intake calculations of AAs 

Population normalised daily prescription (PNDPs mg/day/1000inh) were calculated from the total 

monthly mass of the drug prescribed; these were compared against the population normalised daily 

intake (PNDIs). As previously mentioned these were calculated in a prior comprehensive literature 

review investigating the pharmacokinetic data of selected AAs to generate CFs (Holton et al., 2022). 

The calculated CF values were used to back calculate the mass of drug consumed at the community 

level, using the amount of AA or respective metabolite quantified in wastewater and the proportion that 
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target analyte is excreted via urine or faeces (figure 5).  The macrolide CLR gave good agreement 

between the PNDI and PNDP in Bath (PNDI: 577 ± 189 mg/day/1000inh, PNDP: 543 ± 92 

mg/day/1000inh). However, the PNDP values were higher in general for CLR Keynsham (PNDI: 427 

± 183, PNDP: 642 ± 96 mg/day/1000inh). The metabolite dmCLR did not give this same closeness 

being much higher than its parent compound after correction (PNDI for Bath: 1347 ± 402 

mg/day/1000inh, PNDI for Keynsham: 922 ± 323 mg/day/1000inh).   

Notably, PNDIs for several AAs were in good agreement between the two sites but the PNDP was 

different (table S4). Agreement between PNDIs between different locations could indicate that WBE 

provides a better estimate of community AA usage than prescriptions alone. This is because WBE can 

account for the potential problems with prescriptions. As mentioned earlier, drugs prescribed may not 

have been used, delayed prescription, stored or disposed of, and some treatments may last many months 

(e.g. AAs prescribed for acne treatment). Patients of GP surgeries may also live outside the studied 

wastewater catchment area, so use/disposal of those pharmaceuticals not captured in the studied 

wastewater data. Vice versa some individuals may be consuming pharmaceuticals that were prescribed 

elsewhere within the studied catchment area so would show in wastewater data and not the catchment 

prescription data. Also, whilst some laboratory stability studies in wastewater have been investigated 

(Holton et al., 2022), it is recognised that wastewater from different sites could provide very different 

matrices and the environment within the sewage system could be very different.   

For several AAs, the PNDPs were higher in Keynsham than in Bath (e.g. CLR, OFX, TET). Again, this 

could be for many reasons, including variation in prescription and dispensing locations, bulk 

prescription of antibiotics and Keynsham has relatively higher population of > 40 aged people. A key 

difference could be the socioeconomic indices, further work in this area is needed to explore this 

phenomenon. 
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Figure 5. Box plot comparisons of AA PNDIs (n= 92 Bath, n=102 Keynsham) with the monthly 

averages of PNDPs (n= 12 Bath, n= 13 Keynsham). Breakdown of the monthly averages may be found 

in figure S5.  

4. Conclusions  

AMR is of growing concern/will continue to be a problem. It is well recognised that surveillance is 

critical to tackling AMR.  This study investigated AA usage in two different catchment areas, and results 

have demonstrated similarities in trends of AA usage in both Bath and Keynsham across the sampling 

period. They have also indicated, even with their close proximity, that more AA is consumed per person 

in Bath than in Keynsham. A similar observation has been identified by previous work in the group 
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done within the catchment area, identifying human population size as a key driver of AAs in the 

environment (Elder et al., 2021). These results demonstrate promising potential for data triangulation 

of wastewater data and prescription data to provide a comprehensive approach to AA usage in 

communities. This provides invaluable AMR surveillance data complimentary to surveillance done in 

clinics and the environment, critical all aspects are covered in a one health aspect. Further work is 

needed in more communities to explore this concept further. In locations where prescription rates are 

challenging to access, unknown or where AAs may be obtained easily over the counter, there is clear 

potential for WBE to provide data in AA usage.  

This study aimed to further build upon knowledge in the catchment area and results have demonstrated 

some key findings:  

• Parent AAs and metabolites all observed positive correlations in community wastewater  

• Spatial variability in AA usage was observed, even in neighbouring urban areas 

• WBE and prescription data showed similar seasonal trends but with low correlation in intake. 

The reasons might be variable prescribing patterns and/or lack of patient compliance 

Application of CFs to several AAs to back-calculate intake observed good agreement with 

estimated intake from the prescription data, closer matches were observed in the catchment 

with the larger population size (Bath) 

• WBE proved useful in differentiating between consumption vs topical usage and/or direct 

disposal of unused AA 

• WBE is superior to prescription data as it provides information on AAs prescribed outside of 

the monitoring catchment 

• Data triangulation (WBE, prescription, and demographics data) provides the most 

comprehensive approach to AA usage in any given catchment 
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Table S1: Chemical information of AA targets, ordered by class groupings, table taken from Holton and Kasprzyk-Hordern, 2021, https://rdcu.be/cxqhT  

        

        
Grouping Chemical Abbrev Class A Class B CAS No. Salt form θ Molec. Formula M.I. mass Supplier 

Sulfonamide & Sulfadiazine SDZ Sulfonamide Parent 68-35-9  C10H10N4O2S 250.05 
Sigma-
Aldrich 

Trimethoprim Sulfapyridine SPY Sulfonamide Parent 144-83-2  C11H11N3O2S 249.06 
Sigma-

Aldrich 

 Sulfamethoxazole SMX Sulfonamide Parent 723-46-6  C10H11N3O3S 253.05 
Sigma-

Aldrich 

 Sulfasalazine SLZ Sulfonamides Parent 599-79-1  C18H14N4O5S 398.07 
Sigma-
Aldrich 

 Trimethoprim TMP Trimethoprim  Parent 738-70-5  C14H18N4O3 290.14 
Sigma-

Aldrich 
 N-acetyl sulfadiazine  aSDZ Sulfonamide Metabolite 127-74-2  C12H12N4O3S 292.06 TRC 
 N-acetyl sulfapyridine  aSPY Sulfonamide Metabolite 19077-98-6  C13H13N3O3S 291.07 TRC 
 N-acetyl sulfamethoxazole  aSMX Sulfonamide Metabolite 21312-10-7  C12H13N3O4S 295.06 TRC 
 4-hydroxy-trimethoprim  hTMP Trimethoprim Metabolite 112678-48-5  C14H18N4O4 306.13 TRC 

Macrolide Azithromycin AZM Macrolide Parent 83905-01-5  C38H72N2O12 748.51 LCG 

& Lincomycin Erythromycin ERY Macrolide Parent 114-07-8  C37H67NO13 733.46 
Sigma-

Aldrich 

 Clarithromycin CLR Macrolide Parent 81103-11-9  C38H69NO13 747.48 
Sigma-

Aldrich 

 Clindamycin CLI Lincomycin Parent 18323-44-9 Hydrochloride C18H33ClN2O5S 424.18 
Sigma-

Aldrich 

 N-desmethyl azithromycin  
dmAZ

M 
Macrolide Metabolite 172617-84-4  C37H70N2O12 734.49 TRC 

 N-desmethyl erythromycin A  
dmER
Y 

Macrolide Metabolite 992-62-1  C36H65NO13 719.45 TRC 

 N-desmethyl clarithromycin  dmCLR Macrolide Metabolite 101666-68-6  C37H67NO13 733.46 TRC 
 N-desmethyl clindamycin  dmCLI Lincomycin Metabolite 22431-45-4  C17H31ClN2O5S 410.16 TRC 

β-LACTAMS          

Penicillin Amoxicillin AMX Penicillin Parent 26787-78-0  C16H19N3O5S 365.10 Fluka 
 Ampicillin AMP Penicillin Parent 69-53-4 Trihydrate C16H19N3O4S 349.11 Fluka 
 Flucloxacillin FLX Penicillin Parent 5250-39-5 Sodium C19H17ClFN3O5S 453.06 Fluka 
 Penicillin G PenG Penicillin Parent 113-98-4 Sodium C16H18N2O4S 334.10 Fluka 

 Penicillin V PenV Penicillin Parent 132-98-9 Potassium C16H18N2O5S 350.09 
Sigma-

Aldrich 
 Amoxicilloic acid AMXa Penicillin Metabolite 42947-63-7 ¥ Trisodium salt C16H21N3O6S 383.12 TRC 
 Ampicilloic acid AMPa Penicillin Metabolite 32746-94-4  C16H21N3O5S 367.12 TRC 
 Penicilloic G acid PenGa  Penicillin Metabolite 11039-68-2  C9H14N2O5S 262.06 TRC 

Cefalosporin Cefalexin LEX Cefalosporin Parent 23325-78-2 Monohydrate C16H17N3O4S 347.09 Fluka 

https://rdcu.be/cxqhT
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 Cefixime CFM Cefalosporin Parent 79350-37-1 Trihydrate C16H15N5O7S2 453.04 Fluka 
 Ceftiofur CTF Cefalosporin Parent 104010-37-9  C19H17N5O7S3 523.03 Fluka 

 Ceftriaxone CRO Cefalosporin Parent 104376-79-6 Disodium hemi(heptahydrate) C18H18N8O7S3 554.05 
Sigma-
Aldrich 

Monobactam Aztreonam ATM Monobactam Parent 78110-38-0  C13H17N5O8S2 435.05 TRC 

Carbapenem 
Imipenem IPM Carbapenem Parent 64221-86-9  C12H17N3O4S 299.09 

Sigma-
Aldrich 

 Meropenem MEM Carbapenem Parent 119478-56-7 Trihydrate C17H25N3O5S 383.15 
Sigma-

Aldrich 

Quinolone Besifloxacin BSF Quinolone Parent 405165-61-9 Hydrochloride C19H21ClFN3O3 393.13 MCE 
 Ciprofloxacin CIP Quinolone Parent/Metab. 85721-33-1  C17H18FN3O3 331.13 Fluka 
 Danofloxacin DFX Quinolone Parent 119478-55-6 Mesylate C19H20FN3O3 357.15 LCG 

 Enrofloxacin ENR Quinolone Parent 93106-60-6  C19H22FN3O3 359.16 
Sigma-

Aldrich 
 Flumequine FLU Quinolone Parent 42835-25-6  C14H12FNO3 261.08 Fluka 
 Gatifloxacin GAT Quinolone Parent 112811-59-3  C19H22FN3O4 375.16 TRC 

 Lomefloxacin LOM Quinolone Parent 98079-52-8 Hydrochloride C17H19F2N3O3 351.14 
Sigma-
Aldrich 

 Moxifloxacin MXF Quinolone Parent 268545-13-7 Hydrochloride C21H24FN3O4 401.18 MCE 
 Nadifloxacin NAD Quinolone Parent 124858-35-1  C19H21FN2O4 360.15 MCE 

 Nalidixic acid NAL Quinolone Parent 389-08-2 Sodium C12H12N2O3 232.08 
Sigma-

Aldrich 

 Norfloxacin NOR Quinolone Parent 70458-96-7  C16H18FN3O3 319.13 
Sigma-

Aldrich 

 Ofloxacin (Levofloxacin) * OFX Quinolone Parent 82419-36-1  C18H20FN3O4 361.14 
Sigma-
Aldrich 

 Prulifloxacin PFLX Quinolone 
Parent 

(prodrug) 
123447-62-1  C21H20FN3O6S 461.11 

Sigma-

Aldrich 
Grouping Chemical Abbrev Class A Class B CAS No. Salt form θ Molec. Formula M.I. mass Supplier 

 Sarafloxacin SRF Quinolone Parent 91296-87-6 Hydrochloride C20H17F2N3O3 385.12 
Sigma-

Aldrich 
 Desethylene ciprofloxacin deCIP Quinolone Metabolite 528851-31-2 Hydrochloride C15H16FN3O3 305.12 TRC 
 Hydroxy-norfloxacin  hNOR Quinolone Metabolite 109142-49-6  C16H18FN3O4 335.13 TRC 
 Ofloxacin N-oxide OFXo Quinolone Metabolite 104721-52-0 Acetic acid salt C18H20FN3O5 377.14 TRC 

 Desmethyl-ofloxacin  
dmOF

X 
Quinolone Metabolite 82419-52-1  C17H18FN3O4 347.13 TRC 

 Ulifloxacin UFX Quinolone Metabolite  112984-60-8  C16H16FN3O3S 349.09 TRC 

TB (1st line) Isoniazid INH Isoniazid Parent 54-85-3  C6H7N3O 137.06 
Sigma-

Aldrich 

 Pyrazinamide PZA Pyrazinamide Parent 98-96-4  C5H5N3O 123.04 
Sigma-
Aldrich 

 Ethambutol EMB Ethambutol Parent 74-55-5 Dihydrochloride C10H24N2O2 204.18 
Sigma-
Aldrich 

 Rifampicin RMP Rifamycin Parent 13292-46-1  C43H58N4O12 822.41 
Sigma-

Aldrich 
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 Rifabutin RFB Rifamycin Parent 72559-06-9  C46H62N4O11 846.44 
Sigma-
Aldrich 

 Isonicotinic acid INa Isoniazid Metabolite 55-22-1  C6H5NO2 123.03 
Sigma-

Aldrich 

 Acetyl-isoniazid  aINH Isoniazid Metabolite 1078-38-2  C8H9N3O2 179.07 
Sigma-

Aldrich 

 5-Hydroxy-pyrazinoic acid  hPZA Pyrazinamide Metabolite 34604-60-9  C5H4N2O3 140.02 
Sigma-
Aldrich 

 25-desacetyl rifampicin  daRMP Rifamycin Metabolite 16783-99-6  C41H56N4O11 780.39 
Sigma-

Aldrich 

 25-O-desacetyl rifabutin  daRFB Rifamycin Metabolite 100324-63-8  C44H60N4O10 804.43 TRC 

TB (MDR) Capreomycin IA ≠ CAPIa Aminoglycoside Parent 1405-37-4 Sulfate  C25H44N14O8 668.35 TRC 

 Capreomycin IB ≠ CAPIb Aminoglycoside Parent 1405-37-4 Sulfate  C25H44N14O7 652.35 TRC 

 Gentamycin C1 ≠ GEN1 Aminoglycoside Parent 1405-41-0  Sulfate salt hydrate C21H43N5O7 477.32 Fluka 

 Gentamycin C1a ≠ GEN1a Aminoglycoside Parent 1405-41-0  Sulfate salt hydrate C19H39N5O7 449.28 Fluka 

 Gentamycin C2 C2a C2b ≠ GEN2 Aminoglycoside Parent 1405-41-0  Sulfate salt hydrate C20H43N5O7 465.32 Fluka 

 Kanamycin A ≠ KAN Aminoglycoside Parent 25389-94-0 Sulfate C18H36N4O11 484.24 
Sigma-
Aldrich 

 Streptomycin A ≠ STR Aminoglycoside Parent 3810-74-0 Sulfate C21H39N7O12 581.27 
Sigma-

Aldrich 

 D-cycloserine DCS Isoxazole Parent/Metab. 68-41-7  C3H6N2O2 102.04 TRC 

TB (other) Delamanid DMD Nitroimidazole Parent 681492-22-8  C25H25F3N4O6 534.17 
Sigma-

Aldrich 

 Bedaquiline BDQ Diarylquinoline Parent 843663-66-1  C32H31BrN2O2 554.16 
Sigma-

Aldrich 

 Linezolid LZD Oxazolidinone Parent 165800-03-3  C16H20FN3O4 337.14 
Sigma-
Aldrich 

 Thalidomide THAL Thalidomide Parent 50-35-1  C13H10N2O4 258.06 
Sigma-

Aldrich 
OTHER          

Amphenicol Chloramphenicol CHL Amphenicol Parent 56-75-7  C11H12Cl2N2O5 322.01 
Sigma-

Aldrich 

 Florfenicol FLO Amphenicol Parent 73231-34-2  C12H14Cl2FNO4S 357.00 MCE 

 2-Amino-1-(4-nitrophenyl)-1,3-propanediol ANP Amphenicol Metabolite 2964-48-9  C9H12N2O4 212.08 
Sigma-
Aldrich 

Cycline Doxycycline  DOX Cycline Parent 24390-14-5 Hyclate C22H24N2O8 444.15 
Sigma-

Aldrich 
 Oxytetracycline OTC Cycline Parent 2058-46-0 Hydrochloride C22H24N2O9 460.15 TRC 

 Tetracycline TET Cycline Parent 64-75-5 Hydrochloride C22H24N2O8 444.15 
Sigma-

Aldrich 

Nitrofuran Nitrofurantoin NIT Nitrofuran Parent 67-20-9  C8H6N4O5 238.03 
Sigma-

Aldrich 

 1-(2-nitrobenzylidenamino)-2,4-
imidazolidinedione 

NPAH
D 

Nitrofuran Metabolite 623145-57-3  C10H8N4O4 248.05 TRC 

Azole Metronidazole MTZ Azole Parent 443-48-1  C6H9N3O3 171.06 
Sigma-

Aldrich 
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 Ketoconazole KTC Azole Parent 65277-42-1  C26H28Cl2N4O4 530.15 
Sigma-
Aldrich 

 Hydroxy-metronidazole  hMTZ Azole Metabolite 1215071-08-1  C6H9N3O4 187.06 TRC 
 Deacetyl-ketoconazole  daKTC Azole Metabolite 67914-61-8  C24H26Cl2N4O3 488.14 TRC 

Antiretroviral Emtricitabine FTC ARV Parent 143491-57-0  C8H10FN3O3S 247.04 TRC 
 Lamivudine 3TC ARV Parent 134678-17-4  C8H11N3O3S 229.05 TRC 
 

 

  

Monoisotopic mass (M.I. mass), multi-drug resistant (MDR), tuberculosis (TB), nucleoside reverse transcriptase inhibitor (NRTI) 

LC-MS method is not chiral (*); one standard used for all forms within the drug complex (≠); CAS for chiral free acid (¥); salt corrections considered in all calculations, i.e., analysis of the free base (θ) 
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Table S2. Internal standards used along with instrument and method detection limits (IDLs and MDLs) 

and instrument and method quantification limits (IQLs and MQLs) table adapted from Holton and 

Kasprzyk-Hordern, 2021, https://rdcu.be/cxqhT 

   Mobile phase (ng L-1) Influent wastewater (ng L-1) 

Class Abbrev Internal Standard  IDL IQL MDL MQL 

Sulfonamide & SDZ Sulfamethoxazole D4 0.015 0.050 0.230 0.76 

Trimethoprim SPY Sulfamethoxazole D4 0.003 0.010 0.026 0.088 

 SMX Sulfamethoxazole D4 0.002 0.005 0.014 0.046 

 SLZ Sulfamethoxazole D4 1.500 5.000 5.130 17.09 

 TMP Trimethoprim D9 0.150 0.500 0.970 3.22 

 aSDZ Sulfamethoxazole D4 0.021 0.070 0.230 0.77 

 aSPY Sulfamethoxazole D4 0.167 0.556 1.350 4.51 

 aSMX Sulfamethoxazole D4 0.019 0.063 0.200 0.66 

 hTMP Trimethoprim D9 0.004 0.013 0.030 0.1 

Macrolide AZM Clarithromycin D3 0.015 0.050 - - 

& Lincomycin ERY Clarithromycin D3 0.002 0.005 0.016 0.053 

 CLR Clarithromycin D3 0.002 0.005 0.014 0.046 

 CLI Flumequine 13C3 0.150 0.500 - - 

 dmAZM Clarithromycin D3 0.375 1.250 - - 

 dmERY Clarithromycin D3 0.002 0.007 0.020 0.07 

 dmCLR Clarithromycin D3 0.005 0.017 0.070 0.25 

 dmCLI Flumequine 13C3 0.002 0.005 - - 

β-LACTAMS AMX Sulfamethoxazole D4 1.500 5.000 - - 

Penicillin AMP Ampicillin D5 1.500 5.000 55.600 185 

 FLX Flumequine 13C3 0.150 0.500 1.630 5.45 

 PenG Penicillin G D7 0.150 0.500 5.470 18.2 

 PenV Penicillin G D7 3.000 10.000 81.300 271 

 AMXa Sulfamethoxazole D4 0.300 1.000 146.000 488 

 AMPa Ampicillin D5 0.150 0.500 31.800 106 

 PenGa  Penicillin G D7 0.150 0.500 15.400 51.5 

Cefalosporin LEX Trimethoprim D9 0.375 1.250 5.910 19.7 

 CFM Trimethoprim D9 1.500 5.000 13.200 44 

 CTF Flumequine 13C3 0.150 0.500 - - 

 CRO Trimethoprim D9 7.500 25.000 48.400 161 

Monobactam ATM Trimethoprim D9 0.300 1.000 - - 

Carbapenem IPM Metronidazole D4 1.500 5.000 - - 

 MEM Trimethoprim D9 1.500 5.000 - - 

Quinolone BSF Flumequine 13C3 0.375 1.250 3.150 10.5 

 CIP Desmethyl-ofloxacin D8 0.150 0.500 1.130 3.77 

 DFX Desmethyl-ofloxacin D8 1.500 5.000 13.900 46.3 

 ENR Desmethyl-ofloxacin D8 0.030 0.100 0.250 0.82 

 FLU Flumequine 13C3 0.003 0.010 0.030 0.1 

 GAT Desmethyl-ofloxacin D8 0.003 0.010 0.030 0.09 

 LOM Desmethyl-ofloxacin D8 0.030 0.100 0.280 0.95 

 MXF Desmethyl-ofloxacin D8 0.375 1.250 3.040 10.1 

 NAD Flumequine 13C3 0.300 1.000 2.680 8.92 

https://rdcu.be/cxqhT
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 NAL Flumequine 13C3 0.003 0.010 0.030 0.11 

 NOR Desmethyl-ofloxacin D8 0.003 0.010 0.021 0.069 

 OFX Desmethyl-ofloxacin D8 0.030 0.100 0.410 1.37 

 PFLX Desmethyl-ofloxacin D8 0.300 1.000 1.780 5.95 

 SRF Desmethyl-ofloxacin D8 0.150 0.500 1.500 5.01 

 deCIP Desmethyl-ofloxacin D8 0.150 0.500 1.440 4.82 

 hNOR Desmethyl-ofloxacin D8 3.600 12.000 38.600 129 

 OFXo Desmethyl-ofloxacin D8 3.600 12.000 36.500 122 

 dmOFX Desmethyl-ofloxacin D8 0.150 0.500 1.340 4.45 

 UFX Desmethyl-ofloxacin D8 1.500 5.000 11.400 38.1 

TB DRUGS INH Isoniazid D4 0.150 0.500 1.520 5.06 

TB (1st line) PZA Metronidazole D4 1.500 5.000 - - 

 EMB Metronidazole D4 0.003 0.010 0.130 0.42 

 RMP Rifabutin D7 0.375 1.250 - - 

 RFB Rifabutin D7 0.150 0.500 1.680 5.62 

 INa Isoniazid D4 0.150 0.500 7.200 24 

 aINH Isoniazid D4 0.150 0.500 3.580 11.9 

 hPZA Metronidazole D4 0.030 0.100 - - 

 daRMP Rifabutin D7 1.500 5.000 15.000 50 

 daRFB Rifabutin D7 0.030 0.100 0.330 1.11 

TB (MDR) CAPIa Metronidazole D4 6.621 22.071 4528.000 15094 

 CAPIb Metronidazole D4 6.621 22.071 - - 

 GEN1 Metronidazole D4 2.820 9.400 - - 

 GEN1a Metronidazole D4 2.070 6.900 - - 

 GEN2 Metronidazole D4 5.250 17.500 - - 

 KAN Metronidazole D4 3.563 11.875 - - 

 STR Metronidazole D4 12.000 40.000 2650.000 8835 

 DCS Metronidazole D4 0.150 0.500 - - 

TB (other) DMD Rifabutin D7 0.150 0.500 - - 

 BDQ Rifabutin D7 1.500 5.000 - - 

 LZD Chloramphenicol D5 0.030 0.100 0.270 0.89 

 THAL Trimethoprim D9 0.300 1.000 3.480 11.6 

OTHER CHL Chloramphenicol D5 0.150 0.500 1.310 4.35 

Amphenicol FLO Chloramphenicol D5 3.000 10.000 21.900 73.1 

 ANP Metronidazole D4 1.500 5.000 42.300 141 

Cycline DOX Rifabutin D7 0.375 1.250 12.700 42.2 

 OTC Desmethyl-ofloxacin D8 0.300 1.000 6.350 21.2 

 TET Desmethyl-ofloxacin D8 0.150 0.500 1.700 5.66 

Nitrofuran NIT Nitrofurantoin 13C3 0.300 1.000 3.460 11.54 

 NPAHD Chloramphenicol D5 0.030 0.100 0.350 1.18 

Azole MTZ Metronidazole D4 0.030 0.100 0.270 0.91 

 KTC Flumequine 13C3 0.003 0.010 0.030 0.1 

 hMTZ Metronidazole D4 0.030 0.100 1.010 3.38 

 daKTC Flumequine 13C3 0.375 1.250 - - 

Antiviral  FTC Metronidazole D4 0.150 0.500 1.570 5.24 

 3TC Metronidazole D4 0.300 1.000 9.510 31.7 
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Table S3. Formulation data of prescribed AAs investigated in this study during the sampling period for Bath and Keynsham 

Bath              

AA Formulation  Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Oct-19 Dec-19 

amoxicillin trihydrate Capsule 5.82 7.5 9.02 7.12 5.83 5.94 5.01 4.45 3.98 3.91 6.53 7.83 

amoxicillin trihydrate Oral suspension 1.16 1.64 1.33 1.06 0.969 0.9 0.728 0.803 0.778 0.68 1.01 1.78 

amoxicillin trihydrate Powder 0 0.003 0.027 0 0.009 0.003 0 0.006 0.09 0 0.024 0.018 

amoxicillin trihydrate Tablet 2.07 2.24 2.21 1.89 1.68 1.69 1.61 1.36 1.26 1.4 1.89 1.68 

azithromycin Oral suspension 0.012 0.0024 0.0024 0.009 0.0186 0.0066 0.0072 0.0048 0.0036 0.0198 0.0048 0.0036 

azithromycin Tablet 0.256 0.32 0.371 0.232 0.277 0.247 0.269 0.242 0.245 0.266 0.227 0.241 

azithromycin dihydrate Capsule 0.0403 0.0315 0.0278 0.0345 0.0463 0.0343 0.0373 0.0195 0.036 0.0358 0.036 0.041 

cefalexin Capsule 0.5 0.499 0.474 0.476 0.59 0.472 0.659 0.389 0.514 0.667 0.678 0.613 

cefalexin Oral suspension 0.152 0.223 0.065 0.09 0.0725 0.08 0.108 0.103 0.085 0.0775 0.04 0.0575 

cefalexin Tablet 0.0725 0.12 0.185 0.201 0.211 0.263 0.27 0.305 0.286 0.3 0.261 0.259 

chloramphenicol Eye drops 0.00605 0.0069 0.0081 0.0069 0.0067 0.006 0.00445 0.00395 0.0049 0.0043 0.00495 0.00595 

chloramphenicol Eye ointment 0.00164 0.0016 0.00224 0.0022 0.00176 0.0022 0.00244 0.00192 0.00276 0.0028 0.0024 0.00296 

chloramphenicol Ear drops 0.0005 0 0 0 0 0 0 0 0 0 0 0.001 

ciprofloxacin Oral suspension 0 0 0.015 0 0.01 0 0 0 0 0.01 0.045 0.04 

ciprofloxacin hydrochloride Eye drops 0 0.000045 0.000045 0.00003 0.000045 0.000015 0 0.00003 0.00006 0.00003 0.000015 0.000105 

ciprofloxacin hydrochloride Tablet 0.793 0.561 0.728 0.74 0.492 0.513 0.624 0.453 0.776 0.602 0.499 0.558 

ciprofloxacin hydrochloride Ear drops 0 0 0 0.000075 0.000015 0.000135 0 0 0 0.000045 0.00003 0.000015 

clarithromycin Oral suspension 0.116 0.114 0.165 0.229 0.184 0.109 0.0858 0.0788 0.103 0.0613 0.124 0.13 

clarithromycin Tablet 1.75 2.16 2.2 1.82 1.97 1.85 1.65 1.28 1.49 1.42 1.75 1.97 

clarithromycin Modified-release tablet 0 0 0 0 0 0.007 0 0 0 0 0.01 0.005 

clindamycin hydrochloride Capsule 0.0582 0.078 0.113 0.0768 0.138 0.146 0.0603 0.26 0.14 0.0708 0.107 0.0582 

clindamycin phosphate Cream 0.0064 0.004 0.0064 0.0056 0.0072 0.0064 0.0072 0.0072 0.0024 0.0048 0.0064 0.0088 

clindamycin phosphate Gel 0.0489 0.0417 0.0396 0.0564 0.0462 0.0405 0.0504 0.0336 0.0429 0.0426 0.0498 0.0501 

clindamycin phosphate Liquid 0.0097 0.0102 0.009 0.0054 0.009 0.0078 0.0135 0.0108 0.0075 0.0119 0.0102 0.0042 

erythromycin Gastro-resistant tablet 0.827 0.775 0.957 0.776 0.846 0.754 0.886 0.585 0.595 0.439 0.586 0.805 

erythromycin Gel 0.0024 0.0006 0.0042 0.0042 0.003 0.0012 0.0018 0.0006 0.0012 0.003 0.003 0 
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erythromycin Liquid 0.0612 0.0572 0.0718 0.0624 0.064 0.0614 0.0658 0.0694 0.0492 0.0498 0.0342 0.0498 

erythromycin Gastro-resistant capsule 0 0 0 0 0 0.007 0 0 0.007 0 0 0 

erythromycin ethyl succinate Oral suspension 0.019 0.015 0.055 0.03 0.0175 0.0175 0.015 0.0125 0.0075 0.03 0.03 0.059 

erythromycin ethyl succinate Tablet 0 0 0 0 0 0 0 0.028 0 0 0 0 

erythromycin stearate Tablet 0.127 0.144 0.0823 0.084 0.143 0.056 0.05 0.176 0.056 0.106 0.112 0.056 

flucloxacillin sodium Capsule 5.86 6.57 5.98 5.84 6.28 6.32 7.18 5.92 7.67 7.15 6.93 5.49 

flucloxacillin sodium Oral solution 0.258 0.188 0.418 0.258 0.233 0.248 0.265 0.293 0.37 0.323 0.248 0.253 

flucloxacillin sodium Powder for solution for injection 0 0 0 0 0 0 0 0 0 0.025 0 0 

ketoconazole Cream 0.0066 0.0054 0.012 0.0018 0.0066 0.0036 0.006 0.0078 0.012 0.0048 0.0072 0.0066 

ketoconazole NA 0.223 0.214 0.182 0.192 0.209 0.182 0.223 0.166 0.19 0.228 0.214 0.161 

levofloxacin hemihydrate Eye drops 0.00015 0.00015 0.000175 0.00015 0.00005 0.000025 0 0 0 0.000025 0 0 

levofloxacin hemihydrate Tablet 0 0 0 0.007 0 0 0 0 0.0035 0 0 0 

metronidazole Cream 0.00615 0.00698 0.00585 0.00675 0.00615 0.0075 0.00945 0.00668 0.00585 0.0057 0.00863 0.00765 

metronidazole Gel 0.0057 0.00668 0.00563 0.00559 0.00728 0.00709 0.00589 0.00773 0.00469 0.00608 0.00521 0.00626 

metronidazole Tablet 0.547 0.33 0.593 0.456 0.55 0.327 0.483 0.444 0.423 0.394 0.469 0.438 

metronidazole Vaginal gel 0.0024 0.0036 0.0012 0.0033 0.0039 0.0015 0.0036 0.003 0.0033 0.003 0.0024 0.003 

metronidazole Suppository 0 0 0 0 0.02 0 0 0 0 0 0 0 

metronidazole benzoate Oral suspension 0 0.02 0.008 0.004 0 0.008 0.008 0.016 0 0.008 0.004 0 

ofloxacin Eye drops 0.000255 0.00018 0.000195 0.00009 0.00003 0.000105 0.00024 0.000225 0.00021 0.000255 0.00009 0.00015 

ofloxacin Tablet 0.0264 0.0728 0.068 0.0324 0.0372 0.0464 0.0224 0.0192 0.0468 0.0892 0.084 0.0784 

oxytetracycline calcium Cream 0.0027 0 0.0027 0.0045 0.0108 0 0.0135 0.0054 0.0162 0.0153 0.0207 0.0423 

oxytetracycline dihydrate Tablet 1.37 1.63 1.58 1.35 1.31 1.33 1.72 0.907 1.15 0.899 1.12 1.15 

oxytetracycline hydrochloride Ointment 0 0 0 0 0 0 0.0009 0.0009 0 0 0 0 

rifampicin Capsule 0.0378 0.0336 0.0336 0.0486 0.042 0.0546 0.0546 0.0168 0.0546 0.0294 0.0378 0.0168 

sulfadiazine silver Cream 0.0032 0.002 0.0008 0.0043 0.004 0.0055 0.0015 0.002 0.0025 0.0025 0.0095 0.003 

sulfamethoxazole Tablet 0.265 0.308 0.331 0.281 0.202 0.418 0.134 0.215 0.25 0.259 0.362 0.296 

sulfamethoxazole Oral suspension 0 0 0 0 0.008 0.008 0.004 0 0 0.008 0.016 0.008 

sulfasalazine Gastro-resistant tablet 5.71 4.34 5.93 3.55 5.37 4.9 5.71 4.62 3.91 6.55 6.75 4.57 

sulfasalazine Tablet 3.57 4.91 4.4 3.51 4.78 4.23 4.4 3.77 5.14 5.33 4.6 5.08 

tetracycline hydrochloride Tablet 0.042 0.2 0.1 0.184 0.133 0.098 0.112 0.102 0.198 0.072 0.13 0.077 
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trimethoprim Oral suspension 0.0501 0.0463 0.0455 0.0351 0.035 0.042 0.0275 0.0296 0.0243 0.0287 0.0316 0.0364 

trimethoprim Tablet 0.586 0.736 0.619 0.575 0.536 0.588 0.53 0.517 0.557 0.507 0.588 0.528 

 

Keynsham               

AA Formulation  Aug-18 Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Dec-19 

amoxicillin trihydrate Capsule 0.925 1.45 1.83 1.6 0.921 1.07 0.929 0.719 0.638 0.505 0.505 1.21 

amoxicillin trihydrate Oral suspension 0.158 0.368 0.47 0.3 0.235 0.284 0.271 0.103 0.08 0.0734 0.097 0.273 

amoxicillin trihydrate Tablet 0.409 0.535 0.545 0.276 0.28 0.319 0.392 0.34 0.323 0.348 0.362 0.193 

amoxicillin trihydrate Powder 0 0 0 0 0 0 0 0 0 0 0 0 

azithromycin Tablet 0.0673 0.066 0.107 0.0725 0.0368 0.0793 0.0608 0.077 0.0415 0.0353 0.0788 0.0508 

azithromycin Oral suspension 0.0156 0.0138 0.018 0 0.0072 0.0024 0.0108 0 0.006 0 0.006 0 

azithromycin dihydrate Capsule 0.0255 0.0315 0.0253 0.0075 0.0113 0.009 0.0128 0.00975 0.006 0.0128 0.006 0.0128 

cefalexin Capsule 0.129 0.114 0.0705 0.0585 0.122 0.0305 0.057 0.0705 0.045 0.0395 0.057 0.088 

cefalexin Oral suspension 0.01 0.0075 0.0025 0.02 0 0.03 0.0175 0.0075 0.0075 0.0125 0.0125 0.01 

cefalexin Tablet 0.0648 0.042 0.035 0.0105 0.0105 0 0.007 0.00125 0.007 0 0 0 

ceftriaxone sodium 
Powder for solution for 
injection 0 0 0 0 0 0 0 0 0.004 0 0 0 

chloramphenicol Eye drops 0.00085 0.00085 0.00115 0.001 0.00095 

0.0005

5 0.00105 0.0004 0.00095 0.0004 0.0007 0.0006 

chloramphenicol Eye ointment 0.00052 0.00068 0.00064 

0.0002

4 0.0006 0.0008 0.00032 0.00056 0.00068 0.00032 

0.0004

8 0.00068 

ciprofloxacin Oral suspension 0.01 0.005 0 0 0 0 0 0 0 0.01 0 0 

ciprofloxacin hydrochloride Eye drops 0 
0.00001

5 
0.00001

5 
0.0000

3 
0.00001

5 0 0 0 
0.00001

5 0 0 
0.00007

5 

ciprofloxacin hydrochloride Tablet 0.126 0.151 0.131 0.097 0.073 0.065 0.0715 0.06 0.089 0.06 0.0805 0.0478 

ciprofloxacin hydrochloride Ear drops 0 0 0 0 0 0 

0.00001

5 0 

0.00001

5 0 0 0 

clarithromycin Oral suspension 0.0193 0.0175 0.028 0.0175 0.0105 0.0228 0.014 0.0193 0.0105 0.0228 0.021 0.0193 

clarithromycin Tablet 0.299 0.366 0.388 0.342 0.257 0.259 0.204 0.257 0.241 0.218 0.245 0.262 

clarithromycin Modified-release tablet 0 0 0 0 0 0 0 0 0.007 0 0 0 

clindamycin hydrochloride Capsule 0.0126 0 0.024 0.0654 0.0204 0.0336 0 0.012 0.0312 0.0036 0 0 

clindamycin phosphate Cream 0.0016 0 0 0.0016 0.0016 0 0.0024 0.0016 0 0.0008 0 0.0024 

clindamycin phosphate Gel 0.009 0.0048 0.0057 0.0057 0.0048 0.0042 0.003 0.0048 0.0033 0.006 0.0057 0.0054 
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clindamycin phosphate Liquid 0.003 0.0039 0.0018 0.0015 0.0021 0.0021 0.0018 0.0015 0.0009 0.0006 0.0018 0.0006 

erythromycin Gastro-resistant tablet 0.189 0.229 0.308 0.091 0.098 0.07 0.042 0.154 0.204 0.049 0.084 0.0595 

erythromycin Liquid 0.006 0.008 0.0084 0.006 0.0072 0.0096 0.014 0 0.0108 0.0036 0.0024 0.0056 

erythromycin Gel 0.0036 0.0006 0.0012 0 0.003 0.0036 0 0 0.0024 0.0006 0.0012 0.0012 

erythromycin ethyl succinate Oral suspension 0.0075 0.01 0.01 0 0.025 0.005 0.005 0.005 0 0 0 0.005 

erythromycin ethyl succinate Tablet 2.43 1.43 1.79 0 0 0 0 0 0 0 0 0.028 

flucloxacillin sodium Capsule 2.43 1.43 1.79 0.775 0.797 1.04 0.828 0.888 1.27 1.27 1.07 0.796 

flucloxacillin sodium Oral solution 0.13 0.055 0.0325 0.0825 0.035 0.0375 0.0175 0.0425 0.0575 0.025 0.065 0.025 

ketoconazole Cream 0.0006 0.0024 0.0006 0.0012 0 0 0.0018 0.0024 0.0012 0.0012 0 0.0006 

ketoconazole NA 0.0456 0.0408 0.0432 0.0192 0.0192 0.012 0.0288 0.012 0.0288 0.0312 0.0288 0.0216 

levofloxacin hemihydrate Tablet 0 0 0 0 0.014 0 0 0.007 0 0 0 0 

levofloxacin hemihydrate Eye drops 0 
0.00002

5 0 0 0 0 0 
0.00002

5 0 0 0 0 

metronidazole Cream 0.00255 0.0012 0.00113 

0.0017

3 

0.00067

5 

0.0007

5 0.00135 

0.00097

5 0.00158 0.00143 

0.0013

5 

0.00022

5 

metronidazole Gel 0.00188 0.00173 0.00188 

0.0004

5 0.0021 

0.0022

5 0.00293 0.00199 0.0003 0.0003 0.0021 

0.00052

5 

metronidazole Tablet 0.134 0.131 0.086 0.0705 0.0354 0.0752 0.132 0.0404 0.0748 0.0384 0.0756 0.0708 

metronidazole Vaginal gel 0.0003 0.0006 0.0006 0.0003 0.0003 0.0009 0 0.0009 0.0003 0.0009 0.0015 0.0003 

metronidazole benzoate Oral suspension 0 0.004 0.012 0 0 0 0 0 0 0 0 0 

ofloxacin Eye drops 
0.00010

5 
0.00001

5 0.00009 
0.0000

3 0 0 0.00006 
0.00001

5 
0.00007

5 
0.00004

5 
0.0000

6 
0.00001

5 

ofloxacin Tablet 0.028 0.014 0 0.0124 0 0.0112 0.0392 0.0084 0.0316 0.0168 0 0.0056 

oxytetracycline calcium Cream 0.0018 0 0 0 0.0009 0.0027 0.0018 0.0036 0 0 0.0009 0.0018 

oxytetracycline dihydrate Tablet 0.607 0.33 0.288 0.228 0.319 0.14 0.214 0.126 0.284 0.189 0.256 0.085 

oxytetracycline 

hydrochloride Ointment 0 0 0 0 0 0 0 0.0009 0 0 0 0 

sulfadiazine silver Cream 0 0 0 0 0 0 0 0 0 0 0 0 

sulfamethoxazole Tablet 0.056 0.0448 0.056 0.0224 0.0224 0.0896 0.0824 0 0 0 0.0112 0.0136 

sulfamethoxazole Oral suspension 0.004 0 0 0 0.008 0 0 0 0 0 0 0 

sulfasalazine Gastro-resistant tablet 1.92 1.53 1.37 1.02 1.31 0.966 0.854 0.742 0.952 0.488 1.3 1.05 

sulfasalazine Tablet 0.812 0.921 0.532 0.532 0.252 0.364 0.448 0.7 0.476 0.308 0.448 0.336 

sulfasalazine Oral suspension 0 0 0 0 0 0 0 0 0 0 0 0 
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tetracycline hydrochloride Tablet 0.112 0.147 0.112 0 0 0.028 0 0 0 0 0 0 

trimethoprim Oral suspension 0.0128 0.0114 0.0092 0.0037 0.0036 0.008 0.0033 0.005 0.003 0.008 0.008 0.0075 

trimethoprim Tablet 0.151 0.135 0.167 0.0708 0.0605 0.0682 0.0996 0.0606 0.0454 0.0535 0.0873 0.0651 
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Figure S1. Monthly ratios of oral versus topical prescriptions of MTZ and CLI with comparisons to 

ratios of loads of MTZ/hMTZ and CLI/dmCLI in wastewater during the studied period 

Bath, MTZ  

  
Keynsham, MTZ  

  
Bath, CLI  

  
Keynsham, CLI   
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Table S4. Complete breakdown of PNDIs and PNDPs for AAs studied  

 CLR  dmCLR    CLI  dmCLI   MTZ  hMTZ   SMX  aSMX   TMP   SLZ 

Bath PNDI  STD PNDI  STD PNDP  PNDI  STD PNDI  STD PNDP  PNDI  STD PNDI  STD PNDP  PNDI  STD PNDI  STD PNDP  PNDI  STD PNDP  PNDI  

November '18  640 281 1430 585 546 110 47 5 2 35 227 81 147 74 175 411 168 61 24 87 107 43 202 330 

December '18 673 130 1698 367 663 98 36 4 1 38 317 81 184 39 101 476 51 99 16 93 129 39 232 365 

January  '19 919 269 1904 571 664 124 30 9 3 46 319 84 182 67 176 986 231 165 29 102 209 81 192 919 

February '19 769 151 1762 312 585 134 29 8 2 39 358 47 196 36 130 847 199 130 19 82 172 46 173 1081 

March '19 678 143 1761 360 636 141 49 9 3 55 339 65 160 38 169 1084 226 178 37 58 172 64 161 1061 

April '19 644 289 1623 882 557 91 43 8 4 55 235 126 108 55 105 770 201 102 42 122 132 36 180 486 

May '19 351 68 939 210 482 56 15 4 1 36 116 49 58 25 147 489 131 56 20 44 107 25 160 394 

June '19 352 126 1041 341 394 79 27 7 4 85 167 116 80 53 137 887 309 107 56 65 119 39 157 896 

July '19 402 27 1024 105 445 90 41 8 2 53 234 50 126 60 140 896 172 92 24 71 130 29 167 1608 

August '19 299 87 653 239 419 97 36 7 3 36 208 50 215 45 124 786 196 88 21 76 103 29 153 299 

October '19 586 40 1219 432 524 155 35 7 2 47 306 20 292 13 143 788 159 100 10 113 134 15 179 523 

December '19 608 114 1106 336 599 91 26 4 2 33 182 107 164 100 132 856 270 103 27 88 169 48 167 616 

Average  577 189 1347 402 543 106 28 7 2 47 251 77 159 63 140 773 209 107 36 83 140 33 177 715 

                         

 SLZ   OFX   CIP   TET   OTC   FLX   ERY   SDZ   

Bath PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  

November '18  330 146 2919 10 11 8 296 315 225 46 48 12 257 227 391 303 134 1816 79 86 257 2 2 1 

December '18 365 161 2848 12 3 27 372 190 159 83 33 57 283 110 463 255 89 2041 84 88 237 2 2 1 

January '19 919 971 3227 14 6 19 372 161 203 80 28 27 587 269 433 432 113 1819 53 24 355 5 4 0 

February '19 1081 282 2388 14 3 9 395 110 203 79 38 50 342 70 371 463 120 1799 42 12 277 10 9 1 

March '19 1061 570 3322 13 4 10 342 122 138 98 48 36 530 193 363 431 141 1900 44 14 277 10 7 1 

April '19 486 258 2723 12 6 13 257 118 140 68 27 27 320 122 363 333 139 1872 60 18 244 2 2 2 

May '19 394 283 3122 7 1 10 110 29 171 39 12 31 214 50 475 180 68 2116 56 33 307 5 2 0 

June '19 896 511 2626 8 2 8 207 88 124 38 27 28 224 125 250 290 200 1811 20 10 185 3 2 1 

July '19 1608 399 2845 18 20 13 249 68 212 32 24 54 270 125 318 434 84 2392 17 9 218 2 1 1 

August '19 299 206 3799 9 3 28 205 45 167 14 5 20 62 19 250 298 95 2191 - - 134 9 3 1 
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October '19 523 422 3424 15 2 24 261 77 149 18 6 36 95 29 313 347 146 2087 - - 209 5 4 3 

December '19 616 275 2990 16 3 23 332 41 164 35 18 21 151 83 327 343 260 1647 33 18 238 5 5 1 

Average  715 401 3019 12 3 16 283 85 171 52 28 33 278 156 360 342 85 1958 49 22 245 5 3 1 

 

 CLR  dmCLR    CLI  dmCLI   MTZ  hMTZ   SMX  aSMX   TMP   

Keynsham  PNDI  STD PNDI  STD PNDP  PNDI  STD PNDI  STD PNDP  PNDI  STD PNDI  STD PNDP  PNDI  STD PNDI  STD PNDP  PNDI  STD PNDP  

August '18 162 25 413 111 564 36 17 6 2 46 29 6 18 6 246 152 78 34 20 106 74 14 291 

October '18 910 203 1637 400 558 37 2 8 3 74 150 37 84 35 83 351 98 53 17 119 172 78 301 

November '18  338 127 852 316 679 39 19 5 2 15 98 39 65 33 238 111 98 19 10 79 77 26 259 

December '18 448 175 1115 279 736 90 47 10 4 56 169 82 120 68 159 153 71 37 16 99 104 43 311 

January  '19 478 79 955 187 892 57 21 16 6 150 107 41 70 26 201 342 161 68 27 69 123 28 246 

February '19 586 151 1303 429 582 74 40 11 8 51 177 118 80 71 152 164 176 44 53 82 103 44 199 

March '19 475 480 1134 1010 599 64 32 9 5 84 199 118 83 49 172 474 466 82 55 173 117 74 253 

April '19 281 69 576 187 536 30 10 4 3 56 52 31 26 20 215 364 124 39 10 128 93 27 243 

May '19 216 60 815 776 621 31 18 6 1 35 36 15 16 9 103 153 52 22 12 17 43 13 175 

June '19 324 121 919 355 597 112 187 37 67 96 59 54 28 25 140 235 103 34 39 87 82 47 201 

July '19 358 137 902 342 609 88 55 21 13 53 97 27 43 24 100 554 169 33 12 35 74 18 209 

August '19 308 71 654 145 670 28 18 5 - 16 116 53 89 16 172 534 215 41 11 69 91 15 229 

December '19 400 116 707 239 704 68 27 7 3 82 178 174 63 38 184 360 176 65 27 56 156 57 220 

Average  406 114 922 257 642 58 47 11 18 63 113 49 60 20 166 304 106 44 16 86 101 22 241 

                        

 SLZ   OFX   CIP   TET   OTC   FLX   ERY     

Keynsham  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP  PNDI  STD PNDP    

August '18 671 194 4844 5 4 50 100 51 241 16 2 198 190 56 1079 127 12 4531 9 7 352   

October '18 388 205 3918 3 1 10 100 40 233 28 18 0 355 286 1198 211 56 3085 86 67 412   

November '18  254 127 4345 3 2 25 155 113 276 22 15 260 181 123 585 138 50 2634 43 26 421   

December '18 352 229 3362 9 3 0 297 216 232 104 37 198 425 121 510 239 97 3222 27 20 563   

January  '19 522 247 3848 6 2 37 231 78 277 48 10 0 340 113 548 178 84 2159 25 15 303   

February '19 1013 436 3624 8 5 9 369 91 214 60 22 217 398 103 820 229 125 1776 76 47 451   



260 
 

March '19 901 689 4037 12 7 26 231 142 181 54 26 87 384 157 482 187 85 2641 43 19 215   

April '19 588 207 3098 5 3 61 80 31 227 30 25 0 162 92 671 105 20 2398 77 41 264   

May '19 157 122 3834 4 4 30 68 21 137 16 6 195 99 43 419 103 39 2277 85 88 396   

June '19 607 319 3318 8 4 49 180 133 284 41 45 0 247 243 700 207 156 3413 9 5 429   

July '19 915 508 2315 14 8 26 306 80 181 41 30 0 362 294 639 299 147 3132 8 5 137   

August '19 708 842 4138 12 3 9 266 45 216 15 4 22 87 8 788 116 43 3000 10 13 240   

December '19 589 392 3605 17 9 35 391 129 152 24 7 0 143 47 264 161 60 2094 17 5 285   
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Figure S2. Comparison of population normalised loads (PNDLs) of AAs and respective metabolites 

between Bath and Keynsham  
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Figure S3. Comparison of PNDLs of AAs and respective metabolites in wastewater for Bath and 

Keynsham (only comparing months where both sites were sampled)  
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Figure S4. Age demographics patients at GP surgeries within the catchment areas of Bath and 

Keynsham for 2018 and 2019 
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Figure S5. Average monthly comparison of PNDPs and PNDLs for AAs and metabolites in both Bath 

and Keynsham. 
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Abstract  

Chemical pollution (including chemicals of emerging concern – CECs) continues to gain increasing 

attention as a global threat to human health and the environment, with numerous reports on the adverse 

and sometimes devasting effects upon ecosystems the presence of these chemicals can have. Whilst 

many studies have investigated presence of CECs in aquatic environments, these studies have been 

focused on higher income countries, leaving significant knowledge gaps for many low-middle income 

countries. This study proposes a new integrated powerless, in-situ multi-mode extraction (iMME) 

sampler for the analysis of chemicals (105 chemicals of emerging concern, CECs) and biological (5 

genes) markers in water in contrasting settings: an urbanized Avon River in the UK and remote Olifants 

River in Kruger National Park in South Africa. The overarching goal was to develop a sampling device 

that maintains integrity of a diverse range of analytes via analyte immobilization using polymeric and 

glass fibre materials, without access to power supply or cold chain for sample transportation. Chemical 

analysis was achieved using an ultra-performance liquid chromatography coupled with tandem mass 

spectrometry. Several mobile CECs showed low stability in river water, at room temperature and typical 

24h sampling/transport time. It is therefore recommended that, in the absence of cooling or analyte 

immobilization options, environmental water samples are spiked with internal standards on site, 

immediately after collection. iMME has proven effective in immobilization, concentration and 

increased stability of CECs at room temperature (and at least 7 days storage) allowing for sample 

collection at remote locations. The results from the River Avon and Olifants River sampling indicate 

that the pristine environment of Olifants catchment is largely unaffected by CECs common in the 

urbanized River Avon in the UK with a few exceptions: lifestyle chemicals (e.g., caffeine, nicotine and 

their metabolites), paracetamol and UV filters due to tourism and carbamazepine due to its persistent 

nature. iMME equipped with an additional gene extraction capability provides an exciting new 

opportunity of comprehensive biochemical profiling of aqueous samples with one powerless in-situ 

device. Further work is required to provide full integration of the device and comprehensive assessment 

of performance in both chemicals and biological targets. 

Keywords: Chemical pollution, rivers, sampling, stability  

1. Introduction 

Chemicals of emerging concerns (CECs) including pharmaceuticals, personal care products and 

pesticides have caused increasing concern for the freshwater environment over the past decades. They 

are found ubiquitously due to widespread usage in society and can have undesirable effects such as 

persistence and activity at low concentrations (Petrie et al., 2015a). The presence of CECs in surface 

waters can result in adverse effects in aquatic ecosystems, due to endocrine disrupting properties and 

other negative ecotoxicological effects (Brodin et al., 2013; Kidd et al., 2007; Schultz et al., 2011). 

Further concerns arise from low level exposure of antimicrobial agents (AA) which can contribute to 

antimicrobial resistance (AMR) (Marti et al., 2014). Whilst CEC levels are often low and sublethal for 

existing aquatic organisms (pg/L-ng L-1), chronic exposure to complex mixtures of CECs are  

mailto:b.kasprzyk-hordern@bath.ac.uk
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challenging to assess (Schwarzenbach, 2006). Furthermore, pharmaceuticals can either be excreted 

unchanged (as the parent compound) or as human metabolites (derivative structures). Some metabolites 

are also produced via degradation or transformation of parent compounds in wastewater treatment 

plants (WWTPs) or in water environments. Metabolites can have equal or higher toxicity than the parent 

compound  (Bedner and MacCrehan, 2006; Neuwoehner et al., 2009) and many metabolites are 

understudied in the environment, potentially due to costs or availability of analytical grade standards or 

they simply may not be known (Petrie et al., 2015a).  

As many CECs are poorly removed by WWTPs (Kasprzyk-Hordern et al., 2008), the analysis of CECs 

in freshwater systems is critical for investigating their environmental fate and exposure to aquatic 

ecosystems. CEC concentrations in surface waters can highlight potential spots for concern or identify 

CECs that may need further investigation. In the European Union alone, there are over 100,000 

chemicals approved for use (European Chemicals Agency, 2008). Whilst the advancement of analytical 

tools such as high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has 

allowed for the analysis of a wide range of CECs in water (Fatta et al., 2007), prioritizing which 

chemicals to focus on is therefore a challenge.  

The analysis of chemicals such as CECs is of critical importance to protect natural environments and 

public health. Large numbers of CECs have been investigated in surface waters across the world, 

however many of these studies have focused on a catchment approach (Bagnis et al., 2020; Hossain et 

al., 2018; K’oreje et al., 2016; Kasprzyk-Hordern et al., 2009; Kolpin et al., 2004; Loos et al., 2007; 

Metcalfe et al., 2010; Peng et al., 2008; Vieno et al., 2005; Williams et al., 2019; Wood et al., 2017). 

Several nationwide studies of CECs in multiple rivers have been conducted (Batt et al., 2016; Guruge 

et al., 2019; Scott et al., 2014; Yao et al., 2018). In comparison, international campaigns from multiple 

geographic locations are far less common, with only a handful in literature (Table S1). Unfortunately, 

multi-target, trace analysis of chemically different CECs in environmental waters requires highly 

sophisticated instrumentation and well-trained specialists. As a result, there is very little published 

literature on the presence and fate of CECs in many regions and countries worldwide. Under 

representation has been reported for some Asian, African and South American countries (aus der Beek 

et al., 2016).  Hence there is no incentive to influence regulations on national and global scales. One of 

the key issues lies in current inability to collect and transport water samples over long distances without 

compromising sample integrity during transport from the sampling point to the analyzing lab, often 

based in different, cities, countries and continents. Therefore, there is an urgent need to develop in-situ 

sample preparation approaches that will allow for rapid stabilization of analytes immediately after 

sample collection and during transport (up to week or longer). 

Currently there are no standardized procedures for collecting environmental samples from surface 

waters (Hughes et al., 2013). As a result, sampling protocols can vary significantly between studies as 

observed by table S1. These differences have included: (i) the shipping and storage temperature of 

samples; (ii) duration of transport, (ii) addition of internal standard (IS); (iii) type of containers used 

(PP or PE plastic versus glass); (iv) pre-extraction filtration. All these different factors can contribute 

to analyte stability during sampling, resulting in challenges when making comparisons between studies 

and temporal trends.  

It should be noted the majority of studies detailed in table 1 have included a stability experiment, an 

element which can be missing from multinational studies (Batt et al., 2016; Guruge et al., 2019; Scott 

et al., 2014). In these reports, all have claimed that analyte losses in sample storage and transport are 

negligible. However, it is critical to assess whether these stability experiments are fit for purpose.  For 
Wilkinson et al. the stability study was conducted via spiking analytes into LC-MS water and 

monitoring at different temperatures; sampling at days two and seven. The freezing of environmental 

samples before shipping in this study was not included in the stability experiment. Hence, the 

freeze/thaw cycle, a potential route for analyte loss, was not accounted for. It has already been 
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highlighted in the literature there can be a loss of certain compounds after freezing (Baker and 

Kasprzyk-Hordern, 2011; Fedorova et al., 2014). Whilst it has been reported that there are compounds 

that are stable, such as carbamazepine and trimethoprim, others such as doxycycline and risperidone 

experience declining concentrations when frozen at -18 °C. Furthermore, this proposal by Wilkinson et 

al. for international sampling is to cover multiple matrices (surface water, effluent and influent 

wastewater). The importance of undertaking a matrix-specific stability study is further highlighted by 

the fact that some compounds will have varying stability in the matrix in question. In the case for 

fluoroquinolones, enrofloxacin has shown to be still present after the freeze thaw cycle in an effluent 

wastewater sample, but absent in an influent wastewater sample (Fedorova et al., 2014).  

McLachlen et al also opted to study analyte stability in Milli-Q-water at room temperature over a period 

of three weeks. The surface water samples collected,  however, are shipped as liquids (unfrozen) at 4 

°C. Whilst it has been reported short term that it may be beneficial to store samples at 4 °C in comparison 

to -18 °C (Fedorova et al., 2014), in environmental samples there is a risk that microbiological action 

could potentially degrade or transform analytes in question (Castiglioni et al., 2011). This is an 

important consideration if shipping takes several days to reach the analysis lab. Samples may be kept 

for a prolonged time (e.g. 1-2 weeks) at 4 °C before spiking of internal standards and/or before the 

extraction protocols take place (McLachlan et al., 2007). Whilst the matrix and microbiological 

communities will vary between temporal and spatial graphic location, a stability study on the matrix in 

question should be done. 

There are several similarities between these international studies. They all employ grab sampling 

techniques for surface water samples and all focus on chemical concentrations in the aqueous phase. 
Yet sorption to sediments is recognized to be important in CECs in freshwater systems. Another 

similarity is that all the samples are spiked after transportation to the lab and not on site, and therefore 

will not account for any analyte losses during transport. Two of the studies filter before spiking with 

internal standards, which could result in unaccounted losses of a fraction of the target analytes (Singh 

et al., 2019; Wilkinson et al., 2019). Furthermore, only one of the other studies has opted to transport 

samples on solid phase extraction (SPE) cartridges (R. R. Singh et al., 2019). The other studies transport 

samples as liquids, and none have specified if the temperature of the samples were recorded on arrival.  

This paper proposes a new in-situ multi-mode extraction (iMME) utilizing polymeric and glass fibre 

filters for multiresidue analysis of 105 CECs. The CECs in two contrasting rivers were selected, the 

largely urbanized River Avon (UK) and remotely positioned Olifants River in Kruger National Park 

(South Africa). The objective being to overcome limitations of analyte stability during sampling and 

transport. This is of importance in the international context and to enable sampling in remote locations 

where there is no access to the cold chain. This approach is also cost effective as it allows for the 

extraction of >100 compounds (and potentially many more) within one extraction protocol. An 

important consideration with regards to antimicrobial resistance (AMR) is the analysis of chemical 

antimicrobial agents (AAs) but also the analysis of biological targets, such as antimicrobial resistance 

genes (ARGs). Monitoring environmental levels of ARGs is important for monitoring spread of 

resistance and the scale of the problem (Larsson et al., 2018). Furthermore, low levels of particular AAs 

in an environment may be identified as a low concern, however low levels of certain AAs could be as 

a result of high levels of resistance in the bacterial communities that are present. The River Avon was 

therefore also investigated for six ARGs using the iMME sampler to link to AAs reported in this study, 

and to explore the potential of on-site sampling for both chemicals and genes with this sampler.
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2. Experimental 

 

2.1.  Materials: Chemical Targets 

A total of 105 CECs were investigated in this study, these were split into two groups: A) general 

pharmaceutical, including personal care products B) AAs, spanning a broad range of classes (table 1). 

Methods used in this study were previously developed and established as discussed in Petrie et al. 

(Petrie et al., 2015b) and Holton et al. (Holton and Kasprzyk-Hordern, 2021). CEC analytes and internal 

standards (IS) were ordered from Sigma-Aldrich, LGC standards, TRC or MCE. All standards were 

purchased as 1.0 or 0.1 mg/mL solutions or in powdered forms, those in powdered forms were prepared 

at concentrations of 1 mg/mL in the appropriate solvents. All standards were stored in the dark at -20 

°C. Methanol (MeOH) was purchased from Sigma-Aldrich and was HPLC grade, the water was of 18.2 

MΩ quality. 

Mobile phase buffers included formic acid (HCOOH, >95 %), ammonium acetate (NH4OAc), acetic 

acid (CH3COOH) and ammonium fluoride (NH4F) were purchased from either Merck or Fischer 

Scientific. All glassware was deactivated by rinsing once with 5 % dimethylchlorosilane (DMDCS), 

twice with toluene and three times with MeOH. This was to avoid any losses of basic compounds on 

the -OH sites present on the glass surface. Oasis HLB SPE cartridges (60 mg, 3 mL) were purchased 

from Waters. The filters (Whatman GF/F 0.7-μm and GF/D) and polyproplene LC vials were also 

purchased from Waters.  

Table 1. Chemical and biological targets investigated in this project  

CEC group / 

Analytical method  
Compound class/Associated resistance   Compound 

Group A Parabens  Methylparaben  

  Propylparaben  

  Butylparaben  

 UV Filters  1-benzophenone  

  2-benzophenone  

  3-benzophenone 

  4-benzophenone  

 Plasticizer  Bisphenol A  

 Steroid Estrogen  E1  

  E2 

  EE2  

 NSAIDs  Ketoprofen  

  Ibuprofen  

  Naproxen 

 Hypertension  Valsartan 

  Irbesartan  

  Lisinopril  

 Stimulants and metabolites Amphetamine  

  Methamphetamine  

  MDMA  

  MDPV 

  Cocaine  

  Anhydroecgonine methyl ester  
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  Benzoylecgonine  

  Cocaethylene  

 Analgesics and metabolites Methadone 

  Acetaminophen  

  EDDP 

  Codeine  

  Norcodeine  

  Dihydrocodeine  

  N-desmethyltramadol  

  O-desmethyltramadol  

 Opioid metabolite  6-acetylmorphine 

 Human Indicators  Cotinine  

  Caffeine  

  Nicotine 

  1,7 dimethylxanthine  

 Anti-epileptic  Carbamazepine  

  Carbamazepine 10, 11-epoxide  

  10,11-dihydro-10-hydroxycarbmazepine  

 Anaesthetic and metabolite Ketamine  

  Norketamine 

 Antidepressants  Venlafaxine  

  Citalopram  

   

  Desmethylcitalopram  

 Antipsychotic Quetiapine 

 Lipid regulator Bezafibrate 

 Diabetes Metformin  

  Gliclazide 

 Beta blocker  Atenolol  

  Metoprolol  

 Histamine H₂ receptor antagonist Cimetidine  

 Calcium channel blocker Diltiazem  

 Anticancer  Azathioprine  

  Ifosfamide  

 Antihistamine  Fexofenadine 

Group B Sulphonamide & trimethoprim  Sulfadiazine 

  Sulfapyridine 

  Sulfamethoxazole 

  Sulfasalazine 

  Trimethoprim 

  N-acetyl sulfadiazine  

  N-acetyl sulfapyridine  

  N-acetyl sulfamethoxazole  

  4-hydroxy-trimethoprim  

 Macrolide & lincosamide  Erythromycin 

  Clarithromycin 
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  Clindamycin 

  N-desmethyl erythromycin 

  N-desmethyl clarithromycin  

  N-desmethyl clindamycin  

 
β-lactams Flucloxacillin 

 Cephalosporins  Cefalexin 

  Cefixime 

  Ceftiofur 

 Quinolone  Norfloxacin 

  Ciprofloxacin 

  Lomefloxacin 

  Danofloxacin 

  Enrofloxacin 

  Nadifloxacin 

  Ofloxacin (Levofloxacin) 

  Gatifloxacin 

  Sarafloxacin 

  Moxifloxacin 

  Flumequine 

  Nalidixic acid 

  Desethylene ciprofloxacin 

  Hydroxy-norfloxacin  

  Desmethyl-ofloxacin  

  Ofloxacin N-oxide 

 TB drugs (1st line) Rifampicin 

  Rifabutin 

  25-desacetyl rifampicin  

  25-O-desacetyl rifabutin  

 TB other Linezolid 

 Amphenicol Florfenicol 

 Nitrofurantoin Nitrofurantoin 

  NPAHD 

 Azole Metronidazole 

  Hydroxy-metronidazole  

 Antiretroviral  Lamivudine 

  Emtricitabine 

Group C  Macrolide resistance ermB 

 Sulphonamide resistance  sul1 

 Quinolone resistance  qnrS 

 Beta-lactamase resistance bla-CTX 

 Beta-lactamase resistance bla-TEM 

 Potential marker of anthropogenic pollution  intI1 

 Normalisation of genes to the bacterial population  16S rRNA 

NPAHD: 1-(2-nitrobenzylidenamino)-2,4-imidazolidinedione 
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2.2 Materials: Biological Targets 

Antimicrobial resistant genes (ARGs, group C, Table 1) were also included in this study to explore an 

integrated approach towards risk assessment. As a range of AAs were explored in this project, an 

additional three river samples were collected to investigate several ARG targets via digital PCR (dPCR). 

All PCR reagents were purchased from Thermo Fischer. The chosen ARG targets were ermB, sul1, 

intI1, qnrS, bla-CTX and bla-TEM. Additionally, 16S rRNA was analysed for information about 

bacterial population and a TaqMan™ Universal DNA Spike in Control (Thermo Fisher) was spiked 

into the lysis step of the DNA extraction kit (10 μL) to assess extraction efficiency of the kit. To filter 

river water on site for DNA extraction, Whatman® plastic filter holders (47 mm) were purchased along 

with sterilised cellulose filter papers (0.2 μm, Merck). Holders and filter papers were autoclaved in-

house following manufacture instructions.  

2.2. Sample collection 

2.2.1 Extraction of Group A and B chemicals from river water samples 

River water samples were portioned into 100 mL samples. After immediate spiking of the IS mix, 

samples were then immediately processed on-site using the iMME sampler (figure 1). The spiked river 

water samples were loaded into 50 mL syringes and pushed gently through the iMME sampler 

consisting of GF/D (2.7 μm) and GF/F (0.7 μm) filters and the conditioned Oasis HLB cartridge 

(conditioned using 1 mL of MeOH followed by 1 mL of H2O) at approximately 3 mL min-1. After the 

river sample had been filtered, air was pumped through via the syringe several times to purge any 

remaining water. Cartridges were then transported back to the lab at the University of Bath, UK (from 

<1hrs in the UK to 2 days for samples collected in South Africa), for further processing. 

 

Figure 1. Schematic of the process of using the iMME sampler for river samples.  

Analyte elution was then performed at the University of Bath (UK) following the protocols found in 

Petrie et al. and Holton et al., with 4 mL of MeOH at a flow rate of 1 mL min-1 into silanised glass vials 

(Holton and Kasprzyk-Hordern, 2021; Petrie et al., 2015b). The extracts were then dried under a flow 
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of nitrogen using a TurboVap evaporator (Caliper, UK, 40 °C, N2, <5 psi). Reconstitution was 

performed using 500 µL 80:20 H2O:MeOH before being transferred into polypropylene vials ready for 

analysis. 

2.2.1  Extraction of group C (ARGs) from river water samples  

Alongside samples collected for chemical analysis in the UK, three additional biological river water 

sample replicates (100 mL) were filtered via 50 mL syringes through sterilized filter holder units 

containing 0.2 μm cellulose filter papers (Whatman, UK). Filter papers were kept in the housing unit 

and transported back to the lab. DNA was then extracted directly from the filter paper using FastDNA 

SPIN Kit for Soil (MP Bio, UK). The amount of extracted DNA was determined using a Qubit 4 

Fluorometer (Thermo Scientific, UK). DNA was kept at -20 °C before further analysis. 

2.2.2 Environmental Applications  

To validate the sampler, grab samples were collected from a medium-sized river in the South-West of 

England (SWE), downstream from the city of Bath, as well as from Olifants River in Kruger National 

Park (South Africa) (figure S1). Samples for the UK were collected during June 2019 and samples of 

South Africa were collected during February 2018. An effort was made to collect samples from the 

middle of the stream. Samples were spiked and extracted on site before being further processed in the 

lab. UK samples were tested for all three groups of analytes and SA samples were tested only for group 

A.  

2.3. Liquid chromatography mass spectrometry  

Liquid chromatography was performed using a Waters Acquity UPLC system (Waters, UK). To 

validate for a broad range of compounds, three chromatographic methods have been applied. Sample 

preparation was the same for all methods, but respective analytical methods did vary (figure 2). Analysis 

for group A (covering a broad range of pharmaceuticals), consists of two LC-MS/MS methods (ESI + 

and -). For group B focusing on AAs, one LC-MS/MS method has been developed (ESI+).  

 

Figure 2. Overview of the UPLC-MS/MS methods used in river water.  

2.4. LC-TQD Instrument performance  

Full instrument and method validation have been previously detailed (Holton and Kasprzyk-Hordern, 

2021; Petrie et al., 2015b). Linearity has been established by triplicate injections of a 17-point 

calibration curve, ranging in concentrations from 0.01-1000 ng mL-1. Inter- and intra- day accuracy and 

precision was performed via triplicate injections of varying concentration within a 24-hour period and 

across three consecutive days. The instrument limit of detection (IDL) was determined at the 

concentration that gave a signal to noise (S/N) ≥ 3, with the instrument limit of quantification (IQL) 

determined at the concentration that gave a S/N ≥ 10 (table S2).  
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2.5. iMME -LC-TQD Performance   

SPE recoveries of target analytes were determined by spiking river water (50 mL) at initial 

concentrations of 10, 100 and 500 ng L-1 before sample processing via the iMME filter method. Method 

quantification and method detection limits (MQLs and MDLs respectively) were calculated using the 

following equation: 

𝑀𝑄𝐿 =  
𝐼𝑄𝐿 

𝑅𝑒𝑐 𝑥 𝐶𝐹
  

Where IQL is the instrument limit of quantification, Rec is the SPE recovery of the target analyte in 

river water and the CF is the SPE concentration factor. MDLs are calculated using the same formula 

but using IDLs instead. Method inter- and intra- day accuracy and precision were established by 

injecting matrix river QCs (10, 100 and 500 ng L-1) in triplicate over three consecutive days. 

2.6 Analysis of ARGs – dPCR  

ARG analysis was performed using a dPCR set up, utilising the QuantStudio® 3D Digital PCR System 

(Thermo Scientific, UK). The reaction mix was made up according to manufacturer instructions and 

consisted of QuantStudio® 3D Digital PCR Master Mix, TaqMan™ primers with MGB probes, sterile 

water, and the DNA sample (diluted when appropriate). This mixture was then portioned onto dPCR 

chip wells and sealed before the thermo cycling reaction took place.  

The first step of the PCR thermo cycling conditions was the temperature was ramped to 95 °C and held 

for 10 min. It was then lowered to 60 °C for 2 min before increasing to 98 °C for 30 s. To allow for 

efficient gene amplification, this cycle between 60 °C and 98 °C was repeated 40 times. Temperature 

was then lowered to 60 °C and held for 2 min, before cooling to room temperature. After allowing 30 

mins for chips to equilibrate to room temperature, each chip was processed and read utilising the 

QuantStudio 3D Digital PCR system chip reader. For ARG analysis, the AnalysisSuite™ software was 

used for quantification of the target gene and any DNA dilutions were considered here. The DNA 

extracted from each biological replicate was run in triplicate for each gene investigated.  

2.6. CEC Stability Studies 

 

2.6.1. CEC stability over 24 hours in river water  

The stability of target CECs in river samples at room temperature over 24 hours was investigated. This 

was achieved by spiking triplicate samples of river water (50 mL) with analytes at initial concentrations 

of 100 ng L-1 and 500 ng /L before being left covered for 24 hours. Samples were then spiked with 50 

ng of IS solution before being processed via the iMME sampler.  

2.6.2.  Weeklong stability after iMME sampling     

To investigate the stability of target CECs on SPE cartridge, river water was aliquoted and spiked with 

100 ng L-1 of analyte solution. The spiked river water was then processed onto cartridge via the iMME 

sampler. Day 0 spiked was with 50 µL of IS at same time of analyte spiking. All proceeding samples 

were processed onto SPE cartridges and kept at respective conditions for the determined number of 

days. When samples were eluted, 50 ng of IS was added. Time points were processed in duplicate. Day 

0, 1, 2, 3, 5, and 7 and storage at two different temperatures: room temperature and freezer temperature 

(21 °C and -18 °C). 
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3. Results and discussion 

3.1 iMME-LC-TQD Performance 

LC-TQD performance results are available in the supplementary information (table S2). iMME -LC-

TQD performance and SPE recoveries for the CECs studied are gathered in figure 3. Good recoveries 

were observed generally (93 ± 32%); particularly compounds from the illicit drugs classes (~116%) and 

the betablockers (~110%). Regarding AAs, parent analytes from the sulfonamides and macrolides 

generally had good recoveries from river water samples (87% and 97%, respectively). The metabolite 

recoveries for sulfonamides and macrolides AAs did vary; with some performing well, like desmethyl-

erythromycin (108%), and others observing lower recoveries, such as acetyl-sulfamethoxazole (47 %).  

For several CECs, SPE recoveries could not be calculated at 10 ng L-1 spiked river water samples (e.g., 

amphetamine, 1,7 dimethylxanthine, and rifamycin); and several CECs reported poor recoveries at 10 

ng L-1 but good at the higher concentrations of 100 and 500 ng L-1 (table S3). Several CECs 

demonstrated consistently poor recoveries from river water across all three spiked concentrations, these 

included 4-hydroxy trimethoprim (11%) and ceftiofur (22%). Oasis HLB cartridges are often used in 

multi-residue analytical methods due to the ability to extract a broad and diverse range of CECs. 

However, it is recognized that not all CECs will be recovered or perform well, and optimization for 

specific CECs could be better achieved. The method performance for studied CECs was also 

investigated (table 2). In general, both methods (for Group A and B compounds) achieved good 

sensitivity for the CECs in river water matrices (MDLs <0.1 ng L-1) and in line with previous results 

(Holton and Kasprzyk-Hordern, 2021; Petrie et al., 2015b). 

For CECs from group A, the lowest MDLs were observed for benzoylecgonine at 0.0533 ng L-1 (MQL 

= 0.1777 ng L-1) and cocaine at 0.0649 ng L-1 (MQL=0.2164 ng L-1). The higher MDL for this group 

was observed for the antihistamine cimetidine, with MDLs reported at 10 ng L-1 (MQL=34 ng L-1). 

Regarding group B, the lowest MDLs were observed for erythromycin at 0.0051 ng L-1 (MQL at 0.0169 

ng L-1) and sulfamethoxazole with an MDL of 0.0163 ng L-1 (MQL of 0.0543 ng L-1). Higher MDLs 

were observed for the quinolone metabolites: hydroxy-norfloxacin at 108.7 ng L-1 and desmethyl-

ofloxacin at 31.8 ng L-1. 
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Figure 3. iMME -LC-TQD Performance data showing SPE recoveries of studied CECs spiked at 100 and 500 ng L-1 in collected river water samples, processed 

straight away after spiking. SPE recoveries (%) here was taken from averaging percentage recovery from 100 and 500 ng L-1 spiked. 
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Table 2. SPE recoveries, method performance limits, and matrix inter- and intra-day accuracy of target 

CECs in river water spiked at 10, 100, and 500 ng L-1, respectively. Compounds organised by compound 

class 

CEC Group Compound Compound Class  
SPE 

Recoveries 

(%)† 

MDL ng 

L-1 

MQL ng 

L-1 

Intra-day matrix 

performance§ 

Inter-day matrix 

performance§ 

Precisio

n % 

Accurac

y % 

Precisio

n %  

Accurac

y %  

Group A Methylparaben  Parabens  98 0.102 0.611 4 95 5 100 

 
Propylparaben   121 0.33 0.989 18 104 23 109 

 
Butylparaben   123 0.122 0.407 5 79 6 79 

 
1-benzophenone  UV Filters  41 1.83 6.11 10 162 13 160 

 
2-benzophenone   45 0.666 2.22 4 154 7 153 

 
3-benzophenone  48 0.157 0.523 25 159 40 160 

 
4-benzophenone   119 2.62 8.52 5 81 8 80 

 
Bisphenol A*  Plasticizer  155 0.193 0.645 49 80 34 79 

 
E1  Steroid Estrogen  99 1.51 5.04 4 96 5 97 

 
E2  96 3.11 10.4 10 90 9 90 

 
EE2   93 3.24 10.8 4 110 12 107 

 
Ketoprofen  NSAIDs  64 1.73 8.48 5 105 148 141 

 
Ibuprofen   116 0.0865 0.432 3 94 5 94 

 
Naproxen  103 1.46 4.86 16 96 34 66 

 
Valsartan Hypertension  169 8.88 29.6 5 38 13 29 

 
Irbesartan   114 0.263 0.875 3 77 15 85 

 
Lisinopril   47 6.39 21.3 5 100 5 101 

 

Amphetamine† 

Stimulants and 

metabolites 144 0.521 1.74 3 58 4 56 

 
Methamphetamine   102 0.147 0.489 1 95 3 94 

 
MDMA   127 0.118 0.393 3 66 4 66 

 
MDPV  101 0.149 0.497 3 94 5 94 

 
Cocaine   116 0.0649 0.216 2 77 2 77 

 Anhydroecgonine methyl 

ester   36 2.08 6.92 4 149 6 150 

 
Benzoylecgonine   141 0.0533 0.178 2 52 3 51 

 
Cocaethylene   110 0.0679 0.226 3 81 4 81 

 

Methadone 

Analgesics and 

metabolites 85 0.0883 0.294 6 110 7 108 

 
Acetaminophen   134 0.558 1.86 5 84 4 84 

 
EDDP  103 0.073 0.243 4 92 4 94 

 
Codeine   58 1.73 8.67 5 138 6 135 

 
Norcodeine   86 3.71 12.4 5 96 6 97 

 
Dihydrocodeine   105 0.712 2.37 3 85 2 85 

 
N-desmethyltramadol   121 0.0827 0.414 4 57 8 57 

 
O-desmethyltramadol   89 3.37 11.2 3 104 5 102 

 
6-acetylmorphine† Opioid metabolite  77 0.387 1.29 6 125 5 123 

 
Cotinine  Human Indicators  128 0.0779 0.389 2 111 5 109 

 
Caffeine   95 1.05 5.27 4 110 9 107 

 
Nicotine  18 8.27 27.6 23 169 18 171 

 
1,7 dimethylxanthine†   56 5.36 17.9 7 145 10 144 

 
Carbamazepine  Anti-epileptic  105 0.143 0.476 7 89 7 88 

 Carbamazepine 10, 11-

epoxide   76 0.395 1.32 4 122 7 120 
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 10,11-dihydro-10-

hydroxycarbmazepine   129 0.388 3.88 8 65 10 62 

 

Ketamine  

Anaesthetic and 

metabolite 112 0.134 0.446 4 84 4 82 

 
Norketamine   105 0.0715 0.238 3 86 5 88 

 
Venlafaxine  Antidepressants  139 0.0721 0.288 6 43 10 39 

 
Citalopram   111 0.45 4.5 6 92 6 91 

 
Desmethylcitalopram   89 0.169 0.563 7 103 8 106 

 
Quetiapine Antipsychotic 105 0.0714 0.238 3 91 3 91 

 
Bezafibrate Lipid regulator 112 0.268 0.893 4 57 4 60 

 
Metformin  Diabetes 103 0.146 0.486 16 91 16 91 

 
Gliclazide  99 0.0761 0.254 4 82 7 86 

 
Atenolol  Beta blocker  111 0.677 2.26 3 86 5 87 

 
Metoprolol   113 1.33 4.42 2 87 5 85 

 

Cimetidine  

Histamine H₂ 

receptor antagonist 74 10.2 33.9 3 110 7 108 

 

Diltiazem  

Calcium channel 

blocker 76 0.394 1.31 3 120 5 120 

 
Azathioprine  Anticancer  73 0.413 1.38 6 125 4 124 

 
Ifosfamide   102 0.0976 0.488 0 189 4 190 

 
Fexofenadine Antihistamine  52 1.45 4.82 2 87 5 85 

Group B Sulfadiazine Sulphonamide & 

trimethoprim  

70 0.215 0.716 7 70 31 62 

 
Sulfapyridine 81 0.0371 0.124 6 96 9 88 

 
Sulfamethoxazole  92 0.0163 0.0543 8 97 6 91 

 
Sulfasalazine  94 16 53.4 18 94 15 115 

 
Trimethoprim  98 1.54 5.13 12 102 4 98 

 
N-acetyl sulfadiazine   58 0.361 1.2 11 56 3 58 

 
N-acetyl sulfapyridine   71 2.25 7.82 8 74 7 81 

 
N-acetyl sulfamethoxazole   47 0.405 1.35 9 57 8 58 

 
4-hydroxy-trimethoprim   11 0.349 1.16 10 11 2 11 

 

Erythromycin 

Macrolide & 

lincosamide  98 0.0153 0.0509 14 114 11 104 

 
Clarithromycin  90 0.0166 0.0554 13 100 9 109 

 
Clindamycin  102 1.47 4.9 6 107 4 112 

 
N-desmethyl erythromycin  108 0.0205 0.0683 20 111 12 100 

 N-desmethyl 

clarithromycin   135 0.0371 0.124 15 150 11 167 

 
N-desmethyl clindamycin   57 0.0264 0.0881 12 58 3 60 

 
Flucloxacillin 

β-Lactams 
68 2.19 7.3 8 71 10 74 

 
Cefalexin Cephalosporins  133 2.81 9.37 25 122 152 74 

 
Cefixime  69 21.6 72.1 16 69 64 240 

 
Ceftiofur  22 6.67 22.2 15 50 5 51 

 
Norfloxacin* Quinolone  160 0.0187 0.0624 15 160 11 178 

 
Ciprofloxacin  112 1.34 4.47 22 131 39 127 

 
Lomefloxacin  96 0.313 1.04 21 97 3 99 

 
Danofloxacin  120 12.5 41.8 9 120 7 116 

 
Enrofloxacin  110 0.272 0.907 18 111 11 131 

 
Nadifloxacin  96 3.14 10.5 13 128 14 156 

 
Ofloxacin (Levofloxacin)  84 0.357 1.19 11 85 6 91 

 
Gatifloxacin  101 0.0298 0.0994 20 97 14 104 

 
Sarafloxacin  49 3.04 10.1 12 49 60 75 

 
Moxifloxacin†  142 2.65 8.82 25 142 6 147 
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Flumequine  91 0.0331 0.11 10 102 4 98 

 
Nalidixic acid  73 0.0413 0.138 10 74 3 75 

 
Desethylene ciprofloxacin  87 1.72 5.73 40 236 88 234 

 
Hydroxy-norfloxacin   33 109 362 8 33 14 39 

 
Desmethyl-ofloxacin   62 2.42 8.07 8 73 42 104 

 
Ofloxacin N-oxide  113 31.8 106 10 113 5 118 

 
Rifampicin† TB drugs (1st line) 98 3.83 12.8 16 98 27 114 

 
Rifabutin  119 1.26 4.2 26 140 14 139 

 
25-desacetyl rifampicin†   129 26.2 87.3 16 129 12 148 

 
25-O-desacetyl rifabutin   86 11.6 38.6 32 99 16 106 

 
Linezolid TB other 69 0.35 1.17 9 74 12 65 

 
Florfenicol Amphenicol 94 2.04 6.8 5 94 3 92 

 
Nitrofurantoin Nitrofurantoin 92 31.9 106 16 92 13 87 

 
NPAHD  57 3.25 10.8 13 59 8 55 

 
Metronidazole Azole 104 0.53 1.77 6 114 4 111 

 
Hydroxy-metronidazole   65 0.287 0.957 6 65 32 71 

 
Lamivudine Antiretroviral  69 0.46 1.53 7 69 76 170 

 
Emtricitabine  104 4.36 14.5 12 125 10 139 

† Based on two concentrations (100 and 500 ng L-1), § Based on three concentrations (10, 100, and 500 ng L-1) *semi-quantitative  

3.2 CEC stability over 24 hours in river water  

CECs demonstrated variable stability in UK river water over 24 hour. A full breakdown of results may 

be found in the supplementary information (table S4). In general CECs from group A demonstrated 

better overall stability in comparison to group B (overall averages, 0 ± 21% vs -2 ± 41% degradation 

respectively). In group A, good stabilities were observed for all CECs studied from the beta-blockers 

and antiepileptic classes (-7 ± 4%). Regarding group B, whilst good stabilities were observed for AAs, 

including sulfamethoxazole, sulfapyridine and trimethoprim (5 ± 3%). Poorer stability was observed 

for methyl paraben and ofloxacin (figure 4). Ofloxacin observed ~50% degradation in river water over 

24-hours, yet minimal degradation was observed for 24-hour stability study on cartridge (~12%). 

Similar results for the antiviral, emtricitabine, were also observed, with ~50% degradation in river water 

but only observing ~-20% on cartridge.  

The inclusion of metabolites in this study showed some interesting results. Cocaine appeared to degrade 

by ~50%, whilst its major metabolite benzoylecgonine increased over the 24-hour period by ~60% - 

potentially indicating a transformation process. When comparing both cocaine and benzoylecgonine 

stability, samples processed onto cartridge demonstrated minimal changes (~10% reduction, for both). 

Other studies have also observed variable stability of cocaine and potential transformation to 

benzoylecgonine in both river water and wastewaters (Castiglioni et al., 2006; Gheorghe et al., 2008). 

This study indicates that processing onto cartridge after sample collection could be beneficial for many 

CECs and reduce potential degradation. However, due to logistical limitations, this study did not 

investigate the stability of CECs in SA river water, which had different biochemical characteristics and 

may have had different patterns of stability. In summary, CECs showed different levels of stability 

during the 24h study, suggesting that transport to a laboratory without a cold-chain might be detrimental 

to sample integrity. Therefore, there is a need for on-site analyte stabilization procedures, such as 

presented in this paper, via the iMME sampler methodology. 

3.3 Weeklong stability after iMME sampling     

In general, most compounds demonstrated good stability on cartridge, at room temperature (21 °C) over 

the 7 days (figure 4). With overall averages -2 ± 22% and 13 ± 24% degradation for groups A and B 
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respectively. SPE cartridges stored in a freezer (-18 °C) were also investigated for comparison. Again, 

good performance of CECs was observed with <1 ± 16% and 8 ± 18% overall average for degradation 

for group A and B respectively. Full breakdown tables may be found in the supplementary information 

(tables SI5 and SI6). Many CECs however were stable under both storage conditions, indicating a very 

good performance of iMME when stored at room temperature. A few CECs displayed better stability 

when stored in colder temperatures; for example, amphetamine reported minimal degradation at day 7 

when stored in the freezer (8 ± 6% degradation) compared to 21 °C (64 ± 2%). 2-benzophenone 

exhibited similar levels of degradation at both temperatures, at day 7, reporting ~30% degradation. 

Conversely, ketoprofen appeared to be less stable at freezer temperatures on cartridge, reporting 44 ± 

16% degradation at day 7 vs the 11 ± 9% degradation stored at room temperature. 

Regarding AAs, in general good stability was reported across AAs stored on cartridge at room 

temperature and at -18 °C (figure 5). A few AAs, however, exhibited greater stability stored at -18 °C. 

For example, emtricitabine reported 13 ± 8% degradation (-18 °C) vs 40 ± 7% (21 °C) at 7 days. Another 

was norfloxacin, which reported -10 ± 24% (-18 °C) at day 7 vs 44 ± 26% (21 °C) at the same time 

point. A couple of quinolone metabolites also reported similar, with desethylene ciprofloxacin 14 ± 

22% vs 56 ± 24% and ofloxacin N-oxide 5 ± 15% vs 39 ± 20%. Cefalexin also reported greater stability 

at -18 °C vs 21 °C, with day 7 observing <1 ± 25% and 57 ± 10. Flucloxacillin exhibited similar levels 

of degradation at both room and freezer temperatures, 37 ± 11% vs 37 ± 17%. Ceftiofur also exhibited 

some degradation at room and freeze temperature, with ~59% after 7 days. Conversely rifabutin 

appeared to demonstrate greater stability at room temperature vs freezer, at 39 ± 5% (-18) vs -3 ± 16% 

respectively.  

Results here have demonstrated that whilst storing SPE cartridge at freezer temperatures provides the 

best stability, storing cartridges at room temperature still provided stability of at least ~20% for the 

majority of CECs studied; especially in comparison to stability of CECs in aqueous phase, under the 

same conditions. For example, ofloxacin observed no degradation when stored at room temperature on 

cartridge over the 24 hours, yet over the same time period and temperature in river water reported ~50% 

degradation (table S4). Despite the indication for potential transformation of cocaine to 

benzoylecgonine in river water after 24 hours (±50%), both cocaine and benzoylecgonine stored on 

cartridge at room temperature reported minimal degradation in comparison between 10-20% (table S6).  

Therefore, it appears that for many CECs, processing onto SPE cartridges after sample collection is best 

practice. This indicates that CECs in general appear more stable on sorbent then in aqueous form. This 

is in agreement with Singh et al., who reported that shipping internationally on SPE cartridges (kept 

cold) provided the best analyte stability (R. R. Singh et al., 2019). Whilst deuterated analogue internal 

standards account for degradation in transport and storage, it is not practical in large multi-residue 

methods for every CEC to have its own deuterated internal standard. Whilst internal standards tend to 

be assigned across class, assuming similar chemical properties, results from this study do indicate that 

stability can vary across compounds of a class. Therefore, spiking of internal standards and processing 

onto cartridge as soon as samples are collected is recommended as greater stability has been observed 

when CECs are immobilized onto sorbent.  
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Figure 4. Week-long stability of CECs on cartridge, stored at room temperature (21 °C) and freezer 

temperature (-18 °C), for an initial CEC spiking concentration of 100 ng L-1. Error bars represent 

standard deviation, n = 2 biological replicates, injected in duplicate. 

 

3.4 iMME application to contrasting locations in urbanized River Avon in the UK and remote 

Olifants River in SA (CECs in group A and B) 

Samples collected from the river Avon (UK) were analyzed for group A and B CECs, and Olifants 

River (SA) samples were analyzed for group A CECs (table 3). River samples from the UK had a total 

of 45 and 13 CECs above quantifiable limits from groups A and B, respectively. Metformin was 

recorded in the highest concentrations (1359 ± 83 ng L-1) in the river Avon. Previous work done on 

this river has also reported high levels of metformin ranging from 2000-3000 ng L-1 (Petrie et al., 

2015b). The reasoning for why this CEC is so high, has been attributed to its extensive usage in the 

treatment of type-2 diabetes, and for the lack of metabolism in the body (Gong et al., 2012). The UV 

filter 4-benzophenone, commonly found in sunscreens and cosmetic products, was also reported in high 

levels (299 ± 18 ng L-1). Its presence here is likely from a mixture of release from sewage discharge 

and from washed off skin from recreational activities (the river is popular among open water 

swimming).  

Regarding group B, all AAs and metabolites from the macrolide and lincosamide class were reported 

in the river Avon. The macrolide AAs, clarithromycin and erythromycin, were reported at 51 ± 4 ng L-

1 and 24 ± 2 ng L-1, respectively; and metabolites for both were also observed (desmethyl 

clarithromycin: 95 ± 32 ng L-1 and desmethyl erythromycin 0.88 ± 0.21 ng L-1). Several sulfonamides 

were also reported, including sulfamethoxazole at 33 ± 4 ng L-1, which is another CEC that has been 

widely reported in rivers across the world (Booth et al., 2020; R. Singh et al., 2019). Sulfapyridine was 

another of the sulfonamides detected at 75 ± 2 ng L-1. Whilst sulfapyridine is a major metabolite of 

sulfasalazine (prescribed as an inflammatory in human medicines), it is also utilized as an AA in 

veterinary medicine. It is therefore likely that sulfapyridine could be from human consumption of 

sulfasalazine but also some potential agricultural run-off; particularly as the river in question has a 

strong surrounding agricultural presence. It is worth mentioning that many AAs used in veterinary 
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medications do have cross-over with those in humans, so AAs could be from a combination of human 

and animal sources.  

In comparison, the Olifants River, flowing through pristine environment of Kruger National Park, had 

less CECs detected with only 13 CECs from group A above quantifiable limits. Whilst very high levels 

of metformin were reported in the river Avon, this was not detected in the samples collected from 

Olifants River, as the human contribution to the river is limited. Caffeine was reported in the highest 

concentration for SA samples, on average 115 ± 87 ng L-1 across the sampling points. Interestingly, 

whilst pharmaceuticals detection was low in Olifants River, all human indicators investigated in this 

study were quantifiable. This is likely due to tourists’ presence in Kruger Park camps. Carbamazepine 

has been identified as one of the most readily found CEC in the environment (aus der Beek et al., 2016), 

and was found in both rivers at concentrations of 51 ± 1 ng L-1 and 1.26 ± 0.65 ng L-1 for Avon and 

Olifants River, respectively. Interestingly, carbamazepine’s metabolite, carbamazepine 10, 11-epoxide, 

was detected in higher concentrations on average than its parent compound in the Olifants River (2.58 

± 0.78 ng L-1); highlighting the importance of monitoring metabolites alongside parent compounds.  

Table 3. Average CECs concentrations in river water from the river Avon (UK) and the Olifants River 

(SA) 

  

River Avon, UK (n=3*) 

  

Olifants River, SA (n=4**) 

  

Compound Compound Class  Concentration ng L-1  STD Concentration ng L-1  STD 

Methylparaben  Parabens  25.80 0.82 6.70 8.35 

Propylparaben   - - - - 

Butylparaben   1.92 0.68 - - 

1-benzophenone  UV Filters  - - 0.25 0.23 

2-benzophenone   - - - - 

3-benzophenone  20.79 9.21 - - 

4-benzophenone   298.75 18.13 59.48 35.19 

Bisphenol A  Plasticizer  0.00 0.00 - - 

E1  Steroid Estrogen  - - - - 

E2  - - - - 

EE2   - - - - 

Ketoprofen  NSAIDs  57.52 0.83 - - 

Ibuprofen   67.08 13.87 - - 

Naproxen  80.09 3.92 - - 

Valsartan Hypertension  58.04 3.05 - - 

Irbesartan   18.21 1.64 - - 

Lisinopril   13.93 0.19 - - 

Amphetamine  Stimulants and metabolites 86.30 79.48 - - 

Methamphetamine   - - - - 

MDMA   1.21 0.14 - - 

MDPV  0.00 0.00 - - 

Cocaine   1.11 0.49 - - 

Anhydroecgonine methyl ester  3.12 0.01 - - 

Benzoylecgonine   42.80 2.28 - - 

Cocaethylene   - - - - 

Methadone Analgesics and metabolites 0.11 0.36 - - 

Acetaminophen   108.49 40.58 6.84 3.22 

EDDP  2.57 0.76 - - 



289 
 

Codeine   29.51 3.04 - - 

Norcodeine   10.11 4.36 - - 

Dihydrocodeine   11.26 0.86 - - 

N-desmethyltramadol   2.10 11.80 - - 

O-desmethyltramadol   24.04 2.42 - - 

6-acetylmorphine Opioid metabolite  - - - - 

Cotinine  Human Indicators  22.63 3.22 2.14 0.59 

Caffeine   131.23 35.35 115.06 86.69 

Nicotine  40.60 1.14 14.69 0.62 

1,7 dimethylxanthine   226.93 48.89 64.89 42.02 

Carbamazepine  Anti-epileptic  50.74 0.76 1.26 0.65 

Carbamazepine 10, 11-epoxide  4.48 1.92 2.58 0.78 

10,11-dihydro-10-hydroxycarbmazepine  5.38 1.09 - - 

Ketamine  Anaesthetic and metabolite 14.41 0.75 - - 

Norketamine   1.45 0.47 - - 

Venlafaxine  Antidepressant  22.55 0.92 - - 

Citalopram   6.39 2.58 - - 

Desmethylcitalopram   4.32 0.90 - - 

Quetiapine Antipsychotic 0.03 0.10 - - 

Bezafibrate Lipid regulator 38.84 1.38 - - 

Metformin  Diabetes 1358.84 82.80 - - 

Gliclazide  1.85 1.53 - - 

Atenolol  Beta blocker  17.43 0.90 - - 

Metoprolol   - - - - 

Cimetidine  Histamine H₂ receptor antagonist - - - - 

Diltiazem  Calcium channel blocker 1.67 0.30 - - 

Azathioprine  Anticancer  21.46 0.08 - - 

Ifosfamide   - - - - 

Fexofenadine Antihistamine  49.89 7.16 - - 

Sulfadiazine Sulfonamide & trimethoprim  - -     

Sulfapyridine  74.74 1.72     

Sulfamethoxazole  32.67 3.94     

Sulfasalazine  - -     

Trimethoprim  10.04 1.69     

N-acetyl sulfadiazine   - -     

N-acetyl sulfapyridine   9.81 1.93     

N-acetyl sulfamethoxazole   - -     

4-hydroxy-trimethoprim   - -     

Erythromycin Macrolide & lincosamide  23.85 2.08     

Clarithromycin  51.01 4.07     

Clindamycin  15.85 0.31     

N-desmethyl erythromycin  0.88 0.21     

N-desmethyl clarithromycin   95.31 31.98     

N-desmethyl clindamycin   1.29 0.07     

Flucloxacillin β-LACTAMS 30.97 4.53     

Gatifloxacin  - -     
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Sarafloxacin  - -     

Moxifloxacin  - -     

Flumequine  - -     

Nalidixic acid  - -     

Desethylene ciprofloxacin  - -     

Hydroxy-norfloxacin   - -     

Desmethyl-ofloxacin   - -     

Ofloxacin N-oxide  - -     

Rifampicin TB drugs (1st line) 95.45 15.10     

Rifabutin  - -     

25-desacetyl rifampicin   - -     

25-O-desacetyl rifabutin   - -     

Linezolid TB other - -     

  - -     

Florfenicol Amphenicol - -     

Nitrofurantoin Nitrofurantoin - -     

NPAHD  - -     

Metronidazole Azole - -     

Hydroxy-metronidazole   - -     

Lamivudine Antiretroviral  - -     

Emtricitabine  - -     

*n=3 biological replicates, injected in triplicate; ** n=4, each sample had two biological replicates, 

injected in duplicate 

3.5 Risk to the aquatic environment posed by CECs 

A predicted no effect concentration (PNEC) is defined as the concentration of a substance that indicates 

the limit at which no pharmacological/adverse effect is expected to occur with chronic or acute exposure 

to a sentinel organism, mainly lower trophic-level aquatic organisms. They are widely used for 

environmental and risk characterisation, typically based upon single-species laboratory ecotoxicity 

tests. Unfortunately, for many CECs that have been detected in the environment, ecotoxicologically 

derived no-effect concentrations are yet to be identified, so impacts of the presence in ecosystems in 

often unknown (aus der Beek et al., 2016; Gunnarsson et al., 2019). Whilst environmental risk 

assessments are required for new pharmaceuticals entering the market in the EU (European Medicines 

Agency, 2006), those introduced before this regulation have this environmental aspect missing. PNECs 

have been compiled for a range of pharmaceuticals in the literature (Fick et al., 2010; Tell et al., 2019). 

Regarding AAs, PNECs are utilized to indicate areas where concentrations of AAs could be resulting 

in selective pressures and potential facilitation of AMR. Though, it is recognized that using PNECs for 

environmental risk assessments for AAs may not be fit for purpose (Murray et al., 2021; Tell et al., 

2019). 

Whilst only a few samples were investigated in this study, the concentrations of several CECs were 

compared with literature PNEC values (Table S7). And although the ecotoxicological effects of many 

CECs are still not know (aus der Beek et al., 2016), several CEC effects are well studied. For example, 

the steroid estrogen EE2, causing feminization of male fish at nanograms per liter concentrations, has 

caught international attention (Harris et al., 2011; Kidd et al., 2007). In this study it was noted that all 

CECs concentrations were lower than the established PNEC values considered, in both Kruger and UK 

river water samples. The rivers sampled were fairly clean, located in a relatively unpopulated area in 

Kruger, and considered to be well-managed in the UK.  
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An important consideration is that PNECs are often determined on individual chemicals and rarely 

consider the impacts of chemical mixtures. Exposure to chemicals rarely occur in isolation and 

ecosystems are often exposed to complex cocktails in their environments. It is recognized that mixtures 

of chemicals exceeds the risk of individual chemicals (Backhaus, 2016), highlighting the importance of 

monitoring a range of CECs in aquatic environments. Due to the large number of CECs present in the 

environment it will be impossible to screen and monitor them all. It is also important to define the list 

of surrogate chemicals for monitoring the those that present the highest risk of eco-toxicity.  

3.6 ARGs in river water samples (group C targets) 

A handful of ARGs were investigated in the river Avon, UK. ARGs that were quantifiable were 16S 

rRNA, ermB, sul1, intI1, and blaTem (figure 5). ARGs that were below the limits of quantification, via 

dPCR, were qnrS and blaCTX. The extraction efficiency of the kit was also investigated, via spiking of 

TaqMan™ Universal DNA Spike in Control into the lysis step of the DNA extraction kit. Results gave 

a consistent extraction (58 ± 2%) across duplicate runs, over triplicate biological replicates (figure S2). 

The highest prevalence ARG in river water reported at 4.00E+06 ± 2.20E+06 copies/L was blaTem, 

which confers resistance to β-lactam antibiotics. This gene has been found in rivers worldwide (R. Singh 

et al., 2019) and has been identified as a potential indicator of anthropogenic AMR contamination 

(Narciso-Da-Rocha et al., 2014). This has been attributed to reports of increases of blaTem after 

wastewater treatment processes (Lachmayr et al., 2009; Rodriguez-Mozaz et al., 2015). This is in 

comparison to reports of decreased amounts of ARGs, including ermB and tetW, after wastewater 

treatment processes (Rodriguez-Mozaz et al., 2015).  

 

 
Figure 5. Absolute concentrations of quantifiable gene loads in the river Avon (UK), containing both 

technical and biological replicates (n=9).  

Another potential indicator of anthropogenic pollution has previously been identified as intI1, due to its 

association to a number of genes that confer resistance to AAs (Gaze et al., 2011; Gillings et al., 2015). 

It is common for intI1 to occur alongside sulphonamide resistance (Gillings et al., 2008), hence 

correlations can be observed between the two in environmental samples. In this study, intI1 and sul1 

were found in similar levels of 2.82E+05 ± 1.36E+05 copies/L and 1.46E+05 ± 7.87E+04 copies/L, 

respectively.  

As reported earlier, AAs from the macrolide class were well observed in the river Avon, and the ARG 

conferring resistance to macrolides ermB was also quantified in the same sample, at 6.01E+04 ± 

3.62E+04 copies/L. However, it should be noted that absence of an AA in the environment could 

indicate a high prevalence of resistance in the bacterial communities (Murray et al., 2021). Whilst 

complexities lie in discerning linkages between AA presence and ARGs in environmental matrices, 

monitoring of both AAs and ARGs will be key for understanding the scope and scale of the problem. It 

is already considered that there could be a shift in surveillance in future environmental risk assessments; 
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for example, resistance genes monitoring in soils has been proposed by the European commission 

(European Commision, 2020).  

3.7 Limitations of study   

This study has investigated environmental water sampling using on-site SPE techniques that ensures a 

faster turnaround for getting samples onto a sorbent matrix and better stability at sampling areas, where 

processing resources are limited. However, we do acknowledge that the environmental sampling 

exercise was limited to very few samples in the River Avon (UK) and Olifants River (SA). Grab 

sampling was used in this study and is a popular choice for monitoring freshwater systems due to 

rapidness and ease of collecting a sample. However, care must be taken when sampling to ensure 

representative location and frequency. Future studies should aim to repeat and expand upon the number 

of samples taken in this study and investigate most appropriate times to sample; taking into account 

seasons and weather patterns, as well as determining the number of samples needed for statistical 

significance.   

4. Conclusions 

105 CECs and five genes were investigated in urbanized and remote locations via the iMME sampler 

and multi-residue trace analysis capability, utilizing liquid chromatography and triple quadrupole 

tandem mass spectrometry. The River Avon in the UK and the Olifants River in South Africa were used 

as case locations. The conclusions are as follows: 

1. Several CECs showed low stability in river water, at room temperature, over a 24h 

sampling/transport time. It is therefore recommended that, in the absence of cooling or analyte 

immobilization options, environmental water samples are spiked with internal standards on site, 

immediately after collection. Samples should then be processed to SPE cartridge as soon as 

possible, to be transported to analyzing laboratory.  

2. iMME has proven effective in immobilizing, concentrating, and increasing the stability of 

CECs at room temperature (for at least 7 days storage), allowing for sample collection at remote 

locations.  

3. The results from the River Avon and Olifants River, indicate that the pristine environment of 

the Olifants catchment is largely unaffected by CECs common in the urbanized River Avon, 

with a few exceptions: lifestyle chemicals (e.g., caffeine, nicotine, and their metabolites); 

paracetamol and UV filters, due to tourism; and carbamazepine, due to its persistent nature. 

4. Whilst many CECs demonstrated themselves to be stable on cartridge at room temperature 

(overall average of 5 ± 24% degradation after 24 hours across both groups A and B), efforts 

should be made to apply cooling during transport, and cartridges should be stored at freezer 

temperature prior to processing.  

5. Using sterilized filter housing units, it is also possible to collect on-site river samples for ARG 

analysis, providing potential complementary data to AA concentrations. Stability of ARGs 

during transport and storage were not investigated during this study. Future scoping work with 

a few initial samples from a river in the UK and in SA have demonstrated the potential for on-

site SPE sampling to quantify a range of CECs to a good level of sensitivity.  

6. Further work is required to provide full integration of the device and comprehensive assessment 

of performance in both chemicals and biological targets. 
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Table 1. International studies focused on CECs in surface waters 

Compounds Sampling/sample preparation Transport/storage Analysis Stability Study done Comments Reference 

61 pharmaceuticals 
including analgesics, 

antibiotics, antifungal, 

…. 
 

1,052 sampling sites  
 

258 rivers in 104 countries  

 
Sample preparation method described 

below in (Wilkinson et al., 2019) 

Liquid samples frozen before 
transported on ice 

HPLC-MS/MS 
 

Direct injection 

 
SPE (Oasis HLB) 

Stability study done in prior study  - (Wilkinson et al., 
2022) 

61 pharmaceuticals 

including analgesics, 
antibiotics, antifungal, 

…. 

Grab sampling followed by filtration with 

0.7 um glass microfibre filter 
 

Amber glass vials  

 
 

Liquid samples frozen before 

transported on ice 

HPLC-MS/MS 

 
Direct injection  

 

SPE (Oasis HLB) 

Stability assessment at 3 different 

temperatures (4, 20 and 35 °C) 
- Spiked 1000 ng/L into LC-MS 

water  

-Samples stored for 2 or 7 days  
 

Interior temperature of 
polystyrene packets containing 2 

x ice packs monitored over 7 days  

 

Grab sampling 

 
Only liquid phase analyzed (fraction 

of analytes sorbed to SPM missing 

due to filtration applied before 
internal standard addition) 

 
Not specified when internal standard 

mix is added  

 

(Wilkinson et al., 

2019) 

57 pharmaceuticals 
including antibiotics, 

personal care products  

Grab or composite not specified in 
experimental  

 

Sample pretreatment specified for 
wastewater samples, assumed same for 

surface waters  

 
Acidification, followed by filtering 

(0.45 μm), 2 mL of Na2EDTA (5% w/v in 

water) was added, samples then spiked 
with surrogate standards (50 μL of a 

1000 μg/L) 

Samples transported via Oasis 
HLB cartridges  

 

Wrapped in foil, secured in 
airtight bags, shipped on ice 

packs to analysis laboratory  

 
Specified samples eluted upon 

receipt 

.  

LC-MS/MS 
 

SPE (Oasis HLB) 

Stability study done with influent 
wastewater  

 

50 μL of a 1000 μg/L mixture 
 

SPE cartridges were stored at 

(23–27 °C) or at − 4 °C  
 

Sampling points seven, fifteen, 

and twenty-eight days of storage  

Only liquid phase analyzed 
(fraction of analytes sorbed to SPM 

missing due to filtration applied 

before internal standard addition) 

(R. R. Singh et al., 
2019) 

EU study  
35 compounds, 

comprising 

pharmaceuticals, 

pesticides, PFOS, PFOA, 

benzotriazoles, 

hormones, and endocrine 
disrupters. 

 

 
 

Grab sampling 
 

PE/PP bottles   

 

122 rivers sampled from across 27 

countries  

Liquid samples collected  
 

Stored at 4 °C before sending 

to analysis lab (Italy)  

 

Transported with freezing 

elements in polystyrene boxes 
(arrival time generally after 2–3 

days) 

  
 

LC/MS/MS 
 

SPE (Oasis HLB)  

Spiking river water samples 100 
ng/L  

- 15 °C in the dark 

- Period of three weeks 

Grab sampling 
 

Only liquid phase analyzed 

 

Samples extracted at a max of 2 

weeks after sampling (not specified if 

frozen or kept at 4 °C during this 
time) 

-Internal standard was spiked before 

SPE extraction  
 

- No filtering step prior to SPE 

 

(Loos et al., 2009) 
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Perfluorinated 

carboxylates (PFCAs) 

investigated  

PP/PE bottles used 

 

Grab sampling  
 

14 major European rivers sampled  

Samples collected stored at 4 

°C on arrival 

 
Shipped by courier to 

Stockholm University with 

cooling elements (usually 
within same day)  

 

 

LC-MS/MS 

 

SPE (Oasis HLB 
Plus)  

Sample storage in PP, PE and 

glass investigated 

- 200 mL of Milli-Q-water, 
spiked with 1 ng of each PFCA 

 - Stored at room temperature 

- Period of 36 days 

Samples spiked with IS before 

extraction (not specified how long 

samples were stored at 4 °C before 
extraction)  

 

-Filtration not mentioned other than 
for particle rich waters (filtered over 

silane treated glass wool prior to SPE) 

 
-Seasonality of collected samples 

mentioned (periods of unusually high 

and low flows were avoided  
 

-Collected at one time point 

 

(McLachlan et al., 

2007) 

Investigated in effluent 
of 8 WWTP in Western 

Europe for 36 polar 

compounds including 
household and industrial 

chemicals, 

pharmaceuticals, and 
personal care products 

Study focuses mainly on effluent samples  
 

Single surface water grab samples from 5 

rivers (Germany, Berlin, France and 
Spain)  

 

 

Effluent samples transported in 
an ice chest at 3 °C within 2 

days to the labs (not specified 

for surface waters but assumed 
the same) 

 

Surface water samples filtered 
over 0.45 μm membrane filters, 

and stored in a refrigerator until 

analyzed. 

LC-MS, LC-
MS/MS, GC-MS, 

CLSA-GC/MS 

Stability not mentioned  Internal standards not mentioned  
 

Duration that surface waters were kept 

at 4 °C before extraction/analysis not 
specified  

 

Extraction protocol not mentioned 
(instead references to other papers for 

specific analytes in the 

supplementary)  
 

 

(Reemtsma et al., 
2006) 

Investigation of 105 
CECs in river water 

collected from the river 

Avon (UK) and Olifants 
river (SA) 

PE/PP (check which)  
 

Grab samples  

 
Samples spiked with internal standard on 

site  

 
Using iSPE spiked samples were filtered 

and loaded on site  

 
 

 

 

Cartridges collected from River 
Avon (UK) transported on ice 

to lab (<1 h).  

 
Cartridges collected from 

Olifants river (SA)… 

 
 

HPLC-MS/MS 
 

SPE (Oasis HLB) 

Stability of river water samples 
over 24 hours at room 

temperature  

-Analytes spiked in at 100 ng L-1 

and 500 ng L-1 

 

Stability of CECs on cartridge  
-Analytes spiked in at 100 ng L-1 

-Two temperatures investigated 

room temp and - 18°C 

No need for cold chain 
 

IS spiked on site 

 
Only liquid phase analyzed  

 

Filtered through GF/F and GF/D 
 

Samples collected in summer 

 
One time point collected  

This study 

PP polypropylene, PE polyethylene, SPM solid particulate matter 
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Figure S1. River sampling locations the River Avon, UK (top) and from the Olifants river in Kruger 

national park, South Africa (bottom). 
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Table S2. Linearity information and instrument detection limits (IDLs) and quantification limits 

(IQLs) for all investigated compounds 

CEC Group Compound 

Compound 

Class  

Linearity    
Intra-day instrument 

performance  

Inter-day instrument 

performance  

Range (ng mL-1) 

IQLS/N 

(ng mL-1)  

IDLS/N  

(ng mL-1)  

Precision 

% 

Accuracy 

% 

Precision 

%  

Accuracy 

%  

Group A Methylparaben  Parabens  0.06-1000 0.060 0.01 3 104 3 106 

 
Propylparaben   0.12-400 0.12 0.04 6 101 5 108 

 
Butylparaben   0.05-1000 0.050 0.015 6 100 4 107 

 
1-benzophenone  UV Filters  0.25-100 0.250 0.075 4 227 7 235 

 
2-benzophenone   0.1-1000 0.100 0.030 5 107 7 113 

 
3-benzophenone  0.025-300 0.025 0.008 4 98 6 96 

 
4-benzophenone   1.01-500 1.01 0.31 4 96 4 92 

 
Bisphenol A  Plasticizer  0.10-600 0.1 0.03 6 106 6 104 

 
E1  Steroid Estrogen  0.5-1000 0.500 0.150 5 104 5 106 

 
E2  1-1000 1.000 0.300 6 104 6 104 

 
EE2   1-1000 1.000 0.300 5 99 6 99 

 
Ketoprofen  NSAIDs  0.54-1000 0.54 0.11 2 107 3 108 

 
Ibuprofen   0.05-1000 0.05 0.01 5 132 5 136 

 
Naproxen  0.5-1000 0.500 0.150 7 119 5 121 

 
Valsartan Hypertension  5-300 5.000 1.500 8 100 5 93 

 
Irbesartan   0.1-300 0.100 0.030 7 104 5 96 

 
Lisinopril   1-500 1.000 0.300 4 196 7 197 

 

Amphetamine  

Stimulants and 

metabolites 0.25-1000 0.250 0.075 5 97 8 101 

 
Methamphetamine   0.05-1000 0.050 0.015 3 96 6 97 

 
MDMA   0.025-1000 0.050 0.015 4 108 6 112 

 
MDPV  0.05-500 0.050 0.015 6 98 6 100 

 
Cocaine   0.025-500 0.025 0.008 6 104 6 106 

 Anhydroecgonine 

methyl ester   0.25-500 0.250 0.075 3 88 8 90 

 
Benzoylecgonine   0.025-1000 0.025 0.008 5 100 7 102 

 
Cocaethylene   0.025-1000 0.025 0.008 4 108 7 113 

 

Methadone 

Analgesics and 

metabolites 0.025-400 0.025 0.008 5 109 7 110 

 
Acetaminophen   0.25-1000 0.250 0.075 4 100 7 104 

 
EDDP  0.025-1000 0.025 0.008 4 99 6 102 

 
Codeine   0.50-500 0.5 0.1 4 65 7 67 

 
Norcodeine   1-500 1 0.3 6 107 7 109 

 
Dihydrocodeine   0.25-1000 0.250 0.075 3 90 8 91 

 
N-desmethyltramadol   0.50-500 0.05 0.01 4 90 7 93 

 
O-desmethyltramadol   1-400 1.000 0.300 5 109 7 112 

 

6-acetylmorphine 

Opioid 

metabolite  0.10-500 0.1 0.03 4 112 6 118 

 
Cotinine  Human Indicators  0.05-1000 0.05 0.01 5 107 5 107 

 
1,7 dimethylxanthine   1-500 1.000 0.300 5 98 5 99 

 
Caffeine   0.50-500 0.5 0.1 4 49 9 53 

 
Nicotine  0.5-500 0.500 0.150 5 106 6 108 

 
Carbamazepine  Anti-epileptic  0.05-1000 0.050 0.015 5 135 7 140 

 Carbamazepine 10, 11-

epoxide   0.1-1000 0.100 0.030 4 92 6 96 

 10,11-dihydro-10-

hydroxycarbmazepine   0.50-1000 0.5 0.05 5 107 6 110 
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Ketamine  

Anaesthetic and 

metabolite 0.05-1000 0.050 0.015 3 104 7 106 

 
Venlafaxine   0.04-500 0.04 0.01 4 98 7 102 

 
Citalopram   0.5-1000 0.5 0.05 4 103 7 107 

 
Norketamine   0.025-1000 0.025 0.008 4 88 6 90 

 
Desmethylcitalopram   0.05-500 0.050 0.015 4 110 4 113 

 
Quetiapine Antipsychotic 0.025-1000 0.025 0.008 5 172 8 175 

 
Bezafibrate Lipid regulator 0.1-1000 0.100 0.030 5 75 8 78 

 
Metformin  Diabetes 0.05-500 0.050 0.015 5 90 6 91 

 
Gliclazide  0.025-500 0.025 0.008 3 75 6 71 

 
Atenolol  Beta blocker  0.25-1000 0.250 0.075 4 102 6 105 

 
Metoprolol   0.5-1000 0.500 0.150 3 93 7 96 

 

Cimetidine  

H2 receptor 

agonist 2.5-400 2.500 0.750 3 106 6 110 

 

Diltiazem  

Calcium channel 

blocker 0.1-1000 0.100 0.030 4 107 7 110 

 
Azathioprine  Anticancer  0.10-500 0.1 0.03 4 96 7 99 

 
Ifosfamide   0.05-500 0.05 0.01 6 118 9 118 

 
Fexofenadine Antihistamine  0.25-1000 0.250 0.075 4 100 6 105 

Group B 

Sulfadiazine 

Sulphonamide & 

trimethoprim  
0.05-1000 0.05 0.015 12 102 13 99 

 
Sulfapyridine  

0.01-1000 0.01 0.003 6 101 8 101 

 

Sulfamethoxazole  

0.01-200, 200-

1000 
0.005 0.0015 7 100 9 101 

 
Sulfasalazine  

0.5-1000 5 1.5 10 110 14 109 

 
Trimethoprim  

0.5-500 0.5 0.15 11 107 14 107 

 

N-acetyl sulfadiazine   
0.05-25, 25-750 0.07 

0.02097902

1 
3 95 5 99 

 
N-acetyl sulfapyridine   

0.05-25, 25-750 0.56 0.16 6 105 7 105 

 N-acetyl 

sulfamethoxazole   

0.06-475, 475-

1500 
0.06 0.019 8 101 9 101 

 
4-hydroxy-trimethoprim   

0.01-63, 63-95 0.01 0.004 12 100 13 100 

 

Erythromycin 

Macrolide & 

lincomycin  
0.005-200 0.005 0.0015 8 103 11 101 

 

Clarithromycin  

0.005-200, 200-

3000 
0.005 0.0015 10 105 10 106 

 
Clindamycin  

0.5-1000 0.5 0.15 16 94 18 94 

 N-desmethyl 

erythromycin  
0.034-136 

0.0073529

41 

0.00220588

2 
9 104 10 103 

 N-desmethyl 

clarithromycin   

0.02-1250, 1250-

2000 

0.0166666

67 
0.005 6 98 9 99 

 N-desmethyl 

clindamycin   
0.005-200 0.005 0.0015 20 93 17 87 

 
Flucloxacillin β-Lactams 

0.5-1000 0.5 0.15 15 99 19 109 

 
Cefalexin Cephalosporins  

1.25-500 1.25 0.375 10 90 10 90 

 
Cefixime  

5-750 5 1.5 22 92 20 83 

 
Ceftiofur  

0.5-750 0.5 0.15 17 103 16 110 

 

Norfloxacin Quinolone  

0.005-200, 200-

500, 500-1000 
0.01 0.003 15 103 20 97 

 
Ciprofloxacin  

0.5-400 0.5 0.15 10 101 20 97 

 
Lomefloxacin  

0.1-500 0.1 0.03 21 113 21 118 

 
Danofloxacin  

5-750 5 1.5 48 112 40 93 

 
Enrofloxacin  

0.1-100, 100-750 0.1 0.03 13 110 15 110 

 
Nadifloxacin  

1-400 1 0.3 19 90 24 98 

 Ofloxacin 

(Levofloxacin)  
0.1-200 0.1 0.03 8 97 11 101 

 
Gatifloxacin  

0.01-500 0.01 0.003 7 100 14 103 

 
Sarafloxacin  

0.05-500 0.5 0.15 11 93 14 93 

 
Moxifloxacin  

1.25-500 1.25 0.375 16 92 17 90 
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Flumequine  

0.01-200, 200-

1000 
0.01 0.003 12 103 12 103 

 
Nalidixic acid  

0.01-500 0.01 0.003 16 105 17 102 

 Desethylene 

ciprofloxacin  
0.5-100, 100-500 0.5 0.15 12 92 14 89 

 
Hydroxy-norfloxacin   

1-100, 100-1000 12 3.6 16 100 17 99 

 
Desmethyl-ofloxacin   

0.5-50, 50-750 0.5 0.15 7 96 11 97 

 
Ofloxacin N-oxide  

0.5-75, 75-1000 12 3.6 9 97 14 98 

 

Rifampicin 

TB drugs (1st 

line) 
1.25-1000 1.25 0.375 34 114 42 97 

 
Rifabutin  

0.5-400 0.5 0.15 14 100 14 105 

 
25-desacetyl rifampicin   

5-500 5 1.5 34 117 38 104 

 
25-O-desacetyl rifabutin   

0.1-100, 100-750 0.1 0.03 27 104 21 102 

 
Linezolid TB other 

0.1-1000 0.1 0.03 12 98 19 96 

 
Thalidomide  

0.5-100, 100-750 1 0.3 16 102 17 103 

 
Florfenicol Amphenicol 

10-200, 200-750 10 3 18 111 18 114 

 
Nitrofurantoin Nitrofurantoin 

0.5-200, 200-1500 1 0.3 12 89 12 89 

 
NPAHD  

0.1-200, 200-1000 0.1 0.03 10 102 14 103 

 
Metronidazole Azole 

0.1-500, 500-1000 0.1 0.03 8 103 9 104 

 
Hydroxy-metronidazole   

0.1-100, 100-750 0.1 0.03 10 99 10 94 

 
Lamivudine Antiretroviral  

1-1000 1 0.3 12 95 12 98 

 

Emtricitabine 
 0.5-200, 50-1000, 

1000-3000 
0.5 0.15 19 91 20 86 
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Table S3. Corrected SPE recoveries breakdown of all target ECs 

CEC Group Compound 

 SPE Recoveries       

Compound Class  10 STD 100 STD 500 STD 

Group A Methylparaben  Parabens  104 3 101 2 95 12 

 
Butylparaben   119 1 128 9 118 22 

 
1-benzophenone  UV Filters  38 1 41 4 41 27 

 
2-benzophenone   52 0 45 2 45 27 

 
3-benzophenone  23 2 54 8 41 17 

 
4-benzophenone   122 1 121 9 116 45 

 
Bisphenol A  Plasticizer  52 4 157 16 153 73 

 
E1  Steroid Estrogen  110 1 105 4 93 17 

 
E2  137 2 100 8 93 30 

 
EE2   - - 91 6 94 81 

 
Ketoprofen  NSAIDs  50 17 70 48 57 81 

 
Ibuprofen   87 1 116 3 115 12 

 
Naproxen  197 16 110 18 96 13 

 
Valsartan Hypertension  175 3 167 23 171 71 

 
Lisinopril   202 1 45 2 49 14 

 
Amphetamine  Stimulants and metabolites 295 6 169 9 119 12 

 
Methamphetamine   114 1 107 2 98 9 

 
MDMA   147 1 133 2 122 18 

 
MDPV  - - 105 4 96 15 

 
Cocaine   139 0 123 1 108 19 

 Anhydroecgonine methyl 

ester   78 0 36 2 37 14 

 
Benzoylecgonine   165 1 149 5 132 7 

 
Cocaethylene   136 0 115 4 106 20 

 
Methadone Analgesics and metabolites 106 1 90 4 80 16 

 
Acetaminophen   80 1 145 3 124 9 

 
EDDP  114 0 106 4 99 18 

 
Codeine   80 1 59 1 56 5 

 
Norcodeine   233 1 90 5 82 16 

 
Dihydrocodeine   136 0 106 4 104 11 

 
N-desmethyltramadol   187 2 122 8 120 25 

 
O-desmethyltramadol   117 1 95 3 83 20 

 
6-acetylmorphine Opioid metabolite  - - 67 1 88 37 

 
Cotinine  Human Indicators  15 0 135 7 121 14 

 
Caffeine   89 1 106 9 84 21 

 
Nicotine  52 2 18 2 18 5 

 
1,7 dimethylxanthine   - - 50 8 61 12 

 
Carbamazepine  Anti-epileptic  127 2 110 5 100 16 

 Carbamazepine 10, 11-

epoxide   88 1 76 2 76 14 

 10,11-dihydro-10-

hydroxycarbmazepine   158 3 136 9 121 40 

 
Ketamine  Anaesthetic and metabolite 129 1 119 2 105 10 

 
Venlafaxine   206 3 148 13 130 37 

 
Citalopram   106 1 114 8 108 6 
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Norketamine   125 1 110 5 100 14 

 
Desmethylcitalopram   104 2 81 2 96 12 

 
Quetiapine Antipsychotic 118 0 112 3 98 15 

 
Bezafibrate Lipid regulator 197 1 118 1 106 12 

 
Metformin  Diabetes 122 2 112 25 94 34 

 
Gliclazide  146 1 111 7 86 36 

 
Atenolol  Beta blocker  117 1 113 4 109 15 

 
Metoprolol   118 1 116 4 110 14 

 
Cimetidine   128 1 72 8 76 9 

 
Diltiazem  Calcium channel blocker 89 1 83 3 69 8 

 
Azathioprine  Anticancer  83 1 75 1 70 5 

 
Ifosfamide   -174 1 97 7 108 8 

Group B Sulfadiazine Sulphonamide & trimethoprim  - - 64 3 76 2 

 
Sulfapyridine  126 55 79 3 83 2 

 
Sulfamethoxazole  106 9 92 4 93 2 

 
Sulfasalazine  - - 103 25 85 5 

 
Trimethoprim  112 20 95 11 100 3 

 
N-acetyl sulfadiazine   52 3 61 2 55 2 

 
N-acetyl sulfapyridine   81 3 76 2 66 1 

 N-acetyl 

sulfamethoxazole   76 6 49 1 44 1 

 
4-hydroxy-trimethoprim   13 2 11 1 11 0 

 
Erythromycin Macrolide & lincomycin  146 56 113 4 83 4 

 
Clarithromycin  120 60 101 14 80 4 

 
Clindamycin  117 3 107 1 97 4 

 N-demethyl 

erythromycin  119 31 125 4 91 4 

 N-desmethyl 

clarithromycin   181 161 153 28 116 2 

 N-desmethyl 

clindamycin   62 4 55 3 59 5 

 
Flucloxacillin 

β-Lactams 
75 4 69 4 68 6 

 
Cefalexin Cephalosporins  100 98 136 33 131 17 

 
Cefixime  - - 77 14 62 6 

 
Ceftiofur  105 - 30 1 15 1 

 
Norfloxacin Quinolone  - - 134 31 187 12 

 
Ciprofloxacin  170 22 85 1 139 3 

 
Lomefloxacin  98 35 87 4 104 4 

 
Danofloxacin  - - 125 5 114 7 

 
Enrofloxacin  114 31 123 7 97 5 

 
Nadifloxacin  194 6 104 4 88 2 

 Ofloxacin 

(Levofloxacin)  88 17 83 3 85 2 

 
Gatifloxacin  91 29 92 6 109 3 

 
Sarafloxacin  - - 46 3 53 0 

 
Moxifloxacin  - - 134 12 150 21 

 
Flumequine  125 0 97 1 85 4 

 
Nalidixic acid  - - 75 1 70 3 

 Desethylene 

ciprofloxacin  - - 63 11 111 15 

 
Hydroxy-norfloxacin   - - - - 33 1 

 
Desmethyl-ofloxacin   95 - 46 5 78 1 
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Ofloxacin N-oxide  - - 129 - 98 3 

 
Rifampicin 

TB drugs (1st line) 
- - 85 14 110 14 

 
Rifabutin 

 
183 19 121 14 117 11 

 
25-desacetyl rifampicin   - - 109 3 149 17 

 
25-O-desacetyl rifabutin   124 32 71 3 100 17 

 
Linezolid TB other 83 10 72 4 66 1 

 
Thalidomide  211 36 155 11 139 6 

 
Florfenicol Amphenicol - - 104 - 84 4 

 
Nitrofurantoin Nitrofurantoin - - 116 23 69 1 

 
NPAHD  64 15 60 5 53 1 

 
Metronidazole Azole 132 3 105 2 104 1 

 
Hydroxy-metronidazole   - - 57 2 73 2 

 
Lamivudine Antiretroviral  - - 62 3 76 3 

 
Emtricitabine  167 29 102 4 107 2 
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Table S4. 24-hour stability study in river water spiked initially with 100 ng/L and 500 ng/L  

 

  % Degradation after 24 hr    

CEC Group Compound Class  Compound 100 ng L-1 spiked, RW STD 500 ng L-1 spiked, RW STD 

Group A Methylparaben  Parabens  98 1 90 6 

 
Propylparaben   -35 14 -16 4 

 
Butylparaben   12 3 1 4 

 
1-benzophenone  UV Filters  13 2 4 7 

 
2-benzophenone   9 2 -5 4 

 
3-benzophenone  37 1 72 22 

 
4-benzophenone   4 4 -39 49 

 
Bisphenol A  Plasticizer  46 8 -12 13 

 
E1  Steroid Estrogen  -13 2 -15 29 

 
E2  19 12 3 3 

 
EE2   -20 26 -2 14 

 
Ketoprofen  NSAIDs  15 8 -6 9 

 
Ibuprofen   -20 14 -10 14 

 
Naproxen  -2 9 3 14 

 
Valsartan Hypertension  -1 15 -14 13 

 
Irbesartan   1 10 -4 27 

 
Lisinopril   -10 0 36 5 

 
Amphetamine  Stimulants and metabolites 31 3 8 1 

 
Methamphetamine   -9 0 -7 1 

 
MDMA   -9 0 -1 1 

 
MDPV  -13 0 -3 2 

 
Cocaine   49 0 51 1 

 Anhydroecgonine methyl 

ester   -1 0 -12 1 

 
Benzoylecgonine   -63 0 -63 1 

 
Cocaethylene   14 0 22 1 

 
Methadone Analgesics and metabolites 4 1 0 5 

 
Acetaminophen   -5 0 -1 1 

 
EDDP  -3 1 1 1 

 
Codeine   -19 0 2 0 

 
Norcodeine   -52 1 13 1 

 
Dihydrocodeine   -4 1 -2 1 

 
N-desmethyltramadol   -7 1 0 3 

 
O-desmethyltramadol   -3 2 -10 1 

 
6-acetylmorphine Opioid metabolite  -19 1 -14 1 

 
Cotinine  Human Indicators  -6 0 -3 1 

 
Caffeine   23 3 -25 3 

 
Nicotine  5 1 -25 2 

 
1,7 dimethylxanthine   4 4 -19 1 

 
Carbamazepine  Anti-epileptic  -8 0 -3 1 

 Carbamazepine 10, 11-

epoxide   -11 0 -14 1 

 10,11-dihydro-10-

hydroxycarbmazepine   -6 0 -19 1 

 
Ketamine  Anaesthetic and metabolite -8 0 -2 1 
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Venlafaxine   -18 1 6 1 

 
Citalopram   -4 2 -1 1 

 
Norketamine   -12 0 -2 1 

 
Desmethylcitalopram   -13 1 5 4 

 
Quetiapine Antipsychotic -3 0 11 2 

 
Bezafibrate Lipid regulator -7 7 -2 21 

 
Metformin  Diabetes 11 22 0 10 

 
Gliclazide  29 1 8 12 

 
Atenolol  Beta blocker  -6 1 -1 1 

 
Metoprolol   -9 0 -1 2 

 
Cimetidine   -25 0 9 2 

 
Diltiazem  Calcium channel blocker -8 1 -4 4 

 Azathioprine  Anticancer  2 1 -15 2 

 
Ifosfamide   -7 0 16 1 

 
Fexofenadine Antihistamine  10 8 10 11 

Group B Sulfadiazine Sulphonamide & trimethoprim  32 7 32 9 

 
Sulfapyridine  15 15 -3 13 

 
Sulfamethoxazole  -2 4 5 7 

 
Sulfasalazine  -44 16 -57 10 

 
Trimethoprim  -3 18 16 9 

 
N-acetyl sulfadiazine   -19 5 -36 25 

 
N-acetyl sulfapyridine   -36 6 -85 14 

 
N-acetyl sulfamethoxazole   -58 45 -35 10 

 
4-hydroxy-trimethoprim   30 5 23 19 

 
Erythromycin Macrolide & lincomycin  21 10 -28 8 

 
Clarithromycin  -55 14 -41 29 

 
Clindamycin  26 1 8 41 

 N-desmethyl 

erythromycin  36 4 13 7 

 N-desmethyl 

clarithromycin   19 7 8 4 

 
N-desmethyl clindamycin   -78 8 -76 28 

 
Flucloxacillin β-Lactams -91 16 -38 50 

 
Cefalexin Cephalosporins  - - - - 

 
Cefixime  36 27 13 24 

 
Ceftiofur  -42 47 -133 59 

 
Norfloxacin Quinolone  - - -22 16 

 
Ciprofloxacin  -28 237 7 23 

 
Lomefloxacin  -13 17 15 34 

 
Danofloxacin  13 - 30 23 

 
Enrofloxacin  1 33 10 13 

 
Nadifloxacin  -178 62 -105 81 

 
Ofloxacin (Levofloxacin)  47 6 49 16 

 
Gatifloxacin  -26 60 8 21 

 
Sarafloxacin  - - 31 19 

 
Moxifloxacin  - - 30 3 

 
Flumequine  1 7 4 13 

 
Nalidixic acid  25 3 34 6 
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Desethylene ciprofloxacin  - - 9 24 

 
Hydroxy-norfloxacin   - - - - 

 
Desmethyl-ofloxacin   -90 59 -1 6 

 
Ofloxacin N-oxide  -7 16 10 15 

 
Rifampicin TB drugs (1st line) -25 - 12 11 

 
Rifabutin  38 0 35 0 

 
25-desacetyl rifampicin   15 11 43 9 

 
25-O-desacetyl rifabutin   50 3 60 7 

 
Linezolid TB other 21 18 11 21 

 
Thalidomide  - - - - 

 
Florfenicol Amphenicol - - 48 13 

 
Nitrofurantoin Nitrofurantoin 25 - -56 42 

 
NPAHD  15 30 37 7 

 
Metronidazole Azole -4 5 0 9 

 
Hydroxy-metronidazole   37 11 55 6 

 
Lamivudine Antiretroviral  13 9 35 8 

 
Emtricitabine  49 5 51 8 
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Tables S5. Weeklong stability study on cartridge at freezer (-18 °C) temperatures  

CEC 

Group 

  % of original spiked concentration left (day 0 = 100%)  freezer, -18 °C  

Compound Compound Class  Day 1  STD Day 2 STD Day 3 STD Day 5 STD Day 7 STD 

Group 

A Methylparaben  Parabens  87 9 89 5 82 18 79 3 89 12 

 

Propylparaben   100 10 107 1 104 3 103 2 114 8 

 

Butylparaben   112 9 132 12 116 32 136 0 128 11 

 

1-benzophenone  UV Filters  79 6 87 13 71 21 101 5 73 7 

 

2-benzophenone   82 1 82 13 72 24 82 7 65 14 

 

3-benzophenone  83 14 82 4 68 12 67 10 55 9 

 

4-benzophenone   95 4 97 11 94 15 84 1 95 2 

 

Bisphenol A  Plasticizer  105 8 111 11 113 12 119 1 109 10 

 

E1  Steroid Estrogen  99 8 92 2 87 14 97 6 95 7 

 

E2  110 23 107 16 91 20 106 5 109 13 

 

EE2   97 14 85 9 102 16 123 13 101 24 

 

Ketoprofen  NSAIDs  84 10 89 9 69 9 61 6 47 13 

 

Ibuprofen   89 1 136 52 99 12 91 2 90 2 

 

Naproxen  111 2 95 3 93 10 90 2 88 7 

 

Valsartan Hypertension  77 33 85 4 84 16 83 1 108 7 

 

Irbesartan   95 6 85 5 78 16 72 5 84 4 

 

Lisinopril   118 41 116 2 118 27 84 3 87 23 

 

Amphetamine  Stimulants and metabolites 85 6 107 20 100 20 110 7 92 6 

 

Methamphetamine   101 1 102 2 91 14 102 3 104 2 

 

MDMA   104 2 103 2 95 16 101 1 98 5 

 

MDPV  105 4 102 3 87 13 93 5 99 7 

 

Cocaine   103 5 102 6 95 19 99 1 103 1 

 

Anhydroecgonine methyl ester  106 94 12 87 8 68 17 92 7 109 

 

Benzoylecgonine   106 1 113 10 98 13 112 3 115 8 

 

Cocaethylene   105 2 102 5 95 18 94 2 97 2 

 

Methadone Analgesics and metabolites 111 4 108 2 97 14 113 8 115 3 

 

Acetaminophen   95 2 147 66 133 17 101 10 122 17 

 

EDDP  86 36 98 36 66 2 87 5 76 34 

 

Codeine   101 1 100 2 94 18 104 4 102 2 

 

Norcodeine   105 3 107 4 94 18 123 2 102 5 

 

Dihydrocodeine   104 3 106 4 91 13 101 3 101 6 

 

N-desmethyltramadol   92 9 90 6 84 6 122 5 124 2 

 

O-desmethyltramadol   108 3 115 2 106 16 100 3 104 8 

 

6-acetylmorphine Opioid metabolite  121 21 137 5 99 29 111 10 125 24 

 

Cotinine  Human Indicators  98 1 104 2 94 18 88 2 92 4 

 

Caffeine   82 3 95 26 88 22 75 6 75 4 

 

Nicotine  72 12 66 10 46 14 78 9 110 12 

 

1,7 dimethylxanthine   90 5 114 32 100 18 108 3 113 2 

 

Carbamazepine  Anti-epileptic  99 1 97 2 92 15 93 3 98 1 

 

Carbamazepine 10, 11-epoxide  92 108 5 87 2 89 14 85 3 99 

 

10,11-dihydro-10-hydroxycarbmazepine  95 105 1 104 0 98 15 95 4 99 

 

Ketamine  Anaesthetic and metabolite 108 2 108 4 99 17 109 6 107 4 

 

Venlafaxine   101 2 116 2 106 20 116 6 113 4 
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Citalopram   110 14 110 6 86 16 94 5 105 13 

 

Norketamine   107 1 107 2 97 15 111 3 110 5 

 

Desmethylcitalopram   111 2 98 4 84 8 110 3 112 1 

 

Quetiapine Antipsychotic 100 2 96 2 87 11 104 2 108 1 

 

Bezafibrate Lipid regulator 104 7 99 6 95 16 105 3 118 11 

 

Metformin  Diabetes 100 4 119 23 117 3 103 1 111 2 

 

Gliclazide  81 5 84 7 92 2 97 2 90 7 

 

Atenolol  Beta blocker  100 2 108 5 99 18 104 3 105 3 

 

Metoprolol   104 3 107 3 96 16 98 1 97 5 

 

Cimetidine   92 7 81 3 75 2 101 1 84 7 

 

Diltiazem  Calcium channel blocker 114 6 106 12 94 16 102 4 104 16 

 

Azathioprine  Anticancer  108 4 110 1 103 19 96 4 104 7 

 

Ifosfamide   114 5 112 3 110 24 108 4 110 4 

 

Fexofenadine Antihistamine  91 1 86 6 86 5 98 4 92 2 

Group 

B Sulfadiazine Sulphonamide & trimethoprim  85 8 74 9 84 13 79 9 81 2 

 

Sulfapyridine  92 6 90 5 83 13 93 4 95 4 

 

Sulfamethoxazole  94 8 92 3 85 11 93 4 98 10 

 

Sulfasalazine  90 19 93 26 93 10 107 17 114 6 

 

Trimethoprim  99 8 94 4 91 10 105 4 102 7 

 

N-acetyl sulfadiazine   88 9 85 6 81 9 83 11 85 9 

 

N-acetyl sulfapyridine   88 7 88 8 80 12 82 5 86 9 

 

N-acetyl sulfamethoxazole  80 14 87 6 83 11 88 13 89 12 

 

4-hydroxy-trimethoprim   101 11 91 3 90 16 99 5 99 1 

 

Erythromycin Macrolide & lincomycin  91 15 86 6 73 12 78 8 79 14 

 

Clarithromycin  97 5 90 10 75 2 91 4 94 8 

 

Clindamycin  69 10 85 26 65 17 68 16 89 16 

 

N-desmethyl erythromycin 95 3 86 10 80 5 84 5 86 5 

 

N-desmethyl clarithromycin  92 3 82 6 83 7 91 7 96 5 

 

N-desmethyl clindamycin  69 16 72 32 45 8 66 9 62 2 

 

Flucloxacillin 
β-Lactams 

71 8 81 29 54 13 63 4 68 11 

 

Cefalexin Cephalosporins  76 20 75 9 66 14 62 19 100 25 

 

Cefixime  60 17 55 16 57 6 70 17 111 11 

 

Ceftiofur  33 20 41 11 39 1 38 5 43 10 

 

Norfloxacin Quinolone  101 28 83 19 70 20 109 14 111 24 

 

Ciprofloxacin  97 24 82 7 74 6 100 21 101 10 

 

Lomefloxacin  76 21 73 3 65 20 57 9 85 20 

 

Danofloxacin  109 15 127 9 106 11 120 8 123 23 

 

Enrofloxacin  92 8 78 4 67 10 75 12 93 8 

 

Nadifloxacin  77 6 81 32 60 14 62 5 73 7 

 

Ofloxacin (Levofloxacin)  102 8 99 15 90 6 111 9 92 11 

 

Gatifloxacin  107 19 77 9 86 10 84 5 92 10 

 

Sarafloxacin  112 44 106 37 91 33 127 34 129 47 

 

Moxifloxacin  144 36 118 54 87 40 193 49 142 21 

 

Flumequine  77 11 93 18 75 8 78 8 86 7 

 

Nalidixic acid  71 15 76 20 59 7 64 5 61 11 

 

Desethylene ciprofloxacin 79 25 42 8 50 14 60 31 86 22 
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Hydroxy-norfloxacin   80 4 70 3 74 7 81 7 82 7 

 

Desmethyl-ofloxacin   82 12 68 11 77 17 77 12 75 12 

 

Ofloxacin N-oxide  96 12 81 16 78 22 73 19 95 15 

 

Rifampicin TB drugs (1st line) 61 11 124 19 71 22 137 1 79 30 

 

Rifabutin  73 22 73 25 72 10 74 16 61 5 

 

25-desacetyl rifampicin   125 19 107 43 82 13 129 91 79 8 

 

25-O-desacetyl rifabutin   79 8 84 9 64 4 75 13 66 3 

 

Linezolid TB other 94 16 88 9 85 5 96 10 104 17 

 

Thalidomide  87 46 79 33 94 14 109 21 105 39 

 

Florfenicol Amphenicol 102 8 93 9 77 15 95 14 109 13 

 

Nitrofurantoin Nitrofurantoin 94 23 97 28 81 27 107 8 117 40 

 

NPAHD  95 12 87 13 82 10 97 10 108 4 

 

Metronidazole Azole 92 4 84 2 81 10 89 4 92 5 

 

Hydroxy-metronidazole   97 8 89 3 95 2 98 4 95 4 

 

Lamivudine Antiretroviral  98 9 90 7 95 6 104 3 96 9 

 

Emtricitabine  87 7 82 3 90 10 72 31 87 8 

 

Tables S6. Weeklong stability study on cartridge at freezer (21 °C) temperatures  

CEC Group 

  % of original spiked concentration left (day 0 = 100%) room temperature, 21 °C   

Compound Compound Class  Day 1  STD Day 2 STD Day 3 STD Day 5 STD Day 7 STD 

Group A Methylparaben  Parabens  87 5 91 8 73 3 86 7 94 5 

 

Propylparaben   106 3 122 7 98 5 119 11 95 8 

 

Butylparaben   127 5 150 8 126 4 135 3 133 3 

 

1-benzophenone  UV Filters  96 5 110 2 94 5 82 19 96 19 

 

2-benzophenone   89 4 95 4 75 6 75 13 69 3 

 

3-benzophenone  111 4 109 7 94 5 56 4 77 3 

 

4-benzophenone   93 5 88 8 87 4 91 12 85 6 

 

Bisphenol A  Plasticizer  118 8 136 13 128 16 128 10 117 8 

 

E1  Steroid Estrogen  99 5 103 4 95 5 98 10 102 9 

 

E2  120 21 115 14 107 5 116 14 108 10 

 

EE2   117 1 123 32 120 17 124 25 125 5 

 

Ketoprofen  NSAIDs  98 10 94 8 70 10 83 17 89 9 

 

Ibuprofen   89 1 98 2 94 2 92 2 93 2 

 

Naproxen  106 7 101 2 88 6 95 2 89 5 

 

Valsartan Hypertension  87 1 84 6 86 4 78 2 109 6 

 

Irbesartan   84 3 87 3 74 5 88 13 70 7 

 

Lisinopril   80 6 74 3 89 6 56 3 40 11 

 

Amphetamine  Stimulants and metabolites 67 13 67 13 59 10 48 14 36 1 

 

Methamphetamine   86 14 96 5 61 3 69 9 78 1 

 

MDMA   94 16 101 6 68 3 72 9 76 4 

 

MDPV  108 16 124 6 86 8 100 16 119 6 

 

Cocaine   111 14 124 2 99 2 111 15 123 7 

 

Anhydroecgonine methyl ester  116 84 9 90 4 46 6 95 28 108 

 

Benzoylecgonine   112 6 118 2 109 3 114 6 114 8 

 

Cocaethylene   112 13 123 2 102 1 105 13 113 9 
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Methadone Analgesics and metabolites 115 19 128 3 96 1 120 16 129 8 

 

Acetaminophen   99 2 100 2 93 2 93 6 113 8 

 

EDDP  106 45 121 44 58 2 71 20 118 7 

 

Codeine   107 2 112 5 99 2 93 11 97 7 

 

Norcodeine   97 8 101 11 85 10 91 7 81 5 

 

Dihydrocodeine   112 10 124 6 97 2 98 10 105 6 

 

N-desmethyltramadol   85 9 99 14 80 3 110 5 109 2 

 

O-desmethyltramadol   111 8 125 4 115 1 100 7 100 6 

 

6-acetylmorphine Opioid metabolite  117 24 148 10 100 10 108 16 118 12 

 

Cotinine  Human Indicators  106 8 113 2 103 3 96 13 100 10 

 

Caffeine   87 7 73 4 81 18 71 3 67 7 

 

Nicotine  66 3 69 1 34 4 119 43 152 12 

 

1,7 dimethylxanthine   92 8 82 3 86 8 101 6 101 8 

 

Carbamazepine  Anti-epileptic  104 6 111 1 101 2 101 5 105 7 

 

Carbamazepine 10, 11-epoxide  79 121 11 104 1 100 1 106 10 118 

 

10,11-dihydro-10-hydroxycarbmazepine  88 112 8 121 2 108 2 106 11 115 

 

Ketamine  Anaesthetic and metabolite 114 11 125 3 110 3 114 12 117 8 

 

Venlafaxine   102 8 129 7 103 4 118 8 113 4 

 

Citalopram   112 19 121 12 93 3 97 10 110 5 

 

Norketamine   116 11 122 2 100 3 113 13 116 11 

 

Desmethylcitalopram   101 14 95 3 73 3 83 9 108 6 

 

Quetiapine Antipsychotic 104 10 108 1 97 3 114 15 130 12 

 

Bezafibrate Lipid regulator 119 3 130 21 110 1 111 5 107 4 

 

Metformin  Diabetes 96 3 100 4 93 3 92 2 92 8 

 

Gliclazide  97 15 121 16 105 1 120 29 114 22 

 

Atenolol  Beta blocker  102 6 114 5 101 4 99 4 95 3 

 

Metoprolol   107 8 115 1 95 5 94 9 94 4 

 

Cimetidine   96 1 64 2 88 5 70 18 52 7 

 

Diltiazem  Calcium channel blocker 117 14 127 10 103 2 105 8 137 12 

 

Azathioprine  Anticancer  114 8 120 2 112 3 103 10 104 8 

 

Ifosfamide   140 17 141 5 125 5 131 10 129 15 

 

Fexofenadine Antihistamine  92 1 92 3 97 4 88 2 99 3 

Group B 

Sulfadiazine Sulphonamide & trimethoprim  82 13 85 7 77 10 71 8 73 20 

 

Sulfapyridine  96 6 101 5 93 4 91 1 96 15 

 

Sulfamethoxazole  100 6 106 6 97 5 95 4 102 17 

 

Sulfasalazine  115 9 118 10 99 20 95 11 95 9 

 

Trimethoprim  98 13 105 14 107 15 102 6 106 23 

 

N-acetyl sulfadiazine   90 2 93 6 85 2 83 5 85 21 

 N-acetyl 

sulfapyridine   97 5 100 5 90 2 85 9 89 18 

 

N-acetyl sulfamethoxazole  90 4 98 5 89 9 83 8 91 20 

 4-hydroxy-

trimethoprim   99 7 94 13 97 25 83 9 93 19 

 

Erythromycin Macrolide & lincomycin  98 4 101 7 89 4 86 15 77 29 

 

Clarithromycin  101 7 105 5 85 10 102 5 108 19 

 

Clindamycin  82 15 98 16 88 5 104 5 103 23 

 

N-desmethyl erythromycin 93 1 96 4 94 7 81 15 78 25 

 

N-desmethyl clarithromycin  101 5 101 8 106 10 101 4 99 23 
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N-desmethyl clindamycin  47 1 53 14 52 16 61 16 66 27 

 

Flucloxacillin β-Lactams 63 4 68 3 59 11 66 11 63 17 

 

Cefalexin Cephalosporins  77 12 60 17 65 16 62 12 43 10 

 

Cefixime  72 10 73 8 112 38 93 15 91 25 

 

Ceftiofur  33 4 36 13 31 8 41 11 39 7 

 

Norfloxacin Quinolone  99 22 70 18 91 34 75 12 56 26 

 

Ciprofloxacin  97 11 74 12 103 13 85 9 75 35 

 

Lomefloxacin  92 27 81 2 75 8 71 13 84 31 

 

Danofloxacin  133 40 132 22 104 16 118 60 95 13 

 

Enrofloxacin  103 17 76 12 101 12 90 8 87 24 

 

Nadifloxacin  74 11 79 12 64 5 98 39 74 16 

 Ofloxacin 

(Levofloxacin)  112 22 113 13 98 9 105 12 107 10 

 

Gatifloxacin  101 16 99 12 102 22 96 16 88 27 

 

Sarafloxacin  94 20 84 20 96 28 99 26 77 12 

 

Moxifloxacin  67 3 122 27 183 66 139 42 102 38 

 

Flumequine  88 7 94 2 89 5 82 9 95 12 

 

Nalidixic acid  57 4 71 7 63 4 66 4 78 20 

 

Desethylene ciprofloxacin 85 5 48 14 77 14 71 28 44 24 

 

Hydroxy-norfloxacin   85 11 103 7 78 5 78 16 88 8 

 

Desmethyl-ofloxacin   93 11 62 12 86 11 71 23 39 11 

 

Ofloxacin N-oxide  79 17 87 13 108 14 82 23 61 20 

 

Rifampicin TB drugs (1st line) 110 19 90 23 57 20 47 23 82 25 

 

Rifabutin  82 10 97 22 69 21 94 8 103 16 

 25-desacetyl 

rifampicin   113 18 129 27 88 5 81 55 80 38 

 25-O-desacetyl 

rifabutin   98 14 87 8 67 7 74 15 77 21 

 

Linezolid TB other 103 9 108 17 108 10 90 11 93 9 

 

Thalidomide  106 16 121 43 101 20 131 41 186 25 

 

Florfenicol Amphenicol 112 28 128 75 96 11 100 26 128 42 

 

Nitrofurantoin Nitrofurantoin 66 10 61 9 108 9 88 8 82 16 

 

NPAHD  102 7 97 9 92 14 91 7 108 19 

 

Metronidazole Azole 97 3 99 2 95 5 94 3 97 22 

 Hydroxy-

metronidazole   96 4 101 3 99 4 94 4 99 17 

 

Lamivudine Antiretroviral  92 5 85 5 108 4 84 24 83 1 

 

Emtricitabine  76 4 72 4 75 7 61 14 60 7 
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Table S7. Quantifiable CECs in river water samples from the UK and South Africa and associated 

PNEC values  

  UK  South Africa     

Compound Compound Class  

Concentration 

ng/L  STD 

Concentration 

ng/L  STD PNEC/CEC  PNEC//CEC Ref 

Methylparaben  Parabens  25.80 0.82 7.33 10.11 1600 (Li et al. 2015) 

Propylparaben   - - - - 400 (Li et al. 2015) 

Butylparaben   1.92 0.68 - - 300 (Li et al. 2015) 

1-benzophenone  UV Filters  - - 0.15 0.14   

3-benzophenone  20.79 9.21 - - 1320 (Kim and Choi 2014) 

4-benzophenone   298.75 18.13 79.68 5.50   

Bisphenol A  Plasticizer  0.00 0.00 - -   

Ketoprofen  NSAIDs  57.52 0.83 - - 48978 (Fick et al. 2010) 

Ibuprofen   67.08 13.87 - - 194711 (Fick et al. 2010) 

Naproxen  80.09 3.92 - - 827999 (Fick et al. 2010) 

Valsartan Hypertension  58.04 3.05 - - 13158 (Fick et al. 2010) 

Irbesartan   18.21 1.64 - - 50 (Fick et al. 2010) 

Lisinopril   1383.42 21.45 - - 184087 (Fick et al. 2010) 

Amphetamine  

Stimulants and 

metabolites 86.30 79.48 - -   

MDMA   1.21 0.14 - -   

MDPV  0.00 0.00 - -   

Cocaine   1.11 0.49 - -   
Anhydroecgonine 

methyl ester   3.12 0.01 - -   

Benzoylecgonine   42.80 2.28 - -   

Methadone 

Analgesics and 

metabolites 0.11 0.36 - - 326 (Fick et al. 2010) 

Acetaminophen   108.49 40.58 6.58 3.89 24000000 (Fick et al. 2010) 

EDDP  2.57 0.76 - -   

Codeine   29.51 3.04 - - 26620 (Fick et al. 2010) 

Norcodeine   722.78 663.38 - -   

Dihydrocodeine   11.26 0.86 - -   

N-desmethyltramadol   2.10 11.80 - -   

O-desmethyltramadol   24.04 2.42 - -   

Cotinine  Human Indicators  22.63 3.22 2.06 0.70   

Caffeine   131.23 35.35 124.09 103.85   

Nicotine  40.60 1.14 15.00 0.00   

1,7 dimethylxanthine   226.93 48.89 63.42 51.34   

Carbamazepine  Anti-epileptic  50.74 0.76 1.23 0.79 346496 (Fick et al. 2010) 

Carbamazepine 10, 11-

epoxide   4.48 1.92 2.72 0.90   
10,11-dihydro-10-

hydroxycarbmazepine   5.38 1.09 - -   

Ketamine  

Anaesthetic and 

metabolite 14.41 0.75 - -   

Venlafaxine   22.55 0.92 - - 6112 (Fick et al. 2010) 

Citalopram   6.39 2.58 - - 141 (Fick et al. 2010) 

Norketamine   1.45 0.47 - -   

Desmethylcitalopram   4.32 0.90 - -   

Quetiapine Antipsychotic 0.03 0.10 - - 290938 (Fick et al. 2010) 

Bezafibrate Lipid regulator 38.84 1.38 - - 89308 (Fick et al. 2010) 
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Metformin  Diabetes 1358.84 82.80 - - 64000000 (Fick et al. 2010) 

Gliclazide  100.36 174.20 - - 2720 (Fick et al. 2010) 

Atenolol  Beta blocker  17.43 0.90 - - 792332 (Fick et al. 2010) 

Diltiazem  

Calcium channel 

blocker 1.67 0.30 - - 27884 (Fick et al. 2010) 

Azathioprine  Anticancer  21.46 0.08 - - 18000000 (Fick et al. 2010) 

Fexofenadine Antihistamine  49.89 7.16 - - 20222 (Fick et al. 2010) 

Sulfapyridine  74.74 1.72     

Sulfamethoxazole  32.67 3.94   600 (Tell et al. 2019) 

Trimethoprim  10.04 1.69   500 (Tell et al. 2019) 

N-acetyl sulfapyridine   9.81 1.93     

Erythromycin 

Macrolide & 

lincomycin  23.85 2.08   500 (Tell et al. 2019) 

Clarithromycin  51.01 4.07   80 (Tell et al. 2019) 

Clindamycin  15.85 0.31   100 (Tell et al. 2019) 

N-desmethyl 

erythromycin  0.88 0.21     
N-desmethyl 

clarithromycin   95.31 31.98     
N-desmethyl 

clindamycin   1.29 0.07     

Flucloxacillin β-Lactams 30.97 4.53   72714 (Fick et al. 2010) 

Ofloxacin 

(Levofloxacin)  9.18 0.95   500 (Tell et al. 2019) 

Rifampicin TB drugs (1st line) 95.45 15.10   60 (Tell et al. 2019) 

 

 
Figure S2. Percentage recovery of TaqMan™ Universal DNA Spike in Control in the three biological 

replicates of river water samples. Average % recovery: 58 ± 2%. 
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Table S8. Gene results in UK river water samples, qnrS and blaCTX were both below quantification 

limits 

Gene  Biological replicate  Copies/L 

Average 

Copies/L STD 

16S rRNA 1 21459536   

  19792500 20626018 1178772.46 

 2 22784720   

  18524968 20654844 3012099.525 

 3 25502890   

  17738140 21620515 5490507.379 

ermB  1 51830.772   

  60748.968 56289.87 6306.116868 

 2 24961.692   

  26910.492 25936.092 1378.009695 

 3 103420.38   

  92482.74 97951.56 7734.079414 

sul1  1 138537.756   

  154498.428 146518.092 11285.8994 

 2 57548.064   

  77832.636 67690.35 14343.35841 

 3 240099.468   

  209953.968 225026.718 21316.08747 

Int1 1 287545.44   

  287277.48 287411.46 189.4763331 

 2 119088.732   

  168795.312 143942.022 35147.85979 

 3 434947.8   

  396848.76 415898.28 26940.08954 

blatem  1 6240220   

  6345780 6293000 74642.19182 

 2 1061194.68   

  2731892.8 1896543.74 1181361.97 

 3 3681364.4   

  3962397.6 3821881 198720.4815 

blaCTX 1 -   

  -   

 2 -   

  -   

 3 -   

  -   

qnrS 1 -   
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8 Conclusions and future perspectives 

8.1 Conclusions  

This present work has aimed to review and expand on knowledge in the literature regarding water 

fingerprinting as a complimentary and innovative surveillance tool for public and environmental health.  

8.1.1 Objective 1 

The first objective was to give a critical perspective into how infectious disease surveillance is currently 

achieved and how novel WBE techniques could be utilised to provide complimentary infectious disease 

and antimicrobial resistance (AMR) data.  The time this paper was submitted for peer review, very few 

cases of the novel coronavirus had been reported. It was commented in the conclusions of this 

publication, that WBE could be a promising tool in tracking the spread of the virus and even act as an 

early warning system. Since publication, along with unprecedented escalation of COVID cases, WBE 

has been utilised globally to gain community-wide coverage on COVID-19 circulating in a community.  

8.1.2 Objective 2 

Following this, a much broader perspective on WBE was presented. Here, other avenues that WBE 

could be utilised to support public health and its policy relevance was explored. Public health systems 

across the world were devasted and overwhelmed by the rapid spread of the novel coronavirus in 2020. 

Questions were rightly raised about countries preparedness and ability to monitor and manage such a 

large-scale pandemic, even with major organisations such as WHO, warning that such a pandemic was 

of high likelihood. WBE’s popularity has largely grew during the last two years due to its low-cost 

nature, and its ability to give information on both asymptomatic and symptomatic patients. As a result, 

rapid and considerable infrastructure has been established to sample and analyse wastewater in the UK 

and internationally to help track and manage outbreaks. It was highlighted that WBE is a relatively 

young field, with only few applications of WBE ready to be implemented now. These included assessing 

illicit drug usage and estimation of community-wide lifestyle chemical usage, for example alcohol, 

nicotine, or caffeine. However, it also highlighted active and developing fields of WBE, and the 

promising future this area of research has in fields of disease prevalence for non-communicable and 

communicable diseases, and community-wide exposure to various environmental stressors.  

8.1.3 Objective 3 

Another objective was to explore novel endogenous biomarkers of health in wastewater. Here, a method 

was developed to investigate four endogenous biomarkers, specifically of oxidative stress, in 

wastewater. This study highlighted that oxidative stress marker, HNE-MA, was the most promising 

biomarker of the four. As was found to be stable in wastewater and quantifiable, averaging 48.9 ± 4.1 

mg/1000/people/day. This study also highlighted challenges to analysing endogenous health markers, 

for example the isoprostane, 8-iso-PGF2β had poor chromatographic resolution due to matrix effects. 



322 
 

The biomarker 8-NO2Gua, reported low stability in wastewater (10%, t=24 hour) and 8-OHdG had 

poor method performance. Further research into analytical extraction techniques, with sorbents that 

could offer high selectivity and higher concentration factors, was recommended for 8-OHdg and 8-iso-

PGF2β. 

8.1.4 Objective 4 

The potential of WBE for AMR surveillance was also explored by investigating AAs, metabolites and 

ARGs in the wastewater of two different sized communities. Winter months observed in general higher 

loads of AA and respective metabolites, with some AAs showing significantly increased loads in winter 

when compared to summer, for example, clarithromycin and its major metabolite desmethyl 

clarithromycin. This is in line with known increases in prescribing for AAs because of increased winter 

respiratory infections in the UK. Several ARGs were also investigated in the city studied, however 

strong correlations were not observed between AAs and ARGs. This indicated that selective pressures 

of AAs on bacterial communities likely occurred over periods of years rather than on shorter time 

periods. Whilst both hospital and community wastewater had AA concentrations that exceeded PNEC 

values, hospital effluent had a larger number of AAs that exceeded PNECs. This was theorised to be 

due to the unique environment hospital environments pose, with short sewage resident times, lower 

volumes of flow and higher concentration of individuals at the source using AAs. Hospitals therefore 

are an important consideration for AMR surveillance. 

8.1.5 Objective 5  

This study was then built upon further, by using data triangulation to combine wastewater data with 

catchment specific prescription data to further explore how AAs are used within communities. Several 

key conclusions were identified, all studied parent AAs and metabolites observed positive correlations 

in both studied sites. Normalising AA loads to population size demonstrated that even with the close 

proximity of the two studied sites, there were spatial variation with AA usage. AA usage was in general 

found to be higher in Bath than in Keynsham, again this was theorised to human population being a key 

driver of AAs. Correction factors were applied to several AAs and metabolites in order to back-calculate 

and estimate consumption at the community level (population normalised daily intakes, PNDIs), these 

were then compared to intake estimates generated from the catchment prescription data (population 

normalised daily prescription, PNDPs). Several AAs reported good agreement with the prescription 

data, including clarithromycin, oxytetracycline and hydroxy-metronidazole. Differences between 

prescribing patterns and wastewater data were attributed to variable prescribing patterns and/or lack of 

compliance. It was highlighted that using WBE for AMR surveillance combined with prescription data 

provided a comprehensive approach for understanding AA usage in a community. 
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8.1.6 Objective 6  

Whilst primarily this thesis had a focus on WBE and AMR, the last chapter explored the environmental 

perspective of water fingerprinting. It has been previously highlighted that there is a significant 

knowledge gap on chemical pollution in surface waters in low to middle income countries. With many 

current studies focused on the US, UK and European countries. This has been attributed to lack of 

specialised infrastructure and lack of appropriate standardised sampling and analytical methodologies 

for sampling in remote locations. This study explored using an integrated and powerless, in-situ multi-

mode extraction (iMME) sampler for the analysis of >100 chemicals of emerging concern (CECs) and 

five ARGs. The stability of chemicals immobilised on cartridge and in river water was investigated, a 

significant consideration when sampling in remote areas with a potential lack of cold chain for 

transportation. The iMME sampler proved itself to be effective in immobilization, concentration and 

increased stability of many of the CECs at room temperature (with up to a least seven days storage). 

Several on-site river samples were collected using the iMME sampler to investigate it in action. River 

samples were collected from the river Avon (UK) and Olifants river (South Africa). The urbanised river 

Avon reported many quantifiable CECs in comparison to the largely pristine environment of the 

Olifants river. Whilst the Olifants river reported a low number of CECs (13 in total), lifestyle chemicals 

were observed (including caffeine and nicotine) and UV filters. The iMME was also investigated to 

sample ARGs from river water, with the river Avon reporting concentrations for four of the ARGs 

studied (ermB, sul1, blaTEM and intI1). This work provides exciting new opportunities to investigate 

chemicals and biological targets in surface waters of remote areas.   

8.2 Future work  

There are many mounting pressures emerging in today’s world, including unprecedented rises in 

anthropogenic pollution, emerging and re-emerging pathogens, and increase in prevalence of AMR. 

Water fingerprinting is a field that is continually developing and maturing as a public and environmental 

health surveillance tool. With regards to WBE, in the wake of the COVID pandemic the analysis of 

viral genetic material in wastewater allowed hotspots to be identified and the idea of a potential early 

warning system to become a reality. WBE therefore provides an innovative surveillance technology 

with increasing promise to monitor disease spread and act as an early warning system for future threats.  

Having this data available and easily accessible for use by decision-makers can help reduce costs and 

benefit society through improved health management. However, further research is essential to address 

key challenges for water fingerprinting.  

 

Regarding environmental health and analysis of chemical and biological makers in aquatic systems, a 

key focus for future work is building and working towards standardised methods and procedures, as 

well as novel approaches to sampling. It is well understood in the literature that there is a lack of 

environmental studies in developing areas of the world in comparison to developed countries. In the 
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case of AMR, infectious diseases, and chemical pollution, this lack of geographic knowledge could be 

problematic for surveillance and result in significant public health threats. This is because resistance 

genes, pathogens and chemicals are all transboundary pollutants, which do not recognise boarders. 

Effort to increase both collaboration and environmental data across the world is critical. In the case of 

the iMME sampler, future work should be focused on utilising the sampler out in the field in larger 

sampling campaigns. By expanding on the number of samples and sites, with care being taken to ensure 

that samples collected are representative of that environment. This will allow further assessment of the 

iMME in larger, international sampling campaigns to be evaluated, and its ability to provide 

comprehensive environmental data.  

 

Regarding WBE, accurately estimating population size is a challenge, and has led to an active and 

thriving field. Future work is focused on identifying novel population biomarkers to account for 

temporal population fluctuations, allowing more accurate assessment for WBE. Other key gaps include 

a lack of understanding of stability of pharmaceuticals and their metabolites in wastewater, and a limited 

understanding of metabolism to undertake back-calculation of exposure. Consequently, it is difficult 

calculating metabolism correction factors to quantitatively analyse a community-wide exposure or the 

public health status. Another key gap is the lack of pipeline for both public health relevant chemical 

and biological markers. For example, endogenous biomarkers are an understudied area, yet general 

markers on inflammation combined with suite of specific disease markers could more accurately inform 

on prevalence or spread of certain diseases. Further research in these areas are needed to tackle these 

knowledge gaps. 

 

Other areas of future work that should be explored are new statistical approaches for data triangulation 

between public health data and wastewater results. As evidenced by chapter 6 in this thesis, prescription 

and wastewater data can provide complementary evidence to each other.  By combining multiple data 

sources together allows a broader picture to be built up and can better inform policy-makers. An 

example of a statistical approach that could be applied with multiple sets of data is multivariate analysis. 

Data is often multifaceted with many different factors at play, statistical techniques such as this can be 

used to study complex sets of data with multiple variables and allow correlations to be explored. 

 

One Health is a collaborative, multisectoral and integrated approach that has been hailed as critical for 

tackling threats to both environmental and health. Human health is inherently linked with the 

environment and the health of animals, therefore, to effectively manage public health it is essential that 

a broader understanding of the wider environment is met. Water fingerprinting can provide key data to 

research in the One Health domain. It is important that collaboration across multiple disciplines is 

continued to be facilitated and supported, on a local, regional, national and international level, and that 
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data collected from water fingerprinting can be easily shared to decision making bodies. This will allow 

policy decisions, regarding public and environmental health interventions, to be informed by science.   

 

Finally, further development of analytical tools is needed for multi-residue analysis of a diverse range 

of chemical and biological markers. It is crucial too that these tools are cost-effective and highly 

sensitive. High resolution mass spectrometry could provide an untargeted approach for identifying 

novel biomarkers for use in water fingerprinting. Effective frameworks for identifying priority 

biomarkers will also be vital as the number of chemicals used in everyday life continues to grow, and 

many of these can end up in the natural environment. Given this diverse array of chemicals, it is 

challenging knowing which should be monitored. This is made more complex by the fact that chemical 

risks aren’t equal, as the potential exposure risk is not equal. Toxicity values will vary for different 

chemicals of concerns, and these will exist in complex mixtures in the environment, potentially causing 

synergistic effects. These concerns around chemical pollution are receiving global attention, as 

evidenced by the new United Nations resolution and agreement for a science-policy panel focused on 

chemicals pollution and waste. To measure is to manage, and understanding the scale of a problem is 

one of the first steps to providing effective solutions. 
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