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Lay Summary

Before catastrophic geologic events, such as earthquakes and volcanic eruptions,

there are often accelerating precursors leading to the event. These precursors,

such as earthquake foreshocks, accelerate according to a mathematical law that

can be solved to forecast the event time. In this thesis, I create laboratory scale

earthquakes by crushing rocks with a hydraulic press and recording the sound

waves emitted, analogous to how earthquakes are recorded by seismometers. I

used the results of these experiments to understand the effect of confining pressure,

or how tightly the rock is squeezed, on how easily the failure time (the rock

breaking) can be forecasted. I perform failure forecasting using the energy of the

sound waves given off as the rock crumbles. The results of this study suggest that

tightly squeezed rocks are more difficult to predict. This can be compared to how

deep an earthquake is. This result is consistent with what we observe, as large,

deep earthquakes have fewer foreshocks and are harder to predict.

In this thesis I also look at the application of earthquake monitoring methods

to monitor damage to concrete. Concrete is widely used for construction and

early detection of cracks can allow for quick repairs and minimize public risk. An

experiment was completed on a laboratory scale bridge truss, made of concrete

with reinforcing steel, with induced corrosion. Corrosion is a chemical reaction

that occurs as the steel bars react with water and expand, creating cracks in the

concrete. Results show that by using methods typically used in geophysics, we

can detect damage long before failure in concrete structures.
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Abstract

This thesis investigates the use of wave-based techniques for monitoring and fore-

casting brittle failure events. It expands upon previous work and observations

of geophysical precursory signals before catastrophic failure events such as earth-

quakes, volcanic eruptions, laboratory deformation experiments, and landslides.

These precursory signals have been observed to follow power-law accelerations in

spatial, temporal, and size distributions leading up to catastrophic failure. It is be-

lieved that modeling these precursors is the key to forecasting these failure events

and to effective hazard mitigation. In this thesis, I aim to improve our under-

standing of the driving mechanisms of this event rate behavior, to improve upon

current forecasting methods, and to explore the application of current geophysical

monitoring techniques to industrial composite materials, such as concrete.

In previous studies, the behavior of geophysical precursors has been modeled

using Voight’s relation in order to perform ‘hindcasts’ by solving for failure onset

time in a method known as the Failure Forecast Method (FFM) (Bell et al., 2011b;

Kilburn, 2003; Kilburn and Voight, 1998). This method assumes power-law event

rate behavior and is applied in retrospect, creating an observational bias. I aim to

improve upon the FFM and minimize bias by employing a Bayesian Markov Chain

Monte Carlo (MCMC) version to data from laboratory deformation experiments

on Clashach sandstone cores. I also present alternative methods for event rate

distributions that do not follow a power-law.

Triaxial deformation experiments were conducted on Clashach sandstone cores

in two sets, one with identical test conditions and one with varying test conditions.

Acoustic emissions event characteristics and statistics were analyzed to outline

the effects of changing experimental parameters, namely, confining pressure (Pc),

on event rate distribution, and therefore, efficacy of the FFM. I argue that Pc,

or event depth, plays an integral role in the non-linearity of precursory event
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rate. I present alternative applications of the FFM to precursory signals other

than event rate, such as event amplitude and root-mean-square (RMS) continuous

amplitude. Event amplitude modeling results suggest the method is less effective

than modeling event rate, but may serve as a suitable alternative when event

rates are not power-law. RMS amplitude modeling results are more accurate

than event-rates, but are considerably more computationally intensive due to the

use of continuous waveform data rather than event data.

I then investigate the use of geophysical wave-based monitoring techniques

on the structural health monitoring of concrete, a man-made heterogeneous com-

posite material. I visited the German Federal Institute for Materials Testing in

Berlin to conduct an experiment emulating reinforcement corrosion in building

concrete. During this experiment, acoustic emissions were continuously recorded

and Coda Wave Interferometry (CWI) measurements made using hourly ultra-

sonic surveys. Results indicate that CWI could be a very effective monitoring

tool for early detection of internal structural damage at a minimal computational

cost.
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Chapter 1

Overview

“Only fools, liars, and charlatans

predict earthquakes”

Charles Richter

According to a report generated by the Centre for Research on the Epidemiol-

ogy of Disasters (CRED) and the United Nations Office for Disaster Risk Reduc-

tion (UNISDR), from 1998-2017 about 4.5 billion people were affected by natural

disasters. About 3.1 percent of this group were affected by dynamic material fail-

ure driven geophysical natural disasters. Despite affecting a comparatively small

group of people, dynamic failure events were responsible for 57% of all natural

disaster fatalities during this time, making them overwhelmingly the most lethal

type of natural disaster (Wallemacq, 2018).

The complex evolution and dynamics of the Earth’s brittle crust are not fully

understood. This lack of understanding was addressed by the United Nations

Educational, Scientific and Cultural Organization (UNESCO) in 2008 as a part

of the International Year of Planet Earth, stating that ‘Understanding Slow De-

formation before Dynamic Failure’ was a priority for the Natural Hazards portion

of this initiative (Ventura et al., 2010). A call to action to further investigate the

science behind natural hazard events, along with their associated risks and miti-

gation, was made in 2015 as a part of the United Nations International Strategy

for Disaster Reduction Sendai Framework (UNISDR (United Nations Interna-

tional Strategy for Disaster Reduction), 2015). Understanding time-dependent

1
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rock deformation is crucial to improving our understanding of dynamic failure

events such as earthquakes and volcanic eruptions, as well as for their probabilis-

tic operational forecasting and possible prediction. The body of work presented

in this thesis contributes to this effort.

1.1 Research Project and Aims

This project is a part of the Waves and Wave-Based Imaging in Virtual and

experimental Environments (WAVES) Initial Training Network (ITN) funded

through the European Union’s Marie Curie Actions Horizon 2020 research and

innovation program. As a result, this project adheres to a set of guidelines

regarding results and resources accessibility (i.e. must be made open access)

and information dissemination and outreach. In addition to attending regular

collaborative meetings, workshops, and training courses, WAVES students each

completed a secondment project exploring interdisciplinary applications of wave-

based technology. This project was to be done at a partner institution in

another country, with a focus on cross-sector (academia-industry) research. The

project was to be substantially different from each student’s primary project

for interdisciplinary career development. For my secondment, I completed a

placement at the German Federal Institute for Materials Testing (Bundesanstalt

für Materialforschung und -prüfung, or BAM) in Berlin, exploring the use of

wave-based monitoring methods in structural engineering. As such, this thesis

presents two separate research projects which use similar wave-based monitoring

techniques, do demonstrate the value of these techniques across fields.

The direction of my primary research project and its aims have changed

considerably since its proposal. The original goal for this project was to expand

upon the current failure forecasting efforts and eliminate retrospective bias by

applying a Bayesian Markov Chain Monte Carlo forecasting model to real-time

laboratory data. This was to be done by creating a data set of repeat, identical,

triaxial deformation experiments on sandstone cores to gauge a priori parameter

distributions to iteratively inform the model for application in real time. However,

my rock deformation experiments yielded unexpected results that were not only

unsuitable for real-time forecasting, but also prompted further investigation and

a change in research direction. The evolving research plan outlined an additional
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suite of rock deformation experiments that had varying experimental confining

pressures and were otherwise identical. The Covid-19 pandemic then impacted

laboratory access as well as experimental assistance, which applied unexpected

constraints to this study by requiring progress in the absence of new laboratory

data. Our solution to this limitation was to incorporate an outside data set of

experiments performed on the same sample material. These unexpected outcomes

and limitations will be discussed in greater detail later on in this thesis. After its

many changes, the resulting objective of this thesis is to explore the use of acoustic

wave-based monitoring techniques to improve our understanding of deformation

processes in geological composite materials. This aim is pursued in two distinct

ways by my primary Edinburgh based project, and my secondary project based

in Berlin.

In my primary research project I aim to investigate the efficacy of current

monitoring and forecasting methods on acoustic emissions data from triaxial

deformation experiments performed under varying confining pressures. I aim

to provide insight into why we observe more definitive and frequent precursory

signals before brittle failure events in certain environments such as volcanic

and laboratory settings, than we observe in others, such as before earthquakes.

Furthermore, why, when we do see precursors before earthquakes, are they along

plate boundaries? Is this a result of the system’s physics, which may more closely

resembles that in a laboratory or volcanic environment? Or is it the result of

observational bias, as we have greater sensor coverage in more earthquake prone

areas, such as along plate boundaries? By investigating the different systems

in which precursory signals to failure occur and applying forecasting models to

these systems, I provide a better understanding of their differences and system

properties. Perhaps doing so can lead to a means of identifying and classifying

systems based on forecasting potential. In searching to use precursory signals

as a means of forecasting failure, I am faced with a few questions that may

determine the feasibility and real-world applications of this project. Firstly, what

is the probability that material unrest and the presence of precursory signals

actually mean catastrophic failure? A deeper analysis of real world volcanic and

earthquake data could provide a ratio of real events to false positives. Identifying

the frequency in which precursory signals appear in the data, but are not followed

by a failure event would allow us to better estimate the probability that unrest

indicates failure. However, this venture would be difficult and time consuming, as
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there are large amounts of data, and as seismologists we typically focus on data

where we an event actually happened, so filtering through for situations where

precursors are not followed by an event would be an endeavor. In addition, can

we accurately simulate a false positive in the lab? When actually making the step

towards forecasting, I am faced with the question of how much data is needed to

actually make an event forecast, and with what degree of certainty? The answer

for this will change for different systems at different scales, but should be met

with a discussion about how far ahead should a reasonable forecast be for it to

be scientifically or socially significant? For the scope of this project, a reasonable

forecast any time before the failure time would be excellent, but for the scheme

of real world applications this is something to consider.

The objective of my secondment project is to explore the use of geophysical

monitoring techniques on geological composites in structural engineering by

testing their efficacy in early detection of reinforced concrete corrosion. The

techniques presented are well established in geophysics, but their value as a low-

cost, non-destructive method of monitoring civil structures have yet to be fully

explored. I hope that the results of this study will motivate interdisciplinary

collaboration between geoscientists and engineers.

1.2 Project Significance

This project is significant because of its interdisciplinary and international nature.

It represents an idealized way of conducting scientific discourse: as a community

between nations, institutions, and disciplines. More tangibly, the WAVES

network will allow the project outcomes to reach and contribute to a variety

of fields, from civil engineering to medicine to seismic hazards education and

mitigation. This project also has major humanitarian significance as making

progress in the area of monitoring and forecasting failure events, whether natural

disasters or the degradation of civil structures, will allow us to improve risk

assessment, mitigation efforts, and reduce casualties.
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1.3 Thesis Outline

The results of this study are arranged into 8 chapters. Due to this thesis

having a primary and secondary research study, the projects are presented

separately for clarity. Chapter 2 provides an introduction and literature review

of brittle deformation monitoring and mechanics. Chapter 3 discusses the

established methods for forecasting brittle failure events and their application in

varying environments. Chapter 4 describes the triaxial deformation experiments

conducted at the University of Edinburgh Grant Institute. The mechanical data

from these experiments is presented in Chapter 5. The investigation into the

effect of experimental confining pressure on acoustic emissions event rate and the

effectiveness of forecasting methods is found in Chapter 6. Chapter 7 presents the

secondment project experimentally evaluating the use of wave-based techniques

for monitoring corrosion in reinforced concrete, enclosed in a paper-style format.

While both projects have independent discussion sections, a combined discussion

of both projects and conclusions are found in Chapter 8.
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Chapter 2

Mechanics of Deformation and

Failure

2.1 Introduction

In order to improve upon forecasting methods, it is essential to understand the

underlying physics of catastrophic failure. This understanding will allow me inter-

pret the recorded laboratory signals and infer what is happening inside my rock

samples, and by extension, the Earth’s subsurface. In this chapter, I will outline

the established literature and theories regarding crack development and propaga-

tion. I will then discuss in more detail specific geological environments of interest

in which brittle deformation processes occur and their driving mechanisms.

2.2 Material Strength

The ultimate strength of a material is defined as the maximum amount of applied

stresses that it can withstand without system scale failure. In practice, this is the

point on a stress-strain curve (yield stress) in which the material will not recover

upon the removal of stress, and permanent damage has occurred. The theoretical

strength of a material is often far greater than the actual material strength; this

is especially true for rocks (Qian et al., 2009). The sandstone used in this study,

7
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for example, tends to rupture at 1.5–3.5% of their theoretical strength. This is

because in reality, structural abnormalities exist within every material that allow

for localized stress increases, crack development and propagation which would not

occur in the pure crystal state (Scholz, 2019).

In situ rock stress states are traditionally described using three vector principal

stresses (Hudson and Cooling, 1988). These principal stresses describe the

mutually perpendicular maximum, intermediate, and minimum stress, σ1 , σ2,

and σ3 respectively (Hudson and Cooling, 1988; Paterson and Wong, 2005). In

3-D space, a total of nine stress components are needed to describe the stress state

at any point as a two-dimensional tensor. However, the conservation of angular

momentum requires the stress tensor to be symmetric, so in practice there are

six independent components, three for each principal stress, and three for each

principal stress directions x1, x2, and x3 (Figure 2.1). Each component of the

stress tensor, σi,j, represents the stress applied to face xi in the direction of xj.

The diagonal components of the tensor, σii, are the normal stresses, and the σij

components, where i ̸= j, are the shear stresses.

Figure 2.1: The stress tensor represents the full stress state at any point in the x1, x2, and x3

coordinate system.

Since the axes are arbitrary within the earth, it is common practice to define

a consistent convention for the coordinate system based on the stress state.

Generally the greatest stress is defined in parallel with x1, with magnitude σ11,

and the lowest stress is defined in parallel with x3, with magnitude σ33. In this

case, the off-diagonal terms of the stress tensor vanish and only these principal
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stresses, acting along the principal axes, are needed to describe the stress state

in this coordinate system. Further detail about the definitions of the principal

stresses for rock deformation experiments is included in the experimental methods

section of this thesis (Chapter 4.1).

2.2.1 Strain

Strain is a measure of material deformation and is caused by the relative

displacement of points within a body, leading to changes in length or volume.

As with stress, strain has both normal and shear components. Normal strain is

caused by compression or stretching, leading to length and/or volumetric changes.

Shear strain is caused by angular stresses, distorting the body without changing

its volume. Shear strain can be calculated by

ϵshear = 0.5 tan(θ) (2.1)

where θ is the change in angle caused by the strain. Linear strain, the most

common usage of strain, is defined as the ratio between the change in material

length, δl, to the original length, l0:

ϵ =
δl

l0
(2.2)

Similarly, volumetric strain, ϵv, is the ratio of the change in volume of a body

to its original volume:

ϵv =
δV

Vo

(2.3)

Like with stress, the principal strain axes can be defined such that the shear

strains are zero and the principal strains, ϵ1, ϵ2, ϵ3 follow the same nomenclature

of ϵ1 > ϵ2 > ϵ3. Whether or not these principal strains correspond to the principal

stresses is dependent on the stress-strain relationship of the system.

2.2.2 The Stress-Strain Relationship

The stress-strain relationship is used to quantify the elasticity of a material, or its

ability to resist distortion and return to its original state before stress application.

The modern theory of elasticity generalizes that the strain of an elastic medium is
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directly proportional to the stress applied to it and to the stiffness of the material

(Hooke’s law). The elastic properties of a material are described by Poisson’s

ratio as well as various elastic moduli, the shear modulus, Young’s modulus, and

bulk modulus. Poisson’s ratio, ν, describes the phenomena in which a material

expands in the direction perpendicular to the direction of compression. It is the

ratio between the transverse strain, ϵtrans, and uniaxial strain, ϵaxial:

ν =
dϵtrans
dϵaxial

(2.4)

The shear modulus, G, is a a measure of the shear stiffness or rigidity of a

material. It is the ratio of the shear stress to the shear strain and is denoted by

G =
F/A

∆x/l
(2.5)

Where F is the force applied to area A, ∆x is the transverse displacement, and l is

the original length of the area. Young’s modulus, E, or the modulus of elasticity,

measures tensile (compressive) stiffness. It describes the relationship between

normal tensile stress, σ, and axial strain, ϵ:

E =
σ

ϵ
(2.6)

The bulk modulus, K, describes a material’s resistance to uniform compression

and is defined by

K = −V
dP

dV
(2.7)

Where V is the material’s original volume and P is pressure.

The stress-strain relationship is commonly used to quantify the ultimate

strength of a material. This can be done by evaluating the relationship between

differential stress and axial strain of a material under compression via a stress-

strain curve. The stress-strain curve during compression is commonly broken

down into four phases of micro-fracturing (Figure 2.2). Phase I is slightly concave

upwards due to the initial compaction and increase in stiffness of the sample. This

phase may not be as pronounced during triaxial tests as initial sample compaction

can happen when applying confining pressure prior to applying an increase in axial

stress. Phase II is characterized by a constant slope and is known as the linear

elastic phase. The slope of this line is the sample’s elastic modulus, E. Phase
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III begins with the transition from elastic to ductile behavior at the yield point,

Y. When the sample is ductile, it can experience permanent damage while still

resisting load (Jaeger, 1979). Phase III is known as the strain hardening phase,

in which the slope of the stress-strain curve decreases, decreasing to zero at the

peak stress or ultimate strength, C0. The differential stress at this point defines

the material strength of the sample. The final phase (IV) is a period of brittle

failure, since the sample’s ability to resist load decreases with increasing strain.

During this phase, the slope is negative, implying strain softening behavior, and

its magnitude is a measure of the sample’s brittleness.

Figure 2.2: Typical stress-strain curve for a rock under triaxial compression. Two critical

points, Y and C0 are labelled, indicating the yield point and rock strength, respectively. The

four micro-fracturing domains are labelled (I-IV). Redrawn from Jaeger (1979).

2.3 Acoustic Emissions

Due to the difficulty directly observing deformation and crack growth in stressed

earth materials, several indirect monitoring techniques have been developed. One

of the most common techniques is the recording of acoustic emissions. Acoustic

emissions (AE) are the transient elastic wave packets produced by the rapid release

of energy in a material. The propagation of these sound waves is described by the
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acoustic wave equation, which can be used to describe wave properties, ϕ, such as

one dimensional sound pressure (p), or particle velocity (v). The acoustic wave

equation is as follows:

∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2
= 0 (2.8)

Where ϕ is the acoustic wave property, x is position in the propagation direction,

c is the speed of the wave, and t is time. Acoustic waves are to first order elastic,

but experience elastic wave phenomena such as diffraction, reflection, attenuation,

absorption, and interference (Feynman, 1988; Greenspon, 2003; Randall and

Maxwell, 1952). Sound waves are often approximated in terms of sinusoidal planar

waves, and are characterized by the properties wavelength, frequency, amplitude,

speed, and direction.

2.3.1 Acoustic Wave Speed

Acoustic wave speed is the distance travelled per unit time as the wave propagates

through a medium. Colloquially, the ‘speed of sound’ refers to the speed of sound

waves in air. However, the speed of a sound wave is defined by its medium and

is typically lower in fluids than in solids. When traveling through a liquid or

gas, sound travels as a longitudinal compression wave. When traveling through

a solid, acoustics waves are composed of longitudinal waves as well as transverse

or ‘shear’ waves. Transverse waves move particles perpendicular to the direction

of propagation and is dependent on a material having shear stiffness or rigidity,

which is why they can only propagate through solids. Longitudinal waves in solids

depend on the material’s density, compressibility, and shear modulus. Transverse

waves depend only on a material’s density and shear modulus. This difference

explains why transverse and longitudinal waves can travel at different speeds at

the same frequency, arriving at their destinations at different times. The most

notable example of this is with earthquakes, where the secondary transverse waves

can arrive seconds or minutes after the primary longitudinal waves.

2.3.2 Wavelength, Frequency, and Amplitude

Wavelength is the distance over which a wave’s shape is repeated. It can be

measured as the distance between two consecutive matching points of a wave,
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such as peaks or troughs (Figure 2.3). Amplitude is a measure of the difference

between a wave’s extreme values. It is commonly used to refer to the difference

between a wave maxima and a reference value, but in some cases is used to refer

to the peak-to-peak magnitude difference between a maximum and a minimum.

Amplitude depends on the energy of a sound wave and is directly related to the

acoustic pressure (Pascals) and sound pressure level (dB).

Figure 2.3: A visual representation of wavelength, λ, and amplitude, A. Wavelength is the

distance between two consecutive corresponding points of the wave phase, and amplitude is a

measure between the wave peaks and a reference point.

The time it takes for a wave particle to travel one wavelength, to complete

one oscillation, is known as the wave period (T ). Frequency is the number of

oscillations per unit time, and is therefore equal to the inverse of the wave period

(Equation2.9).

f =
1

T
(2.9)

The relationship between wavelength and frequency can therefore be given by

f =
v

λ
(2.10)

where v is the wave speed. As wavelength and acoustic frequency are inversely

related, shorter waves are faster and longer waves are slower. This led to

nomenclature of referring to shorter waves by their frequencies and longer waves

by their period. Although wavelength and frequency are inversely related,
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frequency is not to be confused with spatial frequency, k, which is often referred

to as the wavenumber (Equation 2.11).

k =
1

λ
(2.11)

2.3.3 Application of Acoustic Emissions

Mogi (1967) was the first to publish the a study relating AE events and

earthquakes, noting the statistical similarities in event frequency and magnitude.

Scholz (1998) later discovered the direct relationship between cumulative AE

events and volumetric strain, allowing for AE counts to be used as a metric

for damage accumulation. Since then, acoustic emissions have become integral

to the study of rock mechanics and the connection between laboratory scale rock

deformation to larger scale geophysical processes, and are commonly referred to as

‘micro-seismic’ activity. Acoustic emissions have been studied to provide insight

into the mechanical behavior of rock deformation (Heap et al., 2009a; Liu et al.,

2019; Meredith and Atkinson, 1983; Paterson and Wong, 2005; Scholz, 1998; Yang

et al., 2012; Zang et al., 1996), and as precursory indicators for forecasting failure

(Bell et al., 2011a,b, 2013a; Voight, 1988; Wang et al., 2015b). Studies have

shown that AE event rate increases with increasing stress, and accelerate before

catastrophic failure (Paterson and Wong, 2005). Acoustic emissions have been

used to study time dependent deformation, as AEs have been observed to continue

at a fixed stress level even when the stress is no longer being increased. This has

been demonstrated with laboratory creep experiments. After applying the initial

load stress, AEs have been observed to decrease and taper off, but increase again

before fracture development (Heap et al., 2009a, 2011, 2015; Ngwenya et al.,

2001; Wang et al., 2015a). Acoustic emissions event rate, cumulative count, and

frequency content have been used extensively to study rock properties, as well

as the effect of those properties on deformation. AEs have been used to study

compaction band formation (Heap et al., 2015), permeability evolution during

deformation (Ngwenya et al., 2003; Ojala et al., 2004b), acoustic anisotropy

(Crawford et al., 1995), temperature dependence of deformation (Heap et al.,

2009a; Ojala et al., 2004a; Yang et al., 2014), and crack location (Lei et al., 2000).
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AEs have also been used extensively to study and monitor deformation in man-

made earth-like materials (Liu et al., 2015a; Ma and Du, 2020; Niederleithinger

et al., 2015a; Vidya Sagar and Dutta, 2019).

2.3.4 Frequency Magnitude Distribution

The relationship between earthquake occurrence and event magnitude is described

by the famous Gutenberg-Richter law (Gutenberg and Richter, 1956):

log10N = a− bM (2.12)

where N is the number of events having a magnitude greater than or equal to

M , with empirical constants a and b. The scaling factor, b, also known as the

seismic b-value, describes the ratio of small events to large ones and is generally

1. However, b-values ranging from 0.5 to 2.5 have been reported depending

on the nature of the system (Ojala et al., 2004a; Roberts et al., 2015; Scholz,

2015). Assessment of this frequency-magnitude relationship is typically done by

plotting the events on a log-linear plot as it allows the constants to be easily

determined; a is y-intercept and b is gradient of the line. These frequency-

magnitude distribution plots (FMDs) can be useful to understand the dynamics of

the system and estimate seismic hazard, as the constants describe the seismicity of

a region. They can also be used to evaluate catalog completeness, as a nonlinear

tapering of the FMD graph, in particular at lower magnitudes, indicates that there

are likely missing events due to observational limitations. The magnitude below

which the FMD distribution is no longer linear is the minimum magnitude in

which events are reliably recorded, known as the completeness magnitude, Mc. If

the completeness magnitude, average magnitude, M , and magnitude uncertainty,

∆M , are known for a catalog, the b-value can be estimated using the Maximum

Likelihood Method (MLE) (Aki, 1969; Roberts et al., 2015):

b̂ =
log10 e

M − (Mc − ∆M/2)
(2.13)

and the associated uncertainty can be determined by:

σb̂ = 2.30b̂2

√∑N
i=1(Mi −M)

Nc(Nc − 1)
(2.14)
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where Nc is the number of events above Mc. The value of Mc can be estimated

using a number of methods, such as the b-value Stability (BVS), the Goodness-of-

fit (GFT), and the Maximum Curvature (MaxC) methods (Roberts et al., 2015).

The BVS method calculates b̂ using Equation 2.13 and continuously increases Mc

until a stable value is reached, assuming that the b-value will increase as Mc is

increased until the point of stability is reached. The BFT method calculates Mc as

the point in which 90% of the of data can be described by a power-law distribution.

The MaxC method determines Mc as the point of maximum curvature of the FMD

curve (Roberts et al., 2015).

A thorough and reliable estimate of Mc and the b-value can be made by

following the workflow presented by Roberts et al. (2015) in which the three

methods can be used in succession and their error estimates compared. The first

step is to estimate Mc using both the BVS and MaxC methods. If their estimates

are the same with ±0.1, and the MaxC b-value error, σMaxC(b̂) < 0.25, then the

MaxC estimate is used. If either of these criteria fail, then the BVS estimate is

chosen given that σBV S(b̂) < 0.25. If both of these method estimates fail, then

the GFT method is tested and accepted as long as σGFT (b̂) < 0.25. If all three

methods fail, then the b-value, and the Gutenberg-Richter model, are rejected as

they do not fit the data.

Although originally developed for earthquake analysis, the Gutenberg-Richter

relation (Equation 2.12) is also widely used in acoustic emissions analysis due to

the similarities between the phenomena. The above procedures for evaluating b-

value and completeness magnitude have also shown to be valid (Amitrano, 2003;

Scholz, 2015).



Chapter 3

Principles of Failure Forecasting

3.1 Introduction

Although geophysics is a relatively young scientific field, attempting to explain,

predict, and protect against catastrophic geophysical events is one of humanity’s

oldest endeavors. Ancient peoples often postulated that these events were caused

by grand, mythical beings, whether it be the movement of giant creatures beneath

the ground, or the will of angry gods. Aristotle was one of the first recorded

philosophers to suggest that earthquakes may be caused by natural phenomena,

however he proposed that strong winds within the earth caused the ground to

shake (Rastall and Davison, 1927). The earliest known attempt to record these

events was by Zhang (Chang) Heng, who invented the first seismograph in 132

A.D. (Dewey and Byerly, 1969). The study of these catastrophic events has come

a long way since then, but the aim to actually predict these events still remains out

of reach. However, efforts have more recently been made to quantifiably forecast

the probability of these events based on time series data of precursory indicators

of deformation.

Precursory indicators have been observed before catastrophic earth material

failure events including volcanic eruptions (Bell et al., 2018; Kilburn and Voight,

1998; Smith et al., 2007; Voight, 1988), landslides (Bell, 2018; Kilburn and Petley,

2003; Petley, 2013; Petley et al., 2005), select earthquakes (Bouchon et al.,

2011, 2013; Kato et al., 2012), and laboratory rock deformation experiments

(Heap et al., 2009b; Wang et al., 2015b). These precursory signals, such as

17
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micro-cracking, release high frequency elastic wave packets or acoustic emissions

(AEs), which have been observed to follow power-law spatial, temporal, and size

distributions leading to macroscopic failure (Brantut et al., 2013; Main, 2000;

Vasseur et al., 2015). Studying the mechanisms behind these indicators and their

statistical behavior leading up to material failure can improve our understanding

of the driving forces behind catastrophic events as well as provide potential for

event forecasting (Bell, 2018; Bell et al., 2011a,b, 2018; Brantut et al., 2013; Heap

et al., 2011; Sornette, 2002; Vasseur et al., 2015; Voight, 1988).

The Failure Forecast Method (FFM) is a well established system for forecasting

catastrophic failure time by modeling these precursory signals in retrospective

analysis. The method is based on Voight’s relation of a geophysical precursor, Ω,

to its rate for constant temperature and stress,

d2Ω

dt2
= K(

dΩ

dt
)α (3.1)

where K and α are empirical constants (Voight, 1988). When applied to

earthquakes, solutions to this relation often display an aftershock decay process

which follows the form of the modified Omori-Utsu equation (Utsu et al., 1995),

dΩ

dt
=

K

(t + c)p
(3.2)

where t is time since the main shock, K is the earthquake productivity in time t, c

is a constant and p is the decay rate. In this case, the aftershock rate is inversely

related to the time since the main shock. In the case of event nucleation, such as

foreshocks and accelerating precursory activity, damage mechanic models predict

as reverse time Omori-Utsu equation. In the case where 1 < α < 2, solutions

to this relation take the form of a power-law increase in the rate of precursory

signals with time (Equation 3.3)

dΩ

dt
= k(tf − t)−p (3.3)

where the exponent p = 1/(α− 1) describes the non-linearity of the acceleration

and k is the absolute rate at time t = tf −1 (Bell and Kilburn, 2013). In the cases

of α = 1 and α = 2, respectively, the acceleration takes an exponential (Equation

3.4) or hyperbolic (Equation 3.5) form:
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dΩ

dt
= kexp(e)

λ(t−t0) (3.4)

dΩ

dt
= khyp(tf − t)−1 (3.5)

where kexp and khyp are the respective amplitude terms and t0 is the beginning of

the failure process (Bell, 2018). The solutions to the power-law and hyperbolic

forms (Equation 3.3, Equation 3.5) include a singularity, tf , a critical point of

infinite acceleration in rate, which is commonly interpreted as the failure event

time.

The Failure Forecast Method, which linearizes the power-law rate using stan-

dard least-squares regression, has been criticized for making improper assump-

tions about the error structure of geophysical data, creating inaccurate forecasts

and poor parameter estimates (Bell et al., 2011a,b). In order for least-squares

linear regression to be valid, the residual error between the mean rate and the

data must follow a Gaussian distribution. However, it is generally assumed that

earthquake occurrence is a Poisson process with varying rates in time and space,

and the rate error is roughly Poisson distributed (Bell et al., 2011a; Greenhough

and Main, 2008). Three alternative methods have been proposed to better esti-

mate parameters for volcano-tectonic earthquake and laboratory data; General-

ized Linear Models (Bell et al., 2011b), maximum-likelihood (Bell et al., 2011a),

and Bayesian (Boué et al., 2015) methods.

3.2 Generalized Linear Models

Bell et al. (2011b) formally evaluated the Failure Forecast Method (FFM) and

highlighted its performance issues by applying it to synthetic and real-data

from volcanoes and laboratory brittle creep experiments. They also propose an

alternative method of applying Voight’s relation (Equation 3.1) that accounts

for the error structure of the data, the Generalized Linear Model (GLM). The

GLM is a generalized version of least-squares linear regression that allows for

non-Gaussian error distributions and allows for the implementation of a ‘link-

function’ to relate the mean of the power-law distribution to the linear model.
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They restructure Equation 3.3 as a power law function of a linear model while

maintaining the error distribution,

dΩ

dt
= (a + bt)−p (3.6)

where a and b are defined as

a = (kp)
−1
p tf (3.7)

b = −(kp)
−1
p (3.8)

It is then possible to solve for a and b using a GLM and then failure time, tf ,

is given by −a/b. Bell et al. (2011b) compared the GLM and FFM techniques

by applying both to laboratory strain and acoustic emissions data from Heap

et al. (2009a) experiments on Darley Dale Sandstone, as well as volcano-tectonic

earthquake data preceding the 1989 eruption at Mt. Etna. Figure 3.1 shows

the acceleration in precursory indicators for these events as well as an error

comparison of these two methods in forecasting failure event time. Outcomes

of the study suggest a preference towards the GLM method of failure forecasting,

with results showing more precise forecasts using GLM with the added advantage

of being able to adjust the error structure according to the data.
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Figure 3.1: Results of comparing the Failure Forecast Method (FFM) and the Generalized

Linear Method (GLM) on data from Heap et al. (2009a). The top row of subfigures displays

strain rate (a) and acoustic emissions event rate (c) data from a Darley Dale sandstone creep

experiment as well as Mt. Etna earthquake rates (e). Rate data is represented as grey points or

bars and cumulative data in red. The bottom row of subfigures (b, d, f) display the evolution

of forecast failure time and standard errors for each of the above datasets using both the FFM

(blue diamonds) and GLM (red squares) given varying percentages of the total dataset. Black

dashed line is true failure time. Figure from Bell et al. (2011b).

3.3 Maximum Likelihood Method

Bell et al. (2013b) proposed an additional alternative to the FFM, the Maximum

Likelihood Method (MLM), after addressing limitations with the GLM due to

requiring binned event data rather than utilizing the whole point process. The

MLM maximizes the likelihood function and outputs parameters that give the

observed data the greatest probability. For the case of a Gaussian distribution,
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these parameters are the same as a least-squares regression, but allows for

alternative distributions. The model can be determined from the event rate data

directly and does not require prior data binning, eliminating the restrictions of

the GLM. The log-likelihood function for earthquakes occurring at times ti within

time window (t0, t1) is given by

logL(k, te, p|t1, ..., tn) =
n∑

i=1

log(k(te − ti)
−p) − k

1 − p
((te − t1)

1−p − (te − t0)
1−p)

(3.9)

for p ̸= 1, and is modified for the specific case of p = 1 as

logL(k, te, p = 1|t1, ..., tn) =
n∑

i=1

log(k(te − ti)
−1) + k(log((te − t1) − log(te − t0))

(3.10)

Bell et al. (2013b) compared the application of the FFM, GLM, and MLM

on synthetic volcanic data with results indicating a preference for the MLM.

However, they address the method’s high levels of uncertainty until very close

to catastrophic failure, as well as the significant difference in performance given

a known p value versus one that is estimated from the data. They propose a

Bayesian framework in which prior knowledge about the given system could be

incorporated to address this issue.

3.4 Bayesian Method

Bayesian versions of the previously mentioned methods have since been incorpo-

rated to improve parameter estimation. Boué et al. (2015) applied a Bayesian

version of the FFM to real volcanic data using incremental long-period (LP) seis-

micity as the observable. They mitigate the issues surrounding uncertainty by

not making any assumptions regarding the error structure of data. As volcanic

systems are complex, the seismic data contain events from different physical mech-

anisms. In order to identify accelerating sequences of a single process, the authors

employ an automated filter to separate events by type and identify rate behavior

by physical process. This system produced a priori probability density function

of event rates, rather than incorporating event rate assumptions. This method
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was tested on partial data sequences instead of full retrospective time-series data

to assess the method’s effectiveness for real-time use. The authors report high

levels of accuracy for eruptions with only one precursory acceleration phase, but

not for cases with multiple phases.

Bell et al. (2018) and Bell (2018) later apply a Bayesian Markov Chain Monte

Carlo (MCMC) gamma point process method to quasi-periodic earthquakes

preceding volcanic explosion and a landslide, respectively. As these precursory

events were quasi-periodic instead of randomly distributed in time, the authors

used an inhomogeneous gamma process instead of a Poisson process to model

the data. The authors use a Bayesian parameter estimation and introduce

the application of an MCMC to the maximum likelihood function. They also

employed an iterative approach, passing time series data incrementally to the

model to simulate real-time use. Results indicate better parameter estimation

than by previous failure models and a low error rate for forecasts when given

roughly 90% of the time series data.

None of the aforementioned forecasting methods take into account event

triggering and background seismicity, and likely need more refinement before

introducing additional layers of complexity. These methods have also mostly

been applied to event rate data assuming inverse power-law acceleration, due

to the simplicity in identifying failure time given Equation 3.3. This limits the

applicability of these methods, as not all catastrophic events are preceded by a

power-law distribution of precursors, or any acceleration in precursors at all. The

reasons that some events are preceded by accelerating indicators while others are

not is not fully understood, and requires further investigation. Understanding the

causes behind the accelerating precursory behavior, or lack thereof, will allow us

to create a better framework in which to apply these forecasting methods, as well

as advance our ability to mitigate hazard and potentially forecast those events

without acceleratory event rate.

3.5 Application to Earthquakes

The feasibility of failure forecasting, especially earthquake forecasting, has been

criticized due to the apparent randomness of earthquakes. This criticism is some-

what justified, as clear, accelerating precursory signals are almost never observed
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before earthquakes. These observations are considerably more common in vol-

canic and laboratory environments. Although rare, observations of accelerating

earthquake precursors have been reported. Bufe and Varnes (1993) identified ac-

celeration in Benioff Strain and seismicity leading up to the 1906 San Francisco

and 1989 Loma Prieta earthquakes and use this to retrospectively predict event

onset time using Equation 3.3. The authors propose that simulating events in this

manner could be useful for both future and past seismicity time-to-failure anal-

ysis. Bouchon et al. (2011) presented evidence from the 1999 Izmit earthquake

showing that the main shock was preceded by 44 minutes of seismic signal from

the hypocenter. The foreshocks were observed to accelerate in inter-event time as

well as magnitude leading up to the main shock. Upon further investigation, the

foreshocks are shown to have the same waveforms (Figure 3.2) and spectral shape

(Figure 3.3), indicating that they are repeating events from the same source, the

hypocenter of the main shock.

Figure 3.2: (A) Superposition of the first two foreshocks showing their similar waveforms,

with the second waveform time shifted to maximize the correlation. This indicates that the

waveforms share the same source. (B) Shows the evolution of the time shift that maximizes the

two correlations. Figure from Bouchon et al. (2011).
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Figure 3.3: A comparison of the S-wave ground-velocity spectra of six foreshocks. The spectra

have been normalized independently. The peak recorded amplitude is shown in parenthesis.

Figure from Bouchon et al. (2011).

The size and temporal acceleration of these repeating foreshocks is indicative

of fault creeping at depth and instability growth before rupture. The 1999

Izmit earthquake was also preceded by an increase in low-frequency ground

motion beginning after the first foreshock, which remained heightened until the

main shock. Early identification of repeating events or low frequency ground

motion increase coupled with repeating events provide new opportunities for

the field of earthquake forecasting and regional hazard analysis. This method

faces limitations due to a lack of sensor coverage. In the case of the 1999 Izmit

earthquake, there happened to be ample station density in the area, with the

nearest station being only 14km from the epicenter. The nearest station was

also located on limestone, which minimized attenuation and allowed for quality

data. It is therefore possible that similar precursors are present before other

events, but the data lacks the resolution to identify them. Bouchon et al.

(2013) continued investigating precursors to earthquakes and report acceleration

in seismicity before some large events along inter-plate boundaries. The authors
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claim that fault type may be a key factor in event forecasting, as interplate and

intraplate events may have different mechanisms driving them. Since inter-plate

faults are larger, the authors suggest that these types of earthquakes are preceded

by slow-slip events as the ductile rocks at depth slowly deform before the locked,

shallow interface suddenly ruptures. However, the authors also note that it is

possible that these precursory signals also exist before intraplate earthquakes, but

due to the higher frequency and magnitude of earthquakes along plate boundaries

these regions are favored in study and observation, again addressing how limited

sensor density and data analysis is creating an observational bias. Without proper

investigation on various fault types and sizes with sufficient coverage, it is difficult

to determine the role of fault type in our forecasting prospects.

In the quest to predict earthquakes it is important to not only improve our

data coverage and forecasting techniques, but also to ask why these systems

do not generally exhibit the power-law precursory behavior that we see more

commonly before failure in volcanic and laboratory systems? It is unlikely to

be solely a matter of complexity, as volcanoes are incredibly complex systems.

Vasseur et al. (2015) suggest that the key factor is regional lithology; specifically

that structural heterogeneity determines prospects for failure forecasting. The

authors empirically show a strong correlation between failure forecasting accuracy

and sample heterogeneity when samples are compressed uni-axially (Figure 3.4).

Failure forecasting was performed by solving Equation 3.3 via linear regression,

assuming an inverse Omori rate. These results imply samples with larger grain

sizes and more vacant pores will more easily allow for micro-cracking leading up

to catastrophic failure. This means that forecasting prospects for earthquakes

may not depend on fault type, but rather the regional structural heterogeneity.
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Figure 3.4: Influence of heterogeneity (quantified as H-index) on failure forecasts. (A)

Cumulative AE events (solid) and their Maximum-likelihood best fit curves (dashed). (B)

Shows a preference of the Time Reversed Omori Law method over the exponential model as

heterogeneity increases. BIC stands for Bayesian Information Criterion. (C) Heterogeneity-

dependence of the forecast error. Figure from Vasseur et al. (2015).

While tectonic plates experience time-dependent weakening just as volcanoes

do, they do not generally exhibit the same generation and propagation of new

faults as seen in volcanoes (Scholz, 1998). This is likely due to the non-catalytic

environment in which most earthquakes occur. Generally earthquakes are stick-

slip propagation along already present ‘unstable’ faults; a slow build up of

instability and then intermittent dynamic rupture. In rupturing, earthquakes

may propagate into the surrounding ‘conditionally stable’ regime, extending

the existing fault (Scholz, 1998). This propagation and fault growth is highly

dependent on regional strength and rock healing rate. If the local lithology is
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strong, then the fault will not continue to grow into those regions. However, due

to the prevalence of heat and reactive fluids in volcanoes, brand new fractures

can easily form as magma migrates to the surface. These new fractures can grow

and connect, accelerating to failure, providing acoustic indicators in the process.

Whereas a fault with increasing instability may not experience precursory slipping

before rupturing, making current forecasting methods far less effective.

A key difference in the approach to forecasting earthquakes versus laboratory

and volcanic failure is the ability to distinguish the main event. Precursory

signals for earthquakes generally take the form of foreshocks; however, foreshocks

by definition can only be determined in retrospect as the events preceding the

largest one (Bouchon et al., 2011, 2013; Brantut et al., 2013; Scholz, 1998).

When foreshocks occur, they may nucleate around the hypocenter and time of

the main shock, sometimes accelerating in towards the main shock, but it is

presently impossible to discern the main shock in real-time. In volcanoes, the

precursory changes are distinguishable from eruption, and in the laboratory, we

define the main event as the global breaking of the sample.

This means that in forecasting failure events we have to change not only how

we think about the driving mechanism, but also about how we define indicators

and their acceleration in the forecasting process. The nature of earthquakes may

just indicate that our approach to forecasting is not in search of an actual failure

event time determined by applying Voight’s relations, but rather applying a new

method with a goal of a localized event likelihood, at best behaving like a weather

map.

3.6 Volcanic Systems

Volcanoes are highly complex systems, with eruptions that are often preceded by

accelerations in geophysical parameters such as time-dependent cracking, strain

rate, and seismicity. These precursors are driven by brittle creeping, magma

migrations, thermal changes, and out gassing (Bell et al., 2011a,b; Grêt et al.,

2005; Heap et al., 2011; Kilburn, 2003; Kilburn and Voight, 1998). When observed,

the accelerating precursory sequences resemble those of acoustic emissions and

strain rate in laboratory rock deformation experiments (Bell et al., 2011a,b;

Brantut et al., 2013; Heap et al., 2009a,b, 2011). Due to this similarity, laboratory
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brittle-creep experiments are often considered to be small scale analogues to

real-earth volcanic systems (Voight, 1988; ?). This is particularly useful when

investigating the prospect of failure forecasting, as the forecasting methods can

be tested in the smaller, controlled, and repeatable lab environment before ever

being applied to the real earth.

However, is similarity in precursor rate enough to use these systems as micro

and macro versions of each other? Many argue yes, as the temporal characteristics

of some volcanoes leading up to eruption are comparable with the primary,

secondary, and tertiary phases of creep in laboratory deformation experiments.

This implies that the fundamental underlying processes are related and potentially

scale invariant (Heap et al., 2009a). It is also believed that like laboratory acoustic

emissions, volcano-tectonic earthquakes are also generated by brittle creeping and

consequently both phenomena can be considered measures of progression towards

macroscopic failure for their respective processes (Bell et al., 2011b; Bensen et al.,

2007). Brittle creep is a type of time-dependent deformation in which a rock can

deform and fail at a constant applied stress that is below the material ultimate

strength. Laboratory studies have shown that brittle creep occurs in all rock types

and the deformation rate is highly sensitive to environmental changes such as

confining pressure, temperature, and pore fluid (Brantut et al., 2013). Even small

changes in temperature and the chemical reactivity can create major changes in

creep strain rate and ultimate failure time. This is due to the major chemical and

temperature dependence of stress corrosion reactions that wear away the already

strained atomic bonds located at crack tips, allowing for slow crack propagation.

Eventually the slowly growing cracks will connect, accelerating to failure. The

high temperatures and presence of fluid in volcanic edifices makes them the ideal

environment for stress corrosion, which serves as a probable mechanism for the

precursory cracking and seismicity observed before eruption. The connecting

cracks will eventually form a path for high-pressure magma to migrate to the

surface, allowing for eruption (Heap et al., 2011). Heap et al. (2011) presented

twelve years of data from Mt. Etna showing that the temporal characteristics of

the volcano’s seismic activity and strain release matches those observed during

the primary, secondary, and tertiary deformation phases of their laboratory creep

experiments on Mt. Etna basalt (Figures 3.5, 3.6). The authors claim that the

similar results indicate that brittle creep is likely the leading cause of deformation

in stressed volcanic edifices.
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Figure 3.5: Twelve years of deformation at Mt. Etna. Seismic event rate is shown in red and

cumulative strain release in gray. Figure from Heap et al. (2011).
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Figure 3.6: Stress and strain over time from a laboratory creep experiment on basalt from Mt.

Etna. The three phases of primary (loading), secondary (creep), and tertiary (deformation) are

labelled. Figure from Heap et al. (2011).

This is not to say that brittle creeping does not occur in tectonic earthquakes,

but the catalytic environments of volcanoes and laboratory deformation rigs

amplify this behavior. In addition, the fracture resistance of crustal rocks is

highly dependent on deformation rate and environment conditions. The rocks

are more susceptible to deformation at elevated temperature and in the presence

of chemically reactive pore fluid (Greenhough and Main, 2008). Therefore the

rocks within a volcanic edifice may just be weaker than those along faults.

These same characteristics that weaken volcanic rocks may also be the very

characteristics that promote rock healing, allowing for repeated fractures before a

catastrophic event (Bouchon et al., 2013). Several scientists have worked to model
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this precursory deformation for the purposes of failure forecasting. Statistical

analyses of volcano-tectonic (VT) earthquakes have shown that in the absence

of triggering, earthquakes are well described by a point process with Poisson

uncertainties. Various mean-field models have been proposed to represent the

acceleration in bulk-medium mechanical properties such as fracture growth (Bell

et al., 2011a,b; Kilburn, 2003; Kilburn and Voight, 1998; ?) or magma reservoir

pressure (Lengliné et al., 2008), all displaying power-law acceleration. Therefore,

Equation 3.3 can be used in an attempt to forecast these events (Bell et al.,

2011a,b; Greenhough and Main, 2008; Heap et al., 2011). Typically volcanic

seismicity, such as number of VT earthquakes preceding an eruption, is used as

the geophysical precursor Ω as the data is typically more readily available in our

records and also provides insight into deformation accumulation.

3.7 Laboratory Deformation Experiments

Accelerating precursors to failure have also been observed before laboratory failure

events (Benson et al., 2008; Heap et al., 2009a; Main, 2000; Ojala et al., 2004a,b;

Smith et al., 2007), but the literature on the application of forecasting techniques

to the distributions is relatively thin. Power-law fitting techniques have been

used for retrospective time-to-failure forecasting for brittle creep experiments on

Darley Dale sandstone cores (Bell et al., 2011a; Heap et al., 2009a) and concrete

blocks (Wang et al., 2015a). Ojala et al. (2004a) reported power-law fitting to

triaxially compressed Clashach and Locharbriggs sandstone cores while assessing

the effect of test temperature and strain rate on AE activity. The authors note a

strong relationship between experimental strain rate and acoustic emissions event

rate, and ultimately, goodness-of-fit to a power-law.

Rouet-Leduc et al. (2017) took a unique approach to laboratory forecasting

by using machine learning to predict simulated stick-slip inter-event times. The

method takes into account only instantaneous characteristics of the acoustic emis-

sions signal and does not take into account prior data, unlike the aforementioned

methods based on Voight’s relation. The method was used to predict the time

to the next event in a stick slip cycle with high accuracy, presenting an alter-

native method that is better suited for real-earth analogues such as repeating

earthquakes as observed in Parkfield, California (Abercrombie et al., 2020).
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3.7.1 Coda Wave Interferometry

The seismic coda is the strongly scattered tail of a seismogram (Snieder, 2006).

Since the they are so strongly scattered, these waves take longer to pass

through the medium, sampling more of it on their path to the receiver. As a

result, coda waves are highly sensitive to even small medium changes. Coda

Wave Interferometry (CWI) is a method that uses this sensitivity to estimate

medium changes by comparing coda waves from before and after the change

(Snieder, 2004a, 2006). The need for comparison makes this method heavily

dependent on repeatability, and therefore ideal for passive monitoring and

continuous data (Figure 3.7). Snieder (2002) show that medium changes such

as perturbations in mean scatterer location, changes in source location, and wave

velocity perturbations can be monitored using time shifted cross correlations. The

different types of changes leave different imprints on the time-shifted correlation

coefficient, affecting either the mean travel time or the variance of the travel-time

perturbation. This means that CWI can be used while monitoring to not only

tell you that a medium is changing, but also provide information on how it is

changing.

Figure 3.7: Waveforms recorded in a granite sample for temperatures of 45°C and 50°C, in

blue and in red, respectively. The insets show details of the waveforms around the first arrival

(top inset) and in the late coda (bottom inset). The resulting time shift from uniformly heating

the sample is apparent in the coda, but not the first arrival. Figure from Snieder et al. (2002)

Although CWI has been applied to monitor laboratory samples (Grêt et al.,
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2005, 2006b; Snieder, 2004a; Snieder et al., 2002), bridges (Stähler et al., 2011),

mines (Grêt et al., 2006a), and volcanoes (Grêt et al., 2005; Snieder, 2004a), a

lot remains to be done in advancing the method. It is not yet known how the

generation of a new scatterer or a change in strength of an individual scatterer will

appear in the time-shifted correlation coefficient, or how one might use CWI in the

presence of multiple types of changes. There is an extensive list of environments

in which the method has not yet been tested, nor how its potential use could

benefit forecasting techniques. As catastrophic failure events often begin with

small crack formation which then coalesce, detecting small changes could provide

earlier warning and larger datasets for model fitting. The method of CWI and

its use in early detection of reinforcement corrosion in concrete is discussed in

greater detail in the final research chapter of this thesis.
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Experimental Methodology

4.1 Introduction

To investigate the use of laboratory precursory signals for forecasting catastrophic

failure, this study required both experimental and modeling components. This

chapter will detail the methods used for the experimental component. The

primary objectives of the experimental portion of this study were:

• To create a statistically significant data-set of repeated deformation ex-

periments under identical conditions, using samples as identical as natural

variability allows.

• To characterize the acoustic emission behavior in samples leading up to and

during catastrophic failure.

To achieve these objectives, a series of constant strain-rate, triaxial deforma-

tion experiments were performed on 38mm x 90mm cylindrical Clashach sand-

stone cores. Additional details about the test material can be found in section 4.5.

All experiments were completed at room temperature with a confining pressure

(Pc) of 24MPa and a strain rate of 1e−5 s−1 for ease of repeatability, allowing a

test to be loaded, run, and unloaded in a single day. Experiments were completed

on dry samples and therefore no pore fluid pressure (Pp = 0).

When designing the experimental procedure, initial tests determined that the

additional complexity of using fluid flow or controlled pore fluid pressure was

logistically impractical due to the low permeability of the sample material due to

35
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its dense grain network. Critically, the use of servo controlled fluid flow or pore

pressure yielded noisy results for acoustic emissions measurements.

Trial triaxial experiments were completed using wet, saturated samples as

well as dry samples for comparison. It was determined that dry experiments

produced more detectable acoustic emissions with no significant difference in noise

level. This confirms the observations of Zang et al. (1996), who show that dry

sandstone samples have more total acoustic emission events when stressed, and

that acoustic emissions appear earlier in an experiment for dry samples, which

is ideal for forecasting. A potential drawback of using dry samples is that they

may less accurately represent volcanic environments where fluids are present. For

this study, however, it is of greater importance to replicate the acoustic emission

behavior observed at the macro scale and to have ample, well resolved acoustic

emission data to model.

The number of experiments intended for this study were greater than I was

able to complete, in part due to the Covid-19 pandemic restricting access to the

laboratory. As a result, the experimental data for this thesis was supplemented

with acoustic emissions data from additional Clashach core tests completed under

several different conditions (varying core size, Pc, and Pp) were also processed

and analyzed for this thesis, but were not the primary focus. These data were

collected by Dr. Alexis Cartwright-Taylor for use in a different project, but

have been processed independently in this study to investigate the effects of

different experimental conditions on acoustic emission event rate and forecasting

(see section 5).

This chapter presents the details of the experimental data acquisition com-

pleted for this study. A description of the experimental apparatus is presented

first, followed by the data acquisition instrumentation, and equipment calibra-

tions. Then there is detailing of the experimental materials and sample prepa-

ration procedure. Lastly, the full experimental operating procedure for a sample

test is presented.



CHAPTER 4. Experimental Methodology 37

4.2 Triaxial Deformation Rig

4.2.1 Introduction

Time-dependent rock deformation is predominately studied in the laboratory us-

ing constant stress (creep) and constant strain rate experiments. The experiments

completed for this study were conventional constant strain rate tests as they are

effective for studying short-term deformation and failure characteristics, as well

as being quicker for ease of repeatability (Crawford et al., 1995; Haimson and

Chang, 2000; Paterson and Wong, 2005).

In-situ rock stress states are traditionally described using three vector prin-

cipal stresses (Hudson and Cooling, 1988). These principal stresses describe the

mutually perpendicular maximum, intermediate, and minimum stress, σ1 , σ2,

and σ3 respectively (Hudson and Cooling, 1988; Paterson and Wong, 2005). Tri-

axial deformation experiments are the most widely used method of investigating

medium mechanical properties in various stress states. Although uniaxial ex-

periments are simpler and therefore easier to quickly perform multiple repeating

experiments, uniaxial tests have a zero σ2 and σ3. Rock deformation and failure

in the crust is influenced by a combination of tectonic and gravitational (over-

burden) stresses that generate both shear and normal stresses, making it more

appropriate to study with an experimental set up with non-zero stress compo-

nents. As a result, the experiments for this study were conducted on a triaxial

deformation rig. Figure 4.1 shows the stress system in a conventional ‘triaxial’

test.
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Figure 4.1: The stress system in a conventional triaxial test. σ2 and σ3 represent the confining

stresses. Redrawn from Paterson and Wong (2005).

The conventional triaxial test hydraulically applies radial pressure to a

cylindrical core while simultaneously applying uniaxial load to the parallel core

end faces. Although traditionally referred to simply as a ‘triaxial test,’ this

represents a special case in which the intermediate principal stress σ2 is equal

to either the maximum or minimum principal stress. The conventional triaxial

tests is therefore not a ‘true triaxial’ test, but rather an axisymmetric triaxial test

(Crawford et al., 1995). Due to the difficulty of creating true triaxial conditions in

a laboratory setting, conventional axisymmetric triaxial tests are common practice

in rock deformation studies (Crawford et al., 1995; Paterson and Wong, 2005).

Had a true triaxial experimental setup been used for my tests I would have

expected to see an increase in sample strength with respect to the magnitude

of the intermediate principal stress, as observed for most rock types (Chang and

Haimson, 2000; Haimson and Chang, 2000) and soil (Shi et al., 2010), unless

(exceptionally) the conventional triaxial conditions accurately represent the in-

situ stress regime in the rocks (Chang and Haimson, 2005).

The experiments for this study were completed using a conventional triaxial

hydraulic deformation rig located in the basement of the Grant Institute at the

University of Edinburgh (Figure 4.2).
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Figure 4.2: Triaxial deformation rig at the Grant Institute. The LVDT plates for displacement

measure and Hoek load cell are labelled. Details on the sample ‘stack’ and the fluid flow control

can be found in sections 4.2.2 and 4.2.3, respectively.

4.2.2 Experimental Stack

The experimental sample stack consists of the sample specimen, the hydraulic load

cell, and data recording equipment which are all assembled or ‘stacked’ for the

completion of a deformation experiment (Figure 4.5). A hydraulic ram applies the

vertical axial load to the sample stack during deformation experiments. Details

on the hydraulic plumbing and controls can be found in section 4.2.3.

To assemble the sample stack, the rock core specimen was first placed inside

of a rubber sleeve or jacket to isolate the sample from the confining fluid. The
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jackets are reusable for each experiment unless punctured due to excessive sample

shear failure. The rubber jacket was placed in a standard Hoek cell (Figure 4.3)

and the rest of the stack assembled.

Figure 4.3: The arrangement of the sample inside the load cell. Redrawn from Hoek and

Franklin (1968).

The load cell is mounted in the sample stack by two steel mushroom shaped

platens that have contact with the upper and lower ends of the sample within

the load cell. The platen end faces are the same size as the sample, minimizing

any lateral movement within the cell. To increase the vertical range of the axial

load, a 5mm spacer was added atop the samples (Figure 4.4). The systematic

difference in distance to the center of the sample was accounted for in acoustic

emissions processing. Melinex disks are commonly used on sample ends in similar

experiments to minimize friction and end effects, however, results from initial

trial experiments determined that the use of just acoustic gel on sample ends was

sufficient in reducing end effects while also serving as acoustic coupling.
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Figure 4.4: A diagram of the sample positioning within the load cell.

The acoustic emission sensor plates were mounted above and below the two

steel mushroom platens and positioned so that corresponding channels were

vertically aligned. Further information about the acoustic emissions sensors and

data acquisition can be found in section 4.3. Finally, a pair of Linear Variable

Differential Transformer (LVDT) displacement transducers connected by a steel

plate were mounted on top of the sample stack. A completed sample stack can

be seen in Figure 4.5.
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Figure 4.5: A photo of a completed sample stack mounted in the deformation rig as shown in

Figure 4.2.

4.2.3 Hydraulics

A hydraulic system was used for controlling the axial load (ram) and for applying

the confining pressure within the load cell. Figure 4.6 shows a schematic

representation of the hydraulic plumbing for the deformation rig. The hydraulic

fluid flow was controlled by a Teledyne ISCO 500D Syringe pump rated to a

maximum pressure of 3750 psi and capable of flow rates from 0.001 ml/min to

200 ml/min. Fluid flow was managed by manipulating pathways using Swagelok

T and L valves. T-valves have a direct hydraulic connection side to side and

opening the valve only allows for flow into a third channel without stopping flow

side to side. L-valves have only one side port and the valve either blocks or allows
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flow. The high-pressure valves feature a needle shutoff to prevent over-pressuring

and damaging the system.
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Figure 4.6: A schematic diagram of the deformation rig plumbing. HP and LP are ‘High

Pressure’ and ‘Low Pressure,’ respectively. BA stands for Bladder Accumulator. BPR stands

for Back Pressure Regulator. Diagram courtesy of Michael Flynn.
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Management of the fluid flow pathways allows the ram to move in both

directions, providing control during loading and unloading. The ram can be

lowered or raised at a constant rate by setting the pump to deliver hydraulic

fluid at a constant rate. This allowed for the completion of constant strain-rate

experiments. Confining pressure was applied by opening a pathway to the cell and

locking it off once the desired pressure was obtained. The rig relies on a bladder

accumulator (BA) to maintain constant oil pressure during experimentation, as

applying a load to the pressure vessel increases the confining pressure. As shown

in Figure 4.7, the bladder accumulator is a steel pressure vessel and elastomer

bladder. The vessel holds oil, while the bladder is pressurized with gas, in this

case nitrogen. When the bladder is fully expanded, a metal button seals the

pressure vessel to prevent bladder extrusion. As an alternative to the ISCO

control pump, hydraulics can also be manually controlled using the hand pump

without any flow rate regulation. The hand pump was used for unloading after

sample failure and experiment completion.

Figure 4.7: Diagram of a Bladder Accumulator used to maintain constant oil pressure.
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4.3 Data Acquisition

4.3.1 Parametric Data Logging

Axial load, confining pressure, and axial displacement measurements were

recorded using a National Instruments multi-channel data logger. This was con-

nected to a desktop computer where the data were recorded and saved using

LabVIEW data acquisition software. Data were converted from voltage measure-

ments to SI units using the conversions shown in Table 4.1. Data were collected

in real-time and plotted in LabVIEW for experimental monitoring.

Parameter Reading SI Units Imperial Units

Ram pressure 1 V 13.4 MPa 2010 psi

Confining pressure 3.43 V 24.0 MPa 3600 psi

LVDT 1 1 V 2.05204 mm 0.08078 in

LVDT 2 1 V 2.04478 mm 0.08050 in

Table 4.1: Conversion factors for the LabView Software.

4.3.2 Differential Stress

Axial load measurements were made using a Lucas Schaevitz P943 pressure sensor.

Confining pressure measurements were made using Omni Instruments Pi6010P

pressure sensors. The differential stress (σ= σ1-σ3) applied to the sample was

calculated using

σ =
F

A
(4.1)

Where F is the applied differential load (determined from the ram and

confining pressures) and A is the cross-sectional area of the sample.

4.3.3 Axial Strain

Axial strain was continuously monitored with Linear Variable Differential Trans-

former (LVDT) displacement transducers. The two LVDT units were externally
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mounted between the pressure vessel and the ram, connected by a steel plate.

Displacement measurements were converted to axial strain by

ε =
∆l

l0
(4.2)

where ∆l is piston displacement and l0 is the original specimen length. The

two LVDT units (184579 and 187991) were new with a manufacturer calibration

certificate (2.05204 mm/V and 2.04478 mm/V respectively) and therefore were

not re-calibrated.

4.3.4 Acoustic Emissions

Acoustic emissions (AE) were recorded using sensors manufactured in-house by

the workshop in the Grant Institute. Six sensors were used for these experiments,

to measure six channels: two P wave channels, two S1 channels, and two S2

channels.

The P-wave broadband displacement sensors were designed after Glaser

et al. (1998) as is laboratory standard. Each sensor consists of an aluminum

casing containing a conical lead-zirconate-titanate (PZT-5a) piezoelectric crystal

sensitive to surface normal displacements down to ±1 picometer in the frequency

range of 20 kHz to 1 MHz (Glaser et al., 1998; McLaskey and Glaser, 2010,

2011; Proctor, 1982). The conical design of the crystal minimizes the aperture

effect by keeping the contact area small, and is sensitive to only one parameter;

motion in line with the cone axis (Glaser et al., 1998; Proctor, 1982). The P-wave

sensors were calibrated before my involvement with the project in accordance

with McLaskey and Glaser (2012).

The S-wave sensors were both designed and manufactured in-house. They

consist of 700 kHz resonant frequency shear plate PZT-5a crystals housed in

aluminum inserts. The crystals were glued directly to the inserts using a silver

epoxy adhesive (Figure 4.8).

The P and S-wave sensor inserts were mounted into two steel holding plates

(Figure 4.9) which were placed at the upper and lower ends of the sample stack

(section 4.2.2). The steel holding plates were positioned in the sample stack so

that corresponding channels were vertically aligned. Signals from the piezoelectric
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crystals were pre-amplified using a pulsar amplifying system from Itasca Applied

Seismology Consultants (UK).

Figure 4.8: Piezoelectric crystal being mounted into its aluminum casing.

(a) (b)

Figure 4.9: (a) Three acoustic emissions sensors mounted into a steel plate. (b) CAD design

for the mounting plate provided by Alexis Cartwright-Taylor.
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Both triggered and continuous acoustic emission data were collected for these

experiments. Continuous data were collected using Richter units from Itasca.

These units can only manage four channels per unit, so two were required for

these tests. These Richter units use ADLINK PCI-9816H data acquisition cards

and have sampling rates of 10MS/s per channel. These units were synchronized

in a Master/Slave configuration to operate as one unit. The units were controlled

by a desktop computer using the eXstream software package. Recording settings

for the continuous data can be found in Table 4.2.

Parameter Setting

Wavelength 2048

Input Impedance 50 Ohms

Voltage Range 5 V

Sampling Rate 10 MHz

Table 4.2: Recording settings for continuous data in eXstream.

Triggered data were collected using a Trigger-Hit-Count (THC) unit paired

with Cecchi data acquisition units, all from Itasca. The Cecchi units provide

50MHz, 12 bit full-waveform acquisition with 128 kilo-samples per channel.

Cecchi units can only handle four channels per unit, so for these experiments, two

units were used in a Master/Slave configuration. The THC unit provides trigger

and hit count logic by analyzing the number of pre-specified threshold crossings

per channel over a specific period. For these experiments, the trigger threshold

was 150 mV, which had to register on at least three channels to trigger a hit. The

THC and Cecchi units were controlled using the Cecchi Leach software package.

Control settings for the Cecchi unit can be found in Table 4.3. A schematic of

the connections between the AE sensors and data acquisition units can be found

in Figure 4.10.
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Parameter Setting

Wavelength 8192

Sampling Frequency 50 MHz

Full Scale Volts 8 V

Table 4.3: Recording settings for the triggered data in Cecchi Leach.

Figure 4.10: Schematic of laboratory acoustic emissions connections. PAD stands for Pulsar

Amplifier Desktop unit and PIU is Pulsar Interface Unit. Connections were made with coaxial

cables.
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4.4 Calibrations of Experimental Equipment

4.4.1 Machine Stiffness

The machine stiffness was calibrated using a control sample with a known Young’s

modulus, in this case steel. This is generally done by cyclically loading and

unloading the control sample to observe the elastic response of the machine. The

gradient of each loading curve is calculated, and the average of these gradients is

the measured apparent Young’s modulus, Eobs.

At the time of completing this calibration, we were unable to perform cyclic

loading and unloading due to the absence of a Back-Pressure Regulator (BPR).

Instead we continuously loaded the steel sample and sectioned the stress-strain

curve into three parts, which were treated as three loading cycles. The apparent

Young’s modulus was determined for each section via linear regression, and the

three values averaged to calculate Eobs (Figure 4.11). This alternative method

does not account for hysteresis, but hysteresis is not expected with steel during

elastic loading. The machine stiffness was then calculated using the observed

Young’s modulus and the known Young’s Modulus of steel as per equation 5.3.

kmach =
1

(1/Eobs − 1/Esteel)
(4.3)

This calculation determined the machine stiffness to be 65.13 ±1.79 GPa.
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Figure 4.11: Stress-strain curve of loading the steel control sample. The three segments used

for determining the measured apparent modulus (Eobs) are color indicted.

4.4.2 Pressure Sensors

Ram and confining pressure sensors were calibrated against a WIKA CPG1000

precision digital pressure gauge, with 0.05% accuracy (Figure 4.12). These sensors

were a Lucas Shaevitz p943 (ram), a GEMS 1000 (confining high pressure) and

a Lucas Shaevitz p1241 (confining low pressure). This calibration was completed

before my project involvement by Alexis Cartwright-Taylor.
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Figure 4.12: Pressure sensor calibrations for LS p943, GEMS 1000, and LS p1241. Figure

courtesy of Alexis Cartwright-Taylor.

4.4.3 Data Acquisition Units

The acoustic emissions data acquisition units were tested upon installation by a

representative of Itasca Consultants (UK). This equipment is regularly tested and

maintained through an annual service contract. The Richter, Cecchi, and Trigger-

Hit-Count (THC) units were all tested for communications and basic functionality.

An additional frequency response test was performed to verify each unit’s 3dB

bandwidth data card. This test involves a frequency sweep from 10kHz to 5.6MHz

and measuring the frequency response of the data acquisition cards. The Richter

system’s continuous data collection was tested using the Richter’s eXstream DAQ

software and analyzed using the Stream Visualizer software (Applied Seismology

Consultants, 2014).
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4.5 Experimental Materials

4.5.1 Sample Lithology

These experiments were performed on Permo-Triassic aeolian ‘Clashach’ sand-

stone chosen for its homogeneity and mineralogical simplicity. The Clashach

sandstone originates from a commercial quarry near Elgin, a town in the Moray

coast of northern Scotland. This rock belongs to the Hopeman Sandstones For-

mation which outcrops on the shores of the Moray Firth basin (McMillan et al.,

1999; Ojala, 2003). Clashach has been studied extensively in the UK as a lo-

cal analogue for the Berea Sandstone, which is a global standard often used in

benchmark tests as it is host to a large oil and gas field and is one of the most

used building stones in the United States (Crawford et al., 1995; McMillan et al.,

1999; Ojala, 2003). Clashach is also widely used as a building stone due to its

homogeneity and strength. The Clashach sandstone’s composition, mechanical,

and hydraulic properties have been well characterized in previous studies (Craw-

ford et al., 1995; Iglauer et al., 2012; Ngwenya et al., 2003; Ojala, 2003; Ojala

et al., 2004b). It is a pale-fawn colored, medium to coarse grained (200-500µm),

well sorted subarkosic arenite (Crawford et al., 1995; Ngwenya et al., 2003; Ojala,

2003; Ojala et al., 2004b). Crawford et al. (1995) performed an extensive miner-

alogical study on the Clashach sandstone using a combination of X-ray diffraction,

polarized light microscopy, and electron microscopy, and reported a composition

of 89% sub-rounded quartz and 11% fresh altered potassium-rich feldspar with

small traces of illite. Other studies have reported traces of muscovite, apatite, zir-

con (Liakopoulou-Morris et al., 1994), calcite, and ankerite (Iglauer et al., 2012).

Clashach is characterized by quartz cementation in the form of secondary over-

growths (Ngwenya et al., 2003; Ojala et al., 2004b).

4.5.2 Sample Preparation

The Clashach block used for these experiments was collected at the Forth Stone

Ltd stone masonry in Edinburgh, UK. The block weighed approximately 100kg

and was cut in half using a rock saw for better maneuverability. The two halves

were used to produce 50 cylindrical core samples measuring 90mm in length and

38mm in diameter, a length to diameter ratio greater than 2:1 and therefore in
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the recommended range for rock deformation experiments (Paterson and Wong,

2005). The blocks showed no clear fabric, so all cores were drilled in a parallel

direction. An alphanumeric grid labeling system was used across the two block

halves to keep track of each core’s location in the original block to identify any

trends within the material.

(a) (b)

(c)

Figure 4.13: Illustration of the Clashach block. (a) The block was cut in half with a rock

saw. (b) The two adjoining faces were separated. (c) An alphanumeric system was used to label

cores.

The samples were cored using a 38mm diamond coring drill to a length of

120mm. The samples were ground down to the desired length of 90mm and

the end faces made parallel and flat using a lathe. Two samples (C7 and B9)

were rejected due to mistakenly being ground below 90mm. The samples were

labelled on all faces to indicate the sample’s original location in the block as well

as to identify x, y, and z directions. Each sample was thoroughly sonicated with

deionized water until clean. The samples were then dried in an oven for two days

at the laboratory standard of 50 degrees Celsius. Dry mass, volume, and benchtop

velocity measurements were made for each sample.
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4.6 Experimental Procedure

The test sample was first prepared according the method outlined in section 4.5.2.

Parametric data acquisition was then set up on the rig desktop computer using the

LabView software. A small amount of ultrasonic jelly was placed on each end face

of the selected sample and on the acoustic emissions sensors before building the

sample stack. The bottom acoustic emission sensor plate was placed first, aligned

with the center of the ram. Next, the load cell portion of the sample stack was

assembled with a large steel weight on top. A small amount of confining pressure

(<5MPa) was applied to the load cell to center the sample to keep the stack

together for ease of mounting underneath the ram. The load cell was carefully

lifted and placed on top of the bottom AE sensor plate and the whole stack

centered. The top AE sensor plate was then added and positioned so that the

corresponding P and S-wave channels were vertically aligned with the bottom

sensor plate. The sample stack was then completed by adding the LVDT units.

Once the whole sample stack was assembled and centered underneath the ram,

the small confining pressure was released.

The ram was then lowered to touch the sample stack until the whole stack was

firmly kept in place. This was done very carefully to minimize ram pressure and

ensure that the sample was not damaged. Then the desired confining pressure of

24MPa was applied using the Bladder Accumulator and ISCO pump. Once the

confining pressure was level at 24MPa, the cell was sealed off to maintain pressure.

Acoustic emissions data collection was then set up on the AE desktop using the

Cecchi Leach and eXstream software packages. Once the data was recording, the

sample loading could begin.

To load the sample, the ISCO pump was set to deliver hydraulic fluid at a

rate of 0.874 ml/min, creating a strain rate of 1e−5 s−1. The real-time data were

monitored during the deformation experiments. The experiments ended when the

sample catastrophically failed, made apparent by a rapid drop in ram pressure

as well as audible cracking. At this time, the ISCO pump was stopped. AEs

continued to be recorded for a few minutes after failure. Once all data acquisition

was stopped, the ram was unloaded and the sample stack dismantled.

A detailed step-by-step procedure for preparing samples, data acquisition, and

rig operation can be found in the Appendix.
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4.7 Summary

In this study, repeat, identical, triaxial deformation tests were carried out on

cylindrical Clashach sandstone cores. The tests all had a constant strain-rate and

ran until catastrophic failure of the sample. During each test, the axial strain, ram

pressure, confining pressure, and acoustic emissions activity were continuously

monitored and recorded. The data collected will be discussed in the following

chapters, as well as the forecasting potential of the precursory acoustic emissions

data.
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Chapter 5

Experimental Data

5.1 Introduction

This chapter presents the data produced during the triaxial deformation exper-

iments. A total of 25 near-identical experiments were conducted on 38mm x

90mm Clashach sandstone according to the procedure outlined in Chapter 4.

The remaining 23 prepared cores were intended to be tested under different lab-

oratory conditions but this was not possible due to Covid-19 limiting laboratory

access. In order to compare these tests to those under varying conditions given

the circumstances, this data was supplemented with 9 experiments on Clashach

sandstone 10mm x 25mm core samples that were previously conducted by Dr.

Alexis Cartwright-Taylor, who graciously agreed to the data being used in this

study. In this chapter, I focus on the data produced during the 38mm core exper-

iments. I present the parametric, acoustic emissions, and continuous waveform

data recorded along with initial data processing and assessment methodology.

Then I discuss the initial data findings and the implications for test quality as-

surance before leading into the following research chapter where the event rate

evolution for both experimental datasets will be discussed in greater detail.

59
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5.2 Sample and Experimental Characteristics

Diameter and length measurements were made along the x and y axes to estimate

the dimensions and volume of each sample. Dry mass was recorded using a

laboratory scale. Table 5.1 lists the measured height, radius, mass, volume, and

density for all Clashach sandstone cores. The height, radius, and mass values are

averages of two measurements per sample. The mean mass across all samples is

235.35 ± 1.17g, and the mean volume is 102.61 ± 0.52cm3.

Table 5.1: Dry sample details for Clashach sandstone cores

Sample h (mm) r (mm) Volume (cm3) Mdry (g) Density (g/cm3)

A1 90.80 18.90 101.87 234.98 2.307

A2 90.04 18.96 101.63 234.14 2.304

A3 90.57 18.99 102.58 235.70 2.298

A4 90.28 18.99 102.22 235.24 2.301

A5 89.95 18.98 101.74 234.61 2.306

A6 90.16 19.03 102.60 233.82 2.279

A7 89.71 19.03 102.09 233.65 2.289

A8 90.83 19.00 103.03 236.86 2.299

A9 90.12 19.02 102.42 234.70 2.292

A10 90.60 19.01 102.89 236.54 2.299

B1 90.10 18.99 102.08 234.53 2.298

B2 90.16 18.96 101.85 235.32 2.310

B3 90.00 18.99 101.91 235.14 2.307

B4 89.96 19.04 102.40 234.94 2.294

B5 90.29 19.04 102.80 235.53 2.291

B6 90.07 19.02 102.31 234.23 2.290

B7 90.96 19.02 103.34 236.90 2.292

B8 90.27 19.05 102.94 234.96 2.283

B10 89.79 19.06 102.42 234.48 2.289

C1 89.56 19.12 102.80 233.28 2.269

C2 90.25 19.01 102.43 236.04 2.304

C3 90.60 19.00 102.72 237.13 2.308

C4 90.43 19.02 102.77 236.79 2.304

C5 89.99 18.99 101.95 232.72 2.283

Continued on next page
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Table 5.1 – Continued from previous page

Sample h (mm) r (mm) Volume (cm3) Mdry (g) Density (g/cm3)

C6 90.47 19.04 102.98 235.45 2.286

C8 90.00 19.06 102.72 235.37 2.291

C9 90.33 19.03 102.77 236.46 2.301

C10 89.99 19.06 102.70 234.97 2.288

D1 89.91 19.06 102.63 234.63 2.286

D2 90.03 19.04 102.53 235.06 2.292

D3 90.59 19.01 102.79 237.69 2.312

D4 90.55 19.01 102.83 237.31 2.308

D5 90.53 19.18 104.59 234.37 2.241

D6 90.10 19.03 102.48 234.73 2.291

D7 89.98 19.05 102.53 235.51 2.297

D8 89.92 19.13 103.37 235.55 2.279

D9 89.96 19.06 102.67 234.93 2.288

D10 90.02 19.03 102.39 235.95 2.304

E1 89.68 19.13 103.13 235.01 2.279

E2 90.08 19.05 102.64 235.74 2.297

E3 90.84 19.03 103.35 238.41 2.307

E4 90.22 19.05 102.89 234.73 2.281

E5 90.72 18.99 102.80 235.86 2.294

E6 90.06 19.04 102.57 234.41 2.285

E7 90.14 19.05 102.74 235.03 2.288

E8 90.23 19.04 102.79 236.02 2.296

E9 90.83 19.01 103.09 237.30 2.302

E10 89.40 19.02 101.57 233.95 2.303

A subgroup of five samples were subsequently vacuum saturated to estimate

material interconnected and total porosity. Total porosity is all pore volume

space within the sample, a sum of the interconnected and isolated porosity.

Interconnected porosity is the volume of space that is accessible to fluid flow,

while isolated porosity is the volume of closed off space that is inaccessible to

fluids. For this study the total porosity (ϕtotal) was estimated using the density

method, which takes the difference between the sample bulk density (ρB) and the
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average density of the solids (ρs) (Gueguen and Palciauskas, 1994). The total

porosity is therefore given by:

ϕtotal = 1 − (ρB/ρs) (5.1)

Porosity was estimated assuming that the samples are composed entirely of quartz

grains with ρs = 2.65g/cm3. Interconnected porosity was estimated using the

Archimedes method, which determines the mass of the fluid within a vacuum

saturated sample and corrects for its buoyancy. Dry (Mdry), saturated (Mwet),

and submerged mass (Msub) were measured for the selected samples and the

interconnected porosity (ϕconn) calculated by:

ϕconn =
Mwet −Mdry

Mwet −Msub

(5.2)

The five cores that were selected for porosity analysis can be found in Table

5.2. The dry, wet, and submerged mass of each sample was used to estimate the

total and interconnected porosity. These porosity values are consistent with some

literature (Ojala et al., 2004b), and low compared to others (MacBeth, 2004; Tao

et al., 1995), but still within a reasonable range, suggesting that the core parent

rock has a finer grain size.

Table 5.2: Sample porosity estimation details and results.

Sample V(cm3) Mdry(g) Mwet(g) Msub (g) ϕtotal ϕconn

B2 101.85 235.32 248.27 148.79 0.128 0.130

C2 102.43 236.04 249.86 149.85 0.131 0.138

C3 102.72 237.13 249.72 149.91 0.129 0.126

D8 103.37 235.55 243.44 143.32 0.140 0.080

E5 102.80 235.86 249.49 149.19 0.134 0.136

5.2.1 Benchtop Elastic Wave Velocity

Elastic wave propagation is heavily dependent on a rock’s micro-structure. This

is due to the large velocity variability between pore fluid, crystal grains, and
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air (Horai and Simmons, 1969). Elastic wave velocity is therefore commonly

used to evaluate a rock’s elastic, mechanical, and fluid transport properties as

well as the effect of micro-structural orientation on those properties, known as

anisotropy. For the purposes of this study, sample velocity was taken to ensure

that the sandstone’s elastic properties are consistent with literature and to assess

the similarity of the samples. As it was desired to have tests that were as identical

as possible, velocity assessment is another means of identifying sample outliers.

Benchtop (room temperature and pressure) P and S-wave velocity measure-

ments were made for all samples using the pulse-transmission or ‘time of flight’

technique (Birch, 1960) using the acoustic emissions sensors described in section

4.3.4. Sample P and S-wave velocity was used to calculate several elastic prop-

erties such as Young’s Modulus (E), Poisson’s ratio (ν), bulk modulus (κ), and

shear modulus (µ) using Equations 5.3-5.6 (Mavko et al., 2009). The mean elastic

properties can be found in Table 5.3.

E = 2ρV 2
s (1 + ν) (5.3)

ν =
V 2
p − 2V 2

s

2(V 2
p − V 2

s )
(5.4)

κ = ρ(V 2
p − 4

3
V 2
s ) (5.5)

µ = ρV 2
s (5.6)

Table 5.3: Clashach sandstone elastic properties.

Young’s mod. (E) Poisson’s ratio (ν) bulk mod. (κ) shear mod. (µ)

34.37 GPa 0.12 15.58 GPa 21.26 GPa

5.2.2 Experimental Conditions

All deformation experiments were conducted at a constant strain rate of 0.003

ml/s. The 38mm cores were all tested with a confining pressure of 24 MPa.

Samples B2, C2, and C3 were tested as wet, saturated rocks before changing the

experimental procedure to be use dry samples (see section 4.1) for the remaining
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22 samples. The experimental conditions for the 10mm cores can be found in

Table 5.4. These data can be separated into two investigative cohorts, (1) a set of

nearly identical repeat experiments, and (2) a set of tests on the same materials,

but at varying scales, saturation, and confining pressures. Cohort 1 will allow for

statistical analysis of the material’s brittle behavior under repeat conditions to

minimize individual experimental artifacts. Cohort 2 allows for assessment of the

effects of experimental conditions on deformation behavior and precursory signal

event rate.

Sample diameter (mm) wet/dry Pc (MPa)

CL1 10 dry 10

CL3 10 dry 10

CL5 10 dry 10

CL6 10 dry 20

CL7 10 dry 30

CL8 10 wet 20

CL9 10 wet 10

CL10 10 wet 30

CL11 10 wet 20

Table 5.4: Experimental conditions for 10mm x 25mm core tests completed by Dr. Alexis

Cartwright-Taylor

5.2.3 Sample Failure Modes

Catastrophic failure of rock specimens under triaxial compression have a limited

number of failure modes. These include shear fracture (along a single plane or two

planes), axial splitting, splitting along foliation, multiple fracture, and Y-shaped

splitting. The mode in which a rock fails depends on a number of factors such as

rock type, presence of faults, and ratio of confining pressure to axial stress. The

following table lists the modes of failure for each of the deformed Clashach 38 x

90mm cores.
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Sample failure mode Sample failure mode

A2 shear C3 shear and lateral

A3 axial C9 shear

A5 shear D4 shear

A6 shear D10 double shear

A7 shear E1 shear

A10 shear and lateral E3 shear

B1 double shear E4 shear and lateral

B2 shear E6 shear

B4 shear E7 shear

B5 shear E9 double shear

B6 multiple E10 double shear

Table 5.5: Failure modes for the 38mm x 90mm Clashach cores under triaxial compression.

5.3 Compressive Strength

Material strength assessment from triaxial deformation experiments is done by

evaluating the stress-strain curve (see section 2.2.2). The stress and strain data

were recorded from the laboratory deformation rig using the LabView software.

All cores had typical differential stress curves and the failure time for each test is

based on the stress drop time. Stress-strain behavior was also standard, with all

samples exhibiting a maximum strength between 275 MPa — 325 MPa. Clashach

sandstone’s strength from fine grained quartz cementation is one of the reasons

it is among Scotland’s most commonly used building stones. Three randomly

selected examples of stress-strain curves are shown below to demonstrate typical

stress-strain curves for these experiments (Figures 5.1, 5.2, 5.3).
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Figure 5.1: Stress-strain curve for sample E1. Yield point, Y , and material strength, C, are

labelled.
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Figure 5.2: Stress-strain curve for sample E9. Yield point, Y , and material strength, C, are

labelled.
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Figure 5.3: Stress-strain curve for sample E10. Yield point, Y , and material strength, C, are

labelled.

5.4 Characteristics at Failure

Figure 5.4 shows the variability in failure time across samples. The mean failure

time in elapsed seconds is 3588.18 ± 715.95. Two experiments, A3 and D10,

had user-error complications during early-stage testing, which lead to increased

testing time as well as additional AE events. The AE event distribution and

further details on these tests complications can be found in Section 5.5.3. To

adjust for this, the mean failure time excluding these tests, 3540.15 ± 480.62, has

also been labelled on Figure 5.4.
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Figure 5.4: Failure time in seconds from experiment start by sample. Red line indicates the

mean failure time and green line indicates the adjusted mean without outliers A3, D10.

The mean cumulative number of AE events at failure is 3367.41 ± 1439.67, and

the adjusted mean without samples A3 and D10 is 2974.5 ± 737.01 (Figure 5.5).

The significance of removing the outliers was fairly negligible for the mean failure

time, but for the cumulative AEs, the exclusion decreases the standard deviation

by half. Peak amplitude during each test is shown in Figure 5.6. The mean

peak amplitude was 3.57 ± 1.44. In this case, samples A3 and D10 were not

outliers and did not alter the mean. Evaluation of mean test characteristics at

failure allows us to catalog typical behavior for these samples and and assess the

variability of the samples.
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Figure 5.5: Cumulative number of acoustic emission events at failure for each experiment.

Mean value (red) and adjusted mean (green) are indicated.
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Figure 5.6: Peak amplitude (recorded as voltage) during each triaxial test. Red line indicates

the mean peak amplitude, 3.57.

5.5 Acoustic Emissions

Acoustic emissions monitoring was used in this study as a measure of microcrack

growth and cumulative material damage. In this section, I will discuss some of

the general characteristics of the AE waveforms as well as the evolution of the

AE event rate and size throughout the experiments.

5.5.1 AE Waveforms

Acoustic emissions events were captured using a Trigger-Hit-Count (THC) sys-

tem. Events were recorded using six channels, an event must exceed an ampli-

tude threshold on at least three of those channels to register with the THC unit.

Throughout the experiments, hundreds of events were manually checked to ensure
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that the THC system was accurately registering events. Figures 5.7 and 5.8 dis-

play the recorded waveforms for two events during the test performed on sample

B4. These figures are two examples of typical events recorded by the THC unit.

In the following subsection, I present the frequency content of these events.

Figure 5.7: Acoustic emissions waveforms across all six recording channels near failure time,

sample B4. Channel 4 distinctly shows the event onset and peak magnitude of approximately

0.1.
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Figure 5.8: Acoustic emissions waveforms across all six recording channels near failure time,

sample B4. Channel 5 displays the event most clearly, with a peak amplitude of approximately

0.25.

5.5.2 Frequency Content of AE Signals

For acoustic signals, spectrograms are often used as an alternative to conventional

waveforms for data visualization. Spectrograms display the relationships between

time, frequency, and signal strength. Signal frequency is the number of waves

passing through a fixed point in space in a given unit of time. Amplitude

is the signal’s maximum deviation from a relative equilibrium state, and is a

representation of signal strength. Generally, spectrograms are generated using

consecutive short time Fourier Transforms using a window function with little to

no overlap. In contrast, a Welch spectrogram averages over the entire signal to

compute the power spectral density. Figures 5.9 and 5.10 display the spectrograms

for two AE events displayed in Figure 5.7 (channel 3) and Figure 5.8 (channel

4), respectively. Results show a concentration of energy around 1MHz during the

event peaks.
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Figure 5.9: Waveform (top), spectrogram (bottom-left) and welch spectrogram (bottom-right)

for acoustic emission near failure for sample B4, channel 3.
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Figure 5.10: Waveform (top), spectrogram (bottom-left) and welch spectrogram (bottom-

right) for acoustic emission near failure for sample B4, channel 4.

5.5.3 Evolution of AE Events

Assessing the event rate distribution preceding failure is essential for application

of the Failure Forecast Method, as the method is based on the assumption of a

power-law or hyperbolic event rate distribution in order to solve for failure time,

tf . A stack of the event rate (events/second) distribution for the Clashach 38mm

x 90mm core experiments show that the tests mostly take the same general form

leading up to failure. For comparison the event rate stacks were plotted on a true

time axis (Figure 5.11) and on a normalized time axis (Figure 5.12). There are

three tests which have behavior that deviates from the norm, A3, A10, and E4.
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Figure 5.11: Event rate distribution for Clashach 90mm core experiments. Abnormal event

rate peaks for A3 (orange) and E4 (grey) are visible, as well as the double-peak failure for A10

(brown).
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Figure 5.12: Event rate stack of Clashach 90mm core experiments with experimental duration

normalized.

Test A3 has a notably longer test duration and a premature peak in AE

activity which levels out again before resuming with a similar event rate behavior

as the other experiments (Figure 5.13). This was due to an error in the plumbing

setup for the test that prompted pausing the test, removing the load, and then

resuming the test as normal. A ‘fixed’ version of this test would involve resetting

the start time, but as some load had already been applied to the sample and

damage done, so resetting would not be a true depiction of the test. In addition,

we chose to keep the artifact to observe the forecasting potential given a brief

acceleration with no system failure. Sample A10 has a unique double-peak event

rate distribution due to double fracturing. It was noted during testing that an

audible crack was heard shortly before the louder catastrophic event, which is

one of the reasons that failure time is based on differential stress drop rather

than auditory assessment. For improved clarity of what the ‘typical’ event rate
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behavior is for these experiments, Figure 5.16 shows the event rate stack without

samples E4 and A10.

Figure 5.13: Event rate distribution for sample A3. Premature increase in AE activity is due

to experimental error.
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Figure 5.14: Event rate distribution for sample A10.



80 5.5 Acoustic Emissions

Figure 5.15: Event rate distribution for sample E4.

Figure 5.16: Event rate distribution for Clashach samples; A10 and E4 have been removed

for clarity.
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5.6 Discussion

The results of the triaxial deformation tests on 38mm x 90mm Clashach cores

produced clean data with limited variability across experiments. I evaluated the

event rate characteristics at failure time, along with the relationships with other

damage metrics such as cumulative number of AE events and event size. Results

show that the cumulative number of events at failure is generally independent

of maximum event rate at failure (Figure 5.17). This indicates that either there

is a critical event rate threshold for these samples or that there are recording

limitations in the trigger-hit-count system.

Figure 5.17: Cumulative number of acoustic emissions events at failure time vs. event rate at

failure time.

The peak event amplitude also does not appear to be correlated with event

rate. This indicates a greater dependence on event rate than on event size in

determining failure time.
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Figure 5.18: Peak amplitude recorded during each triaxial test vs. the event rate at failure

time.

The acoustic emissions event rate data was unexpected given prior studies

(Heap et al., 2009b; Ojala et al., 2004a,b). At initial assessment, the acoustic

emissions event rate for these samples does not appear to follow a power law

distribution. As a non-linear event rate with a discernible singularity is the

foundation of the forecasting techniques that motivated this study, this prompted

further investigation. As an initial assessment of the event rate distribution, I

viewed the data on a log-log scale, as a power law would become linear (Figure

5.19). I also viewed the event rate distributions with varying bin width (δt) to see

if the result was an artifact of poor binning. When both of these methods assured

me that the data was not a visual error, I questioned the catalog completeness of

the data.
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Figure 5.19: Event rate stack for Clashach large core experiments on linear (top), log-linear

(middle), and log-log (bottom) axes. Colors depict different experiments.
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I assumed that the distribution was happening due to smaller events being

missed by the trigger-hit-count system in the presence of large events approaching

failure (see section 4). To assess this, frequency-magnitude distributions (FMDs)

were created for each experiment and the completeness magnitude determined

via the maximum curvature method (see section 2.3.4). As properly calculated

moment magnitudes were not of interest for this study, just ensuring event

completeness, energy magnitudes were roughly estimated as the logarithm of the

amplitudes. This method determined a completeness magnitude of Mc = −1.0 for

nearly all sample datasets and remained consistent throughout each experiment,

suggesting that events were not missing from later data. Further discussion of the

FMDs can be found in the next chapter. Investigating event magnitude with time

agreed with the FMDs, as the results would show a thinning out of detected low

magnitude events near failure if they were being masked by larger events (Figures

5.21, 5.20).

Figure 5.20: Event magnitude over time for test E3 that has not yet been filtered for magnitude

completeness. The cut-off completeness magnitude is labelled in teal and failure time in red.
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Figure 5.21: Event magnitude over time for test A5 that has not yet been filtered for magnitude

completeness. The cut-off completeness magnitude is labelled in teal and failure time in red.

To further investigate, I selected time windows near failure for multiple tests.

I cross referenced the triggered event waveforms during these windows with the

corresponding times in the continuous waveform data. Some examples of the

continuous waveform data viewed in the Cecchi Leach software package are shown

in Figures 5.22 and 5.23. This process suggested that the number of missing events

was minimal, and certainly not enough to effect the rate distribution.
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Figure 5.22: Continuous waveform data for sample E6 viewed on the Cecchi Leach software.

Channels 1-6 are shown where channels 1 and 2 are P1,P2 and channels 3-6 are S1-S4. Channels

1,3,5 are located on top of the sample and channels 2,4,6 below the sample.

Figure 5.23: Continuous waveform data for sample C9 viewed on the Cecchi Leach software.

Channels 1-6 are shown where channels 1 and 2 are P1,P2 and channels 3-6 are S1-S4. Channels

1,3,5 are located on top of the sample and channels 2,4,6 below the sample. The time offset

indicates that the event shown was near the bottom of the sample due to earlier appearance on

the bottom channels.
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5.7 Conclusions

In this chapter, I have presented the experimental data for the triaxial deformation

experiments outlined in section 4. I presented the physical and elastic properties

of the test specimens before failure, their event rate and strain behavior during

testing, and their fracture modes upon failure. Results indicate a non-power law

acoustic emissions event rate in contrast with literature. An investigation was

performed into the validity of the event rate behavior to ensure it was not the

result of sensor limitations. The results of this investigation suggest that the event

rate distribution observed is real and not an observational artifact, prompting

more questions: Why is this event rate behavior not obeying the anticipated

power-law? What event rate model is appropriate for my data? Why is it that

previous studies on Clashach do not share this event rate distribution? What

does this mean for forecasting the failure time for these samples? In the following

chapter, I explore and aim to answer these questions.
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Chapter 6

The Effect of Confining Pressure

on Fracture Mechanics and

Forecastability of Clashach

Sandstone

6.1 Introduction

At present, there is a great deal of uncertainty about why power-law accelerating

precursors are observed before some geophysical deformation events and not

others. As the deformation experiments conducted on 38mm x 90mm Clashach

sandstone cores did not yield the power-law event rate results I had anticipated

based on previous literature, I sought to understand why. My initial plan was

to begin this investigation by investigating two variables, lithology and strain

rate, which have both been associated with acoustic emissions events rate (Ojala

et al., 2004a; Vasseur et al., 2015). The plan was to conduct additional tests,

one set on Clashach cores using varying strain rates, and another set under the

same experimental conditions as listed in section 5, but using a different material.

Ten 38mm x 90mm Darley Dale sandstone cores were cored, faced, weighed, and

sonicated for this study. However, due to the Covid-19 pandemic, it was not

89
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possible to conduct these experiments. To avoid the need for laboratory access,

my plan changed to accommodate the use of experimental data that was already

collected and available. I chose to analyze data collected by Dr. Alexis Cartwright

Taylor on 10mm x 25mm Clashach sandstone cores under varying experimental

conditions e.g., confining pressure and water saturation. By comparing these

data with the 38mm cores, I am able to assess the scale invariability of these

experiments as well as evaluate the effect of confining pressure on acoustic event

rate behavior, and ultimately, forecast potential.

6.2 The effect of heterogeneity on failure fore-

casting

Heterogeneity has long been associated with increased precursory signals event

rate (Mogi, 1967; Mori and Abercrombie, 1997; Vasseur et al., 2015). The presence

of heterogeneities such as faults, inclusions, large grains and pore spaces weaken

the overall strength of a rock allowing crack initiation. The presence of these

artifacts not only promote crack initiation, but they also serve as blockades

and inhibit the cracks from growing into large, catastrophic ruptures. Only

after enough cracks have formed, expanded, and coalesced will the rock reach

a critical point and catastrophically fail. In contrast, a homogeneous rock is less

prone to crack initiation, but each initiation has a greater likelihood of growing

catastrophically. Rapid increases in precursory signals happen much later, or not

at all, in homogeneous rocks (Mogi, 1967). During rock deformation experiments,

the acoustic emissions from homogeneous rocks have higher b-value; a greater ratio

of small events to large ones (see section 2.3.4).

Applying pressure to a rock serves to decrease heterogeneity by compressing

the material, closing pore space and cracks. This is why an increased confining

pressure has been shown to produce fewer total acoustic emissions events, and

increased differential stress has been linked to greater material strength and

decreasing b-value (Filimonov et al., 2005; Jia et al., 2020; Li et al., 2019). When

it comes to real-earth events, earthquakes at greater depths have been observed

to have lower b-values, which has been credited to the increasing lithostatic stress

with depth (Amorèse et al., 2010; Mori and Abercrombie, 1997; Popandopoulos
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and Lukk, 2014). Unsurprisingly, large earthquakes at shallow depths (<6km)

are considerably more likely to be preceded by foreshocks than deeper ones, with

foreshocks rarely being observed before events at depths greater than 15km (Mori

and Abercrombie, 1997).

As the Failure Forecast Method is dependent on these precursors, event

confining pressure (or depth) is likely a determining factor for the FFM’s efficacy.

Vasseur et al. (2015) investigated the effect of heterogeneity on AE event rate

and the effectiveness of the FFM by comparing different lithologies. The authors

report a strong preference for the power-law rate model as heterogeneity increases,

and report fewer total AEs, a preference for the exponential rate model, and

reduced forecasting accuracy as heterogeneity decreases. The effect of varying

confining pressures on the acoustic emissions event rate for a single lithology has

been evaluated for rock salts (Filimonov et al., 2005), and coal (Jia et al., 2020),

and on the cumulative AE counts of red sandstone (Li et al., 2019). However, to

my knowledge, no one has investigated the effect of confining pressure on the AE

event rate of Clashach sandstone, nor its implications for forecasting potential.

Results of this thesis suggest a strong correlation between confining pressure

and event-rate behavior. I argue that the confining pressure, and in the real-

earth, event depth, reduce medium heterogeneity by inhibiting micro-fracture

development and therefore reduce or eliminate precursory indicators. Forecasting

these events using event rate data is therefore unsuitable and alternative options

must be explored.

6.3 Methodology

In order to evaluate the event rate behavior of the Clashach triaxial tests, it

was crucial to determine whether or not the behavior is real or an observational

artifact. The data was investigated for ‘magnitude’ (log(Amp)) completeness,

variations in binning, and the trigger-hit-count system compared with continuous

data to ensure that events were not being missed (see section 5.6). As the

results of this suggested that the event rate distribution was real, the dataset

was supplemented with 9 tests on small Clashach cores under varying confining

pressures (see section 5.2.2). Initial assessment of the event rate distributions

for the small cores were varied, with some appearing as a power-law, and
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some following a similar distribution as the large cores. Frequency-magnitude

distributions and b-value evolution were evaluated for all Clashach cores following

the Maximum Likelihood Method (section 2.3.4).

6.3.1 Establishing AE Event Rate

The event rate of the Clashach large cores do not follow a power-law distribution,

and instead appear to follow a linear rate until a ‘switch-point’ where the rate

changes to a linear distribution of a steeper slope, remaining constant until failure

(section 5.5, Figure 5.16). Evaluating the event rates was crucial to determine

if the distributions are actually linear, and if not, what form the data is taking.

To establish linearity, linear regression analysis was performed for the event rate

data after the switch-point for each sample. Three methods were considered to

determine the switch-point; manual, rate-growth, and threshold. The manual

method was to select the point that by-eye appeared to be the switch-point.

Although this method is the most simple, it is the least robust and not very

scale-able to large datasets. The rate-growth method involved selecting the last

point in time before failure that the event rate was equal to zero. The idea behind

this was that early event rates hovered around zero before continuously increasing

until failure. However, in application, this method proved inaccurate due to late-

stage zero-rate data outliers, as well as correct switch-points that had very low

event-rate values, but were non-zero. This led to the application of a threshold

system, where the switch-point was determined as the last point that crossed

an event-rate threshold before failure. The threshold used in this study was 2%

percent of each experiment’s maximum event rate.

6.3.2 Evaluation of Current Forecasting Methods

A Bayesian Markov Chain Monte Carlo forecasting method was applied to all

Clashach sandstone acoustic emissions event rate data. Goodness-of-fit was

established using a Bayesian Information Criterion (BIC). As most of the samples

do not follow a power-law event rate distribution, this method is unsuitable.

Alternative datasets to AE event rate were explored to find a distribution that

may be suitable for power-law fitting. Acoustic emissions energy from the trigger-

hit-count data was selected along with root-mean-squared (RMS) energy from the



CHAPTER 6. The Effect of Confining Pressure on Fracture Mechanics and
Forecastability of Clashach Sandstone 93

Cecchi continuous data. Triggered AE energy was selected due to the ease of data

access and the observed acceleration in event size approaching failure for these

samples. RMS energy was selected as it uses continuous data without filtering

out events and therefore will not be missing any information within the sensor

limitations. As both of these datasets are not Poisson process data, they were fit

using a simple least-squares regression. Model preference was determined using a

BIC and evaluation of residuals.

6.4 Results

The experimental conditions for the small 10mm x 25mm cores are reiterated

in Table 6.1 for reference. The acoustic emissions event rate data for the small

cores is displayed in Figure 6.1. The distributions indicate a strong relationship

between event rate shape and confining pressure, as nonlinearity increases with

decreased confining pressure.

Sample diameter (mm) wet/dry Pc (MPa)

CL1 10 dry 10

CL3 10 dry 10

CL5 10 dry 10

CL6 10 dry 20

CL7 10 dry 30

CL8 10 wet 20

CL9 10 wet 10

CL10 10 wet 30

CL11 10 wet 20

Table 6.1: Experimental conditions for 10mm x 25mm core tests completed by Dr. Alexis

Cartwright-Taylor
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Figure 6.1: Event rate (events/second) stack for Claschach small cores with time normalized

to experiment length (zoomed). Legend lists the samples by increasing confining pressure

(10MPa—30MPa). The distributions indicate a strong relationship between event rate shape

and confining pressure.

6.4.1 Quantifying Linearity

Linear regression from the switch-point was performed for both of the Clashach

data cohorts to assess the linearity of the rate behavior. The linear regression

results are displayed in Table 6.2. The relationship between confining pressure

(Pc) and linear regression r-value is shown in Figure 6.2. The distribution shows

a positive correlation between confining pressure and linearity for most samples,

with only two large cores, E4 and B5, having a poor fit. This is expected for E4,

which as shown in section 5.5.3, has an abnormal event rate distribution without

an experimental procedure explanation.
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Table 6.2: Linear regression results for Clashach acoustic emissions event rate

Sample r-value p-value std error

CL1 0.740 0.009 0.088

CL3 0.719 1.12e-5 0.020

CL5 0.830 2.32e-9 0.014

CL6 0.897 3.96e-16 0.009

CL7 0.965 1.74e-29 0.006

CL8 0.866 1.19e-16 0.006

CL9 0.807 0.002 0.079

CL10 0.886 3.46e-12 0.012

CL11 0.903 3.62e-9 0.023

A2 0.942 2.12e-24 0.006

A3 0.968 3.65e-20 0.008

A5 0.944 5.49e-18 0.010

A6 0.924 7.18e-29 0.005

A7 0.961 3.63e-25 0.007

A10 0.924 3.78e-32 0.005

B1 0.970 2.46e-19 0.011

B2 0.928 9.56e-19 0.010

B4 0.945 5.23e-23 0.007

B5 0.725 0.0001 0.013

B6 0.981 2.31e-26 0.006

C3 0.899 1.99e-10 0.019

C9 0.963 1.41e-34 0.005

D4 0.941 1.76e-20 0.008

D10 0.968 2.56e-26 0.006

E1 0.955 4.69e-21 0.008

E3 0.941 9.35e-24 0.007

E4 0.773 5.79e-6 0.260

E6 0.969 1.06e-27 0.006

E7 0.939 1.03e-18 0.010

E9 0.932 9.44e-24 0.007

E10 0.897 2.45e-14 0.010
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Figure 6.2: Event rate linear regression r-value for Clashach 10mm x 25mm cores (red) and

38mm x 90mm core (blue) and their respective experimental confining pressures.

Although linear regression for the data beyond the switch-point seemed

appropriate for some samples, the residual distribution did not suggest proper

fitting. Figure 6.3 shows an example of the linear fitting and the associated

residuals. The rate data takes an ‘S’-shape leading to failure which is highlighted

by the residual distribution (Figure 6.4). Asymmetric residuals were ubiquitous

for the linear fits (Figure 6.5).
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Figure 6.3: Event rate linear regression for sample A7. Top panel displays linear regression

fit on linear axes, middle panel on log-linear axes, and bottom panel on log-log axes.
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Figure 6.4: Linear regression residuals for sample A7, with asymmetric S-shape distribution.
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Figure 6.5: Linear regression residuals for sample CL8 (top), CL7 (middle) and C9 (bottom).

Exponential (Figure 6.6) and power-law (Figure 6.8) distributions were also fit
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to the data. A power law model clearly does not fit the data, with very asymmetric

residuals (Figure 6.9). The exponential model is the most accurate, with much

lower residuals than a linear fit (Figures 6.3 and 6.7), and the fit mostly degrading

near failure. For samples at lower confining pressures (CL1, CL3, CL5, and CL9),

the event rate is distinctly more nonlinear, but still prefers an exponential model

to a power-law.
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Figure 6.6: Event rate exponential fit for sample A7. Panels display fit on linear (top), log-

linear (middle), and log-log axes (bottom).
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Figure 6.7: Exponential fit residuals for sample A7. Residuals are poor early in the experiment

and hover around zero as the sample approaches failure.
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Figure 6.8: Event rate power-law fit for sample A7. Panels display fit on linear (top), log-

linear (middle), and log-log axes (bottom).
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Figure 6.9: Power-law fit residuals for sample A7.
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Figure 6.10: Exponential (left) and power-law (right) fits for small core sample CL3.
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Figure 6.11: Exponential (left) and power-law (right) fits for small core sample CL5.

All of the Clashach small cores fit the exponential model best. Clashach large

cores are not truly represented by an exponential model, but it is the best fit of

these options.

6.4.2 FMD Analysis

Frequency magnitude distribution (FMD) plots were generated for all Clashach

samples. Seismic b-value was determined via the Maximum Likelihood Method

after the removal of events below the completeness magnitude as well as events

after failure time, as we are particularly interested in b-value evolution leading up

to failure. Figure 6.12 displays the FMD for sample A3, representing a typical

distribution for the Clashach cores. Completeness magnitude was determined

using the Maximum Curvature (MaxC) method and is indicated on the plot. To

assess the evolution of the FMD, the data before failure time was split into thirds

and compared (Figure 6.13), and the b-values were estimated (Figure 6.14).
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Figure 6.12: Frequency magnitude distribution for sample A3. Cumulative data is shown in

orange and the completeness magnitude, Mc, is shown in teal.
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Figure 6.13: Segmented FMD distributions for sample A3. Top left subplot is for the whole

dataset and the subsequent subplots are for the first (top-right), second (bottom-left), and final

third (bottom-right) of the segmented data.

Analysis of the b-value evolution throughout the experiment can provide

insight the AE event-rate behavior. The acceleration before failure is more

prominent in the acoustic energy, which is why it was selected as an alternative

metric for modeling. This increase in energy would would suggest a decrease in

b-value with time. Evaluating the b-value evolution of the experiments in this

study showed a systematic decrease in the final third of the experimental run-

time (Figures 6.14, 6.15, and 6.16). This decrease indicates a larger ratio of

larger (high-energy) events to smaller events.
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Figure 6.14: FMD plots for sample A3 complete dataset (blue), first (yellow), second (green)

and final thirds (red). Seismic b-values were estimated using only the data above Mc, in this

case -1.0. Results show a decrease in b-value in the final third of data leading to failure.
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Figure 6.15: FMD plots for sample E9 complete dataset (blue), first (yellow), second (green)

and final thirds (red). Seismic b-values were estimated using only the data above Mc, in this

case -1.0. Results show a decrease in b-value in the final third of data leading to failure.
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Figure 6.16: FMD plots for sample CL5 complete dataset (blue), first (yellow), second (green)

and final thirds (red). Seismic b-values were estimated using only the data above Mc, in this

case -1.6. Results show a decrease in b-value in the final third of data leading to failure.

6.4.3 Failure Forecasting

The acoustic emissions (AE) event rate data for these samples is best fit by an

exponential model. This poses an issue for forecasting as the exponential model

does not contain a solvable singularity indicating failure time (see section 3.1).

Instead, I have applied the Failure Forecast Method (FFM) to alternative data,

acoustic energy from amplitude data (Figures 6.17, 6.19) and root-mean-square

(RMS) energy from the Cecchi continuous data (Figures 6.18, 6.20). The FFM

has been applied in retrospect, to whole time-series data. RMS energy fitting

systematically produces more accurate failure time estimates, but are less robust

than acoustic energy fitting when it comes to reducing the data passed to the

model. For sample E1, when presented with time series data ending a minute
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before failure, the RMS method failed to converge, whereas the acoustic energy

fitting still made reasonable estimates with data ending two minutes before failure.

Figure 6.17: Acoustic emissions amplitude energy for sample B1 (black dots). Power-law

fitting is shown in red. The estimated failure time (te) and p-value are shown in the top-left,

along with the actual failure time (in seconds).
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Figure 6.18: RMS acoustic energy from continuous waveform data for sample B1. RMS energy

per 5-second window is shown as blue dots. Power-law fitting is shown in red. Estimated failure

time and p-value along with true failure time is shown in the top-left.
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Figure 6.19: Acoustic emissions amplitude energy for sample E1 (black dots). Power-law

fitting is shown in red. The estimated failure time (te) and p-value are shown in the top-left,

along with the actual failure time (in seconds).
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Figure 6.20: RMS acoustic energy from continuous waveform data for sample E1. RMS energy

per 5-second window is shown as blue dots. Power-law fitting is shown in red. Estimated failure

time and p-value along with true failure time is shown in the top-left.

6.5 Discussion

The results of this study suggest a strong correlation between experimental

confining pressure and acoustic emissions event rate (Figure 6.2) as well as total

acoustic emissions (AE) (Figure 6.21). Results also suggest that water saturation

reduces total number of AE events, but does not seem to impact the event rate.
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Figure 6.21: Event number at failure for the Claschach small core tests. The plot shows

increasing number of events with increasing confining pressure for both dry samples (blue) and

wet samples (red).

As confining pressure strongly affects acoustic emissions productivity, it is

likely due to reducing heterogeneity in the samples by compressing and closing

microcracks and pore spaces before axial load is applied. As confining pressure

can be linked to lithostatic stress, and therefore depth, this behavior mimics

what we observe with earthquakes, which have greater precursory signal rate at

shallower depths (Mori and Abercrombie, 1997). Performing experiments with

greater confining pressures could therefore serve as analogs for deep earthquakes

and continued investigation into their forecast feasibility.

Although Bell et al. (2011b) were able to fit a power law to AE event rate

data from triaxial experiments on sandstone, the experiments in my study have

key differences. The data used in Bell et al. (2011b) came from brittle creep

experiments on Darley Dale sandstone cores. In addition to having a different

lithology and a significantly slower strain rate, the Darley Dale samples were also
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fluid filled and maintained a constant pore pressure of 20MPa (Heap et al., 2009b).

These difference in experimental methodology mean that the results of my study

are not necessarily in disagreement with the power-law fitting performed by Bell

et al. (2011b). Further studies with an analogous brittle creep test on Clashach

sandstone or repeating my experiments on dry Darley Dale sandstone would allow

for a direct comparison of forecasting models.

6.5.1 Evolution of b-value Estimates

All Clashach cores in this study have b-value estimates that are high, with

an average b-value of 1.93 ± 0.24 for the large cores and 1.65 ± 0.21 for the

small cores. As a typical earthquake b-value should be approximately 1, these

data do not appropriately scale. However, higher b-values are more common

in volcanic environments where the complex temperature, pressure, and fluid

system increases seismicity (Roberts et al., 2015). When the frequency magnitude

distribution data was segmented into thirds, all samples exhibited a drop in b-value

during the final third before failure, as observed in real-earth environments before

catastrophic failure (Enescu et al., 2011; Sammonds et al., 1992). Studies have

also associated increasing b-value with depth beyond a threshold, which could be

reason to expect higher b-values with increased confining pressure (Scholz, 2015).

The b-value estimates for this study do not indicate a significant relationship with

confining pressure, which may be due to the small sample size of tests performed

at varying confining pressures. An additional set of tests in which b-value is

estimated for a large number of samples over a large range of confining pressures

would be a beneficial follow-up to this study.

6.5.2 Failure Forecasting

As the event rate data for this study did not follow a power law distribution,

the Bayesian forecasting model developed for this study was unsuitable. Instead

we selected alternative data that followed a power law distribution to attempt

retrospective forecasting. As the chosen characteristic to fit, AE energy and RMS

Energy, are not Poisson distributions, the Failure Forecast Method was suitable.

Application of the FFM in which a power law is fit via least squares regression,

proved successful for both AE energy and RMS energy data types. RMS energy
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fitting provided more accurate failure forecasts, but the method quickly fails with

incomplete data, greatly limiting real-time potential. In addition, determining

the RMS energy for continuous waveform data is computationally intensive and

time consuming, making it less preferable for real-earth application. Although

the forecasts made using triggered AE energy were less precise, the method has

seemingly greater potential for real-time application, in addition to being less

computationally intensive. As most seismographs deployed only register triggered

data to save on data storage and power, AE energy fitting would be more suitable.

Additional tests are needed for forecasting triggered AE energy data that has been

passed incrementally, and ideally to actual real-time data to assess the method’s

robustness. The results could also be used to create a convergence error envelope

of failure estimate over time as shown in Bell et al. (2011b), which could be

implemented as prior knowledge in a Bayesian adaptation of this method.

6.6 Conclusions

Acoustic emissions event rate data was analyzed for two experimental cohorts;

identical tests on Claschach sandstone 38mm x 90mm cores, and tests on 10mm

x 25mm Clashach cores at varying confining pressures. Results show a strong

relationship between confining pressure and event rate distribution and acoustic

emission productivity. This relationship is credited to sample heterogeneity which

decreases with increasing confining pressure. The relationship between hetero-

geneity and seismicity has been established for laboratory data and earthquakes

by investing sample lithology and depth, respectively (Mori and Abercrombie,

1997; Vasseur et al., 2015). This study demonstrates this relationship on labora-

tory data using a single lithology but varying confining pressure.

Event rate data for this study is best described by an exponential distribution,

making failure forecasting by event rate unsustainable. We fit power law

distributions to triggered acoustic energy data and to continuous RMS energy

data and forecast failure with high accuracy. Forecasts were made in retrospect

on full time-series data and a formal investigation into the application of these

method to incremented time-series data is needed.



Chapter 7

Wave-based Monitoring of

Corrosion in Reinforced Concrete

7.1 Introduction

Concrete is the most consumed man-made material (Gagg, 2014; Niederleithinger

et al., 2015b). Due to its low cost, strength, and durability, concrete is most

commonly used in construction, and the world’s largest non-reinforced concrete

structure, the Roman Pantheon, remains standing after more than 2000 years.

Modern concrete is composed of hydraulic cement, water, and aggregates of

various sizes. Additional chemical and mineral admixtures can be incorporated to

adjust the performance of concrete and to impart desirable properties (Abraham

et al., 2014; He et al., 2011). For example, the tallest manmade structure, the

Burj Khalifa skyscraper in Dubai, used a high performance flowable concrete that

allowed the mixture to be pumped to great heights with delayed hardening, while

still forming a strong final product (Aldred, 2010).

Concrete has a strong compressive strength (20-50 MPa), but a comparatively

weak tensile strength (2-4 MPa) (Abdul-Ahad and Mohammed, 2000). To build

structures that can withstand tensile stresses, steel frameworks are embedded

within what is known as reinforced concrete (RC). The combination creates a

strongly bonded composite material. Although RC structures are designed to

have long service lives (>50 years), excessive loading and environmental factors

119
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can accelerate the structural wear, requiring attention earlier than anticipated at

time of design. When structural damage reaches a critical point the structure

can fail, causing major health and safety risks and requiring costly repairs or

replacement. Regular assessment of a structure’s integrity is therefore necessary

for it to remain in service.

Structural health monitoring is an integral part of infrastructure management.

Techniques available for concrete testing include destructive, semi-destructive, or

non-destructive methods. Destructive tests result in the sample being damaged

or destroyed in the assessment process (Gastineau et al., 2009). Semi-destructive

tests create small, localized damage that can generally be repaired after assess-

ment. This includes chemical tests and the removal of small cores for laboratory

analysis (Ho la et al., 2015). Non-destructive testing (NDT) allows for the assess-

ment of a structure without interfering with its service properties at all, making

them the preferred methods for preserving structural longevity.

Currently, non-destructive structural assessment is mostly based on visual

inspections (Niederleithinger et al., 2015b; Salvermoser et al., 2015). This method

has the disadvantage that it requires an engineer to visit the site and is subjective.

In addition, if the source of the damage is internal to the concrete (e.g., from

corrosion of the steel), then by the time damage is detectable by visual methods

it is generally more widespread and difficult and costly to repair.

Sophisticated, alternative non-destructive testing methods are used more often

as sensors and techniques develop. Optical methods have been explored, such as

advanced digital image analysis to remove human bias (Vardanega et al., 2016)

and digital image correlation for strain measurements, which has been shown

to be as accurate as using linear variable displacement transformers (LVDT)

(De Roover et al., 2002). Fibre optic sensors have also been employed to

monitor temperature, stress, strain, inclination, corrosion, and cracking changes

in reinforced and pre-stress concrete (Casas and Cruz, 2003). Electrochemical

methods such as resistivity and Electrochemical Fatigue Sensors have been used

to assess the likelihood and rate of corrosion damage (Gastineau et al., 2009;

Yang, 2008).

More recently, wave-based techniques have been used to monitor concrete

structures such as impact echo (Niederleithinger and Taffe, 2006), ultrasonic

impulse-response (Helmerich et al., 2015; Yeih and Huang, 1998), ground pene-

trating radar (Lai et al., 2010; Narayanan et al., 1998), acoustic emissions (Ohtsu



CHAPTER 7. Wave-based Monitoring of Corrosion in Reinforced Concrete 121

and Tomoda, 2007; Yoon et al., 2000), and coda wave interferometry (Salvermoser

et al., 2015; Stähler et al., 2011; Wang and Chakraborty, 2019; Wang et al., 2019).

All of these techniques have limitations, so using a combination of methods will

likely produced optimized results.

As a secondment placement with the WAVES fellowship, I interned at the Ger-

man Federal Institute for Materials Testing (Bundesanstalt für Materialforschung

und -prüfung, or BAM). The aim of this placement was to explore the combined

use of acoustic emissions (AE) and coda wave interferometry (CWI) for monitor-

ing damage in a reinforced concrete slab subject to steel reinforcement corrosion.

In this chapter I provide a description of the concrete corrosion process and why

it was chosen as the damage metric to investigate in this study. I then briefly

review the method of coda wave interferometry. Next, I describe the experiment

conducted at BAM in early 2018, along with the data acquisition. I follow this

with a detailed presentation of the results from the chosen monitoring techniques

and a discussion of those results.

7.2 Reinforcement Corrosion

Reinforced concrete structures experience damage from a variety of physical and

chemical mechanisms, such as freeze-thaw cycling, excessive stress, earthquakes,

weather, alkali-silica reactions, acid attacks, and reinforcing steel corrosion

(Helmerich et al., 2015; Niederleithinger et al., 2014, 2015b; Penttala, 2009).

Reinforcement bar or ‘rebar’ corrosion is a process in which the reinforcing steel

reacts with the surrounding chemicals and concrete, resulting in deterioration

of the metal and the creation of by-products that damage the concrete. Rebar

corrosion is an electrochemical process, similar to that which occurs in a battery.

Pore fluid in the concrete causes it to behave as a heterogeneous electrolyte.

Contact with this electrolyte (or heterogeneities in the metal itself) creates

different electric potentials in different parts of the metal. This difference in

potential allows electrons to flow, creating anodic and cathodic zones. In the

anodic zones, electrons are released by the oxidization of steel. This process will

vary slightly depending on the pH of the electrolyte, the presence of anions, and
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the electric potential, but generally can be written as:

Fe Fe +
2 + 2 e– (7.1)

The electrons produced travel to the cathodic zones, where they are consumed

in the reduction of oxygen by:

O2 + 4 e– + 2 H2O 4 OH– (7.2)

The by-products from these two reactions combine to create iron hydroxides,

or rust (Ahmad, 2003; Andrade, 2007; Cragnolino, 2008). Over time, the rust

produced takes up considerably more space than the steel. This expansion creates

tensile stresses in the concrete, and eventually leads to cracking, spalling and

delamination.

Chemicals present in the environment can affect the rate and behavior of

corrosion development, most notably (i) carbon dioxide and (ii) chloride ions.

The presence of CO2 in concrete can cause carbonation, where the CO2 reacts

with chemicals in the cement paste, lowering the concrete’s pH and speeding

corrosion (Ahmad, 2003; Andrade, 2007). Chloride ions can form localized

corrosion, causing pits or holes in the steel, compromising its strength (Ahmad,

2003; Andrade, 2007; Helmerich et al., 2015; Narayanan et al., 1998). So called

‘chloride attacks’ are particularly common in bridges, as chlorides enters the

concrete through seawater and de-icing salts.

Damage from corrosion is a major concern in the assessment and monitoring

of concrete structures, especially for bridges where corrosion-induced concrete

delamination is the most prevalent type of damage (Chung et al., 1992). Some

techniques prevent corrosion, such as the use of galvanized metals, concrete

coatings, and inhibiting concrete admixtures, but none of these eliminate the

problem or rectify the problem in structures already in place (Andrade, 2007).

Damage assessment, location, and repair are therefore essential.

Despite the risk of damage to bridges, corrosion monitoring sensors are

among the least prevalent sensors presently installed (Vardanega et al., 2016).

This is likely because most corrosion detection systems only provide an indirect

indication of the likelihood or rate of corrosion, rather than a quantitative

damage assessment (Vardanega et al., 2016; Yang, 2008; Zaki et al., 2015). More
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detailed NDT methods have been explored, such as fibre optic surveys (Casas

and Cruz, 2003), ultrasonic echo (Helmerich et al., 2015; Yeih and Huang, 1998),

ground penetrating radar (Lai et al., 2010; Narayanan et al., 1998) and acoustic

emissions (Yoon et al., 2000). Very limited research has been done on the use of

coda wave interferometry to monitor rebar corrosion, thus motivating this study.

Here we demonstrate the use of coda wave interferometry, in combination with

microseismic fracturing events located using acoustic emissions data, to monitor

corroding reinforced concrete, and analyse the relative sensitivities of the methods.

Additional studies are needed in future supplement to this one to explore the

combination of other NDT methods in the characterization of corrosion damage.

7.3 Coda Wave Interferometry

Coda waves are the late arriving tails of complex, low-amplitude waveforms in

the wavetrains recorded from impulsive sources. In acoustic and seismic imaging,

one is usually concerned with the first arrivals so the coda is discarded. However,

waves in the coda have been scattered (reflected or refracted) multiple times

between different heterogeneities in the medium, thus they sample a greater

proportion of the medium compared to direct or singly-scattered waves. Since

they traverse similar parts of the medium multiple times, minute changes in the

medium often create a noticeable change in the coda waveform. Coda Wave

Interferometry (CWI) is a technique that uses this sensitivity to measure such

changes. CWI is ideal for situations where one is not necessarily interested in

imaging a medium, but in monitoring temporal changes in bulk structure, making

it an excellent method for non-destructive testing.

CWI theory is based on wave path summation, where the total scattering

wavefield u(t) at a given location is equal to the sum of the packets of wave

energy SP (t) that propagate along all possible trajectories within the medium

(Snieder, 1999):

u(t) =
∑
P

SP (t) (7.3)

The paths (P ) in equation 7.3 include the direct wave, singly-scattered waves,

and multiply-scattered waves. This expression also represents elastic waves by
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summing over all possible wave conversions along each path. The theory of CWI

assumes that all scattering is due to point scatterers or reflections at boundaries,

and that their scattering properties do not change. As waves travel from source

to receiver, they will interact with a sequence of scatterers in the medium. When

a perturbation occurs, such as a change in wave velocity, source location, or

scatterer position, the recorded waves are also perturbed. Snieder (2006) shows

that as long as the scattering mean free path is much larger than one wavelength,

perturbations primarily affect waveform phase. This causes a change in travel

time τP for the waveform propagating along path P . The perturbed wavefield is

therefore denoted:

uper(t) =
∑
P

SP (t− τP ) (7.4)

This expression is compared with the reference unperturbed wavefield in

equation 7.3. This comparison is only valid if the sources of the perturbed and

unperturbed wavefields are identical, so in practice, coda wave interferometry

requires controlled, repeatable sources that do not damage the medium.

The unperturbed and perturbed wavefields can be compared and the time-

shifts analyzed using cross correlation techniques. For this study, the stretching

interpolation technique was used to measure time shifts (Sens-Schönfelder and

Wegler, 2006). The stretching method assumes that the perturbed waveform is a

time-stretched (or compressed) version of the unperturbed waveform. The time

axis of the perturbed signal (uper) is stretched by a range of stretching factors (ϵ),

and the correlation coefficient (CC) calculated between the stretched signal and

unperturbed signal over the given time window [t1, t2].

CC(ϵ) =

∫ t2
t1

u(t)uper(t[1 − ϵ])dt√∫ t2
t1

u2(t)dt
∫ t2
t1

u2
per(t[1 − ϵ])dt′

(7.5)

The optimal stretching factor (ϵmax) is the one that maximizes the correlation

coefficient (Hadziioannou et al., 2009; Sens-Schönfelder and Wegler, 2006). If the

relative velocity change (dv/v) is the same throughout an acoustic medium, then

the optimal stretching factor is equal to the true relative velocity change in the

medium:
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ϵmax =
dv

v
(7.6)

In elastic media CWI estimates a combination of P and S wave velocities

(Snieder, 2002), which can be discriminated using certain a priori information

(Singh et al., 2020). The stretching technique has been used to study seismic

velocities in volcanoes (Sens-Schönfelder and Wegler, 2006), monitor weak changes

in gel with scattering inclusions (Hadziioannou et al., 2009), monitor stress

changes in a concrete bridge during construction (Stähler et al., 2011), and

monitor changes in both velocity and source locations in laboratory rock physics

experiments (Singh et al., 2019). A modified version of the stretching method

was proposed by Liu et al. (2015b), which determined the stretching factor by

expanding the perturbed signal

uper(t) = u(t[1 + ϵ]) (7.7)

as a first order Taylor series. When higher order terms are ignored, the stretching

factor can be calculated. This method is computationally efficient, as the stretch

factor can be determined directly from the signals without correlation coefficients.

However, this method has limited accuracy due to the higher order terms being

ignored (Liu et al., 2015b).

An alternative method for comparing the unperturbed and perturbed wave-

fields is the doublet technique, also known as the time-windowing technique

(Hadziioannou et al., 2009; Planès and Larose, 2013; Poupinet et al., 1984; Snei-

der, 2002). The doublet technique evaluates time delays in small, consecutive,

overlapping time windows in the coda. The time delay that maximizes the cor-

relation coefficient is linearly related to the relative velocity change. The doublet

technique has been used to monitor temporal changes in volcanoes (Grêt et al.,

2005), monitor stress, temperature, and saturation changes in rock samples (Grêt

et al., 2006b) and monitor stress changes in a mining environment (Grêt et al.,

2006a).

The stretching method was chosen for this study due to its ability to use

a much larger time window than the doublet technique. The use of longer

and later time windows means the stretching technique is more stable to noise,
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allowing for increased sensitivity to weak changes (Hadziioannou et al., 2009; Sens-

Schönfelder and Wegler, 2006). A disadvantage of the stretching technique is that

it assumes the waveform is linearly stretched, which is not the case for media with

heterogeneous velocity changes (Hadziioannou et al., 2009; Singh et al., 2019).

Coda wave interferometry can also be used to discriminate between pertur-

bation type, as different types of medium or experimental changes have different

corresponding effects on the coda. Formally, the perturbations that can be mon-

itored using CWI are uniform velocity changes, scatterer location changes, and

source/receiver location changes (Sneider, 2002; Snieder, 2004b, 2006). Recent

work has shown that heterogeneous velocity changes can also be imaged, although

with relatively low resolution compared to other methods (Obermann et al., 2019).

The following is a brief summary of the perturbation effects described by Snieder

(2006), which are also outlined in Table 7.1.

When there is a small velocity perturbation throughout the medium, the

directly arriving wave is minimally changed, but the multiply scattered coda will

be significantly affected. This creates a nonzero travel-time perturbation that is

greater in later time-windows. As all waves propagating along all paths experience

the same perturbation, the variance in travel-time perturbations at each point in

time in recorded waveforms is zero.

If instead there is a random displacement of the scatterer locations, the paths

between all scatterers will also be changed. Inter-scatterer path lengths will be

both lengthened and shortened, creating a zero mean travel-time perturbation.

The effect of this change will appear in the travel-time perturbation variance, as

each wave will be affected differently.

The final case is a change due to a small displacement in source (or receiver)

location. This causes a change in path length between the source and first

scatterer (or final scatterer and receiver). Depending on the location of that first

(or final) scatterer, the various path lengths with be shortened or lengthened.

This creates both positive and negative changes in the waveform. This does not

create a mean travel-time perturbation, but does create a constant change in the

travel-time perturbation variance.

Concrete is a very heterogeneous material composed of variably sized aggregate

and cement paste. Ultrasonic wave propagation through concrete typically

generates very complex signals, as the material heterogeneity causes multiple
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Perturbation type τ σ2
τ

Velocity change ∝ t 0

Scatterer displacement 0 ∝ t

Source displacement 0 constant

Table 7.1: Effect of different medium changes on the mean and variance of travel-time

perturbations (τ and σ2
τ , respectively). Recreated from Snieder (2004b).

scattering. This heavy scattering effect makes concrete an ideal material to

monitor using coda wave interferometry.

CWI has been used to monitor temperature changes in concrete bridges

(Salvermoser et al., 2015; Wang and Chakraborty, 2019; Wang et al., 2019)

and concrete specimens (Niederleithinger and Wunderlich, 2013), as well as

stress changes in a bridge under construction (Stähler et al., 2011) and in

concrete samples subject to loading (Abraham et al., 2014; Liu et al., 2015b;

Niederleithinger et al., 2014, 2018; Wang et al., 2020). In this study we will use

it to monitor corrosion damage in a reinforced concrete specimen.

7.3.1 Moving Reference Trace (MRT) Method

For this study we employed moving reference trace CWI where the optimal

stretching factor between the initial unperturbed reference trace (u0) and any

other waveform (un) is determined by

ϵu0un = ϵu0us + ϵusun (7.8)

where us is a moving reference waveform. A user chosen step-size k is used to

determine us by

s = k(floor

[n
k

]
) (7.9)

where n is the trace number.

This method was chosen as the data were initially evaluated using a single

reference trace which resulted in high variance in (dv/v) and a substantial decrease

in correlation coefficient. Results suggested that too much medium damage had

occurred such that coda wave interferometry was no longer effective. CWI is very
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effective when medium changes are small. If, however, the damage is significant

enough to create a waveform offset greater than half a wavelength, or if the

waveforms have been changed entirely, the evaluations of (dv/v) are rendered

useless (Niederleithinger et al., 2018). A moving reference trace has been shown

to rectify this issue (Niederleithinger et al., 2018; Singh et al., 2019; Wang et al.,

2020). Niederleithinger et al. (2018) reported a similar issue in a temperature

affected reinforcement corrosion experiment, which was fixed with the use of

moving-reference and auto-moving reference CWI. Initial results using a single

reference trace can be found in the appendix.

7.3.1.1 K-value Selection

There is no established method for selecting a step size (k) for MRT, but as CWI

is best for detecting small medium changes and to avoid having more than half-

wavelength offset, k should be kept small. The seemingly obvious selection is to

select the previous trace as the new reference trace (k=2), but this has been shown

to be subject to rounding errors (Niederleithinger et al., 2018). Niederleithinger

et al. (2018) presented an alternative method to using a fixed step size, ‘auto-

correlation,’ in which the reference trace is only changed once the MaxCC exceeds

a certain predefined threshold. This allows for less frequent changes in reference

trace when the medium changes are sufficiently small. This method was not used

for this study as appropriate threshold selection would ideally be based on prior

tests on the specimen, and because Niederleithinger et al. (2018) reported the

correlation coefficient results from this method to be less useful for monitoring

purposes than a fixed step method. To establish the optimal k-value for this

study, coda wave interferometry was performed using a range of k values and the

velocity change and correlation coefficient results were individually assessed and

compared. Results of this assessment are shown in section 7.5.1.

7.4 Experimental Design

The experimental set-up was designed as a laboratory analogue to concrete rebar

corrosion in bridge trusses. Although natural corrosion takes decades, the process

can be accelerated in a lab by subjecting the rebars to a high current (Lai

et al., 2010). The aim of this study was to record the corrosion process using
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a combination of acoustic emission event data and coda wave interferometry.

Resistance data were also recorded to monitor variations from the applied voltage.

Image correlation analysis was included in the aim and data collection of this

study, but unfortunately the recorded image data turned out to be unsuitable for

correlation analysis due to poor resolution.

7.4.1 Test Specimen

The test specimen was a 0.95m × 0.45m × 0.1m concrete block embedded with six

pairs of reinforcing steel bars and eight ultrasonic (US) emissions sensors (Figure

7.1). This specimen was cast by BAM for this experiment and was allowed to

cure for the industry standard of 28 days before experimentation began. This

interval is due to that fact that concrete never stops structurally changing, but the

changes slow very rapidly within this initial curing period. The ultrasonic wave

speed was also monitored from sample casting onwards to ensure the structural

changes slowed sufficiently so as not to interfere with the experiment. After the

28 day period, ten acoustic emissions (AE) sensors were coupled to the surface

for additional monitoring (Figure 7.1) The specimen was prepared prior to my

arrival at the institute, managed by Christian Köpp (BAM).
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Figure 7.1: Dimensions of the concrete specimen, rebar distribution, and sensor positions.

Rebars are shown in red. Ultrasonic sensors are shown in blue and labelled S1-S8. Surface

acoustic emissions sensors are shown in green and labelled A1-A10. Electrical cables are shown

by curved solid lines. Top: plan view. Bottom: side view along long axis.

Rebar corrosion was accelerated by applying a DC voltage to one of the

reinforcing bar pairs shown in Figure 7.1. The voltage was applied and monitored

continuously for four weeks, allowing enough time that one would expect to see

visible surface damage from corrosion on a sample of this size. Only one pair was

used for this experiment, allowing for further future studies to be conducted on

this same concrete specimen. The rebar pair between sensors 4 and 6 (Figure 7.2)

was selected for this experiment.

The US and AE sensors were model VS150-MS passive piezoelectric transduc-

ers by Vallen Systems. The sensor frequency range was 100-450 kHz and contained

no integrated pre-amplifier. The transducers could both send and receive signals,

allowing for passive AE monitoring as well as active ultrasonic surveys for coda

wave interferometry. The sensors intended for US surveys were embedded during

casting using PVC pipe for protection and acoustic coupling. The sensors for



CHAPTER 7. Wave-based Monitoring of Corrosion in Reinforced Concrete 131

Figure 7.2: Cured concrete specimen with embedded US sensors, labelled S1-S8

AE monitoring were afixed to the specimen surface using Bostik Prestik adhesive

putty.

7.4.2 Data Acquisition

The AE data were managed using an AMSY5 acoustic emission system with

10 channels. AE signals were stored on a trigger system when a sensor output

crossed the adjustable threshold (35.1 dB). Signals were recorded with a frequency

bandpass filter of 25-850 kHz and a sampling rate of 10 MHz.

The US data acquisition system (Figure 7.3) allowed for active surveys using

the eight embedded US transducers with a sampling frequency of 1 MHz. Active
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US surveys were conducted hourly by transmitting 8 consecutive signals (one from

each sensor) and recording for each source-receiver (Sender-Empfänger) pair.

The data acquisition equipment included:

• PC with the controlling software and data storage

• National Instruments digital-analog data acquisition unit to convert signal

• Amplifier for input signal

• Stanford Research Systems SR560 low-noise pre-amplifier to filter and

improve recorded signal

• Keithley 2701 Multiplexer to switch between the different combinations of

source and receiver

Figure 7.3: Diagram of the data acquisition system connections to AE sensors (S1-S8).

The AE and resistance data acquisition started on 29.01.2018 at 15:25:54.

The AE hits were binned hourly starting from 16:00:00. Due to technical issues

and parameter changes, the ultrasonic surveys began on 03.03.2018 at 00:00:00.

For method comparison, this is treated as the experimental start time. The
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experiment ran until corrosion induced damage was visible from the surface of

the specimen (approximately 400 hours into the experiment). All data acquisition

stopped on 27.02.2018 at 16:01:33.

7.5 Results

7.5.1 K-value assessment

Moving reference trace results using various k-values were compared to observe the

effect of step size on velocity change estimate and maximum correlation coefficient.

An optimal k-value would have a maximum correlation coefficient as close to 1 as

possible and would show velocity changes that make logical sense for the corrosion

applied to the system and have minimal artifacts that are unexplained by physical

events such as crack formation.

First to confirm the assumption that Moving Reference Trace (MRT) Coda

Wave Interferometry (CWI) would produce better results with a generally small

k-value, I compared k-values 2-15, 20, 50, and standard Coda Wave Interferometry

(no moving reference trace). Figure 7.4 shows a clear improvement in maximum

correlation coefficient (MaxCC) by employing the MRT method, as the MaxCC

estimates using standard CWI progressively decrease without recovery. Across all

station pairs, MaxCC estimates without MRT were on average 37.5 times lower

than the average estimates using the tested k-values. For results employing the

MRT method, there is a general trend that higher k-values have lower MaxCC,

with k=50 displaying the lowest MaxCC, followed by k=20 (MaxCC=0.9628392,

0.976018 respectively for Figure 7.4). MaxCC estimates for k=50 and k=20 were

on average 7.31 and 2.76 times lower, respectively, than average estimates for k=2-

15. Comparing MaxCC for k-values 2-15 (Figure 7.5) was less informative and

did not provide a clear choice, so I then assessed the effect of k-value on velocity

change estimate. Velocity estimates for k=2-12 were generally in agreement, and

k=13-15 were eliminated for having significant (> 0.02%) deviation from the

mean velocity estimate (Figure 7.6). I also analyzed the velocity change estimate

versus k-value at specific points in time, which showed similar trends amongst

most station pairs (Figure 7.7). Most station pairs displayed k=2 as an outlier at

each 50 hour interval, which affirmed the decision not to use the previous trace
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as a reference. Very low valued step-sizes (3 and 4) also did not exhibit a great

deal of consistency, having a significant number of outliers to be ruled out. The

conclusion of this assessment was that the best solution was to not pick a single

k-value, but rather to average the results from k-values 5-10. This method is how

the results shown in the next section were created.
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Figure 7.4: Maximum correlation coefficient calculations for source-receiver pair S01-E02 using

various k-values (labelled). Source-receiver pair is denoted as S-E using the German notation

for Sender-Empfänger.
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Figure 7.5: maximum correlation coefficient calculations for source-receiver pair S01-E02 using

k-values 2-15 (labelled). Variance in maximum correlation coefficient is now greatly reduced and

does not have an obvious visible correlation with k-value size. Source-receiver pair is denoted

as S-E using the German notation for Sender-Empfänger.
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Figure 7.6: Mean total velocity change estimates at experiment completion for each k-value

in k=2-12 across all source-receiver pairs. Red line denotes the mean of means.
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(a) (b)

(c) (d)

Figure 7.7: K-values vs velocity change at specific times t=200 hours (right) and t=400 hours

(left).

7.5.2 Coda Wave Interferometry

Coda wave interferometry was performed using a moving window stretching

technique (see Section 7.3). Signals were first corrected to demean and remove

signal offset (center the amplitude around zero) and pre-trigger (data recorded

before event onset) (Figure 7.8).
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Figure 7.8: Raw signal (top) and corrected signal (bottom) for recording between sensors 2

and 5. Source-receiver pair is denoted as S-E using the German notation for Sender-Empfänger.

For each source-receiver pair, the hourly US signals were used to determine the

cumulative velocity change relative to the moving reference traces using step sizes

5-10. Figures 7.9 and 7.10 show the change in velocity and maximum correlation

coefficient, respectively, using the averaged results of step sizes k=5-10.
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Figure 7.9: Velocity change estimates for the corrosion experiment for all source receiver pairs

(labelled). Solid lines denote the average velocity change using k=5-10 and shadow denotes

standard deviation.
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Figure 7.10: Maximum correlation coefficient estimates for the corrosion experiment for all

source receiver pairs (labelled). Solid lines denote the average MaxCC using k=5-10 and shadow

denotes standard deviation.
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Results indicate gradual velocity change from corrosion onset with major

events beginning at approximately 130 hours, 350 hours, and 487 hours. The

relative velocity changes are accompanied by a decrease in maximum correlation

coefficient (MaxCC), which creates uncertainty in interpreting the changes.

Results for all of the source-receiver pairs show similar trends. Nearly all of

the pairs show a velocity decrease between 120-150 hours, with 4 pairs (S04E05,

S04E06, S04E07, S04E08) displaying sharp increases at 136 hours (Figure 7.9). All

pairs display a velocity drop at 350 hours, which coincides with the approximate

time that a visible 6cm surface crack formed on the specimen. The drop in

MaxCC varies between different sensor pairs. The drop appears to be greatest for

sensor pairs on the side of the specimen where current was applied and corrosion

generated, particularly where the direct waves are perpendicular to the rebars

(e.g. S02-E04, S02-E06, S02-E08, S04-E06, S04-E08).

7.5.3 Acoustic Emissions

Acoustic emissions (AE) data were recorded for the duration of the experiment

and hits were binned to obtain an hourly event rate. The ultrasonic transmissions

were removed using a high-pass filter of 60dB. Noise was filtered based on the

average hourly hits before the onset of corrosion. Hourly and cumulative AE hits

are shown in Figure 7.11. Under laboratory conditions, AE events were observed

to increase with degree of corrosion, thus, we can interpret these AE events to be

indicative of corrosion damage (Ohtsu and Tomoda, 2007; Yoon et al., 2000).
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Figure 7.11: Number of cumulative (red) and hourly (grey) acoustic emissions hits.
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Cumulative AE hits increase very slightly before the first peak at 136 hours.

There is then a period of non-activity until roughly 250 hours where AE activity

rapidly increases before another peak at hour 396. Event localization was

performed using travel-time triangulation with an uncertainty threshold of 0.8

cm. Figure 7.12 shows the localized events plotted against the design plans of

the test specimen. Results show ‘hot-spots’ of activity, with the largest cluster

around the activated rebar pair. Temporal analysis of these data show that event

cluster labelled (a) formed at approximately 130 hours and cluster (b) formed

starting around 350 hours.
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Figure 7.12: Localized AE hits (red) for the duration of the corrosion experiment. Embedded

ultrasonic sensors are shown in blue and surface AE sensors shown in green. Clustering events

(a) and (b) are labelled.
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7.6 Discussion

The behavior displayed in Figure 7.11 is similar to a model of corrosion loss of

steel reinforcement in a marine environment proposed by Melchers (2003). This

model divides the corrosion process into four phases (Figure 7.13). Phase 1 is

corrosion initiation, followed by stabilization in Phase 2. The mass loss due to

corrosion increases again in Phase 3 due to penetration and expansion of corrosion

products. In Phase 4, corrosion levels off, increasing at an almost constant speed.

Figure 7.13: Phases of corrosion loss for steel in seawater immersion. Redrawn from Kawasaki

et al. (2013).

This model behavior has been supported by observed corrosion loss in

reinforced concrete (Kawasaki et al., 2013; Melchers and Li, 2006). Kawasaki et al.

(2013) reported cumulative AE events that followed this model, and proposed that

the four phases of corrosion loss can be used to characterize two stages of corrosion

activity; onset of corrosion (Phases 1 and 2) and growth of corrosion products and

crack nucleation (Phases 3 and 4).

Two major events shown in Figures 7.9 and 7.10 coincide with increases in

AE hits (Figure 7.14), indicating crack nucleation is causing velocity changes.

The drop in AE events and velocity around 130 hours is unlikely to be caused

by active corrosion as not enough time had passed for corrosion by-products to

induce spalling in the concrete. It is possible that this event is the result of

passive corrosion, which has not yet expanded into the concrete (Lai et al., 2010).
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However, spatial analysis shows that the events clustered around an inactive rebar

that was not exposed to a current (Figure 7.12), and therefore would not be

undergoing passive corrosion at this timescale. I propose that this clustering

event is instead due to late stage concrete shrinkage, which is minimized after

the initial curing period (see 7.4.1). Cracks due to shrinkage are most likely to

occur on the concrete surface, but can also be caused by the presence of embedded

rebars, as shrinkage is restrained, preventing physical movement of the concrete

leading to crack formation (Dey et al., 2021; Ghoddousi and Javid, 2010). Use

of AE hit data is beneficial in combination with CWI, as it is able to clearly

resolve crack formation when CWI changes lose certainty with lower correlation

coefficient. AE data also provided insight on the velocity change between 120-150

hours, which could be interpreted as solely passive corrosion if AE events had not

been recorded during this interval.
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Figure 7.14: A combined plot of the MRT coda wave interferometry velocity change, maximum

correlation coefficient, and acoustic emissions results. Three distinct changes are apparent on

all three plots and are indicative of corrosion damage.
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A subsequent, larger, relative velocity change occurs between 300 and 400

hours. This significant change is likely due to crack nucleation caused by corrosion

by-products expanding into and rupturing the concrete. This assumption is

supported by high levels of AE activity which which accelerates almost up to

the time at which the 6cm surface crack formed (Figure 7.14), and the primary

location of AE activity being along the activated rebar pair (Figure 7.12, cluster

(b)). These results provide promising evidence that the combined use of coda

wave interferometry and acoustic emissions analysis could be effective in detecting

corrosion damage before it reaches critical levels.

Although this study was able to detect corrosion damage using coda wave

interferometry, even during periods when the monitoring of acoustic emissions

detected no damage at all, application of this method to real structures will

require further investigation. The ability to detect not only damage, but also

to discriminate between influence factors affecting wave propagation such as

temperature changes, moisture changes, and various damage sources is optimal for

real world use. Additional experiments with multiple controlled influence factors

are needed to assess the effectiveness of CWI in discerning types of changes in

concrete. Nevertheless, CWI is very sensitive to spatially-extensive but small

magnitude velocity changes in the medium, and only requires one active source

and one receiver to do so across a relatively large volume of concrete. This

contrasts with the use of acoustic emissions data which are sensitive only to

extremely localized cracking, which is a passive technique, and which generally

requires a distributed network of acoustic emissions sensors in order to obtain

accurate locations for each seismic event. Each method has its place in a suite of

methods used for monitoring structures episodically or semi-continuously, given

different levels of access, budgets, and equipment availability.

The increase in AE event rate before hour 400 is similar to acceleration in

precursors reported before geophysical failure events such as landslides (Amitrano,

2005; Bell, 2018), volcanic eruptions (Bell and Kilburn, 2013; Bell et al., 2011b,

2018; Kilburn and Voight, 1998; Voight, 1988), earthquakes (Bouchon et al., 2011,

2013), and laboratory rock failure experiments (Heap et al., 2009b). Similar

precursors have also been observed during creep experiments on concrete blocks,

and time-to-failure forecasts made by fitting a power law to strain rate data (Wang

et al., 2015b). The significance of b-value evolution and frequency magnitude

analysis has recently been introduced to experiments on concrete specimens as
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well(Vidya Sagar, 2016; Vidya Sagar and Dutta, 2019). Vidya Sagar and Dutta

(2019) also used acoustic emissions to evaluate crack formation in reinforced

concrete subject to loading, but did not employ any forecasting techniques. This

study is the first that we know of to use acoustic emissions and coda wave

interferometry together, and with a focus on corrosion induced damage rather

than a stress-test. These results show that current monitoring and forecasting

techniques from the geosciences strong industrial potential. Future work would

include power law fitting to the event rate peak at hour 400 of this study, as well

as repeating a similar study to see if accelerations in event rate are systematically

observed before corrosion induced cracking.

7.7 Conclusions

Ultrasonic coda wave interferometry and acoustic emissions event data were used

to monitor a reinforced concrete specimen subject to corrosion. Both methods

were able to identify corrosion damage as early as 50 hours before visual signs

appeared on the surface. Accelerating acoustic event rate behavior indicates

potential for catastrophic damage forecasting using models previously applied in a

geophysical setting. The results of this study show that coda wave interferometry

can be an effective tool in the passive monitoring of concrete corrosion. Use of

coda wave interferometry in combination with other NDT techniques could help

make decisions in infrastructure management.
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Final Discussion and Conclusions

This thesis presents laboratory investigations into the use of acoustic wave based

techniques for assessing damage in two settings. The first setting is applied to

Clashach sandstone cores during traditional triaxial deformation experiments.

The second setting is in reinforced concrete subject to induced rebar corrosion.

The Clashach sandstone study changed research plan as the resulting data

provoked new questions about the event rate observed and it’s implications for

failure forecasting. The Covid-19 pandemic also largely impacted this study by

limiting laboratory access. These issues were overcome by supplementing my

experimental data with previously collected data on small Clashach sandstone

cores under varying confining pressures.

The acoustic emissions event rate data from the large core tests did not follow

the anticipated power-law distribution, which is the foundation of the Failure

Forecast Method. Further investigation into event rate data from Clashach

cores under variable confining pressures suggest a strong correlation between

experimental confining pressure and acoustic emissions event rate. The event

rate behavior of samples under lower confining pressures more closely resembled

a power-law than at higher confining pressures, but still are best fit with the

exponential rate model. The exponential rate model is unsuitable for current

forecasting methods, so the Failure Forecast Method was applied to acoustic

energy and root-mean-square waveform energy with high accuracy. Overall,

the results of the Clashach study suggest that lithostatic pressure induced

homogeneity limits the forecasting potential of seismic events at depth, given
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current forecasting practices. For environments where power law event rate is not

observed before failure, alternatives metrics are potentially available, as in this

study acoustic energy continued to accelerate even when event rate did not.

Further investigation is needed to formally assess the robustness of these

techniques and their response to real-time data. As root-mean-square waveform

energy was computationally intensive and requires continuous waveform data, it

is not the best option for real-world application as volcanic and fault systems

are generally monitored with a triggered system. Acoustic energy fitting is a

suitable candidate for these environments and future work would include using

this method in additional experimental and real-world settings on retrospective

data before exploring real-time application.

The concrete corrosion study demonstrated that acoustic monitoring tech-

niques, such as acoustic emissions analysis and coda wave interferometry, can be

very effective in the non-destructive monitoring of corrosion damage in reinforced

concrete. This result, in combination with recent literature, suggests that acous-

tic techniques commonly used in geophysical monitoring have great potential for

industrial applications and the research thus far has only just scratched the sur-

face. Further studies are needed to explore the outstanding limitations of Coda

Wave Interferometry in monitoring concrete corrosion. Firstly, various methods

of applying a moving reference trace should be explored to optimize monitoring

despite total damage accumulation. Secondly, as advances in the theory of CWI

are made, studies should be done to investigate the method’s efficacy in discrim-

inating between damage type. As concrete structures such as bridges experience

multiple physical and chemical stressors, understanding the sources of damage

accumulation can provide a better assessment of the structure’s overall health.

In volcanic and fault environments our primary concern is catastrophe— erup-

tion and main shock. In structural engineering, monitoring damage accumulation

is likely far more useful than forecasting catastrophic failure, as infrastructure

requires maintenance or replacement long before catastrophe. For this purpose,

coda wave interferometry proves particularly effective. Despite its potential lim-

ited real-world application, future work could be to explore the scale in which

failure forecasts can be made. As brittle failure has been observed to be a fractal

system, we should see the same behavior across scales. With evolving technology

and increased sensitivity, we may be able to detect precursory signals and forecast

crack formation even smaller than the surface crack in our concrete slab.
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The most significant takeaway from this thesis is the importance of approach-

ing scientific problems from different angles, which is the primary objective of the

WAVES consortium. In both studies, results were achieved using different meth-

ods than are typically used in their respective settings. In the Clashach study,

power-law forecasting was done by fitting acoustic energy and continuous wave-

form data rather than AE event-rate. This suggests that systems which have

previously been considered unsuitable for forecasting may be suitable if other

metrics are explored. In the concrete study, we applied a new, interdisciplinary

method from the outset and were able to successfully monitor damage accumu-

lation from rebar corrosion. Hopefully the results of this thesis will promote

exploration of new techniques and encourage researchers to take inspiration from

and collaborate with scientists from other fields.
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O. Lengliné, D. Marsan, J. L. Got, V. Pinel, V. Ferrazzini, and P. G. Okubo.

Seismicity and deformation induced by magma accumulation at three basaltic

volcanoes. J. Geophys. Res. Solid Earth, 113(12):1–12, 2008. ISSN 21699356.

doi: 10.1029/2008JB005937.

Z. Li, L. Wang, Y. Lu, W. Li, K. Wang, and H. Fan. Experimental investigation

on True Triaxial Deformation and Progressive Damage Behaviour of Sandstone.

Sci. Rep., 9(1):1–19, 2019. ISSN 20452322. doi: 10.1038/s41598-019-39816-9.

F. Liakopoulou-Morris, I. G. Main, B. R. Crawford, and B. G. Smart. Micro-

seismic properties of a homogeneous sandstone during fault nucleation and

frictional sliding. Geophys. J. Int., 119(1):219–230, 1994. ISSN 1365246X. doi:

10.1111/j.1365-246X.1994.tb00923.x.



BIBLIOGRAPHY 163

Q. S. Liu, J. Xu, B. Liu, and J. D. Jiang. Acoustic emission behavior of rock-like

material containing two flaws in the process of deformation failure. Shock Vib.,

2015, 2015a. ISSN 10709622. doi: 10.1155/2015/167580.

S. Liu, J. Zhu, and Z. Wu. Implementation of Coda Wave Interferometry

Using Taylor Series Expansion. J. Nondestruct. Eval., 34(3):1–6, 2015b. ISSN

15734862. doi: 10.1007/s10921-015-0300-1.

X. Liu, Q. Liu, B. Liu, and Q. Liu. Acoustic emission characteristics of pre-cracked

specimens under biaxial compression. J. Geophys. Eng., 16(6):1164–1177, 2019.

ISSN 17422140. doi: 10.1093/jge/gxz087.

G. Ma and Q. Du. Structural health evaluation of the prestressed concrete

using advanced acoustic emission (AE) parameters. Constr. Build. Mater.,

250:118860, 2020. ISSN 09500618. doi: 10.1016/j.conbuildmat.2020.118860.

C. MacBeth. A classification for the pressure-sensitiviy properties of a sand-

stone rock frame. Geophysics, 69(2):497–510, 2004. ISSN 00168033. doi:

10.1190/1.1707070.

I. G. Main. A damage mechanics model for power-law creep and earthquake

aftershock and foreshock sequences. Geophys. J. Int., 142(1):151–161, jul 2000.

ISSN 0956540X. doi: 10.1046/j.1365-246x.2000.00136.x.

G. Mavko, T. Mukerji, and J. Dvorkin. The Rock Physics Handbook. 2009. doi:

10.1017/cbo9780511626753.

G. C. McLaskey and S. D. Glaser. Hertzian impact: Experimental study of the

force pulse and resulting stress waves. J. Acoust. Soc. Am., 128(3):1087, 2010.

ISSN 00014966. doi: 10.1121/1.3466847.

G. C. McLaskey and S. D. Glaser. Micromechanics of asperity rupture during

laboratory stick slip experiments. Geophys. Res. Lett., 38(12):1–5, jun 2011.

ISSN 00948276. doi: 10.1029/2011GL047507.

G. C. McLaskey and S. D. Glaser. Acoustic Emission Sensor Calibration for

Absolute Source Measurements. J. Nondestruct. Eval., 31(2):157–168, jun 2012.

ISSN 0195-9298. doi: 10.1007/s10921-012-0131-2.



164 BIBLIOGRAPHY

A. A. McMillan, R. J. Gillanders, and J. A. Fairhurst. Building stones of

Edinburgh. Edinburgh Geological Society, Edinburgh, 1999.

R. E. Melchers. Modeling of Marine Immersion Corrosion for

Mild and Low-Alloy Steels—Part 1: Phenomenological Model.

CORROSION, 59(4):319–334, apr 2003. ISSN 0010-9312. doi:

10.5006/1.3277564. URL https://doi.org/10.5006/1.3277564

http://corrosionjournal.org/doi/10.5006/1.3277564.

R. E. Melchers and C. Q. Li. Phenomenological modeling of reinforcement

corrosion in marine environments. ACI Mater. J., 103(1):25–32, 2006. ISSN

0889325X. doi: 10.14359/15124.

P. G. Meredith and B. K. Atkinson. Stress corrosion and acoustic emission during

tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys.

J. R. Astron. Soc., 75(1):1–21, 1983. ISSN 1365246X. doi: 10.1111/j.1365-

246X.1983.tb01911.x.

K. Mogi. Earthquakes and fractures. Tectonophysics, 5(1):35–55, 1967. ISSN

00401951. doi: 10.1016/0040-1951(67)90043-1.

J. Mori and R. E. Abercrombie. Depth dependence of earthquake frequency-

magnitude distributions in California: Implications for rupture initiation. J.

Geophys. Res. Solid Earth, 102(B7):15081–15090, 1997. ISSN 2169-9356. doi:

10.1029/97jb01356.

R. M. Narayanan, S. G. Hudson, C. J. Kumke, M. W. Beacham, and D. D. Hall.

Detection of rebar corrosion. Seventh Int. Conf. Gr. Penetrating Radar, (May),

1998.

B. T. Ngwenya, I. G. Main, S. C. Elphick, R. Crawford, and G. D. Smart.

A constitutive law for low-temperature creep of water-saturated sandstones.

J. Geophys. Res., 106(B10):21811–21826, 2001. ISSN 0148-0227. doi:

10.1029/2001JB000403.

B. T. Ngwenya, O. Kwon, S. C. Elphick, and I. G. Main. Permeability

evolution during progressive development of deformation bands in porous

sandstones. J. Geophys. Res. Solid Earth, 108(B7), 2003. ISSN 01480227.

doi: 10.1029/2002JB001854.



BIBLIOGRAPHY 165

E. Niederleithinger and A. Taffe. Early stage elastic wave velocity of concrete

piles. Cem. Concr. Compos., 28(4):317–320, 2006. ISSN 09589465. doi:

10.1016/j.cemconcomp.2006.02.013.

E. Niederleithinger and C. Wunderlich. Influence of small temperature variations

on the ultrasonic velocity in concrete. AIP Conf. Proc., 1511(1):390–397, 2013.

ISSN 0094243X. doi: 10.1063/1.4789074.

E. Niederleithinger, C. Sens-Schönfelder, S. Grothe, and H. Wiggenhauser. Coda

Wave Interferometry Used to Localize Compressional Load Effects in a Concrete

Specimen. EWSHM - 7th Eur. Work. Struct. Heal. Monit., pages 1427–1433,

2014.

E. Niederleithinger, O. Abraham, and M. Mooney. Geophysical Methods in Civil

Engineering : Overview and New Concepts Current Applications of Geophysics

in Civil Engineering. In NDT-CE, 2015a.

E. Niederleithinger, J. Wolf, F. Mielentz, H. Wiggenhauser, and S. Pirskawetz.

Embedded ultrasonic transducers for active and passive concrete monitor-

ing. Sensors (Switzerland), 15(5):9756–9772, 2015b. ISSN 14248220. doi:

10.3390/s150509756.

E. Niederleithinger, X. Wang, M. Herbrand, and M. Müller. Processing ultrasonic

data by coda wave interferometry to monitor load tests of concrete beams.

Sensors (Switzerland), 18(6), 2018. ISSN 14248220. doi: 10.3390/s18061971.

A. Obermann, T. Planès, E. Larose, and M. Campillo. 4-D Imaging of Subsurface

Changes with Coda Waves: Numerical Studies of 3-D Combined Sensitivity

Kernels and Applications to the Mw 7.9, 2008 Wenchuan Earthquake. Pure

Appl. Geophys., 176(3):1243–1254, 2019. ISSN 14209136. doi: 10.1007/s00024-

018-2014-7.

M. Ohtsu and Y. Tomoda. Acoustic emission techniques for rebar corrosion in

reinforced concrete. Adv. Constr. Mater. 2007, pages 615–621, 2007. doi:

10.1007/978-3-540-72448-362.

I. O. Ojala. Stress Corrosion and Crack Growth in Porous Sandstones. Doctoral

dissertation, University of Edinburgh, 2003.



166 BIBLIOGRAPHY

I. O. Ojala, I. G. Main, and B. T. Ngwenya. Strain rate and temperature dependence

of Omori law scaling constants of AE data: Implications for earthquake foreshock-

aftershock sequences. Geophys. Res. Lett., 31(24):1–5, 2004a. ISSN 00948276. doi:

10.1029/2004GL020781.

I. O. Ojala, B. T. Ngwenya, and I. G. Main. Loading rate dependence of permeability

evolution in porous aeolian sandstones. J. Geophys. Res. Solid Earth, 109(B1):

1–14, 2004b. ISSN 01480227. doi: 10.1029/2002JB002347.

M. Paterson and T. F. Wong. Experimental Rock Deformation-The Brittle Field.

2005. ISBN 9783540240235.

V. Penttala. Causes and mechanisms of deterioration in reinforced concrete.

Woodhead Publishing Limited, Helsinki, 2009. ISBN 9781845694081. doi:

10.1533/9781845697037.1.3.

D. N. Petley. Characterizing giant landslides, 2013. ISSN 10959203.

D. N. Petley, T. Higuchi, D. J. Petley, M. H. Bulmer, and J. Carey. Development

of progressive landslide failure in cohesive materials. Geology, 33(3), 2005. ISSN

00917613. doi: 10.1130/G21147.1.

T. Planès and E. Larose. A review of ultrasonic Coda Wave Interferometry in

concrete. Cem. Concr. Res., 53:248–255, nov 2013. ISSN 00088846. doi:

10.1016/j.cemconres.2013.07.009.

G. A. Popandopoulos and A. A. Lukk. The depth variations in the b-value

of frequency-magnitude distribution of the earthquakes in the Garm region

of Tajikistan. Izv. Phys. Solid Earth, 50(2), 2014. ISSN 10693513. doi:

10.1134/S1069351314020074.

G. Poupinet, W. L. Ellsworth, and J. Frechet. Monitoring velocity variations

in the crust using earthquake doublets: an application to the Calaveras fault,

California ( USA). J. Geophys. Res., 89(B7):5719–5731, 1984. ISSN 01480227.

doi: 10.1029/JB089iB07p05719.

T. M. Proctor. An improved piezoelectric acoustic emission transducer. J. Acoust.

Soc. Am., 71(5):1163–1168, may 1982. ISSN 0001-4966. doi: 10.1121/1.387763.



BIBLIOGRAPHY 167

Q. Qian, C. Qi, and M. Wang. Dynamic strength of rocks and physical nature of

rock strength. J. Rock Mech. Geotech. Eng., 1(1):1–10, oct 2009. ISSN 16747755.

doi: 10.3724/SP.J.1235.2009.00001.

R. H. Randall and H. N. Maxwell. An Introduction to Acoustics. Am. J. Phys.,

20(3):189–190, mar 1952. ISSN 0002-9505. doi: 10.1119/1.1933163. URL

http://aapt.scitation.org/doi/10.1119/1.1933163.

R. H. Rastall and C. Davison. The Founders of Seismology. Geogr. J., 70(5), 1927.

ISSN 00167398. doi: 10.2307/1783508.

N. S. Roberts, A. F. Bell, and I. G. Main. Are volcanic seismic b-values high, and

if so when? J. Volcanol. Geotherm. Res., 308:127–141, dec 2015. ISSN 03770273.

doi: 10.1016/j.jvolgeores.2015.10.021.

B. Rouet-Leduc, C. Hulbert, N. Lubbers, K. Barros, C. J. Humphreys, and P. A.

Johnson. Machine Learning Predicts Laboratory Earthquakes. Geophys. Res.

Lett., 44(18):9276–9282, 2017. ISSN 19448007. doi: 10.1002/2017GL074677.

J. Salvermoser, C. Hadziioannou, and S. C. Stähler. Structural monitoring of a

highway bridge using passive noise recordings from street traffic. J. Acoust. Soc.

Am., 138(6):3864–72, dec 2015. ISSN 1520-8524. doi: 10.1121/1.4937765.

P. R. Sammonds, P. G. Meredith, and I. G. Main. Role of pore fluids in the

generation of seismic precursors to shear fracture. Nature, 359(6392):228–230,

1992. ISSN 00280836. doi: 10.1038/359228a0.

C. H. Scholz. Earthquakes and friction laws. Nature, 391(6662):37–42, 1998. ISSN

0028-0836. doi: 10.1038/34097.

C. H. Scholz. On the stress dependence of the earthquake b value. Geophys. Res.

Lett., 42(5):1399–1402, 2015. ISSN 19448007. doi: 10.1002/2014GL062863.

C. H. Scholz. The Mechanics of Earthquakes and Faulting. Cambridge Univer-

sity Press, jan 2019. ISBN 9781316681473. doi: 10.1017/9781316681473. URL

https://www.cambridge.org/core/product/identifier/9781316681473/type/book.

C. Sens-Schönfelder and U. Wegler. Passive image interferemetry and seasonal

variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett.,

33(21):1–5, 2006. ISSN 00948276. doi: 10.1029/2006GL027797.



168 BIBLIOGRAPHY

W.-c. Shi, J.-g. Zhu, C.-f. Chiu, and H.-l. Liu. Strength and deformation behaviour

of coarse-grained soil by true triaxial tests. J. Cent. South Univ. Technol., 17

(5):1095–1102, oct 2010. ISSN 1993-0666. doi: 10.1007/s11771-010-0602-5. URL

https://doi.org/10.1007/s11771-010-0602-5.

J. Singh, A. Curtis, Y. Zhao, A. Cartwright-Taylor, and I. Main. Coda Wave

Interferometry for Accurate Simultaneous Monitoring of Velocity and Acoustic

Source Locations in Experimental Rock Physics. J. Geophys. Res. Solid Earth,

124(6):5629–5655, jun 2019. ISSN 2169-9313. doi: 10.1029/2019JB017577.

J. Singh, A. Curtis, and I. G. Main. Measuring accurate simultaneous changes in

compressional and shear wave velocities in fluid saturated rocks using coda wave

interferometry. Press, pages 1–33, 2020.

R. Smith, C. Kilburn, and P. Sammonds. Rock fracture as a precursor to lava dome

eruptions at Mount St Helens from June 1980 to October 1986. Bull. Volcanol.,

69(6):681–693, 2007. ISSN 0258-8900. doi: 10.1007/s00445-006-0102-5.

R. Sneider. Chapter 1.7.3 SCATTERING OF SURFACE WAVES. (11):562–577,

2002.

R. Snieder. Imaging and Averaging in Complex Media. Diffus. Waves Complex

Media, pages 405–454, 1999. doi: 10.1007/978-94-011-4572-514.

R. Snieder. Coda wave interferometry and the equilibration of energy in elastic

media. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 66(4):1–8, 2002. ISSN

15393755. doi: 10.1103/PhysRevE.66.046615.

R. Snieder. Monitoring change in volcanic interiors using coda wave interfer-

ometry: Application to Arenal Volcano, Costa Rica. Geophys. Res. Lett., 31:

doi:10.1029/2004GL019670, 2004a. ISSN 00948276. doi: 10.1029/2004GL019670.

R. Snieder. Coda Wave Interferometry. McGraw-Hill Yearb. Sci. Technol., pages

1–3, 2004b.

R. Snieder. The theory of coda wave interferometry. Pure Appl. Geophys., 163:

455–473, 2006. ISSN 00334553. doi: 10.1007/s00024-005-0026-6.

R. Snieder, A. Gret, H. Douma, and J. Scales. Coda Wave Interferometry for

Estimating Nonlinear Behavior in Seismic Velocity. 295(March):2253–2256, 2002.



BIBLIOGRAPHY 169

D. Sornette. Predictability of catastrophic events: material rupture, earthquakes,

turbulence, financial crashes, and human birth. Proc. Natl. Acad. Sci. U. S. A.,

99 Suppl 1(90001):2522–9, 2002. ISSN 0027-8424. doi: 10.1073/pnas.022581999.

S. C. Stähler, C. Sens-Schönfelder, and E. Niederleithinger. Monitoring stress

changes in a concrete bridge with coda wave interferometry. J. Acoust. Soc.

Am., 129(4):1945–1952, 2011. ISSN 00014966. doi: 10.1121/1.3553226.

G. Tao, M. S. King, and M. Nabi-Bidhendi. Ultrasonic wave propagation in

dry and brine-saturated sandstones as a function of effective stress: laboratory

measurements and modelling. Geophys. Prospect., 43(3), 1995. ISSN 13652478.

doi: 10.1111/j.1365-2478.1995.tb00255.x.

UNISDR (United Nations International Strategy for Disaster Reduction). Sendai

framework for disaster risk reduction 2015–2030. Technical report, UNISDR,

Geneva, 2015.

T. Utsu, Y. Ogata, R. S, and Matsu’ura. The Centenary of the Omori Formula

for a Decay Law of Aftershock Activity. J. Phys. Earth, 43(1):1–33, 1995. ISSN

1884-2305. doi: 10.4294/jpe1952.43.1.

P. J. Vardanega, G. T. Webb, P. R. Fidler, and C. R. Middleton. Bridge monitoring.

Innov. Bridg. Des. Handb. Constr. Rehabil. Maint., pages 759–775, 2016. doi:

10.1016/B978-0-12-800058-8.00029-3.

J. Vasseur, F. B. Wadsworth, Y. Lavallée, A. F. Bell, I. G. Main, and D. B. Dingwell.

Heterogeneity: The key to failure forecasting. Sci. Rep., 5(13259):1–7, 2015. ISSN

2045-2322. doi: 10.1038/srep13259.

G. Ventura, S. Vinciguerra, S. Moretti, P. Meredith, M. Heap, P. Baud, S. Shapiro,

C. Dinske, and J. Kummerow. Understanding Slow Deformation Before Dynamic

Failure. Geophys. Hazards, pages 229–247, 2010. doi: 10.1007/978-90-481-3236-

214.

R. Vidya Sagar. Importance of acoustic emission based b-value in the study of

fracture process of reinforced concrete structures. 2016. doi: 10.21012/fc9.040.

R. Vidya Sagar and M. Dutta. Combined usage of acoustic emission technique and

ultrasonic pulse velocity test to study crack classification in reinforced concrete



170 BIBLIOGRAPHY

structures. Nondestruct. Test. Eval., 00(00):1–35, 2019. ISSN 14772671. doi:

10.1080/10589759.2019.1692013.

B. Voight. A method for prediction of volcanic eruptions. Nature, 332:125–130,

1988. ISSN <null>. doi: 10.1038/332125a0.

P. Wallemacq. Economic Losses, Poverty and Disasters 1998-2017. Technical report,

Centre for Research on the Epidemiology of Disasters (CRED), 2018.

X. Wang and J. Chakraborty. Monitoring a concrete bridge girder with the coda

wave interferometry method. Fifth Conf. Smart Monit. Assessment, Rehabil. Civ.

Struct. Rehabil. Civ. Struct., (May 2020), 2019. doi: 10.5281/zenodo.3520603.

X. Wang, E. Niederleithinger, M. Lange, and H. Stolpe. Implementation of

ultrasonic coda wave interferometry on a real bridge. Struct. Heal. Monit. 2019

Enabling Intell. Life-Cycle Heal. Manag. Ind. Internet Things - Proc. 12th Int.

Work. Struct. Heal. Monit., 2:2263–2270, 2019. doi: 10.12783/shm2019/32365.

X. Wang, J. Chakraborty, A. Bassil, and E. Niederleithinger. Detection of multiple

cracks in four-point bending tests using the coda wave interferometry method.

Sensors (Switzerland), 20(7):1–17, 2020. ISSN 14248220. doi: 10.3390/s20071986.

Y. Wang, N. Zhou, F. Chang, and S. Hao. Brittle Creep Failure , Critical Behavior

, and Time-to-Failure Prediction of Concrete under Uniaxial Compression. 2015,

2015a.

Y. Wang, N. Zhou, F. Chang, and S. Hao. Brittle Creep Failure, Critical Behavior,

and Time-to-Failure Prediction of Concrete under Uniaxial Compression. Adv.

Mater. Sci. Eng., 2015, 2015b. ISSN 16878442. doi: 10.1155/2015/101035.

L. Yang, editor. Techniques for Corrosion Monitoring. Woodhead Publishing, 2008.

ISBN 978-1-84569-187-5.

S. Q. Yang, H. W. Jing, and S. Y. Wang. Experimental investigation on the strength,

deformability, failure behavior and acoustic emission locations of red sandstone

under triaxial compression. Rock Mech. Rock Eng., 45(4):583–606, 2012. ISSN

07232632. doi: 10.1007/s00603-011-0208-8.

S.-Q. Yang, H.-W. Jing, Y.-H. Huang, P. Ranjith, and Y.-Y. Jiao. Fracture

mechanical behavior of red sandstone containing a single fissure and two parallel



BIBLIOGRAPHY 171

fissures after exposure to different high temperature treatments. J. Struct. Geol.,

69:245–264, 2014. ISSN 01918141. doi: 10.1016/j.jsg.2014.10.014.

W. Yeih and R. Huang. Detection of the corrosion damage in reinforced concrete

members by ultrasonic testing. Cem. Concr. Res., 28(7):1071–1083, jul 1998.

ISSN 00088846. doi: 10.1016/S0008-8846(98)00060-X.

D.-J. Yoon, J. W. Weiss, and S. Shah. Second-order axial deflections of imperfect

3-d beam-column. J. Eng. Mech., 126(11):1201–1208, 2000. ISSN 0733-9399. doi:

10.1061/(ASCE)0733-9399(2000)126.

A. Zaki, H. K. Chai, D. G. Aggelis, and N. Alver. Non-destructive evaluation for

corrosion monitoring in concrete: A review and capability of acoustic emission

technique. Sensors (Switzerland), 15(8):19069–19101, 2015. ISSN 14248220. doi:

10.3390/s150819069.

A. Zang, C. F. Wagner, and G. Dresen. Acoustic emission, microstructure, and

damage model of dry and wet sandstone stressed to failure. 101, 1996.



172 BIBLIOGRAPHY



173



174

Appendix A

AE Software Set-up

AE set-up procedure 

 

Turn the Top silver box on first and allow 5-10 minutes to warm up before switching on 

the bottom silver box. Turn on the rear switch before the front switch on each box. 

 

• Open Xstream for continuous acquisition  

• Note: channels 1&2 are controlled by the Slave, channels 3-6 controlled by the Master. 

Channels 1&2 measure P waves, 3&4 have S waves in one orientation, 5&6 have 

S waves in another orientation 

 

• Open the Master completely before opening the Slave remote desktop 

• Set the Xstream local to Master- it will control the Slave settings  

• open waveform watch 

• set sampling rate to max – 10 MHz 

• set up export folders on both Master and Slave, save separately- have to be joined 

manually later  

• Send parameters on Master to Slave- confirm the communication says 'yes' 

• Start streaming  

 

In Slave window: 

 

• Open cecchi (handles triggered events) 

• Computers My Book DUO  Alyssa  experiment name  BSF 

• autostore BSF 

• initialize communications 

• signal amplifiers, set noise trigger threshold to 50mV, check sensors 

• while velocity survey is happening you can’t record AEs, so set survey to happen 

infrequently  

• Open InSite for processing  

• Project  edit receivers  

 



Appendix B

Clashach Operating Procedure

Below is the attached PDF of the operating procedure followed for the triaxial

deformation tests outlined in section 4.
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Clashach Test Operating Procedure 

 

 

 

1. Turn on computers, ensure Slave is turned on completely before you turn on Master 

 

2. Ensure there is space for test on both Slave and Master (~300GB). To change between 

Master and Slave, select ‘Slave’ desktop icon on Master, to change back minimize the 

Slave screen using the panel in the middle/top 

 

3. Create test files:  

a. Rig Workstation : Labview Excel and txt files- open Excel file and Save As Excel 97-

2003, name files as ‘Clashach DD_MM_YYYY_Sample#’ 

b. UoERichter Workstation: Triggered Data files in Slave Remote Desktop > My Book 

Duo (E) > Lyss > Clashach. Make Folder for test ‘DD-MM-YYYY-Sample-##MPa’ and 

inside create folders titled ‘BSF’ and ‘ESF’  

c. UoERichter Workstation : In the Master Desktop create the continuous data folder 

in Data (D) > Lyss > Clashach tests. Name the folder 

‘DD_MM_YYYY_Sample_##MPa’ 

 

4. Synchronize the two acquisition computers with time server 129.215.7.254: 

a. Go to PC time and date settings > select internet time tab > change settings > input 

server info > update now (may need to press it twice) > ok 

 

5. Continuous data acquisition set-up on UoERichter Workstation: 

a. Open eXstream on both Slave and Master 

b. Set settings to slave and master, respectively if not done so 

c. In Master eXstream: set storage folder location to be the folder you made in the 

Master Data (D) Drive in step 3c 

d. Check settings in Master eXstream Window:  Wavelength 2048, Input Impedance: 

50 Ohms, Voltage Range: 5V,  Sampling Rate: 10MHz,  File Type: Uncompressed 

HDF5 files, Stream Duration: 5 seconds 

e. Send Parameters and Arm Slaves 

f. Check the Slave eXstream to ensure the arming process has copied over the settings   



 

6. THC data acquisition set-up on UoERichter Workstation: 

a. In Slave Remote Desktop- open Cecchi Leach 

b. Set BSF directory to My Book Duo (E) folder location made in Step 3b 

c. Initialize communications  

d. Check settings - Sampling Frequency: 50MHz, Waveform Length: 8192, Full Scale 

Volts: 8V, Trigger level: 1, Stack Count: 10, Auto Survey: 15 mins  

e. Select ‘Trigger Hit Count Control’ and check that the Global Timer is set to 40ms, and 

Number of channels to trigger =2 

f. Open Trigger Watch 

 

7. LabView data acquisition set-up in Rig Workstation: 

a. Ensure the sensors are turned on (in silver box under monitor) 

b. Open LabVIEW > open multi graphs shared variable project 

c. Open VI – ‘multi graphs draft 9 DAQ correct units’ 

d. Set program to save to files made in step 1 

e. Start program by clicking on white arrow in top left corner 

f. Press start – DAQ is running 

g. Check signals look reasonable 

 

8. Assemble cell (see photo and schematic): 

a. Put the fritt filter into the hole in the top of both mushroom platens 

b. Put the grey semi-circular spacer disks on top of mushroom part of base platen 

c. Carefully slide the vessel over the top of the platen and rest it on the grey spacers 

d. Smear ultrasonic gel on ends of sample 

e. Slide the rock sample into the vessel 

f. Smear ultrasonic gel on the metal spacer and slide into vessel on top of the sample 

g. Slide the top platen into the top of the vessel 

 

 

 

9. Apply a small amount of confining pressure  (3- 10 bar) 

a. Put weight on the piston 



b. Make sure black refill valve on pump is CLOSED 

c. Double check that A3 is CLOSED 

d. Open the following valves: 

i. High pressure 

ii. Low Pressure 

iii. Center  

iv. B5 

v. B4 

vi. D4 

e. On ISCO pump control: 

i. Press CONST PRESS key 

ii. Set pressure at 10 bar with number pad 

iii. Press ENTER 

iv. Press RUN 

v. Watch the LP gauge  

vi. Pressure will take time to build as there will be air in the vessel due to 

making and breaking the confining fluid pipe connection – check for leaks 

when pressure shoulders off, but may just be compressing the air inside the 

vessel. 

vii. When LP gauge reads c.140 psi (confining/effective pressures read 1 MPa on 

Labview), close Center valve and stop pump  

viii. Close HP and LP valves   

ix. Close off cell D4 to keep pressure 

 

10. Set up the Stack 

a. Apply ultrasonic gel to the AE transducers 

b. Put the bottom AE transducer platen onto the bottom LVDT plate (which should be 

on top of a small aluminum spacer in the middle of the rig)  

c. Lift the vessel into the frame and align with bottom spacer – ensure stack is 

centered  

d. Place the top AE transducer platen on top of the top mushroom platen 

e. Ensure AE sensors are aligned – S1 with S1, etc. 

f. Lift the top LVDT plate onto the stack 



g. Ensure the LVDTs nestle in the brass dips well in to their movement range (approx. 

¼ to ½ way) 

h. Place metal spacers on top of the LVDT plate as needed – ensure whole stack is 

fully centered!  

 

11. Release small confining by opening cell D4 and C4 to drain 

 

12. Bring ram down to touch using hand pump 

a. Make sure all valves are closed except C4, D4 

b. Open the following valves: 

i. Hand pump 

ii. A3 

iii. B3 

iv. B2 

v. A2 

vi. Ram bottom 

c. Pump with handle SLOWLY and gently, watching gap close and stop pumping as 

soon as there is no light visible through the gap 

d. Close ram bottom valve 

e. Equalize pressure in hand pump by cracking open the wheel on the side of the hand 

pump and then closing it again 

f. Close ALL the valves! 

 

13. Apply confining pressure with Bladder Accumulator 

a. Make sure black refill valve on pump is CLOSED 

b. Double check that A3 is closed 

c. Add pressure via BA:  

i. Open HP 

ii. Open Center 

iii. Open B5, B4, D4 

iv. Slowly crack D5 allowing BA pressure in  

 

d. Run pump at constant flow 16 ml/min until above 200bar 



e. Run at constant pressure 240 Bar until flowrate diminishes 

f. Repeat until pressure is maintained after stopping pump 

 

 

14. REMOVE GREY SPACERS FROM STACK 

 

15. Remove pressure from pump: 

a. Close Center valve 

b. Keep HP open 

c. Run pump at varying pressures decreasing down to 2-5 bar 

d. Stop pump 

 

16. Stop and restart Labview Acquisition  

 

17. Start acquisition on eXstream (Master) and Cecchi (Slave) - note time 

 

18. Load sample: 

a. Ensure Center valve is closed 

b. Keep path to cell open as before 

c. Open: 

i. High Pressure 

ii. A3 

iii. B3 

iv. B2 

v. A2 

vi. Ram Bottom  

d. Run pump at constant rate of 0.874 ml/min = 1e-5 – NOTE PUMP START TIME 

 

19. At end of test: 

a. Stop ISCO pump 

b. Stop acquisition on Cecchi Leach and eXstream 

 

20. Depressurize the system: 



a. Check valves 

i. Center valve should be closed  

ii. D4, D5, B4 and B5 should be open 

b. Lock off ram bottom 

c. Close A2, B2, A3, B3 

d. Close D5 to Bladder Accumulator 

e. Open C4 slowly 

f. Open  B2, A3, B3, B1, Ram top  

g. Close High Pressure 

h. Open hand pump  

i. Use hand pump to lift ram 

j. Close hand pump valve and crack the knob on the hand pump to release the 

pressure on the hand pump gauge, and then tighten it again 

k. Close EVERYTHING  

 

21. Stop and save Labview: 

a. Press big stop on Labview 

b. Press write to Excel 

c. Excel file will pop up in task bar 

d. Click on it > save as 

e. Hit top stop button in Labview 

 

22. Deconstruct the Stack 

a. Remove the metal spacer and the top LDVT plate from the stack 

b. Remove the top AE sensor and wipe clean 

c. Pull the stack forward carefully  

d. Place a beaker below the confining valve behind the cell 

e. Slowly manually open the confining valve to remove any remaining pressure, you 

may need to suck out remaining oil with syringe 

f. Pull out the top piston from the vessel and clean 

g. Lift vessel onto the large metal ring and remove the bottom piston (the sample or 

fragments may fall out) 

h. Push out the sample with the grey tube and hammer as needed  



i. Clean up the rig 

j. Turn off the sensors in the silver box  

 

23.  Shut down the workstations  

a. To turn off Slave- open terminal ‘shutdown –s’ 

 

 

Additional info: 

Refilling the pump:  

1. Ensure no pressure or very low pressure on the pump. 

2. Open black valve on pump 

3. Hit ‘refill’ on ISCO 

 

 

 

 

 

 

 

 

 

 

 


