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Abstract: Robots are becoming increasingly sophisticated in the execution of complex tasks. However,
an area that requires development is the ability to act in dynamically changing environments. To
advance this, developments have turned towards understanding the human brain and applying
this to improve robotics. The present study used electroencephalogram (EEG) data recorded from
54 human participants whilst they performed a two-choice task. A build-up of motor activity starting
around 400 ms before response onset, also known as the lateralized readiness potential (LRP), was
observed. This indicates that actions are not simply binary processes but rather, response-preparation
is gradual and occurs in a temporal window that can interact with the environment. In parallel, a
robot arm executing a pick-and-place task was developed. The understanding from the EEG data
and the robot arm were integrated into the final system, which included cell assemblies (CAs)—a
simulated spiking neural network—to inform the robot to place the object left or right. Results
showed that the neural data from the robot simulation were largely consistent with the human data.
This neurorobotics study provides an example of how to integrate human brain recordings with
simulated neural networks in order to drive a robot.
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1. Introduction

Robots and robotic systems have been applied to a wide range of industrial applica-
tions and services. Robots are able to accomplish ever more complex tasks with incompa-
rable meticulousness, for example neurosurgery [1]. Stability, dexterity, and accuracy are
enhanced with the integration of advanced robots and skilled surgeons in neurosurgery
when compared to traditional (manual) procedures [2]. However, complex decision making
and judgements still rely heavily on human operators rather than purely on robots [2].
Moreover, there are technical bottlenecks that still exist for robots, such as moving with true
flexibility, dynamically interacting with the environment, and having limited intelligent
perception and control [3]. To advance the development of robots, interest has turned to ar-
guably the most complex system and known processor, namely the human brain. The area
of neurorobotics aims to capitalise on the understanding and development of neuroscience
to improve the development of robots. Robots have been made to be more human-like via
two main routes. The first is to mimic the way humans look and behave, often to complete
the work humans do. These humanoid robots can perform varying human-like actions,
such as mimicking the behaviours of a child [4] and even playing football [5].

The second route, which is more relevant to the current study, is to mimic the underly-
ing and fundamental mechanisms of humans in order to develop brain-inspired intelligent
robots. These human brain-inspired robots aim to mimic neural mechanisms during cogni-
tive processing, such as decision making, sensory processing, and action control [6]. For
example, Tang, Huang, Narayanamoorthy, and Yan [7] used the understanding of how
the hippocampus and entorhinal cortex are necessary for spatial cognition in humans to
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develop a system to enable a mobile robot to perform task-based navigation in a maze
environment. One of the goals of the Human Brain Project was to integrate research in
human neural behaviour with robot development, for example to improve robot control [8].
Moreover, Oliver, Lanillos, and Cheng [9] used the understanding of how the brain encodes
uncertainty and uses the difference between what is observed in the environment and what
is expected to learn and perform actions using the free energy principle [10]. They used this
prediction error (discrepancy between the visual and joint sensors) and its expected values
to improve the robot’s ability to alter its body position during a task. A cornerstone of this
approach is the creation of more flexible and efficient robots that are capable of learning
and operating in a noisy and unpredictable environment [11].

Effectively interacting with a dynamic environment requires a balance between acti-
vating and inhibiting responses. Crossing the road involves activating an action and taking
a step; however, if a car appears in the periphery, inhibition is needed to stop the action
and avoid getting hit by the car. In the area of psychology and neuroscience, human action
has been studied extensively using electroencephalography (EEG), which enables brain
signals to be mapped into the digital domain (see, e.g., [12]). For example, when performing
an action with one hand (or foot) there is a build-up of neural activity over contralateral
motor areas before the response is emitted. This is known as the lateralized readiness
potential (LRP) [13]. In general terms, the LRP is considered a measure of response ac-
tivation or preparation. The LRP is typically best observed over electrodes C3/4 on the
human scalp, contralateral to the hand performing the action, and is a negative deflecting
wave, as measured with EEG. It is assumed that the motor cortex plays a large role in the
generation of the LRP [13,14], in particular the premotor cortex [15]. The build-up of motor
activity starts around 400 ms before movement onset, and the excitability of premotor
areas increases more rapidly, showing a steeper negative slope, as the response approaches.
The pre-movement build-up of activity is not unique to humans but has been observed in
monkeys [16], rodents [17], and even fish [18].

In humans, the LRP has been extensively studied in different paradigms, such as
performing an action or not (e.g., Go/No-Go task: [15,19] or selecting one of two possible
responses (two-choice task) or the stop-signal task [20,21]. The stop-signal task has been
primarily used as a measure of the inhibition of a planned action, as a result of a stop
signal. On each trial, participants initiate and plan a movement, such as a keyboard press,
in response to a go-signal. However, on a proportion of trials, a stop signal is presented
shortly after the go signal, and the task for the participant is to simply cancel their response
and not to perform the movement. In general, the longer the delay between the go signal
and the stop signal, the harder it is to cancel the action. The more activation in the build-up
of premotor response preparation, the harder it is to stop an action [22]. For example, Ko,
Cheng, and Juan [23] measured the LRP activity in the 200 ms time interval before a stop
signal and compared trials in which participants were able to successfully inhibit their
actions with those in which they incorrectly made a response. The authors showed that a
greater negative amplitude was associated with the times when participants were unable
to cancel their actions. That is, when there is a greater build-up of neural activity before the
action, a subject will be quicker to perform the action, but also less able to stop a response.
This observed effect between successful or unsuccessful stopping of a planned action in
a stop-signal task has been explained through the independent horse-race model [24].
According to the independent horse-race model, stopping success is determined by the
relative finishing time of two commands, namely the stop signal or the go signal. When
the go signal finishes first, the action is executed, but when the stop signal finishes first,
the action is inhibited. The threshold between the two processes, whether to successfully
stop an action or not, can be influenced by a range of different variables, such as the delay
between commands, task familiarity, response conflict, probability of two actions, and so
on (see [25] for a review). The important take-home message is that the actions humans
perform are not binary but depend on the variable activity prior to the action. The process
is adapted to support flexible and goal-directed behaviour in ever-changing environments.
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The current study uses an understanding of motor preparation from human psychology
and neuroscience. To be more specific, EEG data from forty-seven participants planning to
move their left or right hand were recorded. This established the presence of an LRP and
showed differences in neural activity based on the decisions made. With this information,
this neural response activity in humans can be used with greater confidence as the basis of
a robot performing an action. This neuroscience-inspired robotics project also includes a
simulated spiking neural network, which specifically uses a cell assembly (CA), to bridge
the gap between human and robot action.

A long-standing hypothesis [26] states that the neural basis of concepts are recurrently
connected sets of neurons that can maintain activation without external stimulus: CAs.
There is significant evidence of CAs in biological brains (see [27,28] for reviews). A CA is
both a long-term and a short-term memory. As the neurons in the CA start to fire, they
spread the activation to other neurons within the CA that have strong connections from
those firing neurons. Those neurons in turn activate other neurons, perhaps including the
initial neurons, igniting the CA. Without sufficient synaptic strength, learned from earlier
repeated activation and Hebbian learning, the CA would not exist. The long-term memory
forms the CA, which can then be used as a short-term memory. Biologically, this is not a
well-understood process, but there is some evidence supporting it, not least the evidence
supporting the Hebbian spike timing-dependent plasticity learning rule (e.g., [29]). It is
part of Hebb’s original cell assembly hypothesis.

A reasonable assumption is that the LRP is based on the activation of a particular CA.
Initial neurons in the CA are stimulated by a signal. This then leads to a cascade of neural
firing, and a growing level of firing within the CA. When the firing surpasses a threshold,
the action is signalled. This, of course, is all done neurally—that is, the signal is sent on to
other CAs, which then perform the action of, for instance, moving an arm.

The aim of this study is to take a multidisciplinary approach and integrate cognitive
neuroscience and robotics. Specifically, it uses simulated cell assemblies to drive a robot
action based on recorded data of motor build-up of neural activity in the human brain. In
particular, a signal is sent to the CA, which starts the ignition process. When the ignition
process has been completed, the action can no longer be stopped.

2. Materials and Methods

This study, together with the associated methods, is divided into three parts: (i) the
recording and analysing of human EEG data to establish the presence of motor build-up
activity in the brain prior to an action; (ii) the development of a robot to perform a pick-
and-place task; and (iii) the use of cell assemblies to integrate the decision-making process
into the robot. The three parts integrate by using the theory of the observed human neural
activity in response to an action, then applying this pattern to a simulated spiking neural
network, which in turn is implemented as part of a robot performing a task. To be more
specific, EEG data were first recorded to establish the underlying neural output by which a
human performs an action. Based upon this observed gradual build-up of motor activity in
the human brain, a simulated spiking neural network was developed. A robot was then
developed to establish whether the simulated spiking neural network—which was inspired
by our human brain data—could then be implemented as part of the robot programme.

2.1. Human Electroencephalogram (EEG) Recording

Data were recorded from 54 participants aged between 18 and 35 years (M age = 23.44
years; SD = 4.84; 21 male) whilst they performed a memory task. Ethical approval was
granted by Middlesex University Research Ethics Committee, and participants provided
written informed consent. After pre-processing of the EEG data (see below) 47 participants
were included in the LRP analysis. Here, an overview of the materials, methods, and
procedures relevant to the present project are provided. However, further details can also
be found in Jones, Silas, Anderson, and Ward [30].
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Task and Procedure

Participants were seated in a sound attenuated room in front of a PC monitor and
EEG was recorded throughout the experiment. Participants engaged in an encoding task
followed by a memory task (see Figure 1 for a schematic view of the procedure). This was
repeated eight times.
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Figure 1. Left: Events in the detection task (not analyzed here). Objects and checkerboards were
presented for a fixed duration of 600 ms and separated by a fixation cross presented for 600 ms or a
variable interval (70–1130 ms) depending on condition. The participants’ task was to press the space
bar if the object was an animal. Animals were infrequent targets just to ensure participants were
paying attention and were not analyzed. Right: Events in the recognition task. Each object (old or
new) was presented for 800 ms, after which time the participant was prompted to make a recognition
judgement. If the participant had seen the object before (during the detection task) they responded
yes with their right hand. If they had not seen the object, they responded no using their left hand.
This yes/no decision is what the current study analyzed.

In total, there were 557 greyscale images of objects taken from Jones and Ward [31].
Each encoding phase contained a unique set of 30 critical items randomly interspersed
among 90 presentations of a checkerboard. The participants’ task during the encoding
phase was to press the space bar every time the image was an animal. Pictures of an
animal made up about 10% of the object items. Animal items were included to make sure
participants focused their attention and processed the items fully but were not analyzed
further. The encoding task took about 5 min to complete and was followed by a recognition
task. Each recognition test phase contained the 30 objects from the immediately prior
encoding phase, along with 30 completely new objects. In other words, participants were
presented with 60 images and had to respond whether they had seen the object before or not.
Each recognition task took about 6 min to complete. The current study only investigated
the build-up of motor activity during the yes/no response in the recognition task.

2.2. EEG Recording and Pre-Processing

EEG data were recorded from 64 locations on the scalp throughout the experiment
with a sample rate of 1000 Hz using a Brain Products ActiChamp system. Horizontal
electro-oculogram (HEOG) data were recorded from the outer canthi of the eyes. Offline
data analysis (Brain Vision Analyzer, Brain Products GmbH, Gilching, Germany) included
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interpolation of bad channels, identified manually, on a participant-by-participant basis.
A second-order Butterworth zero-phase band-pass filter with low cut-off of 0.1 Hz and a
high cut-off of 40 Hz, and a 50 Hz zero-phase notch filter were applied to each participant’s
continuous data, and data were re-referenced to the average of all 64 electrodes [32]. Eye
blinks were corrected in a semi-automatic mode, using ocular correction independent
component analysis (ICA). Data were again high-pass filtered at 0.5 Hz, removing the
need for baseline correction and suppressing DC voltage fluctuations (see, e.g., [33]). For
the LRP analysis, ERPs were segmented into 1700 ms intervals separately for correctly
identified old items (yes responses) and correctly identified new items (no responses). The
segment interval was between 1500 ms and 200 ms around action onset (0 ms). Artefact
rejection was performed on all channels excluding segments with amplitudes greater than
±100 µV. To calculate the LRP, ipsilateral brain activity over motor areas was subtracted
from contralateral activity. That is, for right-hand responses (yes responses/remembered
old items) the average amplitude for electrode C4 was subtracted from C3. For left-hand
responses (no responses/new items), the calculation was C4-C3 [34]).

2.3. Robot Development

The robot arm was designed and assembled for a 3 DOF flexibility and dexterity to
be able to perform a pick-and-place task (see Figure 2). The 3 DOF involves an ability to
move up or down, sideways, and forward or backward. The robot consists of AX-12a servo
motors, a custom-made gripper and linear actuator, force-sensitive resistors (FSRs), an
Arduino-compatible microcontroller, an Arduino servo shield, a step-down converter, and
several other customised components. The servos enable the opening and closing of the
gripper as well as the manoeuvring of the arm from one side to the other, thereby exploring
a 180-degree search space. The FSRs are mounted on both the inside and the outside of
each of the two gripper fingers. The purpose of the FSRs on the outside of the gripper
finger is to detect an object through touch during the search. The FSRs on the inside of the
gripper finger are to enable detection of whether an object has been grasped or not. See
Appendix A for further information.
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2.4. Robot Task and Procedure

The robot performs a simple explore, grasp, and move task. This involves the robot
moving the arm from left to right and stopping when it senses it has bumped into something,
typically the target object due to changes in the FSR value readings being read continuously.
If the robot does not sense an object by the end of the initial sweep, it moves slightly
forward and then sweeps in the opposite direction. Once the object is sensed by the robot
through a change in the FSR values being read continuously, the robot performs a vertical
movement of the arm over the object, moves slightly sideways, and then descends to secure
a grip on the object. The arm then closes until it reads a change in the (inside) FSR sensor
readings. The (inside) FSR value change is interpreted as an object having been grasped.
Subsequently, the arm lifts the object, and the default behaviour is to move to the right.
After this movement, the arm descends and releases the object. If the neural net sends
a go signal to the robot quickly enough, it will move to the left instead of the right and
subsequently release the object (see Figure 3).
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Figure 3. Flow chart of the robot action. The robot scans for the object, the arm moving back and
forth, and forward if necessary. When the external FSR detects it, the arm moves up, and then over,
so that is over the object. Then, it moves down to place the gripper around the object. The robot then
grasps the object and sends a signal to start the cell assembly. It lifts the object. If the robot receives
the CA ignited signal before it has started to move right, it moves left.

2.5. Cell Assemblies

The spiking neural network for the CAs was simulated in Nest [35]. The topology and
interaction were specified in Python using PyNN [36]. Simulated leaky integrate-and-fire
neurons were used [37] with the default parameters.
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The simulation used 500 neurons with 30 synapses leaving each. Connectivity is a
small world with a rich get richer topology [38]. This gives a Zipf distribution, so that
some neurons have many more than 30 incoming synapses, while others have fewer. A CA
with this topology is easier to ignite with less external activation than randomly or evenly
distributed synapses. A 1 ms time step was used.

The complete code can be found at https://github.com/adammd1/Code-Robotic-
Arm-And-Hand (accessed on 15 August 2023).

Handshaking, in this context, refers to establishing communication between the robot
arm and the simulated Nest neural network. The robot runs on an Arduino board, in
code specified in the Arduino language. The functionality and operation of the robot are
intricately linked to the utilization of an Arduino board as its primary computing platform.
The software in Arduino is tailored to the robot’s intended tasks (object detection, grasp,
pick and place) and interfaces seamlessly with the hardware components and sensors.
Through this integration, the robot gains the ability to perceive its surroundings, process
FSR inputs, and make informed decisions based on programmed algorithms in simulated
Nest and Arduino. The synergy achieved between the software and hardware components
empowers the robot to carry out tasks efficiently and effectively. When the robot has
grasped the object, it sends a start signal via a USB cable to the PC running the neural
simulation. This starts the external activation of the neurons. When the ignition threshold
is reached by the neurons, the go signal is sent to the robot arm.

3. Results
3.1. EEG

Behavioural results showed that participants were faster when responding to remem-
bered (yes) items (mean = 852 ms, standard deviation = 577 ms) compared to new (no
response) items (mean = 957 ms, standard deviation = 649 ms). There was a build-up of mo-
tor activity in the 400 ms time interval preceding the action onset for both conditions—that
is, both when a response was associated with a previously remembered item (Figure 4,
red line) and when a response was associated with a new item (black line). Therefore, the
presence of an LRP was confirmed.
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The difference in build-up of motor activity reflects the decision-making process for
the item. Participants were faster to respond to items they had previously seen. There
was on average a larger LRP in the 400 ms prior to action onset for the remembered items
(−1.13 µV) compared to the new items (−0.49 µV).

3.2. Cell Assemblies

Figure 5 combines two rastergrams and spikes per ms. The blue rastergram shows
when each neuron spikes with 100 neurons externally stimulated. The yellow line shows the
total number of neurons that spike each ms, which is a summation of the blue rastergram.
Note that the neural simulation stops recording spikes when the ignition threshold is
reached; therefore, the blue rastergram stops. Similarly, the purple rastergram is aligned
with the blue line and reflects only 50 neurons being stimulated initially. This shows that
the firing rate, unsurprisingly, grows more rapidly with the initial external stimulation of
100 neurons than with 50 neurons.
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Figure 5. Rastergram and spikes per second of a CA ignited with 50 and 100 neurons externally
activated.

The decision is made when there have been 1100 spikes in the last 10 ms. So, the
decision is made, and the robot goes left when 100 neurons are externally stimulated. When
only 50 neurons are externally stimulated, the firing in the assembly grows more slowly.
The decision has already been made for the robot to go right when the signal to go left
arrives. Figure 6 shows the ignition time by the number of neurons externally activated.
The purple average line shows the average of 10 CAs with between 100 and 50 externally
activated. The green line shows the CA from Figure 5, which passes the ignition threshold
at 56 ms when 100 neurons are externally activated, and 102 ms when 50 are externally
activated. All 10 randomly generated CAs behave similarly. There is a variance between
different CAs, but the time to ignition quite consistently decreases as more neurons are
externally stimulated.
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The overall performance of the systems was largely correct. When an object was placed
in the field, it was grasped over 90% of the time; most failures resulted from not grasping
the object, though the arm still moved. The times were roughly 2 s from grasping to being
completely lifted and about 3 s from grasping to dropping (either right or left). Videos of
both versions of the task (left and right) are available on https://youtu.be/n5eMTub8MbU
and https://youtu.be/-mW3yW83TGg (accessed on 13 October 2023).

4. Discussion

The three components of this study are the human EEG data, the robot, and a spik-
ing neural network, and the study as a whole provides novel evidence of successfully
integrating these three areas. The robot was developed to successfully perform a simple
pick-and-place task. The recorded EEG data from humans provided information as to how
the brain responds to a simple action. The data showed that, prior to an action, there is a
build-up of neural activity, known as the LRP. This gradual build-up informed how an arti-
ficial neural network could be integrated with the robot, resulting in a cell assembly-based
decision-making process being included. The firing pattern of the cell assemblies that was
observed approximated the human neural data and was able to handshake successfully
with the robot. It is important to note that while each component of this study is not in
itself complex, together they form a platform whereby robots that are more efficient can
interact with the environment. This study shows a brain-inspired robot driven by a spiking
neural network.

The human brain activity data in this study are consistent with the literature as an
LRP in the 400 ms time interval preceding an action [34] was observed. Moreover, the
magnitude of the LRP was different depending on the input. To be more specific, when
participants in the task responded yes—that they had seen an image before—the negative
LRP amplitude was larger compared to when they responded no—that they had not seen
the image before. This is consistent with the literature that shows that the build-up of
motor activity, the readiness potential, can be influenced by the environment—variables
such as amount of advance information and task difficulty [39–41]. It has been suggested

https://youtu.be/n5eMTub8MbU
https://youtu.be/-mW3yW83TGg
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that the increased neural firing reflects the accumulation of evidence that, when reaching a
threshold, triggers action performance [42].

The robot functions as a means to integrate the neural network with the real world; it
can be used to embody the brain [43]. Not to overstate the case, the body in this study is
very simple, and the brain is extremely simple. The brain is one CA. When it is stimulated,
there is a build-up in activity and an increase in firing in the neurons of the CA. This is
largely consistent with the reported human EEG data; however, see below. In the main,
it is stimulated by the activation of either 50 neurons or 100 neurons. If 100 neurons
are activated, the robot receives a signal from the “brain” quickly enough to override
the default behaviour. If 50 neurons are activated, the robot does not receive the signal
quickly enough and performs the default behaviour. This pattern of results is in line with
observations from LRP research whereby two motor commands are initiated, such as in a
start- and stop-signal task [20,41]. The motor activity from these two competing actions
is different. As outlined in the introduction, this has been explained by the independent
horse-race model, whereby whatever motor command finishes first wins, and that action is
executed [24]. The two CAs firing in the current study (see Figure 5) represent two motor
commands, and the one which finishes first is executed. While this study uses a static
structure, the topological structure is generated randomly, and other structures (such as all
connectivity) will not allow a gradual build-up of neural firing. Other topologies (perhaps
a Watts–Strogatz model [44]) may also duplicate the EEG data.

A discrepancy between the CA firing pattern and the LRP is the overall timing. The
build-up of motor activity typically starts at around 400 ms pre-movement onset, whilst
the CA time frame is concentrated to a 100 ms time interval. This might be improved by
using a larger CA, which would take longer to ignite, or having several CAs in competition
via inhibitory synapses or neurons.

Similar shortcomings in the study arise from the relative simplicity of the robot and
the neural network. Indeed, one obvious way to improve the overall system would be
to allow the neural network to control more of the behaviour of the robot. While there is
a discernible gap between real brain recordings and the simulated neural network, it is
important to note that this represents a simplified model of the task.

5. Conclusions and Future Directions

In conclusion, the findings from this neurorobotics study offer valuable insights into
the intricate nature of human action preparation and its potential applications in the
development of robotic systems. The present study adds to the growing development
of brain-inspired intelligent robotics. This proof-of-concept study shows that integrating
understanding of human actions with the firing pattern of CAs can be used to drive a robot.
The observed lateralized readiness potential (LRP) in human participants demonstrated
the gradual process of response preparation, highlighting the complexity of human motor
activities. By comparing the human neurophysiological data with a robotic arm executing
a pick-and-place task, the overall system successfully demonstrates the integration of
human insights into machine learning. The synergy between human EEG data and the
simulated spiking neural network used to control the robot arm has led to a notable
alignment between human and robotic behaviour. This work emphasizes the potential for
practical applications in robotics through interdisciplinary research at the intersection of
neuroscience and robotics.

Future research can improve on the findings of this study by more closely matching the
action that a robot performs with the recording of EEG data from humans—that is, making
both human and robot perform the same task, which allows for a more precise analysis of
events. The initiation of events and any changes due to sensory input to the robot can then
more closely follow the timings in the human brain and mimic the relationship between
activation and inhibition. Moreover, future research may aim to employ the spiking neural
network to drive the full range of actions that the robot performs to create a more dynamic
robot able to adapt to the environment. Although the current research is not complex in
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terms of robotics, spiking neural networks, or human brain recordings, in bringing these
components together this project represents a significant step forward in the pursuit of
human-inspired robotic systems, offering a glimpse into a future of intelligent technology
attuned to the intricacies of human behaviour.

Moreover, the human brain benefits from the ability to integrate information from
multiple brain regions. The state and decision making for one brain process will interact
with other actions, thoughts, and decisions. Therefore, an exciting development is not
only how robots can more dynamically interact with the environment, but also how they
can integrate different brain processes. As Qiao, Wu, Zhong, Yin, and Chen ([45], p. 1)
recently concluded “research on human-inspired intelligent robots by mimicking their
biological structure, behavioural features, intelligent principles, and control mechanisms
will be significant in developing new-generation robots.” This could also mean integrating
cell assemblies to drive robotic actions with principles from quantum mechanics, thereby
introducing a highly complex and speculative area of research that merges concepts from
neuroscience, robotics, and quantum physics. Quantum principles might play a role in
developing advanced brain–robot interfaces that bridge the gap between neural activity
and robotic actions [46].
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Appendix A

Stage 1:
Attach the gripper to the Ax-12a servo motors using FP04 connection pieces and

other crafted attachments. This assembles the arm with an ability to move up/down and
sideways (see Figure A1a).

Stage 2:
Attach the linear actuator to the centre of the motor using FP04 connection pieces and

other crafted attachments. The other end of the linear actuator is also attached to the motor
through crafted metallic pieces to hold the linear actuator in place while the motor moves
it (see Figure A1b). This mechanism allows the robot arm to move forward and backwards.

Stage 3:
Attach the robot arm and gripper to the cube of the linear actuator. This attachment

is achieved using various FP04 connection pieces as well as crafted metallic pieces (see
Figure A1c). To hold the weight of the arm, the cube and the arm required extensions to be
made for both parts created in the previous stages. The linear actuator piece uses a steel
pole to hold the weight of the arm. This steel pole is attached to both ends of the linear
actuator using FP04 connection pieces and other crafted metallic pieces.

Stage 4:

https://osf.io/tjp5u/
https://github.com/adammd1/Code-Robotic-Arm-And-Hand
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To create a structure to hold the robotic arm and hand in place, a wooden base is
attached to an aluminium stand to hold the arm up. The bottom of the arm, which will
lean on the wooden base, uses a castor wheel to roll across the wooden structure when the
robotic arm and hand move (see Figure A1d).

Stage 5:
The last stage requires attachment of all the necessary wires and the breadboard, power

cables, microcontroller, microcontroller shield, FSRs, and step-down converter to the robotic
system. The Ax-12a servo motors are programmed through the shield to the microcontroller,
while the gripper MG995 servo motor is connected through a separate circuit using its
own power cable and step-down converter, but still connected and controlled through
the microcontroller. The FSRs are connected through the breadboard and read using the
microcontroller. The microcontroller is powered by a 9v power supply, which also powers
the FSRs and the Ax-12a motors.
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