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Abstract—Internet of Things (IoT) based on cognitive radio
(CR) exhibits strong dynamic sensing and intelligent decision-
making capabilities by effectively utilizing spectrum resources.
The federal learning (FL) framework based modulation recog-
nition (MR) is an essential component, but its use of unin-
terpretable deep learning (DL) introduces security risks. This
paper combines traditional signal interference methods and data
poisoning in FL to propose a new adversarial attack approach.
The poisoning attack in distributed frameworks manipulates
the global model by controlling malicious users, which is not
only covert but also highly impactful. The carefully designed
pseudo-noise in MR is also extremely difficult to detect. The
combination of these two techniques can generate a greater
security threat. We have further advanced our proposal with
the introduction of the new adversarial attack method called
"Chaotic Poisoning Attack" to reduce the recognition accuracy of
the FL-based MR system. We establish effective attack conditions,
and simulation results demonstrate that our method can cause
a decrease of approximately 80% in the accuracy of the local
model under weak perturbations and a decrease of around 20%
in the accuracy of the global model. Compared to white-box
attack methods, our method exhibits superior performance and
transferability.

Index Terms—Adversarial attack, federated learning, modula-
tion recognition, cognitive radio.

I. INTRODUCTION

COGNITIVE radio (CR) enabled Internet of Things (IoT)
possesses the capability to intelligently perceive the

spectrum environment and efficiently utilize the spectrum [1],
thus mitigating the issue of spectrum scarcity. Modulation
recognition (MR) is a crucial technique in CR, and when using
deep learning (DL), it offers significant advantages. Different
modulation methods are utilized by various users based on
service requirements and MR can identify the modulation
schemes in user signals by analyzing characteristics such as
amplitude, phase, and waveform of the received signal [2]–
[4]. This information enables CR to dynamically adjust the
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modulation scheme and coding rate to adapt to diverse channel
conditions. Additionally, DL-based MR plays a crucial role
in signal detection, spectrum management, and signal control.
For example, Zhang et al. [5] proposed a DL-based method for
MR, using a neural network with an improved generalized end-
to-end loss to enhance similarity among feature vectors with
the same modulation type and reduce similarity among those
with different types. Wang et al. [6] developed a Multi-Cue
Fusion network for automatic modulation recognition, while
Njoku et al. [7] introduced an economically efficient hybrid
neural network consisting of a shallow convolutional network,
gated recurrent units, and deep neural network (DNN), for
automatic modulation recognition in cognitive radios.

Deep learning (DL) brings enormous advantages to the use
of MR. However, due to its non-interpretability, there are sig-
nificant security risks that must be addressed. Reference [8] as
the first to reveal that adding small, imperceptible distortions
to an image can lead to errors in DL classification. Since
then, numerous studies have emerged investigating DL security
issues. In the context of Internet of Vehicles, Qiu et al. [9]
generated adversarial examples through GPS data and found
that small perturbations can deceive deep neural networks.
Similarly, when DL is applied in medical IoT, researchers have
identified several security vulnerabilities. Rahman et al. [10]
found that diagnostic methods relying on DL algorithms are
vulnerable to adversarial attacks. In [11], an adversarial attack
technology based on adversarial networks and multi-task loss
was proposed to reduce the accuracy of MR.

However, the adversarial attacks on centralized DL are
significantly weakened when federated learning (FL) is used.
In the IoT scenario, users and devices are distributed, and it is
challenging to form a unified data source for DL training [12]–
[16]. Therefore, FL is widely adopted in MR in IoT. As a com-
mon means of protecting data privacy in IoT scenarios, recent
studies have shown that FL is also susceptible to attacks. Liu
et al. [17] discussed data poisoning attacks in crowdsourcing
and the conditions of effective attack strategies. Shi et al. [18]
proposed a novel poisoning attack algorithm, Fed-MIFGSM,
targeting robust FL frameworks to investigate the impact of
adversarial examples on FL. Lim et al. [19] questioned the
reliability of DL models, particularly in FL, by using existing
privacy-breaking algorithms to invert the model’s gradients
and reconstruct input data with incontrovertible evidence.
Chen et al. [20] proposed a novel adversarial attack method
specifically designed for graph neural network FL frameworks,
this method leverages privacy leakage and gradients of paired
nodes to generate adversarial perturbations based on perturbing
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the global node embeddings with added noise. Hossain et
al. [21] analyzed the inadequacy of adversarial attacks in FL
settings to remain concealed and persistent, and demonstrated
the use of differential noise for poisoning attacks. Most of
these studies focus on image processing, but there is a lack of
efficient and covert attacks on signals in FL-based MR.

This paper proposes a new type of adversarial attack, using
pseudo-noise, designed to decrease the recognition accuracy
of FL-based MR systems. This attack combines interference
methods from the signal domain with poisoning attacks from
FL. The main contributions of this paper are as follows:

• We propose a novel adversarial attack method that utilizes
pseudo-noise to decrease the recognition accuracy of FL-
based MR.

• We combine interference methods in the signal domain
with poisoning attacks in FL to enhance the effectiveness
of the attack. This fills a gap in the field of FL-based
MR by expanding the adversarial attack methods into the
signal domain.

• We derive the conditions for the feasibility of the attack
and demonstrate the effectiveness of the proposed attack
method through experiments.

The remainder of this paper is described as follows. Section
II presents system model. Section III introduces the proposed
chaotic poisoning attack. Section IV analyzes the effective
attack conditions. Section V presents simulation and compar-
ison of various attack methods. Finally, Section VI provides a
conclusion for the entire paper.

II. SYSTEM MODEL

The proposed FL-based MR in CR-enabled IoT is shown in
Fig. 1. This system connects devices from different areas, such
as wireless sensor network devices, ground radar networks,
and remote monitoring devices that require the use of MR.
These devices collect signals and transmit them to the edge
computing system, which compiles these signals into a training
set and trains a local DL network model. After training, the
local DL network model parameters are uploaded to the central
computing system. The central computing system generates a
global model and distributes it to each local device, which can
then use the global model for signal recognition.

The MR-based federated learning framework is a distributed
deep learning method. Its core idea is to perform distributed
training among multiple data sources with local data. Without
exchanging local data, a global model is built based on
virtual fused signal data only by exchanging parameters. This
framework achieves the balance between data privacy and data
sharing, and is a new paradigm for the application of MR
systems. The global state of FL can be expressed as

f(w) =
K∑

k=1

nk

n
Fk(w), (1)

where K represents the number of local servers in this learning
round, Fk(w) represents the objective function of the k-th local
server, n represents the total number of samples in the FL
framework, nk represents the number of samples at the k-
th local server. The objective function Fk(w) can be further

expressed as

Fk(w) =
1

nk

∑
i∈Pk

fi(w), (2)

where Pk denotes the partition of the dataset assigned to the
k-th local server, and fi(w) denotes the loss function for the
i-th data point.

There are different types of DNNs. Here, convolutional
neural networks (CNN), residual neural networks (ResNet),
and visual geometry group networks (VGG) are considered in
FL.

1) CNN: CNN is a type of deep learning model common-
ly used in image recognition, computer vision, and natural
language processing. CNN consists of convolutional layers,
pooling layers, and fully connected layers, which extract
features and classify the input images.

The core of CNN is the convolutional layer. The convolu-
tional layer consists of multiple convolutional kernels, each of
which extracts a specific feature from the input data. At each
position of the input data, the kernel performs a convolution
operation and obtains an output value. The kernel slides over
the input data until the entire input data is traversed, and a
feature map is obtained. Multiple kernels can extract different
features, resulting in multiple feature maps.

CNN also includes pooling layers, which reduce the size
of feature maps, decrease computation, and enhance feature
robustness. The pooling layer usually adopts the maximum
pooling or average pooling, which selects the maximum value
or average value of each subregion of the feature map as the
output value.

Finally, CNN flattens the feature maps into a one-
dimensional vector and performs classification or regression
tasks through fully connected layers.

Assuming the input image is X , the convolutional kernel is
W , the bias is b, and the convolution operation is ∗, then the
output Y of the convolutional layer can be expressed as

Y = f(

n∑
i=1

Wi ∗X + b), (3)

where n represents the number of convolutional kernels, f rep-
resents the activation function, commonly used ones include
ReLU, sigmoid, and tanh. Assuming the pooling operation is
P , then the output Y of the pooling layer can be expressed as

Y = P (X). (4)

Common pooling operations include maximum pooling
(Pmax) and average pooling (Pavg), which can be expressed
as

Pmax(X)i, j = maxm,nXi+m,j+n, (5)

Pavg(X)i, j =
1

k2

∑
m,nXi+m,j+n, (6)

where k represents the size of the pooling region. The output
of the final CNN can be expressed as

FCNN = g(WTR+ b), (7)

fCNN(w) = Loss(FCNN), (8)
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Fig. 1. Federated learning based modulation recognition in cognitive radio enabled IoT.

where fCNN(w) represents the loss function, FCNN represents
the output, g represents the activation function, W represents
the network weight, R represents the network input, and b
represents the offset. Such a CNN for MR will serve as a node
in the entire FL framework, and its input data comes from the
baseband signal r(t) provided by the sampling module.

2) ResNet: ResNet is a deep convolutional neural network
model proposed in 2015. It introduced the concept of residual
learning, which enables training of very deep neural networks
by adding shortcut connections that skip one or more layers.

The basic building block of ResNet is the residual block,
which consists of two convolutional layers and a shortcut
connection that bypasses the convolutional layers. The shortcut
connection adds the input directly to the output of the second
convolutional layer, allowing the network to learn the residual
between the input and output.

The ResNet architecture is organized into a series of stages,
and each stage consists of multiple residual blocks with the
same number of filters. The number of filters is doubled at the
transition between stages, and the spatial size of feature maps
is reduced by a factor of 2 using a convolutional layer with a
stride of 2.

The mathematical expression of a residual block can be
written as

Y = F (X,W ) +X, (9)

where X is the input feature map, W represents the weights
of the convolutional layers in the residual block, F is a
residual function that learns the difference between the input
and output, and Y is the output feature map.

The residual function F can be expressed as

F (X,W ) = σ(W2σ(W1X + b1) + b2) +X, (10)

where W1,W2 are the weights of the two convolutional layers,
b1, b2 are the biases, σ represents the activation function
(usually ReLU), and the shortcut connection X is added to
the output of F to form the final output Y .

The mathematical expression of an average pooling layer is

Yi,j,k =
1

k2

k∑
a=1

k∑
b=1

X2i+a−1,2j+b−1,k, (11)

where X is the input featuremap, i, j, k represent the position
and channel of the output feature map, and the average pooling
operation is applied to a k × k region with a stride of 2.

We denote the final output of the ResNet network as

FRes = g(WTR+ b), (12)

fRes(w) = Loss(FRes), (13)

where fRes(w) represents the loss function, FRes represents
the output, g represents the activation function, W represents
the network weight, R represents the network input, and b
represents the offset. It is also one of the nodes of the FL
framework, and the input comes from r(t) of the sampling
module.

3) VGG: VGG is a deep convolutional neural network
model proposed in 2014. It achieved excellent performance
in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) and has been widely used in various computer
vision tasks.

VGG consists of several convolutional layers followed by
max pooling layers, and ends with several fully connected
layers. The convolutional layers use small 3x3 filters with a
stride of 1 and padding of 1, and the max pooling layers use
2x2 filters with a stride of 2.

The mathematical expression of a convolutional layer can
be written as

Yi,j,k = σ

∑
a,b,c

Wa,b,c,kXi+a−1,j+b−1,c + bk

 , (14)

where X is the input feature map, W is the convolutional
kernel, b is the bias, σ is the activation function (usually
ReLU), and i, j, k represent the position and channel of the
output feature map.
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The mathematical expression of a max pooling layer is

Yi,j,k = max
a,b

(X2i+a−1,2j+b−1,k), (15)

where X is the input feature map, i, j, k represent the position
and channel of the output feature map, and the max pooling
operation is applied to a 2x2 region with a stride of 2.

The mathematical expression of a fully connected layer is

Y = σ

(
n∑

i=1

wixi + b

)
, (16)

where x is the input vector, w is the weight vector, b is the bias,
and σ is the activation function (usually ReLU or softmax).

In VGG, the last three fully connected layers have 4096
neurons each, and the last fully connected layer has 1000
neurons corresponding to the 1000 classes in the ImageNet
dataset.

We denote the final output of VGG as

FVGG = g(WTR+ b), (17)

fVGG(w) = Loss(FVGG), (18)

where fVGG(w) represents the loss function, FVGG represents
the output, g represents the activation function, W represents
the network weight, R represents the network input, and b
represents the offset. the input comes from the r(t) of the
sampling module.

There are more than three types of DNNs in the final
FL framework, and the number will also increase. FL-based
MR offers privacy-preserving machine learning, improved
accuracy, distributed training, and collaborative learning. FL
enables MR models to be trained on diverse datasets from
geographically distributed devices without the need for data to
be transferred to a central location, making MR more efficient
and scalable. FL is a promising approach for MR in scenarios
where data is sensitive or confidential, and where devices are
geographically distributed.

III. CHAOS POISONING ATTACK ON FEDERATED
LEARNING

Chaotic signals are signals that lie between true random
noise and deterministic signals, and have a high degree of
concealment. The poisoning attack is a powerful attack method
for deep learning. Thus, they can be combined to produce a

more subtle attack. The overall attack flow chart is shown in
Fig. 2. First, the parameters of the other party’s deep learning
network are modified in the way the attacker wants through
the poisoning attack (that is, when the other party receives
the signal interfered by the chaotic signal, the modulated
signal is incorrectly identified.) and then the corresponding
chaotic signal is transmitted in the channel to reduce the
recognition accuracy of the modulation recognition system,
thereby destroying MR. Poisoning attack is one of the most
powerful and hidden attacks on the FL framework [22].

A. Adversarial Attack

Adversarial attack refers to the deliberate manipulation of
input data to a machine learning model in order to force its
errors. The goal of such attacks is to exploit vulnerabilities in
the model and undermine its performance.

One common form of adversarial attack is the targeted
attack, in which the attacker aims to cause the model to output
a specific incorrect prediction. This can be achieved by adding
a small perturbation to the input data, which can be formulated
as

xadv = x+ ϵ · sign(∇xJ(θ, x, ytarget)), (19)

where x is the original input data, xadv is the perturbed input
data, ϵ is a small scalar value that controls the magnitude of
the perturbation, J is the loss function used to evaluate the
performance of the model, θ are the model parameters, and
ytarget is the target output that the attacker wants the model
to produce.

In the simulation, several common white-box algorithms are
compared with the proposed chaos poisoning method (CPM),
including the fast gradient sign method (FGSM) [23], the basic
iterative method (BIM) [24], the projected gradient descent
(PGD) [25] and the momentum iterative method (MIM) [26].

FGSM generates adversarial samples through the sign of
gradient, and the core equation is

xadv = x+ ε · sign (∇x(J(x, y))) , (20)

where x and y are clean samples and corresponding labels
respectively. The label refers to one hot vector. J(·, ·) is
the cross-entropy function, and xadv is the corresponding
adversarial samples. The sign(·) is the sign function, a positive
number returns 1, a negative number returns −1, and 0 returns
0.

The principle of BIM is to first find a category with the low-
est classification degree, carry out gradient calculation along
the direction of this category, and then get the corresponding
adversarial samples. It defines an iterative least-like class:

yLL = argmin
y

{p(y|x)}. (21)

Its core equation is similar to the iterative form of FGSM,
as follows:

xadv
n+1 = clipx,ε

(
xadv
n + α · sign

(
∇x

(
J
(
xadv
n , yLL

))))
,

(22)
where clipx,ε(·) is used for truncation so that the overall noise
does not exceed the threshold ε.
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The idea of PGD is also similar to multiple iterations of
FGSM, in the following form:

xadv
n+1 = Πx+S

(
xadv
n + α · sign (∇x(J(x, y)))

)
, (23)

where the key point is projection operation Πx+S , which maps
the modified value of xadv

n to its neighborhood.
Finally, MIM adds iteration and momentum terms on the

basis of FGSM. The equation is as follows:

gn+1 = µ · gn +
∇x (J (xn, y))

∥∇x (J (xn, y))∥1
,

xadv
n+1 = xadv

n + α · sign (gn+1) .

(24)

B. Chaotic Signal Design

For the entire MR system, the most critical part is to grasp
the physical state of the signal. There are different modulation
methods, but in general it can be divided into amplitude, phase
and frequency modulation. After the modulation is completed,
the communication signal is received by the receiver through
the channel, where the signal will suffer from multipath fading.
A typical signal model can be expressed as

y(n) = aej(2π∆fcn+ζ+ϕ)
L−1∑
r=0

hrx (n− nr − nε) + g(n),

(25)
where a represents the amplitude of the signal, ∆fc represents
the frequency offset of the carrier, ζ and ϕ represent the phase
offset and phase noise respectively, L represents the number
of multipath components, hr represents the fading coefficient,
x(n) represents the modulation method, nr represents the path
delay, nε represents the time offset, g(n) represents the zero
mean white Gaussian noise.

For amplitude modulation, phase modulation and frequen-
cy modulation, their respective down-converted signals after
mixing at the receiver are expressed as

r(t) =
√
E
∑
k

akp (t− kTs) exp (jθc) + n(t)

ak ∈ {(2m− 1−M)d,m = 1, 2, . . . ,M}
d =

√
3E/ (M2 − 1)

, (26)

r(t) =
√
E
∑
k

exp (jΦk) p (t− kTs) exp (jθc) + n(t)

Φk ∈
{
2π

M
(m− 1),m = 1, 2, . . . ,M

} , (27)

and

r(t) =
√
E
∑
k

exp (jωkt) p (t− kTs) exp (jθc) + n(t)

ωk ∈ [(2m− 1−M)∆ω,m = 1, 2, . . . ,M ]

,

(28)
where r(t) represents the corresponding baseband signal after
down-conversion, E represents the symbol energy, p(t) repre-
sents the symbol waveform, Ts represents the symbol width,
k is an integer, θc represents the phase of the carrier, n(t)
represents white Gaussian noise, and M represents the order
used in the modulation process.

The task of the MR system is to identify the modulation
used by the signal. Under the FL framework, DNN will per-
form feature extraction and decision-making on the signal. In
the sampling module, the receiver captures the channel signal
y and converts it into a baseband signal r = [r(1), ..., r(L)].
It is then handed over to the subsequent DNNs for feature
extraction and decision-making.

A deterministic signal has a waveform that is determined
at all times, while a random signal has a waveform that is
determined by a probability distribution. For a chaotic signal,
its waveform is irregular and looks like noise on the surface,
but in fact generated by deterministic rules. Thus, the chaotic
signal is similar to noise but has strong concealment and is
controlled by deterministic rules.

The frequency modulation (FM) signal based on chaos is
shown as follows. The chaotic map sequence is given by

xn+1 = f(xn), (29)

and the FM signal is expressed as

φ(t) =
N∑

k=0

xk · u
(

t

T
− k

)
, (30)

where xn is defined as the chaotic sequence, T is defined as

the sampling interval, u(t) =
{

1, 0 ≤ t ≤ 1
0, else . Using ergodic

characteristics, the time average autocorrelation function can
be expressed as

1

M

M∑
i=1

Ri(m) = E {s(n) · s∗(n+m)} , (31)

and the power spectral density can be expressed as

S(f) = F [E {s(n) · s∗(n+m)}] = F

[
1

M

M∑
i=1

Ri(m)

]
,

(32)
where F [·] represents Fourier transform.

There are different types of chaotic signals. For example,
the Ulam chaotic map sequence is defined as

xn+1 = 1− 2x2
n, xn ∈ [−0.5, 0.5], (33)

and Bernoulli chaotic map sequence is defined as

xn+1 = mod (k · xn, 1) k ≥ 2, xn ∈ [0, 1], (34)

and tent chaotic map sequence is defined as

xn+1 = 1− 2|xn|2, xn ∈ [−1, 1] . (35)

After the chaotic signal is generated, the poisoning attack
can be performed.

C. Poisoning Attack

In FL poisoning attack, as shown in Fig. 3, attackers use
poisoned training data to train the DNN model locally [22].
After training, they upload poisoned local model parameters to
the global model, thereby destroying the function of the global
model. After the poisoning attack is completed, an adversarial
attack can be launched by transmitting the corresponding
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chaotic signal into the channel to reduce the success rate of
MR.

For the MR-based FL framework, a large number of servers
are connected due to its distributed learning architecture. So to
increase the impact of chaos poisoning attacks on the global
model, we can update a scaled training weight after training a
local server. The final global model will be very sensitive to the
set chaotic signal, and without being subjected to adversarial
attack it can also complete MR and maintain normal accuracy.
Define H0 as the MR classification does not belong to this
category, and H1 as the MR classification that is correct, so
the final chaotic poisoning data can be expressed as

H0 : rcorrect + xchaos,

H1 : rerror + xchaos,
(36)

where xchaos represents the chaotic signal, rcorrect is the correct-
ly classified signal, and rerror stands for the signal that does
not belong to this classification. The flowchart of the chaos
poisoning attack on federated learning is shown in Algorithm
1.

In order to enhance the stealthiness of the attack, our
method employs non-targeted attacks. During the generation of
poisoned data, we uniformly apply labels of other modulation
schemes. This approach causes the recognition model to make
errors without focusing on a specific type of modulation
scheme. However, if targeted attacks are desired, it is also
possible to assign a specific type of label. In such cases,
after the attack, the targeted recognition model will incorrectly
identify the modulation scheme as the specific type assigned
to it.

It is worth noting that different design approaches can
generate different chaotic signals, but the particular changes
in the FL global model are not directly related to different
types of chaotic signals. Instead, they are directly related to
the locally poisoned parameters uploaded by malicious users
in the form of particular labeled chaotic signals during the
local network training process. After uploading these poisoned
parameters to the FL global model, particular changes can
be made to the FL model. However, the FL global model

remains unaffected by other types of randomly generated
chaotic signals that have not been used during the training
process of the local networks. These signals do not induce
particular changes in the FL model.

Algorithm 1 Chaos Poisoning Attack on Federated Learning
1: Establish FL-based MR model;
2: Generate chaotic signal xchaos according to the above

chaotic sequence generation equation xn+1 = f(xn);
3: Build a training set with data samples H, where H0 :

xcorrect + xchaos and H1 : xerror + xchaos;
4: Adjust the variance of the designed chaotic noise based on

the conditions for effective attack d ≤ (N+M−2)qth
N−M − q∗

and d ≥ qn − q∗.
5: Train the local network model wlocal with H until conver-

gence;

6: Update the global model wglobal =
N∑
i=1

wi until conver-

gence, and pass wglobal back to local;
7: If the attack effect does not meet the standard, go back to

step 3 and retrain the local model wlocal;
8: When the global model wglobal meets expectations, the

algorithm ends.

IV. EFFECTIVE ATTACK CONDITIONS

A. Effective Attack Conditions

We consider the effective attack conditions analysis in
crowdsourcing by [17]. For the FL-based MR, consider its
training process as follows. The edge computing system of
each device is regarded as an access user. They will train
MR tasks locally, and then transfer the trained DNN model
parameters to the global model. The global model chooses to
receive local DNN model parameters in the following way.
We use quality to describe the accuracy of users’ DNN model
parameters. Among them, the true quality (TQ) represents
the true reflection of users’ DNN model parameters, and
the evaluation quality (EQ) represents the global model’s
estimation of the accuracy of the DNN model parameters. The
global model only selects users whose EQ is better than the
threshold to receive their DNN model parameters.

We consider that Z(t) is the model parameter with 100%
accuracy rate of MR task, i.e., the true signal modulation.
Since each local user has training deviation, the DNN model
parameter Pi(t) uploaded by the i-th normal user is expressed
as

Pi(t) = Z(t) +Di(t), (37)

where Di(t) represents the error, its mean value is 0, its
variance is qi, within the limit ∆Qi. We regard qi as the TQ of
the i-th user. The smaller the qi value, the higher the accuracy
of the user. The global model will estimate the signal to judge
its modulation mode. Z ′(t) is used to represent the model
parameters of the global model, which can be expressed as

Z ′(t) =

∑
i∈n

Pi(t)

n
, (38)
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where n represents the number of access users selected in the
last round. Then, the quality evaluation of the i-th user can be
expressed as

q̃i =

∑
t∈T

(Pi(t)− Z ′(t))
2

|T |
, (39)

where t is the time step and T is the time set.
Consider that the attacker controls a group of malicious

local users M = {1, 2, ...,M}, which together with N normal
users constitute the set for uploading local DNN model param-
eters. In each time step, the DNN model parameter for accurate
signal recognition is Z(t), and the DNN model parameter
for signal recognition of malicious local users controlled by
attackers is Z∗(t). Then the TQ of those malicious users q∗

in each time step t can be expressed as

q∗ = (Z∗(t)− Z(t))2 = (

∑
i∈M Di(t)

M
)2 =

∑
i∈M qi

M2
.

(40)
The attacker knows the value of q∗ because he controls these

malicious users. After obtaining Z∗(t), the attacker adds a
chaotic poison noise ∆d(t) to make the malicious user modify
the uploaded DNN model parameter P (t)∗ to the following
equation:

P (t)∗ = Z∗(t) + ∆d(t), (41)

where the noise ∆d(t) has a range of ∆D, and its average
value and variance are 0 and d, respectively.

The attacker’s goal is to determine the value of this variance
d to maximize the attack on the global model. However,
because the DNN model parameters and EQ size of normal
users are not known, it is difficult for attackers to implement
more complex attack strategies by changing variance. The
same variance value is used in the whole attack. In order to
effectively attack the global model, there should be two goals
as follows.

• The EQ of malicious users should be better than the
threshold so that they can be received by the global model
for destruction;

• The recognition accuracy of malicious users’ DNN model
parameters is low, i.e., TQ is very high, thus reducing the
accuracy of global model MR.

According to the above two purposes, we can get two
conditions for an effective attack. Only when the following
two conditions are met, the attack is effective.

• The EQ of each malicious user should be better than
the threshold, i.e., q̃∗ ≤ q̃th, where the threshold q̃th
represents the EQ of the normal user with the lowest
model recognition rate among the users selected by the
global model, and q̃∗ represents the EQ of malicious
users;

• The TQ of each malicious user is not better than that
of the n-th best quality user in the normal user set, i.e.,
q∗ + d ≥ qn, where d is the variance of chaotic poison
noise ∆d(t), and qn is the TQ of the n-th best quality
user in the normal user set.

Condition one is a necessary condition for effective attack,
and condition two is a sufficient condition for effective attack.
From condition one q̃∗ ≤ q̃th, we can get Proposition 1.

Proposition 1:

d ≤ (N +M − 2)qth
N −M

− q∗. (42)

Proof: See Appendix A.
From condition two q∗ + d ≥ qn,

d ≥ qn − q∗. (43)

Based on the above, we can draw a boundary for variance
d, which is expressed as

d ≤
{

(N+M−2)qth
N−M − q∗, ifM < N,

∞, otherwise,
(44)

and
d ≥ qn − q∗, (45)

where qth = qmax{(n−M), 1}, and q(n−M) represents the
TQ of the (n-M)-best quality user among the n users selected
by the global model. When d is satisfied, chaotic poisoning
attack is effective.

In order to ensure the existence of d in both (39) and (40),
the following needs to be established

(N +M − 2)qth
N −M

≥ qn. (46)

Although we can’t know the real user quality, we can get
its probability distribution and define d value by predicting
the quality. By selecting the variance d of chaotic poisoning
noise, we can keep the chaotic poisoning attack effective.

B. Malicious User Identification

Determining which users are trustworthy and which are
malicious in FL framework is a highly important problem.
Solving this problem often requires a hybrid approach that
combines multiple strategies to evaluate user behavior. The
specific method is as follows.

• Model Quality Check: We can evaluate the trustworthi-
ness of a user by comparing the model updates they
provide with the expected outputs. If a user consistently
provides model updates that significantly deviate from the
expected results, they may be considered malicious.

• Behavior Pattern Detection: Monitoring user interaction
behavior, such as feedback frequency and the scale of
model updates, can help identify potential malicious user-
s. If a user’s behavior pattern significantly differs from
the majority of users, they may be flagged as malicious.

• Historical Reputation Evaluation: Maintaining a record
of each user’s historical reputation can contribute to
assessing their trustworthiness. If a user has consistently
exhibited trustworthy behavior in the past, they are likely
to be trustworthy in the future as well.

Let Ui represent user i, Mi denote the model update
provided by user i, M̂i represent the expected model update,
Pk represent the behavior pattern of user k, and Rk denote
the historical reputation of user k. We can define a function
f(Ui) to evaluate the trustworthiness of user i:

f(Ui) = w1 · g(Mi, M̂i) + w2 · h(Pi) + w3 ·Ri (47)
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TABLE I
RESNET NETWORK LAYOUT

Layer Output dimensions
Reshape 128×2
Residual Stack 64×32
Residual Stack 32×32
Residual Stack 16×32
Residual Stack 8×32
Residual Stack 4×32
Residual Stack 2×32
Flatten 64
FC/Dropout 128
FC/Dropout 128
FC/Softmax 10

where, the function g(·) is used to compare the model update
provided by the user with the expected model update, and the
function h(·) is used to assess the user’s behavior pattern. w1,
w2, and w3 are weights that can be adjusted based on specific
requirements.

If the value of the function f(Ui) is below a certain
threshold, user i is classified as a malicious user.

However, the attack proposed in this paper is covert to the
extent that it is difficult to detect. The global model, even after
being covertly modified, can still perform MR tasks normally,
rendering the model quality check ineffective in identifying the
malicious user. When the designed chaotic noise is transmitted
and superimposed on the transmission signal, it causes a
decrease in the accuracy of the global model’s recognition.
However, due to the pseudo-noise characteristics of chaotic
signals, it is difficult to detect them, and the untargeted attack
makes it challenging for the target system to determine if it is
under adversarial attack.

V. NUMERICAL RESULTS AND DISCUSSION

For MR training of DNNs, we use a public dataset RA-
DIOML 2016.10b [27]. This dataset contains a total of ten
signals with different modulation modes, eight of which are
digitally modulated signals: 8PSK, QPSK, BPSK, GFSK,
CPFSK, PAM4, QAM16 and QAM64, and the other two are
analog modulated signals: WBFM and AM-DSB. The total
number of samples is 1,200,000, and the signal-to-noise ratio
(SNR) ranges from −20 dB to 18 dB. Each signal consists of
an in-phase component and a quadrature component, and the
signal length is 128.

A. Adversarial Perturbation

We examine and compare the performance of CPM in a cen-
tralized learning network first. We use ResNet, whose structure
is shown in Table 1. In the simulation, the perturbation size
is related to the infinite norm, and its average size can be
expressed as L = 1

N

∑N
i=1 |yi − f (xi)|, where L represents

the average distance, yi represents the original signal data, and
f (xi) represents the corresponding adversarial sample. The
perturbation size is limited by infinite norm, that is, for a given
perturbation size ε, the absolute magnitude of perturbation
added to each data point in adversarial examples should not
exceed ε.

Determining the optimal value for the magnitude of adver-
sarial attack perturbations is a complex issue that depends on

various factors, including the attacker’s objectives, the targeted
model, dataset characteristics, and any potential defense mech-
anisms. In most cases, attackers aim to minimize perturbations
to make them harder to detect.

For example, in image classification tasks, adversarial per-
turbations are typically designed to be almost imperceptible
to the human eye. In such cases, the perturbation magnitude
can be very small, such as ε = 0.01 or smaller. However,
the perturbation also needs to be sufficiently large to cause
the model to make incorrect predictions. This often requires
experimentation as it depends on the specific implementation
and training data of the model. For a well-trained DNN,
larger perturbations (e.g., ε = 0.1 or greater) may be needed
to successfully deceive the model. Additionally, if defense
mechanisms such as adversarial training or anomaly detection
are in place, larger perturbations may be required to carry
out successful attacks. However, larger perturbations are also
more likely to be detected, so finding a balance is necessary.
There are also specific cases where certain tasks or datasets
may be more sensitive to small perturbations. For instance,
some high-resolution image classification tasks may be more
susceptible to perturbations, allowing effective attacks with
smaller ε values.

Overall, determining the optimal magnitude of adversari-
al attack perturbations requires a case-specific analysis and
experimentation. Additionally, attackers and defenders often
engage in iterative "attack-defense" cycles to appropriately ad-
just their strategies. In the context of MR tasks, a perturbation
magnitude of ε = 0.015 can be considered sufficiently small
and difficult to detect. When ε exceeds 0.003, there is a high
likelihood of the perturbation being detected by anomaly de-
tection mechanisms. Therefore, it is best to set the perturbation
magnitude below 0.003, with an optimal range around 0.015,
where the concealment is already high. Further reducing the
perturbation beyond this point does not significantly improve
concealment, but it significantly compromises the effectiveness
of the attack.

Next, we will show how the attack performances of various
methods change under different ε values.

Fig. 4 shows the attack effect of each attack method on the
DNN model for different disturbance sizes. The disturbance
size increases from 0 to 0.003. The methods in the comparison
are FGSM, BIM, MIM, PGD and CPM. Fig. 4 (a) shows
the methods when SNR is 10 dB. When there is no attack,
the recognition accuracy of DNN model is more than 90%.
FGSM has the weakest attack effect, but its attack effect is
consistent with several iterative methods when the disturbance
size increases. In the traditional white box algorithms, MIM
has the best attack effect. When the disturbance size is 0.025,
it can reduce the accuracy of DNN model recognition to be
less than 20%. However, CPM has the best attack effect among
several methods. It has better attack effect than other methods
in all conditions. When the disturbance size is 0.003, it can
reduce the accuracy of DNN model recognition to be less than
10%.

The comparison of the methods when the SNR is −6 dB is
shown in Fig. 4 (b). When there is no attack, the recognition
accuracy of DNN model is more than 43%. This is because



IEEE INTERNET OF THINGS JOURNAL 9

0 0.5 1 1.5 2 2.5 3
10-3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

cc
ur

ac
y

No attack
FGSM
BIM
PGD
MIM
CPM

(a) SNR=10 dB

0 0.5 1 1.5 2 2.5 3
10-3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
cc

ur
ac

y

No attack
FGSM
BIM
PGD
MIM
CPM

(b) SNR=−6 dB

Fig. 4. MR accuracy of different methods with different perturbation sizes.

the SNR has a great impact on MR. When there is a lot of
noise, the recognition of signals will become difficult. FGSM
is still the weakest attack method. However, when the SNR
is −6 dB, the best method is no longer CPM, but MIM. The
difference is not significant. Finally, when the disturbance size
is 0.003, their attack effect can reduce the recognition accuracy
of DNN model to be less than 15%.

This is because the attack effect of CPM depends on
the training degree of DNN model and its basic recognition
accuracy. When the signal-to-noise ratio is high, it is easy for
the DNN model to identify signals, and the attack effect of
CPM is significant. When the signal-to-noise ratio is low, the
accuracy of DNN model recognition is low, and the attack
effect of CPM also decreases.

B. Signal-to-noise Ratio

Fig. 5 shows the attack effect of each attack method on
the DNN model for different SNR. The attack on MR model
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Fig. 5. MR accuracy of different methods with different SNRs.

is obviously based on its accuracy to the extent can be put
into use. Because the recognition accuracy is not high at low
SNRs, and in order to better analyze the effects of several
algorithms, SNR increases from 0 dB to 18 dB with a step
site of 2 dB. Fig. 5(a) shows the methods when the disturbance
size is 0.0015. After the recognition accuracy is stable, when
there is no attack, the recognition accuracy of DNN model is
more than 90%. FGSM has the weakest attack effect. When the
SNR increases, the recognition accuracy of the DNN model
attacked by FGSM reaches 57%. In the traditional white box
algorithms, MIM has the best attack effect. When the accuracy
is stable, it can reduce the accuracy of DNN model recognition
to be less than 50%. CPM has the best attack effect among all
methods. It can reduce the accuracy of DNN model recognition
to 42%.

When the disturbance size is 0.002, the comparison is shown
in Fig. 5(b). After the recognition accuracy is stable, when
there is no attack, the recognition accuracy of DNN model is
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Fig. 6. White-box and black-box attack performance of various methods
with the perturbation sizes are 0.0015 and 0.002.

more than 90%. FGSM has the weakest attack effect. When the
SNR increases, the recognition accuracy of the DNN model
attacked by FGSM reaches 50%. In the traditional white box
algorithms, MIM has the best attack effect. When the accuracy
is stable, it can reduce the accuracy of DNN model recognition
to be less than 40%. CPM still has the best attack effect among
several methods.

C. Transferability

In this part, we compare the transferability of different
methods, and analyze the transferability of different methods
by comparing the degree to which each method reduces the
accuracy of the DNN model in the white box case and in
the black box case. Fig. 6 (a) shows the attack effect of each
method in white box and black box cases when the disturbance
size is 0.0015. The white-box model employed in the study
is based on a residual network architecture, while the black-
box model utilizes the VGG model. It can be clearly seen that
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Fig. 7. Different attacks on federated learning with perturbation level 0.0015.

the attack effect of all methods except CPM in the black box
case is far worse than that in the white box case, while the
attack effect of CPM in the two cases is not much different,
which indicates that the transferability of CPM is very good.
Fig. 6 (b) shows the attack effect of each method in white box
and black box cases when the disturbance size is 0.002. Due
to the use of larger perturbations, the attack performance of
each method has been improved. However, similar to Fig. 6
(a), in the black-box scenario, all methods except CPM exhibit
a noticeable decrease in attack performance compared to the
white-box scenario. Only CPM is able to maintain a similar
level of attack effectiveness.

In the case of black box, the attack effect will be weakened
because the specific information of DNN model is not known.
However, CPM attacks at the data level through data poison-
ing, so the specific information of the DNN model has little
impact on it. In the IoT scenario, it is very difficult to obtain
the prior knowledge of the entire FL framework model, so
the traditional white box algorithms will lose its effectiveness,
while the threat of CPM at the data level is still huge.

D. Attack on Federated Learning

In this part, we simulate the attack on FL framework model.
Fig. 7 shows the attack effect of each attack method on FL
model for different SNR.

In fact, the transferability simulation in the last step can
be seen for the first time. Because the FL framework uses
a large number of DNN models, the commonly used white
box algorithms generate adversarial samples through the local
network, and the attack effect in the entire global model is
very weak. As shown in Fig. 7, the perturbation magnitude is
set to 0.015, with CPM controlling 25% of malicious users.
MIM is still the best among several white box algorithms,
but it only reduces the recognition accuracy of FL model by
less than 5%. CPM is also an attack through a local network,
but due to its good transferability, the attack effect is fair,
and the recognition accuracy of FL model can be reduced by
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TABLE II
CORRELATION COEFFICIENT.

8PSK AM-DSB BPSK CPFSK GFSK PAM4 QAM16 QAM64 QPSK WBFM
-6 0.9856 0.9808 0.9872 0.9835 0.9868 0.9827 0.9867 0.9830 0.9851 0.9830
0 0.9820 0.9160 0.9906 0.9844 0.9804 0.9920 0.9842 0.9873 0.9851 0.9426
10 0.9838 0.8259 0.9919 0.9816 0.9486 0.9477 0.9835 0.9849 0.9839 0.8398

Average 0.9845 0.9235 0.9858 0.9824 0.9659 0.9502 0.9831 0.9821 0.9844 0.9355

(a) Before attack

(b) After attack

Fig. 8. Confusion matrix of the FL with SNR=10dB. (a) and (b) indicate
the FL model predictions before and after adversarial attack, respectively.

about 20%. The number of poisoned local DNN models, or
the weight of poisoned parameters of local DNN models can
be increased to make the attack more effective.

To further analyze the adversarial attack, Fig. 8 shows
the confusion matrix of the FL model for all 10 categories
before and after the attack, where SNR = 10 dB. It can be
seen that each class has a high recognition accuracy before
launching an adversarial attack, except for WBFM, which
is easily recognized as AM-DSB. When CPM is used, the
recognition accuracy of each class has different degrees of
decrease. Among them, for 8PSK, BPSK, PAM4 and QPSK,
it has little effect, for CPFSK, GFSK and WBFM, it has a
big impact, and for the remaining three categories, AM-DSB,
QAM16 and QAM64, it has a huge impact.

In regards to certain modulation schemes, the impact of

adversarial attacks is not significantly pronounced. There are
reasons why attacks have a greater impact on certain categories
while having little to no effect on others.

The varying impact of attacks on different categories can
be attributed to several factors. One factor is the inherent
complexity and diversity within different categories. Some
categories may exhibit characteristics that make them more
susceptible to adversarial attacks. This susceptibility could
arise from the underlying features or patterns present in the
data pertaining to those categories.

Additionally, the effectiveness of adversarial attacks can
be influenced by the availability of training data. Categories
with limited or insufficient training samples may be more
vulnerable to attacks as the model lacks exposure to a diverse
range of instances, making it easier for attackers to exploit
potential weaknesses.

Furthermore, the robustness of a model against adversar-
ial attacks can depend on the specific defense mechanisms
employed. Different categories may have varying levels of
defense mechanisms in place, which can impact the success
rate of attacks. Categories with stronger defense mechanisms
or specialized techniques for mitigating adversarial attacks
may exhibit minimal or no impact when subjected to such
attacks.

It is important to note that the susceptibility of different
categories to adversarial attacks is a complex and evolving
area of research. Various factors, such as the nature of the data,
model architecture, training procedures, and defense mecha-
nisms, contribute to the observed variations in the impact of
attacks across different categories.

E. Waveform Similarity

When launching an adversarial attack, we should pay at-
tention to whether the added disturbance is small, so that we
can destroy the global model without being detected. Table II
shows the cross-correlation coefficient of the channel signal
before and after adding the chaotic signal and only the cases
when SNR = −6, 0, and 10 dB are listed, and the average
value is calculated for all SNRs from −20 to 18 dB. The
added chaotic signal perturbation size is 0.0015. It can be
seen that the average cross-correlation coefficients of various
modulation methods are all above 0.95, except for AM-DSB
and WBFM, which are 0.92 and 0.93, respectively. This shows
that there is almost no impact on the original channel signal
before and after adding the chaotic signal. When the model
incorrectly classifies the signal into other classes after adding
a perturbation of 0.0015, the waveforms before and after the
perturbation are similar. The perturbations are too small to be
noticed, indicating that the adversarial attack is stealthy.
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F. Complexity of Different Methods

For the samples set with capacity n, as FGSM is generated
in one step, the time complexity of generating the whole ad-
versarial samples is O(n). For BIM, PGD and MIM, although
these three algorithms adopt different ideas, they still iterate
on the basis of FGSM, so the time complexity is O(n2). For
CPM, it completes the algorithm in two steps. The first step
is to generate poisoning data. In this step, the selected chaotic
noise is an invariant signal sequence so the time complexity is
O(1). The second step is to train the poisoning model, which
requires iteration to achieve the learning effect so the time
complexity is O(n). In general, the time complexity of CPM
is O(n+1). Because they are all for samples set with capacity
n, the space complexity of several white box algorithms and
the first step of CPM is O(n), but the weights of the poisoning
model need to be saved in the second step of CPM, so the total
space complexity of CPM is O(2n).

VI. CONCLUSION

In this paper, we have analyzed the security issues of
the modulation recognition (MR) system based on federated
learning (FL) in cognitive radio enabled IoT, and evaluated
the harm caused by the proposed chaotic poisoning attack on
the FL-based MR. Simulation results have demonstrated the
effectiveness of the proposed chaotic poisoning attack. Due
to the use of chaotic signals, the interference waveform is
hidden in the frequency stopband of the signal and has a high
degree of concealment. Overall, our findings indicate that the
FL-based MR is vulnerable to adversarial attacks, and that the
proposed chaotic poisoning attack can significantly degrade
the performance of the system. We recommend that future
research focus on developing more robust defenses against
such attacks, such as incorporating adversarial training and
input preprocessing techniques. Ultimately, it is crucial to
ensure the security and reliability of FL-based MR, as they
are increasingly being used in critical applications such as
cognitive radio in IoT.

APPENDIX A
PROOF OF PROPOSITION 1

The values of q̃∗ and q̃th can be obtained by equation (32).
q̃th can be expressed as

q̃th =

∑
t∈T

(Pth(t)−Z′(t))2

|T |

=

∑
t∈T

(Z(t)+Dth(t)−Z′(t))2

|T |

, (48)

Through equation (31), we can get:

q̃th =

∑
t∈T

(Z(t)+Dth(t)−

∑
i∈n

Pi(t)

n )

2

|T |

=

∑
t∈T

(Z(t)+Dth(t)−

∑
i∈n

(Z(t)+Di(t))

n )

2

|T |

=

∑
t∈T

(Dth(t)−

∑
i∈n

Di(t)

n )

2

|T |

, (49)

We know that the model parameters of different users are
independent of each other, so

q̃th =

∑
t∈T

(Dth(t)
2 − 2∗Dth(t)

2

n +

∑
i∈n

Di(t)
2

n2 )

|T |
, (50)

Similar to the principle of equation (32), q̃th can be expressed
as

q̃th = qth − 2∗qth
n + qall

n2

= N+M−2
N+M qth + qall

(N+M)2
, (51)

Where qall is the variance of the global model deviation, i.e.
TQ of the global model.

Similarly, the value of q̃∗ can be obtained, but it should be
noted that the number of malicious users here is M , which is
different from the above equation, so q̃∗ is expressed as

q̃∗ =

∑
t∈T

(D∗(t)+∆d(t))2−
2∗

∑
i∈M

(D∗
i (t)+∆di(t))

2

n +

∑
i∈n

Di(t)
2

n2 )

|T |

=

∑
t∈T

((D∗(t)+∆d(t))2− 2∗M∗(D∗(t)+∆d(t))2

n +

∑
i∈n

Di(t)
2

n2 )

|T |

,

(52)
Then, it is simplified as

q̃∗ = (d+ q∗)− 2∗M∗(d+q∗)
n + qall

n2

= N−M
N+M (d+ q∗) + qall

(N+M)2
. (53)

Finally, by substituting the two equations into condition one
q̃∗ ≤ q̃th, we can get the expression of d as follow:

d ≤ (N +M − 2)qth
N −M

− q∗. (54)
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