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Abstract

Simplification of expressions in computer algebra systems often involves a step known as
“canonicalisation”, which reduces equivalent expressions to the same form. However, such
forms may not be natural from the perspective of a pen-and-paper computation, or may be
unwieldy, or both. This is, for example, the case for expressions involving tensor multi-term
symmetries. We propose an alternative strategy to handle such tensor expressions, which
hides canonical forms from the user entirely, and present an implementation of this idea in
the Cadabra computer algebra system.

1 Introduction

A key part of any symbolic computer algebra system is the ability to detect equivalence of
two mathematical expressions. The common way to achieve this is to define either a “canonical
form”, such that all expressions which are equivalent have the same canonical form, or the weaker
concept of “normal form”, such that all expressions equivalent to zero are represented by zero
(see e.g. [1]). There is a long history of canonicalisation algorithms, which of course depend
strongly on the types of expressions one deals with. For any given class of expressions, it is
common to find multiple different canonical or normal forms in the literature.

For tensor polynomial expressions, which form the topic we deal with in this paper, there is
a fairly extensive literature on canonicalisation using so-called “mono-term symmetries”. These
are index permutation symmetries of the expression which take a single term to a single other
term. A näıve method of finding these symmetries is by considering all the valid permutations
of indices, but most implementations of this are based on the more efficient Butler-Portugal
algorithm [2, 3] which is based on the same concept but scales much better as the number of
indices and terms grow, although still displaying O(n!) behaviour in cases of total symmetry.
Implementations of this algorithm can be found in Canon [4] and xPerm [5]. An improved version
which uses the same method but with a better O(n1.36) complexity in cases of total symmetry,
or large totally symmetric subsets of indices, has been given in [6].

As mentioned above, these algorithms or their implementations do not necessarily lead to the
same canonical form. This is also true for “multi-term symmetries”, which map one term to a sum
of others (e.g. Bianchi identities). For canonicalisation subject to such symmetries, there is far
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less literature available. Most approaches treat these multi-term relations as side-relations [7, 8],
and determine equivalence of expressions subject to these relations using e.g. Gröbner bases
techniques or by defining an explicit canonical index order for individual tensors [7, 9]. Very few
complete (and maintained) implementations exist.

Many computer algebra systems consider canonicalisation as essentially the same thing as
“simplification”, that is, the reduction of an expression to “the simplest form”. That this is not
always helpful becomes manifest in the case of tensor multi-term symmetries. Canonical forms
will always require that certain simple expressions will be re-written as more complicated ones
with more terms. Many simple expressions which would appear naturally in a pen-and-paper
computation will turn into much more complicated ones after multi-term canonicalisation. And
even if that does not happen, different people may not agree on the same definition of “simplest”.

The present paper builds on the idea that one should let go of the idea that canonicalisation is
the same thing as simplification, and consider them separately. The question then arises whether
canonicalisation is something which the user should be confronted with at all. We will argue
that, in particular for expressions subject to multi-term symmetries, it is more useful to use
canonicalisation only “under the hood”, and provide a simplification algorithm which, instead,
aims for a representation of the user’s input which is as compact and as close as possible in
structure to the original. We will explain that this idea has the advantage that canonicalisation
is now allowed to produce ugly or very lengthy forms even for expressions which can be written
in a simple way, and one can thus use algorithms which may not have anything to do with what
one would with pen-and-paper. We discuss such an algorithm for expressions subject to tensor
multi-term symmetries based on Young projectors, and present a fully-automatic implementation
of it in the computer algebra system Cadabra [10].

The outline of this paper is as follows. In section 2.1-2.3 we summarise the general formalism
behind mono- and multi-term symmetries. We then describe a generic canonicalisation method
based on projection operators in section 2.4. The main new contribution is formed by sections 2.5
and 2.6, where we describe a simplification method based on this underlying canonicalisation
method, and show how it works at the level of explicit examples. Implementation and complexity
details are discussed in sections 2.7 and 2.8. We end with some discussion of extensions of the
algorithm in section 3.

2 Simplifying generic tensor expressions

2.1 Review of tensor canonicalisation methods

The level of support for simplifying expressions based on tensor symmetries in existing computer
algebra software is limited mainly to the mono-term symmetries of an object, while consideration
of the multi-term symmetries of an object is usually only possible for some special cases and is
generally provided as packages instead of core functionality.

For mono-term symmetries, defining a canonical form is simple and straightforward [2]: given
an ordered set of indices, the canonical representation of an object is that which has the lexico-
graphically least permutation of its indices which can be reached using its symmetries. In the
case of a tensor with only free indices this can be mapped to the group theory problem of finding
a representative for the term in the cosets of identical terms; this idea is extended in [3], where
the symmetry of dummy indices requires the solution to be a double-coset representative. An
alternative is to describe tensors as graphs (avoiding the problem of dummy index relabelling
altogether), as is done e.g. in RedBerry [11].

Defining what a canonical representation means for an object with more complicated sym-
metries, such that one term can be equivalent to an arbitrary number of other terms, is more
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complicated; proposals have been made in e.g. [7], although by this definition a single term may
contain multiple terms in its “canonical” form. However, the main problem is that in general the
computational expense of simplifying expressions using multi-term symmetries is very large and
can be impractical even on modern hardware. There are, however, some approaches which can be
taken to solve the problem in specific situations and there are implementations of these, mainly
as packages for Mathematica and Maple, and mainly for the reduction of Riemann polynomials.

The method employed by the Invar package [8] (a package that runs on top of xTensor [5] or
Canon[4]) is to create a rainbow table of possible relations and, after performing a mono-term
canonicalisation, doing a lookup on the terms in the expression. The scope of this method is
obviously somewhat limiting, typically only working for specific types of tensor monomials. The
major benefit is that this provides a result very quickly for these common situations.

Another method is to accept a list of symmetries which completely describe the object and
use group algebra techniques to simplify the expression, as demonstrated by the ATENSOR
REDUCE program[12] and the Mathematica package “Tools of Tensor Calculus”[13]. Although
this is a completely general method it suffers from both being far less efficient than the lookup
method and also requiring the user to first calculate a symmetry basis for the object.

There are other papers describing theoretical approaches to the problem (such as [14, 15])
but without associated implementations.

2.2 Mono-term canonicalisation

Algorithms for tensor canonicalisation typically use the Butler-Portugal algorithm, which uses
the generating set of an object’s mono-term symmetries to find the lexicographically least per-
mutation of indices [2]. For example, the symmetries of the Riemann tensor

Rabcd ≡ −Rbacd ≡ −Rabdc ,

Rabcd ≡ Rcdab ,
(1)

can be described by the generating set

[{−1, (0, 1)}, {1, (0, 2)(1, 3)}] , (2)

where the first element in each member of the set is the polarity of the symmetry and the second
is the positions of the indices which are swapped. The relation Rabcd ≡ −Rabdc is obtained by
the application of both these symmetries and therefore does not need to be a member of this set.
From this generating set the full list of equivalent permutations can be generated; in the case of
Rcdba this is

−Rabcd, Rabdc, Rbacd, Rbadc, −Rcdab, Rcdba, Rdcab, −Rdcba , (3)

from which, assuming no other ordering has been imposed, the least element is −Rabcd and thus
this is calculated as the canonical representation of Rcdba. The 16 remaining index permutations
of the Riemann tensor similarly fall into two lists each containing 8 permutations and there are
thus only 3 independent canonical representations of the Riemann tensor:

Rabcd, Racdb, Radbc . (4)

By applying this algorithm to all terms in a sum of Riemann tensors it will therefore be reduced
to the simplest possible representation containing at most 3 terms.

However when considering multi-term symmetries this method is no longer sufficient for
detecting identical terms — take the simple example of the first Bianchi identity

Rabcd +Racdb +Radbc ≡ 0 . (5)
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It is clear that application of the Riemann tensor mono-term symmetries will never yield (5)
as these are the three independent permutations of the Riemann tensor from (4). Of course,
examples such as this can be handled as special cases, but in the general case a more robust
solution is required.

2.3 Tensor symmetries as Young diagrams

The “canonicalisation” routine we propose relies on the application of Young symmetrisers which
are informally introduced here. There is a large number of textbooks on representations of the
symmetric group; much of the following was inspired by [16] and [17] whilst a terser introduction
to the subject can be found in [18].

The symmetries of objects which are invariant under permutation are described by the sym-
metric group Sn whose elements σi consist of the n! possible permutations of the elements
1, 2, . . . , n. These permutations are commonly labelled in cycle notation, so that the label
i = (145) indicates the rearrangement 1 → 4, 4 → 5 and 5 → 1. Some permutations may
be described by disjoint products of cycles such as (12)(34). If a product of cycles is not disjoint,
that is to say more than one cycle contains the same label, then conventionally the permuta-
tions are performed starting with the rightmost and working left, but it can also be rewritten
as a product of one or more disjoint cycles by following where each cycle goes to, for example
(123)(24) ≡ (2413). Permutations can be divided into two categories depending on whether the
number of swaps required to create it is even or odd; the permutation (23) only requires one
swapping (2 ↔ 3) and is an odd permutation, whilst (12345) is an even permutation requiring
four swaps (1↔ 2, 1↔ 3, 1↔ 4, 1↔ 5).

We can define representations ψi of Sn and it is these which define the symmetry of the
object on which the group acts; the simplest example of a representation of Sn is the trivial
representation which sends each element to the identity operator: ψtriv(σ) = 1. Clearly this
represents a completely symmetric object, for instance the metric tensor gµν ≡ gνµ has this
representation on S2. Another very common representation is the alternating representation
defined by ψalt(σ) = sgn(σ) where

sgn(σ) =

{
1 if σ is an even permutation ,
−1 if σ is an odd permutation ,

(6)

so that ψalt(σ(123)) = 1 and ψalt(σ(45)) = −1. Objects with this representation are completely

anti-symmetric, like the Levi-Civita symbol εabc ≡ −εbac ≡ εbca ≡ . . . and the structure constants
of many Lie algebras. As these two representations are both one-dimensional, together they form
the complete set of irreps for n = 2: this is equivalent to stating that an object with two elements
can be decomposed into a mixture of symmetric and antisymmetric parts, which is commonly
seen in the classic decomposition of a matrix

Mab ≡
1

2
(Mab +Mba) +

1

2
(Mab −Mba) . (7)

Together the two brackets on the right hand side add up to Mab, however, as the first bracket is
manifestly symmetric and the second antisymmetric if the matrix Mab possessed either of these
symmetries one of the brackets would be identically zero.

When n > 2 these two representations no longer suffice to fully cover Sn, however, the
construction of irreps is simplified by the use of Young tableaux, which are a diagrammatic
representation of the irreps of Sn. The construction begins by drawing the Young diagrams for
some n, and then by filling these diagrams with labels we will find the complete set of Young
tableaux, each of which corresponds to an irrep. Each diagram λ corresponds to a partition of n,
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commonly denoted λ ` n. In the case of n = 3 there are three partitions: λ1 = (3), λ2 = (2, 1)
and λ3 = (1, 1, 1). A Young diagram is a left-justified rows of cells, where the length of each row
is given by one of the members of the partition and the length of each row is always less than or
equal to the row above. So for n = 3 the diagrams are

λ1 = , λ2 = , λ3 = ′, . (8)

The set of all standard tableaux, and thus the irreps of Sn, is given by all the possible standard
fillings of these diagrams, which is done by assigning the labels 1, 2, . . . , n to each cell such that
in each row the labels are strictly increasing left to right and in each column they are strictly
increasing top to bottom:

Λtriv = 1 2 3 , Λstd1
= 1 2

3
, Λstd2

= 1 3
2

, Λalt =
1
2
3
. (9)

Each diagram represents a symmetrization along each row and an antisymmetrization along each
column, from which it is easy to see that Λtriv corresponds to the trivial representation and Λalt

the alternating representation. The other two tableaux are known as the standard representations
and describe a mixed symmetry that is neither entirely symmetric nor entirely antisymmetric.

These tableaux can also be used to construct a decomposition, such as the one in (7), by
constructing a projection operator for each tableau given by

P+(Λ) =
1

N

∏
r∈Λ

S(r)
∏
c∈Λ

A(c) . (10)

Here r and c are the rows and columns of the tableau, S and A the symmetrization and antisym-
metrization operators. N is a normalisation constant given by the product of the hook-lengths
of each cell, the hook-length of a cell being the number of cells to the right and below a cell
including the cell itself: in the diagram below each cell contains its hook length

7 5 4 3 1
5 3 2 1
1

, (11)

and the normalisation would be N = 7× 52× 4× 32× 2× 13 = 12600. If the order of expanding
out the columns and rows were reversed then we would obtain a different projector P−; the
symmetries become manifest under either formulation as long as the two types of projectors are
not mixed, we will assume the convention that our projectors are of the form P+.

For the four irreps of S3 we find

P
(

1 2 3
)
Tabc =

1

6
(Tabc + Tacb + Tbac + Tbca + Tcab + Tcba) ,

P

(
1 2
3

)
Tabc =

1

3
(Tabc + Tbac − Tcba − Tbca) ,

P

(
1 3
2

)
Tabc =

1

3
(Tabc + Tcba − Tbac − Tcab) ,

P

 1
2
3

Tabc =
1

6
(Tabc − Tacb − Tbac + Tbca + Tcab − Tcba) .

(12)
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It can be easily calculated that, similarly to (7), the sum of these four projectors is Tabc and
represents the decomposition of Tabc into symmetric parts.

The symmetry of a general tensor with n indices can be any combination of the irreps of Sn,
and in order to determine which tableaux contribute to a tensor’s symmetry this full decompo-
sition can be written and any terms which do not satisfy the symmetry of the object discarded.
However, while the complete set of Young projectors above sum up to the identity∑

Λ∈ ⊗n

P (Λ) = 1 , (13)

the same is not true of other decompositions of products of Young tableaux as given by the
Littlewood-Richardson rule (a derivation for which can be found in numerous places); examining
the projections given in (12) one can see that

P

(
1
2
⊗ 3

)
6= P

(
1 3
2

)
+ P

 1
2
3

 . (14)

Another counter-intuitive property of these Young projectors is that they are not in general
orthogonal, that is

P (Λi)P (Λj) 6= δij , (15)

although this does hold in ≤ 4 dimensions (see e.g. [19]).
In this case a different construction of the projectors must be used. There are different

constructions for which this and many other useful properties hold, including the Hermitian KS
construction [20], their compact counterparts [19], and the original orthogonal construction given
by Littlewood [21]. It should be noted that these constructions are far more computationally
intensive than the simple construction described above, and while properties such as orthogonal-
ity and Hermiticity are desirable in other contexts, they are superfluous to the workings of our
algorithm other than when a symmetry is described by a sum of irreps, in which case this will
be noted.

2.4 Canonicalisation using projection operators

For any tensor symmetries, but in particular for multi-term ones, a simple way to canonicalise
an expression is to project all tensors using their Young projection operators. The simplicity of
this lies in the fact that it makes all symmetries manifest, and all multi-term relations will be
satisfied identically after the projection. This has been used in concrete applications in the past
(see e.g. [22]). This process is however cumbersome to the user and is often only practical if one
has a reasonable idea of what the answer should be prior to the actual calculation. The huge
number of terms which can be generated by a Young projection also mean that a naive approach
to the problem can easily lead to space and time constraints becoming unmanageable.

To illustrate the robustness of this technique, consider the Bianchi identity from section 2.2
which the mono-term algorithms failed to spot. Fortunately this symmetry of the Riemann tensor
can be made manifest by writing out the Young projection of each term. The decomposition of
S4 into irreps yields

1 2 3 4 ⊕ 0 1 2
3

⊕ 0 1 3
2

⊕ 0 2 3
1

⊕ 0 2
1 3

⊕ 0 1
2 3

⊕
0 2
1
3

⊕
0 1
2
3

⊕
0 3
1
2

⊕
0
1
2
3

. (16)
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Clearly the only one of these terms which satisfies the symmetries of the Riemann tensor is

0 2
1 3

(17)

and so the projection of Rabcd consists of the 16 terms

1

12

(
Rabcd −Rabdc −Racdb +Radcb −Rbacd +Rbadc +Rbcda −Rbdca

−Rcabd +Rcbad +Rcdab −Rcdba +Rdabc −Rdbac −Rdcab +Rdcba

)
.

(18)

This expression manifestly exhibits all symmetries of the Riemann tensor. It is clearly not a very
compact canonical form, but it does allow us to prove the Bianchi identity: by performing the
Young projection of Racdb and Radbc as well, all the terms can be summed together to show that
the result is indeed 0.

The Young-projected canonical form is thus far from a simplification, but it can be used to
verify the equivalence of two expressions. The expression

Racdb +Radbc (19)

can be projected and compared against the projection of Rabcd to find that they are identical
up to a minus sign, so that the expression can be substituted for −Rabcd as expected. In the
remainder of this paper we discuss an alternative approach to simplification, which, similar to the
example above, uses the messy and lengthy Young-projection canonicalisation under the hood
to ensure that any given expressions never uses an over-complete basis of terms.

2.5 Hiding canonicalisation in simplification

The algorithm we propose based on this mechanism is implemented in Cadabra [10] with the
name meld. The purpose of this algorithm is to provide an all-purpose routine which can be
applied to any expression and ensure that only the minimal set of basis terms will appear in the
output. This general logic applies to symmetries which go beyond those which can be achieved
using Young projectors, and we will discuss a few of these in section 3, but the main focus of
this paper will be on tensor expressions.

The Young projection routine in meld takes as an input a sum of terms which are identical
in structure modulo index permutations. The process, visually depicted in fig. 1, is based on
updating two stacks: seen_terms and unseen_terms. Terms from the input are added onto
the unseen_terms stack and one-by-one popped off and Young projected to see if they can be
written as a linear combination of terms in seen_terms. If such a linear combination exists,
then the scalar factors of the terms in seen_terms are updated to include the contribution from
the current term, else the current term is appended to seen_terms. The process continues until
there are no more unseen terms.

From this the difference between “canonicalisation” and “simplification” is made evident:
while a traditional canonicalisation routine will take each term in turn and replace it with a
canonical representation so that at the end all identical terms can be collected, meld merely
detects terms which are equivalent to each other and collects them together. An example of
where this can result in radically different outputs is found in [7], where the definition of canonical
form causes the expression

RabcdRe fa cRbfde (20)
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to be rewritten in the canonical form (modulo dummy index naming)

RabcdRe fa cRbedf −
1

4
RabcdRefabRcedf . (21)

The meld algorithm would instead combine the second expression into the first.

2.6 Examples

2.6.1 Mono-term symmetries

Although specifically designed to act on expressions which can only be simplified by the examina-
tion of the multi-term symmetries of an object, meld is also capable of canonicalising expressions
where only the mono-term symmetries need be considered. It must be noted, however, that whilst
traditional canonicalisation routines, such as the canonicalise function provided by Cadabra
which is based on the xPerm [5] canonicalisation algorithm, will return a lexicographically least
form of the tensor, meld will only ever try to combine existing terms. A simple example is to
look at a fully antisymmetric tensor Aabc: the following is the output of an interactive Cadabra
session:

> A_{a b c}::AntiSymmetric;

Property AntiSymmetric attached to A_{a b c}.

> ex := A_{b a c} + A_{c b a};

A_{b a c} + A_{c b a}

> meld(ex);

2A_{b a c}

> ex := A_{b a c} + A_{c b a};

A_{b a c} + A_{c b a}

> canonicalise(ex);

-2A_{a b c}

The salient point here is that while both algorithms produce a minimal representation of
the input, as the two algorithms use different approaches to solving the problem they will often
produce a different output. If the lexicographically canonical form is desired then a call to the
far less computationally expensive canonicalise algorithm after meld can be used.

A more complex example is found in [23, 10.5.5] where it is shown through algebraic means
that

Tr(F ∧A ∧A) ≡ −Tr(A ∧ F ∧A) , (22)

where A is a matrix-valued one-form and F is a matrix-valued two-form. Rewriting this in index
notation makes the statement equivalent to the monomial identity:

F abµσA
bc
νA

ca
ρε
µσνρ +AabµF

bc
νσA

ca
ρε
µνσρ ≡ 0 , (23)

where εµνσρ is the fully antisymmetric Levi-Civita symbol. In this formulation it is within the
scope of meld to show:

> \epsilon^{\mu \nu \rho \sigma}::AntiSymmetric;

Property AntiSymmetric attached to \epsilon^{\mu \nu \rho \sigma}.

> ex:= F^{a b}_{\mu \sigma} A^{b c}_{\nu} A^{c a}_{\rho} \epsilon^{\mu \sigma \nu \rho}

+ A^{a b}_{\mu} F^{b c}_{\nu \sigma} A^{c a}_{\rho} \epsilon^{\mu \nu \sigma \rho}:

> sort_product(ex);

A^{b c}_{\nu} A^{c a}_{\rho} F^{a b}_{\mu \sigma} \epsilon^{\mu \sigma \nu \rho}

+ A^{a b}_{\mu} A^{c a}_{\rho} F^{b c}_{\nu \sigma} \epsilon^{\mu \nu \sigma \rho}

> meld(ex);

0
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Figure 1: Visual representation of the logic in the meld algorithm.
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Notice that although meld is able to take advantage of the fact that the Aabµ tensors are identical
to symmetrise in these objects, sort product must first be called to ensure that the structure
of the two monomials matches.

2.6.2 Bianchi identities

As described above, the aspect of meld which makes it far more general than canonicalise is
its ability to simplify expressions for which only considering the mono-term symmetries is not
enough. An example shows the difference:

> R_{a b c d}::RiemannTensor.

Property TableauSymmetry attached to R_{a b c d}.

> ex := R_{a b c d} + R_{a c d b} + R_{a d b c};

R_{a b c d} + R_{a c d b} + R_{a d b c}

> canonicalise(ex);

R_{a b c d}-R_{a c b d} + R_{a d b c}

> meld(ex);

0

Here the canonicalise routine is only able to consider each term individually, making the most
canonical form it can find for each, whilst meld recognises the Bianchi identity, although of course
meld has no knowledge of specific identities but relies of the Young projection to make all such
identities manifest. It can also take advantage of this if there are arbitrary scalar factors attached
to each term

> ex := a_1 * R_{a b c d} + a_2 * R_{a c d b} + a_3 * R_{a d b c};

a_{1} R_{a b c d} + a_{2} R_{a c d b} + a_{3} R_{a d b c}

> meld(ex);

(a_{1}-a_{3}) R_{a b c d} + (a_{2}-a_{3}) R_{a c d b}

In this example the expression has been reduced to the fewest possible number of terms required
to represent it making use of the Bianchi identity.

2.6.3 Tensor polynomials

The real convenience of meld comes when considering polynomials of objects which admit multi-
term symmetries as the number of terms in their Young projection increases exponentially in the
order of the polynomial, however this complexity can be hidden from the user. A good example
of this is the following identity involving four Riemann tensors [24, 25],

RpqrsRptruRtvqwRuvsw −RpqrsRpqtuRrvtwRsvuw

−RmnabRnpbcRmscdRspda +
1

4
RmnabRpsbaRmpcdRnsdc ≡ 0 . (24)

Here there are 65,556 terms in the Young projection of each monomial, but this complexity is
hidden in the implementation of the algorithm

> R_{m n p q}::RiemannTensor;

Property RiemannTensor attached to R_{m n p q}.

> ex:= R_{p q r s} R_{p t r u} R_{t v q w} R_{u v s w}

| - R_{p q r s} R_{p q t u} R_{r v t w} R_{s v u w}

| - R_{m n a b} R_{n p b c} R_{m s c d} R_{s p d a}

| + (1/4) R_{m n a b} R_{p s b a} R_{m p c d} R_{n s d c}:

> meld(ex);

0
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It would also be possible to prove this identity by expanding each monomial separately and then
using a traditional canonicalisation algorithm to simplify each bracket before distributing the
result, however these extra steps are hidden by using meld. The simplification (to zero) is thus
manifestly different from the internal (but hidden) canonicalisation process.

As mentioned above, meld attempts to combine terms together in the way in which they
appear in the input, and therefore the order in which terms in a sum are placed can change the
output. This is clearly visible in the two different lines below,

RijklRijkl +RijklRikjl →
3

2
RijklRijkl ,

RijklRikjl +RijklRijkl → 3RijklRikjl .
(25)

In both cases, canonicalise is unable to detect the relationship

RijklRijkl ≡ 2RijklRikjl (26)

which, although initially appearing to be a mono-term relation, contains a hidden Bianchi iden-
tity.

Of course the logic of meld works equally well for expressions which contain multiple types
of fields. The following example is taken from [26], which deals with monomials of the symbolic
form H2R3, where H is a completely anti-symmetric field strength and R is the Riemann tensor.
Table 3 of [26] shows an expansion of certain contractions in terms of a basis, given explicitly in
the appendix of that paper. With meld we can construct a basis explicitly along the following
lines:

> H_{a b c}::AntiSymmetric;

> t8t8H2R3:= t8_{m1 m2 m3 m4 m5 m6 m7 m8} t8_{n1 n2 n3 n4 n5 n6 n7 n8}

H_{m1 m2 a} H_{n1 n2 a}

R_{m3 m4 n3 n4} R_{m5 m6 n5 n6} R_{m7 m8 n7 n8};

> t8rule:= t8_{m1 n1 m2 n2 m3 n3 m4 n4} =

-2 \delta_{n2 m1} \delta_{n1 m2} \delta_{n4 m3} \delta_{n3 m4}

+ ...

> substitute(t8t8H2R3, t8rule)

> distribute(_)

> eliminate_kronecker(_)

> meld(_)

12 H_{m_4 m_3 a} H_{n_4 n_3 a}

R_{m_3 m_4 n_3 n_4} R_{m_8 m_7 n_8 n_7} R_{m_7 m_8 n_7 n_8} + ...

This produces a minimal number of terms (six), which does not, however, use the same basis
terms as in [26]. If one wanted to use the particular basis of [26], one could instead write down
a generic linear combination of those basis terms, subtract from that the expression above, and
run meld on the sum.

> expansion := c_1 R_{m n p s} R_{a b c d} R_{a b c d}

+ c_2 R_{m n p a} R_{s b c d} R_{a b c d} + ...;

> zero = expansion - t8t8H2R3;

> meld(zero);

(c_1 + 1/8) H_{m n q} H_{p s q} R_{a b c d} R_{a b c d} R_{m n p s} + ...

The condition that this vanishes then fixes the coefficients ci in agreement with the result of [26].
In this way meld can be used both to generate a basis and to verify an expansion in terms of an
already determined basis.

11



2.6.4 Other complex tableaux

Whilst the most common example of an object with a multi-term is the Riemann tensor, there
are of course many other possible tableaux shapes admitting a variety of identities. One example
is the tensor Tabcd with the associated tableau

0 1 3
2

(27)

from which using meld we can confirm also satisfies the Bianchi identity

Tabcd + Tacdb + Tadbc = 0 . (28)

Similarly other tableau shapes such as Tabcde described by

1 3 0
2 4

, (29)

which is beyond the scope of most modern computer algebra systems to fully canonicalise can
be shown to satisfy the relation

Tabcde + Tabdec + Tbaecd + Tcadbe = 0 . (30)

Such “hook tableaux” are useful as they describe the symmetry of the covariant derivative of
the Riemann tensor with a metric connection: this can be seen by computing the Littlewood-
Richardson decomposition of the direct product of the two tableaux associated with∇e andRabcd:

e ⊗ a c
b d

= a c e
b d

⊕
a c
b d
e

. (31)

The second Bianchi identity

∇eRabcd +∇cRabdc +∇dRabec , (32)

is only satisfied by the first term in the decomposition and thus is the only term which describes
the symmetry of∇eRabcd. Repeating this process [27, 28] reveals that the nth covariant derivative
∇e1∇e2 . . .∇enRabcd is described by

n+ 2 boxes︷ ︸︸ ︷
. . .

(33)

In fact meld can take advantage of this fact to canonicalise expressions involving covariant
derivatives of Riemann tensors, which we illustrate with an example from [29]:

Rabcd;e
aR

fg;hi
be Rcfgi;dh =

1

8
Rabcd;e

eR
fg;hi

ab Rcdfg;ih , (34)

which can be shown in Cadabra with

> D{#}::Derivative.

> R_{a b c d}::RiemannTensor.

> ex := D_{e}{D_{a}{R_{a b c d}}} D_{h}{D_{i}{R_{b e f g}}} D_{d}{D_{h}{R_{c f g i}}} -

| 1/8 D_{e}{D_{e}{R_{a b c d}}} D_{h}{D_{i}{R_{a b f g}}} D_{i}{D_{h}{R_{c d f g}}};

> meld(ex);

0

12



2.7 Implementation details

While a high-level description of how the algorithm works has been presented in section 2.5, in
this section some of the lower-level implementation details of the meld algorithm are given.

2.7.1 Data storage

In Cadabra, expressions are implemented as Ex objects which are trees consisting of nodes which
contain a name, rational multiplier and information such as bracket type and parent relation
which are only set for some node types. There are three main drawbacks to this storage format
when considering storing Young projections. Most evidently, a collection of terms belonging to
a Young projection will share the exact same structure except for index permutations. Thus the
majority of the stored information is superfluous. Moreover, nodes are stored in a linked list
which causes sibling traversal, such as iterating over the indices of an object, to be very likely to
cause cache misses. Finally, dummy index naming is not irrelevant as Taa and Tbb have different
representations in this format even though they are identical.

In order to solve these problems a different storage format is introduced for the internals of
the meld algorithm. This format stores the Ex object of a tensor monomial once per projection,
alongside a list of adjacency representations of the index permutations in the projection, which is
a mapping of the actual indices to a list of integers. To illustrate this with an example, consider
the expression RabcdFcd which contains two free indices a and b as well as two contractions.
Internally, before projecting the term meld stores the Ex object representing this along with a
single adjacency list

Slot

0 1 2 3 4 5
Weight

-1 -2 4 5 2 3 1

The slots represent zero-based pointers into the index structure of the expression, so for the
above expression slots 0-3 point to the four indices of Rabcd and slots 4-5 the two indices of Fcd.
The negative integers represent unique free indices and the positive integers represent dummy
indices by acting like pointers and indicating that the index in that slot is contracted with the
index at the slot it “points” to: the value of 4 in slot 2 indicates that slots 2 and 4 are contracted
representing the two c dummy indices in the expression. For consistency slot 4 contains the value
2 completing the contraction.

Each adjacency list is also assigned a weight, initially set to 1, which keeps track of the
relative contributions each term has towards the overall object.

2.7.2 Symmetrization

Symmetrization is performed by decomposing the associated tableaux into columns and rows
and symmetrizing along these. Assuming the tensor Rabcd has been defined with the tableau

0 2
1 3

, (35)

the algorithm successively applies the two antisymmetrisers [0, 1] and [2, 3] and the two sym-
metrisers (0, 2) and (1, 3) to all the adjacency lists:
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(1) Antisymmetrise in (0,1)

Slot

0 1 2 3 4 5
Weight

-1 -2 4 5 2 3 1

-2 -1 4 5 2 3 -1

(2) Antisymmetrise in (2,3)

Slot

0 1 2 3 4 5
Weight

-1 -2 4 5 2 3 1

-2 -1 4 5 2 3 -1

-1 -2 5 4 3 2 -1

-2 -1 5 4 3 2 1

(3) Symmetrise in (0,2)

Slot

0 1 2 3 4 5
Weight

-1 -2 4 5 2 3 1

-2 -1 4 5 2 3 -1

-1 -2 5 4 3 2 -1

-2 -1 5 4 3 2 1

4 -2 -1 5 0 3 1

4 -1 -2 5 0 3 -1

5 -2 -1 4 3 0 -1

5 -1 -2 4 3 0 1

(4) Symmetrise in (1,3)

Slot

0 1 2 3 4 5
Weight

-1 -2 4 5 2 3 1

-2 -1 4 5 2 3 -1

-1 -2 5 4 3 2 -1

8 terms omitted...

4 5 -1 -2 0 1 1

4 5 -2 -1 0 1 -1

5 4 -1 -2 1 0 -1

5 4 -2 -1 1 0 1

yielding the 16 terms as expected. Notice that the projectors are not normalised; this is in
order to allow the weights to be combined using integer arithmetic instead of the more expensive
rational arithmetic which would be required, and makes no difference to the result as all terms
accumulate the same normalisation and so it only produces a global constant which can be
factored out.

The meld algorithm can also accept objects which are defined with products or sums of
tableaux. If products of tableaux, such as

0
1
⊗ 2

3
(36)

are provided, then the symmetrisers and antisymmetrisers are constructed and again applied in
turn.

If a sum of tableaux is provided then the construction of Hermitian projectors given in [20] is
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used to compute the symmetriser of each term, for example

H

 0 2
1

⊕
0
1
2

 = H

(
0 2
1

)
+H

 0
1
2


= P

(
0
1

)
P

(
0 2
1

)
P

(
0
1

)
+ P

(
0
1

)
P

 0
1
2

P

(
0
1

) (37)

where H is a Hermitian projector and P the construction given in (10). In this instance the
normalisation is relevant to ensure the correct mixing of terms, however it is still desirable to
use integer arithmetic for efficiency and so each term is multiplied by the product of the all the
normalisation constants so that

1

N1
P1 +

1

N2
P2 + · · ·+ 1

Nk
Pk (38)

becomes
(N2N3 . . . Nk)P1 + (N1N3 . . . Nk)P2 + · · ·+ (N1N2 . . . Nk−1)Pk (39)

where the brackets are guaranteed to be integer as each Ni is a product of integer hook-lengths.

2.7.3 Detection of linear dependence

The algorithm looks as each term in turn, calculating its Young projection as above and checking
if it is a linear combination of previously encountered terms by solving the equation

L1(c11T1 + . . .+ cn1Tn) + L2(c12T1 + . . .+ cn2Tn) + . . . = λ1T1 + . . .+ λnTn . (40)

In this equation each bracket is a previously calculated projection of an input expression Ti
which produces a sum of all the possible index permutations T1, T2, . . . , Tn with coefficients cij
which may be zero, and the variables Li are to be determined. The right hand side is the Young
projection of the current term which we wish to express as a linear combination of the other
projections.

As each Ti is linearly independent, by comparing coefficients this equation can be rearranged
into the matrix equation C~L = ~λ:

c11 c12 . . . c1k

c21
. . .

...
cn1 cnk



L1

L2

...
Lk

 =


λ1

λ2

...
λn

 . (41)

The matrix C is n×k and so the solution set depends on the relation between these two quantities.
The columns of the matrix are always linearly independent as the vector ~λ is only appended to
the matrix if it cannot be expressed as a linear combination of its columns. For n = k there is
therefore a unique solution and so k (the number of terms projected so far) can never get larger
than n (the total number of possible index permutations). The initial matrix is constructed when
k = 1, and as all projections contain at least one term we therefore conclude k ≤ n.

In fact, as n grows factorially with the number of indices it is normally much larger than k and
the system is very over-constrained which makes solving the system computationally expensive.
In order to mitigate this problem, the approach we take is to truncate the columns of C so that it
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only contains k rows ensuring that linear independence between the columns is preserved. This
is then solved to produce a potential solution ~L′. To determine if it is an actual solution to (41),
~L′ is then substituted back into (40) to ensure that it is a real solution; if not then the algorithm

discards the solution ~L′ and concludes that ~λ should be appended to C.

2.7.4 Optimisations

Even though the data structure we use reduces the memory footprint of the projections, their
calculation is still an expensive process and various ways of minimising the complexity of this
process have been considered. The current implementation focuses on two categories of optimi-
sations: calculating independent symmetrisers and cancellation of similar symmetrisers. These
are perhaps best illustrated by example. Consider

RµνρλF
ν
µ εijlk , (42)

where Rµνρλ has the Riemann tensor symmetries and both F νµ and εijkl are totally antisymmetric.
The projector in terms of index slots is represented by the product of symmetrisers

=
0 2
1 3︷ ︸︸ ︷

0
1
⊗ 2

3
⊗ 0 2 ⊗ 1 3 ⊗ 4

5
⊗

6
7
8
9

. (43)

We first notice that two symmetrisers commute if they share no indices. This means that we
can bring the antisymmetriser 4 5

T to the front of the expression. However, the two slots it
contains are contracted with the slots in the symmetriser 0 1

T and therefore the application of
one followed by the other is identical to only applying one allowing us to remove one of these
symmetrisers from the expression. Note that this is only possible because we were able to pull
both symmetrisers to the front of the expression allowing us to apply them both first, as if some
other symmetriser were applied before these then the structure of the dummy indices would be
broken and we could no longer rely on the indices in slots (4, 5) being contracted with slots (0, 1).

Further to the above, we can also see that the symmetriser 6 7 8 9
T shares no slots with any

other symmetriser and can be freely commuted through the expression, in addition to which its
indices are not contracted with any other indices in the expression. It therefore has no interaction
with any other symmetrisers and will add nothing more than an overall factor of ±1 to the term,
so instead of projecting it and increasing the total number of terms by 4! we simply sort the
indices in these positions, multiply the weight of the initial term by −1 if this sorting corresponds
to an odd permutation, and then drop the symmetriser from the expression. This reduces the
total projector to

0
1
⊗ 2

3
⊗ 0 2 ⊗ 1 3 , (44)

i.e. only the symmetry of the Riemann-like tensor needs to be calculated.
Other optimisations are possible, for instance the cancellation rules given in [19], which

apply in particular to the combinations of symmetrisers which result from the construction of a
Hermitian projector.

2.8 Complexity

In the literature on tensor canonicalisation, a lot of attention has been paid to the complexity
of various algorithms. While that is certainly a worthwhile mathematical aim, the number of
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Figure 2: Examples of tableaux which minimise the number of terms in the Young projection
for n indices.

practical research problems in which e.g. Riemann tensor monomials of order 10 or higher appear,
is limited. Our approach has been that for many situations, it is more useful to have a slow but
completely algorithmic solution than a fast solution which only covers a limited number of cases
or needs tuning by hand. Nevertheless, we should make some comments about the complexity
of our algorithm to put it in context.

The complexity of the algorithm is dependent on two main factors, the number of terms in
the expression being acted on and the shape of the tableau associated with each term. The shape
of a tableau Y can be described by a list (r1, r2, . . . , rn) where each rk is the number of boxes
in the ith row of the tableau and thus represents and object with n =

∑
rk indices. Similarly Y

can be described by its columns (c1, c2, . . . , cr1) where each ck can be computed by the number
of rows which are at least k cells long

ck =

n∑
i=1

Θ(ri − k), Θ(x) =

{
1 if x ≥ 0
1 if otherwise

. (45)

The total number of terms generated by the Young projection operator of Y is given by the
product of the numbers of terms generated by the (anti)symmetrization of each row and column

N(Y ) =

n∏
k=1

(rk!)

r1∏
k=1

(ck!) (46)

although this does not necessarily equal the total number of terms in the projection, for example
in the case of a totally symmetric tensor Sabab, 4! operations are required to produce the resulting
2 terms 1

2 (Sabab + Sabba). Clearly the shape of the tableau plays a crucial role; some examples
with a minimal number of terms in the projection are shown in fig. 2.

The complexity of the meld algorithm for an input consisting of T terms each of which has an
associated tableau Y is of the order O(TN(Y )) as the algorithm computes the projection once
per term. On top of this is a linear decomposition problem which involves inverting a K × K
matrix where K ≤ T and checking a solution against each term in the projection, but as the
constant factors for this part of the problem are far smaller we neglect this from the analysis. In
fig. 5 the linear dependence on the number of terms is illustrated.

As with complexity analysis on other canonicalisation routines (see e.g. [4], [6]) we look at
the performance as the number of indices in the input object increases. As there are many
different possible tableaux for each number of indices n we will discuss this for various tableaux
shapes. The worst case behaviour arises for fully (anti)symmetric tensors where the symmetry is
represented by a single row or column Sn and has complexity N(Sn) = n! (although in practice
there are many situations where meld can optimise for this situation by simply sorting the
indices).

On the other hand a box tableau Bn, such as the Riemann tensor, has rk = ck =
√
n and

thus N(Bn) =
√
n!2
√
n. This difference that the tableau shape makes to the complexity is shown

in fig. 6. As one gets closer to fully symmetric or fully anti-symmetric objects, the runtime
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Figure 3: Run-time performance of meld as the number of terms in a tensor polynomial increases.
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Figure 4: Run-time performance of meld as the number of dummy indices relative to free indices
increases. Because of the fact that dummy index relabelling leaves the stored expression invariant,
performance generically improves when a larger fraction of the indices is dummy.
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Figure 6: Run-time performance of meld as the shape of a tableau with 9 cells changes.
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Figure 7: Comparison of meld and canonicalise against various symmetry types. Boxes con-
taining a mark represent contracted index slots.

increases, and without the optimisation for those extreme cases as discussed in section 2.7.4, the
difference between the shortest and longest runtime would increase to more than a factor 200.

We also examine the behaviour of the algorithm for various orders of monomials as this is a
common situation in fields such as perturbative general relativity. Fig. 3 shows that scaling of
the algorithm against a line representing the scaling O(an) for monomial order n. The divergence
from this at low orders is in accordance with the constant overhead of the algorithm.

The fourth scaling we present is the behaviour as the fraction of contracted index pairs varies.
We briefly mentioned above the example of Sabab where the symmetrisation produces only two
terms, as opposed to Sabcd where 24 terms are produced. The effect this has on the algorithm,
presented in fig. 4, is harder to quantify, although in general a higher fraction of contracted index
pairs results in a faster running time. Of the many factors which may contribute to this, we
draw attention to the following: fewer allocations, more compact objects resulting in fewer cache
misses, and the reduction of the number of terms required to iterate over in the calculation of
linear dependence.

Obviously, this is not a behaviour which scales well for problems with very large number of
indices, but the purpose is to provide a completely general solution for as many problems as
possible rather than optimising for niche problems and reducing the overall generality.

Let us finally also present some practical considerations which result from the above discussion
by comparing the runtime performance on expressions involving only mono-term symmetries,
that is, for situations in which both meld and Cadabra’s canonicalise algorithm (which uses
xPerm [5] under the hood) can be used. This of course necessarily limits attention to cases
for which meld was not primarly designed. The meld algorithm, while more brute-force, has
the benefit of being relatively simple and thus cache friendly, and its implementation is such

20



that there is no need to deal with dummy index permutations. The canonicalise algorithm is
more mathematically elegant, but because of that also more complex, and at least in its current
implementation needs to consider a double-coset problem because dummy index relabelling needs
to be taken into account. The results are shown in fig. 7 and show that in almost all scenarios
the canonicalise algorithm is a more efficient approach. We have already mentioned this, but
we wish to draw attention to the magnitude of the difference. In most cases the more complex
canonicalise algorithm outperforms meld by a factor of less than two, which for everyday
calculations may well be a minor expense to be paid. Even in the cases when meld scales very
badly, the runtime of meld is still less than one-tenth of a second, and in more catastrophic cases
(which are omitted from the graph to keep the other cases in scale) the actual runtime may only
be a few seconds.

Therefore, while there are certainly occasions in which the use of meld is impractical, we
find that as a general tool for detecting symmetries it is often efficient enough for real-world
situations.

3 Extensions

The meld algorithm is, as previously mentioned, an algorithm designed to be a general routine
which can detect many different symmetries without the user having to manually identify and
apply individual relations. The ability to detect multi-term relations covers a large number of
identities but by no means all possibilities. Various extensions which could be considered are
presented here.

3.1 Reduction of traces

One such example which has been implemented is the cyclicity of the trace ,

Tr(ABC) = Tr(BCA) = Tr(CAB) , (47)

where A, B and C do not necessarily commute. In the meld implementation, each term in
the trace is split into commuting terms and non-commuting terms. The non-commuting terms
are “cycled” until either they match against another term in the sum using a dummy-agnostic
comparison, or are cycled back to their initial arrangement.

3.2 Dimension dependent identities

Another group of symmetries which fit into the objective of meld, but are not currently im-
plemented, are the dimension-dependent identities which result from anti-symmetrisation of an
object with n indices in d < n dimensions,

F[α1α2...αn] = 0 . (48)

This is a result of the limited number of ways of labelling the n indices; easily seen with n =
2, d = 1 as the only way of labelling Fαβ−Fβα is Fxx−Fxx = 0. From this, many more identities
can be derived [30] such as

RabR
bcdeRacde =

1

4
RRabcdRabcd + 2RacRbdRabcd + 2RabR

b
cR

c
a − 2RRabR

b
a +

1

4
R3 , (49)

which can be calculated by expanding

Rab[abR
cd
cdR

e
e] = 0 . (50)
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There exist general methods for generating such identities [31] which are tedious calculations to
perform by hand and are excellent candidates for the types of relations a routine like meld should
detect. An extension of the meld algorithm which deals with these identities will be reported on
elsewhere.

3.3 Multi-term side relations

As well as simplifying expressions based on the index symmetries of tensors, another possibility
for combining terms is by defining sets of side relations and using these to reduce the size of the
set of basis terms. A motivating example for this is the commutator of covariant derivatives in
the absence of torsion,

[∇µ,∇ν ]V ρ = RρσµνV
σ . (51)

In particular we might want to make use of

∇µ∇νRραβγ = ∇ν∇µRραβγ +RρσµνR
σ
αβγ . (52)

Given an arbitrary expression containing second order derivatives of Riemann tensors, it is a
reasonable goal to use a basis of only two of the terms in this expression. By expressing the
relation in a form which makes the side-relations manifest,

∇µ∇νRραβγ ≡
1

2
(∇µ∇νRραβγ +∇ν∇µRραβγ +RρσµνR

σ
αβγ) ,

∇ν∇µRραβγ ≡
1

2
(∇µ∇νRραβγ +∇ν∇µRραβγ −R

ρ
σµνR

σ
αβγ) ,

RρσµνR
σ
αβγ ≡

1

2
(−∇µ∇νRραβγ +∇ν∇µRραβγ +RρσµνR

σ
αβγ) ,

(53)

the similarity with the meld routine surfaces: each term in a sum is sequentially “projected”
using the side-relations and an attempt made to write it as a linear combination of the previously
projected terms.

4 Discussion and conclusion

We have argued that canonicalisation is not necessarily the most useful algorithm from the
perspective of a computer algebra user, and will generally lead to expressions which are unnec-
essarily large. Instead of converting terms in an expression to canonical form, it may be more
useful to meld them together (in the sense discussed in the main text), so that the form of the
input expression is preserved as much as possible. We have shown how this can be made to work
explitly for expressions involving tensors which exhibit multi-term symmetries, and have briefly
commented on extensions to other related situations.

Our implementation uses a memory-efficient and dummy-name agnostic storage method, and
shows that many practical computations can be handled in reasonable time. It is, however, not
necessarily optimised for speed yet, and could easily be improved by combining it with a mono-
term canonicaliser. Our focus has been on general applicability, simplicity of the algorithm, and
easy-of-use in practical computations, for which the performance is certainly often good enough,
as the examples in section 2.6 show.
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