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Abstract:  

The transportation sector is deemed one of the primary sources of energy consumption and greenhouse 

gases throughout the world. To realise and design sustainable transport, it is imperative to comprehend 

relationships and evaluate interactions among a set of variables, which may influence transport energy 

consumption and CO2 emissions. Unlike recent published papers, this study strives to achieve a balance 

between machine learning (ML) model accuracy and model interpretability using the Shapley additive 

explanation (SHAP) method for forecasting the energy consumption and CO2 emissions in the UK’s 

transportation sector. To this end, this paper proposes an interpretable multi-stage forecasting 

framework to simultaneously maximise the ML model accuracy and determine the relationship between 

the predictions and the influential variables by revealing the contribution of each variable to the 

predictions. For the UK’s transportation sector, the experimental results indicate that road carbon 

intensity is found to be the most contributing variable to both energy consumption and CO2 emissions 

predictions. Unlike other studies, population and GDP per capita are found to be uninfluential variables. 

The proposed multi-stage forecasting framework may assist policymakers in making more informed 

energy decisions and establishing more accurate investment. 

 

Keywords: Energy consumption forecasting, CO2 emissions forecasting, Transportation sector, 

Machine learning, Feature selection. 
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1 Introduction 

1.1 Background 

Over the last decades, energy consumption (EngCons) and carbon dioxide emissions (CO2E) challenges 

have been the primary issues for policymakers. This was because of the impact of energy usage on 

national economic growth as well as the impact of carbon on human health. In parallel with economic 

and social enhancements, energy demand has risen worldwide. Correspondingly, the rapidly increasing 

level of the human population, socioeconomic improvement, urbanization, and scientific developments 

have cumulatively led to an increase in worldwide EngCons and CO2E in numerous sectors [1, 2]. The 

world CO2E for different transportation sectors is provided in Figure 1. Although CO2E is increasing 

until 2025, they will continue to decrease dramatically until 2070. 

In the United Kingdom (UK), almost all transportation sectors must decarbonize to fulfill the economy-

wide net-zero commitment. Due to a continual increase throughout vehicle kilometers traveled, 

transportation CO2 peaked in 2007, 8.4% greater compared to 1990. Since then, emissions through the 

transportation sector have dropped back to around 1990 levels up till 2019, primarily due to 

enhancements in new vehicle energy efficiency and reduced transportation growth compared to prior 

years due to a dip following the 2008/2009 recession [3]. According to the Energy Stats [4], although 

in 2020 the UK government observed significant falls in energy usage for almost all vehicle forms, with 

the most considerable reduction in buses and automobiles transport remains the most significant part of 

energy usage throughout the UK. 

Figure 1. World CO2E for different transportation modes [5]. 

 

A range of machine learning (ML) models can be utilized to estimate EngCons and CO2E, including 

multiple linear regression (MLR) [6, 7], logistic regression [8], generalized linear models [9], time 

series analysis [10, 11], artificial neural networks (ANN) [12-14], deep learning [15-17], support vector 

machine (SVM) [18, 19], decision tree, random forest (RF) [20, 21], hybrid methods [22, 23], to name 
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a few. Despite extensive research having been conducted using ML models to forecast EngCons and 

CO2E, it is noticed that limited attention has been focused on the transport sector of the UK. For instance, 

Piecyk and McKinnon [24] conducted a study in 2010 to forecast the carbon footprint of road freight 

transport in 2020, factors affecting freight transport demand, truck fuel consumption and related CO2E 

were discussed. However, their research only focused on part of the transport sector and is now out-of-

date, which diminishes the value of their research for policymakers in decision-making. Logan et al. 

[25] conducted a similar study where they estimated the energy demand of road transport including cars, 

buses and trains. The energy consumption of the transport sector remained untouched. The limited 

number of works in energy demand forecasting of the UK’s transport sector failed to meet the needs of 

UK Transport Vision 2050 [26]. 

Furthermore, as review of literature indicates, previous studies have explored forecasting the EngCons 

and/or CO2E, which preselected a small number of features without any strong justification and 

rationale on how and why those set of features are selected. Because of a small number of preselected 

features, unlike many studies in other energy forecasting domains, no study has employed FS methods 

to select the combination of features which can lead to high accuracy of ML models. In addition, only 

one study [27] has used interpretable ML to forecast the EngCons and CO2E to determine the influential 

variables. Therefore, as one of the most crucial needs, the transportation sector is calling for an 

interpretable multi-stage framework to accurately forecast the EngCons and CO2E and to systematically 

evaluate the effects of different types of features. 

 

1.2 Novelty and contributions 

The novelty and contributions of this study in comparison with recently published works in forecasting 

EngCons and CO2E in transportation sector can be concluded as follows: 

• This study considers multi-source data in the UK’s transportation sector by integrating three 

categories of variables (features) including socioeconomic, transportation- and energy-related 

variables. Neither of published papers used a large list of input features and performed correlation 

and multicollinearity analyses to remove highly correlated features to provide an appropriate subset 

of features for interpretability of black-box ML models. All previous works preselected a small 

number of features without any strong justification and rationale on how and why those set of 

features are selected. 

• Previous studies in the literature used neither filter/embedded methods to select the input features 

holding strong relationship with the EngCons and CO2E, nor wrapper methods to select the features 

which can lead to high accuracy of ML models. This study introduces a novel voting scheme for 

feature selection (FS), which combines both filter and embedded paradigms, which has not been 

studied before in the EngCons context. 
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• The other contribution is to propose an interpretable ML-based forecasting framework, which is 

depicted in Fig 2. The proposed generalised framework integrates multi-stage FS procedure with 

ML models to simultaneously achieve more accurate forecasts and more reliable interpretation of 

black-box ML models using Shapley additive explanation (SHAP) analysis proposed by Lundberg 

et al. [61]. SHAP is a method employed for interpreting the output of ML models, which is briefly 

described in Section 3.7. Although the SHAP analysis has recently found applications in energy-

related fields [27-29], more work is required to demonstrate the practicality and usefulness of 

SHAP analysis in interpretable ML models for forecasting EngCons and CO2E. To the best of our 

knowledge, this study is the second work in EngCons context (the first study is Aras and Van [30], 

however, they overlooked the fact that investigation of multicollinearity in their study is crucial) 

that applies the SHAP analysis to forecast the EngCons and CO2E to determine the influential 

variables contributing to the predictive performance. 

It is worth mentioning that the proposed methodology is designed for any ML-based forecasting 

problems, in which simultaneously selecting as few features as possible for interpretability of ML models 

(or any other reasons) and achieving an acceptable model accuracy are desired. Multiple stages of FS 

procedure are so insightful on how different features are influencing and interacting with each other. 

This paper is organised as follows. Section 2 reviews literature of the existing study regarding EngCons 

and CO2E. Section 3 introduces the forecasting framework according to the integrated multi-stage FS 

methods and ML models. In Section 4, the case study and experimental settings are described. In Section 

5, the analyses of experimental results are described along with Shapley Analysis to demonstrate the 

usefulness and benefits of the proposed framework. Section 6 briefly presents some noticeable 

discussion and lastly, concluding statements are provided in Section 7. 

 

2 Literature review 

2.1 Feature selection for energy forecasting  

Multivariate ML-based forecasting models work based on selecting a set of potentially influencing 

features. As it is discussed in Section 2.2 only Wang et al. [31] used FS method for forecasting CO2E 

and EngCons in transportation sector which in contrast to previous studies that have typically chosen a 

limited number of key features, such as population, GDP, and total number of vehicles, without 

providing a clear rationale or justification for their selection. 

An appropriate FS procedure is crucial in forecasting CO2E and EngCons. A summary of a few recent 

studies considering the FS methods in different energy fields is provided as follows. Jurado et al. [32] 

compared several ML techniques for energy prediction inside houses. They suggested a hybrid strategy 

that combines FS methods using soft computing and ML models, i.e., fuzzy, RF, and ANN. Feng et al. 

[33] developed a method for wind prediction using the ML approach. A FS structure was established to 

identify the most appropriate inputs for the ML approach. An organised FS method for establishing 

house energy prediction was suggested by Zhang and Wen [34].  
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The power usage of appliances was forecasted by Moldovan and Slowik [35] utilizing binary grey wolf 

optimization, in which the best features were selected utilizing the RF, KNN, decision tree, and extra 

tree methods. Qiao et al. [36] suggested a framework for house energy usage forecasting, depending on 

FS techniques. Lv and Wang [37] offered an efficient short-term wind speed prediction model by taking 

into account the impact of several meteorological variables. The filter-wrapper method integrating K-

medoid clustering was developed to choose crucial meteorological elements. In the above papers, 

experimental results indicated that the ML models utilizing the FS methods typically have greater 

generalization and precision than those without FS. 

 

2.2 ML for energy forecasting 

Over the past few years, many forecasting models have been developed to predict EngCons and CO2E 

in different sectors. In this section, we briefly review the papers which investigated ML-based 

forecasting in the transportation sector in recent years. Readers can refer to [2,38] to study more 

references. Wang et al. [39] developed an ML model for transportation emissions utilizing the SVM, 

GPR, and ANN algorithms. Sahraei et al. [40] forecasted transportation energy usage utilizing the 

multivariate adaptive regression splines (MARS) method for 45 years after 1975 in Turkey. 

Li et al. [41] utilised an ML model to predict Australia's vehicle gasoline usage utilizing an 

autoregressive and structural method. The outcomes of a prediction regarding gasoline usage for 2019-

2020 demonstrate the outstanding prediction performance of the ML model. Ağbulut [2] utilised three 

ML models, i.e., ANN, SVM, and deep learning to predict transport energy usage and CO2E. Results 

showed that CO2E and energy usage through the transport sector will rise by almost 3.4 times more by 

2050 than today. Sahraei and Çodur [23] suggested hybrid methods, ANN-PSO, ANN-Simulated 

Annealing, and ANN-GA, for a precise optimization of the input parameters regarding forecasting the 

energy usage during 1975-2019 throughout Turkey. 

Three ML algorithms were developed by Li et al. [42], including gradient boosting regression (GBR), 

SVM, and ordinary least squares regression, to predict transport CO2E. More recently, Javanmard et al. 

[38] employed a hybrid approach integrating a multi-objective mathematical model with MLs to predict 

energy demand and CO2E in the transportation sector of Canada. Korkmaz [43] developed black widow 

optimization and bezier search differential evolution methods to calculate the transport energy usage 

throughout Turkey. More recently, a hybrid RF-SVR and response surface method were carried out by 

Khajavi and Rastgoo [44] to forecast CO2E for 30 important towns throughout China.  

Given the concentration of this study, Table 1 summarises key information from prior studies from all 

over the world forecasting energy demand and CO2E in the transportation sector. In the case of the FS 

methods (wrapper, filter, and embedded), we could not find any study to utilise the FS methods except 

for Wang et al. [31], which used stepwise linear regression to select most significant variables. In 

addition, based on authors’ review of literature only [2,38] considered both energy demand and CO2E 

as target variables.  
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Table1. Summary of the primary studies in predicting energy demand and CO2E in the transportation sector. 

Paper 
Target 

Variable(s) 
Field Country  Timeframe 

Feature selection Applied Models 

Filter/ 

Embedded 
Wrapper ML Mathematical Hybrid 

[2] Energy and CO2 Transport  Turkey 1970-2016 No No ANN, SVM, DL - - 

[22] Energy Transport Jordan 1985-2009 No No - - 

Neuro-Fuzzy 

Inference 

System 

[23] Energy Transport Turkey 1975-2019 No No - - 

ANN-GA, 

ANN-SA, and 

ANN-PSO 

[31] CO2 Transport China 1980-2014 Yes  No 
BPNN, GPR, 

SVM 
- PSO-SVM 

[45] Energy Transport Thailand 1989-2008 No No ANN - - 

[40] Energy Transport Turkey 1975-2019 No No 

multivariate 

adaptive 

regression 

splines 

- - 

[41] Energy Automobile Australia 
1974-2019 

(Quarterly) 
No No 

Autoregressive 

and structural 

model 

- - 

[42] CO2 Transport 
Top 30 Emitting 

Nations 
2005-2014 No No 

OLS, SVM, 

GBR 
- - 

[38] Energy and CO2 Transport Canada 1990-2019 No No 

ARIMA, 

ARFIMA, 

SARIMA, 

GARCH, 

MIDAS, SVR 

- - 

[43] Energy Transport Turkey 2000-2017 No No 

Bezier search 

differential 

evolution and 

black widow 

optimization  

- - 

[44] CO2 Road Transport China 2006-2015 No No - - 

Hybrid RF-SVR, 

and response 

surface  

[46] CO2 Road Transport  UK 2010-2014 No No - 

Basic 

Estimations to 

2050 

- 

[47] non-methane  Road Transport EU Nations 2004-2016 No No SVR, RLR - 
Kernel grey 

model 
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[48] CO2 Transport Pakistan 1971-2014 No No - 
Autoregressive 

distributive lag  
- 

[49] CO2 Transport China 
2015  

(3 months) 
No No 

ANN, gaussian 

naive bayes, 

linear and 

logistic 

regression, 

stacked deep 

belief networks 

- - 

[50] CO2 Land transport Cyprus 2010-2016 No No - 

Environmentally 

extended input-

output analysis 

- 

[51] Energy Transport Turkey 1975-2016 No No ANN - - 

Prseent study Energy and CO2 Transport UK 1990-2019 Yes Yes 

ANN, RF, 

LSTM, SVM, 

MLR, LSBoost, 

GPR 

- - 
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3. Research methodology 

3.1 Overall procedure of proposed forecasting framework 

Figure 2 provides a conceptual framework of our proposed method for forecasting EngCons and CO2E. 

The primary goal of the proposed integrated multi-stage FS and ML method is to leverage the benefits 

of FS to identify the most influential features while mitigating multicollinearity, and to identify a subset 

of features able to achieve an appropriate balance between accuracy of ML models and their 

interpretability power.  

The architecture of our proposed method involves multiple stages: i) pre-processing operations, (ii) 

correlation analysis of variables, (iii) filter and embedded FS methods, (iv) multicollinearity analysis, 

(v) integrated wrapper FS and ML models, (vi) selecting the best ML models with the highest accuracy, 

and finally (vii) performing Shapley analysis to determine the contributions of variables. 

First, the raw data was collected and processed by removing noise, correcting the data inconsistencies, 

and integrating them into a homogeneous dataset. The other stages are described in some details as 

follows. In any ML study, some potentially important features can be automatically selected and added 

to the feature list based on the domain knowledge as depicted in Figure 2.  

 

Construct the pool of the candidate features 

List of candidate features

Apply a few filter and embedded FS 
methods and then using a voting 
scheme to remove unimportant features

Filter and embedded FS

Apply multicollinearity analysis (VIF) 
to remove highly correlated features

Multicollinearity 

Feature subset S2

Feature 
subset S1

Review the most recent literature on both ML 
and FS in energy context

Literature review

Add potentially important features 
removed in previous stages

Domain knowledge

Tuning the hyperparameters using (grid, 
random search or employ metaheuristics 

Hyperparameter tuning

Validate the ML models by achieving low error 
metrics 

Validation of ML models

rRMSERMSE MAEMAPE

Select the ML models with best performance 
led to lowest error metrics

Best ML models selection

ML kML jML i

Apply the SHAP method to the  
ML models with best performance 
to extract the Shapley values

Shapley analysis

ML kML jML i

Apply Pearson correlation to remove highly 
correlated input features

Pearson Correlation

Perform pre-processing operations including 
cleaning the data and 
removing outlier observation(s)

Pre-processing operations 

Collecting data for 
the given period

Data collection

Apply integrated ML models with 
wrapper FS methods to select the
 final feature subset for each ML model 

Integrated wrapper FS and ML

ML n...ML 2ML 1

 

Figure 2. The conceptual framework of the integrated FS and ML based forecasting framework.  

 

3.2 Pairwise Pearson correlation  

For each input feature (IF), the Pearson correlation coefficient rij of this feature (i) with each of the other 

input features (j) along with its corresponding significance value pij (𝑖 and 𝑗 ∈ 𝑆𝑒𝑡𝐼𝐹) are calculated. If 

the absolute value of correlation coefficient rij for each pair of input features is greater than correlation 
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threshold value Tu (in this study Tu = 0.95) with significant confidence (pij < a, a is significance level), 

only one highly collinear feature will be selected, while the remaining features will be excluded from 

the candidate pool to avoid redundancy. 

 

3.3 Filter and embedded FS methods 

3.3.1 Maximum Relevance and Minimum Redundancy (mRMR) 

The mRMR is a filter FS algorithm to rank input features based on their relevance to the output feature 

and simultaneously discard redundant input features [52]. Mutual information (MI) is employed to 

quantify both the relevance and redundancy of mRMR. The following describes MI: 

 

𝐼(𝑋, 𝑌) = ∬ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
         (1) 

 

where 𝑋, 𝑌  are vectors, 𝑝(𝑥, 𝑦) is the joint probabilistic density, 𝑝(𝑥) and 𝑝(𝑦) are the marginal 

probabilistic densities, respectively. 

Assuming a feature set 𝑆  with 𝑚 (𝑥𝑖 , 𝑖 ∈ (1, 𝑚))  features, then Max-Relevance represents a feature 

subset that jointly has the largest relevance to the output variable 𝑦: 

 

𝑚𝑎𝑥𝐷(𝑆, 𝑦), 𝐷 =
1

|𝑆|
∑ 𝐼(𝑥𝑖 , 𝑦)𝑥𝑖∈𝑆         (2) 

 

For defining redundant features, Minimum Redundancy is implemented using Max-Relevance's 

possible redundancy. : 

 

𝑚𝑖𝑛𝑅(𝑆), 𝑅 =
1

|𝑆|2
∑ 𝐼(𝑥𝑖 , , 𝑥𝑗)𝑥𝑖,𝑥𝑗∈𝑆         (3) 

 

An incremental search method is then employed to find the optimal solution that can satisfy the above 

two constraints. Assuming that there already have a feature set 𝑆𝑚−1 , the task is to determine the 𝑚𝑡ℎ 

feature from {𝑋 − 𝑆𝑚−1} 

 

𝑚𝑎𝑥𝑥𝑗∈𝑋−𝑆𝑚−1
[𝐼(𝑥𝑗 , 𝑦) −

1

𝑚−1
∑ 𝐼(𝑥𝑖 , 𝑥𝑗)𝑥𝑖∈𝑆𝑚−1

]      (4) 

 

3.3.2 Random Forest 

Random Forest (RF) is an ensemble technique that combines a predetermined number of decision trees. 

It employs information gain or Gini impurity as the criteria for splitting each node across all trees [53]. 

Nodes with the highest impurity reduction are usually found at the start of decision trees, while nodes 
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with the lowest impurity reduction are typically located towards the end. Therefore, by selectively 

pruning branches at a specific node, it is feasible to create a subset of the most significant features. 

 

3.3.3 Boruta FS  

Boruta is a wrapper algorithm that utilises an RF to identify pertinent features associated with output 

labels while discarding irrelevant features that may occasionally exhibit significance due to chance [54]. 

A detailed procedure for BFS is iterated below: 

• Randomise the feature set by creating shadow copies (shadow features) of all features and 

combining them with the original features to create an extended feature set. 

• Establish an RF model for the expanded feature set and assess the feature's importance (the 

average reduced accuracy Z value). The larger the Z value, the more significant the trait. Z-max 

denotes the maximum Z value of the shadow feature. 

• During each iteration, if the feature's Z value is larger than Z-max, the feature is deemed 

essential and is retained. Otherwise, the feature will be considered trivial and eliminated from 

the feature list. 

• The preceding approach terminates when all features are either verified or rejected or when the 

maximum number of BFS iterations is achieved. 

 

3.3.4 Voting scheme in FS  

One of the challenges in FS is to determine the most appropriate FS method(s) for a particular set of data 

due to the fact that each FS method has its own logic based on a statistical measure to calculate the 

relative importance of features, which may lead to different subsets of selected features. In other words, 

a feature may be deemed important in one method but not in another. 

In the proposed methodology, three different FS methods, including two filter FS methods (mRMR and 

Boruta) and one embedded FS method (RF) were applied to select the most important features. However, 

both filter and embedded methods have their own drawbacks; filter methods ignore the dependency 

among input features and embedded methods heavily rely on ML models. To overcome such issue, a 

voting scheme was proposed, when an FS method m picks the feature f, it assigns the vote Vmf (no = 0 or 

yes = 1) for that feature. In the end, the voting scheme calculates the total “yes” votes for each feature, 

i.e., total vote 𝑉𝑓 = ∑ 𝑉𝑓𝑚𝑚 , and then a subset of features with the total vote Vf greater than or equal to 

the total vote threshold value VT (provided by ML practitioner depending on the problem) are selected.  

 

3.4 Multicollinearity analysis 

Multicollinearity refers to the correlation between input features in ML applications, which typically 

does not impact the performance of the ML models. However, it may significantly distort the 

interpretability of the model and develop a biased insight of feature importance. For instance, during 
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training process, a ML method such as Lasso Regression may assign a large weight to one arbitrary 

representative of a group of highly correlated features and fully omit the rest ones, despite similar 

information these features represent. A misleading interpretation may therefore be obtained due to 

multicollinearity. To mitigate adverse impact of multicollinearity on interpretation of ML, variance 

inflation factor (VIF) [55, 56] was introduced in the study for removing highly correlated features.  

 

3.5 ML models 

3.5.1 Support vector machine (SVM) 

SVM is a model for binary classification that functions based on the principle of separating hyperplanes 

[57]. This approach guarantees the determination of the hyperplane that can effectively partition the 

training datasets under the largest geometric interval. A Kernel function is incorporated into SVM to 

facilitate the mapping of input spaces onto a feature space of high dimensionality through a non-linear 

transformation, which ultimately results in the establishment of a linear decision boundary within the 

transformed space.  

 

3.5.2 Gaussian process regression (GPR) 

The GPR model is a supervised machine-learning algorithm that operates on probabilistic principles 

[58]. It leverages prior knowledge to generate predictions and provides measures of uncertainty. 

Assuming a training set 𝒟 = (𝑋, 𝑦) = {(𝑋𝑖 , 𝑦𝑖)|𝑖 = 1, … , 𝑁},  where X is denotes an input vector and y 

denotes an output or target variable. When given a new input X*, the corresponding output �̂�* can be 

expressed as  

 

�̂�∗  = 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝑦         (5) 

 

The derivation process is as follows, assuming: 

[
𝑦
𝑦∗] ~𝒩(0, [

𝐾(𝑋, 𝑋) 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
])        (6) 

According to the conditional distribution property of the multidimensional Gaussian distribution:  

 

𝑦∗|𝑦~ 𝒩(𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝑦, 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝐾(𝑋, 𝑋∗))   (7) 

 

Finally, 𝑝(�̂�∗|𝑦) is able to achieve its maximum when �̂�∗  = 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝑦. 

 

3.5.3 Long short-term memory (LSTM) networks 

Long Short-Term Memory (LSTM) networks are sequential neural networks that address the vanishing 

gradient of Recurrent Neural Networks [59] by introducing the concept of cell states and bring four 

interacting layers and gate units as shown in Figure 3. 
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Figure 3. Schematic diagram of an LSTM. 

 

The self-connected memory cell 𝐶𝑡 is the key feature of LSTMs, enabling gradients to flow across long 

sequences. LSTMs use 3 sigmoid gates (forgetting, input, and output) to manage cell state information.: 

 

𝜎(𝑥) =
1

1+𝑒−𝑥           (8) 

 

Forgetting gate 𝑓𝑡 determines the specific information to discard from the cell state based on ℎ𝑡−1 and 

𝑥𝑡, and update the cell state 𝐶𝑡−1 (i.e., 0: discard, 1: remain).  

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)         (9) 

 

The input gate 𝑖𝑡 and a tanh layer are then developed to control new information stored in the new cell: 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)         (10)  

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)        (11) 

 

the new cell state 𝐶𝑡 can be updated: 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶�̃�          (12) 

Finally, the output gate 𝑜𝑡 uses the current input and the previous output to decide what parts of the cell 

state to output, and a tanh function is established to calculate the current state. 

 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)         (13) 

ℎ𝑡 = 𝑜𝑡 ∙ tanh(𝐶𝑡)           (14) 

 

In Equations (8)-(14), the matrices 𝑊𝑓, 𝑊𝑖  and 𝑊𝑜 are the recurrent weighting metrics; 𝑏𝑓, 𝑏𝑖, 𝑏𝐶  and 

𝑏𝑜 are the corresponding bias vectors. 
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3.5.4 Linear regression (LR) 

LR measures the relationship between a target variable and a given set of input variables [60]. Assuming 

there are m input variables: 

 

𝑌 = 𝛽0 + 𝑐𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑚𝑋𝑚 + 𝜀       (15) 

 

where 𝛽0 is the constant term and 𝛽1to 𝛽𝑚 are the coefficients associated with the input variables. 𝜀 is 

the random error. Note that the 𝑚𝑡ℎregression coefficient 𝛽𝑚 represents the expected change in 𝑌 per 

unit change in the 𝑚𝑡ℎ input variable 𝑥𝑚, assuming 𝐸(𝜀) = 0, 𝛽𝑚 =
𝜕𝐸(𝑌)

𝜕𝑋𝑚
. 

 

3.5.5 Gradient tree boosting with least squares (LSBoost) 

LSBoost is a meta learning method that comprises a specific number of weak tree-learners [61].The 

algorithm initiates by sequentially training individual weak learners in the form of decision trees, and 

subsequently fits the residual of errors to attain improved performance. The LSBoost approach employs 

the least squares as the criterion for loss. 

 Assuming the training set {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛  , a loss function 𝐿(𝑦, 𝐹) =

(𝑦−𝐹)2

2
   and regression function 

𝐹𝑚(𝑥), (𝐹0(𝑥) = �̅�), where m is the number of iterations.  

For each iteration,  

 

𝑦�̃� = 𝑦𝑖 − 𝐹𝑚−1(𝑥𝑖), for i = 1,2, … , N        (16) 

(𝜌𝑚, 𝛼𝑚) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌,𝛼 ∑ [𝑦�̃� − 𝜌ℎ(𝑥𝑖; 𝛼)]2𝑁
𝑖=1        (17) 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜌𝑚ℎ((x; 𝛼𝑚)        (18) 

 

where ℎ(𝑥𝑖; 𝛼) is a parameterised function of input variables 𝑥𝑖 that characterised by parameter 𝛼𝑚, 𝜌𝑚 

is a successive increment/step/boost of LSBoost. 

 

3.5.6 Multi-layer Perceptron (MLP) 

A multilayer perceptron is a fully connected feedforward artificial neural network (ANN) containing at 

least three layers of nodes: an input layer, a hidden layer, and an output layer [62].  

Assuming an input layer consisting of a set of neurons {𝑥𝑖|𝑥1, 𝑥2, … , 𝑥𝑚}, each neuron in the hidden 

layer is linearly weighted to sum the values from the input layer: 

 

𝑣𝑖 =  𝜔𝑖1𝑥1 + 𝜔𝑖2𝑥2 + ⋯ +  𝜔𝑖𝑚𝑥𝑚        (19) 
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Where 𝑣𝑖 is the weighted sum of the input connections of hidden node 𝑖  , 𝜔𝑖𝑚 is the weight between 

hidden node 𝑖 and input 𝑥𝑚.  

Then, the weighted summation is applied to a nonlinear activation function, typically a hyperbolic tan 

function or sigmoid function: 

 

𝑦(𝑣𝑖) = tanh(𝑣𝑖)    or   𝑦(𝑣𝑖) = (1 + 𝑒−𝑣𝑖)−1       (20) 

 

The learning process in the MPL is carried out through backpropagation by changing the weights after 

all data is processed. 

Assuming an error in an output node 𝑗  in the 𝑛 th data point 𝑒𝑗(𝑛) = 𝑦𝑗(𝑛) − �̅�𝑗(𝑛) , where 𝑦  is the 

actual value and �̅�  is the calculated value. The node weights can be adjusted based on the least mean 

squares algorithm to minimise the error in the entire output as described: 

 

ℰ(𝑛) =
1

2
∑ 𝑒𝑗

2(𝑛)𝑗           (21) 

 

According to gradient descent, the change in each weight is: 

 

△ 𝜔𝑗𝑖(𝑛) = −𝜂
𝜕ℰ(𝑛)

𝜕𝑣𝑗(𝑛)
�̅�𝑗(𝑛)         (22) 

 

Where �̅�𝑗 is the output of the previous neuron and 𝜂 is the learning rate, then the derivative can be 

described with Equation (25): 

 

−
𝜕ℰ(𝑛)

𝜕𝑣𝑗(𝑛)
= 𝜙′ (𝑣𝑗(𝑛)) ∑ −

𝜕ℰ(𝑛)

𝜕𝑣𝑘(𝑛)𝑘 𝜔𝑗𝑘(𝑛)       (23) 

 

Where 𝜙′ is the derivative of the activation function. The derivative depends on the change in weights 

of the 𝑘th nodes, which represent the output layer. 

 

3.6 Wrapper FS  

SIFE [63] is an efficient wrapper-based evolutionary algorithm with set-inspired operations and fuzzy 

granulation for both high-dimensional and low-dimensional FS problems. To improve its search policy, 

SIFE uses a three-parent crossover approach based on set-theoretic concepts such as ‘union’ and 

‘intersection’. Fuzzy granulation is also integrated into SIFE, which aids in population initialization and 

elite steps. It helps in generating a diverse population throughout generations and acts as a surrogate 

strategy to avoid additional fitness evaluations. This approach aims to achieve a fast and reasonable 

balance between exploration and exploitation in its problem encoding and search operation, while 
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reducing computational costs. SIFE is adopted in this research because of its high capability of handling 

both high-dimensional and low-dimensional search space. 

 

3.7 ML interpretation by SHAP method 

As black-box ML models have long been criticised for lacking interpretability. In the context of 

decision-making, stakeholders and policy makers prioritise quantitative analysis of the correlation 

between input and target variables over the predictive accuracy of ML models. 

Shapley Additive Explanations (SHAP) is an approach employed for interpreting the output of ML  

models [64]. The classical Shapley value from game theory is used by SHAP method to establish a 

connection between the optimal credit allocation and the local explanation. SHAP operates by 

decomposing the output of an ML model into the sums of the impacts of individual features which 

facilitates the comprehension of the significance of individual features and benefits decision-making.  

In order to compute SHAP value, a linear explanation model is utilised as an interpretable 

approximation to a ML  model [65]: 

 

𝑔(𝑧′) = 𝜙0 + ∑ 𝜙𝑖𝑧𝑖
′𝑀

𝑖=1          (24) 

 

where 𝑧′ ∈ {0,1}𝑀 represents whether a feature is used to estimate the output variable, 𝑀 is the number 

of input features, 𝜙𝑖  is the SHAP value of the 𝑖th  feature, and 𝜙0  is the mean value of the output 

variable. The SHAP value assesses feature importance by comparing model prediction performance 

with and without each feature in feature combinations:  

 

𝜙𝑖 = ∑
|𝑆|!(𝑀−|𝑆|−1)

𝑀!
[𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆)]𝑆⊆𝑧′{𝑖}        (25) 

 

where 𝑆 is the set of non-zero 𝑧′, and 𝑓𝑥(𝑆) = 𝐸[|𝑓(𝑥)𝑥𝑆|] is the expected outcome of the model 𝑓(𝑥) 

subjected to 𝑆. 

 

4 Experimental setting 

The study utilises the MATLAB software to implement the ML algorithms and wrapper FS. All 

experiments for filter and embedded FS, SHAP analysis and producing heatmap are coded in Python. 

 

4.1 Data 

The case of this study is based on the EngCons and CO2E in the UK’s transportation sector in the time 

interval of 1990-2019. The year 2020 was not considered in this study, because this observation is 

detected as an outlier for some features due to the Covid Pandemic. The EngCons and CO2E of the 

UK’s transportation sector is illustrated in Figure 4, where similar pattern as bimodal distribution chart 
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in EngCons and CO2E is observed. The initial growth trajectory encountered an avalanche of decline in 

2008 which persisted until 2013 when it reached its lowest point, the same as in 1990. After a brief four-

year increase in EngCons and CO2E levels, they began a second decline in 2017 and beyond.  

 

 

Figure 4. EngCons and CO2E in the transportation sector in the UK (1990-2019).

 

Table 2 presents the list of 24 variables (features) along with their corresponding abbreviations, which 

include 22 input variables and two target variables, EngCons and CO2. Based on the intensive review 

of existing literature, a wide range of input variables in three categories including socioeconomic, 

transportation and energy-related factors are considered. Socioeconomic factors include GDP per capita, 

population, gasoline price and unemployment rate which indicate the strong relationship between the 

EngCons and CO2E in literature. To consider urbanization level of the UK, urban population rate is 

added to the list. 

For transportation category, we considered three main modes of transportation including air, rail, and 

road transportation, and each mode comprising passenger and freight transportation. Furthermore, 

energy intensity in transport, renewable and waste energy in transport, share of electric vehicles and 

road carbon intensity which could have significant influence on EngCons and CO2E are considered. For 

energy category, a few energy-related variables considered in other studies, which may have 

relationships with EngCons and CO2E in transport are added to the list.  

The data was collected from the UK Department for Transport (www.gov.uk/government/ 

organisations/department-for-transport), UK Office for National Statistics (www.ons.gov.uk/economy/ 

environmentalaccounts), and International Energy Agency (World Energy Balances Highlights) 

https://www.iea.org/data-and-statistics/data-product/world-energy-balances-highlights. The descriptive 

statistics of the 24 features considered for transport EngCons and CO2E is presented in Table A1.  
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Table 2. Twenty-four features and their corresponding abbreviation. 

Feature Abbreviation  Feature Abbreviation 

CO2E in transport  CO2  Unemployment rate UR 

EngCons in transport  EC-Trans   Gasoline price GP 

Oil Products consumption in transport OP-Trans  Total public energy RD&D budget  R&D  

Total EngCons in all sectors EC-All  Net energy imports NEI 

Total energy supply  TES   Road carbon intensity RCI 

Population POP  Air passengers AP 

Urban population rate UPR  Air fright AF 

Energy intensity in transport EI  Rail passengers RP 

GDP per capita GDP  New road vehicle registrations NVR 

Total final Electricity consumption  EC-Elec   Total licensed road vehicles TV 

Renewable & Waste by Transport RW-Trans  Average road vehicle milage AVM 

Share of electric vehicles SEV  Total road vehicle milage  TVM  

 

4.2 Hyperparameter setting of MLs 

Optimising hyperparameters is crucial for MLs resulting in promising performance. A pilot study was 

conducted to manually tune the parameters to assess the impact of FS methods on ML model 

performance and evaluate the influence of different features on EngCons and CO2E. The best values of 

hyperparameters found in the pilot experiments for seven ML models are presented in Table 3. 

 

Table 3. The summary of hyperparameters for the ML models. 

ML Model  Parameter name  Parameter value 
   

MLR - - 

RF Maximum number splits 

Pruning 

Number of trees 

10 

Off 

7 
   

LS-Boost Maximum number splits 

Pruning 

Number of trees 

Learning rate 

12 

Off 

7 

0.3 
 

  

MLP Number of hidden layers 

Number of neurons 

Learning method 

Activation function 

1 

10 

Levenberg-Marquardt 

Sigmoid 
   

LSTM Number of LSTM layers 

Number of hidden units 

Maximum epoch 

1 

20 

100 
   

SVR-RBF Box constraint I 

Gamma (𝛾) 

100 

1 
   

GPR 

 

Explicit basis 

Prediction method 

Linear 

Subset of regressors approximation 
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4.3 Evaluation metrics 

To develop a comprehension of the model performance in terms of the EngCons and CO2E of 

transportation sector, the following evaluation metrics are included: root mean square error (RMSE), 

relative root mean square error (rRMSE), mean absolute error (MAE), mean absolute percentage error 

(MAPE). 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑝𝑖)2𝑛

𝑖=1            (26) 

𝑟𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖−𝑝𝑖)2𝑛

𝑖=1

∑ (𝑝𝑖)2𝑛
𝑖=1

          (27) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑝𝑖|𝑛

𝑖=1           (28)   

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖−𝑝𝑖

𝑦𝑖 
|𝑛

𝑖=1           (29) 

 

where 𝑦𝑖 is the actual value and 𝑝𝑖 is the predicted value. 

 

5. Results and analysis 

5.1 Primary correlation analysis 

Since all 22 input variables are continuous numerical, Pearson correlation coefficients with two-tailed 

test were computed among them. The correlation results indicate that some correlation values were both 

statistically significant with a = .01 and greater than predefined correlation threshold .95. 

The correlation between population and urban population rate was found to be extremely high, 

r(28)=+1. The variables rail passengers and air passengers were found to be extremely positively 

correlated with population with r(28)= .99 and r(28)= .98, respectively. Energy intensity is extremely 

negatively correlated with population, r(28)= -.98. It is interesting to note that gasoline price has very 

strong positive correlation with GDP per capita, r(28) = .93. Total number of licensed road vehicles has 

very strong positive correlation with population, r(28) = .95, but our domain knowledge recommended 

us not to remove TV. 

Correlation analysis of target variables indicated that EC-Trans(t) and CO2(t) have very strong positive 

correlation of r(28)= .84. Renewable and waste energy in transport and share of electric vehicles have 

slight or very weak negative correlation with EC-Trans(t), but moderate negative correlation with 

CO2(t). The correlation values of EC-Trans(t) and CO2(t) with their corresponding next year values, 

i.e. EC-Trans(t+1) and CO2(t+1), are r(27)= .86 and r(27)= .91, respectively. 

 

5.2 Intermediate results 

After removing extremely correlated input features, voting scheme was implemented in a conservative 

manner with total vote threshold value VT of 1. In fact, features were discarded only if they be deemed 
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not important in all 3 FS methods. The selected feature subsets for EC-Trans(t+1) and CO2(t+1) were 

listed in Tables 4 and 5. 

In this study, regarding that population and GDP per capita variables are found to be important in all 

similar studies, domain knowledge recommended adding these two variables to the selected list of 

features after they were removed in the voting scheme. 

Table 4. Result of FS voting scheme for EC-Trans(t+1). 

 

Table 5. Result of FS voting scheme for CO2(t+1). 

 

The correlations between selected featurses and EC-Trans(t) and CO2(t) were presented in Figures 5 

and 6 where significant correlative features were detected, which confirms the need for multicollinearity 

analysis.  

 

 

Figure 5. The heatmap of correlation coefficient for EC-Trans(t). 

FS 

Method 
CO2(t) 

EC-

Trans(t) 

OP-

Trans 

EC-

All 
TES R&D UR RCI NVR TV 

Total 

count 

mRMR ● ● ● ● ○ ○ ● ● ● ● 8 

Boruta ● ● ● ● ● ○ ● ● ● ○ 8 

RF ● ● ● ● ○ ● ● ● ● ○ 8 

Score 3 3 3 3 1 1 3 3 3 1 10 

 

 

FS 

Method 
CO2(t) 

EC-

Trans(t) 

OP-

Trans 

EC-

All 
TES 

RW- 

Trans 
R&D NEI RCI AVM GP POP 

Total 

count 

mRMR ● ● ● ● ● ● ● ● ● ○ ○ ● 10 

Boruta ● ○ ● ● ● ● ● ● ● ● ● ○ 10 

RF ● ● ● ● ● ● ● ● ● ● ○ ○ 10 

Score 3 2 3 3 3 3 3 3 3 2 1 1 12 
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Figure 6. The heatmap of correlation coefficient for CO2(t). 

 

5.3 Multicollinearity analysis 

Multicollinearity analysis was performed to model the relationship between 12 selected features and 

EC-Trans(t+1), and between 13 selected features and CO2(t+1) as presented in Tables 4 and 5, 

respectively. The Multicollinearity analyses indicate that two regression models have severe 

multicollinearity for some of the features. For both EC-Trans(t+1) and CO2(t+1) regression models, the 

features with the highest VIF are iteratively removed until the VIF for each feature becomes less than 

10. In EC-Trans(t+1) regression model, the OP-Trans, CO2(t), TES, POP and TV were respectively 

removed, whereas in CO2(t+1) regression model, OP-Trans, R&W-Trans, TES, POP, AVM and GDP 

were respectively removed. 

Each selected feature subset, before and after multicollinearity analysis (called S1 and S2, respectively, 

as shown in Figure 2), underwent the final wrapper FS method (SIFE) to produce the final feature 

subsets as listed in Tables 6 and 7. More specific, for both EC-Trans(t+1) and CO2(t+1), the number of 

selected features by ML models based on  S1 varied significantly while constantly for subset S2. On 

the other hand, intersections in FS were noticed despite individual preference of ML models in 

determining the crucial features. For EC-Trans(t+1), NVR and TV are extra two features deemed as the 

most influential features by all ML models in S1 followed by GDP. In S2, NVR and OP-Trans are 

determined as important features. For CO2(t+1), in S1, AVM, GP, and RCI was determined significant 

for 7, 6 and 5 times, respectively. When it comes to S2, 4 features including GP, RCI, EC-Trans and 

OP-Trans were selected multiple times (i.e., 7, 7, 6 and 6 times) by ML models. 

It's important to note that unlike similar studies where population and GDP are key driving variables, 

in the UK’s transportation sector only GDP is selected as influential variable for forecasting EC-
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Trans(t+1). The possible reason for this observation could be due to fact that although in all countries, 

particularly developing countries, population and GDP are key driving factors of EngCon and CO2E, 

these two measures are significantly harnessed in the UK and they have been decreasing since 2017 as 

depicted in Figure 4. 

  

Table 6. Selected feature subsets with the ML models for forecasting EC-Trans(t+1). 

 
Note: N/A indicates the feature is excluded in S2 

 

Table 7. Selected feature subsets with the ML models for forecasting CO2(t+1). 

 

Note: N/A indicates the feature is excluded in S2 

 

5.4 Final results 

The performance of ML models in terms of RMSE, rRMSE, MAPE and MAE metrics for forecasting 

EC-Trans(t+1) and CO2(t+1) based on S1 and S2 feature subsets are listed in Tables 8 and 9 as well as 

Feature 

subset 

ML 

models 

Selected features  

CO2(t) 
OP-

Trans 

EC-

All 
TES R&D UR RCI NVR TV POP GDP 

EC-

Trans(t) 

Number 

of 

features 

S1 

LSBoost ○ ● ● ○ ● ○ ○ ● ● ○ ● ● 7 

MPL ● ● ● ○ ○ ○ ○ ● ● ○ ● ● 7 

SVR ○ ○ ○ ○ ○ ○ ● ● ● ● ○ ● 5 

GPR ○ ○ ○ ○ ○ ● ○ ● ● ○ ○ ● 4 

LR ○ ○ ○ ○ ○ ● ● ● ● ○ ● ● 6 

RF ○ ● ● ● ● ● ● ● ● ● ● ● 11 

LSTM ○ ● ○ ○ ○ ○ ● ● ● ○ ● ● 6 

Score 1 4 3 1 2 3 4 7 7 2 5 7 46 

S2 

LSBoost 

N/A N/A 

● 

N/A 

● ● ○ ● 

N/A N/A 

○ ● 5 

MPL ● ○ ● ○ ● ● ● 5 

SVR ● ○ ○ ○ ● ● ● 4 

GPR ● ○ ● ○ ● ○ ● 4 

LR ● ○ ● ● ● ○ ● 5 

RF ● ○ ○ ● ● ● ● 5 

LSTM ○ ○ ○ ● ● ● ● 5 

Score 6 1 4 3 7 4 7 32 

 

Feature 

subset 

ML 

models 

Selected features Number 

of 

features 
EC-

Trans(t) 

OP-

Trans 

EC-

All 
TES 

RW-

Trans 
R&D NEI RCI AVM GP POP GDP CO2(t) 

S1 

LSBoost ○ ● ○ ○ ● ○ ○ ○ ● ○ ○ ○ ● 4 

MPL ● ○ ○ ○ ○ ● ○ ● ● ● ○ ● ● 7 

SVR ○ ○ ● ○ ○ ○ ● ● ● ● ○ ○ ● 6 

GPR ○ ○ ○ ○ ○ ● ○ ○ ● ● ○ ○ ● 4 

LR ● ○ ● ○ ○ ● ○ ● ● ● ○ ● ● 8 

RF ○ ● ● ○ ● ○ ○ ● ● ● ○ ○ ● 7 

LSTM ● ● ○ ● ○ ● ● ● ● ● ● ● ● 11 

Score 3 3 3 1 2 4 2 5 7 6 1 3 7 47 

S2 

LSBoost ● 

N/A 

● 

N/A N/A 

○ ○ ● 

N/A 

● 

N/A N/A 

● 5 

MPL ● ● ○ ● ● ● ● 6 

SVR ○ ● ○ ● ● ● ● 5 

GPR ● ○ ● ● ● ● ● 6 

LR ● ● ● ○ ● ● ● 6 

RF ● ● ● ○ ● ● ● 6 

LSTM ● ● ○ ● ● ● ● 6 

Score 6 6 3 4 7 7 7 40 
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Figures 8 and 9, respectively. As shown in the tables and figures, the performance metrics share a similar 

pattern in both EC-Trans(t+1) and CO2(t+1) forecasts. In general, a better performance was observed 

when the ML models were treated with more features. The performance of some ML models was 

relatively constant or even improved with a reduced number of features. For example, GPR indicated 

an increase in all metrics in EC-Trans(t+1) despite fewer input features. Similar results were shown in 

SVR-RBF and LSTM regarding CO2E prediction. Among all employed ML models, SVR-RBF and RF 

indicated the best performance throughout all feature subsets and prediction tasks even with fewer 

features compared with other ML models. 

 

Table 8. ML performance for forecasting EC-Trans(t+1) with S1 and S2 feature sets. 

Dataset ML models 

Metrics Nubmer 

of 

features 
RMSE rRMSE MAPE MAE 

S1 

LSBoost 14.805 0.864 0.806 13.770 7 

MLP 17.160 1.000 0.864 14.903 7 

SVR-RBF 6.769 0.395 0.338 5.833 5 

GPR 21.131 1.233 1.148 19.647 4 

LR 13.847 0.808 0.633 10.876 6 

RF 10.881 0.635 0.488 8.404 11 

LSTM 38.311 2.235 2.129 36.575 6 

Average  17.558 1.024 0.915 15.715 6.571 

S2 

LSBoost 23.668 1.381 1.092 18.763 7 

MLP 33.500 1.954 1.569 27.036 5 

SVR-RBF 8.357 0.488 0.340 5.880 4 

GPR 19.561 1.141 0.849 14.666 4 

LR 26.552 1.549 1.375 23.675 5 

RF 17.159 1.000 0.702 12.079 5 

LSTM 40.154 2.342 2.248 38.649 6 

Average  24.136 1.408 1.168 20.109 5.143 

Difference 

LSBoost 59.9% 59.8% 35.5% 36.3% 0.0% 

MLP 95.2% 95.4% 81.6% 81.4% -28.6% 

SVR-RBF 23.5% 23.5% 0.6% 0.8% -20% 

GPR -7.4% -7.5% -26.0% -25.4% 0.0% 

LR 91.8% 91.7% 117.2% 117.7% -16.7% 

RF 57.7% 57.5% 43.9% 43.7% -54.5% 

LSTM 4.8% 4.8% 5.6% 5.7% 0.0% 

Average  37.5% 37.4% 27.6% 27.9% -21.7% 

 

Table 9. ML performance for forecasting CO2(t+1) with S1 and S2 feature sets. 

Dataset ML models 

Metrics Number 

of 

features 
RMSE rRMSE MAPE MAE 
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S1 

LSBoost 1.180 0.962 0.876 1.072 4 

MLP 1.011 0.825 0.693 0.849 7 

SVR-RBF 1.16 0.946 0.734 0.902 6 

GPR 1.197 0.977 0.867 1.068 4 

LR 1.426 1.163 0.837 1.031 8 

RF 1.311 1.069 0.976 1.197 7 

LSTM 1.920 1.566 1.368 1.682 11 

Average  1.315 1.073 0.907 1.114 6.714 

S2 

LSBoost 1.412 1.152 0.919 1.132 5 

MLP 1.901 1.554 1.377 1.690 6 

SVR-RBF 1.126 0.918 0.751 0.925 5 

GPR 2.041 1.665 1.378 1.688 6 

LR 1.484 1.211 0.876 1.079 6 

RF 1.867 1.523 1.203 1.483 6 

LSTM 1.787 1.458 1.278 1.570 6 

Average  1.660 1.354 1.112 1.367 5.714 

Difference 

LSBoost 19.7% 19.8% 4.9% 5.6% 25.0% 

MLP 88.0% 88.4% 98.7% 99.1% -14.3% 

SVR-RBF -2.9% -3.0% 2.3% 2.5% -16.7% 

GPR 70.5% 70.4% 58.9% 58.1% 50.0% 

LR 4.1% 4.1% 4.7% 4.7% -25.0% 

RF 42.4% 42.5% 23.3% 23.9% -14.3% 

LSTM -6.9% -6.9% -6.6% -6.7% -45.5% 

Average  26.2% 26.3% 22.5% 22.6% -14.9% 

 

 

 

Figure 7. Performance of the ML models in forecasting EC-Trans(t+1). 
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Figure 8. Performance of the ML models in forecasting CO2(t+1). 

 

Figures 10 and 11 illustrate the detailed training and testing performances of SVR-RBF using feature 

subsets S1 and S2 for forecasting EC-Trans(t+1) and CO2(t+1), respectively. It is noticed that there was 

only a marginal decrease in rRMSE when utilising a smaller feature subset. Specifically, S2 had one 

less feature than S1 for both EngCons and CO2E. This result indicates that the FS procedure proposed 

in the study was successful in reducing the dimension of the feature set while preserving the most 

pertinent information. In addtion, the evaluation of SVR-RBF on the test set exhibits a negligible 

diminution in its performance as compared to that on the training set, which indicates slight overfitting 

issue.  
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Figure 10. Performance of SVR-RBF in forecasting EC-Trans(t+1) based on (a) S1 and (b) S2 feature subsets. 

 

 

Figure 11. Performance of SVR-RBF in forecasting CO2(t+1) based on (a) S1 and (b) S2 feature 

subsets. 
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5.5 SHAP analysis 

The SHAP method was utilised to enhance the interpretability of ML models and examine the impact 

of input features on model output. Figures 12 to 14 summarised the SHAP values of the final determined 

features (i.e., S2 feature set) and their quantified contribution towards EC-Trans(t+1) and CO2(t+1) 

using SVR-RBF and RF, respectively. The SHAP graphs in Figures 12-15 (a) display each input feature 

as a vertical bar on the x-axis, indicating its SHAP value and contribution to the models’ output. SHAP 

values can be positive or negative, indicating whether a feature increased or decreased the model output. 

The SHAP values magnitude signifies the effect's intensity. The colour of each bar denotes the feature 

value in relation to the mean predicted value in the dataset. Blue signifies low values or negative effects, 

while red signifies high values or positive effects. The colour scheme aids in interpreting feature 

contributions and understanding the relationship between their values and the model's predictions. A 

simplified version of SHAP values were depicted in Figures 12-15 (b) which summarise the overall 

importance of each feature. In this study, the SHAP method was employed for interpreting SVR-RBF 

and RF in predicting EngCons and CO2E, respectively. As shown in Figures 12 and 13, EC-trans played 

a significant role in EngCons while NVR, GDP and EC-All indicated a similar importance. In addition, 

it is observed that a higher value of EC-Trans and NVR led to a positive SHAP value and vice versa. 

Such association was not detected in GDP and EC-All. In terms of CO2E, RCI contributed a significant 

higher proportion than any other features (i.e., CO2, EC-All, GP and NEI). Similarly, association 

between a higher value of RCI, CO2 and a positive SHAP value is obtained and vice versa. For 

forecasting EC-Trans(t+1) based on RF, RCI, EC-Trans ranked top 2 and were significantly more 

important than the other 3 features. The relations between positive SHAP value and the higher value of 

RCI, EC-Trans and NVR is also notice in the Figure 14. UR however suggested an opposite result where 

a higher value is associated with negative SHAP value.  While for CO2E prediction, RCI was also 

regarded as the most critical feature, followed by CO2(t) and R&D. Similar associations are seen 

between greater RCI, CO2(t) values and positive SHAP values, and vice versa. An opposite result is 

detected in R&D.  
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Fig. 12. The Shapley analysis for SVR-RBF for forecasting EC-Trans(t+1). (a) SHAP summary plot 

with S2 features, (b) The average contributions of the S2 features. 

 

Fig. 13. The Shapley analysis for SVR-RBF for forecasting CO2(t+1). (a) SHAP summary plot with S2 

features, (b) The average contributions of the S2 features. 
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Figure 14. The Shapley analysis of RF for forecasting EC-Trans(t+1). (a) SHAP summary plot with S2 

features, (b) The average contributions of the S2 features. 

 

 

Fig. 15. The Shapley analysis of RF for forecasting CO2(t+1). (a) SHAP summary plot with S2 features, 

(b) The average contributions of the S2 features. 
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6. Noticeable discussions and limitations 

A few noticeable points and limitations have been figured out in this study which are worth revealing 

for future similar studies. The dataset comprises a small size of 30 observations in the 1990-2019 period 

with 24 features, thereby such a small sample size leads to some challenges for MLs such as overfitting 

and the presence of random effects, which may negatively disturb the generalisation capability of ML 

models. To minimise the adverse impact caused by a small sample size, multiple FS stages within the 

forecasting framework was proposed to select the most related features and the feature space was 

therefore significantly reduced from initial 22 input features to less than 10 features. The risk of sparse 

matrix was then avoided.  

Wrapper and embedded FS methods are both ML-based approaches. However, as previously mentioned, 

the issue of overfitting can hinder MLs from producing the most representative subset of features. In 

the context of filter methods, it is possible for two features to present a strong correlation based solely 

on numerical values, but this correlation may not essentially hold true. Therefore, in this paper, we 

proposed a voting mechanism to achieve a common agreement from three popular FS methods (i.e., 

mRMR, Boruta and RF). The preference of individual feature selection methods was mitigated to a 

greater extent. 

It has been observed that most ML models exhibit a decrease in performance because of reducing the 

dimensionality of the feature set. This is comprehensible as the removed feature(s) may still possess a 

nuanced amount of valuable information but were excluded due to significant multicollinearity. The 

potential influence of the limited scope of the included data on this matter should not be underestimated. 

In comparison to high dimension datasets, such as gene analysis, low dimension dataset is less prone to 

containing redundant or irrelevant variables. However, this does not imply that the proposed FS 

methods were incapable of handling low-dimensional data, as suggested by SVR-RBF methods. In fact, 

a superior performance was achieved even with a reduced number of features. Also, it is important to 

note that despite a compromise in forecasting accuracy, the proposed framework retains the most related 

features for EngCons in transport sector, in which policymakers can benefit more from correct and 

accurate conclusion rather than accurate prediction but contain misleading information.  

Lastly in all studies, GDP and population were selected as key driving variables for forecasting EC-

Trans(t) and CO2(t), but in this study neither GDP nor population are found as influential variables in 

the UK’s transportation sector, possibly because the trend of both EngCons and CO2E are rapidly 

decreasing in the UK. 

 

7. Conclusions and future research 

A sustainable transport system necessitates a comprehension of the associations between transport 

EngCons and CO2E, and their contributing factors, which also facilitates achieving promising 

performance of MLs in forecasting. To this end, this paper proposes an interpretable multi-stage 

forecasting framework to quantify EngCons and CO2E in the UK's transport sector and identifying the 
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most relevant factors based on 22 initial input features from multisource including socioeconomic, 

transportation- and energy-related variables. Unlike recent published papers that solely focused on 

achieving the best prediction accuracy, the proposed framework also integrated interpretable ML 

methods to simultaneously maximise the forecasting accuracy and to determine the relationship 

between the forecasts and the influential variables using the SHAP method.  

The contributions of this paper are as follows: 

• To the best of our knowledge, this study is the first attempt, which employed a large list of input 

features and performed correlation and multicollinearity analyses to remove highly correlated 

features to provide an appropriate subset of features for interpretability of black-box ML models. 

• This study introduces a novel voting scheme for feature selection (FS), which combines both filter 

and embedded paradigms, which has not been studied before in the EngCons context. 

• This study is the second work in EngCons context (the first study is [30]) that applies the SHAP 

analysis to forecast the EngCons and CO2E to determine the influential variables. 

The results indicate that the proposed multi-stage FS framework was able to improve the quality of data 

by removing potentially irrelevant and redundant features, in which average rRMSE and average MAPE 

of 1.024 and 0.915 for forecasting EC-Trans(t+1), and average rRMSE and average MAPE of 1.073 and 

0.907 for forecasting CO2(t+1) with S1 feature subsets are achived. The selected best ML model varies 

depending on the feature subset examined. Overall, in both S1 and S2 feature subsets SVR-RBF and 

LSTM have the best and the weakest performance. 

Shapley analysis for UK’s transport EngCons and CO2E forecasting indicates that road carbon intensity 

is the most significant factor associated with both EngCons and CO2E. Unlike similar studies where 

population and GDP are key driving variables, Shapley analysis reveals that only GDP is selected as 

contributing variable for forecasting EC-Trans(t+1). 

In 2020 the United Nations Economic Commission for Europe recommended that countries investigate 

the possibility of reporting quarterly GHG emissions data as part of climate change statistics [63]. There 

are solid methodologies for estimating GHG emissions on an annual basis and a few countries currently 

strived to develop statistical methodologies to compile quarterly time series emissions. Thus, for future 

researchers are encouraged to use quarterly GHG emissions data, rather than annual observations in 

which ML models avoid facing challenges with small sample size. 
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Appendix A  

Table A1. Descriptive statistics for the full features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature Abbreviation Unit Mean Std Min Max 

CO2 Mtoe 127.39 5.09 118.76 135.96 

EC-Trans  PJ 1716.13 54.84 1631.21 1828.29 

OP-Trans PJ 1675.92 61.87 1577.97 1798.86 

EC-All PJ 5861.52 394.87 5144.19 6341.47 

TES  PJ 8625.08 741.32 7145.14 9449.86 

POP Million 8.90 9.80 2.00 9.00 

UPR % 80.20 1.87 78.11 83.65 

EI MJ/pkm 144.04 31.99 94.13 190.43 

GDP USD 34816.21 10197.2 18389.02 50653.26 

EC-Elec  PJ 1130.26 76.32 987.96 1255.23 

RW-Trans PJ 18.79 22.54 0.00 68.90 

SEV % 0.47 0.81 0.00 3.30 

UR % 6.54 1.82 3.80 10.40 

GP USD 1.41 0.46 0.80 2.20 

R&D  USD 419.23 358.78 69.90 1290.15 

NEI PJ 971.17 1991.90 -2014.40 4026.40 

RCI gCO2/MJ 70.80 0.57 69.30 71.60 

AP Million 91.32 34.34 42.86 165.39 

AF Million tone 5702.52 847.88 3825.40 7618.10 

RP Million 1169.33 354.97 735 1744 

NVR Thousand 2714.65 402.78 1901.80 3295.96 

TV Million 31345.42 4606.01 24511.00 38682.70 

AVM 1000 miles 9.65 0.59 8.90 10.53 

TVM  Billion vehicle miles 295.88 26.28 241.00 338.60 
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Nomenclature 

Symbol Description 

I Mutual information 

p Joint probabilistic density 

S Data set 

maxD Max-Relevance 

minR Minimum-Redundancy 

x, X Input feature, input vector 

Vmf Whether select feature or not 

VT The total vote threshold value 

𝒟 Training dataset 

y, �̅�, �̃�/p 
Actual, average actual and predicted target 

variable 

𝒩 Gaussian distribution 

σ () Sigmoid function 

ft Forgetting gate 

C () Cell state 

it Input gate 

ot 
 

Output gate 

h () Hidden state 

𝑊𝑓, 𝑊𝑖  , 𝑊𝑜 Recurrent weighting metrics 

bf, bi, bo Bias vectors 

β1, β2, βm Coefficients 

ε Random error 

E Expectation function 

L Loss function 

am, pm Increment/step/boost of LSBoost 

η Learning rate of ANN 

𝜙′ The derivative of the activation function 

ω Weights of ANN nodes 

ϕ SHAP value 

ϕ0 The mean value of the output variable 
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Table 4. Result of FS voting scheme for EC-Trans(t+1). 

FS 

Method 
CO2(t) 

EC-

Trans(t) 

OP-

Trans 

EC-

All 
TES R&D UR RCI NVR TV 

Total 

count 

mRMR ● ● ● ● ○ ○ ● ● ● ● 8 

Boruta ● ● ● ● ● ○ ● ● ● ○ 8 

RF ● ● ● ● ○ ● ● ● ● ○ 8 

Score 3 3 3 3 1 1 3 3 3 1 10 

 

Table 5. Result of FS voting scheme for CO2(t+1). 

FS 

Method 
CO2(t) 

EC-

Trans(t) 

OP-

Trans 

EC-

All 
TES 

RW- 

Trans 
R&D NEI RCI AVM GP POP 

Total 

count 

mRMR ● ● ● ● ● ● ● ● ● ○ ○ ● 10 

Boruta ● ○ ● ● ● ● ● ● ● ● ● ○ 10 

RF ● ● ● ● ● ● ● ● ● ● ○ ○ 10 

Score 3 2 3 3 3 3 3 3 3 2 1 1 12 

 

 

Table 6. Selected feature subsets with the ML models for forecasting EC-Trans(t+1). 

Feature 

subset 

ML 

models 

Selected features  

CO2(t) 
OP-

Trans 

EC-

All 
TES R&D UR RCI NVR TV POP GDP 

EC-

Trans(t) 

Number 

of 

features 

S1 

LSBoost ○ ● ● ○ ● ○ ○ ● ● ○ ● ● 7 

MPL ● ● ● ○ ○ ○ ○ ● ● ○ ● ● 7 

SVR ○ ○ ○ ○ ○ ○ ● ● ● ● ○ ● 5 

GPR ○ ○ ○ ○ ○ ● ○ ● ● ○ ○ ● 4 

LR ○ ○ ○ ○ ○ ● ● ● ● ○ ● ● 6 

RF ○ ● ● ● ● ● ● ● ● ● ● ● 11 

LSTM ○ ● ○ ○ ○ ○ ● ● ● ○ ● ● 6 

Score 1 4 3 1 2 3 4 7 7 2 5 7 46 

S2 

LSBoost 

N/A N/A 

● 

N/A 

● ● ○ ● 

N/A N/A 

○ ● 5 

MPL ● ○ ● ○ ● ● ● 5 

SVR ● ○ ○ ○ ● ● ● 4 

GPR ● ○ ● ○ ● ○ ● 4 

LR ● ○ ● ● ● ○ ● 5 

RF ● ○ ○ ● ● ● ● 5 

LSTM ○ ○ ○ ● ● ● ● 5 

Score 6 1 4 3 7 4 7 32 

Note: N/A indicates the feature is excluded in S2 
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Table 7. Selected feature subsets with the ML models for forecasting CO2(t+1). 

Feature 

subset 

ML 

models 

Selected features Number 

of 

features 
EC-

Trans(t) 

OP-

Trans 

EC-

All 
TES 

RW-

Trans 
R&D NEI RCI AVM GP POP GDP CO2(t) 

S1 

LSBoost ○ ● ○ ○ ● ○ ○ ○ ● ○ ○ ○ ● 4 

MPL ● ○ ○ ○ ○ ● ○ ● ● ● ○ ● ● 7 

SVR ○ ○ ● ○ ○ ○ ● ● ● ● ○ ○ ● 6 

GPR ○ ○ ○ ○ ○ ● ○ ○ ● ● ○ ○ ● 4 

LR ● ○ ● ○ ○ ● ○ ● ● ● ○ ● ● 8 

RF ○ ● ● ○ ● ○ ○ ● ● ● ○ ○ ● 7 

LSTM ● ● ○ ● ○ ● ● ● ● ● ● ● ● 11 

Score 3 3 3 1 2 4 2 5 7 6 1 3 7 47 

S2 

LSBoost ● 

N/A 

● 

N/A N/A 

○ ○ ● 

N/A 

● 

N/A N/A 

● 5 

MPL ● ● ○ ● ● ● ● 6 

SVR ○ ● ○ ● ● ● ● 5 

GPR ● ○ ● ● ● ● ● 6 

LR ● ● ● ○ ● ● ● 6 

RF ● ● ● ○ ● ● ● 6 

LSTM ● ● ○ ● ● ● ● 6 

Score 6 6 3 4 7 7 7 40 

Note: N/A indicates the feature is excluded in S2 

Jo
urn

al 
Pre-

pro
of



 

Jo
urn

al 
Pre-

pro
of



Highlights: 
 

• An interpretable multi-stage forecasting framework is proposed.  

• The drivers of energy consumption and CO2 emissions in UK’s transport sector are 

identified.  

• A comprehensive comparison between different machine learning models is carried 

out.  

• The impacts of feature selection methods on machine learning models are 

investigated. 
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