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Abstract

Major Depressive Disorder (MDD) is a psychiatric disorder characterised by per-
sistent low mood and loss of enjoyment or interest. MDD affects around 1 in 8
people worldwide and is one of the leading causes of global disability. Studies have
found both genetic and environmental risk factors. In this thesis automated and
scalable models using artificial neural networks are used to analyse two sources of
data where risk factors can be found and quantified.

A number of genes have a small effect size on MDD, making MDD a polygenic
disease. To investigate polygenic diseases, we can analyse Single Nucleotide Poly-
morphisms (SNPs), base pairs in DNA that commonly differ between individuals.
Genome wide association studies (GWAS) are used to quantify the association
between SNPs and MDD. From modelling these associations in combination, a
Polygenic Risk Score (PRS) can be devised, which quantifies an individual’s ge-
netic risk of MDD.

Through scanning the brain using CT or MRI, we can find evidence of disease,
including stroke and small vessel disease. A number of brain diseases have been
linked to subsequent development of MDD, and combined with genetics could give
a better overall risk prediction of developing MDD than either in isolation.

This thesis focuses on these two key biological disciplines in MDD research (ge-
netics and imaging) where deep learning, in the form of artificial neural networks,
might provide improvement on key problems in these fields. . Specific problems
are chosen due to their tractable nature and the ability to benchmark the new
techniques against the current state-of-the-art methods.

The first project of this thesis uses artificial neural networks that take as input
SNP genotypes and output a polygenic risk score for MDD. A number of hyper-
parameters are tested, as well as different architectures. The best of these models,
as chosen by performance (measured using AUC) on a validation set, is then
compared on a held-out test set to existing methods including p-value threshold
and clump, SBayesR, and LDPred2.

The second project uses graph based neural networks, which introduce an ad-
ditional layer involving a graph, to add structure to the network computation.
This structure allows use of existing biological information, in this case data de-
tailing which SNPs act as expression quantitative trait loci (eQTL) for specific
genes. A number of graph networks are designed and tested, with the best of
these compared to the methods in the first project. Across both the first and sec-
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ond project, the neural network models achieve an AUC, accuracy and Nagelkerke
R2 that are comparable to the best of the current methods tested. Additionally,
when using ensemble modelling the best performing models included both a neural
network based model as well as a summary statistics Bayesian model (LDPred2 or
SBayesR). This indicates the neural network models find information not used by
the best existing methods, and that an ensemble of models provides the highest
performance as defined using the above mentioned metrics.

The final project uses neuroradiology reports, which are written reports that
accompany radiology scans such as CT or MRI scans, and are used to describe
abnormalities that indicate disease. There is evidence that some of the diseases
observable in these scans are risk factors for MDD. Part of the processing of the re-
ports needed for further analysis is negation detection, which is the task of deciding
if a mention of disease (such as ischaemic stroke) indicates either presence of the
disease or lack of presence. An artificial neural network (NN) is developed for this
task, and its predictions are assessed against a gold standard labelled by domain
experts. The performance of the NN, measured using F1 score, is then compared
against that of a rule-based model developed on the same datasets as the NN, and
two state-of-the-art rule-based models developed on different datasets. The NN
achieves similar performance to the other models, and outperforms the rule-based
models not developed on our datasets. Neural networks have previously shown
a greater adaptability to new datasets than rule-based methods, thereby demon-
strating a potential advantage over rule-based models in transferability between
data sources, such as different health boards or studies.

The work on this final project has contributed to enabling the automatic anno-
tation of a much larger dataset with increased accuracy. Using this larger dataset
further analysis has linked hypertension with increased risk of stroke, as well as
baseline depression with increased risk of cerebral small vessel disease. Addition-
ally, approval for access to electronic health records for the entire Scottish popula-
tion has been granted, and this has been made possible because of the utility and
effectiveness of the machine learning approaches.

Overall, the deep learning (artificial neural networks) models developed in this
thesis are stronger on the negation detection task than the polygenic risk scoring
task, performing well against all the models tested and proving useful for processing
large datasets for future work.

The models developed for assessing genetic risk of MDD currently have more
limited use, but deliver results that are comparable to current methods, partic-
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ularly when summary statistics aren’t available. Additionally, the performance,
using AUC and Nagelkerke R2, of the ensemble models indicates the NN models
find information in the data unused by the other methods, indicating potential
for providing future mechanistic insights. While there are a number of challenges
preventing improvements in the predictive performance of NN models, larger sam-
ples of individuals with MDD with contemporaneous imaging and genetic data are
likely to lead to improvements for these models when used for predictive analytics.

This thesis represents a beginning of the work possible with deep learning for
MDD research, and these experiments are just a subset of the potential problems
where deep learning may provide benefit. The methods used here have the poten-
tial to lead to more accurate prediction, further mechanistic insights, and better
automation of dataset processing and creation for a number of other problems and
challenges in MDD research.
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Lay Summary

Major depressive disorder (MDD) is a leading cause of disability worldwide and
can be described generally as a consistent low mood for a prolonged period, at
least a couple of weeks but up to months or years. Previous research has indicated
the disorder to be in part heritable, meaning factors that increase the likelihood of
developing the disease pass from parent to child, with genetics being the primary
way of passing these factors.

Genetics is the study of genes, sections of DNA (deoxyribonucleic acid) which
contain the code necessary for building key biological components, such as pro-
teins. DNA is mostly consistent between individuals, however in key places (or
nucleotides) it can vary, and these places can be termed variants. Different vari-
ants give rise to changes in observed traits of individuals such as height, eye colour,
and in the case of this research, likelihood of developing MDD.

However, just because an individual’s DNA doesn’t give an increased risk for
developing MDD, that doesn’t mean they won’t develop the disorder. Some of the
other contributing factors, for example stroke or cerebral small vessel disease, can
be identified using imaging of the brain. Imaging methods include MRI (magnetic
resonance imaging) and CT (computed tomography).

Understanding the causes of MDD and how it develops is difficult, due to causes
and symptoms varying between individuals. An individual may have multiple
causes of their MDD, and be suffering from multiple symptoms. Therefore to be
able to estimate an individual’s total risk of developing MDD, multiple data sources
need to be taken into account. Additionally, due to the small influence any one
risk factor has on likelihood, and the potential interactions between these many
factors, very large datasets are needed to uncover these factors with confidence.

Subsequently, research is moving towards using multiple data sources (such
as genetics and imaging) and large datasets to enable investigation of many risk
factors that each have a small, cumulative effect on an individual’s likelihood to
develop MDD. As part of these datasets multiple depression related phenotype
are often collected; ranging from having been diagnosed with MDD by a doctor,
through to questionnaire derived phenotypes asking about topics such as mood
and anxiety.

In this thesis I am applying machine learning to specific, tractable challenges
in two key biological fields of MDD research, genetics and imaging, where perfor-
mance of the new methods can be benchmarked against current state-of-the-art
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methods. Machine learning is a field of modelling where instead of parameters
being set manually for the model, these parameters are learnt from data. Machine
learning models have proven highly effective on problems in other fields where
there are complex interactions between inputs, and large datasets available for
learning the parameters of the model.

Artificial neural networks (NNs) are a form of machine learning. They are built
using consecutive functions, or layers, and can be many layers deep. This has led
to the use of the phrase deep learning to describe these networks. An example of
a layer, and one of the most commonly used, is a function that looks like linear
regression - finding the best fitting straight line. This line (or function) is then
multiplied by a non-linear function to make it no longer straight. In a neural
network multiple layers are stacked to increase the power of the model, enabling
a number of underlying patterns in the inputs to be learnt, leading to a more
accurate final prediction.

For my first and second projects the inputs to the neural networks are genetic
variants, and the output is a score denoting a likelihood of developing MDD on
a scale of 0 to 1. The first project only uses the linear regression style of layer,
however the second project uses a specific sub-type of neural networks called graph
networks. The graph layer of this network is a collection of nodes (variables such as
individual genes and variants) and edges (associations or connections between the
variables). This enables a flow of information round the network, before aggregat-
ing (for example taking the average value of the nodes) to produce the polygenic
risk score. The networks from both projects are compared against existing mod-
els, and are found to outperform the baseline model (a simple model that acts
as a reference in a machine learning project), but are not as strong as the best
performing existing models.

My third project uses neural networks to analyse the written component of
CT and MRI scans. Within this text the medical professional will have noted
observations of whether certain diseases, such as ischaemic stroke, were present
or not. For example, it may be written “there is an ischaemic stroke on the left
hemisphere”, or “there is no sign of ischaemic stroke”. Text data like this is
difficult to categorise, and accordingly can be difficult to search. If we wanted to
find everyone who has suffered an ischaemic stroke we could use a text search, but
this would return patients who have had and have not had an ischaemic stroke.
The neural network is built to analyse the text and predict whether each mention of
the disease is positive as in the first example, or negative as in the second example,
based on the surrounding words. The neural network performed comparably to
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the existing methods, but would likely be simpler and more effective to transfer
to other datasets in future.

Overall, the three projects demonstrate the potential, but also the challenges,
in using neural networks in medical research, with competitive results and a large
scope for new approaches.
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Chapter 1

Introduction

1.1 Major Depressive Disorder

1.1.1 Introduction

Major Depressive Disorder (MDD) is a psychiatric disorder that is a leading cause
of disability worldwide. Around 1 in 8 of the global population are affected over
a lifetime, or over 300 million individuals (WHO, 2017). It is often recurrent or
chronic, and is associated with considerable excess mortality and costs (Wittchen
et al., 2011).

MDD is a mood disorder characterised by at least one depressive episode last-
ing 2 weeks or more, where the primary symptom is either depressed mood or
diminished interest or pleasure. The Diagnostic and Statistical Manual of Men-
tal Disorders (American Psychiatric Association, 2013) defines it as these primary
symptoms in combination with a number of secondary symptoms. For a diagno-
sis of MDD one of the primary symptoms and four of the secondary symptoms
must be present, affecting the individual for most of the day on most days. The
secondary symptoms are:

• significant and otherwise unexplained weight loss, weight gain or appetite
changes;

• sleep difference including insomnia and hypersomnia;

• psychomotor agitation or retardation;

• fatigue or loss of energy;

1
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• feeling of worthlessness or excessive or inappropriate guilt;

• diminished ability to think or concentrate, or indecisiveness;

• recurrent thoughts of death, recurrent suicidal ideation, or a suicide attempt
or specific plan for committing suicide.

Due to this classification of MDD, there a number of ways the disorder can
present, and any two individuals diagnosed can have completely different, or in
some cases opposite, symptoms. For example, both insomnia and hypersomnia are
listed as symptoms. These complexities and heterogeneities may point to separate
causes, or aetiologies, of the disorder, leading to a potentially very complex and
multi-faceted function for modeling the overall disorder, including prediction from
risk factors.

Further variation in the disorder is found in the recurrence and length of the
symptoms, with some cases affecting the individual for one short episode, through
to recurrent episodes lasting months over a lifetime. Time of onset often coincides
with certain life events such as postpartum depression (Wisner et al., 2002) or
poststroke depression (Robinson and Jorge, 2016). Other environmental factors
can lead to a pattern in symptom severity such as a seasonal pattern in seasonal
affective disorder (SAD) (Magnusson, 2000).

A common time of onset for MDD is while an individual is in their twenties
(Kessler and Bromet, 2013), and sometimes a distinction is made between depres-
sion developed before 60 (early onset) and after 60 (later onset) (Brodaty et al.,
2005). It is hypothesised the timing of onset leads to different presentations of the
disorder.

Lifetime depression has a prevalence about twice as high in women than in
men, (Brodaty et al., 2005). The greatest difference between genders appears in
adolescence, before narrowing and stabilising, but still persisting, into adulthood
(Salk et al., 2017). The difference was found to be both in diagnosis of MDD and
differences in depression symptoms (Salk et al., 2017).

Prevalence also varies by location (Kessler and Bromet, 2013) and ancestry.
Studies have found rates of lifetime prevalence vary from 21% in France to 6.6% in
Japan (Kessler and Bromet, 2013). Geographic location related prevalence may be
due to socio-demographic factors (Kessler and Bromet, 2013), such as education
level or income group. Ancestry can be genetic or cultural (Kessler and Bromet,
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2013), with both causes overlapping with location as ancestry largely correlates
with location (Gaspar and Breen, 2019).

One type of depression, seasonal affective disorder (SAD), has a specifier in that
it has a seasonal pattern hypothesised to be caused by lack of light, with depressive
episodes happening in winter (Magnusson, 2000). This form generally has a higher
prevalence at more northern latitudes which experience darker winters, one study
looking at different locations in the US finding prevalence ranging from 9.7% in
New Hampshire to 1.4% in Florida (Forsell et al., 2013).

1.1.2 Diagnosis and Treatment

Diagnosing the disorder requires time with a medical professional and can be in-
consistent. In field trials of the DSM V the intraclass kappa for MDD diagnosis
was in the questionable range (0.28) (Regier et al., 2013). These inconsistencies
lead to misdiagnosis, giving a lack of data on which individuals have the disorder
(Sato and Yeh, 2013; Lieblich et al., 2015), as well as contributing to underestima-
tion of prevalence in some east Asian countries (Sato and Yeh, 2013). A potential
control may be a missed case, or vice-versa, and to increase case numbers a broad
phenotypic definition is sometimes used, risking false positives and false negatives.

The symptoms or presentation of MDD overlap with other psychiatric con-
ditions. Anxiety and depression are often comorbid; about 85% of patients with
depression have significant anxiety, and 90% of patients with anxiety disorder have
depression (Tiller, 2013). The overlap between symptoms of anxiety and MDD is
important to consider in studying depression, as evidenced by the question asked
by the UK Biobank “Have you ever seen a general practitioner (GP) for nerves,
anxiety, tension or depression?”. This question is used for definition of a pheno-
type of depression (Howard et al., 2018) and would clearly include those suffering
from anxiety.

Another similar condition is Bipolar Disorder (BD) which is differentiated
by episodes of mania/hypomania coming between depressive episodes. Therefore
where MDD occurs with mania/hypomania this indicates a diagnosis of BD rather
than unipolar depression. However, should a depressive episode come first, or the
manic episodes be missed, it is possible for misdiagnosis between MDD and BD
(Singh and Rajput, 2006).

Reflecting the wide range of MDD characteristics as well as the overlap with
similar conditions, it is perhaps unsurprising that treatment of MDD can be diffi-
cult. For example, treatment (by means of antidepressants) resistance is possible
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in cases where a tumour is a primary cause (Dautricourt et al., 2015; Ferreira et al.,
2019).

SSRIs (selective serotonin reuptake inhibitors) are a class of drug often pre-
scribed for MDD, which aim to address a hypothesised biological cause, a lack of
serotonin. Talk therapy aims for a more environmental treatment, working through
possible external triggers. A common, and one of the most evidenced-based, forms
of talk therapy is called Cognitive Behavioural Therapy (CBT) (Gautam et al.,
2020). It aims to modify thought patterns to affect moods and behaviours.

A commonly used SSRI is citalopram, however a number of patients do not
attain a satisfactory response to treatment (Rush et al., 2004). The subsequent
treatment options for these treatment-resistant cases include alternative SSRIs
(sertraline, bupropion), cognitive therapy, lithium or thyroid hormones. These
and other approaches were tested and compared in the STAR*D study, which
found lower acute remission rates, greater degrees of treatment intolerance, and
higher relapse rates in cases where multiple treatment steps were required, and
the highest rate of any treatment was 28% (Rush et al., 2004; Howland, 2008).

Research is also being conducted into less traditional methods including drug
treatments that create hallucinations, like Psilocybin, which potentially correct
pessimism biases in treatment resistant depression (Lyons and Carhart-Harris,
2018). The mechanism for this may be from increased global brain connectivity
and reduced within-network connectivity of the default mode network (DMN)
(Daws et al., 2022). The DMN is associated with introspection and self-referential
thinking (Andrews-Hanna et al., 2014) which are are often overactive in depression
and may lead to the self-focused rumination common in MDD (Hamilton et al.,
2015).

1.1.3 Research

Data Sources, Meta-Studies and Automation

Research into MDD is challenging due to complex aetiology, variable presentation
and inconsistenties in diagnosis. It is a heterogenous disorder meaning different
causal mechanisms are related to the disorder, and multiple outcomes from this
disorder can occur within the same individual. Subsequently, increasingly large
datasets are being used for investigation into the disorder, involving a very high
number of samples as well as a wide range of data sources. These data sources
include genetics, epigenetics, electronic health records and brain imaging.
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MDD has a heritability of 37% indicating genetics play a significant role in
the aetiology (see Section 1.2.1). SNP heritability is estimated to be around 10%,
and while the total variance explained by current studies is much below these
figures (around 3% (Howard et al., 2019)), studies into the genetics of MDD have
identified a number of variants significantly associated. Each of the effect sizes
of these variants are small, however we can aggregate them into genes or gene
pathways. Using this method can lead to suggested therapeutic directionsfrom
existing available drugs that are known to be related to the genes (Levey et al.,
2021). One example is Riluzole which is a NMDA antagonist currently used to
treat amyotrophic lateral sclerosis and is now in trials for combination therapy for
treatment-resistant depression (Levey et al., 2021).

There have also been a number of studies investigating how brain diseases, or
structural and functional brain alterations, could affect risk of developing, or are
associated with, MDD (see Section 1.3.2). Example findings include significantly
lower hippocampal volumes (Cohen’s d=-0.14, % difference=-1.24) in MDD pa-
tients (Schmaal et al., 2016), significantly enlarged amygdala in currently depressed
patients (van Eijndhoven et al., 2009), and an increased likelihood of developing
depression anytime up to 5 years after stroke (Hackett and Pickles, 2014).

Most risk factors (for example genetic variants, stroke history or abnormal
brain region volumes) for MDD contribute a very small increase in risk, meaning
smaller studies have often been underpowered for identification of these risk factors
(Schmaal et al., 2020), and for confidence in the size of their effect. This has lead
to a lack of reproducible findings (Schmaal et al., 2020), and a need for higher
sample sizes.

The need for higher sample sizes has led to the utilisation of meta-studies by
consortiums such as the Psychiatric Genetics Consortium (Sullivan et al., 2018)
and Enigma (Schmaal et al., 2020), the use of biobank datasets (such as UK
Biobank (Allen et al., 2012)), and greater use of automation in the processing and
creation of structured datasets.

Meta-studies are studies that look combine the samples or results from multiple
studies, looking to improve the results or reduce the error from any of the studies
individually. The improved results in part come from combining multiple studies
increasing sample size, which can also be done by using large biobank datasets.
Biobank datasets aren’t specifically targeted for investigation of a particular dis-
order, instead collecting data on wide range of traits (deep phenotyping), as well
as data such as genotypes, for each individual that allow a number of questions to
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be investigated. Both meta-studies and studies that use biobank data have their
drawbacks, but the increased sample size make them effective for MDD research.

One of the drawbacks to increased sample size from using biobank data or
electronic health records (mentioned below) is that they often broaden the tar-
get phenotype, introducing more cases with less severe illness. Meta-studies can
increase the number of samples without broadening the phenotype, but still intro-
duce difficulties in alternative phenotype definitions. Creating a bespoke dataset
of patients with severe illness would potentially prove more effective, however it
would be more time-consuming and expensive, and could still not have enough pa-
tients to match the dataset sizes provided through the other methods. In practice
both large and bespoke datasets will likely be needed to produce the best results.

Another way to increase sample size is through the use of electronic health
records, which are a systemised collection of patient data collected from patient
interactions with the health service. Due to the collection of this data not being
part of a deliberate study it can be in a format that is difficult to work with.
For example, free text is often used to annotate radiology scans, and free text is
difficult to parse and manipulate.

This difficulty means manual annotation, particularly for the high number of
samples needed for MDD research, can be extremely expensive and time-consuming.
A form of automation called natural language processing (Section 1.3.5) is used for
parsing free text to extract information (subtasks include entity recognition, cate-
gorisation and negation detection) to build structured fields and organise patients
into groups for further investigation.

Potential Pathways

To be able to confirm findings from genetic studies of MDD (see Section 1.2.1) and
to understand why other phenotypes such as key imaging phenotypes of stroke sub-
types and small vessel disease are linked to MDD it is important to investigate
possible mediators and pathways. Any correlations found between MDD and an-
other phenotype or genetic factor could be either causal or they could share a
common cause.

For example, it is known that dysfunction in the cardiovascular and metabolic
systems is a risk factor for developing MDD (Thombs et al., 2006; Stewart and
Rollman, 2014; Abraham et al., 2016). This relationship is hypothesised to be at
least in part mediated by detrimental effects on the health of brain circuitry caused
by diseases of the brain such as stroke, tumour or small vessel disease (Aström
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et al., 1993; Hackett and Pickles, 2014; Dautricourt et al., 2015; Robinson and
Jorge, 2016; Rensma et al., 2018; Ferreira et al., 2019). Therefore, by investigating
these diseases and their relationship with cardiovascular and metabolic health, as
well as MDD, any causal relationships or important pathways can be elucidated.
Additionally, other factors that affect brain circuitry, such as genetics, could also
be investigated, aiming to build a complete picture of the mechanisms behind
MDD.

1.2 Genetics

1.2.1 Introduction

Genetics is the study of genetic code, genes, genetic variations and heredity. The
genetic code is encoded by DNA (deoxyribonucleic acid), and includes gene sections
that transcribe either coding or non-coding RNA (ribonucleic acid). Both DNA
and RNA are long chains of molecules called nucleobases, and DNA has four
different nucleobases; adenine (A), cytosine (C), guanine (G) and thymine (T). The
vast majority of genetic code is shared between all people, but a small percentage
of places in the genetic code vary, called genetic variants. These genetic variations
give rise to a portion of the variation in individual phenotypes, for example eye
colour or height.

Some changes in genetic code are de novo mutations that are first present in
the individual themselves, but most mutations have taken place many generations
ago, passing down from parent to child. The mutations passed down, and the
variation explained by these, are the heritable part of a phenotype, for example
height is through to be around 80% heritable (McEvoy and Visscher, 2009), and
MDD is estimated to be 37% heritable (Sullivan et al., 2000).

One type of genetic variation (also called an allele) are Single Nucleotide Poly-
morphisms (SNPs), single positions in the genome where the nucleotide base
changes between individuals. For example, for one SNP person A may have a
guanine (G) at that position in the genome, whereas person B may have a ty-
rosine (T). The most common variant in a population is the major or reference
allele, with the other being called the minor or alternate allele. Allele frequencies
vary between populations, such as European or African. The part of heritability
that is caused by SNPs is called the SNP heritability.

DNA is split into long molecules called chromosomes. Humans generally have
46 chromosomes, which include 22 pairs of chromosomes called the autosomes, and
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either an X chromosome and Y chromosome for males, or two Y chromosomes for
females. Each parent passes on a single copy of each chromosome to the child.
Before passing on the chromosome to the child, recombination takes place, which
recombines sections of DNA from each of the parent’s chromosomes to create a new
combination of SNPs. The child then has two copies of each SNP on the autosomes,
one from each parent. Additionally, for any two SNP positions the child may
have inherited the two copies of the SNP from different sets of grandparents, but
always one copy from the maternal grandparents and one copy from the paternal
grandparents.

As each individual has two copies of the autosomal SNPs we can code this
as how many copies of the reference allele they have, 0, 1 or 2, which we call
their genotype. A number of genotypes inherited together in a block are called a
haplotype.

The study of genetics is complicated by the indirect influence it has on phe-
notypes. For example an individual suffering from malnutrition whose genetics
would normally lead them to be tall, may be a lot shorter than expected from ge-
netics alone. Additionally, cultural factors such as diet can interact with genetics
in complex ways.

One mechanism by which the environment affects the expression of genes is
through methylation. Methylation is a form of epigenetic modification; epi is from
the Greek ‘over’ or ‘around’, so epigenetics is a layer of modification ‘over (or
around) genetics’. Genes are suppressed by the addition of a methyl group to the
DNA of the gene, and a number of environmental factors such as diet and smoking
have been linked to this process (Lim and Song, 2012).

1.2.2 Genetic Risk Factors for MDD

Heritability is an estimate of the amount of variation in a phenotypic trait that
can be accounted for by genetic variation between individuals. Research on twins
has found that 37% of the variance in risk for developing MDD is heritable (can be
explained by genetic factors) (Sullivan et al., 2000). No single gene has been found
that explains a majority of the heritability. Instead, a large number of genes have
been found to be associated (over a hundred (Howard et al., 2019)) with small
effect size, as well as the best polygenic risk scores using thousands or more SNPs
(Howard et al., 2019; Privé et al., 2020; Lloyd-Jones et al., 2019), indicating that
MDD is a polygenic trait. A polygenic trait is one that is influenced by many
genes, normally numbering in the hundreds or thousands.
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Candidate gene studies are a type of molecular study (in contrast to the family
and twin studies used to produce heritability estimates), and were initially used to
try identify specific genes that had an effect on MDD risk. These use an a priori
hypothesis to select genes to investigate the association between genetic variation
and the target phenotype. As MDD hasgenes with a smaller effect size than
those for other diseases such as bipolar disorder and schizophrenia, and is a more
heterogenous phenotype (Lohoff, 2010), it is practically a difficult phenotype to
use the method on (Lohoff, 2010). Consequently, not many studies were conducted
on MDD (relative to schizophrenia and bipolar disorder) (Lohoff, 2010), and many
of the identified genes have failed to replicate in larger and better designed studies
(Border et al., 2019).

In contrast to the hypothesis based candidate gene study; a hypothesis free
method of investigating polygenic disease is through the use of Genome Wide
Association Studies (GWAS). These have proved more successful than candidate
gene studies, see Section 1.2.3). GWAS investigate the association of a number of
genetic markers called Single Nucleotide Polymorphisms with a phenotype. The
heritability that can be explained by these SNPs is called SNP heritability. SNP
heritability of common SNPs for MDD has been estimated to be around 1/4 of
the total heritability, around 9% (Wray et al., 2018; Howard et al., 2018).

Polygenic diseases have a number of genes that contribute with small effect
sizes, leading to difficulties in detecting causal genes, or even estimating the like-
lihood that a gene is associated with the disease. MDD has proven particularly
so (Levinson et al., 2014), likely due to moderate heritability as well as hetero-
geneity of both genetic and non-genetic factors. GWAS benefit from very large
sample sets (>hundred thousand) and subsequently, a equivalent number of indi-
viduals are needed to identify which genetic variants are involved in MDD. This
has led to the usage of biobank type datasets such as UK Biobank (Sudlow et al.,
2015; Howard et al., 2018; Lloyd-Jones et al., 2019; Zeng et al., 2021), as well as
meta-analyses by consortium, namely the Psychiatric Genetics Consortium (PGC)
(Ripke et al., 2013b; Howard et al., 2019; Wray et al., 2018).

The increase in statistical power (the probability a statistical test will reject
the null hypothesis if the data follows the specific hypothesis being tested) brought
about by the increase in sample size for GWAS has effectively increased the num-
ber of SNPs significantly associated (P < 5 x 10ˆ8) with MDD. Using 322,580 UK
Biobank participants and 113,769 cases, Howard et al. (2018) identified 17 inde-
pendent loci across three MDD phenotype definitions (broad depression, probable
MDD, and International Classification of Diseases (ICD)-coded MDD, see Section
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1.2.3). Wray et al. (2018) identified 44 significant loci through a meta-analysis of 35
cohorts consisting of 135,458 cases and 344,901 controls. A recent meta-analysis of
three of the largest GWAS, including 246,363 cases and 561,190 controls, identified
102 variants (Howard et al., 2019).

Another aspect of the genetic architecture of MDD is the overlap with other
psychiatric disorders. There is evidence of overlap with schizophrenia (Postolache
et al., 2019; Wray et al., 2018), as well as Bipolar Disorder and ADHD (Howard
et al., 2018; Wray et al., 2018). This is complicated by co-morbidity of psychiatric
disorders (Rush et al., 2005), and current diagnosis focusing on symptoms rather
than biology.

While not addressed in this thesis, another open question for MDD is the
biological or genetic stratification of MDD (Habota et al., 2019). The current defi-
nition of MDD is a symptomatic one, which can be useful for describing a person’s
symptoms as well as treating these same symptoms, however these definitions can
often be unhelpful when it comes to treating the changes in biology that cause
the symptoms, and may even be detrimental. This is shown with MDD through
inconsistency in treatment drug efficacy (Al-Harbi, 2012).

1.2.3 Genome Wide Association Studies

Genome wide association studies (GWAS) are observational studies that aim to
find which genetic markers, usually SNPs, are associated with a target trait, such
as height, BMI or disease. GWAS measure the association by setting one of the
alleles as the ‘reference’ and the other allele as the ‘alternative’ for each SNP, and
measuring the change in a trait if an individual has the alternative allele, relative
to the individuals with the reference allele.

The calculation of the association score uses either odds ratio for binary phe-
notypes, or effect sizes (betas) for continuous traits. A p-value statistical test is
used for the association score, and only SNPs with a p-value below a threshold are
reported as significant. As each SNP is tested independently, the number of tests
conducted is equal to the number of SNPs included. Due to the very large number
of tests taking place it is important to counteract the multiple comparisons prob-
lem, where the possibility of a false association increases the more comparisons
are made. Subsequently, a correction method devised to correct for the multi-
ple comparisons problem is commonly used, such as Bonferroni correction or false
discovery rate (FDR).

As there are two copies of each allele we can choose to model these in different
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ways to compute the association. The most effective and used model is additive,
where the effect of having 2 copies is assumed to be equal to twice the effect of one
copy. Other models include the dominant model where 1 or 2 copies are treated
the same, and mixtures of these where the effect of 2 copies is assumed to be
somewhere between equal and twice the effect of one copy.

Due to the incomplete information and complex processes involved in genetic
influence of phenotypes, as well as GWAS being an observational study, GWAS
need a large number of samples, particularly for traits that don’t have high her-
itability. As sample sizes are increased, so is the power and the quality of the
GWAS results, but we can get an estimate of the expected SNP-based heritabil-
ity through using Linkage Disequilibrium Score Regression (LDSR), as has been
done by Howard et al. (2018) to find a SNP heritability for their broad depression
phenotype (Section 1.2.3) of 10.2%.

As the power of GWAS studies have increased in recent years, there are a
increasing number of significant SNPs found, as well as a reduction in the error
of the predicted effect of each SNP on the phenotype. The first major study into
MDD didn’t find any significant hits (Ripke et al., 2013b), and one two years later
found only 2 loci (CONVERGE consortium, 2015), demonstrating the difficulty
in locating significant loci for MDD. In contrast, one of the latest major GWAS
for MDD from 2021 found 178 genetic risk loci and 223 independently significant
SNPs (Levey et al., 2021), while another from 2019 found 102 independent genetic
variants consistently associated across multiple datasets (Howard et al., 2019).
These also represent significant increases from the 15 found in Hyde et al. (2016)
and 44 in Wray et al. (2018).

Additionally, to increase sample size, meta-analysis of GWAS are becoming
more common. Meta-analysis allow many more samples to be used, as well as
reducing the homogeneity of the sample being studied, in theory making the results
more generalisable. There are challenges to conducting meta-analysis including
varying phenotype definition and genotype quality control, however the increase
in sample size leads to stronger results (Ripke et al., 2013a; Wray et al., 2018;
Howard et al., 2019).

It is usual to perform some quality control steps on the genotype data before
conducting GWAS studies. SNPs where the minor allele frequency (MAF) is very
low are removed as the minor allele wouldn’t be common enough for the GWAS to
correctly determine the association, meaning GWAS are most effective at finding
associations for the most common SNPs. Other steps such as selecting for a high
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Figure 1.1: Example Manhattan Plot from Howard et al. (2019)

genotype rate help ensure the data is clean

Imputation is often used, which involves replacing a missing value with a sub-
stitute, for example the allele of a SNP. In this case it is calculated using other
values. This is useful to do as many methods either require or greatly benefit
from a complete dataset. It can be done reasonably accurately in genetics due to
the high correlation between certain SNPs due to Linkage Disequilibrium (Section
1.2.4). High imputation accuracy is checked for using an information score (a score
between 0 and 1 that measures the quality of imputation).

The results from GWAS are usually presented in a Manhattan plot (Figure
1.1), named after their resemblance to a skyline with a number of skyscrapers.
These plots plot the p-value of the SNP on the y-axis, and the genomic position of
the SNP (which chromosome the SNP is on and it’s position on the chromosome)
on the x-axis. Further steps using these results include candidate gene studies
(Patnala et al., 2013) and polygenic risk scoring (Section 1.2.4).
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Phenotype Definition

To be able to run a GWAS a target phenotype must first be defined. Professional
assessment of an individual using the Diagnostic and Statistical Manual of Mental
Disorders (American Psychiatric Association, 2013) is the best way of identifying
someone suffering from MDD. However, it is both time consuming and expen-
sive to be done on a scale large enough to create the datasets needed for study-
ing polygenic diseases. Howard et al. (2018) investigated three depression-related
phenotypes; broad depression, probable MDD, and International Classification of
Diseases (ICD)-coded MDD. They found broad depression to be the most useful
phenotype for discovering associated genes and gene sets, and subsequently this
phenotype will be the one used in this thesis.

It is probable that broad depression would incorporate a number of personality
and psychiatric disorders in contrast to probable MDD and ICD-coded MDD.
It was correlated with greatest number of other traits, including schizophrenia,
bipolar disorder and ADHD. Despite this, the genetic correlations between the
phenotypes outlined were relatively strong (0.85(±0.05) ≤ rg ≤ 0.87(±0.05), P ≤
4.21 ∗ 10− 59).

Broad depression (Howard et al., 2018) is derived from the UK Biobank dataset,
and a case is defined using either questions or prior diagnosis. Diagnosis status
for a depressive mood disorder is taken from linked hospital admission records.
The questions used for definition mean the phenotype could potentially include
individuals seeking treatment for personality disorders.

This definition of MDD leads to a few behaviours of the phenotype. For exam-
ple the choice to include individuals with any episodes of MDD, regardless of how
current, will inevitably cause prevalence to be correlated with age. Additionally,
the broad definition will likely include a number of underlying biological mecha-
nisms, and therefore gene involvement. However, Howard et al. (2018) found it
provided the highest number of significantly associated SNPs, likely due to pro-
viding the greatest number of individuals for analysis.

1.2.4 Polygenic Risk Scores

What is a Polygenic Risk Score?

As polygenic traits have a number of genetic markers that influence them, we can
create a polygenic risk score (PRS) to characterise the total effect of an individual’s
genetics on the trait. This is a single number that combines the effects of a
number of genetic markers. While GWAS normally use a genome wide significance



CHAPTER 1. INTRODUCTION 14

test to determine which SNPs are associated, when computing a PRS the best
performance is often achieved by including at least some of the SNPs that fall below
the genome wide significance threshold. At least some of these are statistically
likely to be associated, and therefore in aggregate will give useful information to
the model.

A simple way to create a PRS is to add the effect sizes from each SNP in a
GWAS and then scale the results to the observed statistics of the trait, for example
height would be scaled to be between approximately 150 and 200cm. For binary
traits such as disease case/control we can apply a threshold to the score, where any
scores below the threshold are controls and any above the threshold are cases. The
score would then be scaled to give the prevalence seen in the general population.

These PRSs can then be tested by comparing the predictions made by the PRS,
for example a case of MDD or an individual’s height, to the measured trait. If
a PRS explains a significant amount of phenotypic variance between individuals
it could be used in a decision making setting. For example, in a medical setting
an individual who hasn’t yet developed a disease but has a high PRS indicating
high risk may be prescribed preventative action with the aim of preventing the
disease ever developing. An example of genetic markers being used for preventative
action are the BRCA genes. For an individual with certain versions of the BRCA
genes preventative surgery may be advised to reduce cancer risk, and a similarly
predictive PRS could be used in the same way.

The impact of PRS is increasing as GWAS studies improve and new methods
for calculating PRS increase the phenotypic variance explained. In the clinical
setting some PRS can explain as much phenotypic variance as clinical markers,
such as family history and blood pressure (Abraham et al., 2019), and in biomedical
research they are proving useful as tools to investigate genetic overlap, such as
between MDD and schizophrenia (Fanelli et al., 2021).

Linkage Disequilibrium and Epistasis

In a GWAS, association testing is done for each SNP separately. This is useful
for finding an average association between each SNP and a target phenotype. As
GWAS tests for a linear association the results indicate whether the SNP and
phenotype are correlated, however they do not indicate anything about causality.
Causality is what we are more often wanting to establish. Additionally, estimating
direct correlation from association testing is complicated by a SNP’s effect being
dependent on the genetic background of the SNP, as well as interactions between
SNPs. Estimating causality is more complex still, requiring either more than ob-
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servational studies (of which GWAS is one), or using a statistical method that
interrogates the causal effect of an exposure (SNP allele) on an outcome (phe-
notype) such as Mendelian randomisation (Davies et al., 2018) which is covered
further in Section 1.3.1).

The genetic background of certain associated SNP includes all other SNPs.
Certain alleles of these other SNPs may be required for the associated SNP to
affect the target phenotype. If the background SNPs have other alleles then the
association may be lost, potentially attenuating the overall average effect enough
for this specific effect to be lost in the GWAS results. The process of a SNPs effect
being affected by its genetic background is called epistasis.

Additionally, the alleles of certain SNPs might be highly correlated, so an
association found between SNP A and the target phenotype might be due to a
high correlation between SNP A and SNP B, and SNP B having a direct effect
of the target phenotype. This process is called linkage disequilibrium (LD), and
because of LD and epistasis it is often useful to analyse all SNPs in combination
for calculations such as phenotype prediction or identifying causal SNPs.

A portion of LD is due to how recombination works in meiosis. During the
reproduction process of meiosis, genetic recombination moves genetic material be-
tween homologous chromosomes (a pair of one maternal and one paternal chromo-
some that contain the same genes), meaning the new recombinant chromosomes
contain a different combination of genes to the originals. In this way, genetic ma-
terial is combined from the two parents to give a genetically mixed offspring. But
this mixing process is not entirely random, for example due to genetic linkage two
SNPs located nearer together on a chromosome are more likely to have a higher
chance of being inherited together from the same parent than SNPs located far
apart.

The non-random association of SNPs is further affected by selection, mutation
and genetic drift in a complex way, resulting in local and genome-wide patterns.
These patterns and those created in meiosis are linkage disequilibrium, and mean
that any effect of a SNP on a target trait will also be measured for any SNPs that
are in LD with it, due to GWAS only testing for association and not causation.
Therefore a SNP found to associated with a phenotype in a GWAS could be due
to LD with another SNP, and not a direct biological effect.

Epistasis is due to genetic machinery and genes not acting in isolation. Different
genetic backgrounds may lead to changes in the way a mutation in a gene changes
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the gene’s effect. For example if allele A in gene A stopped baldness and allele B in
gene B caused blonde hair, an individual would need both allele A and allele B to
have blonde hair. Either one is insufficient, attenuating any association that could
be measured through a GWAS due to the non-linear interaction. This process of
a gene mutation’s effect differing depending on its genetic background is epistasis.

To account for these effects and improve the PRS, it is common to clump the
SNPs and then apply a p-value threshold (C+T) (Choi and O’Reilly, 2019). As
part of the GWAS, a p-value is calculated for each SNP for the likelihood that the
SNP is associated with the trait. Clumping removes SNPs, aiming to create a SNP
set with no pair of SNPs in LD above a selected LD threshold, prioritising SNPs
with a lower p-value and maximising the number of remaining SNPs. This step
aims to avoid double counting any effect that comes from only one of the SNPs.
Lastly, all SNPs above a chosen p-value threshold are removed as these tend to
add more noise to the model than information.

A weakness of C+T is that removing SNPs removes information. Two SNPs in
LD could both have true effects on the phenotype through separate mechanisms,
however the one with the higher p-value in the GWAS would be removed using
C+T. Subsequently, the information from this SNP’s separate mechanism would
be unavailable for use in the PRS.

Another removed groups of SNPs in C+T are those with a high p-value. These
will have very little to no effect on the trait, but statistically a proportion will have
some effect, and these effects could accumulate to add significant information to
the PRS.

Additionally, SNPs are still treated as completely independent variables in
the C+T model, so any non-linear effects, such as those created by epistasis, are
ignored.

PRS Extensions

One approach to address some of the weaknesses of the C+T model, leading to
improvements in the explanatory value of the PRS, is to use linear mixed models
(LMM) (Speed et al., 2012; Yang et al., 2014). These jointly analyse SNPs to
account for LD and maximise the signal for each genetic locus if multiple causal
variants colocalise, meaning a greater number of SNPs are used in the model
leading to the performance gains. However, LMMs (similarly to the C+T model)
ignore non-linear SNP effects as they model each SNP’s effect on the phenotype as
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linear; additionally, LMMs assume these genetic effects are normally distributed.
Both of these factors may impact performance of the model.

Bayesian multiple regression (BMR) methods are an extension of LMMs that
allow for prior distributions other than normal distributions for the genetic effects,
achieving further improvements (Zeng et al., 2018). BMRs also enable the inclusion
of a LD matrix computed on a external reference panel (Zeng et al., 2021), which
can further improve the performance and generalisability of the model.

A number of these methods use individual-level data which can be computa-
tionally difficult to use, as well as difficult to make available with a large number
of samples due to the private, medical nature of the data. This has led to creation
of summary statistic methods, which use statistics created from GWAS that have
data on a SNP rather than individual level (Lloyd-Jones et al., 2019; Privé et al.,
2020).

SBayesR (Lloyd-Jones et al., 2019) is an example of a BMR summary statis-
tic methodology, which performs Bayesian posterior inference that computes a
likelihood that connects the multiple regression coefficients with GWAS summary
statistics, and combines this with a finite mixture of normal distribution priors on
the SNP effects.

LDPred2 (Privé et al., 2020) is an updated version of LDPred (Vilhjálmsson
et al., 2015), which also estimates posterior effect sizes through use of a Bayesian
prior for the genetic architecture and LD information.

1.2.5 Ancestry and Relatedness

Genetic ancestry refers to the information about the people or population that
an individual is biologically descended from. Genetic code as a whole is highly
consistent regardless of ancestry, however allele frequency for SNPs can vary a
lot, as does LD. Due to these factors, creating a PRS that remains accurate for
individuals from a range of ancestries is difficult, and predicting for an individual
from a different ancestry to the one a model is trained on often delivers poor
results.

The differences in allele frequencies between populations is called population
stratification, and is a form of population structure. In random mating we would
expect allele frequencies to be consistent. However, when mating becomes non-
random, due to for example geographical barriers like oceans, changes in allele
frequencies between the subpopulations (genetic drift) arise at random. These
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populations will likely vary in other genetic or environmental factors leading to
differing traits, such as hair colour or disease prevalence. Subsequently if both
subpopulations are included in a GWAS, an association may be found between
a SNP and a trait, where no direct (such as causal) relationship exists. This
happens due to the subpopulations having different allele frequencies for the SNP
due to genetic drift, and different versions of the trait due to other genetic or
environmental factors. Therefore population stratification is a confounding factor
when conducting GWAS.

One way to account for this confounding factor is to focus on individuals from
a single ancestry, and this thesis focuses on the largest group in the UK Biobank
dataset, those with European ancestry. Though even within this group some
population structure remains, and it is likely to still cause enough variation to
confound PRS creation.

We can model this remaining population structure using principal component
analysis (PCA). PCA is a feature transformation, a reorganisation of the informa-
tion in a set of features. The results of PCA give a set of principal components,
where the ith component is the direction of a line that best fits the data (capturing
the most remaining variance), that is also orthogonal to all previous components.
These principal components are then used to transform the features. PCA is often
used as a dimensionality reduction technique, as fewer transformed features are
required to capture the majority of the variance contained within the data.

This works as population structure is the dominant form of variation in genet-
ics, and so is largely captured by the first handful of PCA components. Subse-
quently, the first 10-20 PCA components are often used as co-variates in PRS.

To make GWAS more tractable, both in their computation and the genotyping
array needed (the biological tool used for recording genotypes of an individual),
they include SNPs from across the genome, but not every SNP. Using LD and
reviewing a reference panel of fully genotyped individuals, we can estimate what
any unrecorded SNP may be by looking at the SNPs likely inherited with it in a
process called imputation. Imputation enables models to be used on samples from a
different genotyping array to the one the model was trained on, as well as imputing
SNPs that weren’t recorded correctly for some individuals. The generalisability of
this process is also disrupted by the genetic differences between subpopulations,
meaning imputation becomes more inaccurate the further the imputed sample is
from the population used to create the reference panel.
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Relatedness is another form of population structure that confounds both PRS
and GWAS. In GWAS false associations may be created if individuals are related,
as the methodology presumes sample independence, i.e. no relationships between
samples. Violation of this can lead to false positives where a variant appears
statisically associated, when it is not.

When creating PRS with a summary statistic based model, a biased, con-
founded GWAS would lead to poorer performance. And in summary or genotype
based PRS models, predicting on related individuals to the ones a model is trained
on can over-inflate performance measures. For these reasons it is common practice
to exclude samples to give a dataset where no two samples are within a certain
threshold of relatedness.

Because of the genetic differences between different populations, and that most
work conducted so far is on largely European populations, the conclusions might
both not be relevant for individuals with different ancestry (Nature Genetics,
2019). Additionally, a number of causal variants might be missed which a more
mixed analysis could produce (Wojcik et al., 2019). Recently new approaches have
been developed either for predicting into new ancestries, or analysing a mixed an-
cestry population (Wojcik et al., 2019). While not addressed in this thesis, the
differences controlled by allele frequency and LD changes could be modelled with
deep learning. Models such as graph networks (Section 1.5.4), allow feature vec-
tors as inputs and relationships to be hard coded from biological insight into the
model, and these could be further explored in future work (Section 3.8).

1.2.6 eQTLs - Expression Quantitative Trait Loci

The way that SNPs influence biology is difficult to quantify, especially when trying
to define the relationship with a complex phenotype such as MDD. So instead of
trying to quantify which SNPs influence a complex phenotype, we measure which
SNPs have an effect on the expression of different genes.

Expression quantitative trait loci (eQTL) are loci in the genome that explain
variation in expression levels of messenger RNAs (mRNA), which are templates
for protein production. By measuring the expression of mRNA we can estimate
the effect that SNPs have on gene expression. eQTLs can be either cis, meaning
they act on a gene near to the loci, or trans, meaning they act on a gene far from
the loci, often on a different chromosome.

A study by Nicolae et al. (2010) showed that trait-associated SNPs from GWAS
are more likely to be eQTLs than other SNPs with the same minor allele frequen-
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cies. The same study also showed the inclusion of a score indicating the strength
of evidence that a SNP is an eQTL can improve GWAS results (Nicolae et al.,
2010). Subsequently, through incorporating this information PRS model perfor-
mance might also improve.

One way to represent eQTL data for PRS modelling would be in a graph.
Where a SNP is a eQTL for a gene we create an edge in the graph to represent
the relationship. Through modelling many of these eQTLs we create a graph for
use with a model such as a graph neural network (Section 1.5.4).

1.3 Medical Imaging and Natural Langauge

Text

1.3.1 Introduction

Medical data comes in a number of forms, including blood test results, medical
scans and reports from a medical examination. This section will focus on data
from medical scans, introducing the scans themselves, as well as the accompany-
ing report where a medical professional denotes their observations from the scan.
The medical discipline that uses medical imaging to diagnose diseases is called
radiology, and the subfield focussed on the brain, neuroradiology.

Radiological scans such as magnetic resonance imaging are primarily conducted
for either research or medical purposes. In the medical setting scans are used to
check for damage following a traumatic brain injury, or to provide evidence for a
diagnosis of disease which can then be treated. In research scans are used to test
an hypothesis or to investigate biology. For example, to test a hypothesis that
brain morphology changes with age we would select a group of people covering
a large age range, and look for evidence in brain scans that brain morphology is
statistically different at different ages.

We can also use radiological scans to look for mediating or associated factors
that may increase risk of developing MDD. For example, dysfunction in the car-
diovascular and metabolic systems is considered a risk factor for developing MDD,
and a hypothesised pathway for this effect is through damage to the health of brain
circuitry, such as through brain diseases including stroke, tumour or small vessel
disease.

Another research avenue from radiological scans is to look for mediating or
associated factors in how genetics cause disease. For example, if we find a corre-
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lation in brain volumes and depression, we can then investigate if certain genes
are also associated with brain volumes and depression. If associations are found,
then techniques such as Mendelian randomisation (Davies et al., 2018) can be used
to deduce if the relationship is a causal one. Mendelian randomisation can form
a useful tool for establishing causality, however it’s drawbacks include imprecise
estimates of causal effects, as well as limitations in handling pleiotropy (single
genetic variant leading to multiple downstream effects) and linkage disequilibrium
(Section 1.2.4) (Savla and Neeland, 2018).

Large scale national biobank data collection, such as UK Biobank (Allen et al.,
2012), are good sources of a large number of neuroradiology scans for research.
However, a potentially larger, more representative (including patients with more
severe illness) dataset can be created from routine clinical data and automated
data processing techniques.

Routine clinical data such as electronic health records serve as a communication
between healthcare providers. While containing a wide range of information of
potential disease, lifestyle factors, or history of symptoms, all of this information
is unstructured meaning it can be difficult to analyse.

In radiology, a free text written report is used alongside a scan, allowing a
trained medical professional to outline observations from the scan that future care
can refer to. This report is an important data source as it is often available when
the primary data of the scan is not. Additionally, it is much easier and tractable
for automated methods to analyse. To make the information contained in the
report more available for analysis we can pull structured information from it. This
task requires a large amount of time and expertise, as it requires knowledge to,
for example, recognise shorthand or determine whether a mention of disease is
positive or uncertain.

To be able to analyse a large number of reports at once, most advanced tech-
niques use natural language processing (NLP) to develop an automated model.
Natural language processing (NLP) uses computers to process and analyse natu-
ral language free text. Models created using NLP can analyse reports faster than
a human, and in certain tasks can achieve performance approaching that of a hu-
man expert. These tasks include pulling out key imaging phenotypes that relate
to cerebrovascular disease. These phenotypes include stroke subtypes and small
vessel disease which are linked to MDD and other mental health traits.
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1.3.2 Brain Imaging Risk Factors for MDD

Outside of genetics there are a number of other risk factors for MDD. MDD is a
psychiatric disorder of the brain, and so scanning the brain may provide evidence
for the aetiology of the disorder. Radiological brain scans have been used to deter-
mine various brain morphology measures of the brain which have been associated
or linked with MDD.

Associated measures include hippocampal volume reductions (Schmaal et al.,
2016) and cortical thickness changes (Schmaal et al., 2017). Other features visible
in brain scans include abnormalities in the brain that indicate disease. These
abnormalities can indicate disease, and certain diseases have been associated with
MDD, including stroke (Aström et al., 1993; Hackett and Pickles, 2014) and small
vessel disease (Rensma et al., 2018).

Similar to identification of associated genetic variants, understanding how brain
morphology and MDD are linked is complex and difficult to disentangle. Both
large specifically collected datasets (Thompson et al., 2020), as well as routinely
collected data (Alex et al., 2019) are used to provide increased statistical power
for analysis.

A type of depression called poststroke depression (PSD) is defined by when
it develops (diagnosis of depression following a stroke), and has been recognized
by psychiatrists for more than 100 years (Robinson and Jorge, 2016). A recent
meta-analysis reported 31% of patients developed depression anytime up to 5 years
after stroke (Hackett and Pickles, 2014). The damage caused by and location of a
stroke can vary; Aström et al. (1993) found a left anterior brain lesion to be one
of the most important predictors of immediate major depression following stroke.

A systematic review and meta-analysis by Rensma et al. (2018) looked at fea-
tures of cerebral small vessel disease, and reported it may lead to stroke, dementia
and depression. The features found to be statistically significant with incident
depression were white matter hyperintensities and total cerebral atrophy.

Other brain diseases such as brain tumours have also been found to be causal
for MDD, with case studies describing the discovery of a tumour following diagnosis
with treatment-resistant MDD (Dautricourt et al., 2015; Ferreira et al., 2019).

Additionally, brain imaging can be used to further investigate and validate
findings from genetic studies such as GWAS. Barbu et al. (2019) stratified dis-
ease risk by genetic variation within the NETRIN1 pathway (a signalling pathway
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linked to commissural axon guidance in the developing vertebrate nervous system
(Serafini et al., 1996)) to create separate polygenic risk scores, and used these to
look for association with fractional anisotropy (FA) and mean diffusivity (MD)
imaging measures. It was found that variation in the NETRIN1 signalling path-
way may confer risk for major depressive disorder through effects on a number of
white matter tracts.

1.3.3 Medical Imaging

Through scanning the body with imaging techniques we can map characteris-
tics and look for abnormalities that might indicate disease. The techniques work
through penetrating the body with waves, including electromagnetic and sound.
Two important techniques are magnetic resonance imaging (MRI) and computed
tomography (CT).

In scanning the brain we can map characteristics such as white matter anisotropy
and diffusivity, and lobe volumes. Some of these characteristics have been asso-
ciated with MDD (Koolschijn et al., 2009; van Velzen et al., 2020), and may be
risk factors. Changes in the structure of the brain could be a mechanism by which
changes in genetics, including SNPs, lead to variations in MDD presentation or
susceptibility.

Through analysing brain scans we can also diagnose disease, a medical field
called radiology. In radiology imaging techniques such as MRI or CT, an organ
such as the brain is scanned, and these scans are analysed by a medical professional
who documents their findings in a report. Observations are made on a number
of anomalies in the scan which may indicate disease, such as stroke, small vessel
disease or a tumour.

1.3.4 Medical Natural Language Text from Radiology
Reports

Medical radiology reports record potential signs of disease or abnormalities, their
position, and time modifiers such as old or new. The reports are natural language
free text, therefore can include shorthand, spelling or grammar mistakes, and
alternate phrasing.

While the reports are useful in providing a quick summary of a single patient,
they are unwieldy and difficult to use for tasks that include a number of patients.
These tasks include identifying and counting the number of patients with new
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small vessel disease, or running a study comparing stroke patients to non-stroke
patients.

A structured database would allow querying of a large number of patient
records at once, allowing questions to be answered for reporting clinical outcomes
and research, such as counting the number of people who have had a stroke within
a certain demographic. However, we would need to populate the database fields
to enable the necessary querying.

These fields include which entities (diseases like stroke or small vessel disease)
are present, and features of these entities including age (old or new) and location
within the brain. To populate this would require a large amount of a medical
professional’s time to annotate, using a tool such as the Brat annotation tool (a
web-based tool for text annotation), therefore automated solutions are needed.

1.3.5 Radiology Report Modelling

Natural language processing (NLP) is a subfield of linguistics, computer science
and artificial intelligence that uses computers to automate the processing and anal-
ysis of natural language free text. Within NLP, natural language understanding
(NLU) is the topic that deals specifically with reading comprehension. NLU mod-
els extract information, annotate the text, and classify or organise documents.
They can be rule-based systems or statistical and machine learning based.

Rule-based methods use a selection of curated rules based on keywords and
linguistic structures, through which a flexible, easily understandable, iterative and
effective model can be created. These models are good at parsing and extraction at
a sentence level. However, these require skilled experts like a linguist or knowledge
engineer to encode these rules, and to adapt them if the target corpus changes.

This is because rule-based models are quite specific to the text corpus they are
developed on, therefore models for use on radiological reports will be created using
radiological reports. Perhaps due to this challenge of generalisability, medical NLU
methods are rarely used outside of the laboratory they are developed in (Meystre
et al., 2007). The specificity of the models means large amounts of human expertise
and time are required, and they are only used for select purposes.

Machine learning and statistical based methods however use numerical embed-
dings of words, and fit parameters to the data to find the best performing model.
These require large corpora of annotated data for training and therefore can be
expensive and time consuming to create from scratch. However if the annotated
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data already exists, these methods require less human expertise and time to train
than rule-based systems, as already developed models can be retrained on a new
domain without additional programming.

One subtask in NLP needed to create structured data from free text, is negation
detection. Negation detection is the task of recognising when the mention of an
entity, such as a disease like stroke, is referring to the presence or absence of the
entity. In some implementations a third class is used for uncertain mentions that
are neither definitively positive or negative (for example ‘possible evidence of a
stroke’), though these mentions are often classed as negative due to no definitive
mention.

A simple implementation of a rule-based system for negation detection is a
regular expression algorithm (Chapman et al., 2001; Harkema et al., 2009), that
uses several phrases to check for negation within a chosen scope of the text, and
labels entities found within the scope of a negation phrase as negated. Other rule-
based methods use a graph traversal search via subgraph matching and universal
dependencies for pattern definition (Peng et al., 2017).

Machine learning algorithms such as support vector machine (SVM) and Naive
Bayes are also used for the problem of negation detection (Cruz Dı́az et al., 2012).
SVMs are effective linear classifiers which calculate a plane that separates the data
into the correct classes. But they can also be used as a non-linear classification
model using the kernel trick. The kernel trick maps inputs into higher dimensional
spaces where a separating hyperplane can be found. Naive Bayes classifiers are
a class of probabilistic classifiers that utilise Bayes theorem. They have strong
independence assumptions between the features, leading to the use of the term
naive.

Deep learning is a topic within machine learning based on artificial neural
networks (Section 1.5.1). A type of neural network called the Recurrent Neural
Network (Section 1.5.5) is effective at analysing sequence data and is frequently
used for text classification (Minaee et al., 2020), including negation detection in
clinical text (van Es et al., 2022).

1.4 Motivation for Neural Networks

The tasks of analysing genotypes to create a polygenic risk score, and detecting
negation in natural language, are complex and difficult to model. While modelling
for PRS is improving, there is still a gap between the theoretical SNP heritability
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of 10% (Wray et al., 2018; Howard et al., 2018), and the phenotypic variance
explained by the best current models (around 3% (Howard et al., 2019)). And
the best negation detection algorithms still fail to correctly identify all examples
annotated by humans.

In the sections introducing genetics (1.2.1) and natural language text from
medical imaging reports (1.3.4), a number of challenges for modelling these were
outlined. Namely the non-linearity of genetic interactions and their effect on phe-
notypes, and the difficulty in finding a generalisable and robust negation detection
algorithm for use in a wide number of contexts in clinical text. Additionally, MDD
is a heterogenous disorder meaning multiple causes are related to the disorder, and
multiple outcomes can be present within the same individual.

These challenges have led to the need to create larger datasets, both in number
of samples as well as the number of data points (such as SNPs) within the samples.
Subsequently, new approaches to processing and analysing this data are needed.

Manual annotation (one step of processing the data that includes negation
detection) of clinical text is expensive and time-consuming, therefore for large
numbers of samples automated approaches are needed. Most common advanced
techniques used for automation are NLP (Natural Language Processing) based,
which includes artificial neural networks as well as statistical methods.

Similarly, automated approaches such as machine learning (which includes deep
learning in the form of neural networks) are effective for analysis of large datasets
(such as for PRS creation). This is because modelling these datasets needs flexible,
large models with a large number of parameters (to model numerous non-linear
genetic relationships), and the parameters of machine learning models are learnt
automatically from the data.

In this thesis I will use deep learning in the form of artificial neural networks to
both predict MDD from genetic data (Chapters 2 and 3), and to detect negation
in radiology reports (Chapter 4).

Deep learning, in the form of artificial neural networks (NNs), has excelled at
tackling problems where complex, non-linear patterns form the underlying pro-
cesses. Success in the image domain in particular, but also text and numerical
modelling, has greatly increased the number of domains that neural networks are
used in. We believe the non-linear and complex functions produced by neural net-
works are suited to genetics due to the complex ways genetic components interact;
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and the scale of the problem, with millions of SNPs and relationships, suits the
ability of machine learning to learn many parameters quickly, in comparison to
more hand tailored methods. NNs, and in particular recurrent neural networks
(Section 1.5.5), have also proven strong at text based tasks including machine
translation (Sutskever et al., 2014), sentiment analysis (Socher et al., 2013) and
text classification (Minaee et al., 2020).

Further directions for NNs beyond the scope of this thesis include biological
stratification of depression cases, which could lead to improvements in treatment.
By sub-typing cases by cause, focus would be on treating the underlying causes
rather than the symptoms these causes create (Habota et al., 2019). Neural net-
works are often used for clustering (Du, 2010), and may have potential for sub
typing depression type, a simplistic typing would be the strength of genetic in-
volvement. Working on breast cancer, Badré et al. (2021) found a NN trained
for phenotype prediction created a bimodal distribution of risk, which they hy-
pothesised represented a high and low genetic risk group. Additionally, due to
the flexibility of NN they perform well at multi-task learning (Crawshaw, 2020).
Therefore a NN trained for joint stratification and prediction of MDD using in-
formation from both objectives, could in theory outperform existing models that
focus on either of these targets separately.

1.5 Artificial Neural Networks

1.5.1 Machine Learning, Deep Learning and Neural
Networks

Machine learning is a field within artificial intelligence and computer science fo-
cused on the development of algorithms that learn from data. Learning from data
is done through optimisation of an objective function. For example, classification
is a task where the objective is to correctly assign a label to examples, such as
identifying if an email is spam or not.

Machine learning tasks are often split into types of learning including super-
vised and unsupervised. Supervised learning uses a labelled dataset to train the
algorithm to classify or predict the labels. Unsupervised learning tasks don’t have
labelled training data but instead aim to optimise a different function. For example
clustering algorithms optimise a function that has the objective that examples of
the same group be more similar to each other than examples of a different group.
I will be using supervised learning in this thesis, using labelled data to predict
MDD case/control, and detect whether entities are negated or not.
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Deep learning refers to the area of machine learning that focuses on deep mod-
els, those that have many layers which are known as artificial neural networks
(NNs).

The most common version of a layer in a NN is called a fully-connected layer,
and forms a similar function to linear regression, y = mx + c where the inputs
(x) are multiplied by a set of weights (m) and an optional bias (c) is added. The
output of this layer then forms the input to the next layer, which is called a hidden
layer, and can be formed of any number of these functions. For example, if there
were 4 inputs to the network, and 3 elements in the hidden layer that would mean
3 functions are computed that each take in the 4 inputs. The network would have
12 weights (4 for each function) and 4 biases. A non-linear activation function
is then applied to these functions, such as the sigmoid function. The non-linear
aspect is needed to give greater power to the model; without it the stacked layers
wouldn’t be able to learn any additional functions than a linear regression.

A number of other layers and architectures have been developed to take ad-
vantage of different types of data and for a variety of tasks.

Convolutional layers apply a filter of parameters which are convolved with
the inputs, multiplying each subset of inputs with the filter parameters to create
an output activation map. These are powerful at image analysis due the local,
structured information often contained in images, such as lines, that can appear
anywhere in the image.

Networks made up of fully-connected and convolutional layers are normally
feed-forward, which means no layers in the network have a recurrent connection.
Recurrent connections are connections where an output is connected to an input
forming a feedback loop.

Layers with recurrent connections are called recurrent layers. Networks with
recurrent layers are often used with sequence data, in particular data where the
length of the sequence can vary, and use an internal memory to remember informa-
tion from previously processed inputs. For example, a network aiming to translate
a sentence may need to have information on previous words to correctly identify
the correct meaning and therefore translation for the next word.

Graph layers are used with data that can be presented in a graph. These
networks are strong at analysing data where there are relationships between the
features such as molecules in molecular biology. They perform message-passing
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between nodes, updating the each feature using its neighbours in the network.

Fully-connected, recurrent and graph layers are used in this thesis. Fully-
connected layers are introduce above, and recurrent and graph layers are intro-
duced in Sections 1.5.5 and 1.5.4 respectively.

1.5.2 Training a Neural Network

The back-propagation algorithm is widely used to train feed-forward neural net-
works, which involves fitting the parameters (weights and biases) to minimise a
loss function.

First, a forward pass is made of the network, where inputs of an example are
put into the model to generate an output. This difference between the output
and a label that represents the true target output is calculated using a loss func-
tion, common loss functions include mean squared error and binary cross-entropy.
The the partial derivatives (gradients) of the loss function are calculated with re-
spect to the parameters, and back-propagated through the network. Therefore the
functions for each layer of the network need to be differentiable.

The loss is minimised by updating the parameters of the model with the gradi-
ents, through a gradient descent method. Gradient descent methods are iterative
optimisation algorithms which takes steps against the gradient (the computed par-
tial derivatives) of a function to find the local minimum.

There are various different gradient descent algorithms, and they have param-
eters of their own which can be altered. For example, setting a learning rate
controls how much each parameter of the model is changed by their gradient. One
of the most commonly used of the gradient descent methods is stochastic gradient
descent (SGD). SGD computes the loss on a subset of the data rather than the
dataset as a whole. This is an advantage within deep learning as the loss function
might have many local minima that are higher than the global minima (therefore
poorer performance), and the stochasticity can help avoid getting stuck in a local
minima. Additionally, as there is often a very high number of parameters in a
neural network, and training uses a high number of samples, there is a high com-
putational burden in calculating the gradients. By only using a subset iterations
are much faster.

To have subsets of the data for input to the neural network and to enable use
of optimisers like SGD, we split the dataset into batches. For example if a dataset
has 100,000 samples, 1,000 batches of batch size 100 might be created, and passing
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all the batches through the network once, updating the parameters for each batch,
is termed an epoch. The network keeps training until the loss no longer improves
or is deemed sufficiently low.

1.5.3 Hyperparameters, Overfitting and Regularisation

Parameters of the model not learnt through back-propagation, such as learning
rate and batch size, are called hyper-parameters. These are chosen by hand when
setting up the model. Other hyper-parameters include network structure prop-
erties (the number of hidden layers is called the depth of the network, and the
number of units in each layer the width), choice of activation function and choice
of loss function.

The stacked layers of a neural network lead to an extremely powerful and flex-
ible model, with parameters reaching the millions quite easily. They have proven
very apt at modeling complex functions, and can learn a number of underlying
patterns in the data. However, this can also lead to an effect called overfitting,
where instead of learning a fundamental pattern in the data that can generalise
to new data, the model effectively memorises the dataset, predicting the examples
used to train perfectly, but poorly on any new examples.

To combat this a validation set is used. A validation set is a subset of the data
not used for training, and therefore not used to compute the loss for the parameter
gradients that update the network. Instead the performance of the network is
tracked on the validation set, and when this performance starts to decrease the
learning is stopped, as beyond this point the network is likely overfitting.

Through testing multiple variations of hyperparameters the validation set is
effectively also used for training, and can lead to a lesser, but still important,
overfitting on this set. For this reason a held out test set of data never seen by
the model is used for final analysis of performance.

A further way to reduce the overfitting effect is to use regularisation techniques.
L1 and L2 regularisation involving adding a penalty term to the loss function based
on the size of the weights, encouraging the network to use smaller weights and not
fit overly complex functions. Dropout regularisation (Srivastava et al., 2014) is
also often used with neural networks to avoid the network overly relying on any
particular parameters, as dropout layers randomly sets a chosen percentage of the
inputs to the next layer to 0.
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1.5.4 Graph Theory and Graph Networks

Graph Theory

Graph theory refers to the study of graphs, which are used to model a set of objects
in which there are pairs that are in some way related. A graph is made up of a
set of nodes, which represent the objects, and edges, which are the relationships
between objects. Both nodes and edges can be single features or feature vectors.

Messages are passed between nodes through the edges, and through this mes-
sage passing various properties of the graph, edges or nodes can be computed.
Graphs can be directed or undirected, depending if the edges allow message pass-
ing in one or both directions.

A graph is bipartite if the nodes can be split into two sets, and edges only exist
between nodes of different sets, and not between members of the same set. We
can model a directed bipartite graph where the edges only go from set 1 to set
2, and apply learnable weights on the edges. This is effectively a fully connected
layer with set 1 as input and set 2 as the hidden layer, and connections removed
where no edge exists between a set 1 - set 2 pair.

Graph Networks

Graph Neural Networks (GNNs) add a graph layer to the neural network model.
As outlined in the previous subsection the graph in this layer in made up of nodes
which are the model’s feature vectors, and an edge set that gives the connections
between nodes. These edges are directed, so from an undirected graph each edge
needs to included twice for both directions. They can be used for a variety of
tasks including node classification, link prediction, graph clustering and graph
classification.

The graph layer uses a generalisation of the convolution operator (as used in
Convolutional Neural Networks) for irregular domains, which is called message
passing, or neighbourhood aggregation. Message passing is run for each node, and
aggregates information from its neighbourhood to update the feature vector of the
node. It can be described in the following equation where x

(k)
i is the feature vector

of the node to be updated for the current layer k, xj are the feature vectors of the
neighbours, γ and ϕ are differentiable functions, ⊕ is a differentiable, permutation
invariant function (most commonly sum, mean or max) and ej,i are the edges from
the neighbours to the node i.
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x
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x
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i ,⊕jϵN(i) ϕ

(k)
(
x
(k−1)
i , x

(k−1)
j , ej,i

))
(1.1)

The three functions γ, ϕ and ⊕are bereferenced as the update, message and
aggregate functions, which is the terminology used in the PyTorch Geometric
library used to implement the Graph Networks in this thesis. Notation is also the
same as used by the library documentation.

An example of a common layer is the Graph Convolutional Network (GCN)
layer used by Kipf and Welling (2016). For the message function the GCN layer
applies a transformation to the feature matrix of the neighbour by a weight matrix
W . To account for the irregular number of neighbours of each node the product of
the transformation is normalised by the degree of the neighbour and the node. This
is done for each of the neighbours and the node itself. The aggregation function
used by the GCN layer is sum. Finally a bias vector is added to give the updated
feature vector of the node.

x
(k)
i =

∑
j∈N(i)∪{i}

1√
deg(i) ·

√
deg(j)

·
(
W⊤ · x(k−1)

j

)
+ b (1.2)

Subsequently, the parameters of the layer which the network will learn from the
training data are the parameters of the functions in the equation 1. For example,
in the GCN layer the learnt parameters will be the weights of the weight matrix
W .

In some Graph Networks a graph layer is followed by a pooling layer. Pooling
layers can be local (defined by clusters in the graph) or global. Pooling summarises
data in the graph, and are particularly useful for graph level tasks, such as graph
classification.

1.5.5 Recurrent Neural Networks

Another form of neural network are recurrent neural networks. These networks
have what is called recurrent connections, and work well with data ordered into
sequences, such as time series or DNA sequences. In contrast to the connections
in feed-forward networks, recurrent connections form a loop. This enables them
to form a type of memory, where the previous inputs can influence the output
generated from a subsequent input. Common tasks include language translation,
speech recognition and natural language understanding.
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An example of the sort of data that works well with recurrent networks is text
data. A word in a sentence often changes meaning depending on the context of
words around it, for example ‘take’ could mean to get into one’s possession ‘I saw
the man take the money’, or an idea ‘that’s an interesting take on the book’s
plot’. A RNN maintains a hidden state, or memory, that gets updated with each
input (word in this case) as the model moves along the sequence (the sentence).
Subsequently a RNN has an advantage over a feed forward network of being able
to use the sequence structure and past inputs in it’s representation and to calculate
the output.

We can visualise a RNN as being rolled, which represents the entire network, or
unrolled which shows the individual layers, or time steps. In our sentence parsing
example each word maps to a layer, but in contrast to a feedforward networks each
layer shares parameters.

Due to the sharing of parameters between layers, RNNs use a form of back-
propagation called backpropagation through time. This has the same principles as
the backpropagation used for feed forward networks, but sums the gradients across
layers. This process can lead to an issue of either exploding or vanishing gradients.
Vanishing gradients become so small as to be insignificant and the network stops
learning. Exploding gradients become too large leading to the model becoming
unstable and the gradients eventually becoming too large to be represented, be-
coming represented by NaN (not a number). One solution to this is to reduce the
number of layers, or the length of the sentence, impacting the versatility of the
network.

Long Short Term Memory (LSTM) networks were designed with the aim of
finding a solution to the vanishing gradients problem. Specifically, the network
aims to improve long-term dependencies, information from much earlier in the
sequence that is still pertinent to current predictions. LSTMs have ‘cells’ in the
hidden layers, which have three gates - an input gate, an output gate and a forget
gate. These gates control the information in the network, aiming to maintain
information that is relevant to future prediction while forgetting less important
information, such as some commonly repeated words like ‘he’ which will often
contain the same meaning each mention.

Some sequences, like sentences, are easier to parse if we know the context from
after as well as before the current word. In this case we can use bidirectional
RNNs, which run the sequence in both directions.
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1.6 Thesis Introduction

This work of this thesis is split into 3 chapters, focusing on specific, tractable
problems within two key biological fields of MDD research, genetics and imaging.
These problems were also selected to be able to rank performance (performance
accuracies/variance explained) of the new approaches to current state-of-the-art
methods.

In the first project I apply neural networks (NNs) to the task of polygenic risk
scoring, aiming to improve upon the current state-of-the-art methods by utilising
the strength of NNs for modelling non-linear functions, as well as their general
versatility and power. This model is called Neural Network Polygenic Risk Scorer
(NNPRS).

Across a range of SNP sets, restricted by p-value thresholding on GWAS sum-
mary statistics, the neural network model was compared to the current state-
of-the-art methods. GWAS summary statistics were taken from Howard et al.
(2019), and the models were developed and tested on the UK Biobank dataset.
Additional experiments were run using ensemble methods consisting of PRS scores
from 2 models, as well as using summary statistics generated from the training set
of the UK Biobank dataset.

The results show that fully-connected feed-forward neural networks are not
as suited to polygenic risk scoring as the comparison methods, when using the
more powerful set of summary statistics from Howard et al. (2019). However, the
experiments using the UKB summary statistics found NNPRS more competitive.
The gap in performance when taking the best performing model from any SNP set
was much smaller, and using a restricted SNP set NNPRS marginally outperformed
existing methods. This indicates that NNPRS might perform best where summary
statistics are weaker, albeit further results from testing on other datasets than UK
are needed to verify the models ability to generalise.

Additionally, the best result came from the ensemble model of the best NNPRS
model with the best LDPred 2 model, indicating the possibility that NN might use
alternative information than the current state-of-the-art models, and that ensemble
modelling might be the best route forward. This is supported by the ensemble
models using 2 of the current methods barely improving upon the best performing
method from the ensemble of its own, indicating an overlap of information. In
contrast the ensemble models including NNPRS consistently improved upon the
non-ensemble models.
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In the second project I aim to expand upon the positive results of chapter one
by expanding the NN model with a graph layer. This layer was built by utilising
eQTL information, using biological insight to improve the NN model, aiming to
reduce the challenge of overfitting encountered in the previous chapter.

The graph layer of the network is modelled as two sets of nodes, one represent-
ing genes and the other SNPs. If there is evidence that a SNP acts as a eQTL for
a gene an edge is included between them. As edges are only created between SNPs
and genes, and never SNP to SNP or gene to gene, this forms a bipartite graph.

This bipartite graph is the first layer of the network, replacing the fully con-
nected layer in NNPRS, and reducing the number of connections to the number
of eQTLs contained in the dataset. Therefore instead of a connection between
each of the inputs and each unit of the first hidden layer (as would be the case
in a fully-connected layer), there are instead only connections between an input
and a subset of hidden units. Each hidden unit represents a gene, and so con-
nections only exist between the inputs (SNPs) and hidden units (genes) that have
an association from the eQTL data. This gene hidden layer is then followed by
a fully-connected layer, and so the rest of the network follows the same structure
of the fully-connected network NNPRS. The first layer (the graph layer) also uses
convolution, and so makes use of parameter sharing (multiple connections use the
same weights).

The reduction in connections, and the parameter sharing in the graph layer,
reduce the flexibility of the model through biological knowledge, minimising over-
fitting while hopefully keeping the power and flexibility needed to represent the
true underlying patterns in the dataset.

The final project focuses on another source of data in MDD research, written
reports on radiological scans of the brain. Reading and analysing brain scans for
anomalies that may indicate disease or other aspects of interest is a complicated,
time intensive exercise. In future work, combining genetic and radiological data
might improve diagnosis of abnormalities found in brains scans, as well as other
conditions that might have risk factors present in both datasets.

This would need processed data for any models to be effective. One of the
key challenges of the clinical NLP group working on population wide data was
negation detection. Subsequently, the third chapter focuses on reliable automated
negation detection as a necessary processing step if this overall goal is to be realised.
Negation detection is however, just one of the processing steps where artificial
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neural networks may prove effective. Other required processing steps, such as
entity identification, could also be improved through the use of neural networks.

The project compared neural network approaches with rule-based systems.
Both the neural network approaches, and one of the rule-based systems, were
developed on the same datasets, Edinburgh Stroke Study (ESS) and routine data
from NHS Tayside. Performance was evaluated through comparison to labels an-
notated by medical professionals.

The rule-based system developed using the ESS data generally performed the
strongest, but both NN based methods were marginally weaker and stronger than
rule-based methods not developed on the ESS dataset. This gives evidence that
NN methods might be more flexible at moving between datasets, even if they might
be some retraining (either from scratch or transfer learning), they would require
less human expert input presuming annotated data is available.

The work in this thesis is on specific problems relevant to MDD research, how-
ever both negation detection and polygenic scoring are common across a number of
medical fields. Therefore, the methods developed here could be used or developed
further for future applications outside of MDD research.

In the context of the wider work being conducted on clinical NLP, the neural
network approaches developed as part of the work in Chapter 4 has led to increased
accuracy in annotating the full Generation Scotland study (Smith et al., 2012),
a population and family-based study with permission to link electronic health
records. Research on this annotated data has demonstrated an increased risk for
stroke in patients with hypertension. Additionally, there is initial evidence in
the cohort linking baseline depression and increased risk of cerebral small vessel
disease. Based on the success of this work, only possible with the machine learning
approaches, new approval for the entire Scottish population has been granted to
continue the work linking neurological and mental health traits. This will further
our understanding of MDD at a scale not possible before. Lastly, there is data
linkage work aiming to link this data to genetics to gain a multi-model, more
comprehensive picture of MDD.

In conclusion, across the three project chapters using neural networks showed
promising performance, and in some cases may be the preferred model. While
performance of existing state-of-the-art methods generally outperformed the NN
models, there are a number of potential extensions to the NN model that might
be able to compensate for some of the model’s weaknesses, such as use of existing
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knowledge. NN models showed good performance in learning on a new dataset
where existing knowledge (GWAS scores, or text patterns) were less known. Addi-
tionally, the information and modelling in NN models is likely different to that of
the comparison methods in all three project chapters, and this is backed up by the
ensemble modelling done in Chapter 2. Ensemble modelling using the strengths
of the comparison models and NNs together may lead to the strongest results in
future work.



Chapter 2

Calculating a Polygenic Risk
Score for Major Depressive
Disorder Using Neural Networks

2.1 Abstract

Polygenic risk scores (PRS) sum up the genetic risk of a complex disease from
a number of genetic variants across the genome. Current methods of estimating
PRS only explain a proportion of estimated heritability from these variants. In this
project I develop an artificial neural network model called NNPRS for estimation
of a PRS for Broad Depression (as defined by Howard et al. (2018)). NNPRS
was compared against current state-of-the-art methods, including clumping and
thresholding, SBayesR and LDPred2.

Genotype data came from the UK Biobank dataset, and Genome Wide Asso-
ciation Statistics (GWAS) from Howard et al. (2019). In the test set with 50%
prevalence of cases (Broad Depression), the Area Under the receiver operating
characteristic Curve (AUC) was 0.5776 for the strongest methods (SBayesR and
LDPred2) and 0.5603 for NNPRS.

Another experiment was run using a GWAS created from the UK Biobank
dataset. AUC on the test set using this GWAS was 0.5574 for the strongest method
(LDPred2) and 0.5556 for NNPRS. These results are more equal, indicating the
predictive performance of NNPRS is much closer to the best methods if it has the
same genotype data to train on. Additionally, these results indicate incorporation
of GWAS summary statistics into NNPRS may increase the proportion of the total

38
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variation explained by the PRS.

An ensemble model of NNPRS and either LDPred2 or SBayesR outperformed
all other models with an AUC of 0.583, indicating NNPRS uses different informa-
tion for the estimation of PRS compared to the other models. The information
used by NNPRS may be from modelling non-linear relationships between the ge-
netic variants due to epistasis or linkage disequilibrium.

2.2 Introduction

Major Depressive Disorder (MDD) is a psychiatric disorder that affects over 1 in 8
worldwide over a lifetime (WHO, 2017). It is a polygenic disorder, meaning there
are a number of genes with a small effect size on the risk of developing MDD. By
aggregating these small effect sizes a polygenic risk score (PRS) can be calculated
that describes the total genetic risk for developing disease. The overall aim of
building a PRS is to provide insight into MDD, as well as to help create clinical
tools that will be useful for diagnosis or treatment of MDD.

Specifically, in the clinical case a useful tool would direct a medical professional
towards a more likely to be successful treatment protocol where there is a doubt,
such as between two similarly presenting but biological different conditions. The
PRS developed here is not directly designed for these purposes, and is instead
intended to be a proof of concept and a general tool, from which clinically useful
tools could be developed.

Single nucleotide polymorphisms (SNPs), single positions in the genome where
the nucleotide varies between individuals, are a type of genetic variant. Each
individual has two copies of each autosomal (non-sex chromosome) SNPs, which
can referred to as the their genotype. Genome Wide Association Studies (GWAS)
are a method to provide an estimate of the effect size of a particular SNP on the
phenotype (such as MDD). GWAS measure linear association between a SNP and
the phenotype for a large number of SNPs across the genome, and use this as the
estimate of a causal effect size.

A naive way to create a polygenic risk score is to sum these effect sizes for an
individual, and scale the result depending on prevalence (for binary phenotypes)
or spread (for continuous phenotypes) in the population. This approach makes the
assumption that each SNP is fully independent of all other SNPs, and that linear
association can directly translate to causal effect size.
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These assumptions are violated by relationships between SNPs, namely epis-
tasis and linkage disequilibrium (LD). LD describes the tendency of SNPs to be
inherited together. LD varies between SNPs, but largely SNPs that are closer in
genomic position are more likely to be inherited together. Epistasis describes the
effect where certain SNP effects will only happen in a certain genetic background,
for example in the presence of specific alleles for other SNPs.

The most common technique to account for LD is called clumping and p-value
thresholding (C+T) (Choi and O’Reilly, 2019). The p-value used is the p-value
of the association of SNP to phenotype in the GWAS. Clumping removes SNPs,
aiming to create a SNP set with no pairs of SNPs in LD above a selected LD
threshold, prioritising SNPs with a lower p-value and maximising the number of
remaining SNPs. Lastly, all SNPs above a chosen p-value threshold are removed
as these tend to add more noise to the model than information.

By removing a number of SNPs, C+T likely removes a lot of information
with them. Another technique is to use Bayesian mixture models to apply priors
and update the SNP weights. These models apply Bayesian priors to the effect
sizes from GWAS summary statistics and LD information. SBayesR (Lloyd-Jones
et al., 2019), and LDPred2 (Privé et al., 2020) are two popular models that use
this technique.

Both SBayesR and LDPred2 manage to capture a good amount of the infor-
mation required to create a polygenic risk score for MDD. However, they don’t
give the performance expected when using the theoretical max given by the es-
timated heritability of the disorder from SNPs (SNP heritability), demonstrating
the difficulty of the problem and that new solutions are required (see Section 2.4).
Machine learning is a powerful method of modelling that uses algorithms to learn
the model parameters from data. Neural networks are a form of machine learning
inspired by the way neurons in the brain propagate information.

Fully connected feed forward layers are a common layer used in neural networks
(NNs), which linearly aggregate the inputs before application of a non-linear func-
tion, such as the sigmoid function. These layers are stacked, and the model param-
eters are learnt by calculating the loss on a labelled dataset, and backpropating
the errors through the model to update the parameters.

Genotypes were used as input for the NN and were taken from the UK Biobank
dataset (UKB)(Sudlow et al., 2015). UKB is large biomedical dataset and research
resource, containing genetic and health data for over half a million UK participants.
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It was chosen due the large amount of data needed for classification of MDD,
because of it’s polygenic and heterogenous nature (see Section 1). Furthermore,
deep learning needs large data sets to work effectively. Training the NN was done
in a sample of 124,880 unrelated individuals of European ancestry from the UKB.

The power and flexility of NNs often lead to issues of overfitting, and without
large amounts of computing power using the full SNP set would be difficult or
slow to train. Subsequently, feature selection was done using the p-values from
GWAS calculated from another dataset to create subsets of the data, reducing the
number of inputs and therefore parameters.

Experiments were run on each of these subsets using UKB data and GWAS
summary statistics from Howard et al. (2019). Results on a held out test set were
compared against high resolution C+T (also referred to as P+T, implemented
using the PRSice-2 software (Choi and O’Reilly, 2019)), SBayesR and LDPred2
models run using the same datasets. For each model, results are reported us-
ing AUC (area under the receiver operating characteristic curve), accuracy and
Nagelkerke R2 (Nagelkerke, 1991).

PRS Methods

• C+T, the baseline technique summing GWAS association scores, after SNPs
are clumped using Linkage Disequilibrium and thresholded on the p-value of
association (see Section 2.5.3),

• SBayesR, a Bayesian multiple regression model (Lloyd-Jones et al., 2019)
(see Section 2.5.3),

• LDPred2, a Bayesian multiple regression model (Privé et al., 2020) (see Sec-
tion 2.5.3),

• NNPRS, a feed forward fully connected neural network (see Section 2.5.2).

The specific phenotype used as the target for the PRS models was called broad
depression (Howard et al., 2018), and derived from health data in UKB, including
questionnaire data and hospital codes. Prediction and comparison was done in a
sample of 17,840 unrelated individuals of European ancestry from the UKB.

An additional model that combines the PRS of the separate models into a en-
semble model is also investigated. Ensemble modelling uses the fact that different
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models often have different strengths, and may learn different information from
the data. In addition, SBayesR, LDPred2 and C+T and are all primarily using
GWAS summary statistics, whereas the NN models are using genotypes. Combin-
ing the model outputs into an ensemble model is likely to create a stronger model.
This is done using logistic regression.

In summary, I have developed an artificial neural network model for creating
a PRS of broad depression. The network takes as input SNP genotypes, and
has been trained on the UK Biobank dataset. It was compared against existing
methods: C+T, SBayesR and LDPred2.

2.3 Motivation for using Neural Networks

The standard clumping + p-value thresholding (C+T) method clumps SNPs based
on LD, and removes SNPs based on the p-value of association from a GWAS.
Clumping removes SNPs to create a subset in which no pair of SNPs are in LD
above a chosen threshold, while prioritising SNPs with stronger (lower) p-values.
The method then applies a p-value threshold that removes any SNPs above this
p-value (which are therefore are less likely associated), as these are likely to add
more noise than signal. The betas, or effect sizes, of the remaining SNPs are then
summed to the give the score. A number of p-value thresholds are tested on a
training set where the phenotype is known, and a performance measure such as
R2 or accuracy is used to determine the best performing threshold for use as the
final model.

However, C+T suffers from a naive linear association presumption. Each SNP
is analysed for its association to the phenotype individually, ignoring effects from
other genes and therefore combination effects. These combination effects including
linkage disequilibrium (LD) and epistatic effects, for more information see Section
1.2.4.

Through using neural networks (NN) this project aims to improve upon the
C+T method by modelling non-linear effects. Along with modelling non-linear
relationships between SNPs, the NN model will also include SNPs with a low
association p-value in the GWAS, as well as SNPs removed because of LD in
C+T, that potentially act in concert to affect disease status.

Neural networks are a form of deep learning which take inspiration from neu-
rons in the brain, and the way they propagate information through a network,
aggregating and blocking channels, see Section 1.5.1.
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The stacked layers of NNs lead to powerful and flexible models, which should
be effective at modelling the complexity and heterogeneity of MDD, as well as
capturing the underlying patterns likely to exist in genetic data.

2.4 Related Work

There are around 4-5 million SNPs in the genome, which makes both genotyping
and modelling a difficult or expensive process. Therefore choosing a subset of SNPs
in the genome is a common way to create a polygenic risk score. For this reason
a number of polygenic risk score methods use summary statistics from Genome
Wide Association Studies (GWAS).

GWAS for MDD

Genome wide associations studies (GWAS) analyse the association between a set
SNPs and a target phenotype to produce summary association statistics. These
describe each SNP’s association with the phenotype using, for example, an odds
ratio. The GWAS also includes a p-value for the associations. Each SNP is
tested separately, often leading to a total number of tests in the millions. To take
account of the multiple testing, the p-value threshold used for a significant hit (a
likely association between the SNP and the trait) is adjusted using a Bonferroni
correction, a method devised to correct for the multiple comparisons problem.

GWAS have grown in power in recent years, increasing the number of significant
SNPs they find, as well as reducing the error in the predicted effect of each SNP
on the phenotype. The first major study into MDD didn’t find any significant hits
(Ripke et al., 2013b), and one two years later found only 2 loci (CONVERGE con-
sortium, 2015), demonstrating the difficulty in locating significant loci for MDD.
However, the latest major GWAS for MDD from 2021 found 178 genetic risk loci
and 223 independently significant SNPs (Levey et al., 2021), while another from
2019 found 102 independent genetic variants consistently associated across multi-
ple datasets (Howard et al., 2019). These also represent significant increases from
the 15 found in Hyde et al. (2016) and 44 in Wray et al. (2018).

Some concerns over the sample size and power needed for these findings has
been raised, reasoning that if these discoveries require many hundreds of thousands
of samples then can they be clinically significant for an individual (Steele and
Paulus, 2019). This is discussed further in Section 5.
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Polygenic Risk Scores for MDD

One of the ways Howard et al. (2019) evaluated their GWAS was through a creation
of a PRS which they scored against one created from the Wray et al. (2018) GWAS.
The PRS created using the Howard et al. (2019) GWAS explained between 1.5%
and 3.2% of phenotype variance, as measured by Nagelkerke R2 on three different
target cohorts. The PRS created from the Wray et al. (2018) GWAS explained
between 0.8% and 2.7% phenotype variance on the same target cohorts.

That these studies only explained between 0.8% and 3.2% of phenotypic vari-
ance demonstrates the difficulty of this problem. SNP heritability is 9% (Wray
et al., 2018; Howard et al., 2018), indicating that there is still a large potential
increase in phenotypic variance available to find.

Polygenic Risk Score Methods and LD Matrices

Making use of Bayesian priors on SNP effect sizes, and Linkage Disequilibrium
matrixes to account for LD, to compute posterior mean estimates of the effect
sizes from GWAS, has proved effective at modelling PRS.

The summary Bayesian multiple regression (SBayesR) (Lloyd-Jones et al.,
2019) method was developed to build upon the Bayesian mixture model (BayesR)
(Moser et al., 2015), but uses summary data from GWAS studies instead of per-
sonally sensitive individual level genotypes which are less available. Also using
the UK Biobank dataset, the study looked at 12 traits, and found SBayesR to
outperform other summary level methods, as well as outperforming BayesR for
height and BMI when testing on datasets independent to those used for training
or development.

LDPred2 (Privé et al., 2020) is an improved version of LDPred (Vilhjálmsson
et al., 2015), that increases predictive accuracy and robustness. Testing across 8
real traits, they found LDPred2 outperformed both the original LDPred as well
other methods tested (Privé et al., 2020). For quick and efficient computation of
the clump and p-value threshold method (C+T), I used the PRSice-2 (Choi and
O’Reilly, 2019) software. PRSice-2 automates preprocessing steps such as strand
flipping, and runs high-resolution scoring, which calculates the PRS at many p-
value thresholds to achieve maximum performance.

To run both LDPred2 and SBayesR LD matrices are needed. These are matri-
ces of size NxN, where N is number of SNPs, that define the LD between any two
SNPs. The process of creating these matrices can vary, with variations including:
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exclusion of MHC regions due to their unusual LD characteristics, using different
reference datasets (for example different ancestry), and different SNP sets. One
algorithm defined in Wen and Stephens (2010) uses a genetic map to shrink LD
correlations, with correlations below a threshold set to zero to create sparsity.
Sparse matrices are more efficient in storage and computation. This algorithm
was used by Lloyd-Jones et al. (2019) to create shrunk sparse matrices using a 1.1
million HapMap3 SNP set (International HapMap 3 Consortium et al., 2010), and
a separate, larger SNP set of 2.8 million common SNPs. They used a random sam-
ple of 50K unrelated individuals of European ancestry in the UK Biobank dataset.
Zeng et al. (2021) and Privé et al. (2022) also used around 1.1 million SNPs. Zeng
et al. (2021) created a sparse matrix by using a chi-squared test to compute the
probability that a LD correlation was set to 0. Privé et al. (2022) used a banded
matrix with a window size of 3cM per SNP.

Machine Learning Prediction

Machine learning methods have been applied previously to the problem of poly-
genic risk score creation. Paré et al. (2017) used gradient boosted regression trees
to optimise the SNP weights from summary statistics in a GWAS. They achieved
performance exceeding that of other methods tested for height and BMI, and per-
formed equivalently to LDPred for diabetes.

Badré et al. (2021) tested a number of machine learning models, including a
feed forward fully connected neural network, for estimation of PRS for breast can-
cer. The performance of these models were compared against established methods
including LDPred. They found the neural network performed strongest, in the
test cohort with 50% prevalence, the AUC was 67.4% for their NN and 62.4% for
LDpred. The PRS created by the network had a bimodal distribution in the case
population. Their interpretation was that the network had split the case popu-
lation into high and normal genetic risk subpopulations. Further, they identified
variants with insignificant p-values in the associations studies that were salient in
their neural network for its prediction, perhaps indicating these variants have an
effect through nonlinear relationships to the phenotype.

The GWAS used in the experiments conducted by Badré et al. (2021) was
created using the same genotypes used to train the neural network. From exper-
iments conducted in the chapter, that makes their methodology most similar to
the experiments that used the GWAS created from the UKB training set (Section
2.6.2). Their neural network used a much smaller SNP set, 5273 SNPs compared
to 568,676 SNPs, from using a stricter p-value threshold (0.001 compared to 0.5).
This indicates breast cancer might be less polygenic, and therefore the genetic
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risk is more concentrated in a smaller number of SNPs, and could be a factor in
why the AUC achieved is higher than that found in the experiments in this thesis
(LDPred2: 0.5574, NNPRS: 0.5556, Ensemble: 0.583).

Gomes da Costa et al. (2022) also used a number of machine learning methods
and neural networks for prediction on plant breeding traits. They found neural
networks to be more effective, comparing R2 to the other methods, when the
number of causal SNPs increased, as well as when a larger proportion of the vari-
ance of the trait was explained by genetics. However, they also found NNs to be
more affected than other ML methods by an excess of non-causal SNPs, impacting
performance.

Within psychiatry Aguiar-Pulido et al. (2010) tested a range of machine learn-
ing methods to categorise schizophrenia based on SNPs within two genes. NNs
were among the models tested, including an MLP which was one of the high-
est performing models as measured using accuracy, correctly classifying between
78.3–93.8% of schizophrenia subjects.

Another technique for classification of case/control of neuropsychiatric condi-
tions used by Engchuan et al. (2015) is to use rare copy number variations (CNVs)
instead of SNPs. CNVs are also genetic variants, and are places in the genome
where a short DNA sequence is repeated, with the number of repetitions varying
between people. They defined rare CNVs as those with a population frequency
of less than 1%. Across their experiments they found the AUC of their NN was
comparable or less than the Random Forest variant used (Conditional Inference
Forest), which scored a maximum AUC of 0.533 when considering all ASD subjects
with rare genic CNVs, corresponding to 7.9% correctly classified ASD subjects and
less than 3% incorrectly classified controls. The NN scored a maximum AUC of
0.527.

2.5 Methods

2.5.1 Dataset Creation and Processing

I used genotypes and a phenotype from UK Biobank for development of the
NNPRGS model, as well as for testing and comparison to the existing methods.
The phenotype was derived from questionnaire and hospital codes (Howard et al.,
2018). Genotypes underwent quality control (QC) and selection for both samples
and genetic variants. Genetic variants were selected first for SNPs with only two
alleles, and then for overlap with the MDD GWAS from Howard et al. (2019)
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Figure 2.1: SNP Processing Pipeline

10,863,278 SNPs

GWAS SNPs

5,541,847 SNPs 1,217,311 SNPs

HapMap SNPs

5,321,431 SNPs failed QC steps

93,095,623 variants

UKB variants

1,140,524 SNPs

1,136,761 SNPs

998,354 SNPs

3,763 SNPs low INFO

138,407 SNPs failed QC steps

Shown is the matching of SNPs between the GWAS, HapMap SNPs and the variants
in the UKB genotypes. At each stage the SNPs underwent QC steps which are
further detailed in the Section 2.5.1

(referred to in the Results Section (2.6) as the meta-analysis summary statistics),
and the HapMap3 SNP set (International HapMap 3 Consortium et al., 2010).
Samples were selected based on ancestry and phenotype availability.

SNP and Sample Selection

For SNP selection only those present in the UK Biobank (UKB) genotypes, the
MDD GWAS (Howard et al., 2019), and in the HapMap3 SNP set were used (In-
ternational HapMap 3 Consortium et al., 2010). The MDD GWAS is from a meta
analysis conducted on the PGC MDD cohorts, with UKB participants removed
(Howard et al., 2019). The HapMap3 SNP set (International HapMap 3 Consor-
tium et al., 2010) is from the International HapMap Project, a project aiming to
build a haplotype map of the genome for use by researchers searching for genes
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and genetic variations that affect health and disease. Selection using HapMap3
was done to enable easier use of the model with datasets other than UKB, as it
is common practice to include these SNPs when genotyping. An overview of the
SNP selection can seen in Figure 2.1.

Before using the GWAS data for SNP selection, it first underwent QC. SNPs
that had all the information present (complete rows), were above an INFO thresh-
old of 0.9, and had a minor allele frequency greater than 0.01 were selected. SNPs
were also checked that they did not have the same SNP ID as any other SNP in
the GWAS, that the reference and alternative alleles were not complimentary (ie
A and T, or G and C), and that the alleles were one of A, T, G or C. After QC
steps, the GWAS SNP count was reduced from 10,863,278 to 5,541,847.

The HapMap3 SNP set included 1,217,311 SNPs, and after matching with
the QC’ed GWAS and those available in the UKB dataset (93,095,623 genetic
variants), 1,140,524 SNPs remained. A further 3,763 SNPs were removed for low
INFO in the UKB dataset, leaving 1,136,761 SNPs. SNPs were matched using
chromosome number, SNP ID, base position, and alleles. Allele order was ignored
for matching.

The first step in processing the genotypes involved converting the UKB geno-
type data from BGEN files to PLINK bed files using QCTOOL v2. Only the se-
lected SNPs were converted into the new file format. The autosomal chromosomes
1 to 22 were used. Adding in the sex chromosomes brings additional complexity
that could make developing the model difficult as SNPs on the Y chromosome are
only present in XY males, and SNPs on the X chromosome are present twice in XX
females. Additionally, dosage compensation in mammalian female cells to balance
X-linked gene expression levels of the two sexes (X-chromosome inactivation), fur-
ther complicates the genetics. Future work should include these now the model
has started development. Conversion was done on a per chromosome basis, and
the chromosome bed files were then merged into one file for further processing.

Samples were selected for European ancestry and to have no close relatives in
the dataset, leaving 371,437 samples from an original 487,409 in the dataset.

SNP and Sample Quality Control

SNP QC removed SNPs that didn’t meet a minimum SNP genotype rate (num-
ber of genotypes recorded for each SNP) of above 98%, or a Hardy-Weinberg
equilibrium (from a Hardy-Weinberg exact test, testing for deviation from the
Hardy-Weinberg equilibrium) p-value below 1e-10. Sample QC removed samples
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that didn’t have a minimum sample genotype rate (number of genotypes recorded
for each sample) of at least 98%. These SNP and sample QC tests control for
genotyping error, and reduce the need to impute missing SNPs.

SNPs were also removed if they had a minor allele frequency (MAF) below 1%,
as SNPs with a lower MAF will have poor power for detecting associations with
the phenotype. Low MAF SNPs are also affected more by genotyping errors.

Samples were also removed if they deviated +-3SD from the sample sets’ het-
erozygosity mean, as this could indicate sample contamination or inbreeding. Be-
fore checking for heterozygosity, pruning was done based on linkage equilibrium,
using a window size (in kb) of 200, step size (variant count) of 50 and r2 threshold
of 0.25.

Recommendations were followed for these QC settings from Turner et al. (2011)
and Marees et al. (2018). Overall these steps left 998,354 variants and 363,524
samples.

Lastly, alleles were harmonised between the genotypes and GWAS by changing
the allele order of each SNP in the genotypes to match the GWAS data. Har-
monisation is required as for the same SNP there are a number of ways to view
it, strand one or strand two, as well as which alleles are reference and alternative.
Therefore harmonisation is needed to ensure matching datasets is successful, and
that the effect size of the alternative allele is consistent between datasets. It in-
volved flipping the SNPs where the alleles were complimentary (ie G instead of C,
or A instead of T due to looking at different strands), and switching the reference
and alternative alleles where they were the reverse order in the genotypes to in the
GWAS. These changes were made using PLINK 1.9. Allele harmonisation makes
matching the SNPs between the GWAS and genotype data easier in later steps,
although a lot of the software used (PLINK, SbayesR, LDPred2) outside of the
NN modelling does this automatically.

Phenotype

The MDD phenotype used was Broad Depression, as defined by Howard et al.
(2018). This phenotype was chosen due to having a high number of cases and
controls in the dataset. It was also found by Howard et al. (2018), that of the
phenotypes they investigated, it was the phenotype with greatest power to detect
significant effects, as well as giving the highest SNP-based h2 estimates on the
liability scale using Linkage Disequilibrium Score Regression. Therefore as these
experiments uses SNPs as input, it was chosen as the phenotype to train the model.
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Broad depression (Howard et al., 2018) is derived from the UK Biobank dataset,
and a case is defined using either questions or prior diagnosis. The two questions
used cover help-seeking behaviour for mental health difficulties, where cases are
defined as answering yes to either question at any assessment visit: UK Biobank
field: 2090 - “Have you ever seen a general practitioner (GP) for nerves, anxiety,
tension or depression?” or UK Biobank field 2100 - “Have you ever seen a psychi-
atrist for nerves, anxiety, tension or depression?”. Controls were defined as those
that stated “No” to both questions during all assessments they attended.

Diagnosis status for a depressive mood disorder is taken from linked hospital
admission records: UK Biobank fields: 41202 and 41204; ICD codes: F32 - Single
Episode Depression, F33 - Recurrent Depression, F34 - Persistent mood disorders,
F38 - Other mood disorders and F39 - Unspecified mood disorders. Due to this
definition the phenotype could potentially include individuals seeking treatment
for personality disorders.

The phenotype is a binary one, designating either case or control. It is derived
from the UKB dataset, and further details can be found in the paper (Howard
et al., 2018), or Section 1.2.3. The other phenotypes defined in Howard et al.
(2018), probable MDD and International Classification of Diseases (ICD)-coded
MDD, were also used to select controls. First samples that were controls for all
three phenotypes were selected. Where additional controls were needed to match
with cases (matching is described further below), the remaining controls were
selected to maximise the number of controls in the dataset from the other two
phenotypes (probable and ICD), and to ensure all controls were not cases for any
of the phenotypes.

Training, Validation and Test Sets

Machine learning models need training and validation sets for parameter and
hyper-parameter/architecture optimisation respectively. A held out, unseen, test
set is then used for evaluation of the model.

The training set is used for fitting the parameters of the neural network, and
is where the majority of the data is used. The model is likely to overfit this data
due to the number of parameters in the neural network, leading to a validation
set being needed to choose when to stop the model learning (early stopping),
i.e. which weight set to keep. Performance on the validation set is checked a
number of times through the training process, so it is possible it will be overfit
too. Subsequently, a second validation set is used in these experiments to select
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the hyper-parameters/architecture of the model. Finally, a held-out test set, which
is completely unseen by the model, is used for evaluation.

Each of these sets were balanced for cases and controls, as well as male and
female samples. Balancing the case/control split was done for easy evaluation and
training of the model, to stop the model over predicting the dominant category in
the data, but also to reduce the possibility that the model might struggle to learn.
The male/female split was balanced in both the cases set and controls set, due to
the higher prevalence of MDD in females compared to males. This ensures the NN
didn’t find a proxy for sex in the genetic data (either in the genetics or an artefact
in the dataset) that enabled it to effectively model sex instead of MDD risk.

The overall dataset was balanced for case/controls and males/females by first
splitting the samples into the four subsets: male cases, female cases, male con-
trols and female controls. Then the larger three subsets were randomly sampled
without replacement to create subsets equal in size to the smallest subset. Sample
QC and removal of samples for high or low age was done before sampling. The
training/validation/testing split was then done using these subsets to create the
sets detailed below.

The first validation set used for early stopping and weight set choice I call the
inner validation set, and the validation set used for hyper-parameter/architecture
choice I call the outer validation set. The data (each of the four case/control/male/female
subsets) was randomly split into the training/validation inner/validation outer/test
sets in a ratio of 0.7/0.1/0.1/0.1. This split resulted in the training set having
124,880 samples, with 31,220 male controls, 31,220 male cases, 31,220 female con-
trols and 31,220 female cases. Each of the validation sets and the testing set has
17,840 samples; 4,460 male controls, 4,460 male cases, 4,460 female controls and
4,460 female cases.

To increase the similarity between the sets in age distribution, individuals
whose age was either above or below the mean age by more than one standard
deviation were removed before the dataset was split into the above sets.

Samples that weren’t included in the training, validation or test sets weren’t
used in the experiments. These included those who had no case or control data,
and controls that weren’t sex-matched with a case.

The covariates used in the PRS models were age, sex and the first ten princi-
pal components (PCs) from principal component analysis on the SNP data. PCs
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are used as a proxy for geographical location / population stratification. These
covariates were chosen as MDD varies in prevalence across age, sex and popula-
tion. Samples were also excluded if they were missing covariate data, and these
covariates were included in the final training, validation and test sets for use with
the full (PRS + covariates) model.

Software and data types

CSV files were used to store readable data; for the phenotype, covariates and
outputs.

2.5.2 NNPRS Setup

The neural network model developed to predict the PRS for case/control depres-
sion is detailed below, and will be referred to as the Neural Network Polygenic
Risk Score model (NNPRS).

Data Preparation for NNPRS

The deep learning library PyTorch was used to implement NNPRS. The python
version of this library was used. Subsequently, the PLINK data was converted into
the python library pandas, and then PyTorch files for use in PyTorch. Genotype
data in pandas dataframes was stored using either pickle or HDF. CUDA acceler-
ation with the PyTorch library is used to utilise the parallelisation available from
GPUs.

Genotyped data was recoded for the input of NNPRS. -1 is used for SNPs in
the sample with no reference alleles. 1 is used for one reference allele and 2 for
two reference alleles. 0 was used to indicate missing data.

0 was used for missing data as neural networks (NN) multiply the inputs with
the weights. Therefore the weight for that SNP doesn’t transmit any information
to the next layer. This limits the effect the SNP and its respective weight has
on the layer calculation, as the calculation is now the present (non-zero) SNPs
multiplied by their respective weights, added to the single bias for that layer.
Additionally, intuitively 0, falling in the middle of the ordered categorical data (-
1, 0, 1, 2), indicates the SNP shouldn’t give either a positive nor a negative effect
size, and as the data uses the data type int8 the other options (-1, 1, 2) would all
indicate one direction or the other. Across the SNPs, it is also never numerically
too different from the rounded mean, or the median, which are other options for
simple imputation.
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While there are more complex imputation methods, such as MIWAE (Mattei
and Frellsen, 2019), the QC procedures ensure that each sample, as well as each
SNP input, has at least 98% present data. It has been shown that the smaller the
missing rate the smaller the difference in performance from varying imputation
methods (Ipsen et al., 2022), and a missing rate less than 2% is significantly less
than the 10% where differences were shown to be minimal (Ipsen et al., 2022).
Therefore a simple imputation method has been chosen as the missing SNPs should
have minimal effect on the layer calculation or the weight updates across a batch.

For memory reasons, the values 1 and 2 were used to represent if the SNP
had either 1 or 2 reference alleles, as representing these as numbers smaller than
1 would require using float numbers rather than int8.

-1 is used for no alternative alleles, as this means the sample has no alterna-
tive alleles for that SNP, and the negative number represents an opposite to the
alternate alleles. In addition, NNs work better when the input range is close to
the range -1 to 1.

PyTorch genotypes and phenotype targets (float64 as default) were stored using
the PyTorch library as tensors. Covariate and phenotype data was converted to
pandas dataframes, and saved after using Python object serialisation (pickle).

Model Design and Architecture

The NNPRS model is primarily made up of linear layers. The input layer takes the
full subset of input SNPs for each p-value subset detailed in Table 2.1. Different
numbers of hidden layers (depth) and hidden units (width) in the hidden layers
were tested. The output layer is a single value which is input to a sigmoid function
to produce a value between 0 and 1. Loss criterion is binary cross-entropty (BCE);
and the sigmoid function and the loss function were combined using the PyTorch
BCEWithLogitsLoss loss function for numeric stability. Batch size was set to 100
for the smaller networks, and 50 for the network trained on the subset with the
most input SNPs, the 0.5 p-value threshold set.

The width of the hidden layers was set using a power function, with decreasing
numbers of hidden units in each layer. For example in a network of 3 hidden layers
and hidden sizes set to powers of 2, the first hidden layer has 2ˆ3 units (8), the
second has 2ˆ2 (4), and the third has 2ˆ1 (2). The activation layer, used after the
input layer and each hidden layer, was either Rectified Linear Unit (ReLU) or a
variant of this activation, leaky ReLU. ReLU layers output the maximum of either
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the input or 0 (max(0, x)). Leaky ReLU is defined as:

LeakyReLU(x) = max(0, x) + negative slope ∗min(0, x).

The negative slope of the leaky ReLU layer is set to 0.01.

Weights for the linear layers were initialised using a uniform distribution, called
Xavier or Glorot initialisation (Glorot and Bengio, 2010). Samples are taken from
a uniform distribution (-a,a) where:

a = gain ∗ sqrt(6/(fan in+ fan out)).

Gain is set at 1.0, fan in is the number of units taken as input, and fan out is the
number of units output by the linear layer.

Regularisation and Normalisation

Dropout layers were tested before the input layer, as well as before each of the
hidden layers. The dropout rate was set to 0.5 for the input layer, and 0.25 for the
others. L2 regularisation and L1 regularisation were used, with the coefficients set
to one of 1e-06, 1e-05, 1e-04, 1e-03, 1e02 or 1e01.

Batch Normalisation was tested on the input to the hidden layers (Ioffe and
Szegedy, 2015).

Training and Early Stopping

The optimiser used to train was the Adam optimiser (Kingma and Ba, 2014). This
was chosen due to the advantages it gives over SGD, due to features such as an
adaptive learning rate. It is generally faster to converge, in particular for sparse
or noisy gradients and high dimensional feature spaces, which are characteristics
the genetics dataset is likely to have. It was used with a learning rate of 1e-05.
The other settings are left as the PyTorch defaults of betas of 0.9 and 0.999, and
epsilon of 1e-08.

Early stopping is an implicit regularisation technique where if none of the
tracked metrics improve on the validation set for twenty epochs, we chose to stop
the training the network. The saved network then uses the weights which give
the best performance on the validation set, as judged by the highest AUC on the
full model (which includes covariates). This saves computation time from running
to the end of the chosen epoch number, and reduces overfitting in the network.
Twenty epochs is used as the validation accuracy drops significantly (indicating
high overfitting) by this point. The tracked metrics were AUC, loss (BCE) and
accuracy using both the simple and full models.
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2.5.3 Comparison Models

P-Value GWAS No. SNPs LDPred2 SBayesR SBayesR
Threshold Banded Sparse ChiSQ(10)

All SNPs Howard 998354 882537 971139 903795
0.5 Howard 568676 503038 553178 514630
0.1 Howard 172214 152235 167222 155613
0.01 Howard 38285 33935 37080 34530
All SNPs UKB 998354 882537 971139 903795
0.5 UKB 529682 468738 515365 479551
0.1 UKB 128186 113422 124479 115946

Table 2.1: Number of SNPs for each experiment, as well as SNP overlap with LD
matrices for LDPred2 and the best performing SBayesR Matrices. NNPRS uses
the full SNP set as input.

The performance of NNPRS was compared against a covariate only model (the
Null model), as well as three current state-of-the-art and widely used methods.

Both the Bayesian methods SBayesR and LDPred2 output updated betas, or
weights, in the same format as GWAS summary statistics. For these methods
PLINK 1.9’s (Chang et al., 2015) score function was used with the updated betas
to produce the PRS for evaluation.

Baseline Covariate Logistic Regression

The covariate only / null model is a logistic regression model that takes as input
the covariates: age, sex and ten principal components. The performance scores of
this model can be taken, or regressed out, of the other models’ scores to leave the
performance explained by the genetics, called the residual scores. Nagelkerke R2

was reported as a residual score in the results.

While the principal components are derived from genetics, these are used as
a proxy for group differences (population stratification) which would be expected
to be caused by the environment and ancestry, for example local diet, climate,
geographical isolation, founder events, migration, and admixture (McVean, 2009).
This is a standard practice in genetic research and polygenic risk score generation,
and ten principal components were used in line with this previous research (Howard
et al., 2019; Lloyd-Jones et al., 2019).
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Clumping and P-Value Thresholding (C+T)

The first model tested is the standard C+T model. This involves clumping SNPs
using linkage disequilibrium, and then applying a threshold on the p-value of as-
sociation from a GWAS. Clumping removes SNPs, aiming to create a SNP set
with no pair of SNPs in LD above a selected LD threshold, prioritising SNPs with
a lower p-value and maximising the number of remaining SNPs. The maximum
distance between SNPs checked for LD is 250kb, and SNPs are clumped if they
have an r2 above 0.1. The p-value thresholding removes any SNPs with a p-value
above the threshold.

The betas of the remaining SNPs are then multiplied by the allele count of the
alternate allele, and then summed. The scores are scaled to be between 0 and 1,
and the case/control threshold set based on prevalence.

The method was run using the PRSice-2 software (Choi and O’Reilly, 2019) to
enable testing of high resolution p-value thresholds (a large number of thresholds).

SBayesR

The next comparison method is SBayesR (Lloyd-Jones et al., 2019). SBayesR is a
Bayesian multiple regression model that takes as input GWAS summary statistics.
Through application of Bayesian posterior inference and a finite mixture of normal
distribution priors on the SNP effects, it updates the SNP weights.

SBayesR uses a multiple linear regression model, where y is an nx1 vector of
phenotypes, β is a px1 vector of multiple regression coefficients which are the SNP
effects, ϵ is a vector nx1 of the error term, and X is an nxp matrix of genotypes
coded 0, 1 and 2 for the number of reference alleles of each marker:

y = Xβ + ϵ. (2.1)

Multiplying this equation by D−1X ′, where D = diag(x′
1, x1, ...x

′
pxp) then re-

lates the model to the estimates of the regression coefficients from p simple linear
regression analyses b giving:

D−1X ′y = D−1X ′Xβ +D−1X ′ϵ. (2.2)
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As b = D−1X ′y is the vector of least-squares marginal regression effect esti-
mates and the correlation matrix of all genetic markers is B = D−1 1

2X ′XD−1 1
2 ,

the equation above can be written as:

b = D− 1
2BD

1
2β +D−1X ′ϵ. (2.3)

Then the following likelihood for the multiple regression coefficients β can be
used, with the assumption ϵ1...ϵn are independent N(0, σ2

ϵ ):

L(β; b,D,B) := N(b;D− 1
2BD

1
2β,D− 1

2BD− 1
2σ2

ϵ ). (2.4)

N(ξ;µ,Σ) is the multivariate normal distribution with mean vector µ and co-
variance matrix Σ for ξ. As we are using summary statistics with SBayesR for these
experiments, D is replaced with D̂ = diag(1/[σ̂2(b1)+b21/n1], ..., 1/[σ̂

2(bp)+b2p/np]),
where [nj, bjσ̂

2(bj)] are the sample sizes used to compute the simple linear regres-
sion coefficient and σ̂(bj) is the standard error of the effect for the jth variant.

A prior on the multiple regression genetic effects and the posterior is presumed
to perform Bayesian posterior inference:

p(β|b, B,D) ∝ p(b|β,B,D)p(β|B,D) (2.5)

The BayesR model is below, where C is the maximum number of components
in the finite mixture model and is a setting for the model. The γc coefficients is also
a setting, and is described further in the settings description below. It constrains
how the common marker effect variance σ2

β scales in each distribution.

βj|π, σ2
β =


0, with probability π1,

∼ N(0, γ2σ
2
β) with probability π2,

...

∼ N(0, γCσ
2
β) with probability 1 - ΣC−1

c=1 πc.

(2.6)

A derivation of the Markov chain Monte Carlo Gibbs sampling routine was
used for sampling of the key model parameters θ = (β′, π′, σ2

β, σ
2
ϵ )

′ from their full
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conditional distributions. The prior for σ2
β is a scaled inverse X2 distribution,

where S2
β is the scale parameter and νβ is the degrees of freedom, with density:

f(σ2
β; νβ, S

2
β) =

(S2
βνβ/2)

νβ/2

Γ(νβ/2)

exp(−νβS
2
β/2σ

2
β)

(σ2
β)

1+νβ/2
. (2.7)

The residual variance σ2
ϵ is assumed to have a scaled inverse X2 distribution

prior and a distribution of:

f(σ2
ϵ ; νϵ, S

2
ϵ ) =

(S2
ϵ νϵ/2)

νϵ/2

Γ(νϵ/2)

exp(−νϵS
2
ϵ /2σ

2
ϵ )

(σ2
ϵ )

1+νϵ/2
. (2.8)

The SNP-based heritability estimation is calculated h2
SNP = σ2

g/(σ
2
ϵ + σ2

g) at
each iteration (i) of the MCMC chain. σ2

g is the genetic variance, and is estimated

from the sample variance of the vector Xβ(i) for each observed β(i) in iteration i.
σ2
ϵ is sampled as the residual variance. Point estimates are summarised from the

generated posterior distribution.

Focusing on how the Gibbs sampling routine works with use of the summary
statistics, the full conditional distribution of βj under the multiple regression
model, presuming C = 2 and ϵ = (ϵ1, ϵ2) = (0, 1), is below. lj = (x′

jxj + σ2
ϵ/σ

2
β)

and β̂j = x′
j[y − X−jβ−j]/lj = x′

jw/lj. x−j is X without the jth column. lj only
involves the diagonal elements of X ′Xj, and is calculated from summary statistics
using X ′Xj = D 1

2
BD 1

2
.

f(βj|θ−βj′
y) ∝ exp

[
− 1

2

(βj − β̂j)
2

σ2
ϵ/lj

]
(2.9)

To compute β̂j

rj = x′
jw (2.10)

is required. This quantity can be calculated each MCMC interation using a
right-hand updating scheme. X ′y corrected for all current β, where r∗ is a vector
of dimension px1, is defined as:
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r∗ = X ′y −X ′Xβ. (2.11)

The jth element of r∗ is used to calculate:

rj = x′
jw = r∗j + x′

jxjβj (2.12)

Subsequently, once a variant is chosen to be in the model it’s effect is sampled
from the full conditional distribution of β. Then the update equation looks like:

(r∗)(i+1) = (r∗)(i) −X ′xj(β
(i+1)
j − β

(i)
j ) (2.13)

SBayesR was implemented and tested with our data pipeline, using the same
SNP sets and training/validation/test splits of samples. It was downloaded from
https://cnsgenomics.com as part of the GCTB package, which is a tool for Genome-
wide Complex Trait Bayesian analysis. SBayesR was tested using all 22 autosomes
(whole genome except for the sex chromosomes) at once for better convergence.

It was also run with additional SNP filtering: removing SNPs below a p-value
of 0.4, SNPs with RSQ below 0.9, and SNPs in the lowest 10% quantile for sample
size, as described on their website. The results for the additional filtering of SNPs
didn’t change performance significantly, so for the reduced SNP sets SBayesR was
run without this additional filtering.

SBayesR uses LD matrices to account for LD in the samples, and these matrices
were downloaded from the GCTB website. The matrices were the following:

• Shrunk Sparse matrix and Shrunk Sparse matrix (2.8 million) from Lloyd-
Jones et al. (2019);

• Sparse matrix computed using a chi-squared test with a threshold of 10
(Sparse ChiSQ(10)) from Zeng et al. (2021);

• Banded matrix from Privé et al. (2022)

Each SNP subset was tested with each LD matrix. All of these were missing
some of the SNPs from the UKB dataset, leading to slightly fewer SNPs than

https://cnsgenomics.com
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available for NNPRS. The SNP numbers used for each experiment are in Table
2.1. However, in addition to the SNP p-value threshold subsets used with NNPRS,
SBayesR was also run without any SNP filtering. This unfiltered SNP set included
a greater number of SNPs than the largest SNP set used with NNPRS.

The full settings used are as follows:

• π 0.95,0.02,0.02,0.01- the number of mixture components and the starting
value for each component;

• γ 0.0,0.01,0.1,1 - the scaling factor for the variance of a mixture component;

• exclude-mhc - excludes SNPs of the major histocompatibility complex (MHC)
as it contains high levels of LD leading to greater challenge in estimating SNP
weights;

• chain-length 10000 - total number of iterations in the Markov chain Monte
Carlo (MCMC), an algorithm for sampling from a Markov chain;

• burn-in 2000 - the number of iterations to be discarded

LDPred2

The last model tested for comparison is LDPred2 (Privé et al., 2020), another
method that uses an LD matrix and GWAS summary statistics. LDPred2 is
an extension of the LDPred model (Vilhjálmsson et al., 2015), which improves
computation efficiency while also addressing limitations around being sensitive
to model misspecification when applied to summary statistics with large sample
sizes, and instability in long-range LD regions such as the human leukocyte antigen
region.

The LDPred model assumes effect sizes following the equation where p is the
proportion of causal variants, M is the number of variants and h2 is the SNP
heritability:

βj = Sj,jγj ∼
{
N (0, h2

Mp
) with probability p,

0, otherwise.
(2.14)

To estimate effect sizes βj it uses a Gibbs sampler (Vilhjálmsson et al., 2015).
The residualised marginal effect for variant j is computed first; where R-j,j is the
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j-th column without the j-th row of the correlation matrix, β̂ is the vector of
marginal effect sizes, β is the vector of current effect sizes in the Gibbs sampler,
and β-j is β without the j-th element:

β̃j = β̂j − β-j
TR-j,j. (2.15)

Then the probability that j is causal is calculated, which to avoid numerical
issues when nβ̃2

j is large is written as:

p̄j =
1

1 + 1−p
p

√
1 + nh2

Mp
exp

{
−1

2

nβ̃2
j

1+
Mp

nh2

} (2.16)

Following this βj is sampled:

βj| β̃j ∼

N ( 1

1+
Mp

nh2

β̃j,
1

1+
Mp

nh2

1
n
), with probability p̄j,

0, otherwise,
(2.17)

giving the posterior mean of βj|β̃j as:

wj =
p̄jβ̃j

1 + Mp

nh2

. (2.18)

LDPred2 has three modes, grid, sparse and auto settings. The auto mode was
used, as it requires no tuning in contrast to grid and sparse, and gives similar
performance to that of the tuned grid mode (Privé et al., 2020).

LDPred2 is contained in the bigsnpr library, which also contains the supporting
methods needed for processing the genomic data, including reading BED files into
R and saving in a R readable format, a .rds file.

The LD matrix used was created by Privé et al. (2022) and can be downloaded
from https://figshare.com/articles/dataset/European_LD_reference_with_

blocks_/19213299/1. The LD matrix is missing some of the SNPs in the UKB

https://figshare.com/articles/dataset/European_LD_reference_with_blocks_/19213299/1
https://figshare.com/articles/dataset/European_LD_reference_with_blocks_/19213299/1


CHAPTER 2. CALCULATING A PRS USING NEURAL NETWORKS 62

dataset, having 882,537 SNPs in common out of 998,354. The SNP totals used
for the reduced SNP sets can be found in Table 2.1. In common with SBayesR,
LDPred2 was also run without any SNP filtering using a p-value threshold, and
this SNP set includes a greater number of SNPs than the largest SNP set used
with NNPRS.

LDPred2 settings: the values for the initialisation of p were 10 values between
1e-04 and 0.9, evenly spaced on a logarithmic scale.

Missing SNPs in LD Matrices

The LD matrices used for SBayesR and LDPred2 were created using a different
set of SNPs and samples, although at least one also used the HapMap3 SNPs,
and more than one used a subset of UKB. Because of this some of the SNPs were
missing for these methods, and had they been available it is possible performance
could of increased. However, I wouldn’t expect the increase to be significant as
most SNPs were available for at least one of the SBayesR matrices, and for the
LDPred2 matrix.

2.5.4 Evaluation

Logistic Regression Evaluation

A logistic regression classifier was used to compare predictive performance between
models. The full model comparison was made using each model’s polygenic risk
score (PRS) with the covariates as input for the logistic regression. A second
comparison was made using only the PRS, which is called the simple model.

As the aim of the project is to evaluate and compare each method’s ability to
calculate genetic risk relative to the other methods, the logistic regression model
was fitted on the same subset that it was evaluated against. This ensured that the
most competitive model was selected for comparison against the other methods,
as it meant that the models that overfit the training data didn’t overly rely on
the PRS compared to the covariates in the logistic model, which would have led
to overall performance being reduced. Through fitting the logistic regression full
model on same subset as evaluation, it is likely the full model performance met-
rics will be slightly inflated (through overfitting), however they will be consistent
when compared between the models within this experiment. Fitting on the same
subset as evaluation meant the logistic regression model used for the test set was
trained on the test set. The simple (score only) model was also used in a logistic
regression to account for the fact that not every model output a PRS between 0
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and 1. Measures such MSE are inaccurate without rescaling to between 0 and 1,
although key metrics such as AUC and accuracy remain the same regardless of
standardisation or scaling.

The predictive performance of the models was evaluated using AUC, accuracy
and Nagelkerke R2 (Nagelkerke, 1991). AUC describes how separable cases are
from controls; and was chosen as it is a continuous measure, in this case, that can
be used for model selection. Accuracy is defined as how many samples were cor-
rectly assigned case/control. The number of true cases matches true controls in the
dataset, so the case/control threshold was set to give equal predictions of cases and
controls. Because of this case/control threshold setting, the number of true posi-
tives and true negatives will always be equal, as will the number of false positives
and false negative. Therefore accuracy equals precision and recall, and therefore
F1 Score. Recall is another name for sensitivity, and the case/control threshold
setting also leads to specificity as being equal to accuracy. Lastly, Nagelkerke R2

is useful for estimating phenotypic variance explained by the model.

As mentioned above, AUC is useful and reliable for model selection, and is the
metric used for model selection in this analysis. However, Nagelkerke R2’s use for
estimating phenotypic variance means it is often reported in other similar work,
and is the measure that best captures the overall goal of the work, being able to
describe the variance in MDD risk between individuals. Therefore it is the measure
primarily used for the performance discussion.

Confidence intervals (95%) are also shown for each metric. These were calcu-
lated by sampling bootstrap replicates (10,000 for AUC, and 1,000 for accuracy
and Nagelkerke R2) of the individuals in the test set, and computing the metric
for each of these. Shown are the quantiles at 2.5

Null Model

A covariate only model, called the null model, is included in the results for com-
parison, and to provide a baseline performance without any genetics modelling
(beyond the location proxy covariates, the 10 principal components).

Overall Performance

To evaluate overall performance of the models, the best performing NNPRS model
is compared to the performance of the existing methods with the full QC’ed SNP
set available of 998,354 SNPs. NNPRS wasn’t used with the full set of QC’ed SNPs
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for computational reasons. As the existing methods don’t have this restriction, and
would likely perform best with the full SNP set, this was done for fair comparison.

Restricted P-Value Experiments

To test how NNPRS compares when given the same SNP set, additional experi-
ments were run with subsets of SNPs. These subsets were created using the p-value
of association in the GWAS, with thresholds set to 0.01, 0.1 or 0.5. SNPs with
a p-value lower than this value were included, giving subsets of 38,285, 172,214,
and 568,676 SNPs respectively. Reducing the number of inputs to the model helps
with computational complexity, as well model over-fitting, and is a technique also
used in the C+T model.

Training Set GWAS

As the summary statistics based methods are using summary statistics calculated
from multiple datasets (datasets excluding UKB from the Psychiatric Genetics
Consortium, PGC (Howard et al., 2019)), this may give them an advantage over
NNPRS which is largely developed only on UKB. One way to counter-act this
would be to include GWAS results in NNPRS (see Section 2.8), but for a quick
way to compare a set of association statistics was calculated on the UKB training
set. The same experiments were run using the UKB summary statistics. Similar
to the overall performance comparison; the existing methods used the full SNP set
of 998,354 SNPs as well as the p-value threshold subsets, while NNPRS used only
the p-value threshold subsets.

Composite Scores and Ensemble Model

Due to the different methodology that NNPRS uses to calculate the PRS, it po-
tentially derives different information in the genetics than the other models. To
test this logistic regression was run with PRS from multiple models to create an
ensemble model. For the simple model the logistic regression was run using two
PRS, and for the full model the covariates were also included.

LD Matrices and SNP Sets

The LD matrices used with SBayesR and LDPred2 were created using a different
SNP set to the one used in these experiments, and so are missing some of the
SNPs in the full QC’ed SNP set. Where there are missing SNPs in the LD matrix
these SNPs are removed from that model, leading to a reduced SNP set, see Table
2.1. The percentage of missing SNPs in each of the SNP sets for the SBayesR
matrix with the greatest overlap, as well as the LDPred2 LD matrix, is around
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11.5%. However, the total number of SNPs used for these models in the unfiltered
experiment (using all QC’ed SNPs) is higher than the largest of the subsets tested
with NNPRS.

2.6 Results

Models were tested using the simple (PRS only) and full (incl. covariates) logistic
regression models, and SNP sets with p-value thresholds of 0.5, 0.1 and 0.01, as
well as the full SNP set for the comparison models. NNPRS wasn’t trained using
the full SNP set, so the NNPRS line in these tables is showing the performance
using the SNP set created with a p-value threshold of 0.5. The performance metrics
in the results tables are AUC, Nagelkerke R2 and accuracy. These are shown for
both the simple and full models.

Graphs showing the residual Nagelkerke R2 are also included, calculated by
subtracting the null model Nagelkerke R2 from the PRS model Nagelkerke R2.
This measure is used to estimate the phenotypic variance explained by the PRS.

The null model is included for comparison in each experiment, and has an AUC
of 0.5281, an accuracy of 0.5221 and a Nagelkerke R2 of 0.0029. All models in all
experiments outscored the null model, indicating they all successfully extracted
enough information to explain a significant amount of phenotypic variance.

2.6.1 Meta-analysis Summary Statistics Experiments

Table 2.2 shows the results using the full SNP set with the meta-analysed summary
statistics from Howard et al. (2019), and will be referred to as the meta-analysis
summary statistics experiments. This SNP set includes 998,354 SNPs. Experi-
ments were also run using p-value thresholds of 0.5, 0.1 and 0.01 to create filtered
SNP subsets, of 568,676, 172,214 and 38,285 SNPs respectively. The results for
these experiments are shown in Tables 2.3, 2.4 and 2.5 .

Prediction performance was assessed with AUC, accuracy and Nagelkerke R2,
between observed and predicted phenotype in the test sample. The R2 for NNPRS
was 0.01566, 0.0138 and 0.01268 for the SNP subsets with a p-value threshold of
0.5, 0.1 and 0.01, respectively. SBayesR, LDPred2 and C+T were also tested using
the full SNP set. SBayesR and LDPred2 performed equally across all SNP sets
and the 3 metrics, and their advantage over NNPRS and C+T was relatively large
(Figure 2.2). For all SNP sets NNPRS generated the lowest AUC and Nagelkerke
R2, however it generated similar same accuracy to C+T.
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Figure 2.2: Residual Nagelkerke R2 for each model across all SNP
subsets, for the meta-analysis summary statistic experiments
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Results are for each method using each of the SNP subsets; all SNPs, SNPs with
a p-value less than 0.5 (p-value < 0.5), SNPs with a p-value less than 0.1 (p-value
< 0.1) and SNPs with a p-value less than 0.01 (p-value < 0.01). The full model
including covariates is used. Metric shown is the residual Nagelkerke R2. It is
calculated by subtracting the R2 of the null model (covariates only) from the R2 of
each of the tested models, and is an estimate of the phenotypic variance explained
by each model. Summary statistics taken from Howard et al. (2019) are used for
model development. The test sample set is used, comprising of 17,840 individuals
(10% of the total sample set) not used in the training, validation or development
of the models. The set is balanced for cases/controls and males/females. Target
phenotype is Broad Depression (Howard et al., 2018).

The predictive performance of NNPRS, SBayesR and LDPred2 increased as the
number of SNPs in the SNP set increased. However, predictive performance of the
C+T model showed minimal or no improvement using the 0.5 p-value threshold
SNP subset and the full SNP set, relative to performance using the 0.1 p-value
threshold SNP subset.
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The increases in performance as SNPs with higher p-values are included demon-
strates the ability of SBayesR and LDPred2 to successfully incorporate LD infor-
mation to adjust the effect betas, and NNPRS to model the correlation between the
SNP inputs. It also demonstrates that there are contributing SNPs with GWAS
p-values greater than 0.5.

2.6.2 UKB Summary Statistics Experiments

As the GWAS in the previous experiment is calculated using a number of datasets
from the PGC, it potentially contains more information than is available in the
UKB genotypes. The UKB genotypes are the primary data source for NNPRS,
in contrast to the comparison methods which use the GWAS. Subsequently to
test performance where each method uses only information contained in the UKB
genotypes, this experiment uses GWAS summary statistics calculated from the
training set of the UKB dataset.

Table 2.6 shows the results using the full SNP set with UKB GWAS summary
statistics. This SNP set includes 998,354 SNPs. Experiments were also run using
a p-value threshold of 0.5 and 0.1 to create filtered SNP subsets, of 529,682 SNPs
and 128,186 SNPs respectively. The results for these experiments are shown in
Table 2.7 and Table 2.8.

Prediction performance was assessed with AUC, accuracy and Nagelkerke R2,
between observed and predicted phenotype in the test sample. Using the UKB
training set summary statistics, the R2 for NNPRS was 0.01344 and 0.01187 for
the SNP subsets with a p-value threshold of 0.5 and 0.1, respectively. SBayesR,
LDPred2 and C+T were also tested using the full SNP set. NNPRS outscored
SBayesR, LDPred2 and C+T on the p-value filtered SNP subsets (Figure 2.3), how-
ever when using the full SNP set both SBayesR and LDPred2 outscored NNPRS
(results for NNPRS using the 0.5 p-value threshold SNP subset are used in the
overall comparison).

While LDPred2 and SBayesR remained the models that generated the highest
Nagelkerke R2, they saw a significant decrease in performance relative to their
performance using the meta analysis summary statistics. NNPRS had a smaller
decrease in absolute Nagelkerke R2 compared to using the meta analysis sum-
mary statistics, leading to stronger relative performance compared to LDPred2
and SBayesR.



CHAPTER 2. CALCULATING A PRS USING NEURAL NETWORKS 68

Figure 2.3: Residual Nagelkerke R2 for each model across all SNP
subsets, for the UKB summary statistic experiments
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Results are for each method using each of the SNP subsets; all SNPs, SNPs with
a p-value less than 0.5 (p-value < 0.5) and SNPs with a p-value less than 0.1 (p-
value < 0.1). The full model including covariates is used. Metric shown is the
residual Nagelkerke R2. It is calculated by subtracting the R2 of the null model
(covariates only) from the R2 of each of the tested models, and is an estimate of
the phenotypic variance explained by each model. Summary statistics calculated
on the UKB training set are used for model development. The test sample set
is used, comprising of 17,840 individuals (10% of the total sample set) not used
in the training, validation or development of the models. The set is balanced for
cases/controls and males/females. Target phenotype is Broad Depression (Howard
et al., 2018).

2.6.3 Ensemble Model Experiments

Models often learn different information from a dataset, and ensemble models aim
to take advantage of that by combining output from multiple models. Table 2.9
shows the performance when the PRS from two models is used to create a combined
PRS. Predictive performance is reported in Nagelkerke R2.
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Figure 2.4: Residual Nagelkerke R2 for the PRS and ensemble models
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Shown is the residual Nagelkerke R2 for the single PRS and ensemble models us-
ing the covariates (full). It was calculated by subtracting the R2 of the null model
(covariates only) from the R2 of each method, and is an estimate of the pheno-
typic variance explained by each model. The best scoring model was used for each
method, which uses the full SNP set for all methods, apart from NNPRS which
uses the SNP subset of SNPs with p-value < 0.5. Summary statistics taken from
Howard et al. (2019) are used for model development. The test sample set is used,
comprising of 17,840 individuals (10% of the total sample set) not used in the train-
ing, validation or development of the models. The set is balanced for cases/controls
and males/females. Target phenotype is Broad Depression (Howard et al., 2018).

The ensemble model with the best predictive performance included the PRS
from NNPRS and SBayesR, which provided a relative performance increase of 62%
over C+T, and 18% over the best single PRS model (SBayesR) (Figure 2.4).

The relative increases in performance from the single PRS models when adding
the NNPRS PRS to create an ensemble model, varied from 18% for SBayesR to
42% for C+T.
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The increases in predictive performance from using the ensemble model in-
cluding only methods other than NNPRS were minimal. This indicates that the
information learned by NNPRS is different to that from the other methods. All
3 of the other methods take as input GWAS summary statistics, in contrast to
NNPRS which only uses the summary statistics to perform feature selection. And
while LDPred2 and SBayesR both use Bayesian priors to account for multiple
SNPs simultaneously, NNPRS combines SNPs in a number of ways (depending on
the number of hidden units), using a number of non-linearities, particularly when
using deeper architectures.

2.6.4 Model Parameters

The SBayesR models that had the best AUC largely used the Banded matrix from
Privé et al. (2022), apart from the full SNP set experiment using the meta analysis
summary statistics for which the model using the Sparse ChiSQ(10) matrix from
Zeng et al. (2021) provided the highest AUC.

The p-value threshold chosen by the strongest C+T model using the meta
analysis summary statistics was 0.3749, which used 60,705 SNPs after clumping.
When using the smaller p-value 0.1 SNP set the threshold chosen was 0.0857,
which used 24,096 SNPs (of 26,614 SNPs remaining after clumping).

The predictive performance of this smaller threshold was greater than that of
the higher threshold, on the test set, however by a small margin. Intermediate
thresholds had very similar performance, indicating any variation is due to factors
other than the predictive power of the model.

Using the smallest SNP set (filtered with a 0.01 p-value threshold) the p-value
threshold chosen by the strongest C+T model was 0.0099, which used 6,164 SNPs,
practically the full SNP set available after clumping (6201 SNPs), indicating that
a more lenient SNP set threshold should be chosen.
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Table 2.2: Comparison of C+T, LDPred2, SBayesR and NNPRS using the SNP set containing all SNPs (998,354
SNPs) and the Howard et al. (2019) summary statistics

Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.5612 [0.553 - 0.5695] 0.5664 [0.558 - 0.5744] 0.5438 [0.5362 - 0.5516] 0.5443 [0.5369 - 0.5514] 0.01542 [0.01086 - 0.01923] 0.0179 [0.01213 - 0.02132]
LDPred2 0.573 [0.5648 - 0.5816] 0.5776 [0.5694 - 0.5859] 0.5519 [0.5443 - 0.559] 0.5529 [0.5452 - 0.5606] 0.02214 [0.01689 - 0.02685] 0.02457 [0.01791 - 0.0288]
SBayesR Chi 0.5731 [0.5648 - 0.5815] 0.5776 [0.5695 - 0.5859] 0.5519 [0.5446 - 0.5594] 0.553 [0.5455 - 0.5607] 0.02222 [0.01681 - 0.02698] 0.02466 [0.01784 - 0.02879]
NNPGRS 0.5557 [0.5474 - 0.5642] 0.5603 [0.5518 - 0.5687] 0.5429 [0.5351 - 0.5504] 0.5443 [0.5364 - 0.552] 0.01324 [0.00876 - 0.01688] 0.01566 [0.00991 - 0.01887]

Table 2.3: Comparison of C+T, LDPred2, SBayesR and NNPRS using the SNP set containing SNPs with a
p-value below 0.5 (568,676 SNPs) and the Howard et al. (2019) summary statistics
Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.5612 [0.553 - 0.5695] 0.5664 [0.558 - 0.5744] 0.5438 [0.5362 - 0.5516] 0.5443 [0.5369 - 0.5514] 0.01542 [0.01086 - 0.01923] 0.0179 [0.01213 - 0.02132]
LDPred2 0.5687 [0.5604 - 0.5774] 0.5738 [0.5655 - 0.5821] 0.5493 [0.5421 - 0.5566] 0.5494 [0.542 - 0.5573] 0.0195 [0.0144 - 0.02394] 0.02208 [0.01544 - 0.02589]
SBayesR Band 0.5689 [0.5605 - 0.5773] 0.574 [0.5657 - 0.5825] 0.5476 [0.5403 - 0.5548] 0.5497 [0.5419 - 0.5574] 0.01968 [0.01459 - 0.02432] 0.02228 [0.01574 - 0.02615]
NNPGRS 0.5557 [0.5474 - 0.5642] 0.5603 [0.5518 - 0.5687] 0.5429 [0.5351 - 0.5504] 0.5443 [0.5364 - 0.552] 0.01324 [0.00876 - 0.01688] 0.01566 [0.00991 - 0.01887]

Shown are the results using the metrics AUC, accuracy and Nagelkerke R2, for both the PRS only model (simple) and the
model using the covariates (full). Summary statistics taken from Howard et al. (2019) are used for model development.
The test sample set is used, comprising of 17,840 individuals (10% of the total sample set) not used in the training,
validation or development of the models. The set is balanced for cases/controls and males/females. Target phenotype
is Broad Depression (Howard et al., 2018). The null model uses only the covariates.
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Table 2.4: Comparison of C+T, LDPred2, SBayesR and NNPRS using the SNP set containing SNPs with a
p-value below 0.1 (172,214 SNPs) and the Howard et al. (2019) summary statistics

Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.5629 [0.5545 - 0.5713] 0.5675 [0.559 - 0.5761] 0.5462 [0.5391 - 0.5536] 0.5487 [0.5415 - 0.556] 0.01613 [0.0115 - 0.02001] 0.0185 [0.01257 - 0.0219]
LDPred2 0.5664 [0.558 - 0.5748] 0.572 [0.5636 - 0.5806] 0.5466 [0.5388 - 0.554] 0.55 [0.5421 - 0.5575] 0.01823 [0.01304 - 0.02243] 0.0208 [0.01401 - 0.02452]
SBayesR Band 0.5667 [0.5583 - 0.5752] 0.5721 [0.5639 - 0.5805] 0.5468 [0.5394 - 0.5539] 0.5504 [0.5428 - 0.5576] 0.01832 [0.01326 - 0.02253] 0.02089 [0.01417 - 0.02445]
NNPGRS 0.5509 [0.5425 - 0.5594] 0.5574 [0.5488 - 0.5656] 0.5318 [0.5247 - 0.5391] 0.5426 [0.5355 - 0.5498] 0.01135 [0.00743 - 0.01474] 0.0138 [0.00858 - 0.01684]

Table 2.5: Comparison of C+T, LDPred2, SBayesR and NNPRS using the SNP set containing SNPs with a
p-value below 0.01 (38,285) and the Howard et al. (2019) summary statistics
Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.556 [0.5478 - 0.5643] 0.5606 [0.5523 - 0.569] 0.5392 [0.5319 - 0.5467] 0.5416 [0.534 - 0.5493] 0.01283 [0.00867 - 0.01626] 0.01513 [0.00983 - 0.01803]
LDPred2 0.56 [0.5516 - 0.5685] 0.5653 [0.5569 - 0.5738] 0.5429 [0.5353 - 0.5507] 0.5474 [0.5393 - 0.5545] 0.01467 [0.01021 - 0.01855] 0.01723 [0.01116 - 0.02038]
SBayesR Band 0.5579 [0.5494 - 0.5662] 0.5632 [0.5548 - 0.5714] 0.5399 [0.5327 - 0.5476] 0.5454 [0.5376 - 0.5521] 0.01385 [0.00941 - 0.01757] 0.01644 [0.01044 - 0.0195]
NNPGRS 0.5509 [0.5425 - 0.5593] 0.5569 [0.5485 - 0.5654] 0.5337 [0.5262 - 0.5407] 0.5426 [0.5351 - 0.5498] 0.01027 [0.0065 - 0.01344] 0.01268 [0.00738 - 0.01542]

Shown are the results using the metrics AUC, accuracy and Nagelkerke R2, for both the PRS only model (simple) and the
model using the covariates (full). Summary statistics taken from Howard et al. (2019) are used for model development.
The test sample set is used, comprising of 17,840 individuals (10% of the total sample set) not used in the training,
validation or development of the models. The set is balanced for cases/controls and males/females. Target phenotype
is Broad Depression (Howard et al., 2018). The null model uses only the covariates.
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Table 2.6: Comparison of C+T, LDPred2, SBayesR and NNPRS using the SNP set containing all SNPs (998,354
SNPs) and the UKB training set summary statistics

Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.5408 [0.5322 - 0.5492] 0.5487 [0.5402 - 0.5571] 0.5304 [0.5233 - 0.5376] 0.534 [0.5267 - 0.5411] 0.00733 [0.00402 - 0.00988] 0.01063 [0.00596 - 0.01287]
LDPred2 0.5506 [0.5419 - 0.5589] 0.5574 [0.5492 - 0.5657] 0.5317 [0.5243 - 0.5393] 0.5387 [0.5308 - 0.5461] 0.0114 [0.0072 - 0.0147] 0.01443 [0.00898 - 0.01728]
SBayesR Band 0.5494 [0.541 - 0.5581] 0.5563 [0.548 - 0.5647] 0.5335 [0.5253 - 0.5407] 0.5378 [0.53 - 0.545] 0.01087 [0.00667 - 0.01403] 0.01396 [0.00864 - 0.01677]
NNPGRS 0.5506 [0.5423 - 0.5591] 0.5556 [0.5472 - 0.5641] 0.5362 [0.5283 - 0.5433] 0.537 [0.5293 - 0.5445] 0.01091 [0.00685 - 0.01426] 0.01344 [0.00795 - 0.01615]

Table 2.7: Comparison of C+T, LDPred2, SBayesR and NNPRS using the SNP set containing SNPs with a
p-value below 0.5 (529,682) and the UKB training set summary statistics
Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.5383 [0.5298 - 0.5468] 0.5466 [0.538 - 0.555] 0.5293 [0.5217 - 0.5362] 0.5322 [0.5245 - 0.5394] 0.00641 [0.00304 - 0.00885] 0.00928 [0.00454 - 0.0113]
LDPred2 0.5465 [0.5381 - 0.5547] 0.5542 [0.5458 - 0.5627] 0.5304 [0.5225 - 0.5379] 0.5385 [0.5302 - 0.5455] 0.0095 [0.00548 - 0.0124] 0.0129 [0.00768 - 0.01547]
SBayesR Band 0.5467 [0.5382 - 0.5553] 0.5542 [0.5458 - 0.5626] 0.5309 [0.5228 - 0.5383] 0.5408 [0.533 - 0.5484] 0.00948 [0.00549 - 0.01242] 0.0129 [0.00755 - 0.01543]
NNPGRS 0.5506 [0.5423 - 0.5591] 0.5556 [0.5472 - 0.5641] 0.5362 [0.5283 - 0.5433] 0.537 [0.5293 - 0.5445] 0.01091 [0.00685 - 0.01426] 0.01344 [0.00795 - 0.01615]

Shown are the results using the metrics AUC, accuracy and Nagelkerke R2, for both the PRS only model (simple) and
the model using the covariates (full). Summary statistics calculated using the training set of the UKB dataset are used
for model development. The test sample set is used, comprising of 17,840 individuals (10% of the total sample set) not
used in the training, validation or development of the models. The set is balanced for cases/controls and males/females.
Target phenotype is Broad Depression (Howard et al., 2018). The null model uses only the covariates.
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Table 2.8: Comparison of C+T, LDPred2, SBayesR and NNPRS using the SNP set containing SNPs with a
p-value below 0.1 (128,186) and the UKB training set summary statistics

Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.5383 [0.5298 - 0.5468] 0.5466 [0.538 - 0.555] 0.5293 [0.5217 - 0.5362] 0.5322 [0.5245 - 0.5394] 0.00641 [0.00304 - 0.00885] 0.00928 [0.00454 - 0.0113]
LDPred2 0.5413 [0.5328 - 0.5497] 0.5497 [0.5412 - 0.5582] 0.5309 [0.5233 - 0.5381] 0.5354 [0.5275 - 0.5427] 0.00717 [0.00372 - 0.00969] 0.01041 [0.00563 - 0.01271]
SBayesR Band 0.5412 [0.5328 - 0.5496] 0.5494 [0.541 - 0.558] 0.5311 [0.5229 - 0.5388] 0.5344 [0.5269 - 0.5414] 0.00706 [0.00372 - 0.00956] 0.01034 [0.00546 - 0.01262]
NNPGRS 0.5459 [0.5373 - 0.5542] 0.5518 [0.5435 - 0.5604] 0.5328 [0.5256 - 0.5403] 0.5378 [0.5299 - 0.5449] 0.00853 [0.00508 - 0.0113] 0.01121 [0.00628 - 0.01358]

Shown are the results using the metrics AUC, accuracy and Nagelkerke R2, for both the PRS only model (simple) and
the model using the covariates (full). Summary statistics calculated using the training set of the UKB dataset are used
for model development. The test sample set is used, comprising of 17,840 individuals (10% of the total sample set) not
used in the training, validation or development of the models. The set is balanced for cases/controls and males/females.
Target phenotype is Broad Depression (Howard et al., 2018). The null model uses only the covariates.
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Table 2.9: Comparison of the 2 PRS models using the SNP set containing all SNPs (998,354 SNPs) and the
Howard et al. (2019) summary statistics

Model AUC AUC Acc Acc R2 R2

Sim. Full Sim. Full Sim. Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T & LDPred2 0.5731 [0.5649 - 0.5814] 0.5777 [0.5695 - 0.586] 0.5528 [0.5452 - 0.5601] 0.5528 [0.5453 - 0.5604] 0.02216 [0.01676 - 0.02676] 0.02459 [0.01788 - 0.02882]
C+T & SBayesR 0.5731 [0.5647 - 0.5815] 0.5777 [0.5695 - 0.5859] 0.5517 [0.5441 - 0.5588] 0.553 [0.5458 - 0.5604] 0.02221 [0.01674 - 0.02698] 0.02463 [0.01787 - 0.0286]
C+T & NNPGRS 0.5738 [0.5652 - 0.5824] 0.5775 [0.5693 - 0.5856] 0.5515 [0.5443 - 0.5587] 0.5511 [0.5439 - 0.5587] 0.02319 [0.01773 - 0.02787] 0.02542 [0.01895 - 0.02951]
LDPred2 & SBayesR 0.5733 [0.5648 - 0.5816] 0.5779 [0.5694 - 0.5861] 0.5525 [0.5447 - 0.5597] 0.5529 [0.5455 - 0.5607] 0.02228 [0.0169 - 0.02701] 0.02471 [0.01801 - 0.02884]
LDPred2 & NNPGRS 0.5793 [0.5712 - 0.5877] 0.583 [0.5746 - 0.5914] 0.5562 [0.5486 - 0.5636] 0.5566 [0.5493 - 0.5645] 0.02681 [0.02103 - 0.03224] 0.02903 [0.02202 - 0.03378]
SBayesR & NNPGRS 0.5794 [0.571 - 0.5877] 0.583 [0.5747 - 0.5913] 0.5544 [0.547 - 0.5618] 0.5567 [0.5492 - 0.5643] 0.02686 [0.021 - 0.03229] 0.02907 [0.02196 - 0.03382]

Shown are the results using the metrics AUC, accuracy (Acc) and Nagelkerke R2, for both the PRS only model (sim.)
and the model using the covariates (full). Each of these models makes use of the PRS of two of the tested methods (C+T,
LDPred2, SBayesR and NNPRS). Summary statistics taken from Howard et al. (2019) are used for model development.
The test sample set is used, comprising of 17,840 individuals (10% of the total sample set) not used in the training,
validation or development of the models. The set is balanced for cases/controls and males/females. Target phenotype
is Broad Depression (Howard et al., 2018). The null model uses only the covariates.
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2.7 Discussion

All models improved on the covariate only baseline model, with SBayesR and LD-
Pred2 using the full SNP set and the meta-analysed GWAS summary statistics
from Howard et al. (2019) giving the best single model predictive performance.
NNPRS generally performed worse than C+T, potentially due to information con-
tained in the summary statistics, which NNPRS didn’t make effective use of. This
information could be important for model creation as these summary statistics use
a number of datasets for calculation.

There is a smaller difference in predictive performance between NNPRS and
the best models when using summary statistics calculated from the UKB training
set. Indeed, only when using all of the available SNPs did LDPred2 and SBayesR
outperform the best NNPRS model (which used the SNP subset with a p-value
threshold of 0.5). The more equal performance was largely due to decreases in
performance for the other methods, all 3 of these rely far more heavily on the
summary statistics than NNPRS. NNPRS only uses the summary statistics for
input/feature selection, and also dropped slightly in performance, but the decrease
was marginal in comparison.

The performance of the models trained using the UKB summary statistics
would need to be tested on a replication set to verify the relative performance
of each method. However, NNPRS’s predictive performance was more equal to
LDPred2 and SBayesR when using only UKB data. This potentially indicates that
training NNPRS on the same data as the meta analysis summary statistics used
would lead to increases in predictive performance, up to or above that delivered
by SBayesR and LDPred2.

Subsequently, if summary statistics are needed to be calculated on the available
data, NNPRS might be the stronger model. Whereas, if high quality summary
statistics are available, from unavailable genotype data, it is likely that SBayesR
and LDPred2 will be the better methods.

Predictive performance increased for all 4 methods when using the SNP subset
with a p-value threshold of 0.1 compared to the one with a 0.01 threshold, due
to the greater number of SNPs. However, the increase for NNPRS was by far the
lowest. This is likely due to stochasticity of the model, rather than a limitation of
NNPRS, as performance increased further when using the larger SNP subset with
a p-value threshold of 0.5.

The predictive performance of C+T didn’t increase when using the SNP subset
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with the largest p-value threshold of 0.5, or the whole SNP set. This is in contrast
to the other 3 methods (NNPRS was only tested with the p-value 0.5 threshold
SNP subset and not the whole SNP set), indicating that the C+T method either
struggles in extracting information from SNPs with a p-value above 0.1, or from
dealing with the extra noise from additional inputs with less association. For either
of these, the cause is likely to be from C+T being unable to account for LD or
epistasis effectively.

The weaker predictive performance of NNPRS compared to LDPred2 and
SBayesR may also be because NNPRS doesn’t explicitly model LD information,
whereas SBayesR and LDPred2 do through using a LD matrix. Extending the
NNPRS model to include a graph is one way to incorporate LD information, see
Chapter 3.

The strongest predictive performance of any of the models tested is the ensem-
ble model that includes NNPRS and SBayesR. The additional performance gained
from combining the models indicates that they are extracting different information
from the data. In particular, ensemble models including the NNPRS PRS saw the
biggest increases in performance relative to the strongest of the single PRS models
(SBayesR). This could be due to NNPRS relying more on non-linear patterns in
the data. The complex relationships in genetics might lead to ensemble modelling
being an effective process moving forward for building models with the strongest
predictive performance; because different modelling methods are effective at mod-
elling different aspects of the data, ie linear and non-linear relationships. One
method to use in future work to evaluate whether NNPRS is using non-linear re-
lationships is through a partial dependence plot (Friedman, 2001). These plots
show the marginal effect one or two features have on the predicted outcome of a
model, and can show if the relationship between these features and the target is
linear, monotonic or non-linear.

Despite matching the subsets (training, testing etc) for the covariates, there
will always be some differences between subsets of the dataset. Differences in AUC
between subsets that largely weren’t used for training or selection (for example; all
sets for C+T when using the meta analysis summary statistics, but only the vali-
dation outer and testing subsets for NNPRS) are ±0.005. In most cases, a change
in AUC of this amount is not enough to change which are the methods with the
strongest predictive performance. Notable exceptions were that NNPRS predictive
performance overlaps with the strongest methods when using the UKB training
set summary statistics, and NNPRS and C+T overlap in predictive performance
when using the meta analysis summary statistics.
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The phenotype chosen for these experiments was the broadest available. Sub-
sequently, it included a wide range of individuals, some of which would likely have
not been diagnosed using more stringent criteria. It is likely that this phenotype
still gives the highest SNP-based h2 estimates on the liability scale using Linkage
Disequilibrium Score Regression (Howard et al., 2018) due to the number of cases
available. The possibility of included cases which would not have been included
in more stringent criteria (such as International Classification of Diseases (ICD)-
coded MDD diagnosed by a medical professional) is accepted due to the modelling
of the disease as a polygenic common disease, which means a much wider number
of individuals will include some variants for MDD than those that present with the
most severe cases. However, the most severe cases would still in theory have the
greatest number of variants, and therefore present the most useful genetics, and
using these in combination with larger numbers of milder cases with some variants
is covered more in Chapter 2.8.

This increase in sample size required for finding significant hits in GWAS (as
covered in Chapter 2.4 could suggest that the findings in these cases would not be
clinically relevant in the individual case (Steele and Paulus, 2019). This is a valid
concern, and arguably is part of the greater challenge of treating polygenic and
common disease. However, as with a number of fundamental science questions,
there is still much to be gained from the knowledge, and treatment opportunities
may emerge from unexpected places. For example, there is currently an issue with
treatment resistance for MDD, and that this problem remains unresolved suggests
the underlying biology is complex and heterogenous. It is therefore possible resis-
tance is polygenic, and PRS generated from GWAS studies need only be accurate
enough to distinguish between subtypes of depression, or different diseases. Fol-
lowing a high PRS in a subtype, an alternative treatment previously known to
work (from clinical trials) for a genetically distinct subtype or disease could be
used as a first course of action. This would save the patient side effects and time
from trying other treatments. Therefore it is through combining multiple sources
of information that new opportunities emerge.

Additionally, it is important to note the difference between a function (of SNP
effect size on the phenotype) that is hard to fit due to complexity, which once
derived could be accurately used for an individual sample, and one that is hard to
fit due to noise (due to environmental factors, population genetics, stochasticity
etc), which even after deducing the noise would make an accurate use difficult in
the individual case.
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2.8 Future Work

Better Data

One extension to the work in this chapter would be to increase the amount of
data available to NNPRS. This could either come from creating richer samples, or
increasing sample size and variety. Richer samples could be created by adding sex
chromosomes, multi-omic data such epigenetics or proteomics, or increasing the
number of included genetic variants - either a greater number of SNPs or using
other variants such as copy number variants (CNVs). Increasing sample size and
variety could be achieved by adding additional datasets.

Sex chromosomes were excluded from these models due to the additional com-
plexity from needing to treat the different combinations of XY separately. How-
ever, there is likely information contained within these, due to the sex differences
present in MDD prevalence. It is possible this information is effectively fully con-
tained within the assigned sex (which is used as a covariate), but further work
would be needed to verify this. Additionally, information required for downstream
causal analysis would likely not be contained within the assigned sex variable.

While genetic data can explain a significant proportion of phenotypic variance,
a number of other factors affect biology, including processes that turn genes on
or off (epigenetics), or the chemical interactions that happen post-transcription
(metabolomics and proteomics). Modelling multi-omics should lead to increased
phenotypic variance explained . Multi-omics modelling could be implemented
either through modelling each omics separately, or together through taking each
omics as a separate input layer and concatenating the subsequent hidden layers
into a single multi-input neural network.

Particularly when the number of SNPs used in the input increased, NNPRS
often had issues with overfitting, where predictive performance on the training
set was much stronger than on the validation and testing sets. Inclusion of a
greater number of samples, as well as variety of sample, would likely help combat
overfitting. In particular, the inclusion of the other datasets that the Howard et al.
(2019) summary statistics were derived from would provide interesting future work.
With a greater number of samples, as well as more computational power and time,
further experiments could also be run with the entire QC’ed SNP set, as this set
gave the best results for LDPred2 and SBayesR.

SNPs aren’t the only genetic variants known to affect phenotypes. Another
are copy number variants (CNVs), places in the genome where DNA is repeated,
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and the number of repeats varies between individuals (Engchuan et al., 2015). By
including additional genetic variants beyond SNPs, the total heritability explained
by the dataset should increase above the SNP heritability, and so lead to increased
phenotypic variance explained.

Model Improvement

Another extension to the work is to improve the model. Improved feature selection
might use auto-encoders or feature transformations such independent component
analysis. We might also aim to make use of biological knowledge to bring about
improved performance. We could add LD information or p-values from the GWAS
summary statistics to the model. Lastly, the ensemble models provided the highest
predictive performance in this chapter, despite implementing a relatively simple
form of the concept. More complex ensemble modelling would be worth investi-
gating.

Neural networks have a strong tendency to overfit, especially with a large num-
ber of input features, as in fully connected networks the numbers of parameters
can easily reach millions. While regularisation techniques, such as dropout and
L2 weight regularisation, can control this to an extent, we can also reduce the
number of input features, and so parameters. In this chapter we used a p-value
threshold to remove SNPs. Another method used commonly in the field is clump-
ing based on LD. This wasn’t tested, however from the predictive performance of
C+T compared to SBayesR and LDPred2 it would appear unlikely that clumping
would improve performance by much as it also removes all the information of the
clumped SNPs.

Feature transformations, such as independent component analysis, aim to reor-
ganise the information contained in the inputs. Then we might be able to use fewer
transformed features without the loss of too much information. Auto-encoders
reorganise the information contained in the inputs aiming to remove redundant
information to create a reduced feature set. They aim to create a latent represen-
tation of a dataset with a smaller number of features, from which the full feature
set can be recreated. Badré et al. (2021) tested use of an auto-encoder. While
the network using the auto-encoded features didn’t beat the best performing neu-
ral network, it did achieve a stronger AUC and accuracy than a neural network
trained with a similar number of features selected using a p-value threshold.

Both of the LD matrix methods showed an increase in predictive performance
over the baseline C+T method, indicating that inclusion of a LD matrix into
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NNPRS might lead to an equilavent increase in performance. The GCN in Section
3 includes some LD information.

A way to both include additional biological information as well as reduce over-
fitting could be to apply regularisation on the first layer, using the GWAS p-value
of the input SNP. For example, those SNPs with a p-value less than 1e-05 may
have a minimal L2 penalty applied to the weights coming from that input, in con-
trast a SNP with a p-value greater than 0.1 would see the weights coming from
this SNP have a much greater L2 penalty.

The ensemble modelling done in this chapter simply adds a second PRS from
a different model to the logistic regression classifier with the covariates. There
are more involved methods of combining outputs from different predictors, such
as Bayesian model averaging (Fragoso et al., 2018), however these come with im-
plementation difficulties (Fragoso et al., 2018).

Other Work

Combining both additional data and model development, multiple phenotypes
could be tested. There are a number of ways to define the depression pheno-
type, with three discussed in Howard et al. (2018). It was found using linkage
disequilibrium score regression (LDSR) that these phenotypes shared a strong ge-
netic correlation of between 0.85 and 0.87. In addition, they also found genetic
correlation with other psychiatric disorders; all three depression phenotypes with
schizophrenia (correlation between 0.29 and 0.30), two phenotypes with bipolar
disorder (correlation of 0.33), and between broad depression and attention deficit
hyperactivity disorder (correlation of 0.36). It should be noted that some of the
correlation between broad depression and the other disorders could be from the
broad definition of this phenotype (Howard et al., 2018).

Multi-output learning has been shown to be effective in improving performance
on a specific outcome, when the outcomes are related. These related disorders
could form alternative outcomes for use in a multi-output network.

Lastly, further work could focus on further analysis of results. Badré et al.
(2021) used DeepLift (Shrikumar et al., 2017) and LIME (Ribeiro et al., 2016) to
find important features in their neural network for estimation of PRS for breast
cancer. Using these tools they identified SNPs that had insignificant p-values in
association studies, indicating potential nonlinear relationships. Using their ap-
proach with our MDD dataset could lead to identification of new SNPs or genes
involved with MDD development. The improvement in predictive performance
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from using an ensemble model which included a NNPRS PRS supports this hy-
pothesis that SNPs with insignificant p-values in association studies would be
found to be important in the NNPRS model.

2.9 Conclusion

Overall NNPRS had weaker predictive performance that the other methods tested,
in particular LDPred2 and SBayesR. This was particularly the case when LDPred2
(AUC: 0.5776, accuracy: 0.5529, Nagelkerke R2: 0.02457) and SBayesR (AUC:
0.5776, accuracy: 0.553, Nagelkerke R2: 0.02466) were able to use the better
summary statistics from Howard et al. (2019), as NNPRS (AUC: 0.5603, accuracy:
0.5443, Nagelkerke R2: 0.01566) made less use of these statistics.

However, when all models used GWAS summary statistics calculated from a
subset of UKB, NNPRS (AUC: 0.5556, accuracy: 0.537, Nagelkerke R2: 0.01344)
had comparable predictive performance to the strongest methods (SBayesR - AUC:
0.5563, accuracy: 0.5378, Nagelkerke R2: 0.01396 — LDPred2 - AUC: 0.5574,
accuracy: 0.5387, Nagelkerke R2: 0.01443).

The decrease in relative performance between NNPRS and the strongest meth-
ods came from a decrease in performance of the other methods, rather than an
increase in performance of NNPRS. This indicates the importance of the qual-
ity of the summary statistics for these methods. It also suggests that training
NNPRS with the genotypes from the data used by Howard et al. (2019) to create
the summary statistics might improve the method’s predictive performance.

The model with the strongest predictive performance was an ensemble model
that included NNPRS and SBayesR (AUC: 0.583, accuracy: 0.5567, Nagelkerke
R2: 0.02907). The results indicate that NNPRS focusses on different information
than the summary statistic based methods, and that ensemble modelling might be
lead to the creation of the PRS models with the greatest predictive performance.

These experiments were promising with regards to the potential of neural net-
works in PRS creation. Through further developing NNPRS with additional data
or an architecture more suited to the task, we would expect the model’s predictive
performance to increase, and potentially outperform SBayesR and LDPred2.



Chapter 3

Modelling Genetic Relationships
in a Graph Neural Network for
Polygenic Risk Score Calculation

3.1 Abstract

Polygenic risk scores (PRS) sum up the genetic risk of a complex disease from
a number of genetic variants across the genome. Current methods of estimating
PRS only explain a proportion of the estimated heritability from these variants.
In this project I develop a graph convolutional neural network (GCN) model for
estimation of Major Depressive Disorder PRS (GNPRS). GNPRS was compared
against NNPRS (Neural Network Polygenic Risk Scorer) developed in the previ-
ous chapter, as well as current state-of-the-art methods, including clumping and
thresholding, SBayesR and LDPred2.

Genotype data came from the UK Biobank dataset, and Genome Wide Asso-
ciation Statistics (GWAS) from Howard et al. (2019). In the test set with 50%
prevalence, the Area Under the receiver operating characteristic Curve (AUC) was
0.5776 for the strongest methods (SBayesR and LDPred2) and 0.5564 for GNPRS.

An ensemble model of NNPRS and GNPRS, with either LDPred2 or SBayesR
outperformed all other models with an AUC of 0.5834, indicating GNPRS uses
different information for the estimation of PRS compared to the other models.

Analysing the performance of the other ensemble models, GNPRS uses more
similar to information to NNPRS in comparison the summary statistic methods.

83
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The differences between GNPRS and NNPRS potentially come from the more
restricted combinations of SNPs caused by the graph layer, as well as added SNP
information to GNPRS, such as GWAS effect size.

3.2 Introduction

Major Depressive Disorder (MDD) is a psychiatric disorder which is in part caused
by genetic factors. By summing the risk from individual genetic variants we can
create a polygenic risk score (PRS). This chapter focuses on a neural network
based method, graph convolutional neural networks (GCN), to create a PRS for
MDD.

The dataset created in the previous chapter will also be used for development of
GCN. The single nucleotide polymorphism (SNP) genotypes and MDD phenotype
are from UK Biobank dataset (UKB) (Sudlow et al., 2015), and the genome wide
association study (GWAS) data is from (Howard et al., 2019). The phenotype
definition is from (Howard et al., 2018).

The GCN developed in this chapter is compared against NNPRS (Neural Net-
work Polygenic Risk Scorer) from the previous chapter, as well as the same current
state-of-the-art methods used for comparison in that chapter: high resolution C+T
(also referred to as P+T, implemented using the PRSice-2 software (Choi and
O’Reilly, 2019)), LDPred2 (Privé et al., 2020) and SBayesR (Lloyd-Jones et al.,
2019). The GCN model is called Graph Convolutional Network Polygenic Risk
Scorer (GNPRS).

All three of these current methods aggregate the effect sizes from GWAS us-
ing a selection of SNPs, and are called summary statistic methods. LDPred2 and
SBayesR apply Bayesian priors to the effect sizes and linkage disequilibrium infor-
mation. For more information on any of the above please see the previous chapter
introduction (Section 2.2).

The experiments were run using the same setup as for NNPRS, splitting the
UKB dataset into training, validation and testing sample subsets. SNP subsets
created from using p-value thresholds on the GWAS data from (Howard et al.,
2019) were also used, as well as separate experiments using the UKB training set
GWAS. Lastly, the same ensemble modelling was done, with the addition of a three
PRS model to evaluate if GNPRS and NNPRS model different information in the
genetics to each other. In the previous chapter, the ensemble model with NNPRS
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and one of either LDPred2 or SBayesR was the best model overall, indicating
NNPRS and the summary statistic methods used different information.

One of the weaknesses of NNPRS was the lack of biological information used
in creating the architecture of the model. NNPRS was able to model relationships
between any of the SNPs, which meant the model was powerful and flexible, how-
ever it led to a very strong overfitting effect. One of the factors that may have
led to the stronger performance of SBayesR and LDPred2, relative to NNPRS,
was their effective use of LD information and properties of each SNP, such as the
GWAS effect size.

Here the neural network model is extended to include a graph representation
of the SNP data. Graphs are effective at modelling pairwise relationships between
variables, such as those between SNPs. The relationships in the graph can be
directional and weighted. Biological information can be encoded in these rela-
tionships between variants, such as epistatic effects or linkage disequilibrium (see
Section 1.2.4 for more background).

In this chapter the graph is used to model the joint effects SNPs have on gene
expression. Expression quantitative trait loci (eQTL) are loci (in this case SNPs)
in the genome that change the expression of a gene. Having a different set of
SNP alleles can lead to changes in gene expression. eQTLs can be cis (the gene
the eQTL affects is nearby in the genome, normally on the same chromosome) or
trans (the affected gene is further away), and this work focuses of cis-eQTLs. The
data for the eQTLs is taken from the eQTLGen Consortium (Võsa et al., 2021).

3.3 Motivation and Introduction for Graph

Neural Networks

Graphs are an effective way of modelling network data, which is a common rep-
resentation in biology. Graph convolutional neural networks (GCNs) analyse and
learn using the graph, to model graph properties at a node, edge or graph level.
By utilising GCNs this work hopes to improve upon the performance of NNPRS in
the previous chapter by incorporating some structure for the genetic data, thereby
reducing the number of parameters in the network. Reducing the number pa-
rameters should reduce the overfitting effect, as well as direct the model towards
patterns in the data that are more likely to reflect the true underlying patterns.
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The SNP-Gene Graph

Graphs are made up of a set of nodes which represent variables, and a set of edges
which represent relationships between the variables. Each node has associated
features, and the information from nodes is propagated round the graph via the
edges. The edges can be directed, meaning information can only be propagated in
one direction, to form a directed graph, or undirected for an undirected graph.

This setup is useful for polygenic risk scoring as genetic variants (SNPs) work
in concert to create an outcome or phenotype, interacting with other variants, and
therefore can be represented as a graph. The nodes represent SNPs and the edges
represent interactions between SNPs. We can then propagate information around
the graph using convolution and a number of graph layers, updating neighbouring
SNP nodes. For example, in layer 1 node A aggregates (using a function defined
by the chosen graph layer - covered below) values from neighbouring nodes (B and
C), propagating that information to itself. Then this information (for example
from B) then provides part of the input to node A’s neighbouring nodes (including
C) in layer 2, disseminating the information from node B to more nodes.

If genes are also modelled as nodes, SNPs can be connected to genes. Therefore
SNP information is aggregated by gene nodes and can change the gene’s features,
which may represent properties such as expected expression.

The graph used in the network in this chapter has two sets of nodes, one for
SNPs and one for genes. The edges represent interactions between SNPs and genes,
and the graph doesn’t include any connections between SNPs or between genes.
The SNPs have been selected in the same way as the fully connected network, see
Section 2.5.1.

Loci in the genome which are associated with changes in expression of genes are
known as eQTLs (expression quantitative trait loci). The graph uses cis-eQTLs,
which are located on the same chromosome as the gene they are associated with
the expression of. Cis-eQTLs have been chosen as these are more likely than trans-
eQTLs (those not on the same chromosome as the gene) to not be spurious and
have a stronger effect (Westra and Franke, 2014). The functional consequences of
associated variants from GWAS (Levey et al., 2021) are investigated using eQTLS,
and therefore could be useful for the network in identifying pertinent relationships
between SNPs.

The edges of the graph represent these eQTL relationships, with each gene
connected to all SNPs which act as eQTLs on it. Subsequently, only genes that
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have a SNP eQTL in the selected SNP set are included.

Graph Convolutional Network Setup

For use with the network, the input graph can be represented as a N x D feature
matrix, where N is number of nodes and D is number of features; and an edge
index (EI) which is a 2 x E matrix detailing each edge from start to end node,
where E is number of edges. The edges can also be detailed as an adjacency matrix
of N x N, detailing which nodes have connections.

Each layer of the network is then represented as the equation H(l+1) = f(H(l),
EI), where a function is applied to the graph’s nodes and edge index to produce
the next set of graph nodes. Self-loops are normally included (a connection from a
node to itself), to ensure that when the node value is updated, its current value is
included. An example function for this equation is mean average where the mean
of all connecting nodes is used as the updated value of the node.

To achieve greater model power and flexibility than by using a simple func-
tion, such as mean average, the function can be parameterised. An example of a
common layer is the Graph Convolutional Network (GCN) layer used by Kipf and
Welling (2016). An advantage of a convolutional network is it reduces the train-
able parameters over a fully parameterised network, which helps with overfitting.
It also means the graph (nodes and edges) can change between samples without
needing to add more trainable weights, although this latter advantage won’t be
used for this project.

The GCN layer applies a transformation to the feature matrix of the neighbours
using a weight matrix W . To account for the irregular number of neighbours of
each node the product of the transformation is normalised by the degree of each
neighbour and the node being updated. The aggregation function used by the
GCN layer is sum. Finally, a bias vector is added to give the updated feature
vector of the node. For more on graph networks see Section 1.5.4.

The setup of SNP nodes only connecting to gene nodes, and vice versa, leads to
a bipartite graph. From visualising the graph in this manner we can see the simi-
larities with a layer of a fully connected network, with a number of the connections
missing. This reduced connection layer is also tested as part of a fully connected
network from the gene layer onwards, as the Reduced Connection Polygenic Risk
Score Network (RCPRSN).

RCPRSN is similar to the graph network in that it aggregates information in
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the first layer according to how the SNPs act as eQTLs, however the information
can only ever pass in one direction from SNPs nodes to gene nodes, and each
connection has it’s own weight so no convolution or shared parameters exist, in
contrast to GCN.

3.4 Related Work

Graphs (also known as networks) are used in a wide range of subfields within biol-
ogy, including omics data such genetics, epigenetics, transcriptomics or proteomics.
These graphs can be analysed in a number of ways providing useful insight, and
this section will focus on using graphs for prediction and modelling.

Graph Networks and Relationship Prediction

Zitnik et al. (2018) used GCNs to model polypharmacy side effects, by creating
a graph of protein-protein, drug-drug and protein-drug interactions. Their GCN
automatically learns representations of side effects indicative of co-occurrence of
polypharmacy in patients.

Sun et al. (2022) used GCNs identify relationships between metabolites and dis-
eases. They modelled nodes as metabolites and diseases, and edges as relationships
between metabolites-metabolites, metabolites-diseases, and diseases-diseases.

Moving outside of omics data; Mao et al. (2019) used GCNs for prediction of
medication recommendation and lab test imputation, outperforming state-of-the-
art models in both tasks. The graph was built using multiple types of medical
information including associate patients, encounters, lab tests and medications.

Graph Networks and Graph Prediction

In the same manner that genetics data is summed in polygenic risk scores, the same
treatment can be applied to phenotypic items. Cheng et al. (2022) used a GCN
for polyphenic prediction, which uses phenotypic items. The phenotypic items
used by Cheng et al. (2022) included feeling useless (not needed), a past history
of suicidality, and social isolation. They formulated their graph with patients as
nodes and the phenotypic items contained within each node for each patient. The
edges were then similarity measures between patients, forming a high risk and low
risk group for Long-Term Future Suicidality.

Luo (2022) used hypergraphs to model genetics. Hypergraphs model relation-
ships between a subset of variables rather than pair-wise relations. A hypergraph
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neural network was created and used for a number of prediction tasks, including
disease type prediction.

Graphs and Gene Expression

Võsa et al. (2018) also analysed polygenic complex traits (such as MDD) through
eQTLs, finding the expression levels of 13% of the studied genes correlated with
polygenic scores.

While not using Graph Networks, Bandres-Ciga et al. (2020) used graph anal-
ysis to study de-novo pathways in Parkinsons using transcriptomic data. Tran-
scriptomics measures the abundance of mRNA transcripts, which are the products
of gene expression.

3.5 Methods

3.5.1 Dataset and Processing

The dataset created in the previous chapter was used for these experiments (see
Section 2.5.1). However, in addition to the SNP data, GNPRS also computes gene
data and uses relationship information between SNPs and genes.

P-Value GWAS Genes SNPs LDPred2 SBayesR SBayesR
Threshold Banded Sparse ChiSQ(10)

All SNPs Howard - 998354 882537 971139 903795
0.5 Howard 15118 568676 503038 553178 514630
0.1 Howard 11353 172214 152235 167222 155613
0.01 Howard 4789 38285 33935 37080 34530
All SNPs UKB - 998354 882537 971139 903795
0.5 UKB 15121 529682 468738 515365 479551
0.1 UKB 10368 128186 113422 124479 115946

Table 3.1: Number of SNPs and Genes for each experiment, as well as SNP over-
lap with LD matrices for LDPred2 and the best performing SBayesR Matrices.
GNPRS and RNPRS use the full SNP set as input.

SNP and Gene Node Representation

SNPs are represented in the graph as nodes. For the basic graph these nodes are
a single feature representing the genotypes, using the same values as for NNPRS.
2 indicated 2 alternate alleles, 1 for 1 alternate allele, 0 for missing genotype
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information, and -1 for 2 reference alleles. For more information on this coding
please see Section 2.5.2.

Representing SNP nodes as vectors is also tested, adding additional SNP in-
formation to the genotype values: minor allele frequency and GWAS effect size.
P-value is also included in the SNP node vector; as the model could use this feature
and weight the impact of the SNP, instead of an all or nothing threshold approach
as used in the p-value SNP subsets. These SNP values are the same across indi-
viduals, and so are concatenated to the genotypes for each batch before input to
the network.

Genes are also represented as nodes in the graph. As not all the graph layers
are useable with bipartite graphs, the gene nodes are concatenated to the SNP
nodes. Accordingly, gene nodes are vectors of size equal to the size of the SNP
nodes. As there isn’t information to initialise these nodes, they are initialised as
a vector of 0s. For the number of genes in each SNP set please see Table 3.1.

Edge Index Creation

The edges of the graph are represented as an edge index matrix, of size 2 x E
where E is the number of edges. Each row in the matrix are indices; the index of
the origin node and the index destination node.

The edge index for the graph network includes connections between each gene
and its respective eQTLs, as well as self connections for each gene and SNP. The
connection to itself does mean the graph is no longer bi-partite, however it still
mostly follows the structure as no other SNPs connect to other SNPs, or genes to
other genes. The connections were tested as directed and undirected. Undirected
connections allow information to propagate back from gene nodes to SNP nodes,
thereby also enabling the transfer of information from one SNP node to another
through the gene node.

This representation avoids having to use the much sparser and memory con-
suming N x N adjacency matrix, where N is the number of nodes, as the nodes of
the graph don’t have high connectivity. In addition, the chosen library, PyTorch
Geometric, uses this representation.

3.5.2 GNPRS Setup

The graph convolutional neural network model developed to predict a PRS for
case/control depression is detailed below, and will be referred to as the Graph
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Figure 3.1: GNPRS
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This is an example graph for GNPRS. There are SNP nodes (1-5) and gene nodes
(1-2). The SNP nodes have node vectors listed above, the gene nodes are initialised
as a small random number. SNP nodes 1, 2, 3 and 4 have an edge to gene 1 due
to these SNPs behaving as an eQTL for the gene. SNPs 4 and 5 have an edge to
gene 2 for the same reason. Each node vector is updated for layer k+1 through an
aggregation of it’s neighbour’s node vectors in layer k, defined as the nodes it has
an edge to. Also depicted is the self-loop for SNP 1. This is only shown for SNP
1 so the diagram retains clarity, however this self-loop would be present for every
node. It represents that from layer k to the next (k+1), the current values of the
node vector in layer k are important for calculation of the node’s vector in the next
layer k+1.

Convolutional Neural Network Polygenic Risk Score model (GNPRS).

Model Design and Architecture

GNPRS is made up of graph layer(s) followed by a top model of linear layers.
The input layer is a graph with nodes for SNPs and genes, which are connected
using eQTL information. The number of SNPs and genes taken as input for each
experiment is shown in Table 3.1. A gene and SNP are connected if a SNP is an
eQTL for a gene. Each node also has a self-loop connection to itself. The self-loop
ensures that the current value of the node is used when calculating the new value.
For SNP nodes this is useful, as we initiate the SNP nodes with a meaningful
value. It also means that for networks with multiple graph layers, for each layer
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Figure 3.2: Reduced Connections of RNPRS
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The graph on the left (a) depicts a fully-connected network using 5 input SNPs
and 2 hidden units in the 2nd layer. All SNPs have an edge to both hidden units.
The graph on the right (b) depicts a reduced connection network. The 2 hidden
units now represent genes, and therefore (using the eQTL table) only SNPs with an
association to the gene have an edge. In this example weights w1,2, w2,2, w3,2 and
w5,1 are removed due to lack of evidence the SNP behaves as an eQTL for the gene.

the gene node aggregates more information from further afield in the network (as
the information has propagated further with each layer) representing more distant
biological interactions, adding the new information to the nodes current value each
time.

GCNConv (Kipf and Welling, 2016) was used as the graph layer for these
experiments. The equation for this layer is shown below, and for more information
on the equation see Section 1.5.4. x

(k)
i is the feature vector of the node to be

updated for the current layer k, xj are the feature vectors of the neighbours, deg
is the degree of the neighbours (j) and the node (i), W is the weight matrix, and
b is the bias.

x
(k)
i =

∑
j∈N(i)∪{i}

1√
deg(i) ·

√
deg(j)

·
(
W⊤ · x(k−1)

j

)
+ b (3.1)

Different numbers of graph layers, and number of channels were tested. The
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Figure 3.3: First Layer of RNPRS
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(b) Application of filters of 1 x M

Figure (a) shows the G x M matrix. The columns are genes, and each cell in the
column holds the allele value for a SNP. Shown are the same SNPs as in Figures
3.1 and 3.2, and this layer performs the same calculation as the first layer of the
reduction connection network in subfigure (b) of Figure 3.2. Subsequently, M is 4
as the gene connected with highest number of SNPs is gene 1 with 4 SNPs. And
G is 2 as there are 2 genes. Row 3 and 4 for gene 2 are padded as 0s as gene 2
only has 2 connected SNPs. Figure (b) shows the matrix split into separate columns
for application of the filter vectors. w1,1...w4,1 are the filter weights for gene 1, and
w4,2...w5,2 are the filter weights for gene 2. As these are separate filters for each
gene, row 1 does not need to correspond to the same SNP for gene 1 and gene 2.

number of channels is equal to the number of features for each node. The final
graph layer always had one channel, with the number of channels either being 1
through the model, or being reduced by 1 for each graph layer before the final
layer. The values in the final layer were concatenated and passed as input to the
top model.

A number of activation layers were tested including: ReLU, sigmoid, tanh and
Leaky ReLU. The negative slope of the Leaky ReLU layer was set to 0.01.

The top model architecture is setup in the same way as NNPRS (Section 2.5.2).
In addition, hyper-parameters for the whole model are set the same as for NNPRS;
batch size is set to 100 for the smaller networks, and 50 for the network trained on
the subset with the most input SNPs, the p-value 0.5 threshold set. The optimiser
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used to train is the Adam optimiser (Kingma and Ba, 2014). Early stopping is
used as described in the previous chapter (Section 2.5.2).

Weights for the linear layers were initialised using a uniform distribution, called
Xavier or Glorot initialisation (Glorot and Bengio, 2010). Samples are taken from
a uniform distribution (-a,a) where:

a = gain ∗
√

6/(fan in+ fan out)

Gain is set at 1.0, fan in is the number of units taken as input, and fan out is the
number of units output by the linear layer.

The targets for the network are the same as outlined for NNPRS, see (Section
2.5.2). Briefly, the targets are a binary 0 or 1 to signify control or case.

Regularisation and Normalisation

Dropout layers were tested on the input to the first graph layer, as well as before
the top model. The dropout rate was set to 0.5.

L2 regularisation and L1 regularisation were used, and were set separately
for the graph layers and the top model. Tested coefficients of these regularisers
included 1e-06, 1e-05, 1e-04, 1e-03, 1e-02 and 1e-01.

Batch Normalisation was tested on the input to the top model (Ioffe and
Szegedy, 2015).

3.5.3 RNPRS Setup

Reduced Connection Network (RCN)

The reduced connection network polygenic risk scorer (RNPRS) is created using
a convolution layer with a transformed 2D input, which prunes the connections
between SNPs and genes where the SNP does not act as an eQTL for the gene.
It is implemented using a convolution layer as the pruned layer for computational
memory requirements. The number of SNPs and genes taken as input for each
experiment is shown in Table 3.1.

Why a Convolution Layer is used

The most straight forward way to create the RCPRSN would be to first create a
fully connected graph with a first hidden layer size equal to the number of genes.
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This fully connected network would then be pruned of the connections between
SNPs and genes where the SNP does not act as an eQTL for the gene. However,
as the number of genes is quite large (up to the tens of thousands), and the input
in the hundred thousands the fully connected network is too large to fit in the
memory that was available. Subsequently, the first hidden layer of the RCPRSN
is instead created using a convolution layer.

2D Input Creation

For this convolution layer we need a 2D representation of the input. This input is
a 2D matrix of allele counts and is of size G x M where G is number of genes, and
M is the maximum number of SNPs associated with any of the genes. Specifically,
to compute M we find the gene which has the highest number of SNP eQTLs in
the dataset, for example if gene A has 5 SNP eQTLs, gene B has 4 SNP eQTLs
and gene C has 10 SNP eQTLs, then M would be 10. For the 13,326 gene network,
M is 427, as the highest number of SNP eQTLs for any gene is 427.

Therefore we have a matrix where each column is a gene and is filled with allele
counts of the SNPs that act as an eQTL for that gene. The filters used with the
convolution layer are 1D of size 1 x M, and therefore no convolution takes place
using more than one gene column. Additionally, every column of the matrix has
its own filter of size 1 x M, therefore there is no filter (or parameter) sharing.
Subsequently, each cell of a row of the matrix can be filled with allele counts from
different SNPs as there is no multiplication, parameter sharing, or any calculation
between cells of the same row. For genes with less than M associated SNPs, the
remaining rows are padded with zeros.

In practice each column of the matrix is multiplied by a separate weight vector
(filter of 1 x M) to output a single value which is a hidden unit of the next layer.
Once all columns have been multiplied we have a hidden layer of size G (the number
of columns), for use as input to the next fully-connected layer. It is represented
in this way solely for easy computation with the PyTorch library, no convolution
or parameter sharing takes place. Therefore it behaves in practice like the pruned
fully-connected layer previously described, without needing to create the initial
full layer to undergo pruning.

The Network

The network is implemented using the PyTorch library. The first layer is imple-
mented as a 1D convolutional layer, with input channels equal to the number of
genes, as we model each gene as a separate channel. The number of output chan-
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nels is equal to number of genes multiplied by the number of kernels (or filters)
for each gene. The kernel is a 2D filter of N x 1, where N is the highest number of
eQTLs associated with each gene. Stride is set to 1. The layer is setup for depth
wise convolution using the groups parameter, which is set to the number of input
channels (number of genes), thereby giving a separate filter for each channel or
gene.

The output of the convolution layer is a 1D vector equal to the number of genes
multiplied by the kernel number. For example, if we chose to have one kernel per
gene this would output a vector of size 13,326 for the network that includes 13,326
genes. If that network had 4 kernels per gene the output would have size 13,326
* 4 = 53,304. This output is then put through a top model created in the same
way as the one for GNPRS, giving a single output for each sample. The output of
the top model is between 0 and 1, and this is the polygenic risk score.

The targets for the network are the same as outlined for NNPRS, see (Section
2.5.2). Briefly, the targets are a binary 0 or 1 to signify control or case.

3.5.4 Evaluation

The evaluation method remains as described in Section 2.5.4.

3.6 Results

Models were tested using the simple (PRS only) and full (incl. covariates) logistic
regression models, and SNP sets with p-value thresholds of 0.5, 0.1 and 0.01, as
well as the full SNP set for the comparison models. GNPRS, RNPRS and NNPRS
weren’t trained using the full SNP set, so their respective lines in those result
tables uses their performance from the SNP set created with a p-value threshold
of 0.5. The performance metrics in the results tables are AUC, Nagelkerke R2 and
accuracy. These are shown for both the simple and full models.

Graphs showing the residual Nagelkerke R2 are also included, calculated by
subtracting the null model Nagelkerke R2 from the PRS model Nagelkerke R2.
This measure is used to estimate the phenotypic variance explained by the PRS.

The null model is included for comparison in each experiment, and has an AUC
of 0.5281, an accuracy of 0.5221 and a Nagelkerke R2 of 0.0029. All models in all
experiments outscored the null model, indicating they all successfully extracted
enough information to explain a significant amount of phenotypic variance.
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The section will focus on the performance of GNPRS and RNPRS relative to
the other methods, more detail on the performance of NNPRS, LDPred2, SBayesR
and C+T is available in Section 2.6.

3.6.1 Meta-analysis Summary Statistics Experiments

Figure 3.4: Residual Nagelkerke R2 for each model across all SNP
subsets, for the meta-analysis summary statistic experiments

All SNPs P-value < 0.5 P-value < 0.1 P-value < 0.01
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Results are for each method using each of the SNP subsets; all SNPs, SNPs with
a p-value less than 0.5 (p-value < 0.5), SNPs with a p-value less than 0.1 (p-value
< 0.1) and SNPs with a p-value less than 0.01 (p-value < 0.01). The full model
including covariates is used. Metric shown is the residual Nagelkerke R2. It is
calculated by subtracting the R2 of the null model (covariates only) from the R2 of
each of the tested models, and is an estimate of the phenotypic variance explained
by each model. Summary statistics taken from Howard et al. (2019) are used for
model development. The test sample set is used, comprising of 17,840 individuals
(10% of the total sample set) not used in the training, validation or development
of the models. The set is balanced for cases/controls and males/females. Target
phenotype is Broad Depression (Howard et al., 2018).
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Table 3.2 shows the results using the full SNP set with the meta-analysed
summary statistics (Howard et al., 2019), and will be referred to as the meta-
analysis summary statistics experiments. This SNP set includes 998,354 SNPs.
Experiments were also run using p-value thresholds of 0.5, 0.1 and 0.01 to create
filtered SNP subsets, of 568,676, 172,214 and 38,285 SNPs respectively. The results
for these experiments are shown in Tables 3.3, 3.4 and 3.5 .

Prediction performance was assessed with AUC, accuracy and Nagelkerke R2,
between observed and predicted phenotype in the test sample. The R2 for GNPRS
is 0.01401 and 0.01348 for the SNP subsets with a p-value threshold of 0.1 and
0.01, respectively. For RNPRS the R2 is 0.01562, 0.01421 and 0.01141 for the
SNP subsets with a p-value threshold of 0.5, 0.1 and 0.01, respectively. SBayesR,
LDPred2 and C+T were also tested using the full SNP set. GNPRS, RNPRS and
NNPRS performed equally well across all SNP sets and the 3 metrics, and their
deficit to LDPred2 and SBayesR was relatively large. For all SNP sets GNPRS and
RNPRS generated lower AUC, accuracy and Nagelkerke R2 than both LDPred2
and SBayesR.

As seen for NNPRS, SBayesR and LDPred2; the predictive performance of
GNPRS and RNPRS increased as the number of SNPs increased. The performance
trending up as SNPs with higher p-values are included demonstrates the ability of
SBayesR and LDPred2 to successfully incorporate LD information to adjust the
effect betas, and GNPRS, RNPRS and NNPRS to model the correlation between
the SNP inputs.

3.6.2 Ensemble Model Experiments

Models often learn different information from a dataset, and ensemble models aim
to take advantage of that by combining output from multiple models. Tables
3.6 and 3.7 show the performance for a combined PRS from two or three models
respectively. Predictive performance is reported in Nagelkerke R2.

The 2 PRS ensemble model with the best predictive performance remains the
model with the PRS from NNPRS and SBayesR (Figure 2.4), which provides a
relative performance increase of 62% over C+T, and 18% over the best single PRS
model (SBayesR). However, all of the 2 PRS ensemble models using one of the
neural networks, in addition to either SBayesR or LDPred2, also perform strongly,
with the lowest performing of these models (SBayesR and GNPRS) still delivering
a performance increase of 54% over C+T, and 12% over the best single PRS model
(SBayesR).
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Figure 3.5: Comparison of Residual Nagelkerke R2 for the single PRS
models and the 3 PRS ensemble models
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Shown is the residual Nagelkerke R2 for the single PRS models and select 3 PRS
ensemble models, using the covariates (full model). For the other ensemble models
please see Table 3.7. It was calculated by subtracting the R2 of the null model
(covariates only) from the R2 of each method, and is an estimate of the pheno-
typic variance explained by each model. The best scoring model was used for each
method, which uses the full SNP set for all methods, apart from NNPRS which
uses the SNP subset of SNPs with p-value < 0.5. Summary statistics taken from
Howard et al. (2019) are used for model development. The test sample set is used,
comprising of 17,840 individuals (10% of the total sample set) not used in the train-
ing, validation or development of the models. The set is balanced for cases/controls
and males/females. Target phenotype is Broad Depression (Howard et al., 2018).

The model with the best predictive performance overall was the 3 PRS en-
semble model using the PRS from GNPRS, NNPRS and SBayesR (Figure 3.5).
It generated a relative performance increase of 64% over C+T, and 19% over the
best single PRS model (SBayesR). However, it provided a relative predictive per-
formance increase of only 0.01% over the best 2 PRS ensemble model (NNPRS
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and SBayesR). Similar to the 2 PRS ensemble models, all the ensemble models in-
cluding two of the neural network models and one of either SBayesR or LDPred2,
consistently delivered high performance.

The performance of the ensemble models created by adding GNPRS to either of
the summary statistic based methods delivered lower performance that the equiva-
lent models using either NNPRS or RNPRS. However, the combinations of neural
network based models including GNPRS performed better than the combination
without, indicating GNPRS is more similar to NNPRS and RNPRS than the sum-
mary statistic based models, but still using different information to NNPRS and
RNPRS.

The increases in predictive performance from using the ensemble models in-
cluding only methods other than the neural network based methods were minimal.
This indicates that the information learned by the neural network based methods
is different to that from the other methods. All 3 of the other methods take as
input GWAS summary statistics, in contrast to GNPRS, RNPRS and NNPRS
which only use the summary statistics to perform feature selection. And while
LDPred2 and SBayesR both use Bayesian priors to account for multiple SNPs si-
multaneously, GNPRS, RNPRS and NNPRS combine SNPs in a number of ways
(depending on the number of hidden units), using a number of non-linearities,
particularly when using deeper architectures.

Additionally, the way the neural network based methods combine the informa-
tion from the genotypes varies between them, as GNPRS uses convolution. Some
of the GNPRS architectures also include additional information from the GWAS
such as effect size or GWAS p-value. This explains why combining GNPRS with
either NNPRS or RNPRS in an ensemble model also increases performance from
either of their single PRS models, in contrast to combining 2 of the summary
statistic methods.
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Table 3.2: Comparison of C+T, LDPred2, SBayesR, NNPRS, GNPRS and RNPRS using the SNP set containing
all SNPs (998,354 SNPs) and the meta-analysis summary statistics

Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.5612 [0.553 - 0.5695] 0.5664 [0.558 - 0.5744] 0.5438 [0.5362 - 0.5516] 0.5443 [0.5369 - 0.5514] 0.01542 [0.01086 - 0.01923] 0.0179 [0.01213 - 0.02132]
LDPred2 0.573 [0.5648 - 0.5816] 0.5776 [0.5694 - 0.5859] 0.5519 [0.5443 - 0.559] 0.5529 [0.5452 - 0.5606] 0.02214 [0.01689 - 0.02685] 0.02457 [0.01791 - 0.0288]
SBayesR Chi 0.5731 [0.5648 - 0.5815] 0.5776 [0.5695 - 0.5859] 0.5519 [0.5446 - 0.5594] 0.553 [0.5455 - 0.5607] 0.02222 [0.01681 - 0.02698] 0.02466 [0.01784 - 0.02879]
NNPGRS 0.5557 [0.5474 - 0.5642] 0.5603 [0.5518 - 0.5687] 0.5429 [0.5351 - 0.5504] 0.5443 [0.5364 - 0.552] 0.01324 [0.00876 - 0.01688] 0.01566 [0.00991 - 0.01887]
GCNPGRS 0.5512 [0.5427 - 0.5594] 0.5564 [0.5481 - 0.5648] 0.5335 [0.5255 - 0.5413] 0.5373 [0.5297 - 0.5448] 0.01167 [0.00787 - 0.01521] 0.01401 [0.00853 - 0.01694]
RCNPGRS 0.5558 [0.5475 - 0.5642] 0.5605 [0.552 - 0.5689] 0.537 [0.5295 - 0.5444] 0.543 [0.5359 - 0.5506] 0.01321 [0.00901 - 0.01683] 0.01562 [0.00979 - 0.01872]

Table 3.3: Comparison of C+T, LDPred2, SBayesR, NNPRS, GNPRS and RNPRS using the SNP set containing
SNPs with a p-value below 0.5 (568,676 SNPs) and the meta-analysis summary statistics
Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.5612 [0.553 - 0.5695] 0.5664 [0.558 - 0.5744] 0.5438 [0.5362 - 0.5516] 0.5443 [0.5369 - 0.5514] 0.01542 [0.01086 - 0.01923] 0.0179 [0.01213 - 0.02132]
LDPred2 0.5687 [0.5604 - 0.5774] 0.5738 [0.5655 - 0.5821] 0.5493 [0.5421 - 0.5566] 0.5494 [0.542 - 0.5573] 0.0195 [0.0144 - 0.02394] 0.02208 [0.01544 - 0.02589]
SBayesR Band 0.5689 [0.5605 - 0.5773] 0.574 [0.5657 - 0.5825] 0.5476 [0.5403 - 0.5548] 0.5497 [0.5419 - 0.5574] 0.01968 [0.01459 - 0.02432] 0.02228 [0.01574 - 0.02615]
NNPGRS 0.5557 [0.5474 - 0.5642] 0.5603 [0.5518 - 0.5687] 0.5429 [0.5351 - 0.5504] 0.5443 [0.5364 - 0.552] 0.01324 [0.00876 - 0.01688] 0.01566 [0.00991 - 0.01887]
GCNPGRS 0.5576 [0.5493 - 0.5659] 0.562 [0.5536 - 0.5704] 0.539 [0.5319 - 0.5467] 0.5429 [0.5358 - 0.5504] 0.01419 [0.00961 - 0.01797] 0.01654 [0.01058 - 0.01974]
RCNPGRS 0.5558 [0.5475 - 0.5642] 0.5605 [0.552 - 0.5689] 0.537 [0.5295 - 0.5444] 0.543 [0.5359 - 0.5506] 0.01321 [0.00901 - 0.01683] 0.01562 [0.00979 - 0.01872]

Shown are the results using the metrics AUC, accuracy and Nagelkerke R2, for both the PRS only model (simple) and the
model using the covariates (full). Summary statistics taken from Howard et al. (2019) are used for model development.
The test sample set is used, comprising of 17,840 individuals (10% of the total sample set) not used in the training,
validation or development of the models. The set is balanced for cases/controls and males/females. Target phenotype
is Broad Depression (Howard et al., 2018). The null model uses only the covariates.
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Table 3.4: Comparison of C+T, LDPred2, SBayesR, NNPRS, GNPRS and RNPRS using the SNP set containing
SNPs with a p-value below 0.1 (172,214 SNPs) and the meta-analysis summary statistics

Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.5629 [0.5545 - 0.5713] 0.5675 [0.559 - 0.5761] 0.5462 [0.5391 - 0.5536] 0.5487 [0.5415 - 0.556] 0.01613 [0.0115 - 0.02001] 0.0185 [0.01257 - 0.0219]
LDPred2 0.5664 [0.558 - 0.5748] 0.572 [0.5636 - 0.5806] 0.5466 [0.5388 - 0.554] 0.55 [0.5421 - 0.5575] 0.01823 [0.01304 - 0.02243] 0.0208 [0.01401 - 0.02452]
SBayesR Band 0.5667 [0.5583 - 0.5752] 0.5721 [0.5639 - 0.5805] 0.5468 [0.5394 - 0.5539] 0.5504 [0.5428 - 0.5576] 0.01832 [0.01326 - 0.02253] 0.02089 [0.01417 - 0.02445]
NNPGRS 0.5509 [0.5425 - 0.5594] 0.5574 [0.5488 - 0.5656] 0.5318 [0.5247 - 0.5391] 0.5426 [0.5355 - 0.5498] 0.01135 [0.00743 - 0.01474] 0.0138 [0.00858 - 0.01684]
GCNPGRS 0.5512 [0.5427 - 0.5594] 0.5564 [0.5481 - 0.5648] 0.5335 [0.5255 - 0.5413] 0.5373 [0.5297 - 0.5448] 0.01167 [0.00787 - 0.01521] 0.01401 [0.00853 - 0.01694]
RCNPGRS 0.5512 [0.5429 - 0.5594] 0.5563 [0.5478 - 0.5646] 0.5333 [0.5256 - 0.5406] 0.5368 [0.5292 - 0.5444] 0.01195 [0.00794 - 0.01536] 0.01421 [0.00895 - 0.01722]

Table 3.5: Comparison of C+T, LDPred2, SBayesR, NNPRS, GNPRS and RNPRS using the SNP set containing
SNPs with a p-value below 0.01 (38,285) and the meta-analysis summary statistics
Model AUC AUC Accuracy Accuracy R2 R2

Simple Full Simple Full Simple Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T 0.556 [0.5478 - 0.5643] 0.5606 [0.5523 - 0.569] 0.5392 [0.5319 - 0.5467] 0.5416 [0.534 - 0.5493] 0.01283 [0.00867 - 0.01626] 0.01513 [0.00983 - 0.01803]
LDPred2 0.56 [0.5516 - 0.5685] 0.5653 [0.5569 - 0.5738] 0.5429 [0.5353 - 0.5507] 0.5474 [0.5393 - 0.5545] 0.01467 [0.01021 - 0.01855] 0.01723 [0.01116 - 0.02038]
SBayesR Band 0.5579 [0.5494 - 0.5662] 0.5632 [0.5548 - 0.5714] 0.5399 [0.5327 - 0.5476] 0.5454 [0.5376 - 0.5521] 0.01385 [0.00941 - 0.01757] 0.01644 [0.01044 - 0.0195]
NNPGRS 0.5509 [0.5425 - 0.5593] 0.5569 [0.5485 - 0.5654] 0.5337 [0.5262 - 0.5407] 0.5426 [0.5351 - 0.5498] 0.01027 [0.0065 - 0.01344] 0.01268 [0.00738 - 0.01542]
GCNPGRS 0.5521 [0.5437 - 0.5606] 0.558 [0.5495 - 0.5665] 0.5367 [0.5288 - 0.5434] 0.5406 [0.5332 - 0.5479] 0.01108 [0.00712 - 0.01433] 0.01348 [0.00834 - 0.0162]
RCNPGRS 0.5468 [0.5383 - 0.5551] 0.5526 [0.5442 - 0.5608] 0.5314 [0.524 - 0.5387] 0.5376 [0.5306 - 0.5453] 0.00915 [0.00563 - 0.01207] 0.01141 [0.00649 - 0.0138]

Shown are the results using the metrics AUC, accuracy and Nagelkerke R2, for both the PRS only model (simple) and the
model using the covariates (full). Summary statistics taken from Howard et al. (2019) are used for model development.
The test sample set is used, comprising of 17,840 individuals (10% of the total sample set) not used in the training,
validation or development of the models. The set is balanced for cases/controls and males/females. Target phenotype
is Broad Depression (Howard et al., 2018). The null model uses only the covariates.
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Table 3.6: Comparison of the 2 PRS models using the SNP set containing all SNPs (998,354 SNPs) and the
meta-analysis summary statistics

Model AUC AUC Acc Acc R2 R2

Sim. Full Sim. Full Sim. Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T & LDPred2 0.5731 [0.5649 - 0.5814] 0.5777 [0.5695 - 0.586] 0.5528 [0.5452 - 0.5601] 0.5528 [0.5453 - 0.5604] 0.02216 [0.01676 - 0.02676] 0.02459 [0.01788 - 0.02882]
C+T & SBayesR 0.5731 [0.5647 - 0.5815] 0.5777 [0.5695 - 0.5859] 0.5517 [0.5441 - 0.5588] 0.553 [0.5458 - 0.5604] 0.02221 [0.01674 - 0.02698] 0.02463 [0.01787 - 0.0286]
C+T & NNPGRS 0.5738 [0.5652 - 0.5824] 0.5775 [0.5693 - 0.5856] 0.5515 [0.5443 - 0.5587] 0.5511 [0.5439 - 0.5587] 0.02319 [0.01773 - 0.02787] 0.02542 [0.01895 - 0.02951]
LDPred2 & SBayesR 0.5733 [0.5648 - 0.5816] 0.5779 [0.5694 - 0.5861] 0.5525 [0.5447 - 0.5597] 0.5529 [0.5455 - 0.5607] 0.02228 [0.0169 - 0.02701] 0.02471 [0.01801 - 0.02884]
LDPred2 & NNPGRS 0.5793 [0.5712 - 0.5877] 0.583 [0.5746 - 0.5914] 0.5562 [0.5486 - 0.5636] 0.5566 [0.5493 - 0.5645] 0.02681 [0.02103 - 0.03224] 0.02903 [0.02202 - 0.03378]
SBayesR & NNPGRS 0.5794 [0.571 - 0.5877] 0.583 [0.5747 - 0.5913] 0.5544 [0.547 - 0.5618] 0.5567 [0.5492 - 0.5643] 0.02686 [0.021 - 0.03229] 0.02907 [0.02196 - 0.03382]
C+T & GCNPGRS 0.5714 [0.5629 - 0.5798] 0.5755 [0.5673 - 0.5838] 0.55 [0.5428 - 0.5575] 0.553 [0.5464 - 0.5606] 0.02152 [0.0162 - 0.02644] 0.02371 [0.01724 - 0.02775]
LDPred2 & GCNPGRS 0.5776 [0.5692 - 0.586] 0.5818 [0.5735 - 0.5901] 0.552 [0.5449 - 0.5595] 0.5584 [0.5511 - 0.5658] 0.02545 [0.01973 - 0.03049] 0.02765 [0.0208 - 0.0324]
SBayesR & GCNPGRS 0.5777 [0.5693 - 0.5862] 0.5817 [0.5733 - 0.5902] 0.5507 [0.5437 - 0.558] 0.5568 [0.5493 - 0.5646] 0.02545 [0.01978 - 0.03053] 0.02764 [0.02086 - 0.03222]
NNPGRS & GCNPGRS 0.5581 [0.5496 - 0.5664] 0.5624 [0.5541 - 0.5707] 0.5399 [0.5317 - 0.5475] 0.5423 [0.5343 - 0.5499] 0.01461 [0.01 - 0.01839] 0.01693 [0.01102 - 0.02013]
C+T & RCNPGRS 0.5732 [0.5648 - 0.5815] 0.5773 [0.569 - 0.5857] 0.5499 [0.5425 - 0.5575] 0.5512 [0.5443 - 0.5585] 0.02294 [0.01757 - 0.02756] 0.02519 [0.01869 - 0.0293]
LDPred2 & RCNPGRS 0.5785 [0.5701 - 0.5868] 0.5824 [0.5739 - 0.5908] 0.5516 [0.5442 - 0.5591] 0.5534 [0.5462 - 0.561] 0.02652 [0.02071 - 0.03181] 0.02869 [0.02164 - 0.03339]
SBayesR & RCNPGRS 0.5785 [0.5701 - 0.5869] 0.5824 [0.5742 - 0.5906] 0.5529 [0.5455 - 0.5604] 0.554 [0.5465 - 0.5616] 0.02659 [0.02084 - 0.03193] 0.02874 [0.0218 - 0.03341]
NNPGRS & RCNPGRS 0.5564 [0.5478 - 0.5649] 0.5611 [0.5528 - 0.5694] 0.537 [0.5297 - 0.5448] 0.5442 [0.5371 - 0.5517] 0.01368 [0.00915 - 0.01732] 0.01604 [0.01023 - 0.01924]
GCNPGRS & RCNPGRS 0.5582 [0.5498 - 0.5666] 0.5624 [0.554 - 0.5709] 0.5393 [0.5316 - 0.5467] 0.5422 [0.5343 - 0.5494] 0.01473 [0.01014 - 0.01852] 0.01703 [0.01116 - 0.02023]

Shown are the results using the metrics AUC, accuracy (Acc) and Nagelkerke R2, for both the PRS only model (sim.)
and the model using the covariates (full). Each of these models makes use of the PRS of two of the tested methods
(C+T, LDPred2, SBayesR, NNPRS, GNPRS and RNPRS). Summary statistics taken from Howard et al. (2019) are used
for model development. The test sample set is used, comprising of 17,840 individuals (10% of the total sample set) not
used in the training, validation or development of the models. The set is balanced for cases/controls and males/females.
Target phenotype is Broad Depression (Howard et al., 2018). The null model uses only the covariates.
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Table 3.7: Comparison of the 3 PRS models using the SNP set containing all SNPs (998,354 SNPs) and the
meta-analysis summary statistics

Model AUC Acc R2

Full Full Full

Null [ - ] 0.5281 [0.5196 - 0.5365] [ - ] 0.5221 [0.5149 - 0.53] [ - ] 0.00286 [0.00012 - 0.00367]
C+T & LDPred2 & SBayesR 0.5733 [0.5649 - 0.5817] 0.5779 [0.5693 - 0.5862] 0.5535 [0.5459 - 0.5608] 0.552 [0.5446 - 0.5596] 0.02231 [0.01671 - 0.02696] 0.02473 [0.01799 - 0.02878]
C+T & LDPred2 & NNPGRS 0.5795 [0.571 - 0.5878] 0.5831 [0.5748 - 0.5915] 0.5547 [0.5474 - 0.5623] 0.5572 [0.5497 - 0.5653] 0.02691 [0.02104 - 0.03235] 0.02912 [0.022 - 0.03386]
C+T & LDPred2 & GCNPGRS 0.5777 [0.5696 - 0.5859] 0.5819 [0.5735 - 0.5901] 0.5522 [0.5452 - 0.56] 0.5587 [0.5512 - 0.5659] 0.02552 [0.01978 - 0.03055] 0.02772 [0.02078 - 0.03243]
C+T & SBayesR & NNPGRS 0.5795 [0.5714 - 0.5882] 0.5833 [0.5752 - 0.5916] 0.5547 [0.5476 - 0.562] 0.557 [0.5493 - 0.5646] 0.027 [0.02113 - 0.03235] 0.0292 [0.022 - 0.0339]
C+T & SBayesR & GCNPGRS 0.5779 [0.5695 - 0.5861] 0.5819 [0.5735 - 0.59] 0.5516 [0.5447 - 0.559] 0.5585 [0.5507 - 0.5661] 0.02556 [0.01978 - 0.03055] 0.02774 [0.02083 - 0.03229]
C+T & NNPGRS & GCNPGRS 0.5747 [0.5665 - 0.5831] 0.5784 [0.5702 - 0.5865] 0.5524 [0.5447 - 0.5596] 0.5534 [0.5461 - 0.5607] 0.02374 [0.01822 - 0.02864] 0.02592 [0.0192 - 0.0301]
LDPred2 & SBayesR & NNPGRS 0.5795 [0.5711 - 0.588] 0.5832 [0.5748 - 0.5915] 0.5563 [0.5486 - 0.5635] 0.5563 [0.5489 - 0.5642] 0.02693 [0.02103 - 0.0322] 0.02914 [0.02198 - 0.03384]
LDPred2 & SBayesR & GCNPGRS 0.5778 [0.5694 - 0.5861] 0.5819 [0.5736 - 0.5902] 0.5524 [0.5453 - 0.5599] 0.558 [0.5504 - 0.5656] 0.02554 [0.01978 - 0.03061] 0.02774 [0.0209 - 0.03241]
LDPred2 & NNPGRS & GCNPGRS 0.5798 [0.5715 - 0.5881] 0.5834 [0.5752 - 0.5916] 0.5531 [0.5456 - 0.5607] 0.5556 [0.5484 - 0.5632] 0.02706 [0.02119 - 0.03234] 0.02924 [0.02211 - 0.03393]
SBayesR & NNPGRS & GCNPGRS 0.5797 [0.5716 - 0.5883] 0.5834 [0.5752 - 0.5915] 0.5537 [0.5464 - 0.561] 0.5567 [0.5492 - 0.5644] 0.02709 [0.02114 - 0.03241] 0.02927 [0.0221 - 0.034]
C+T & LDPred2 & RCNPGRS 0.5786 [0.5704 - 0.5868] 0.5826 [0.5741 - 0.5908] 0.553 [0.5456 - 0.5607] 0.5531 [0.5461 - 0.561] 0.02662 [0.02075 - 0.03181] 0.02879 [0.02171 - 0.03335]
C+T & SBayesR & RCNPGRS 0.5787 [0.5703 - 0.5869] 0.5826 [0.5743 - 0.5909] 0.5524 [0.5451 - 0.5601] 0.5537 [0.5462 - 0.5614] 0.02672 [0.02083 - 0.03205] 0.02887 [0.02187 - 0.03346]
C+T & NNPGRS & RCNPGRS 0.574 [0.5656 - 0.5823] 0.5777 [0.5693 - 0.586] 0.5513 [0.5441 - 0.5586] 0.5531 [0.5462 - 0.5602] 0.02336 [0.01789 - 0.02803] 0.02556 [0.01891 - 0.02955]
C+T & GCNPGRS & RCNPGRS 0.5744 [0.5662 - 0.5827] 0.5782 [0.5699 - 0.5866] 0.5504 [0.5428 - 0.5577] 0.5531 [0.546 - 0.5608] 0.02364 [0.01809 - 0.02837] 0.02583 [0.01909 - 0.03002]
LDPred2 & SBayesR & RCNPGRS 0.5786 [0.5702 - 0.587] 0.5825 [0.5743 - 0.5907] 0.5533 [0.5456 - 0.5608] 0.554 [0.5465 - 0.5617] 0.02665 [0.02074 - 0.03199] 0.0288 [0.02174 - 0.03339]
LDPred2 & NNPGRS & RCNPGRS 0.5793 [0.571 - 0.5876] 0.583 [0.5748 - 0.5913] 0.5556 [0.5479 - 0.5628] 0.5561 [0.5487 - 0.5641] 0.02687 [0.02086 - 0.03211] 0.02906 [0.02187 - 0.03378]
LDPred2 & GCNPGRS & RCNPGRS 0.5791 [0.5707 - 0.5875] 0.583 [0.5746 - 0.5911] 0.5541 [0.5465 - 0.5611] 0.5571 [0.5495 - 0.5643] 0.02688 [0.021 - 0.03207] 0.02902 [0.02191 - 0.03361]
SBayesR & NNPGRS & RCNPGRS 0.5793 [0.5709 - 0.5876] 0.583 [0.5749 - 0.5912] 0.5536 [0.5461 - 0.561] 0.5568 [0.5493 - 0.5643] 0.02693 [0.02103 - 0.03221] 0.0291 [0.02193 - 0.03382]
SBayesR & GCNPGRS & RCNPGRS 0.5791 [0.5706 - 0.5873] 0.583 [0.5748 - 0.5912] 0.5537 [0.5465 - 0.5614] 0.5577 [0.55 - 0.5651] 0.02693 [0.02102 - 0.03222] 0.02905 [0.02197 - 0.03373]
NNPGRS & GCNPGRS & RCNPGRS 0.5586 [0.5502 - 0.567] 0.5628 [0.5543 - 0.5712] 0.5401 [0.5327 - 0.5475] 0.5424 [0.5341 - 0.5495] 0.01489 [0.01008 - 0.01868] 0.01717 [0.01119 - 0.0203]

Shown are the results using the metrics AUC, accuracy (Acc) and Nagelkerke R2, for both the PRS only model (sim.)
and the model using the covariates (full). Each of these models makes use of the PRS of three of the tested methods
(C+T, LDPred2, SBayesR, NNPRS, GNPRS and RNPRS). Summary statistics taken from Howard et al. (2019) are used
for model development. The test sample set is used, comprising of 17,840 individuals (10% of the total sample set) not
used in the training, validation or development of the models. The set is balanced for cases/controls and males/females.
Target phenotype is Broad Depression (Howard et al., 2018). The null model uses only the covariates.



CHAPTER 3. MODELLING GENETIC RELATIONSHIPS IN A GNN 105

3.7 Discussion

For more discussion on the performance of NNPRS, LDPred2, SBayesR and C+T
please see Section 2.7. Here we will discuss performance of these methods relative
to GNPRS.

Overall GNPRS performed very similarly to NNPRS, placing the method be-
hind LDPred2 and SBayesR. The addition of additional SNP data didn’t appear
to have a large effect on network performance, potentially due to the way it was
added.

There are likely different architectures that would perform more effectively, due
to the number of ways the model can be set up, and these should be a focus of
future work. Running the network with a larger SNP set will require more time
and/or computing power, but with the correct regularisation this too should see a
performance increase for GNPRS.

Ensemble Modelling

Adding GNPRS to the previous best ensemble model from the previous chapter,
of NNPRS and one of either LDPred2 or SBayesR, gave the best performance of
the 3 PRS ensemble models. However, the difference in performance between this
model and the other 3 PRS models that included NNPRS, one of the Bayesian
summary statistics models (LDPred2 or SBayesR), and one other model was negli-
gible. Potentially further optimisation of GNPRS may see this advantage increase.
Additionally, the performance increase from the addition of the third PRS to the
ensemble model had a smaller effect than the addition of the second PRS.

Looking at the 2 PRS ensemble model performance; the biggest increases in
performance from the single PRS models came from combining the NN based
methods with C+T. The ensemble model from combining these two methods gave
performance on par with the strongest single PRS based models (SBayesR and
LDPred2).

The large increase of this ensemble model could be that the two methods pri-
marily utilise different aspects of the data (genotypes for the NN based methods,
summary statistics for C+T) in the model building. However it shows the po-
tential, where genotypes aren’t available for all samples, of a combination of NN
based and summary statistic based methods. This is further reinforced by the also
significant performance increase from combining NN based methods with either of
the Bayesian summary statistic methods, LDPred2 or SBayesR.
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Other Discussion Points

GNPRS performed better on the test set using the using the p-value 0.01 SNP
set than using the p-value 0.1 SNP set, in contrast to the other methods. This
unusual performance may be explained by unusual differences in the sample set
properties, as performance of GNPRS on the validation outer sample subset was
more consistent with the other methods (the GNPRS model trained using the p-
value 0.1 set scored higher in performance metrics than the GNPRS model trained
using the p-value 0.01 SNP set).

This indicates the sample set properties were an influence in the weaker perfor-
mance of GNPRS relative to NNPRS (using AUC), as well as to the GNPRS model
trained using the p-value 0.01 SNP set. It also generated more similar predictive
performance using the validation outer sample set relative to the summary statis-
tic methods (also evaluated using the validation outer sample set), however the
performance order did not change. In summary, these performance patterns indi-
cate differences in sample set can change model performance, however not enough
to change the overall results.

The similarity in performance between GNPRS and NNPRS might come from
the fact that the best performing GNPRS variations were the ones with a smaller
graph component. This could be due the difficultly in finding an efficient archi-
tecture, and is discussed further in Section 3.8. A promising avenue could be
incorporating ensemble modelling into the training process, effectively selecting
the GNPRS architecture that adds the most to NNPRS. This would be done in
the same way that the training process currently selects for the architecture that
adds the most performance on top of the covariates.

3.8 Future Work

Better Data

The improvements to the dataset outlined in the previous chapter; adding sex
chromosomes, more datasets and other omics data, would also bring improvements
to GNPRS and RNPRS (see Section 2.8). In addition to these, GNPRS can also
be extended through adding new relationship types between the SNPs and genes,
adding another node category such as gene pathways, or increasing the size of the
existing vectors for the nodes (SNPs and genes) or edges (eQTL relationships).

Adding more relationships to the model would happen through the adding of
additional edges. These relationships could be trans-eQTLs, linkage equilibrium
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based connections between SNPs, or some other biological link between SNPs or
genes.

A third node category of gene pathways would create another level of hierar-
chy in the model, SNPs to genes to gene pathways, deepening the graph network.
Subsequently, a two layer network could propagate information through this hier-
archy, extending the concept of using biological knowledge to create the edges in
the neural network.

In this work the nodes were treated as vectors, but the edges as unweighted
connections between the nodes. The graph can be extended to use weighted edges
with some graph layers, meaning we could put the strength of the association or
confidence of an eQTL as the edge weight.

For a smaller subset of graph layers weighted edges can be vectors, allowing
further information to be included, potentially allowing both association and con-
fidence statistics to be used simultaneously. There are also other SNP attributes
that weren’t tested in the work, that could be used to extend the node (SNP)
vector such as the LD score computed by LDPred2.

GNPRS Model Development

To improve the model GNPRS there a number of variations and extensions that
could be tested. A number of other graph layers are available, as well as pooling
layers. On top of that there exists a number of architectures which concatenate
the output of multiple layers creating a skip connection (He et al., 2016), or select
only a selection of nodes to propagate information from into the next layer.

Examples of graph layers other than the GCNConv (Kipf and Welling, 2016)
layer used in this chapter, include GINConv (Xu et al., 2018) or GraphConv (Mor-
ris et al., 2018). These are variations on the same basic update, message passing
and aggregation framework. Pooling layers could also be added to the model,
however many implementations of these need each node to be included in a single
cluster which doesn’t immediately fit within the current setup, where each SNP
may belong to many gene clusters.

Skip connections are places in the network where the output of an earlier layer
is concatenated to a later layer, thereby allowing information from that earlier layer
to skip the intermediary layers. An graph network architecture that concatenates
each graph layer output from networks with multiple graph layers would lead to a
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very large input to the top model, so a selection method for nodes would probably
be needed.

This could be just selecting the gene nodes, as these will have aggregated
information from most of the SNPs, or a chosen top percentage of nodes, such as
the top 20% of nodes ranked by highest value. Zhang et al. (2018) and Gao and
Ji (2019) both made use of skip connections in Graph Networks, with Zhang et al.
(2018) designing a sorting layer for node pooling, and Gao and Ji (2019) designing
a a pooling layer which selects nodes to form a smaller graph based on the node’s
scalar projection values on a trainable projection vector.

RNPRS Model Development

The RNPRS network is a effectively a middle ground between NNPRS and GN-
PRS, and accordingly can be extended using a variety of methods covered for
these two networks. Specifically, new connections could be added between SNPs
and genes, or the SNP node vectors used with GNPRS could be added to RNPRS
through use of the additional dimension of a 2D convolution layer.

3.9 Conclusion

Overall, GNPRS didn’t significantly improve upon the performance of NNPRS.
Subsequently, the two most effective methods remained SBayesR and LDPred2.

However, ensemble modelling continued to be the best way to extract maximum
performance from the dataset, with the 3 PRS model including NNPRS, GNPRS
and one of LDPred2 or SBayesR giving the best performance overall. While the
biggest improvements came from modelling one of the NN based methods with one
of the summary statistic based methods, using a PRS from GNPRS in addition to
NNPRS also increased performance by a small margin.

GNPRS is as a base architecture has a large scope for further extensions. Sub-
sequently, further work should focus on different architectures, such as different
graph layers or use of pooling layers.

In addition to new graph architectures, using different datasets, both increasing
sample numbers and variety of samples, should lead to better performance. Using
richer samples, adding other omics data such as epigenetics or proteomics, would
be another promising avenue.
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Lastly, the use of eQTL data to provide connections in the network may not be
the most important or biologically relevant method of defining the graph. Using
other gene ontology domains, genomic location or LD information may lead to
increased performance. Additionally, using a binary inclusion or exclusion of the
relationships may be too simplistic given the wide variation in confidence. A
weighted edge, or graph layers that can add or remove edges, may represent the
relationships more pertinently.



Chapter 4

Comparison of Rule-Based and
Neural Network Models for
Negation Detection in Radiology
Reports

4.1 Paper Introduction

The genetic contribution to risk of developing MDD is estimated to be around 37%
(Sullivan et al., 2000). Therefore to analyse the risk from causes other than genet-
ics, other data sources outside of genetics are needed. Brain abnormalities such as
small vessel disease or changes in brain volumes have been linked to MDD (Aström
et al., 1993; Hackett and Pickles, 2014; Schmaal et al., 2016, 2017; Rensma et al.,
2018), and can be identified in brain radiology scans. To enable analysis of risk
factors present in scans it is important to have structured data. Radiology scans
are often annotated by medical experts in a free text report, and a subtask needed
to extract structured data from free text is negation detection. Negation detec-
tion describes task of identifying if a mention of an entity is positive, indicating
presence in the scan in this case, or negative.

This chapter investigates the use of rule-based and artificial neural network
models for negation detection in brain radiology reports. In total, 1,692 reports
were used for development and testing, 630 from Edinburgh Stroke Study (ESS)
and 1,062 from National Health Service Tayside. The performance of the models
were marked against a gold standard annotation by subject experts.

110
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The study has been summarised in a manuscript entitled, “Comparison of Rule-
Based and Neural Network Models for Negation Detection in Radiology Reports”,
which was published in Natural Language Engineering, in Volume 27 Issue 2.

The work in this paper that was my own included development of BiLSTM-
Neg; as well as the adaption and implementation of pyConText and NegBio. It
also included the analysis, evaluation and comparison of the results of each model,
and writing the manuscript with the exception of Section 4.6.1, Negation Analysis.
The analysis for Section 4.6.1 Negation Analysis, and the development and testing
of the models FFNN-Neg and EdIE-R-Neg were done by my co-authors.

4.2 Abstract

Using natural language processing it is possible to extract structured information
from raw text in the Electronic Health Record (EHR) at reasonably high accuracy.
However, the accurate distinction between negated and non-negated mentions of
clinical terms remains a challenge. EHR text includes cases where diseases are
stated not to be present or only hypothesised, meaning a disease can be mentioned
in a report when it is not being reported as present. This makes tasks such as
document classification and summarisation more difficult.

We have developed the rule-based EdIE-R-Neg, part of an existing text mining
pipeline called EdIE-R (Edinburgh Information Extraction for Radiology reports),
developed to process brain imaging reports,1 and two machine learning approaches;
one using a bidirectional long short-term memory network and another using a
feedforward neural network. These were developed on data from the Edinburgh
Stroke Study, and tested on data from routine reports from NHS Tayside (Tayside).
Both datasets consist of written reports from medical scans.

These models are compared with two existing rule-based models; pyConText
(Harkema et al., 2009), a python implementation of a generalisation of NegEx,
and NegBio (Peng et al., 2017), which identifies negation scopes through patterns
applied to a syntactic representation of the sentence. On both the test set of
the dataset from which our models were developed, as well as the largely similar
Tayside test set, the neural network models and our custom-built rule-based system
outperformed the existing methods.

EdIE-R-Neg scored highest on F1 score, particularly on the test set of the
Tayside dataset, from which no development data was used in these experiments,

1https://www.ltg.ed.ac.uk/software/edie-r/

https://www.ltg.ed.ac.uk/software/edie-r/
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showing the power of custom-built rule-based systems for negation detection on
datasets of this size.

The performance gap of the machine learning models to EdIE-R-Neg on the
Tayside test set was reduced through adding development Tayside data into the
ESS training set, demonstrating the adaptability of the neural network models.

4.3 Introduction

The goal of natural language processing (NLP) is to analyse and understand text
data automatically. Negation detection is a sub-problem within NLP that consists
of identifying negation cues and their scopes. For our objectives, we treat negation
detection as assertion of whether the entity in question is present or absent, where
ambiguous cases are treated as absent. Entities are key terms, such as disease
names, and location or time modifiers of those diseases. For example, in the
excerpt “there was no tumour present. The same is true for atrophy but there is
evidence of an acute ischaemic stroke”, both tumour and atrophy are negated and
ischaemic stroke is not. Acute is a time modifier and is also not negated as it
refers to the non-negated ischaemic stroke.

We apply negation detection to the analysis of radiology reports, written natu-
ral language text describing findings and observations of medical health profession-
als. We used the Edinburgh Stroke Study (ESS) and the National Health Service
Tayside (Tayside) datasets, which both consist of reports of radiology scans of
the brain. Our entities on which we do negation detection are names of diseases,
the anatomical location of the disease, and whether development of the disease is
recent or old. Due to the sensitivity of the data, we provide a realistic synthetic
example of a radiology report in Figure 4.1, where negated entity annotations are
crossed out.

The work presented here is part of an MRC Mental Health Data Pathfinder
project on linking data extracted from brain imaging reports to EHR data on men-
tal health with the aim to study correlations between physical and mental health
in the Generation Scotland cohort.2 One aim of the NLP work in this Pathfinder
project is to label radiology reports with an indication of what was observed by the
radiologist, such as disease type, location of the disease and whether the disease is
recent or old. This is a text mining task involving named entity recognition, nega-
tion detection, relation extraction and document classification. We are developing

2https://www.ed.ac.uk/generation-scotland

https://www.ed.ac.uk/generation-scotland
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Figure 4.1: An example of a synthetic yet realistic brain imaging report with
disease entity, modifier, negation, relation and label annotations created for the
ESS and Tayside datasets. Manual annotation used for development, training and
evaluation were conducted using the Brat annotation tool (Stenetorp et al., 2012).

a rule-based system called EdIE-R (Edinburgh Information Extraction for Radi-
ology Reports) containing these four processing components (Alex et al., 2019).
We are also experimenting with machine learning alternatives for each component
making use of neural networks. We have previously presented a method compari-
son for the named entity recognition step (Gorinski et al., 2019), and showed that
it is difficult to outperform a rule-based system specifically designed for recognising
named entities in brain imaging reports.

In this paper we focus on the negation detection step. We assume that the
disease entity and modifier spans are known and compare each model’s ability
to predict on the unseen test sets whether these disease entity and modifiers are
negated or not. We also provide an analysis of negation in our data. We compare
three rule-based methods and two based on neural networks:

• pyConText, a rule-based negation detection tool which is available as a
Python implementation of ConText, a variation of the widely used NegEx
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algorithm (see Section 4.7.1),

• NegBio, a rule-based tool for negation and uncertainty detection in clinical
texts (see Section 4.7.1),

• EdIE-R-Neg, a rule-based negation detection component in EdIE-R which
was specifically developed for analysing brain imaging reports (see Section 4.7.2),

• FFNN-Neg, a feedforward neural network trained on brain imaging reports
for negation detection (see Section 4.7.4), and

• BiLSTM-Neg, a bidirectional recurrent neural network trained on brain imag-
ing reports for negation detection (see Section 4.7.5).

For each approach, we report overall negation detection results and provide
analysis where performance varied by entity type and sub-type.

Our models are developed, trained and tested on two datasets of radiology
reports from the Edinburgh Stroke Study (ESS; n=630) (Jackson et al., 2008) and
NHS Tayside (Tayside, n=1,062). These were manually annotated for 12 named
entity types and 4 modifiers. Training and development was largely done on the
development subset of the ESS dataset, and evaluation was carried out on unseen
test subsets of both.

To test generalisation and the effectiveness of porting our models to similar
datasets, we ran cross-training experiments on the machine learning models, eval-
uating whether introduction of parts of the Tayside development data into the
training set (transfer learning (Pratt et al., 1991)), increased performance on the
Tayside test set.

The experiments described in this paper are preceded by a corpus analysis to
illustrate the nature of negation cues in such data. From the corpus analysis we
discover that the negation detection task as we frame is relatively straightforward,
due to factors such as not needing to identify scope, and treating uncertain cases
as negative. In addition, negation patterns in radiology reports are known to be
more simple than in other documents. We treat negation as a binary classification
or assertion of definite presence of medical entities (presence vs. non-presence),
as is often done in clinical NLP. This application is different to how negation is
generally conceptualised in linguistics literature. It was chosen due to the wider
project aims of document classification and labelling radiology reports with an
indication of what was observed by the radiologist, for which binary classification
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is more useful than other approaches that focus on identifying scope or ambiguous
cases. That this conceptualisation makes the task less complex is evidenced by
the high F1 scores of our models.

4.4 Motivation for using Neural Networks for

Negation Detection

Rule-based NLP models are often employed for information extraction and la-
belling of raw text documents, particularly in the medical field where labelled
training data is often sparse or non-existent (e.g. see examples in Pons et al.
(2016)). As we initially had no annotated data available for the purpose of text
mining brain imaging reports, the rule-based EdIE-R system was developed as a
starting point. In parallel with writing rules for EdIE-R, data from the Edinburgh
Stroke Study and NHS Tayside was annotated manually by domain experts to
create gold standard data for evaluation.

The annotated datasets, which we now have available and are used for the
experiments presented here, amount to over 1,600 reports containing over 13,000
entity annotations in total. This means that the use of machine learning, and
in particular neural networks, becomes more viable. Rule-based systems, while
highly effective, are time consuming to set up and can sometimes translate poorly
between datasets. In this paper we show that an effective neural network can give
near equivalent performance when used for negation detection. Once an effective
neural network model has been found we would expect it to have the benefit of
being quicker to adapt to new datasets that differ more greatly than the two
analysed here, as hyperparameters and architecture should translate reasonably
between datasets meaning only fine-tuning is necessary.

In addition to the rule-based model, we have therefore developed neural net-
work models which learn to detect negation by capturing negation patterns in the
annotated data. In both cases we treat negation detection as binary classification
limiting our predictions to entity tokens, the spans of which we assume are al-
ready known. Here we test two neural network architectures, a feedforward neural
network (FFNN) and a bidirectional long short-term memory (BiLSTM) neural
network.

Similar to previous work (Fancellu et al., 2016), we begin our investigation
using a feedforward network as a baseline neural network model. Apart from
being a simpler and faster model to train than BiLSTMs, using a feedforward
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network is appealing as controlling the amount of surrounding context used to
predict negation is achieved easily. While BiLSTMs are more powerful models
that can learn what salient information to store in their internal state, we assume
they may need more data to do so. Therefore, truncating the input for use with a
feedforward network may be beneficial in a low resource setting. In their related
work on negation scope detection, Fancellu et al. (2016) used window sizes of 9
and 15 tokens, as for their English literature datasets, it was found that 95% of
words in the negation scope occurred within a window of 9 tokens to the left and
15 to the right of the negation cue. As we shall see in Section 4.6.1, in the ESS
radiology report dataset the context window containing the negation cues most
useful for negation detection is skewed to the left, but also has tails that taper off
at similar distances from the negated token, 15 tokens to the left and 10 to the
right.

LSTMs (Hochreiter and Schmidhuber, 1997), the second type of neural network
approach evaluated here, are recurrent neural networks (RNNs). RNNs are often
employed in NLP tasks due to their effectiveness at modelling sequences of arbi-
trary length. This makes them in theory able to take advantage of long distance
dependencies in the input, which would be impossible to capture with any finite
window feedforward or convolutional neural network. However, traditional RNNs
were demonstrated to suffer from exploding/vanishing gradients (Bengio et al.,
1994), an issue that impedes learning and limits the effective maximum distance
of dependencies that can be learned in practice.

LSTMs are an augmented RNN architecture that ameliorates the exploding/vanishing
gradients issue through use of an internal gating system. The gating system con-
trols the flow of information to and from the hidden state/memory of the net-
work, demonstrably improving its ability to capture distant dependencies. BiL-
STMs (Graves and Schmidhuber, 2005) are a further extension to the LSTM model
that take into account both the left and the right context of an input when con-
structing its representation. This property is very important for negation detec-
tion, as negation cues can precede or succeed a target word in our dataset, as we
will show when analysing negation cue patterns in Section 4.6.1.

4.5 Related Work

A popular approach for Negation Detection is the use of regular expressions, such
as NegEx (Chapman et al., 2001) which is often considered as a benchmark. This
type of approach works by matching patterns that indicate negation. To increase
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performance NegEx also filters out sentences that appear to be falsely negated and
sets limits to the scope of negation phrases.

While the original implementation of NegEx limited scope by number of words,
an improved version called ConText increased scope to the entire sentence and in
addition to predicting negation scopes, can also predict other contextual proper-
ties of clinical conditions such as whether the disease is historical or hypothetical
(Harkema et al., 2009).

Variations of NegEx have been applied by multiple teams to the medical domain
(Harkema et al., 2009; Cornegruta et al., 2016; Horng et al., 2017). Subsequently,
we use a Python implementation (pyConText) of the ConText algorithm as the
first baseline for our experiments.

Another early method involving the development of a set of rules for recognising
negation patterns in text involved a lexical scanner followed by a parser that uses
a restricted subset of context-free grammars called LALR(1) grammars (Mutalik
et al., 2001). This and the regular expression model are both relatively simple
approaches, but nonetheless capture a large number of negations in the text and
work effectively when compared with classification based approaches (Goryachev
et al., 2006).

Regular expression based methods such as those used in NegEx have been ex-
panded upon more by introducing a grammatical parser (Huang and Lowe, 2007).
This method successfully addresses the issue of negation cue phrases being more
than a few words from the entity they negate, where they would fall out of the
scope of methods that only use regular expressions. Another method, DEEPEN
(Mehrabi et al., 2015), uses a dependency parser to also improve upon results from
NegEx.

NegBio (Peng et al., 2017) is a more recent method developed for radiology re-
ports that makes use of a dependency parser, removing the scope limitation of the
simpler methods through utilisation of universal dependencies for pattern defini-
tion and sub-graph matching for graph traversal search. This use of a dependency
parser resulted in an improvement over NegEx of 5.1% in F1 Score, and it has also
been used in development of a chest X-ray database (Wang et al., 2017). We use
NegBio as our second baseline algorithm.

Previous attempts to use a machine learning approach in place of rule-based
systems have focused around more traditional machine learning methods, including
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Support Vector Machines (SVM) (Cruz et al., 2017). A system trained on an
opinion mining corpus used SVMs for negation cue and negation scope detection
as two distinct sub-problems, as was common with the rule-based methods (Cruz
et al., 2017).

We present experiments using two neural network approaches for negation de-
tection, one of them using a bidirectional LSTM architecture. A similar method
has been used for negation detection in Electroencephalography Reports (Taylor
and Harabagiu, 2018). Another approach that made use of LSTMs as well as
a deep rectified linear network also used multi-task learning for tasks including
negation detection in EEG reports, achieving promising results (Maldonado et al.,
2017).

In the radiology report domain, Cornegruta et al. (2016) also used a bidirec-
tional LSTM approach for mention extraction and negation detection in a corpus of
chest X-ray reports. Their bidirectional LSTM model significantly outperformed
a rule-based system that used ontology dictionary lookups (RadLex, MeSH) in
addition to fuzzy matching through string similarity measures. However, for nega-
tion detection a NegEx variant that leveraged Stanford CoreNLP (Manning et al.,
2014) to strip sentences of all words not held together by negation and conjunction
dependency arcs outperformed the syntax-unaware implementation of NegEx, as
well as the BiLSTM model which also does not make use of syntax.

Most recently, Peng et al. (2019) reported on a method to predict relevant,
irrelevant and uncertain mentions of lesions in radiology reports. While this task
is different to negation detection, there is some overlap since uncertain mentions
may be expressed using negation cues. They train a self-attention convolutional
network on sentences and post-process its output using a rule-based system. They
report that their rule-based system has very high precision but low recall, and
they therefore demonstrate that using it as an additional filter on the output is
beneficial.

The main contribution of the work presented here is a comparison of three rule-
based approaches to two neural network based approaches for negation detection
in brain imaging reports. BiLSTMs have been applied and evaluated previously
for this task on radiology reports of chest X-rays but not for brain images, which
differ in aspects such as annotation guidelines, named entity characteristics, and
lexical and syntactic context, which can cause changes in performance (Wu et al.,
2014). Our experiments were conducted using significantly less training data than
previous work but the results are nevertheless promising. We also present a corpus
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analysis of negation cues in our data which guided model development.

4.6 Datasets

In this paper, we present experiments on negation detection using different ap-
proaches developed, trained and evaluated on Scottish radiology reports from two
sources (Edinburgh Stroke Study (ESS) and Tayside). While the ESS data consists
of anonymised radiology reports from brain CT and MRI scans conducted as part
of the Edinburgh Stroke Study (n=1,168), the Tayside data is a subset of reports
for routine CT and MRI scans created in National Health Service (NHS) Tayside
(n=156,619).

From each collection, a subset of reports (ESS: n=630, Tayside: n=1,062)
was manually annotated by domain experts (a neuroradiologist and a neurologist)
using the brat annotation tool (Stenetorp et al., 2012). The manual annotation
consists of the labels, entities, modifiers, negation and relation mark-up illustrated
in Figure 4.1.

Tayside data was received in parts, with development data being taken from
the first part received and selected to match keywords for our target entities such
as bleed and haemorrhage, as these are low frequency in routine reports. The
Tayside test set was taken from the fourth part, and was selected at random to
produce a dataset with a distribution of entities that is more representative of the
data we would expect to see in future. Though the parts were expected to be
consistent in entity distribution, they varied, and this in addition to the selection
criteria led to differences in disease entity distributions between the development
and test data, as seen in Table 4.2.

The difference in the data (hospital-based register in the case of ESS versus
routine scans in the case of Tayside) becomes apparent in the number of tokens,
sentences and entities in each dataset. ESS contains more annotated entities than
Tayside, while Tayside contains a lot more tokens, but not sentences, than ESS.
This suggests that the radiologists writing the Tayside reports used longer sen-
tences. Because the Tayside data is not specific to stroke and tumour patients, it
is not surprising that the number of entities annotated in them is lower.

As can be seen, entities include two types: disease observations and modifiers.
The full set of disease observations are: atrophy, haemorrhagic stroke, haemor-
rhagic transformation, ischaemic stroke, meningioma (mening tumour), metastatic
tumour (metast tumour), microhaemorrhage, small vessel disease, stroke, sub-
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arachnoid haemorrhage, subdural haematoma and tumour. Modifiers designate a
time or anatomical location for the disease and are further split into these two
sub-types. Location can be cortical or deep, and time can be recent or old. Word
tokens in a report can be associated with either a disease observation, a modifier
or both, and all modifiers are associated with a disease via a relation. All entities
appear with either a negated or non-negated annotation in the data. We note
that we only annotate negation on entity and modifier annotations and therefore
a token that is not an entity or modifier cannot be marked as negated.

There are many cases where the language expresses uncertainty rather than a
clear positive/negative decision. For example, “it is not possible to exclude a small
acute focal infarct”, while containing an overt negation cue word, is non-committal
as to the presence of an infarct. Furthermore, sentences with no overt negation cue
may also be non-committal, e.g. “a small acute or subacute infarct may be missed”.
In these cases the annotators were instructed to mark the entities as negated since
the clinician has not clearly affirmed their presence, treating negation as assertion
of whether the entity is definitely present or not. This treatment of negation is
chosen due to our overall project objectives.

The annotation scheme was developed iteratively over a first tranch of the ESS
development data with the annotators correcting the output of an early version
of the EdIE-R rule-based system. This tranch of data (123 reports) was doubly
annotated, inter-annotator agreement (IAA) was monitored and the annotators
discussed and reconciled differences to create a jointly-agreed initial dataset. This
dataset was used to refine the rules in EdIE-R, which in turn fed into subsequent
rounds of annotation. The remainder of the ESS development set was singly
annotated, but the entire ESS test set (266 reports) was doubly annotated and
IAA measured using precision, recall and F1 score. All of the Tayside data was
subsequently singly annotated apart from the last 100 reports in the test set, which
were doubly annotated to monitor IAA.

Since we only annotated negation for annotated entities, we cannot report
IAA for negation and entities independently. We therefore report IAA for entities
and negation combined. Since we are effectively computing IAA for named entity
recognition with twice as many entity types, we report F1-score (Hripcsak and
Rothschild, 2005). The combined NER and negation IAA F1 score on the ESS
test set was 96.52 and 95.52 for Tayside. In order to get an additional estimate
of IAA for negation detection, we can isolate negation scores for all entities the
annotators agreed on. In this case we report Cohen’s kappa (Cohen, 1960) since we
are effectively reporting agreement on binary classification, albeit on a subset of
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all entities. The negation IAA was κ = 99.18 for ESS and κ = 100.00 for Tayside,
which equate to almost perfect and perfect agreement respectively.

Table 4.1 lists the numbers of reports, sentences and words for each dataset,
as well as total number of entities, disease entities and modifiers. The annotated
reports in the ESS dataset were split into a development set (364 reports and 4,332
entities), and an unseen test set (266 reports and 2,924 entities). The Tayside
data was split in a similar way (362 reports for development and 700 reports
for evaluation). Rules were designed using the development portion of the ESS
dataset.

For our neural network approaches we use 80% of the ESS development doc-
uments for training our models and the remaining 20% of the ESS development
documents as a validation set to choose the best hyperparameters for our models.
Transfer learning where model weights trained on one dataset are used for another
is an increasing focus in NLP (Mou et al., 2016), as well as machine learning as a
whole, and we also ran transfer learning based experiments incorporating portions
of the Tayside development documents into our training set for the neural networks,
to evaluate adaptation to a novel dataset from that used for hyperparameter se-
lection and training. We chose to train primarily on the ESS development data to
allow comparison with the rule-based model. We then reported the performance
of each of our models on both unseen test sets. The subsets of each dataset (ESS
and Tayside) are as follows:

• Development data, the part of the datasets that is used for development of
the rule-based system, and for the training process (training and hyperpa-
rameter selection) of the machine learning models. The development data
encompasses both the training and validation data used by the machine
learning algorithms,

• Training data, the part of the datasets that is used to train the machine
learning models,

• Validation data, the part of the datasets used for hyperparameter selection
for the machine learning approaches, and

• Test data, the part of the datasets that remains completely unseen by the
models until test time.
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ESS Dev ESS Test Tayside Dev Tayside Test

Reports 364 266 362 700
Sentences 3,837 2,855 2,791 3,948
Tokens 32,229 22,842 50,522 48,519
Total Entities 4,332 2,924 2,997 2,986
Disease Entities 2,373 1,494 1,361 1,501
Modifier Entities 1,959 1,430 1,636 1,485

Table 4.1: Dataset statistics.

Dataset Disease Entities Modifier Entities Total
POS / NEG POS / NEG POS / NEG

ESS dev 1,320 / 1,053 1,621 / 338 2,941 / 1,391
ESS test 836 / 658 1,127 / 303 1,963 / 961

Tayside dev 1,002 / 359 1,549 / 87 2,551 / 446
Tayside test 654 / 847 1,268 / 217 1,922 / 1,064

Table 4.2: Disease and modifier entity negation statistics across our datasets. The
leading count is the number of non-negated occurrences (POS) followed by the
number of negated occurrences (NEG).

4.6.1 Negation Analysis

In this section we begin by investigating how negation is expressed in brain imag-
ing reports, in particular in the ESS development set. As we shall demonstrate,
the manifestations of negation in such reports is clearly marked, making negation
detection in this setting much more straightforward than negation detection in
general purpose language, where it can be quite challenging. Namely, in the ESS
dataset, negation is predominantly introduced explicitly using no and the nega-
tion scope is extended through connectives such as or, and and punctuation, as
in the example “No acute haemorrhage, masses or extra-axial collections”. For
brevity, we shall refer to all such tokens that are correlated with the introduction
of negation as cues.

In Table 4.2, we tabulate the number of negated and non-negated disease enti-
ties and modifiers. For this study, negation cues were not explicitly annotated, so
in the following analysis, we use the number of times a token appears in the con-
text window of a negated disease or modifier annotation as a proxy for identifying
negation cues.
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Negation Cue Connective (Un)certainty Cue
token counts token counts token counts

no 626 or 376 evidence 137
but 11 , 291 identified 30
any 8 and 23 demonstrated 20
against 7 / 13 definite 13
nil 6 with 11 suggest 7
cannot 4 - 7 may 5
however 3 nor 2 would 4
not 3 ro 1 likely 4
although 2 appears 2

attributable 1
might 1
obvious 1

Table 4.3: Counts of most common tokens that surround a negated mention of a
disease/modifier. Tokens are grouped into types depending on the manner with
which we interpret them to interact with the mentions. They are ordered from
top to bottom from most frequent to least frequent. The counts were constructed
using a window of the 15 previous and 15 next tokens as context.

In order to get a better understanding of the types of negation cues used, in
Table 4.3 we report the counts of cues that occur in the context of negated disease
and modifier annotations. We group negation cues into three groups depending
on their function. The first group of cues introduces negation (Negation Cue), the
second extends negation to more entities through connectives (Connective) and
the third contains cues that express certainty or uncertainty ((Un)certainty Cue).
Cues with such characteristics seem to be a common finding when working with
radiology reports, see for example Peng et al. (2019, Table 2) which targets regular
expression patterns such as no evidence of and or/and among others.

The counts in Table 4.3 show that in the overwhelming majority of cases,
negation is explicitly introduced using no with the remaining negation cues being
rather scarce. From the middle column of our table, we extrapolate that negation
scope is often extended to more entities through the use of connectives, such as
or, and, nor, and the use of punctuation such as commas. In the last column,
we tabulate more cues that potentially introduce certainty or uncertainty. For
our study, we assume these cases also introduce negation, since annotators were
instructed to mark all mentions of diseases and related modifiers that are not
clearly indicated present as negated.
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Lastly, we also inspected the coverage of these tokens, namely how many cases
of negation in the dataset can be explained by finding a single occurrence of any
of the cues listed in Table 4.3. We note that the presence of connectives doesn’t
necessarily imply negation, however, as we shall see in Figure 4.2, connectives
such as or and comma occur much more frequently surrounding negated entities
than positive entities. Hence connectives contain a lot of information relating to
negation in our dataset. We found that when inspecting a symmetric context
window of 15 previous tokens and 15 next tokens surrounding a negated entity
or modifier, we could not find any cues in the context in only 3 out of 1387
cases. When we narrowed down the context window to a symmetric window of 5
tokens, we found 9 cases that couldn’t be explained by the presence of a cue. This
reinforces our belief that we are dealing with a rather degenerate case of negation
compared to that of negation in a more general domain: we can get good results
by relying on the presence of a rather small list of cues.

Our above interpretation of connectives extending negation scope, becomes
more evident when taking into account the top graph in Figure 4.2. The frequen-
cies plotted are relative, in the sense that they are obtained by dividing the counts
of our selected negation cues (no, comma, or, and, evidence) at a specific posi-
tion in the context window by the number of non disease entity/modifier tokens
aggregated over the whole window. This calculation is performed twice, once for
negated context windows (top graph) and once for positive context windows (bot-
tom graph). Therefore, the graph captures both the distribution of cues around
a disease entity or modifier t0 in the context window, as well as their relative
frequency of occurrence. As can be seen, no can precede the negated entity by
more than 10 tokens, while connective cues such as or and comma appear closer
to the negated disease and modifier annotations. Moreover, no is by far the most
common negation cue with connectives being the next most common. Lastly, we
turn to the bottom graph that shows the relative frequencies of negation cues in
positive contexts. As expected, negation cues in non-negated contexts are rare,
with the exception of and and comma which can be used in positive contexts as
well.

Given how commonly no occurs in the context of negated disease entities and
modifiers, we now assess how often we can attribute negation to its appearance.
As can be seen in Figure 4.3, no can be found in the 5 tokens preceding an
entity around 50% of the time and in the preceding 15 tokens 97.09% of the time.
This reinforces our understanding that negation is introduced explicitly and such
negation cues are the most salient for negation detection.
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Figure 4.2: Negation cue distribution around negated (top graph) and positive
(bottom graph) disease entities and modifiers for a selection of most frequent cues
from Table 4.3. We have plotted interpolating lines to highlight the relative in-
crease and decrease of frequency depending on the position in the context window.
We note that for the negated contexts seen in the top graph, no and evidence al-
most always precede the mention while other cues appear both before and after
it. Moreover, the appearance of no in the negated context can precede the entity
by more than 10 tokens while connectives such as and, or and comma appear in a
closer context, suggesting that they are used to extend the scope of negation. As
expected, the cues are more frequent in negated contexts than positive contexts as
can be seen by comparing the graphs (note that the y-axis is on a different scale).

The simplicity and direct way with which entities are negated in the ESS
dataset comes as no surprise when one considers the purpose of clinical text.
Namely, to communicate observations and diagnoses from a CT or MRI scan
quickly and accurately to other clinicians. It is, however, not obvious that all
teams of clinicians will communicate findings and express uncertainty in exactly
the same way as that in the ESS dataset. For example, we saw earlier that not
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Figure 4.3: Percentage of times negation of a disease entity or modifier t0 can
be explained by finding an occurrence of the negation cue no in the n preceding
tokens. The graph can be interpreted as the cumulative value of the blue curve in
the top graph of Figure 4.2, being aggregated from index 0 to −15.

only occurs in the context of a negated word 3 times in the ESS dataset. Quite
clearly, we could have a dataset where not is used to introduce negation commonly
and in a variety of ways, a scenario which should give our current machine learning
models difficulties, given they only have 3 examples to learn from. In the following
section we shall introduce our models and investigate the following question: how
well do machine learning models trained only on the ESS dataset transfer to the
unseen Tayside dataset?

4.7 Negation Detection Algorithms

In this section, we describe each of the approaches (three rule-based algorithms
versus two neural network algorithms) we used for negation detection in radiology
reports in more detail.

4.7.1 Existing Rule-Based Methods: pyConText and
NegBio

NegEx is an NLP algorithm designed for negation detection (Chapman et al.,
2001). Context (Harkema et al., 2009) is a generalisation of the NegEx algorithm,
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and here we adapted a Python implementation of ConText called pyConText for
use with our dataset as a baseline. The algorithm uses a list of targets, for example
disease names, and a list of modifiers that are applied to these targets, for example
negation.

To use the pyConText algorithm with our dataset we created a list of targets
based on the diseases in our dataset. To create the same output format as that
of the other models compared in this paper, we made a separate target list of
our anatomical location and temporal information entities. We used the modifier
list distributed with the algorithm, however as we are only interested in negation
of our entities we removed all modifiers from this list that were not involved in
assigning negation.

These target lists use regular expressions (Regex) for identification of targets.
To create the Regex for each target, the phrases identified by the expert in our
reports are used in an or arrangement. For example for the target microhaem-
orrhage an expert has identified it appearing in the reports through the use of
the phrases micro bleeds and micro haemorrhage, leading to the Regex micro
haemorrhage|micro bleeds.

From the pyConText output negation information is applied on the word level,
and this is combined with the entity data without negation information from the
manually annotated data for the final output.

For our second baseline we used NegBio, and to use the NegBio (Peng et al.,
2017) algorithm with our dataset we added targets from our dataset to the existing
text target files, to ensure the named entity recognition part annotated all our
entities. The annotations were then pruned so we were left with only the ones
that matched with the manually annotated entities, and these were fed to the
NegBio negation algorithm which adds negation information for each annotation.

For both of these methods we did not change any rules or logic for the negation
detection part of the algorithms, focusing only on ensuring they effectively worked
with our datasets and target entities. This was to allow comparison of our custom-
built rule-based model with out-of-the-box models.

4.7.2 Rule-Based Model (EdIE-R)

The EdIE-R rule-based system has a pipeline architecture where mark-up is added
by each component feeding on information provided by earlier processing. Early
linguistic processing components include sectioning, tokenisation, sentence-splitting,
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part-of-speech tagging and lemmatisation. During these early stages, negation cue
words such as no, not, never, nor are marked as negated. At this point the
main information extraction components are applied, i.e. named entity recogni-
tion (NER) to mark up the entities, and relation extraction, which links disease
entities and modifiers. In between these two steps, a shallow syntactic analysis
known as chunking (Grover and Tobin, 2006) is performed followed by rules to
determine the scope of negation.

In a simple case such as “No obvious mass lesion”, the chunker establishes
that this is a noun group, and negation, encoded as an attribute in the XML
data structure, is propagated from No to the entire noun group. As mass lesion
has already been identified by NER as a disease entity, this entity is marked as
negated. Other cases require the chunker to recognise an embedded structure for
noun groups, for example where of -phrases act as noun modifiers (“No evidence
of metastatic disease”) or disjunctive structures (“No acute haemorrhage, masses
or extra-axial collections”) or a combination of the two (“No evidence of acute
infarct or bleed”). In these cases the negation is propagated to the entire noun
group, thereby defining the scope of the negation cue.

Elsewhere the negation originates in a verb group and scopes over related noun
groups, e.g. “This does not show significant mass effect” or “A small recent infarct
cannot be detected”. In such cases the identity of the verb is significant: in the
above examples, negated show and detect lead to entities in their scope being
identified as negated, but in “The cerebellar haematoma has not increased in size”,
the haematoma entity should not be negated.

Our treatment of negation doesn’t identify uncertainty, treating uncertain cases
as negative, and the EdIE-R negation rules were formulated accordingly. In the
remainder of this paper, we refer to this method as EdIE-R-Neg.

4.7.3 Neural Network Approaches

In this section we will outline our two neural network approaches. We create word
embeddings to encode each sentence’s lexical information. In order to encode entity
information for the target entity, we suppress the lexical information contained in
the word tokens that represent the entity and only include an entity surrogate
embedding, ENT. Namely, we include a learned embedding that encodes whether
the tokens are an entity. If an entity uses more than one token, for example
“ischaemic stroke”, both of these tokens are replaced with a single ENT token.
We found using surrogates for entity phrases in this way improved our results on
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the validation set, likely as the ratio of negated to non-negated entities is highly
variable when split by entity and doesn’t generalise.

Additionally, we pad the input to a prespecified maximum input length using
a reserved PAD token that has its own embedding. Lastly we use the token UNK
for any word not in our vocabulary. The vocabulary is built from the development
data and we drop the least frequent 3% of the total words to train the UNK token
embedding. We lowercase all words in our datasets.

These embeddings are fed through the networks as input. Both networks have
an output layer with a sigmoid activation for binary classification. We use bi-
nary cross-entropy as our loss function. We train using the Adam (Kingma and
Ba, 2015) optimizer with exponential decay rates β1 = 0.9 and β2 = 0.999. We
randomly initialised word embeddings to be Gaussian ∼ N (0, 1). We train until
there is no improvement in F1 score on the validation data, a held out split of the
development data.

The model is trained and evaluated using data manually annotated by human
experts. The development data was split into 80% training and 20% validation.
Models were run 5 times with random initialisations, with an average F1 score
being used for hyperparameter selection and reported in the summary tables. For
Tables 4.7 and 4.8 which are split by entity type, we use the model that had
the highest F1 score on the validation set using the chosen hyperparameters. We
conduct a grid search over hyperparameters of embedding size, number of layers,
and hidden layer size for each neural network model, more details are given in the
respective sections.

4.7.4 Feedforward Neural Network Model (FFNN-Neg)

Motivated by our analysis of the distribution negation markers can have around
negated entities as demonstrated in Figure 4.2, we use a large symmetric input
window for our feedforward network. As can be seen in Figure 4.4, in order to
predict if token ti is negated, we concatenate its context window of 15 tokens from
the left and 15 tokens from the right and feed it to our network. If the input is
shorter on either side, we pad it using a reserved PAD token that has its own
embedding.

In order to encode entity information for the target token, we include a learned
embedding that encodes the word token if the current input is not an entity, or
the surrogate ENT token if it is an entity. After encoding the target token and
its context, we concatenate the embeddings and feed them through a feedforward
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Negated/PositiveNegation prediction for ti

Output

Input

Right ContextLeft Context Target
Token

ti−15 . . . ti−1 ti+1 . . . ti+15ti

Padded window
token input

Feedforward
Network

Feedforward network with sigmoid

Word Embeddings Entity Surrogate Embedding
Encode context

and target

Figure 4.4: FFNN-Neg architecture description. Given we wish to predict whether
a target input ti is negated, we feed a padded context window surrounding the
target token to the network. To encode entity information, we replace the tokens
of an entity with a single surrogate ENT token. We feed the concatenation of the
embeddings of the context window through a feedforward network with a single
hidden layer and a sigmoid output layer for negation prediction.

network with a hidden layer of dimensionality 128 and a ReLU non-linearity. We
apply dropout of 0.5 to the input and the hidden activation and normalise the
hidden activation using Layer Normalisation (Ba et al., 2016). The feedforward
network has a single output with a sigmoid activation for binary classification.

In addition to hyperparameter details already specified in the introduction, we
set our embedding size to 100 and used a hidden layer with 128 hidden units and
a single hidden layer, as we found these setting to give the best F1 score on the
validation set. We use a batch size of 4, 096 context windows, which corresponds to
a batch size of approximately 256 sentences assuming an average sentence length
of 16 tokens. We train until no improvement on negation detection F1 score is
obtained for 500 parameter updates on the held out split of the development set.
From here on we refer to this model as FFNN-Neg.

4.7.5 LSTM Based Model (BiLSTM-Neg)

The BiLSTM-Neg model consists of a bidirectional LSTM followed by a fully
connected layer. Two inputs were created for the model, a word embedding and
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Negated/PositiveNegation prediction for wi

Output
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Encode document
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Figure 4.5: Token data is input for a word embedding and entity surrogate embed-
ding, to which Dropout of 0.5 is applied. These are used as input to a bidirectional
LSTM. The hidden state of the LSTM is concatenated with Binary Entity Data for
input into a fully connected layer with sigmoid activation for negation prediction.

a binary measure of whether the token is an entity. The target output is an array
of binary outputs, one for each token, of whether the token should be negated.
Models were built in Python using the PyTorch (Paszke et al., 2017) machine
learning library. The Adam optimiser (Kingma and Ba, 2015) was used with a
learning rate of α = 0.001 and a weight decay of 0.0001. We apply a batch size of
32 documents.

The best model consisted of a two-layer LSTM of hidden size 128 using a 300
dimension word embedding to which a dropout of 0.5 has been applied. The final
hidden state of the LSTM layer was concatenated with the binary entity measure
to create the input for a fully connected layer, after which a sigmoid activation
was applied to create the output to which threshold of 0.5 is applied to turn the
float values into a binary measure. Negation predictions for entity tokens are
combined with the entity types (without negation information) from the manually
annotated reports for the final output. From here on this model is referred to as
BiLSTM-Neg.
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Model Precision Recall F1 Score

Rule-Based
EdIE-R-Neg 98.02 (96.92–98.72) 97.71 (96.56–98.48) 97.86
pyConText 91.52 (89.61–93.09) 94.28 (92.62–95.57) 92.88
NegBio 93.90 (92.09–95.32) 83.35 (80.86–85.57) 88.31

Machine Learning
FFNN-Neg 97.55 (97.45-97.65) 96.96 (96.76-97.16) 97.25 (97.17-97.34)
BiLSTM-Neg 97.45 (96.81-98.08) 96.69 (96.33-97.05) 97.07 (96.77-97.36)

Table 4.4: Overall Negated Entity (n. 961) results on the ESS test set. We report
precision (positive predictive value), recall (sensitivity) and F1 score (harmonic
mean of precision and recall) for negative annotations as well as 95% confidence
intervals for precision and recall in parentheses for Rule Based systems and the
mean ±1 standard deviation of 5 runs with different random seeds for Machine
Learning models.

4.8 Evaluation and Results

All five models described above were run over the two test sets (ESS test and
Tayside test) with the manually annotated word and entity data as input (without
negation attributes for entities). The negated entity output for each algorithm and
the manually annotated entities (with negation specified) were then converted to
BIO ConLL format to evaluate using the CoNLL (Tjong Kim Sang, 2002) perl
evaluation script.3 This is used for computing precision, recall and F1 score both
as a total and per entity type for diseases and modifiers separately. Negative
entities were taken as the positive class. We report 95% confidence intervals for
precision and recall of the rule-based models and the mean ± 1 standard deviation
over 5 runs with different random seeds for the machine learning models.

Table 4.4 shows the results for negated entities on the ESS Test dataset for
each of the models. The rule-based model, EdIE-R-Neg, and the two machine
learning models, BiLSTM-Neg and FFNN-Neg, perform similarly, achieving F1
scores within a point. Each model performed better in precision than recall, likely
due to a larger number of non-negated entities in the dataset. However, while the
confidence intervals for precision and recall for the rule-based model overlap with
one standard deviation from the mean of the machine learning models, meaning
we lack confidence of the superiority of the EdIE-R-Neg model in these individual
aspects, the F1 score for EdIE-R-Neg is higher than one standard deviation above

3https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt

https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
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the mean for both machine learning models, indicating EdIE-R-Neg will be the
higher performing model for the majority, if not all, runs of the machine learning
models.

Of the machine learning networks, FFNN-Neg looks to have the higher perfor-
mance with higher mean scores for precision, recall, and subsequently F1 score.
However, this is inconclusive due to the mean scores of FFNN-Neg falling within
one standard deviation of BiLSTM-Neg scores, meaning for any one run there is
a large chance of either model having higher performance.

As expected, due to being developed on different datasets, the two existing
rule-based methods, pyConText and NegBio, had weaker performance than those
developed on the ESS development data, with NegBio particularly struggling with
recall. pyConText shows a bias towards negated entities leading to a higher recall
than precision, indicating that its negation rules are too broad for this dataset.

Largely the misclassifications on the ESS test set made by the custom-built
models, EdIE-R-Neg, FFNN-Neg and BiLSTM-Neg, were very similar, but there
are some key differences. BiLSTM makes a number of errors for the modifier
entity of time recent, missing more of the negated instances than FFNN-Neg,
while EdIE-R-Neg makes less errors than both. Additionally, the machine learning
models perform worse than EdIE-R-Neg on each of the other modifier entities. An
example of misclassifications made is shown in Figure 4.6.

There were a few key entities where NegBio made most of its misclassifications,
spread across disease and modifier entities. PyConText followed a more similar
pattern of error to our models, but greater in number, particularly for modifier
entities.

Table 4.5 shows the results for negated entities on the Tayside test set. Similar
to the ESS test set EdIE-R-Neg outperforms the other approaches in precision and
F1 score, however for recall the margin is small between all three approaches, with
FFNN-Neg scoring marginally higher and the confidence interval for EdIE-R-Neg
overlapping with one standard deviation from the mean of the machine learning
models meaning we lack confidence of any model’s superiority on any one run of
the machine learning models.

In contrast to the ESS test set, BiLSTM-Neg achieves a higher F1 score than
FFNN-Neg due to a stronger precision, however we draw no definite conclusion
of superiority as one standard deviation below the mean for BiLSTM-Neg F1
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Figure 4.6: Example negation detection output of EdIE-R-Neg and FFNN-Neg
on synthetic data. Diseases are represented in purple and modifiers in orange.
Negation is marked as NEG in the tag. Both systems get the first two sentences
correct. Correctly tagging the third sentence relies on understanding that “hard
to differentiate x” implies that x is likely not present, something both EdIE-R-Neg
and FFNN-Neg fail. FFNN-Neg gets the tags of the last sentence wrong presum-
ably by relying on the presence of but or information that this is a haemorrhagic
stroke entity, which is more commonly negated than not.

score is lower than one standard deviation above the mean for FFNN-Neg F1
score, meaning there is a reasonable chance of either model having higher true
performance. Additionally, FFNN-Neg scored higher than BiLSTM-Neg on recall,
though the margin is small.

Both machine learning models perform better on recall than precision, indicat-
ing a bias towards over-prediction of negated entities, similar to the last sentence
in the example in Figure 4.6. The decrease in precision led to a drop on F1 score
and overall performance when compared to the performance on the ESS test set.
The cross-training experiments below describe how this drop is reduced through
addition of Tayside development data.

NegBio has a more balanced performance in contrast to the ESS test set, while
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Model Precision Recall F1 Score

Rule-Based
EdIE-R-Neg 98.31 (97.35–98.93) 98.68 (97.80–99.21) 98.50
pyConText 89.81 (87.92–91.43) 96.90 (95.68–97.78) 93.22
NegBio 89.81 (87.83–91.49) 88.63 (86.58–90.40) 89.21

Machine Learning
FFNN-Neg 93.67 (92.42–94.93) 98.80 (98.64–98.96) 96.16 (95.57–96.75)
BiLSTM-Neg 95.28 (94.32–96.25) 98.52 (98.24–98.79) 96.87 (96.41–97.33)

Table 4.5: Overall Negated Entity (n. 988) results on the Tayside test set. We
report precision (positive predictive value), recall (sensitivity) and F1 score (har-
monic mean of precision and recall) for negative annotations as well as 95% confi-
dence intervals for precision and recall in parentheses for Rule Based systems and
the mean ±1 standard deviation of 5 runs with different random seeds for Machine
Learning models.

pyConText continues to show a bias towards negated entities with a greater gap
between a high recall and low precision compared to results on ESS test.

FFNN-Neg and BiLSTM-Neg followed a similar pattern of errors on the Tayside
test set, with the exception of FFNN-Neg making a much greater number of errors
on modifier entities, in particular location deep.

As on the ESS test set, pyConText makes misclassifications largely on the same
entity types as the machine learning models, but with a greater number of errors on
modifier entities. NegBio made higher numbers of misclassifications on a number
of entities, however a high proportion of its errors were made on the same entity,
location deep, as FFNN-Neg made a high proportion of its errors on.

As expected due to training on data more similar to the test set, Table 4.6 shows
that adding Tayside data to the ESS training data (transfer learning) increases
the F1 scores of the machine learning models on the Tayside test set, particularly
for Bi-LSTM-Neg which consistently improved on adding 20% and then 100% of
Tayside development data.

The improvement for BiLSTM-Neg came from increases in precision (ESS only:
95.28; +20% Tayside: 96.11; +100% Tayside: 97.25) where previously both ma-
chine learning models were weak, giving a more equal balance between precision
and recall. While recall did dip slightly from 98.52 to 98.12 for BiLSTM-Neg on
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Model Precision Recall F1 Score

Train on ESS
FFNN-Neg 93.67 (92.42–94.93) 98.80 (98.64–98.96) 96.16 (95.57–96.75)
BiLSTM-Neg 95.28 (94.32–96.25) 98.52 (98.24–98.79) 96.87 (96.41–97.33)

Train on ESS +20% Tayside
FFNN-Neg 95.06 (93.93–96.19) 98.78 (98.44–99.12) 96.88 (96.41–97.35)
BiLSTM-Neg 96.11 (95.74–96.49) 98.52 (98.25–98.78) 97.30 (97.12–97.48)

Train on ESS +100% Tayside
FFNN-Neg 94.26 (93.14–95.38) 99.14 (98.97–99.30) 96.63 (96.11–97.16)
BiLSTM-Neg 97.25 (96.87–97.62) 98.12 (97.71–98.53) 97.68 (97.63–97.73)

Table 4.6: Effect of training on additional Tayside data on reported Tayside test
scores (transfer learning). The scores reported are the mean over 5 runs with
different random initialisation seeds and the range reported in parentheses is a
standard deviation below and above the mean.

adding 100%, this was a smaller drop and largely the high recall was maintained.

A drop in precision from 95.06 with 20% Tayside added to 94.26 with 100%
Tayside added for FFNN-Neg led to a fall in F1 score from 96.88 to 96.63, de-
spite recall increasing from 98.78 to 99.14. This is in contrast to the behaviour
of BiLSTM-Neg (ESS only: 95.28; +20% Tayside: 96.11; +100% Tayside: 97.25)
and the behaviour of FFNN-Neg on adding 20% Tayside (ESS only: 93.67; +20%
Tayside: 95.06; +100% Tayside: 94.26), which improved upon a weakness in preci-
sion. Despite the increases in F1 score both models remain weaker in performance
than EdIE-R-Neg (EdIE-R-Neg: 98.50; BiLSTM-Neg: 97.68; FFNN-Neg: 96.88).

4.9 Discussion and Further Work

Through summing the true and false counts in Tables 4.7 and 4.8 in section 4.11
in the Appendix, we see differences in total counts of entities between the ESS and
Tayside datasets, such as for metastatic tumour (ESS Test Set: 12; Tayside Test
Set: 119), as well as ratios of negated to non-negated entities (Ischaemic Stroke
- ESS Test Set: 149:316; Tayside Test Set: 176:130). The difference is largely
due to ESS being reports from scans conducted as part of a Stroke study, while
Tayside are routine scans. This may account for the imbalance that occurs between
precision and recall on the Tayside test set for the machine learning models when
training solely on ESS development data.
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Negation patterns between the ESS and Tayside datasets are likely to be sim-
ilar, for reasons including their source and the annotation process, therefore it is
unsurprising that methods developed on the ESS dataset, such as EdIE-R-Neg,
score higher in F1 score on the Tayside test set than the existing rule-based sys-
tems developed on other datasets, pyConText and NegBio. PyConText and Neg-
Bio were also developed on clinical reports, and their lower performance compared
to our models on the ESS and Tayside datasets indicates that even within the
same domain generalisation is difficult.

We have shown that introducing a small amount of the novel dataset, Tayside,
into training data can improve performance on an unseen subset of the Tayside
dataset, increasing precision and reducing the deficit in overall performance to
EdIE-R-Neg. As discussed negation patterns for the ESS and Tayside datasets
are likely to be similar, and we hypothesise that on a novel dataset where the
negation patterns differ more greatly to the development dataset that adaption of
the neural network method will be quicker and more effective compared to a rule-
based system. Future work will aim to test the hypothesis that a neural network
pretrained on ESS development data and fine-tuned on the novel dataset would
outperform EdIE-R-Neg. The i2b2 clinical dataset (Uzuner et al., 2011) is a strong
candidate for the novel dataset.

In this work we eliminated the time needed to tune hyperparameters for adap-
tion to the Tayside dataset by using the same model architecture selected from
experiments on the ESS dataset only, and future work could further reduce the
time taken to adapt to a new dataset through only fine-tuning the fully connected
top layer of BiLSTM-Neg, or the final layer of FFNN-Neg, instead of the whole
network.

Another common way to increase performance of natural language models is
to use pretrained embeddings from much larger datasets. Pretrained word embed-
dings were tested in early versions of our neural network models without much
success, and other work has also demonstrated inconclusive performance gains us-
ing either word or contextual embeddings that are not domain specific and instead
trained on unrelated datasets (Cornegruta et al., 2016; Alsentzer et al., 2019).
However, our datasets will grow as we receive more reports and pretraining em-
beddings on the larger dataset is worth revisiting, as well as fine-tuning contextual
domain specific embeddings from the recently available clinical BERT (Alsentzer
et al., 2019).

Additionally, the gap in performance between EdIE-R-Neg and the machine
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learning models could be closed further through addition of a couple of key rules
which could be explored in further work. Using rules, such as regular expressions
like (no evidence of — no evidence of developing) entity, in post-processing has
been found to increase performance over either method separately (Peng et al.,
2019). Similar rules tailored to the errors made could be used instead of the
preprocessing outlined in the following paragraph to address where the machine
learning approaches struggle with modifier entities.

Ensemble based algorithms use multiple systems to obtain better predictive
performance than any single constituent system on it’s own (Polikar, 2006), and
are another way performance could be increased. However, due to similarities
in performance by entity type and sub-type, the specific errors made by the sys-
tems may overlap significantly, and so improvements might be marginal for the
approaches and datasets in this paper.

To further reduce the numbers of misclassifications made by our models, it
may be useful to target certain entities. Modifier entities like time recent and loca-
tion deep had more errors than other entities, and further work could investigate
preprocessing methods that may give more information on these entities to the
machine learning models.

From the literature we were expecting NegBio to outperform pyConText (Peng
et al., 2017). The weaker performance of NegBio came from a lower recall, indicat-
ing that non-negated entities were over-predicted, possibly due to negation cues
in our dataset not present in that in which NegBio was developed. This is in
contrast to pyConText which over-predicted negation. That a few key entities
provided most of the errors for NegBio indicates there might be some key rules
missing that are needed for the ESS and Tayside datasets more than other datasets.

4.10 Conclusion

We illustrate that negation detection, when conceptualised as a binary problem of
presence vs non-presence, is a task that is relatively straightforward when working
with radiology reports. We demonstrate this is the case, by showing that both rule-
based, specifically ones optimised for a dataset, and neural network approaches,
can perform highly accurately. The lower complexity of the task is also shown by
the high performance of a relatively simple feedforward network, along with using
training examples numbering only in the thousands.

Both machine learning alternatives to the rule-based EdIE-R-Neg proved effec-
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tive, achieving very similar F1 Score performance on the ESS test set (EdIE-R-Neg:
97.86; BiLSTM-Neg: 97.07; FFNN-Neg: 97.25), with EdIE-R-Neg overall perform-
ing strongest. The pattern was similar for the Tayside test set (EdIE-R-Neg: 98.50;
BiLSTM-Neg: 96.87; FFNN-Neg: 96.16), however the gap between the machine
learning models and EdIE-R-Neg was larger. On our datasets all three models
outperformed the two baseline existing rule-based models, pyConText and Neg-
Bio, demonstrating the effectiveness of custom-built models for specific datasets
and indicating the difficulty in generalisation between medical datasets.

The performance deficit of the machine learning models on the Tayside test set
to EdIE-R-Neg was reduced through addition of Tayside data to the training data
of the neural network models (BiLSTM-Neg: 97.68; FFNN-Neg: 96.88). BiLSTM
particularly benefited from the additional data, largely in precision.

4.11 Appendix - Result Tables Split by Entity
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Rule-Based Machine Learning

pyConText NegBio EdIE-R-Neg FFNN-Neg BiLSTM-Neg

Entity/Modifier TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN

Atrophy 3 142 8 0 3 131 19 0 3 150 0 0 3 150 0 0 3 150 0 0

Haemorrhagic Stroke 212 47 4 4 194 48 3 22 212 50 1 4 212 49 2 4 213 49 2 3

Haemorrhagic Transf. 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Ischaemic Stroke 145 293 13 4 117 303 3 32 145 302 4 4 141 302 4 8 144 301 5 5

Meningioma Tumour 0 5 1 2 0 6 0 2 0 6 0 2 2 5 1 0 0 6 0 2

Metastatic Tumour 10 0 0 2 9 0 0 3 9 0 0 3 10 0 0 2 9 0 0 3

Microhaemorrhage 3 6 1 0 2 7 0 1 3 7 0 0 3 7 0 0 3 7 0 0

Small Vessel Disease 3 268 5 0 3 266 7 0 3 271 2 0 3 271 2 0 3 273 0 0

Stroke 4 22 0 0 4 22 0 0 4 22 0 0 4 21 1 0 4 20 2 0

Subarachnoid Haem. 2 7 1 0 1 7 1 1 2 8 0 0 2 8 0 0 2 8 0 0

Subdural Haematoma 99 9 0 1 76 9 0 24 100 9 0 0 100 9 0 0 100 9 0 0

Tumour 160 3 0 3 138 3 0 25 159 3 0 4 160 3 0 3 160 3 0 3

Location Cortical 8 396 8 0 7 403 1 1 8 402 2 0 6 403 1 2 8 401 3 0

Location Deep 2 328 11 2 3 327 12 1 3 339 0 1 2 338 1 2 2 337 2 2

Time Old 4 298 19 0 3 313 4 1 4 312 5 0 3 311 6 1 4 309 8 0

Time Recent 250 54 13 37 240 65 2 47 283 62 5 4 279 62 5 8 271 63 4 16

Total Entities 642 803 33 16 548 803 33 110 641 829 7 17 641 826 10 17 642 827 9 16

Total Modifiers 264 1076 51 39 253 1108 19 50 298 1115 12 5 290 1114 13 13 285 1110 17 18

Total 906 1879 84 55 801 1911 52 160 939 1944 19 22 931 1940 23 30 927 1937 26 34

Table 4.7: Comparison of results for all models on the ESS Test Set broken down by Disease and Modifier entities
including total counts. We take negation to be the positive class, therefore TP (True Positives) are correctly predicted
negated Disease and Modifier entities while TN (True Negatives) are correctly predicted non-negated Disease and
Modifier entities.
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Rule-Based Machine Learning

pyConText NegBio EdIE-R-Neg FFNN-Neg BiLSTM-Neg

Entity/Modifier TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN

Atrophy 1 166 1 0 0 166 1 1 1 167 0 0 1 166 1 0 1 167 0 0

Glioma Tumour 0 9 0 0 0 8 1 0 0 9 0 0 0 7 2 0 0 9 0 0

Haemorrhagic Stroke 255 36 3 0 247 37 2 8 254 39 0 1 255 38 1 0 255 37 2 0

Haemorrhagic Transf. 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

Ischaemic Stroke 174 127 3 2 157 130 0 19 173 130 0 3 173 128 2 3 172 126 4 4

Meningioma Tumour 0 2 0 0 0 2 0 0 0 2 0 0 0 1 1 0 0 2 0 0

Metastatic Tumour 56 55 7 1 45 62 0 12 55 61 1 2 52 59 3 5 53 61 1 4

Microhaemorrhage 3 3 0 0 2 3 0 1 3 3 0 0 3 3 0 0 3 3 0 0

Small Vessel Disease 2 168 3 0 1 169 2 1 2 171 0 0 2 166 5 0 2 170 1 0

Stroke 6 3 0 0 6 3 0 0 5 3 0 1 6 3 0 0 6 3 0 0

Subarachnoid Haem. 6 10 0 0 4 10 0 2 4 10 0 2 5 10 0 1 4 10 0 2

Subdural Haematoma 79 10 1 5 59 9 2 25 83 10 1 1 84 10 1 0 84 10 1 0

Tumour 252 44 2 5 240 46 0 17 253 46 0 4 255 44 2 2 254 44 2 3

Location Cortical 4 459 13 0 2 470 2 2 4 472 0 0 4 471 1 0 4 470 2 0

Location Deep 9 520 45 0 7 481 84 2 9 563 2 0 9 523 42 0 9 557 8 0

Time Old 11 118 29 0 6 137 10 5 11 136 11 0 11 136 11 0 11 135 12 0

Time Recent 173 74 10 20 167 81 3 26 193 81 3 0 192 78 6 1 191 79 5 2

Total Entities 834 634 20 13 761 646 8 86 833 652 2 14 836 636 18 11 834 643 11 13

Total Modifiers 197 1171 97 20 182 1169 99 35 217 1252 16 0 216 1208 60 1 215 1241 27 2

Total 1031 1805 117 33 943 1815 107 121 1050 1904 18 14 1052 1844 78 12 1049 1884 38 15

Table 4.8: Comparison of results for all models on the Tayside Test Set, as well as summary data for Disease and
Modifier entities combined. We take negation to be the positive class, therefore TP (True Positives) are correctly
predicted negated Disease and Modifier entities while TN (True Negatives) are correctly predicted non-negated
Disease and Modifier entities.
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4.12 Paper Conclusion

The work in this paper demonstrates that artificial neural networks are capable
of performing a text analysis task to a similar standard as rule-based methods,
and are comparable to the rule based method developed specifically for the text
corpus. With a more specialised architecture, or more data, it’s possible the neural
network would further improve, and would involve less human intelligence when
transferring the model from one text corpus to another.

The results of the paper show that for each of the models developed on these
datasets (ESS and NHS Tayside) the models scored well on the performance met-
rics for negation detection. BiLSTM-Neg on the ESS test set (F1 Score: 97.07,
Precision: 97.45, Recall: 96.69) was similar to FFNN-Neg (F1 Score: 97.25, Pre-
cision: 97.55, Recall: 96.96). Both of these were slightly behind EdIE-R-Neg (F1
Score: 97.86, Precision: 98.02, Recall: 97.71).

This performance gap on the NHS Tayside test set between the machine learn-
ing models (BiLSTM-Neg - F1 Score: 96.87, Precision: 95.28, Recall: 98.52 and
FFNN-Neg - F1 Score: 96.16, Precision: 93.67, Recall: 98.80) and EdIE-R-Neg
(F1 Score: 98.50, Precision: 98.31, Recall: 98.68) was slightly larger, however
overall all three models proved to be effective for the task of negation detection.

On these datasets all three developed models outperformed the two baseline
existing rule-based models, pyConText and NegBio, demonstrating the effective-
ness of custom-built models for specific datasets, and indicating the difficulty in
generalisation between medical datasets.

This contributes to the work of the thesis by demonstrating another task that
neural networks have potential to solve for disease prediction. By adding data
from radiology scans to the genetics used in the previous projects, a model than
incorporates this multi-modal data is likely to make more accurate predictions,
potentially becoming viable for use in a clinical setting.



Chapter 5

General Discussion and
Conclusion

Through the projects in this thesis I have aimed to answer the question of whether
artificial neural networks could be used to detect and analyse risk factors for Major
Depressive Disorder from genetic and electronic health record data. This overall
goal is addressed specifically through the tasks of polygenic risk scoring and nega-
tion detection.

Thesis Findings

Overall the results of each project demonstrate that deep learning can be an ef-
fective method that delivers results similar to existing state-of-the-art methods,
but offering certain advantages that include using the model with new datasets
through transfer learning, and learning different information to deliver new insights
and increases in performance through ensemble modelling.

The first project focused on development of a fully-connected feed forward
neural network (NNPRS) for polygenic risk scoring using Single Nucleotide Poly-
morphism (SNP) data, and is described in Chapter 2. When both the genotypes
and summary statistics were taken from a single dataset (UKB), the performance
of NNPRS was similar to the comparison methods (SBayesR and LDPred2) for
AUC and Nagelkerke R2. NNPRS outperformed these methods on the datasets
with a reduced SNP set, and achieved performence close to that of SBayesR and
LDPred2 when these methods were using the full dataset, despite NNPRS only
using a reduced SNP set for computational reasons. These results indicate that
where existing high quality summary statistics aren’t available, and there is enough
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resource or a small SNP set, NNPRS is likely the best single method to use for
performance.

When there are high quality summary statistics available, the performance
of NNPRS is less competitive, due to the taking minimal information from the
summary statstics in comparison to the other methods tested. NNPRS scored
lower than the comparison methods (SBayesR and LDPred2) on the test set when
summary statistics from a much wider number of samples and datasets was used.
However, this performance gap was reduced when using a smaller subset of SNPs,
also indicating a potential issue with overfitting which is also indicated by the very
high performance of NNPRS on the training set for every SNP threshold tested.

An additional use of NNPRS is in ensemble modelling. The additional perfor-
mance gained when combining the outputs from either of the highest performing
methods (SBayesR and LDPred2) with NNPRS was much greater than the per-
formance gain from combining any two of the existing methods. The increase
in performance from combining the outputs indicates the information learnt by
NNPRS was different to that learnt by the other methods, demonstating that for
the highest performing model NNPRS should be used in addition to the strongest
current state-of-the-art methods.

Building upon the findings from project 1, the second project, detailed in Chap-
ter 3, introduced the use of a graph to the model. The graph aimed to serve two
functions, restricting the network’s power and flexibility to reduce overfitting as
well as adding additional biological knowledge to the model. The graph was added
though the addition of a graph layer, to create a graph neural network (GNPRS),
as well as reducing the connections in the first fully-connected layer to create a
reduced connection neural network (RNPRS). This graph layer was created using
expression quantitative trait loci (eQTLs).

Each of the three neural network model variants (NNPRS, GNPRS, RNPRS)
delivered very similar performance as measured by AUC and Nagelkerke R2. This
could indicate that each of the models are flexible enough to learn the information
easiest to learn by neural networks, and that the restrictions on the network created
through the additional biological information (eQTLs) weren’t effective in pushing
the model in the correct direction. Alternate information could be used here, such
as a different set of eQTLs (trans and cis, or tissue specific) or different SNP
features such as genomic position.

In the ensemble modeling experiments the graph network appeared to add
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useful information when used in combination with NNPRS, however the increase in
R2 was lower than when using NNPRS in combination with LDPred2 and SBayesR.
This may indicate some information was found using the graph layer that wasn’t
used in NNPRS, with other information missed leading to the lower performance,
however this would likely be minimal and it is likely that further extensions are
needed to fully make use of the graph layer.

The third project focused on modelling radiology reports, specifically for the
task of negative detection of disease entites in the reports. For example, for each
mention of stroke in the radiology reports the model will predict if the metnions
refers to an absence of stroke or a presence of stroke. A fully-connected neural
network (FFNN-Neg) and a bidirectional long-short term memory recurrent neural
network (BiLSTM-Neg) were developed and compared with a rule based method
developed on the same datasets (EdIE-R-Neg), and comparison rule based methods
(pyConText and NegBio) developed on other datasets.

The deep learning methods, BiLSTM-Neg and FFNN-Neg, performed compa-
rably to the rule-based methods developed on the same datasets, EdIE-R-Neg,
as measured by F1 score, and outperformed the existing rule-based methods, py-
ConText and NegBio. These results demonstrate the advantage of models custom
developed on each dataset, as well as a potential lack of transferability of rule
based methods.

EdIE-R-Neg had marginally stronger performance in F1 score than BiLSTM-
Neg and FFNN-Neg on the Tayside test set. However, this gap was reduced when
some additional Tayside data was used to fine-tune the neural network models,
highlighting transferability as a potential strength of the neural network models
when used with transfer learning.

Results Discussion

The results of all three projects indicates that deep learning and neural networks
are a useful research method for medical, and MDD, research. The power and
flexibility of the neural networks was clear and suggests that for the right datasets
(likely large, detailed and well labelled) these methods will provide the best perfor-
mance. However, a consistent issue with overfitting highlighted the challenges of
using smaller datasets in medical research, when compared to those in other tasks
where deep learning excels, such as language translation and image recognition.

Additionally, use of deep learning is still new in the field, and further research
into how best to use the information that other methods make good use of, such
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as high quality summary statistics in the polygenic risk scorer projects, is still
needed to make best use of the models. The models researched in this thesis, the
fully-connected, biLSTM and graph convolutional models, are just examples of
possible implementations of deep learning.

The advantages of neural networks include the ability to use transfer learning
and the varied (likely non-linear) information contributed when using ensemble
modelling. In current research where smaller datasets are more common, deep
learning likely works best when used alongside other modelling methods.

However, with the number of tools and libraries for deep learning available,
while not as simple as the basic statistical methods available in each field, deep
learning might be easier to implement than specialist methods (SBayesR or LD-
Pred2), or be quicker to get up and running on a new dataset compared to custom
rule-based methods (EdIE-R-Neg). This is presuming the dataset is clean and
large enough to provide good input to the model, the network is kept small and
the correct regularisation is used to prevent overfitting.

Previous studies investigating genomics and deep learning such as Badré et al.
(2021) have used genotypes and summary statistics from a single dataset, similar
to the UKB experiments in Chapters 2 and 3. This study used a set of causal
SNPs similar in size to the smaller subset experiments in this thesis, finding a
NN to be the strongest method tested. This result is different to the overall
conclusions of the thesis, but in line with the results of the smaller restricted SNP
set experiments trained using only the UKB dataset, in which the NN models were
far more competitive and started to outperform the comparison methods. These
results indicate the NN models may either perform better or be easier to train,
with a lower number of causal SNPs.

Other studies on negation detection have found mixed results comparing BiL-
STM neural networks to rule based methods, with only some of the studies find-
ing the BiLSTM model to outperform the rule based methods used as compar-
ison (Cornegruta et al., 2016; Manning et al., 2014). The differences in result
likely come from the differing properties of the dataset and whether the rule based
method was also developed on the same dataset.

The experiments in this thesis serve as a proof of concept for deep learning
in the field of psychiatric research, as well as an indication of the potential and
where further steps should be taken. The non-linear nature of neural networks led
to the learning of novel information from genomics compared to more traditional



CHAPTER 5. GENERAL DISCUSSION AND CONCLUSION 147

methods, and so can be used in parallel with these methods, while the performance
on the radiology report negation detection task also indicates deep learning would
prove useful for certain problems in this domain.

Deep learning heavily relies upon the data used, and so a key question is always
if the conclusions drawn from the results are more reliant on the bias in the data
than the ability of the model to be able to generalise to new cases. Particularly
within genomics this is a key issue, where performance on one dataset can often not
be replicated on other unrelated datasets. Subsequently, to verify the conclusions
apparent in this thesis future work should focus on if the results replicate to other
datasets.

Another interpretation of the results that would require further work to verify
is if the final model, particularly for the graph neural networks, is the optimal
architecture for genomic prediction. That the NNs did not outperform the com-
parison methods could be that the model architecture used is sub-optimal. Deep
neural networks can be difficult to design and include a large number of design
choices and hyper-parameters.

General Machine Learning in Psychiatry

Machine learning in general is a growing field within psychiatric research (Dwyer
et al., 2018), such as support vector machines. One study utilised a number of
machine learning approaches to model multi-modal data including clinical, neu-
rocognitive, neuroimaging, and genetic information with clinicians’ prognostic es-
timates to predict transition to psychosis in patients with clinical high-risk states
or recent-onset depression (Koutsouleris et al., 2021). The models successfully pre-
dicted disease transitions in 85.9% of cases across geographically distinct patient
populations, as well as reducing clinicians’ lack of prognostic sensitivity, measured
by a false-negative rate of 38.5%, to 15.4% (Koutsouleris et al., 2021).

Another study utilised neural networks to investigate the utility of brain tex-
ture changes for identification of the psychopathological state (ROP and ROD),
the developed model giving discrimination power of >72% (Korda et al., 2023).
Association of individualised brain texture maps with clinical symptom severity
and outcome profiles was also investigated, leading to creation of homogeneous
clusters which statistically significant predict the clinical severity and outcome
profile (Korda et al., 2023).

More similar to the work in this thesis; Chuang and Kuo (2017) used a ran-
dom forest algorithm to build a genetic risk model for bipolar disorder. Bipolar
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disorder has a high heritability, around 0.6 - 0.8 (Barnett and Smoller, 2009),
compared to 0.37 for MDD (Sullivan et al., 2000). Using 289 candidate markers
(single nucleotide polymorphisms) as input, the model achieved an AUC of 0.702
in an external validation set, and 0.944 using leave-one-out cross-validation in the
training set (Chuang and Kuo, 2017). This work used a phenotype with a higher
heritability and utilised far fewer SNPs, which are likely factors contributing to
the higher AUC achieved on the external validation set.

Another method that used neural networks for psychiatric research; Sekaran
and Sudha (2021) investigated the overlap of gene biomarkers for bipolar disorder
and schizophrenia. Seven gene biomarkers were identified as the overlapping, while
60 and 68 gene biomarkers were identified as feature subsets to discriminate the
samples for bipolar disorder and schizophrenia respectively (Sekaran and Sudha,
2021). The proposed framework attained 97.01% and 95.65% accuracy (Sekaran
and Sudha, 2021).

Limitations

The studies in the thesis were the first steps in utilising the power of deep learning
in medical research, and as such had limitations. These limitations were largely
brought about by resource limitations, including time, data and compute.

Machine learning is known to need large datasets to train the large number of
parameters commonly involved in these models, and in all three chapters it is likely
that a larger, more diverse dataset would improve performance. Additionally, in
all three chapters there are extensions, such as alternative graph layers or data
transformation that could further improve performance.

In the Chapters 2 and 3 the developed models were only optimised and evalu-
ated using a subset of the available SNPs. This was done for purposes of time and
compute limitations, as the indications from testing on the other methods, LD-
Pred2 and SBayesR, as well as the pattern of performance on the smaller subsets,
indicated that higher performance could be achieved when using the full SNP set.

Overall, the performance of the models in these experiments also demonstrates
the difficulty of the problem. Previous research (Wray et al., 2018; Howard et al.,
2019) (between 0.8% and 3.2% of phenotypic variance) achieved results similar to
the experiments here (best model phenotypic variance was 2.9%).

In the final project in chapter the two different datasets used were from different
sources, one was from study data (ESS) and the other electronic health record data
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(Tayside). This difference in dataset composition likely explains the slightly weaker
performance of the machine learning methods on this dataset comparative to the
rule-based method.

Training of neural network methods, BiLSTM-Neg and FFNN-Neg, as well
as EdIE-R-Neg, was largely done on the ESS dataset. This was because EdIE-
R-Neg was largely developed prior to the Tayside data becoming available. It
is likely the differing compositions of the two data sources contributed to the
weaker performance of the neural network based methods, supported by the in-
crease in performance when a section of the Tayside data was included in the
training data. Increasing the amount of data from the two different types of data
source (study data and electronic health record data), either from incorporating
additional datasets or increasing the amount of labelled data for each of these sets,
will likely improve the performance of BiLSTM-Neg and FFNN-Neg.

The task in this project was also a relatively straight forward one, as demon-
strated by the strong performance of the neural network and rule-based methods.
A more complex task may allow greater differentiation between model perfor-
mance, as well as better utilisation of the power and flexibility of the BiLSTM
model, and deep learning in general.

The above focuses on the computational limitations of the research. Another
important limitation of the research in Chapters 2 and 3 are that GWAS studies
requires large numbers of participants to find variants with very low effects sizes.
Subsequently, it suggests that it is essentially pointless aiming to identify individual
functional effects (Taylor and Fink, 2006). Potential solutions to this issue include
the study of rare variants, traits with relatively high heritability or the choice of
phenotype with an extreme value of a quantitative variable, such as severe cases
of MDD.

Therefore phenotype choice is very important dependant on the aim of the
study and the target disease. For the studies in this thesis broad depression
(Howard et al., 2018) was chosen as the aim was not to identify single variants
for target treatment, but instead try to quantify as much variance as possible
of the disease. The thesis also treats depression as a common, polygenic disease
and therefore large numbers of samples will include some variants of interest, not
just the cases with severe disease. Previous research has indicated with current
data, broad depression is the most effective for this purpose (Howard et al., 2018).
Additionally, the neural networks tested require large amounts of data to train.
However, using the multi-target methods discussed in future work in Chapter 2,
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a network could focus on both an extreme variant (such as in-patient MDD or
alternative phenotypes described in Taylor and Fink (2006) or Shorter (2013)) as
well as the broad version, combining the advantages of both phenotypes.

The ability to distinguish high risk from low risk individuals is useful itself for
identifying potential treatments. And if future work led to being able to distinguish
between subtypes of disease, or for identifying fast progressing variations then a
number of potential clinical applications could be found. Though they would
require extensive investigation to justify their practical application (Taylor and
Fink, 2006).

There is also concern around about the extending of the depression phenotype
over decades to increasing numbers of people (Shorter, 2013; Lakeman, 2013). This
process increased in pace with the releases of DSM III, before this only melancholia
was treated as an illness, non-melancholic depression was not (Taylor and Fink,
2006). DSM III combined combined melancholia with very common and mild
non-melancholic condition (Taylor and Fink, 2006). This is of course important
to note when conducting studies of the nature in this thesis, as it is important to
be aware of the range of cases included in the chosen cases, and whether this is
appropriate. Particularly when treating depression as case/control, the boundary
between cases and controls is important.

The phenotype chosen for this study was deliberately chosen to be a well de-
fined, though broad, as it suited the hypothesis of the thesis. However, it might
not be the most effective phenotype/definition of case and control available. Fur-
ther work, investigating more narrow phenotypes using methods such as one-shot
or few-shot learning, covered below, will be good to contrast to the results as this
study. Additionally, it would be useful to use a test set of new patients that suffer
severe disease with the models developed in this thesis.

Arguably the trend of ever increasing numbers of patients being treated as the
same phenotype, from those diagnosed by a medical professional as having MDD
through to those included in the PGC’s broad depression phenotype (Howard et al.,
2018) due self-rated questions, goes against the modern trend of precision medicine.
Precision medicine aims to subtype disease into very specific homogenous pheno-
types, and stratifying disease is being investigated in depression research (Habota
et al., 2019). While this thesis focusses on case/control risk scoring, similar meth-
ods could be used to cluster (identify subtypes through unsupervised learning) or
risk score for other phenotypes of interest with depression, such as brain imaging
phenotypes covered in the introduction. The combination of large datasets with
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smaller more targeted studies, or multi-source data (eg epi-genetics and genetic as
done in Chapter 3) for stratification and sub typing will likely be one of the more
productive future work streams.

Future Research

All of the models developed in this thesis represent first steps in the utilisation
of deep learning in medical research, and specifically these tasks. Further work
should build upon the foundations here. This future work could take a number
of directions including improved datasets, more specialised models, deeper/larger
models or inclusion of new tasks.

Deep learning is known to be sensitive to dataset size and quality. The models
in this thesis were trained on genotypes from either one dataset (UKB) or two
(ESS and Tayside) and as such would likely improve with access to other datasets,
such as the ones (PGC datasets) used for the creation of the summary statistics,
or electronic health records from other health boards (which this work has con-
tributed to the successful extension of the overall project to these). Additionally,
in the genetic task model performance was continuing to improve with greater SNP
numbers, indicating there could still be performance available for all methods other
than the basic C+T method should a greater number of SNPs be available.

For the most effective inclusion of greater numbers of SNPs it would be crucial
to select them using the best information available. Newer summary statistics will
likely be available by the time of publication of this thesis, and as demonstrated
by the fall in performance from using the UKB summary statistics compared to
the PGC summary statistics (even for the neural network model), the better these
summary statistics, the better the SNP selection and the stronger performance of
the model. It is likely as SNPs with lower evidence of the association are included
that this quality will be all the more important.

GNPRS and RNPRS were developed to enable use of additional biological data
with the neural network model. Both models used eQTL data to give structure
to the model, aiming to reduce the flexibility of the model in ways that made
learning easier but didn’t compromise performance. Performance showed mixed
success, however both this implementation and the choice of additional data are
just first attempts at these aims. There are a number of other graph layers and
architectures available as well as different types of eQTL data (tissue specific,
cis vs trans etc). There are also other data sources that could be used in parallel
models, such as proteomics, imaging and epi-genomics, which when combined with



CHAPTER 5. GENERAL DISCUSSION AND CONCLUSION 152

the genomic model using intermediate layers into a multi-input model could lead
to significant performance increases.

Instead of using additional input datasets, multi-task learning enables the
model to predict more than one outcome. This has been shown to improve perfor-
mance on the original task (Caruana, 1997), as long as the tasks are related and are
likely to share similar patterns in the data. Choosing phenotypes that are known
to overlap with MDD such as Bipolar Disorder or Generalised Anxiety Disorder,
would likely prove effective for multi-task learning. Alternatively, modelling MDD
symptoms, (sleep changes, weight changes etc) as the target tasks could also prove
productive.

The models used in this thesis are relatively small, with a small number of
layers and parameters compared to some of the best performing models in im-
age recognition. Being able to control overfitting while incorporating additional
SNPs or data sources would likely prove a challenge, even if the compute power
is available. Increasing sample size either through a larger dataset or data trans-
formation (Shorten and Khoshgoftaar, 2019) could be effective at negating the
overfitting effect.

Deep learning is a fast moving field, and there are new technologies being de-
veloped consistently. In the years after the publication of the paper detailing the
work in Chapter 4; transformers (Vaswani et al., 2017) have started to replace
recurrent neural networks, including Bi-LSTMs, in natural language processing
research, including in medical text (Rasmy et al., 2021). Transformers, includ-
ing bidirectional encoder representation from transformers (BERT) and genera-
tive pre-trained transformers (GPT) use attention based network layers, and have
advantages including the ability to take a sequence in parallel rather than sequen-
tially, speeding up learning.

Attention layers, as used in transformers, might also have uses within genomic
research due to the sequence structure. A much smaller vocabulary (either nu-
cleotide bases, or codons which are sequences of 3 bases) and the use of genetic
variants instead of the full sequence means genome wide research is likely to be
more difficult to make use of these layers, but for other genomic tasks such as
protein structure prediction attention layers might prove very effective.

Other advances that might prove particularly useful for medical research in-
clude federated learning and few shot learning. Federated learning splits the train-
ing of the model across multiple instances, allowing data to be used to train a model
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without that data needing to be provided to a central team. For example, each
health organisation could train the model on their own site with their own data,
and only the learning from the data (the model parameters) would be fed back to
the central team, enabling greater data protection.

Few shot, or one shot, learning refines the training of the model to train the
model with far fewer examples. Particularly where data is scarce and high dimen-
sional as is common in medical datasets, few shot learning can be a powerful tool.
For example, the more narrow phenotype of more severe cases, discussed earlier in
the chapter, could form a good phenotype for these techniques. Similarly, insert-
ing human intelligence through human-in-the-loop training can also be a useful
technique for lowering the number of examples needed for the model to learn.

Summary

Overall, the work in this thesis demonstrates the potential of deep learning for med-
ical research, and provides a strong foundation for its inclusion in future projects.
Performance of these methods were competitive with the existing methods, and
offer distinct advantages such as transferability and flexibility (for the addition of
alternative data sources or network structure for example), either taken on their
own or in combination using ensemble modelling with other methods. There are a
number of extensions and future work that should improve upon the results in this
thesis, particularly as datasets improve in size and quality, and new deep learning
technologies are developed and adapted to biomedical data.
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Privé, F., Arbel, J., and Vilhjálmsson, B. J. (2020). LDpred2: better, faster,
stronger. Bioinformatics, 36(22-23):5424–5431.

Rasmy, L., Xiang, Y., Xie, Z., Tao, C., and Zhi, D. (2021). Med-bert: pretrained
contextualized embeddings on large-scale structured electronic health records
for disease prediction. npj Digital Medicine, 4(1):86.

Regier, D. A., Narrow, W. E., Clarke, D. E., Kraemer, H. C., Kuramoto, S. J.,
Kuhl, E. A., and Kupfer, D. J. (2013). DSM-5 field trials in the united states
and canada, part II: test-retest reliability of selected categorical diagnoses. Am.
J. Psychiatry, 170(1):59–70.

Rensma, S. P., van Sloten, T. T., Launer, L. J., and Stehouwer, C. D. A. (2018).
Cerebral small vessel disease and risk of incident stroke, dementia and depres-
sion, and all-cause mortality: A systematic review and meta-analysis. Neurosci.
Biobehav. Rev., 90:164–173.



BIBLIOGRAPHY 167

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why should i trust you?”:
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, page 1135–1144, New York, NY, USA. Association for Computing
Machinery.

Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J. L., Kähler, A. K., Akterin,
S., Bergen, S. E., Collins, A. L., Crowley, J. J., Fromer, M., Kim, Y., Lee, S. H.,
Magnusson, P. K. E., Sanchez, N., Stahl, E. A., Williams, S., Wray, N. R., Xia,
K., Bettella, F., Borglum, A. D., Bulik-Sullivan, B. K., Cormican, P., Crad-
dock, N., de Leeuw, C., Durmishi, N., Gill, M., Golimbet, V., Hamshere, M. L.,
Holmans, P., Hougaard, D. M., Kendler, K. S., Lin, K., Morris, D. W., Mors,
O., Mortensen, P. B., Neale, B. M., O’Neill, F. A., Owen, M. J., Milovancevic,
M. P., Posthuma, D., Powell, J., Richards, A. L., Riley, B. P., Ruderfer, D., Ru-
jescu, D., Sigurdsson, E., Silagadze, T., Smit, A. B., Stefansson, H., Steinberg,
S., Suvisaari, J., Tosato, S., Verhage, M., Walters, J. T., Multicenter Genetic
Studies of Schizophrenia Consortium, Levinson, D. F., Gejman, P. V., Kendler,
K. S., Laurent, C., Mowry, B. J., O’Donovan, M. C., Owen, M. J., Pulver, A. E.,
Riley, B. P., Schwab, S. G., Wildenauer, D. B., Dudbridge, F., Holmans, P., Shi,
J., Albus, M., Alexander, M., Campion, D., Cohen, D., Dikeos, D., Duan, J.,
Eichhammer, P., Godard, S., Hansen, M., Lerer, F. B., Liang, K.-Y., Maier, W.,
Mallet, J., Nertney, D. A., Nestadt, G., Norton, N., O’Neill, F. A., Papadim-
itriou, G. N., Ribble, R., Sanders, A. R., Silverman, J. M., Walsh, D., Williams,
N. M., Wormley, B., Psychosis Endophenotypes International Consortium, Ar-
ranz, M. J., Bakker, S., Bender, S., Bramon, E., Collier, D., Crespo-Facorro,
B., Hall, J., Iyegbe, C., Jablensky, A., Kahn, R. S., Kalaydjieva, L., Lawrie, S.,
Lewis, C. M., Lin, K., Linszen, D. H., Mata, I., McIntosh, A., Murray, R. M.,
Ophoff, R. A., Powell, J., Rujescu, D., Van Os, J., Walshe, M., Weisbrod, M.,
Wiersma, D., Wellcome Trust Case Control Consortium 2, Donnelly, P., Bar-
roso, I., Blackwell, J. M., Bramon, E., Brown, M. A., Casas, J. P., Corvin, A. P.,
Deloukas, P., Duncanson, A., Jankowski, J., Markus, H. S., Mathew, C. G.,
Palmer, C. N. A., Plomin, R., Rautanen, A., Sawcer, S. J., Trembath, R. C.,
Viswanathan, A. C., Wood, N. W., Spencer, C. C. A., Band, G., Bellenguez,
C., Freeman, C., Hellenthal, G., Giannoulatou, E., Pirinen, M., Pearson, R. D.,
Strange, A., Su, Z., Vukcevic, D., Donnelly, P., Langford, C., Hunt, S. E., Ed-
kins, S., Gwilliam, R., Blackburn, H., Bumpstead, S. J., Dronov, S., Gillman,
M., Gray, E., Hammond, N., Jayakumar, A., McCann, O. T., Liddle, J., Pot-
ter, S. C., Ravindrarajah, R., Ricketts, M., Tashakkori-Ghanbaria, A., Waller,
M. J., Weston, P., Widaa, S., Whittaker, P., Barroso, I., Deloukas, P., Mathew,
C. G., Blackwell, J. M., Brown, M. A., Corvin, A. P., McCarthy, M. I., Spencer,
C. C. A., Bramon, E., Corvin, A. P., O’Donovan, M. C., Stefansson, K., Scol-



BIBLIOGRAPHY 168

nick, E., Purcell, S., McCarroll, S. A., Sklar, P., Hultman, C. M., and Sullivan,
P. F. (2013a). Genome-wide association analysis identifies 13 new risk loci for
schizophrenia. Nat. Genet., 45(10):1150–1159.

Ripke, S., Wray, N. R., Lewis, C. M., Hamilton, S. P., Weissman, M. M., Breen, G.,
Byrne, E. M., Blackwood, D. H. R., Boomsma, D. I., Cichon, S., Heath, A. C.,
Holsboer, F., Lucae, S., Madden, P. A. F., Martin, N. G., McGuffin, P., Muglia,
P., Noethen, M. M., Penninx, B. P., Pergadia, M. L., Potash, J. B., Rietschel, M.,
Lin, D., Müller-Myhsok, B., Shi, J., Steinberg, S., Grabe, H. J., Lichtenstein,
P., Magnusson, P., Perlis, R. H., Preisig, M., Smoller, J. W., Stefansson, K.,
Uher, R., Kutalik, Z., Tansey, K. E., Teumer, A., Viktorin, A., Barnes, M. R.,
Bettecken, T., Binder, E. B., Breuer, R., Castro, V. M., Churchill, S. E., Coryell,
W. H., Craddock, N., Craig, I. W., Czamara, D., De Geus, E. J., Degenhardt, F.,
Farmer, A. E., Fava, M., Frank, J., Gainer, V. S., Gallagher, P. J., Gordon, S. D.,
Goryachev, S., Gross, M., Guipponi, M., Henders, A. K., Herms, S., Hickie,
I. B., Hoefels, S., Hoogendijk, W., Hottenga, J. J., Iosifescu, D. V., Ising, M.,
Jones, I., Jones, L., Jung-Ying, T., Knowles, J. A., Kohane, I. S., Kohli, M. A.,
Korszun, A., Landen, M., Lawson, W. B., Lewis, G., Macintyre, D., Maier, W.,
Mattheisen, M., McGrath, P. J., McIntosh, A., McLean, A., Middeldorp, C. M.,
Middleton, L., Montgomery, G. M., Murphy, S. N., Nauck, M., Nolen, W. A.,
Nyholt, D. R., O’Donovan, M., Oskarsson, H., Pedersen, N., Scheftner, W. A.,
Schulz, A., Schulze, T. G., Shyn, S. I., Sigurdsson, E., Slager, S. L., Smit, J. H.,
Stefansson, H., Steffens, M., Thorgeirsson, T., Tozzi, F., Treutlein, J., Uhr, M.,
van den Oord, E. J. C. G., Van Grootheest, G., Völzke, H., Weilburg, J. B.,
Willemsen, G., Zitman, F. G., Neale, B., Daly, M., Levinson, D. F., Sullivan,
P. F., and Major Depressive Disorder Working Group of the Psychiatric GWAS
Consortium (2013b). A mega-analysis of genome-wide association studies for
major depressive disorder. Mol. Psychiatry, 18(4):497–511.

Robinson, R. G. and Jorge, R. E. (2016). Post-stroke depression: A review. Am.
J. Psychiatry, 173(3):221–231.

Rush, A., Fava, M., Wisniewski, S. R., Lavori, P. W., Trivedi, M. H., Sackeim,
H. A., Thase, M. E., Nierenberg, A. A., Quitkin, F. M., Kashner, T., Kupfer,
D. J., Rosenbaum, J. F., Alpert, J., Stewart, J. W., McGrath, P. J., Biggs,
M. M., Shores-Wilson, K., Lebowitz, B. D., Ritz, L., Niederehe, G., and for
the STAR*D Investigators Group (2004). Sequenced treatment alternatives to
relieve depression (star*d): rationale and design. Controlled Clinical Trials,
25(1):119–142.

Rush, A. J., Zimmerman, M., Wisniewski, S. R., Fava, M., Hollon, S. D., Warden,
D., Biggs, M. M., Shores-Wilson, K., Shelton, R. C., Luther, J. F., Thomas,



BIBLIOGRAPHY 169

B., and Trivedi, M. H. (2005). Comorbid psychiatric disorders in depressed
outpatients: Demographic and clinical features. Journal of Affective Disorders,
87(1):43–55.

Salk, R. H., Hyde, J. S., and Abramson, L. Y. (2017). Gender differences in
depression in representative national samples: Meta-analyses of diagnoses and
symptoms. Psychol. Bull., 143(8):783–822.

Sato, S. and Yeh, T. L. (2013). Challenges in treating patients with major depres-
sive disorder: the impact of biological and social factors. CNS Drugs, 27 Suppl
1(S1):S5–10.

Savla, J. and Neeland, I. (2018). The pros and cons of mendelian randomization
studies to evaluate emerging cardiovascular risk factors. Current Cardiovascular
Risk Reports, 12.
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R., Chen, J., Chye, Y., Dannlowski, U., de Kovel, C. G. F., Donohoe, G., Eyler,
L. T., Faraone, S. V., Favre, P., Filippi, C. A., Frodl, T., Garijo, D., Gil, Y.,
Grabe, H. J., Grasby, K. L., Hajek, T., Han, L. K. M., Hatton, S. N., Hilbert,
K., Ho, T. C., Holleran, L., Homuth, G., Hosten, N., Houenou, J., Ivanov, I.,
Jia, T., Kelly, S., Klein, M., Kwon, J. S., Laansma, M. A., Leerssen, J., Lueken,



BIBLIOGRAPHY 173

U., Nunes, A., Neill, J. O., Opel, N., Piras, F., Piras, F., Postema, M. C.,
Pozzi, E., Shatokhina, N., Soriano-Mas, C., Spalletta, G., Sun, D., Teumer,
A., Tilot, A. K., Tozzi, L., van der Merwe, C., Van Someren, E. J. W., van
Wingen, G. A., Völzke, H., Walton, E., Wang, L., Winkler, A. M., Wittfeld,
K., Wright, M. J., Yun, J.-Y., Zhang, G., Zhang-James, Y., Adhikari, B. M.,
Agartz, I., Aghajani, M., Aleman, A., Althoff, R. R., Altmann, A., Andreassen,
O. A., Baron, D. A., Bartnik-Olson, B. L., Marie Bas-Hoogendam, J., Baskin-
Sommers, A. R., Bearden, C. E., Berner, L. A., Boedhoe, P. S. W., Brouwer,
R. M., Buitelaar, J. K., Caeyenberghs, K., Cecil, C. A. M., Cohen, R. A., Cole,
J. H., Conrod, P. J., De Brito, S. A., de Zwarte, S. M. C., Dennis, E. L.,
Desrivieres, S., Dima, D., Ehrlich, S., Esopenko, C., Fairchild, G., Fisher, S. E.,
Fouche, J.-P., Francks, C., Frangou, S., Franke, B., Garavan, H. P., Glahn,
D. C., Groenewold, N. A., Gurholt, T. P., Gutman, B. A., Hahn, T., Harding,
I. H., Hernaus, D., Hibar, D. P., Hillary, F. G., Hoogman, M., Hulshoff Pol,
H. E., Jalbrzikowski, M., Karkashadze, G. A., Klapwijk, E. T., Knickmeyer,
R. C., Kochunov, P., Koerte, I. K., Kong, X.-Z., Liew, S.-L., Lin, A. P., Logue,
M. W., Luders, E., Macciardi, F., Mackey, S., Mayer, A. R., McDonald, C. R.,
McMahon, A. B., Medland, S. E., Modinos, G., Morey, R. A., Mueller, S. C.,
Mukherjee, P., Namazova-Baranova, L., Nir, T. M., Olsen, A., Paschou, P., Pine,
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