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Abstract

Rational enriched motivic spaces are introduced and studied in this thesis to pro-

vide new models for connective and very effective motivic spectra with rational

coefficients. We first study homological algebra for Grothendieck categories of

functors enriched in Nisnevich sheaves with specific transfers A. Following con-

structions of Voevodsky for triangulated categories of motives and framed motivic

Γ-spaces, we introduce and study motivic structures on unbounded chain com-

plexes of enriched functors yielding two new models of the triangulated category

of big motives with A-tranfers DMA. We next define enriched motivic spaces

as certain enriched functors of simplicial A-sheaves. We then use the proper-

ties of enriched motivic spaces and the above reconstruction results to recover

SH(k)>0,Q and SHveff(k)Q.
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Chapter 1

Introduction

In his celebrated paper [48] Segal introduced Γ-spaces and showed that they yield

infinite loop spaces. In [5] Bousfield and Friedlander defined a model category

structure for Γ-spaces and showed that its homotopy category recovers connective

S1-spectra. They also showed that fibrant objects in this model category are given

by very special Γ-spaces.

Garkusha, Panin and Østvær [25] have recently introduced and studied mo-

tivic Γ-spaces. They are M-enriched functors in two variables

X : Γop � Smk,+ →M,

whereM is the category of pointed motivic spaces and Smk,+ is theM-category

of framed correspondences of level 0. Special and very special motivic Γ-spaces

are defined in [25] as M-enriched functors

X : Γop � Smk,+ →Mfr

satisfying several axioms, whereMfr is theM-category of pointed motivic spaces

with framed correspondences. The axioms are a combination of Segal’s axioms

and axioms reflecting basic properties of framed motives of algebraic varieties in

the sense of Garkusha–Panin [23] (see [25] for details).

Inspired by [25] we introduce and study additive versions for motivic Γ-spaces.

We start with a reasonable additive category of correspondencesA and replaceM
by the closed symmetric monoidal Grothendieck category ∆opShv(A) of simplicial

Nisnevich sheaves with A-transfers. The M-category Smk,+ is replaced here by

a ∆opShv(A)-category Sm whose objects are those of Smk.
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9

We define enriched motivic A-spaces as objects of the Grothendieck cate-

gory of ∆opShv(A)-enriched functors [Sm,∆opShv(A)]. Special enriched motivic

A-spaces are defined similarly to special motivic Γ-spaces with slight modifi-

cations due to the additive context (see Definition 5.1.1 for the full list of ax-

ioms). In particular, the category Γop is redundant in this context (see Sec-

tion 6.1). The category [Sm,∆opShv(A)] comes equipped with a local and a

motivic model structure. Denote the model categories by [Sm,∆opShv(A)]nis and

[Sm,∆opShv(A)]mot respectively (see Section 7.2). Let D([Sm,∆opShv(A)]) be

the homotopy category of [Sm,∆opShv(A)]nis. Define SpcA[Sm] as the full sub-

category of D([Sm,∆opShv(A)]) consisting of special enriched motivic A-spaces.

It is worth mentioning that D([Sm,∆opShv(A)]) is equivalent to the full subcat-

egory of connective chain complexes in the derived category D([Sm, Shv(A)]) of

the Grothendieck category [Sm, Shv(A)]. Thus SpcA[Sm] can also be regarded

as a full subcategory of D([Sm, Shv(A)]), so that it can be studied by methods

of classical homological algebra.

The following result is reminiscent of Bousfield–Friedlander’s theorem men-

tioned above for classical Γ-spaces (see Theorem 7.2.7).

Theorem. Assume that the exponential characteristic p of k is invertible in A.

The category SpcA[Sm] is equivalent to the homotopy category of the model cat-

egory [Sm,∆opShv(A)]mot. The fibrant objects of [Sm,∆opShv(A)]mot are the

pointwise locally fibrant special enriched motivic A-spaces.

As applications of the preceding theorem we recover connective motivic bis-

pectra with rational coefficients SH(k)Q,>0 (respectively very effective motivic

bispectra with rational coefficients SHveff(k)Q) from special rational enriched

motivic A-spaces SpcA[Sm] (respectively very effective rational enriched motivic

A-spaces Spcveff
A [Sm]) — see Theorems 7.4.2 and 7.4.4. Here we take A to be the

category of finite Milnor–Witt correspondences with rational coefficients C̃or⊗Q.

Theorem. The (S1,Gm)-evaluation functor induces equivalences of categories

evS1,Gm
: SpcC̃or,Q[Sm]→ SH(k)Q,>0.

and

evS1,Gm
: Spcveff

C̃or,Q[Sm]→ SHveff(k)Q.
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In particular, the preceding theorem makes SH(k)Q more amenable to meth-

ods of homological algebra.

To prove the above results we will first study the Grothendieck category of

unbounded chain complexes of enriched functors Ch([Sm, Shv(A)]). We prove

two reconstruction theorems recovering Voevodsky’s fundamental triangulated

category of big A-motives DMA.

In more detail, let A be a symmetric monoidal category of correspondences

that satisfies the strict V -property and cancellation, as defined in [19]. We re-

cover the triangulated category of big A-motives DMA out of Grothendieck cat-

egories of enriched functors [B, Shv(A)] in the sense of [1], where B is either the

Shv(A)-category C of the powers G×nm or the Shv(A)-category Sm of all smooth

k-schemes. To this end, we use homological algebra of enriched Grothendieck

categories developed in [20, 21].

In our context we consider two types of the A1-locality of chain complexes

in Ch([B, Shv(A)]): one for the contravariant A1-locality in the A-direction (i.e.

the usual one), denoted by A1
1, another for the covariant A1-locality in the B-

direction, denoted by A1
2. We also consider τ -locality in Ch([B, Shv(A)]) with

respect to the family

τ = {[G∧n+1
m ,−] ⊗

Shv(A)
G∧1
m → [G∧nm ,−] | n > 0}

as well as Nis-locality in the covariant B-direction associated to the elementary

Nisnevich squares. As we work with Grothendieck categories of Shv(A)-enriched

functors here, we say that the relevant chain complexes are strictly local with

respect to the specified family above. We refer the reader to Section 3.1 for

details. The relations are also counterparts of the axioms (2)-(5) for special

motivic Γ-spaces in the sense of [25] and framed spectral functors in the sense

of [24, Section 6].

Our first reconstruction result states the following (see Theorem 3.1.8).

Theorem. Let C be the natural Shv(A)-category represented by the A-sheaves

A(−,G×nm )nis, n > 0. Let DMA[C] be the full triangulated subcategory of the de-

rived category D([C, Shv(A)]) consisting of the strictly A1
1-local and τ -local com-

plexes. Then the canonical evaluation functor

evGm : DMA[C]→ DMA
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is an equivalence of compactly generated triangulated categories.

Our second reconstruction result states the following (see Theorem 3.1.14).

Theorem. Let Sm be the natural Shv(A)-category represented by the A-sheaves

A(−, X)nis, X ∈ Smk. Let DMA[Sm] be the full triangulated subcategory of the

derived category D([Sm, Shv(A)]) consisting of the strictly A1
1-, τ -, Nis- and A1

2-

local complexes. Then the canonical evaluation functor

evGm : DMA[Sm][1/p]→ DMA[1/p]

is an equivalence of compactly generated triangulated categories, where p is the

exponential characteristic of the base field k.

It is worth mentioning that the latter result requires the recollement the-

orems of Garkusha–Jones [21] as well as a generalization of Röndigs–Østvær’s

Theorem [46] (see Section 4.2).

Outline

The thesis consists of two halves: The first half, consisting of Chapters 2, 3

and 4, deals with certain enriched functors of unbounded chain complexes of

Nisnevich sheaves. The second half, consisting of Chapters 5, 6 and 7, deals with

certain enriched functors of simplicial Nisnevich sheaves, which we call enriched

motivic A-spaces. In the second half we will always assume that the exponential

characteristic p of k is invertible in A.

In Chapter 2 we recall the definition of a category of correspondences. For

a suitable category of correspondences A, we construct a well-behaved model

structure on the category of unbounded chain complexes of Nisnevich sheaves

Ch(Shv(A)).

In Chapter 3 we state our two reconstruction results for DMA and prove the

first one. In Chapter 4 we prove the second reconstruction result.

In Chapter 5 we introduce enriched motivic A-spaces, and construct a model

structure on the category of simplicial Nisnevich sheaves ∆opShv(A).

In Chapter 6 we study how enriched motivic A-spaces are related to motivic

Γ-spaces in the sense of [25], and how they are related to the enriched functors

of unbounded chain complexes from the first half of the thesis.
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In Chapter 7 we use enriched motivic A-spaces to provide new models for

the connective and very effective parts of the rational stable motivic homotopy

category SH(k)Q.

Notation

Throughout the thesis we use the following notation.

k field of exponential characteristic p
Smk smooth separated schemes of finite type over k
A symmetric monoidal additive strict V -category of correspondences
Psh(A) presheaves of abelian groups on A
Shv(A) Nisnevich sheaves of abelian groups on A
DMA triangulated category of big motives with A-correspondences
SH(k) stable motivic homotopy category over k
Sm enriched category of smooth schemes (see Section 3.1)
C subcategory of Sm on G×nm for n ∈ N (see Section 3.1)
I canonical embedding Sm→ Shv(A), X 7→ A(−, X)nis

MA(X) A-motive of X ∈ Smk

M category of motivic spaces
fM category of finitely presented motivic spaces

Also, we assume that 0 is a natural number.



Chapter 2

Nisnevich sheaves with transfers

In this chapter we recall the definition of a category of correspondeces A and the

construction of the triangulated category of big motives with A-correspondences

DMA in the sense of Voevodsky [52].

After that we take an additive symmetric monoidal category of correspon-

dences A that satisfies the strict V -property, and construct a model structure on

the category Ch(Shv(A)) of unbounded chain complexes of Nisnevic sheaves on

A.

2.1 Categories of correspondences

The following definition is due to [19].

2.1.1 Definition. A preadditive category of correspondences A consists of

1. a preadditive category A whose objects are those of Smk, called the under-

lying preadditive category,

2. a functor Γ : Smk → A, called the graph functor,

3. a functor � : A× Smk → A

such that the following axioms are satisfied:

1. the functor Γ : Smk → A is the identity on objects;

13



14 Nisnevich sheaves with transfers

2. for every elementary Nisnevich square

U ′ //

��

X ′

��
U // X

the sequence of Nisnevich sheaves

0→ A(−, U ′)nis → A(−, U)nis ⊕A(−, X ′)nis → A(−, X)nis → 0

is exact. Moreover, we require A(−, ∅)nis = 0;

3. for every A-presheaf F (i.e. an additive contravariant functor from A to

Abelian groups Ab) the associated Nisnevich sheaf Fnis has a unique struc-

ture of an A-presheaf for which the canonical morphism F → Fnis is a

morphism of A-presheaves.

4. the functor � : A × Smk → A sends an object (X,U) ∈ Smk × Smk to

X ×U ∈ Smk and satisfies 1X � f = Γ(1X × f), (u+ v)� f = u� f + v� f
for all f ∈ Mor(Sm/k) and u, v ∈ Mor(A).

2.1.2 Definition. 1. A preadditive category of correspondencesA is called an

additive category of correspondences if its underlying preadditive category

is an additive category.

2. A preadditive category of correspondencesA is called a symmetric monoidal

category of correspondences if its underlying preadditive category A is also

equipped with an Ab-enriched symmetric monoidal structure, such that the

graph functor Γ : Smk → A is a strong monoidal functor with respect to

the cartesian monoidal structure on Smk. This means in particular that

for X, Y ∈ Smk the tensor product X ⊗ Y in A is isomorphic to the usual

product of schemes X × Y .

3. A preadditive category of correspondences A is called a V -category of cor-

respondences if it satisfies the V -property: The V -property says that for

any A1-invariant A-presheaf of abelian groups F the associated Nisnevich

sheaf Fnis is A1-invariant, in the sense that for all X ∈ Smk the map

Fnis(X)→ Fnis(X × A1)
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induced by the projection X × A1 → X is an isomorphism.

4. Recall from [51] that a Nisnevich sheaf F of abelian groups is strictly A1-

invariant if for any X ∈ Sm/k, the canonical morphism

H∗nis(X,F)→ H∗nis(X × A1,F)

is an isomorphism. A V -category of correspondencesA is a strict V-category

of correspondences if for any A1-invariant A-presheaf of abelian groups F
the associated Nisnevich sheaf Fnis is strictly A1-invariant.

5. For i 6 k+1 ∈ N let ιi,k : G×km → G×k+1
m be the inclusion map in Smk sending

(x1, . . . , xk) to (x1, . . . , xi−1, 1, xi+1, . . . , xk). For any scheme X let A(−, X)

be the presheaf represented by X, and A(−, X)nis be the sheafification of

A(−, X). The maps ιi,k : G×km → G×k+1
m induce maps ιi,k∗ : A(−,G×km )nis →

A(−,G×k+1
m )nis. In Shv(A) define

G∧km := A(−,G×km )nis/
k∑
i=1

Im(ιi,k−1∗).

Furthermore, let ∆n
k := Spec(k[t0, . . . , tn]/(t0 + · · · + tn − 1)). Similarly to

[19, Definition 3.5] we can define bivariant A-motivic cohomology groups

by

Hp,q
A (X, Y ) := Hp

nis(X,A(−×∆•k, Y ∧G∧qm )nis[−q]),

where the Hp
nis on the right hand side refers to Nisnevich hypercohomology

groups. We say that a strict V -category of correspondences A satisfies the

cancellation property if all the canonical maps

βp,q : Hp,q
A (X, Y )→ Hp+1,q+1

A (X ∧G∧1
m , Y )

are isomorphisms.

From now on, A is an additive symmetric monoidal strict V -category corre-

spondences. From Section 3.1 onwards we will furthermore assume that A satis-

fies the cancellation property. Non-trivial examples are given by finite correspon-

dences Cor in the sense of Voevodsky [52], finite Milnor–Witt correspondences

C̃or in the sense of Calmès–Fasel [7] or K⊕0 in the sense of Walker [54]. Given
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a ring R (not necessarily commutative) which is flat as a Z-algebra and a cate-

gory of correspondences A, we can form an additive category of correspondences

A⊗ R with coefficients in R, by defining (A⊗ R)(X, Y ) := A(X, Y )⊗ R for all

X, Y ∈ Smk.

We are now passing to the construction of Voevodsky’s triangulated category

of big motives with A-correspondences DMA. Let Shv(A) be the Grothendieck

category of Nisnevich sheaves on A with values in abelian groups. The category

Shv(A) of Ab-valued Nisnevich sheaves on A is symmetric closed monoidal with

the Day convolution product [10] that is induced by the monoidal structure of A.

The internal hom of Shv(A) will be denoted sometimes by HomShv(A)(−,−), and

sometimes by [−,−] if there is no likelihood of confusion. Let D(Shv(A)) be the

derived category of Shv(A). Consider the localizing subcategory L in D(Shv(A))

that is compactly generated by the shifts of the complexes

· · · → 0→ A(−, X × A1)nis → A(−, X)nis → 0→ · · ·

for all X ∈ Smk, where A(−, X)nis ∈ Shv(A) is the sheaf represented by X.

By general localization theory for triangulated categories [45] we can form the

quotient triangulated category D(Shv(A))/L.

2.1.3 Definition. We call DM eff
A := D(Shv(A))/L the triangulated category

of effective motives with A-correspondences. It can be identified with the full

subcategory of D(Shv(A)) of those objects that have A1-invariant cohomology

sheaves.

In DM eff
A we can ⊗-invert G∧1

m using a procedure similar to [36, 5.2]. Namely,

we define a G∧1
m -spectrum of chain complexes C to be a collection (Cn, σn)n∈N

consisting for each n ∈ Z>0 of a chain complex Cn ∈ Ch(Shv(A)), and a morphism

of chain complexes σn : Cn ⊗G∧1
m → Cn+1. A morphism of G∧1

m -spectra of chain

complexes is a graded morphism of complexes respecting the structure maps σn.

The category of Gm-spectra of chain complexes is denoted SpGm
(Ch(Shv(A))).

2.1.4 Definition. 1. Let I : Smk → Shv(A) be the obvious inclusion functor

I(X) := A(−, X)nis. For any G∧1
m -spectrum of chain complexes C we define

presheaves of homology groups by assigning to each U ∈ Smk and n,m ∈ Z
the group Hn(C)m(U) as the colimit of the diagram

· · · → HomDM eff
A

(I(U)[n−m]⊗G∧m+r
m , Cr)→ . . .
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ranging over r ∈ N.

2. A morphism of G∧1
m -spectra of chain complexes is called a stable motivic

equivalence if it induces isomorphisms on these homology presheaves.

3. We define DMA to be the category obtained from SpGm
(Ch(Shv(A))) by

inverting the stable motivic equivalences. We call DMA the triangulated

category of big A-motives.

2.2 A model structure on Ch(Shv(A))

Let A be a symmetric monoidal category of correspondences satisfying the V -

property. The goal of this section is to construct a monoidal model structure

on Ch(Shv(A)) that is weakly finitely generated (Definition 2.2.9), satisfies the

monoid axiom [47, Definition 3.3], and in which the weak equivalences are the

quasi-isomorphisms. Once we have such a model structure we can use [20, Theo-

rem 5.5] to construct the projective model structure on the category of chain

complexes Ch([C, Shv(A)]) of the Grothendieck category of enriched functors

[C, Shv(A)] for any small Shv(A)-enriched category C. The model structure will

be useful for proving the reconstruction theorems of the next two chapters.

There is a finitely generated monoidal model structure on the category of

unbounded chain compelxes of abelian groups Ch(Ab), where weak equivalences

are quasi-isomorphisms and fibrations are epimorphisms [49]. This model struc-

ture also satisfies the monoid axiom in the sense of [47, Definition 3.3]. For

any abelian group A, let SnA be the chain complex that is A in degree n and

0 everywhere else. Let DnA be the chain complex that is A in degree n and

n + 1, and 0 everywhere else, and where the differential from degree n + 1 to

degree n is the identity map on A. For every n ∈ Z there is a canonical map

SnA→ DnA which is idA in degree n. A set of generating cofibrations of Ch(Ab)

is ICh := {SnZ → DnZ | n ∈ Z}, and a set of generating trivial cofibrations is

JCh := {0→ DnZ | n ∈ Z}.
Let Psh(A) be the category of Ab-enriched functors Aop → Ab. We can then

apply [20, Theorem 5.5] to get a weakly finitely generated monoidal model struc-

ture on Ch(Psh(A)), where weak equivalences are sectionwise quasi-isomorphisms,

and the fibrations are epimorphisms. We call it the standard projective model
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structure on presheaves, or sometimes just the projective model structure on

presheaves. The proof of [14, Theorem 4.2] shows that the generating cofibra-

tions and generating trivial cofibrations of this model structure are given by the

sets

Iproj := {A(−, X)⊗ SnZ→ A(−, X)⊗DnZ|X ∈ Smk, n ∈ Z}

Jproj := {0→ A(−, X)⊗DnZ|X ∈ Smk, n ∈ Z}.

From [14, Theorem 4.4] it also follows that this model structure on Ch(Psh(A))

satisfies the monoid axiom.

2.2.1 Lemma. Every cofibration in the projective model structure on Ch(Psh(A))

is a degreewise split monomorphism with degreewise projective cokernel.

Proof. Take a cofibration f : A → B in Ch(Psh(A)). Take an arbitrary n ∈ Z.

Define a morphism of complexes ϕ : A → Dn(An) by means of the following

diagram

. . .
∂n+3
A // An+2

∂n+2
A //

��

An+1

∂n+1
A //

∂n+1
A
��

An
∂nA //

id
��

An−1

∂n−1
A //

��

. . .

. . . // 0 // An
id // An // 0 // . . .

In the following commutative diagram in Ch(Psh(A))) the right hand side mor-

phism is a surjective quasi-isomorphism, i.e. a projective trivial fibration

A

f
��

ϕ // Dn(An)

��
B //

s
;;

0

So we get a lift s : B → Dn(An) with s◦f = ϕ. In particular sn◦fn = ϕn = idAn .

Since n ∈ Z was arbitrary, f is a degreewise split monomorphism.

We have a pushout diagram:

A
f //

��

B

��
0 // Coker(f)
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Since the upper map is a cofibration, the lower map is a cofibration. So Coker(f)

is a cofibrant object. To show that f is a degreewise split monomorphism with

degreewise projective cokernel, we now just need to show that every cofibrant

object in Ch(Psh(A)) is degreewise projective.

Let C be any cofibrant object in Ch(Psh(A)), and let n ∈ Z. We claim that

Cn is projective in Psh(A). Take an arbitrary epimorphism p : X → Y in Psh(A)

and an arbitrary map g : Cn → Y in Psh(A). We need to find a lift in the diagram

X

p
��

Cn

>>

g
// Y

Just like at the begining of the lemma we can construct a morphism of chain

complexes ϕ : C → Dn(Cn) with ϕn = idCn , ϕn+1 = ∂n+1
C and ϕk = 0 for

k /∈ {n, n+ 1}. In Ch(Psh(A)) we then have a diagram

0 //

��

Dn(X)

Dn(p)
��

C ϕ
//

s

44

Dn(Cn)
Dn(g)

// Dn(Y )

We claim that in this diagram a lift s : C → Dn(X) exists. This is true for the

following reason: Since p is an epimorphism, Dn(p) is an epimorphism, so Dn(p)

is a projective fibration. Since Dn(X) and Dn(Y ) are both acyclic, it follows that

Dn(p) is a quasi-isomorphism, so Dn(p) is a trivial fibration. Since 0 → C is a

cofibration, it follows that the lift s : C → Dn(X) exists. Then sn : Cn → X

satisfies p ◦ sn = g, and this then shows that Cn is projective.

2.2.2 Corollary. The standard projective model structure on Ch(Psh(A)) is cel-

lular, in the sense of [27, Definition 12.1.1]

Proof. The domains and codomains from Iproj and Jproj are compact. By Lemma

2.2.1 every cofibration is a degreewise split monomorphism. Since Ch(Psh(A)) is

an abelian category, every monomorphism is an effective monomorphism. So ev-

ery cofibration is an effective monomorphism, and the projective model structure

on Ch(Psh(A)) is cellular.



20 Nisnevich sheaves with transfers

We next apply a left Bousfield localization on the projective model structure

on presheaves.

2.2.3 Definition. Let Q be the set of all elementary Nisnevich squares in Smk.

We want to make the following class of maps in Ch(Psh(A)) into weak equiva-

lences:

1. The morphism 0→ A(−, ∅) will be a weak equivalence.

2. For every elementary Nisnevich square Q ∈ Q of the form

U ′
β //

α
��

X ′

γ
��

U
δ // X

we get a square

A(−, U ′) β∗ //

α∗
��

A(−, X ′)
γ∗
��

A(−, U)
δ∗ // A(−, X)

in Ch(Psh(A)) (we regard each entry of the square as a complex concen-

trated in zeroth degree). We take the mapping clyinder C of the map

A(−, U ′) → A(−, X ′). So the map factors as a cofibration followed by

a trivial fibration A(−, U ′) // // C ∼ // // A(−, X ′) , and C is finitely pre-

sented. Let sQ := A(−, U)
∐

A(−,U ′)
C. Then sQ is also finitely presented.

Notice that sQ is the homotopy pushout of A(−, U) and A(−, X ′) over

A(−, U ′). Take the mapping cylinder tQ of the map sQ = A(−, U)
∐

A(−,U ′)
C →

A(−, X), so that it factors as sQ //
pQ // tQ

∼ // // A(−, X) , and tQ is finitely

presented.

For every Q ∈ Q this cofibration pQ : sQ → tQ will be a weak equivalence.

Our notation here is similar to that of [15, Notation 2.13]. Denote the set of

all the shifts of these morphisms by S = {0→ A(−, ∅)[n] | n ∈ Z} ∪ {pQ[n]|Q ∈
Q, n ∈ Z}. We can apply [27, Theorem 4.11] to get the left Bousfied localization

of the projective model structure of presheaves with respect to S. We call the
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resulting model structure the local projective model structure on presheaves. We

write Ilocal, Jlocal for the generating cofibrations, generating trivial cofibrations

and weakly generating trivial cofibrations of the local projective model structure

on Ch(Psh(A)).

We will say that an object F ∈ Ch(Psh(A)) is locally fibrant, if it is fibrant in

the local projective model structure.

2.2.4 Lemma. An object F ∈ Ch(Psh(A)) is locally fibrant if and only if F (∅)→
0 is a quasi-isomorphism in Ch(Ab), and F sends elementary Nisnevich squares

to homotopy pullback squares.

Proof. Let τ>0 : Ch(Psh(A)) → Ch>0(Psh(A)) be the good truncation functor,

sending

· · · → A1 → A0

∂0
A→ A−1 → . . .

to

· · · → A1 → ker(∂0
A).

For A,B ∈ Ch(Psh(A)) let HomCh(Psh(A))(A,B) be the internal hom of Ch(Psh(A))

and let map∆op Set(A,B) ∈ ∆op Set be the derived simplicial mapping space. De-

fine

mapCh>0(Ab)(A,B) := τ>0(HomCh(Psh(A))(A,B)(pt)) ∈ Ch>0(Ab).

If A is cofibrant and B is fibrant, then for every n > 0 we have an isomorphism

of abelian groups

Hn(mapCh>0(Ab)(A,B)) ∼= πn(map∆op Set(A,B)).

By [27, Definition 3.1.4] an object F ∈ Ch(Psh(A)) is locally fibrant if and

only if for every s : A→ B, with s ∈ S the map

s∗ : map∆op Set(B,F )→ map∆op Set(A,F )

is a weak equivalence of simplicial sets. Since s is a cofibration between cofi-

brant objects, and every object in Ch(Psh(A)) in the standard projective model

structure is fibrant, it follows that F is locally fibrant if and only if

s∗ : mapCh>0(Ab)(B,F )→ mapCh>0(Ab)(A,F )
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is a quasi-isomorphism in Ch>0(Ab). If s is of the form 0 → A(−, ∅)[n], this

means that the map

τ>0(F (∅)[−n])→ 0

is a quasi-isomorphism. This holds for every n ∈ Z if and only if 0 → F (∅) is a

quasi-isomorphism. If s is of the form pQ : sQ → tQ for an elementary Nisnevich

square Q of the form

U ′
β //

α
��

X ′

γ
��

U δ // X

then this means that the map

τ>0(F (X)[−n])→ τ>0((F (X ′) ×h
F (U ′)

F (U))[−n])

is a quasi-isomorphism in Ch(Ab), where F (X ′) ×h
F (U ′)

F (U) is the homotopy pull-

back of F (U)→ F (U ′)← F (X ′). This holds for every n ∈ Z if and only if

F (X)→ F (X ′) ×h
F (U ′)

F (U)

is a quasi-isomorphism in Ch(Ab), which is the case if and only if F sends Q to

a homotopy pullback square.

The property of sending elementary Nisnevich squares to homotopy pullback

squares is also called the B.G.-property in [39]. We now prove basic facts about

the local projective model structure.

2.2.5 Lemma. A morphism f : A→ B in Ch(Psh(A)) is a weak equivalence in

the local projective model structure if and only if it is a local quasi-isomorphism,

in the sense that it is a stalkwise quasi-isomorphism with respect to the Nisnevich

topology.

Proof. This follows using a similar argument as in [31, C.2.1]. They use finite

correspondences, but all the arguments of [31, §C.2] work for an arbitrary additive

symmetric monoidal category of correspondences satisfying the strict V -property.
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2.2.6 Lemma. Let C ∈ Psh(A) be projective. Then C is flat, in the sense that

C ⊗
Psh
− : Psh(A)→ Psh(A)

is an exact functor.

Proof. Since Psh(A) is an abelian category with enough projectives, we know

that for every A ∈ Psh(A) the tensor product functor A ⊗
Psh
− has left derived

functors

TorPsh
i (A,−) : Psh(A)→ Psh(A)

for i > 0. By [55, Corollary 2.4.2], if C is projective, then

TorPsh
i (A,C) = 0

for all i 6= 0 and all A ∈ Psh(A). Since TorPsh
i is symmetric we therefore also

get TorPsh
i (C,A) = 0. But this then means that the functor C ⊗

Psh
− : Psh(A) →

Psh(A) is exact.

2.2.7 Lemma. Let C ∈ Ch(Psh(A)) be a degreewise flat chain complex. Then C

is a flat chain complex in the sense that

C ⊗− : Ch(Psh(A))→ Ch(Psh(A))

is an exact functor.

Proof. Since the functor C ⊗− is right exact, we just need to show that C ⊗−
preserves monomorphisms. Let ι : A → B be a monomorphism in Ch(Psh(A)).

For every n ∈ Z we have

(C ⊗ ι)n =
⊕
p+q=n

Cp ⊗ ιq.

Since each Cp is flat and each ιq is a monomorphism, each Cp⊗ ιq is a monomor-

phism. Then (C⊗ ι)n is a monomorphism because it is a direct sum of monomor-

phisms. So C ⊗ ι is a monomorphism, and therefore C is flat in Ch(Psh(A)).
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There is an adjunction Lnis : Psh(A) � Shv(A) : Unis, where the left adjoint

Lnis is Nisnevich sheafification and the right adjoint Unis is the forgetful functor.

The sheafification functor Lnis is well-defined because one of the axioms of the

category of correspondences A states that for every A-presheaf the associated

sheaf with respect to the Nisnevich topology on Smk has a unique strucutre of an

A-presheaf. This adjunction extends to an adjunction on chain complexes

Lnis : Ch(Psh(A))� Ch(Shv(A)) : Unis.

2.2.8 Lemma. The local projective model structure on Ch(Psh(A)) is monoidal.

Proof. We use [56, Theorem B]. Cofibrant objects in the local projective model

structure are also cofibrant in the standard projective model structure. By

Lemma 2.2.1 they are degreewise projective, and therefore degreewise flat by

Lemma 2.2.6, and therefore flat by Lemma 2.2.7. We now need to show for every

elementary Nisnevich square Q and cofibrant object K that the morphism

K ⊗ pQ : K ⊗ sQ → K ⊗ tQ

is a local quasi-isomorphism. For this it suffices to show that the sheafification

Lnis(K⊗pQ) is a local quasi-isomorphism. Since Lnis : Ch(Psh(A))→ Ch(Shv(A))

is a strong monoidal functor we have

Lnis(K ⊗ pQ) ∼= Lnis(K)⊗ Lnis(pQ).

Since K is a cofibrant object in Ch(Psh(A)), it follows that K is flat in

Ch(Psh(A)). This then also implies that the sheafification LnisK of K is flat

in Ch(Shv(A)), and this implies that the functor Lnis(K) ⊗ − : Ch(Shv(A)) →
Ch(Shv(A)) preserves local quasi-isomorphisms. Since pQ is a local quasi-isomor-

phism, it follows that Lnis(K)⊗Lnis(pQ) is a local quasi-isomorphism. So K⊗ pQ
is a local quasi-isomorphism. Similarly 0→ K ⊗A(−, ∅) is a local quasi-isomor-

phism. With this we have proved the lemma.

We want to show that the local projective model structure is weakly finitely

generated in the sense of [14, Definition 3.4]. For the convenience of the reader

we recall this notion here.
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2.2.9 Definition. A cofibrantly generated model category M is said to be weakly

finitely generated, if it is cofibrantly generated and the generating cofibrations I

and generating trivial cofibrations J can be chosen such that

1. The domains and codomains of maps in I are finitely presented.

2. The domains of maps in J are small.

3. There exists a subset J ′ ⊆ J of maps with finitely presented domains and

codomains, such that for every map f : A → B, if B is fibrant and f has

the right lifting property with respect to J ′, then f is a fibration.

We will call J ′ the set of weakly generating trivial cofibrations.

Let ICh>0
= {SnZ → DnZ | n > 0} ∪ {0 → S0Z} be a set of generating

cofibrations for the standard projective model structure on the category of con-

nective chain complexes Ch>0(Ab). Let S�ICh>0
denote the set of all maps which

are pushout-products of maps in S and ICh>0
.

2.2.10 Lemma. An object F ∈ Ch(Psh(A)) is fibrant in the local projective model

structure if and only if the map F → 0 has the right lifting property with respect

to S�ICh>0
.

Proof. For A,B ∈ Ch(Psh(A)) let mapCh(Ab)(A,B) ∈ Ch>0(Ab) denote the good

truncation of the chain complex of morphisms A → B, just like in the proof

of Lemma 2.2.4. An object F ∈ Ch(Psh(A)) is S-local if and only if for every

s : X → Y , s ∈ S the map

s∗ : mapCh(Ab)(Y, F )→ mapCh(Ab)(X,F )

is a quasi-isomorphism. Since s is a cofibration and F is fibrant, the map s∗ is a

fibration in Ch(Ab). So s∗ is a quasi-isomorphism in Ch>0(Ab) if and only if s∗ is

trivial fibration in Ch>0(Ab), and that is the case if and only if s∗ has the right

lifting property with respect to ICh>0
. For every ι : A→ B in ICh>0

we have that

the following diagram has a lift

A

ι

��

// mapCh(Ab)(Y, F )

s∗

��
B //

88

mapCh(Ab)(X,F )
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in Ch>0(Ab) if and only if the following diagram has a lift

A⊗ Y
∐
A⊗X

B ⊗X

ι�s

��

// F

��
B ⊗ Y //

88

0

in Ch(Psh(A)). So F is fibrant in the local projective model structure if and only

if F → 0 has the right lifting property with respect to S�ICh>0
.

2.2.11 Lemma. The local model structure on Ch(Psh(A)) is weakly finitely gen-

erated. A set of weakly generating trivial cofibrations is given by J ′local := Jproj ∪
(S�ICh>0

).

Proof. The domains and codomains from J ′local are clearly finitely presented.

All morphisms from Jproj are local projective trivial cofibrations. Since S

consists out of cofibrations that are S-local equivalences, it consists out of lo-

cal projective trivial cofibrations. Since the local projective model structure is

monoidal, it follows that S�ICh>0
consists out of local projective trivial cofibra-

tions. So all morphisms from J ′local are trivial cofibrations in the local projective

model structure, so J ′local ⊆ Jlocal for a suitable choice of Jlocal.

Let f : A → B be a map in Ch(Psh(A)), where B is fibrant in the local

projective model structure and f satisfies the right lifting property with respect

to J ′local = Jproj ∪ (S�ICh>0
). Then f satisfies the right lifting property with

respect to Jproj, so f is a fibration in the standard projective model structure.

Since f : A → B and B → 0 satisfy the right lifting property with respect to

S�ICh>0
, also the composition A → 0 satisfies the right lifting property with

respect to S�ICh>0
. By Lemma 2.2.10 it follows that A is fibrant in the local

projective model structure. From [27, Proposition 3.3.16] it follows that f is a

fibration in the local projective model structure. So the local projective model

structure on Ch(Psh(A)) is weakly finitely generated with J ′local as the set of

weakly generating trivial cofibrations.

We next want to transfer the local projective model structure along the ad-

junction

Lnis : Ch(Psh(A))� Ch(Shv(A)) : Unis.
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2.2.12 Definition. Given a model category M and an adjunction L : M � N :

R we say that the left transferred model structure along L exists if there is a

model structure on N such that a morphism f in N is a weak equivalence (resp.

fibration) if and only if R(f) is a weak equivalence (resp. fibration) in M .

2.2.13 Remark. Let M be a model category and L : M � N : R an adjunction.

If the left transferred model structure along L exists, then the adjunction L : M �
N : R is a Quillen adjunction. If M is cofibrantly generated with generating

cofibrations I and generating trivial cofibrations J and if L(I) and L(J) permit

the small object argument in N , then L(I) is a set of generating cofibrations and

L(J) is a set of generating trivial cofibrations for N .

We next want to show that the left transferred model structure along Lnis :

Ch(Psh(A))→ Ch(Shv(A)) exists.

2.2.14 Lemma. The forgetful functor Unis : Ch(Shv(A))→ Ch(Psh(A)) preserves

filtered colimits.

Proof. This follows from the fact that every covering in the Nisnevich topology

has a finite subcovering. To spell it out in more detail, let I be a filtered diagram

and A(−) : I → Shv(A) a functor. Let A := colim
i∈I

Unis(Ai). We need to show that

the canonical map

A→ Unis(colim
i∈I

Ai)

is an isomorphism. If we apply Lnis to this map then it clearly becomes an

isomorphism in Shv(A). Also the presheaf Unis(colim
i∈I

Ai) is a sheaf. To prove the

lemma, it now suffices to show that the presheaf A is a sheaf.

Take a Nisnevich covering {Yj → X}j∈J , and compatible sections sj ∈ A(Yj).

Since every covering has a finite subcovering we can assume without loss of gen-

erality that the index set J is finite. Now for each j ∈ J , there exists some ij ∈ I
so that sj is the restriction of some section ti,j ∈ Unis(Aij)(Yj) along the canonical

map Unis(Aij)→ A. Since I is a filtered category, we can find a single k ∈ I such

that every sj is the restriction of some section tj ∈ Unis(Ak)(Yj) along the map

Unis(Ak)→ A. Since Ak is a sheaf we can glue together all the sections tj into a

single section t ∈ Unis(Ak)(X). If we include t into the colimit colim
i∈I

Unis(Ai)(Yj)

then we get a section s ∈ A(X) which is a unique gluing of all the sj. So A is a

sheaf, and Unis preserves filtered colimits.
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2.2.15 Corollary. Lnis : Ch(Psh(A)) → Ch(Shv(A)) preserves finitely presented

objects.

Proof. Let X ∈ Ch(Psh(A)) be finitely presented. Let I be a filtered diagram,

and let A(−) : I → Ch(Shv(A)) be a functor. Then using Lemma 2.2.14 we get

HomCh(Shv(A))(LnisX, colim
i∈I

Ai) ∼= HomCh(Psh(A))(X,Uniscolim
i∈I

Ai)
2.2.14∼=

HomCh(Psh(A))(X, colim
i∈I

UnisAi) ∼= colim
i∈I

HomCh(Psh(A))(X,UnisAi) ∼=

colim
i∈I

HomCh(Shv(A))(LnisX,Ai)

so LnisX is finitely presented.

2.2.16 Lemma. For the local projective model structure on Ch(Psh(A)), the left

transferred model structure along Lnis : Ch(Psh(A))→ Ch(Shv(A)) exists.

Proof. We use [27, Theorem 11.3.2]. Since Ch(Shv(A)) is a Grothendieck cate-

gory [1, Proposition 3.4], every object is small, so Ilocal and Jlocal permit the small

object argument.

Next, we need to show that Unis takes relative Lnis(Jlocal)-complexes to stalk-

wise quasi-isomorphisms in Ch(Psh(A)). Since Unis preserves filtered colimits, it

commutes with transfinite compositions. Also, stalkwise quasi-isomorphisms are

closed under transfinite composition. It therefore suffices to show that Unis takes

any pushout of a map from Lnis(Jlocal) to a stalkwise quasi-isomorphism.

Let f : A→ B be a map in Jlocal, and consider a pushout of the form

LnisA
Lnisf //

��

LnisB

��
X

g // Y

We need to show that Unisg is a stalkwise quasi-isomorphism. Since Ch(Shv(A))

is an abelian category, this pushout gives rise to a short exact sequence in

Ch(Shv(A))

0→ LnisA→ LnisB ⊕X → Y → 0.

For every point x of the Nisnevich site, we get a short exact sequence on stalks

0→ Ax → Bx ⊕Xx → Yx → 0
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in Ch(Ab). This short exact sequence of chain complexes induces a long exact

sequence on homology groups

· · · → Hn+1(Yx)→ Hn(Ax)→ Hn(Bx)⊕Hn(Xx)→ Hn(Yx)→ Hn−1(Ax)→ · · ·

Since f is in Jlocal, it is a stalkwise quasi-isomorphism, so the map Hn(Ax) →
Hn(Bx) is an isomorphism. This then implies that Hn(Xx) → Hn(Yx) is also an

isomorphism, so g : X → Y is a stalkwise quasi-isomorphism.

Therefore the transferred model structure on Ch(Shv(A)) exists, with generat-

ing cofibrations Lnis(Ilocal) and generating trivial cofibrations Lnis(Jlocal), and the

adjunction Lnis : Ch(Psh(A))� Ch(Shv(A)) : Unis is a Quillen adjunction.

2.2.17 Lemma. Let M be a model category that is weakly finitely generated

with weakly generating trivial cofibrations J ′M , and let L : M � N : R be an

adjunction, such that the left transferred model structure along L exists. Assume

that L preserves small objects and finitely presented objects. Then the transferred

model structure on N is weakly finitely generated, and L(J ′M) is a set of weakly

generating trivial cofibrations for N .

Proof. Let IM denote a set of generating cofibrations and JM denote a set of

generating trivial cofibrations for M . Then by definition of the transferred model

structure, L(IM) is a set of generating cofibrations and L(JM) is a set of generating

trivial cofibrations for N .

Since L preserves small objects and finitely presented objects, the domains

and codomains from L(IM) and L(J ′M) are finitely presented, and the domains

from L(JM) are small.

Take f : A → B in N with B fibrant and f having the right lifting property

with respect to L(J ′M). To show the lemma we now just have to show that f is

a fibration in N . By adjunction R(f) has the right lifting property with respect

to J ′M . Since R : N → M is a right Quillen functor and B is fibrant in N

we know that R(B) is fibrant in M . Since J ′M is a set of weakly generating

trivial cofibrations for M it now follows that R(f) is a fibration in M . From the

definition of the transferred model structure it follows that f is a fibration in N .

Therefore L(J ′M) is a set of weakly generating trivial cofibrations for N .

2.2.18 Corollary. The model category Ch(Shv(A)) is weakly finitely generated,

with Lnis(J
′
local) as a set of weakly generating trivial cofibrations.
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Proof. By Lemma 2.2.15 we know that Lnis preserves finitely presented objects.

It also preserves small objects, because all objects in Ch(Shv(A)) are small. The

result now follows from Lemma 2.2.17.

There is a symmetric monoidal structure on Ch(Shv(A)) defined by X⊗Y :=

Lnis(Unis(X) ⊗ Unis(Y )). With respect to this monoidal structure the adjunction

Lnis : Ch(Psh(A)) � Ch(Shv(A)) : Unis is a monoidal adjunction. This means

that the left adjoint Lnis is strong monoidal, while the right adjoint Unis is lax

monoidal. We use the following lemma to make Ch(Shv(A)) into a monoidal

model category in the sense of [47, Definition 3.1].

2.2.19 Lemma. Let M,N be closed symmetric monoidal categories, and let

L : M � N : R be a monoidal adjunction. Let M be equipped with a cofibrantly

generated monoidal model structure with generating cofibrations I and generat-

ing trivial cofibrations J . Assume that the left transferred model structure along

L : M → N exists and that L(I) and L(J) permit the small object argument.

Furthermore assume that the monoidal unit 1M is cofibrant in M . Then the left

transferred model structure on N is a monoidal model structure and the unit 1N
is cofibrant.

Proof. Let I be the generating cofibrations of M , and let J be the generating

trivial cofibrations of M . Then L(I) is a set of generating cofibrations and L(J) is

a set of generating trivial cofibrations for N . Given two morphisms f, g, we write

f�g to denote the pushout-product of f and g. To verify the pushout-product

axiom for the transferred model structure on N , it suffices by [28, Corollary 4.2.5]

to show that L(I)�L(I) consists out of cofibrations, and L(J)�L(I) consists out

of trivial cofibrations.

Since L is a strong monoidal left adjoint functor, it preserves pushout prod-

ucts, in the sense that for all morphisms f : A → B and g : C → D in M we

have a commutative diagram in which the vertical maps are isomorphisms:

L(A⊗D
∐
A⊗C

B ⊗ C)
L(f�g) //

∼

��

L(B ⊗D)

∼

��
L(A)⊗ L(D)

∐
L(A)⊗L(C)

L(B)⊗ L(C)
L(f)�L(g) // L(B)⊗ L(D)
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This can also be expressed by saying that L(f�g) ∼= L(f)�L(g) in the arrow

category Arr(N).

So any morphism in L(I)�L(I), respectively L(J)�L(I), is isomorphic to a

morphism in L(I�I), respectively L(J�I), in the arrow category Arr(N). Since

M is a monoidal model category, all morphisms from I�I, respectively J�I,

are cofibrations, respectively trivial cofibrations. Since L : M → N is a left

Quillen functor it preserves cofibrations and trivial cofibrations. Since cofibrations

and trivial cofibrations are closed under isomorphisms in Arr(N) it follows that

L(I)�L(I) consists out of cofibrations and L(J)�L(I) consists out of trivial

cofibrations. So N satisfies the pushout-product axiom.

Since 1M is cofibrant in M and L is a left Quillen functor, L(1M) is cofibrant

in N . Since L is strong monoidal L(1M) ∼= 1N , so 1N is cofibrant in N . This in

particular implies that N is a monoidal model category.

We will now prove some lemmas to show that Ch(Shv(A)) satisfies the monoid

axiom.

2.2.20 Lemma. If f ∈ J ′local then Coker(f) ∈ Ch(Psh(A)) is a bounded chain

complex and degreewise free.

Proof. Take f ∈ J ′local. Then f ∈ Jproj or f ∈ S�ICh>0
. If f ∈ Jproj, then

Coker(f) = A(−, X)⊗DnZ

for some X ∈ Smk, n ∈ Z, and that is clearly bounded and free. If f ∈ S�ICh>0
,

then f = g�h for some g ∈ ICh>0
and some h ∈ S. Since g is just a map of the

form SnZ → DnZ for some n > 0, it suffices to show that h has a bounded and

degreewise free cokernel. Up to a shift, h is either the morphism 0→ A(−, ∅) or

h is a morphism of the form sQ → tQ for some Nisnevich square Q ∈ Q. The

cokernel of 0→ A(−, ∅) is clearly bounded and free. So assume now that h is of

the form sQ → tQ for some Nisnevich square Q ∈ Q, of the form

U ′ //

��

X ′

��
U // X
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Recall from Definition 2.2.3 that sQ is defined via the pushout square

A(−, U ′) //

��

C

��A(−, U) // sQ

where C is the mapping cylinder of A(−, U ′) → A(−, X ′). By the usual con-

struction of mapping cylinders [55, 1.5.5] we have in each individual degree n an

equality

Cn = A(−, U ′)n ⊕A(−, U ′)n−1 ⊕A(−, X ′)n
and the canonical map A(−, U ′)→ C is in each individual degree n a coproduct

inclusion.

Thus the pushout defining sQ is a pushout of bounded and degreewise free

complexes along a morphism which is degreewise a coproduct inclusion. This

then implies that sQ is bounded and degreewise free.

Next, recall that tQ is defined as the mapping cylinder of sQ → A(−, X).

Thus the canonical map h : sQ → tQ is also a degreewise coproduct inclusion

between bounded and degreewise free objects. This then implies that Coker(h)

is bounded and degreewise free.

And then it follows that Coker(f) is bounded and degreewise free.

2.2.21 Lemma. If f ∈ J ′local and Z ∈ Ch(Psh(A)), then f ⊗ Z is a local quasi-

isomorphism and a monomorphism in Ch(Psh(A)).

Proof. We can calculate f ⊗ Z in degree n ∈ Z by

(f ⊗ Z)n =
⊕
i+j=n

fi ⊗ Zj.

By Lemma 2.2.1 each fi is a split monomorphism. Then also every fi ⊗ Zj is

a split monomorphism, so their direct sum is a split monomorphism. So f ⊗ Z
is a monomorphism. We now just need to show that f ⊗ Z is a local quasi-

isomorphism. Since it is already a monomorphism, we now just need to show

that Coker(f ⊗ Z) is locally acyclic. Let C := Coker(f). By Lemma 2.2.20 the

complex C is bounded and degreewise free. Since f is a local quasi-isomorphism,

we know that C is locally acyclic. Also we have an isomorphism Coker(f ⊗Z) ∼=
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Coker(f) ⊗ Z = C ⊗ Z. So to prove the lemma we now just need to show the

following claim:

If C ∈ Ch(Psh(A)) is bounded, degreewise free and locally acyclic, then C⊗Z
is locally acyclic.

We will first show this claim for the case where Z is concentrated in degree 0.

So we assume Z ∈ Psh(A). We claim that C ⊗ Z is locally acyclic.

Take a free resolution of Z in Psh(A)

· · · → F2 → F1 → F0 → Z → 0.

We can tensor this resolution with C to get the following double complex

. . .

��

. . .

��

. . .

��
. . . // F1 ⊗ C1

//

��

F0 ⊗ C1
//

��

Z ⊗ C1

��
. . . // F1 ⊗ C0

//

��

F0 ⊗ C0
//

��

Z ⊗ C0

��. . . . . . . . .

Denote this double complex by D•,•.

Since C is degreewise free, by Lemma 2.2.6 each Ci is also flat, so each row

is exact. This then means that the horizontal homology of D•,• vanishes. So we

have for all q ∈ Z,

Hhor,q(D•,•) = 0

in Ch(Psh(A)).

Associated to the double complex D we have a spectral sequence in Psh(A)

computing the homology of the total complex [41].

E2
p,q = Hvert,p(Hhor,q(D•,•)) =⇒ Hp+q(Tot(D•,•))

Since Hhor,q(D•,•) = 0 it follows that Hp+q(Tot(D•,•)) = 0.

If this homology vanishes, then it also locally vanishes. So if Lnis(D•,•) denotes

the sheafification of D•,•, and if Hnis denotes Nisnevich homology sheaves in

Shv(A), then we have for all p.q ∈ Z that Hnis
p+q(Tot(Lnis(D•,•)) = 0.
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By mirroring the double complex Lnis(D•,•) and then using the double complex

spectral sequence in the Grothendieck category Shv(A), we get another spectral

sequence computing the same homology

E2
p,q = Hnis

hor,p(H
nis
vert,q(Lnis(D•,•))) =⇒ Hnis

p+q(Tot(Lnis(D•,•))).

Since C is bounded, degreewise free and locally acyclic, and since each Fi is free,

we can use an argument similar to [50, Corollary 2.3] to show for every q > 0

that

Hnis(Lnis(Fq ⊗ C)) = 0.

This then means that the Nisnevich homology of all vertical columns of Lnis(D•,•)

in positive degree vanishes. So for q 6= 0 and p ∈ Z we have

Hnis
vert,q(Lnis(D•,•))p = Hnis

p (Lnis(Fq−1 ⊗ C)) = 0.

Here we consider the Lnis(Z ⊗ Ci) column of Lnis(D•,•) to be in degree 0.

Thus the spectral sequence E2
p,q = Hnis

hor,p(H
nis
vert,q(Lnis(D•,•))) stabilizes at the

second page, and consists only of a single column whose terms are Hnis
p (Lnis(Z ⊗

C)). Since the spectral sequence converges against Hnis
p+q(Tot(Lnis(D•,•))) = 0 it

follows that Hnis
p (Lnis(Z ⊗ C)) = 0 for every p, so the chain complex Z ⊗ C is

locally acyclic.

So we have now shown the lemma in the case where Z is concentrated in

degree 0. Let us show the lemma in full generality. Namely, let C be bounded,

degreewise free and locally acyclic, and let Z ∈ Ch(Psh(A)) be any chain complex.

We claim that C ⊗ Z is locally acyclic.

For every k ∈ Z, let τk(Z) denote the following truncated chain complex

· · · → Zk+3

∂k+3
Z→ Zk+2

∂k+2
Z→ Zk+1 → ker(∂kZ)→ 0,

where ker(∂kZ) is in degree k. The chain complex τk(Z) is k-connected.

For every k ∈ Z there is a canonical map ϕk : τk(Z)→ τk−1(Z) with ϕk,i = idZi

for all i > k + 1, as shown in this diagram

. . . //

��

Zk+2

∂k+2
Z //

��

Zk+1

∂k+1
Z //

��

ker(∂kZ) //

��

0

��
. . . // Zk+2

∂k+2
Z // Zk+1

∂k+1
Z // Zk

∂kZ // ker(∂k−1
Z )
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In Ch(Psh(A)) we can consider the Z-indexed diagram

· · · → τk+1(Z)→ τk(Z)→ τk−1(Z)→ · · ·

The colimit of this diagram is obviously Z. In particular C⊗Z ∼= colim
k∈Z

(C⊗τk(Z)).

Since filtered colimits in Ch(Psh(A)) preserve local quasi-isomorphisms, we

know that filtered colimits of locally acyclic objects are locally acyclic. So to

show that C⊗Z is locally acyclic, we now just need to show that each C⊗ τk(Z)

is locally acyclic. Let k ∈ Z be arbitrary. We have a distinguished triangle in

Ch(Psh(A))

τk+1(Z)[−k]→ τk(Z)[−k]→ Hk(Z)→ τk+1(Z)[1− k]

where Hk(Z) ∈ Psh(A) is regarded as a chain complex concentrated in degree 0.

So if we consider the following diagram in D(Psh(A))

· · · → τk+i(Z)[−k]→ · · · → τk+1(Z)[−k]→ τk(Z)[−k]

then for every i ∈ N, the i-th morphism in the sequence has a cofiber isomorphic

to Hk+i(Z)[i]. Also the i-th term in the sequence τk+i(Z)[−k] is i-connected.

By Lemma 2.2.6 we know that C is degreewise flat. So if we tensor the above

diagram with C we get a diagram

· · · → C ⊗ τk+i(Z)[−k]→ · · · → C ⊗ τk+1(Z)[−k]→ C ⊗ τk(Z)[−k]

in which the i-th morphism has a cofiber isomorphic to C ⊗ Hk+i(Z)[i]. From

[18, Corollary 6.1.1] we get a strongly convergent spectral sequence

E2
pq = Hnis

p+q(C ⊗Hk+q(Z)[q]) =⇒ Hnis
p+q(C ⊗ τk(Z)[−k]).

Since Hk+q(Z)[q] is concentrated in a single degree, we know that C⊗Hk+q(Z)[q]

is locally acyclic. So Hnis
p+q(C ⊗Hk+q(Z)[q]) = 0, and then the spectral sequence

implies that Hnis
p+q(C ⊗ τk(Z)[−k]) = 0, hence C ⊗ τk(Z)[−k] is locally acyclic.

Then also C⊗τk(Z) is locally acyclic, and then also the colimit C⊗Z ∼= colim
k∈Z

(C⊗
τk(Z)) is locally acyclic, which then proves the entire lemma.

2.2.22 Lemma. Let M be a monoidal model category that is weakly finitely

generated. Denote the set of weakly generating trivial cofibrations by J ′.
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Then the monoid axiom for M can be checked on J ′. This means with the

notations from [47], that if every element of (J ′⊗M)−cofreg is a weak equivalence

then M satisfies the monoid axiom.

Proof. Before verifying the monoid axiom we first show that every trivial cofibra-

tion with fibrant codomain lies in J ′−cof.

Let f : A
∼
� B be a trivial cofibration with fibrant codomain B. We claim

that f lies in J ′−cof. According to the small object argument [47, Lemma 2.1]

we can factor f as f = qi with q ∈ RLP(J ′) and i ∈ J ′−cofreg.

A

i ��

f // B

Z

q

??

Since q has a fibrant codomain and q ∈ RLP(J ′) it follows that q is a fibration.

Then f has the left lifting property against q so by [28, Lemma 1.1.9] f is a

retract of i. Since i ∈ J ′−cofreg this implies f ∈ J ′−cof.

Now we start verifying the monoid axiom. Assume every element of (J ′ ⊗
M)−cofreg is a weak equivalence. Let f : A

∼
� B be any trivial cofibration, let

Z ∈M be any object and consider an arbitrary pushout diagram of the form

A⊗ Z

��

f⊗Z // B ⊗ Z

��
X h // Y

We claim that h is a weak equivalence. Since M is weakly finitely generated, we

know by [14, Lemma 3.5] that transfinite compositions of weak equivalences are

weak equivalences in M . So if we show that h is a weak equivalence, then this

immediately implies the monoid axiom.

Denote the terminal object of M by 1. Factor the map B → 1 into a trivial

cofibration followed by a fibration. We then have a trivial cofibration g : B
∼
� Bf

with Bf fibrant. Then both g : B → Bf and gf : A→ Bf are trivial cofibrations

with fibrant codomain. So g and gf both lie in J ′−cof. Then Z⊗g and Z⊗gf lie

in Z⊗ (J ′−cof). By a simple argument using the adjunction −⊗Z a Hom(Z,−)

one can show that Z ⊗ (J ′−cof) ⊆ (Z ⊗ J ′)−cof. So Z ⊗ g and Z ⊗ gf lie in

(Z ⊗ J ′)−cof, and thus also in (M ⊗ J ′)−cof.
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Consider the pushout diagram

A⊗ Z

��

f⊗Z // B ⊗ Z

��

g⊗Z // Bf ⊗ Z

��
X

h // Y
k // (Bf ⊗ Z)

∐
B⊗Z

Y

Since g ⊗ Z and gf ⊗ Z lie in (J ′ ⊗M)−cof, and since (J ′ ⊗M)−cof is stable

under pushouts, it follows that k and kh also lie in (J ′⊗M)−cof. By [47, Lemma

2.1] this means that k and kh are retracts of morphisms from (J ′ ⊗M)−cofreg.

Since we assume that all morphisms from (J ′⊗M)−cofreg are weak equivalences,

and since weak equivalences are stable under retracts, it follows that k and kh

are weak equivalences. Then by 2-of-3 also h is a weak equivalence. This then

proves the monoid axiom for M .

2.2.23 Lemma. Ch(Shv(A)) satisfies the monoid axiom in the sense of [47].

Proof. By Lemmas 2.2.22 and 2.2.18 it suffices to check the monoid axiom on the

set Lnis(J
′
local).

Take f : A → B, with f ∈ Lnis(J
′
local) and take Z ∈ Ch(Shv(A)). We claim

that f ⊗
Shv

Z is an injective quasi-isomorphism. Since Shv(A) is a Grothendieck

category, we know that injective quasi-isomorphisms in Ch(Shv(A)) are stable

under pushouts and transfinite compositions. So if we show that f ⊗
Shv

Z is an

injective quasi-isomorphism, then this proves the entire monoid axiom.

If f ∈ Lnis(J
′
local), then there exists f ′ : A′ → B′ with f ′ ∈ J ′local and Lnis(f

′) =

f . By Lemma 2.2.21 we know f ′ ⊗
Psh

UnisZ is an injective local quasi-isomorphism

in Ch(Psh(A)). Since Lnis is strongly monoidal we have an isomorphism of arrows

Lnis(f
′ ⊗

Psh
UnisZ) ∼= Lnis(f

′) ⊗
Shv

LnisUnisZ ∼= f ⊗
Shv

Z

So we just need to show that Lnis(f
′ ⊗

Psh
UnisZ) is an injective quasi-isomorphism.

Since f ′ ⊗
Psh

UnisZ is injective, and the sheafification functor Lnis is exact, we

know that Lnis(f
′ ⊗
Psh
UnisZ) is injective. So we now just need to show that Lnis(f

′ ⊗
Psh

UnisZ) is a quasi-isomorphism. By definition of the transferred model structure
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on Ch(Shv(A)) we thus need to show that UnisLnis(f
′ ⊗

Psh
UnisZ) is a local quasi-

isomorphism in Ch(Psh(A)).

We have a commutative diagram, where η is the unit of the adjunction Lnis a
Unis:

UnisLnis(A
′ ⊗

Psh
UnisZ)

UnisLnis(f
′ ⊗
Psh

UnisZ)

// UnisLnis(B
′ ⊗

Psh
UnisZ)

A′ ⊗
Psh

UnisZ

η
OO

f ′ ⊗
Psh

UnisZ

// B′ ⊗
Psh

UnisZ

η
OO

The diagram commutes by the naturality of η. Since η is stalkwise an isomor-

phism, it is by Lemma 2.2.5 in particular a local quasi-isomorphism in Ch(Psh(A)).

Since f ′ ⊗
Psh

UnisZ is also a local quasi-isomorphism, it follows from the 2-of-

3-property that UnisLnis(f
′ ⊗

Psh
UnisZ) is a local quasi-isomorphism. So f ⊗ Z ∼=

Lnis(f
′ ⊗

Psh
UnisZ) is an injective quasi-isomorphism, and this concludes the proof

of the lemma.

2.2.24 Lemma. Ch(Shv(A)) is strongly left proper in the sense of [14, Definition

4.6].

Proof. For any Grothendieck category B, quasi-isomorphisms in Ch(B) are stable

under pushouts along degreewise monomorphisms. So to show that Ch(Shv(A)) is

strongly left proper we just need to show that for any cofibration f and any object

Z ∈ Ch(Shv(A)) the map Z⊗f is a degreewise monomorphism. The set Lnis(Iproj)

is a set of generating cofibrations for Ch(Shv(A)) so we have f ∈ Lnis(Iproj)− cof.

Then

Z ⊗ f ∈ (Z ⊗ Lnis(Iproj))− cof .

All morphisms from Lnis(Iproj) are degreewise split monomorphisms, so all mor-

phisms from Z⊗Lnis(Iproj) are degreewise split monomorphisms, and this implies

that all morphisms from (Z ⊗ Lnis(Iproj)) − cof are degreewise split monomor-

phisms. So Z ⊗ f is a degreewise split monomorphism. Therefore Ch(Shv(A)) is

strongly left proper.



Chapter 3

First Reconstruction Theorem
for DMA

In this chapter in Section 3.1 we state two reconstruction theorems that recover

DMA from certain derived categories of enriched functors. The first reconstruc-

tion theorem is Theorem 3.1.8 and recovers DMA from enriched functors on an

enriched category C whose objects are powers of Gm. The second reconstruction

theorem is Theorem 3.1.14. It requires inverting the exponential characteristic p

of k, and recovers DMA[1/p] from enriched functors on an enriched category Sm
whose objects are the smooth schemes. In this chapter we will also prove the first

reconstruction theorem in Section 3.2. The proof of the second reconstruction

theorem will be proven in Chapter 4.

3.1 Statements of the two reconstruction theo-

rems

From now on we will additionally assume thatA satisfies the cancellation property

in the sense of Definition 2.1.2. We define a Shv(A)-enriched category Sm, by

letting the objects of Sm be smooth schemes over k, and by defining

Sm(X, Y ) := HomShv(A)(A(−, X)nis,A(−, Y )nis).

We have a Shv(A)-enriched inclusion functor I : Sm → Shv(A) defined on

objects by I(X) := A(−, X)nis, and which acts on morphism sets as the identity

39
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Sm(X, Y ) = HomShv(A)(I(X), I(Y )).

Let C be the full enriched subcategory of Sm consisting of the objects G×nm
where n ∈ Z>0.

We write ⊗
Shv

for the tensor product of Shv(A), and ⊗
Day

for the Day convolution

product on [Sm, Shv(A)] or [C, Shv(A)], as defined in [10]:

(F ⊗
Day

G)(c) =

(a,b)∈Sm⊗Sm∫
Sm(a× b, c) ⊗

Shv
F (a) ⊗

Shv
G(b).

The Grothendieck category of enriched functors [Sm, Shv(A)] is tensored and

cotensored over Shv(A) by ⊗
Shv

. Given any enriched functor F : Sm → Shv(A)

and X ∈ Shv(A) we can form an enriched functor F ⊗
Shv

X, given by

F ⊗
Shv

X(U) := F (U) ⊗
Shv

X.

If X is representable by a scheme U , so that X = A(−, U)nis, then we write

F ⊗
Shv

U for F ⊗
Shv

X.

The monoidal structure on Shv(A) induces a monoidal structure on Sm via

the following easy lemma.

3.1.1 Lemma. Let V be a symmetric monoidal closed category. Let C be a full

V-subcategory of V, such that 1V is isomorphic to an object of C, and for every

X, Y ∈ C the monoidal product X⊗Y is isomorphic to an object of C. Then C can

be made into a symmetric monoidal V-category such that the inclusion functor

C → V is strong monoidal.

Proof. Let C be the full V-subcategory of V on all those objects which have the

property of being isomorphic to some object of C. Then 1 ∈ C, and for all

X, Y ∈ C we have X ⊗ Y ∈ C. So the functor ⊗ : V × V → V restricts to a

functor ⊗ : C × C → C. For all X, Y, Z ∈ C we have coherence isomorphisms

`X : 1⊗X ∼→ X

ρX : X ⊗ 1
∼→ X

ϕX,Y : X ⊗ Y ∼→ Y ⊗X
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αX,Y,Z : (X ⊗ Y )⊗ Z ∼→ X ⊗ (Y ⊗ Z)

in V . The domains and codomains of all these coherence isomorphisms lie in

C. Since C is a full subcategory of V , all these coherence isomorphisms lie in

C. Obviously these coherences isomorphisms in C still make exactly the same

diagrams commute as in V . So C is a symmetric monoidal V-category, and the

inclusion C → V is a strict monoidal V-functor.

We have an inclusion V-functor C → C. This functor is essentially surjective,

and it is the identity on morphism objects. This then implies that C → C is an

equivalence in the 2-category V − CAT , and we then get an induced symmetric

monoidal V-category structure on C.

3.1.2 Corollary. Sm and C are symmetric monoidal Shv(A)-categories.

Proof. The unit of Shv(A) is isomorphic to A(−, pt)nis. We claim that for all

X, Y ∈ Sm we have an isomorphism

A(−, X)nis ⊗
Shv
A(−, Y )nis

∼= A(−, X × Y )nis.

This isomorphism is constructed as follows. The sheafification functor (−)nis :

Psh(A)→ Shv(A) is strongly monoidal, so if ⊗
Psh

denotes the presheaf tensor prod-

uct, then we have a natural isomorphism A(−, X)nis ⊗
Shv
A(−, Y )nis

∼= (A(−, X) ⊗
Psh

A(−, Y ))nis. The presheaf tensor product ⊗
Psh

is a Day convolution with respect to

the monoidal structure on A. The monoidal structure on A is given on objects by

the cartesian product on Smk. By general properties of Day convolution we have

an isomorphism of presheaves A(−, X) ⊗
Psh
A(−, Y ) ∼= A(−, X × Y ) and thus an

isomorphism of sheaves A(−, X)nis ⊗
Shv
A(−, Y )nis

∼= A(−, X×Y )nis. The previous

lemma now implies that Sm is a symmetric monoidal Shv(A)-category. Since

A(−, pt)nis = A(−,G×0
m )nis and A(−,G×nm )nis ⊗

Shv
A(−,G×mm )nis

∼= A(−,G×n+m
m )nis

it also follows that C is a symmetric monoidal Shv(A)-category.

Since Shv(A) is a closed symmetric monoidal Grothendieck category, and

Sm is a monoidal Shv(A)-category, we can apply [20, Theorem 5.5] to get a

weakly finitely generated monoidal model structure on Ch([Sm, Shv(A)]), where

the weak equivalences are the pointwise quasi-isomorphisms and the fibrations



42 First Reconstruction Theorem for DMA

are the pointwise fibrations. We will say that F ∈ Ch([Sm, Shv(A)]) is locally

fibrant if it is fibrant in this model category. The homotopy category of this model

category is the derived category D([Sm, Shv(A)]) of the Grothendieck category

[Sm, Shv(A)].

We write ⊗
Day

L for the derived tensor product on D([Sm, Shv(A)]). Since

the model structure on Ch([Sm, Shv(A)]) is monoidal by [20, Theorem 5.5],

we can compute this derived tensor product by using cofibrant replacements in

Ch([Sm, Shv(A)]). Also note that every representable functor Sm(X,−) : Sm→
Shv(A) is cofibrant in Ch([Sm, Shv(A)]), because it is isomorphic to the cofibrant

object Sm(X,−) ⊗
Shv

pt. We similarly have a weakly finitely generated monoidal

model structure on Ch([C, Shv(A)]), whose homotopy category is D([C, Shv(A)]).

We now define two families of morphisms in the enriched functor category

[C, Shv(A)]. The first family of morphisms we call A1
1, and it consists of the

morphisms

C(G×nm ,−) ⊗
Shv

A1 → C(G×nm ,−) ⊗
Shv

pt

induced by the projection map A1 → pt for every n ∈ Z>0.

The second family of morphisms, denoted by τ , consists for every n ∈ N of

the morphism

τn : [G∧n+1
m , I(−)] ⊗

Shv
G∧1
m → [G∧nm , I(−)]

where for every U ∈ Smk the map [G∧n+1
m , I(U)] ⊗

Shv
G∧n+1
m

τn→ I(U) in Shv(A) is

given by the counit of the adjunction −⊗
Shv

G∧n+1
m a [G∧n+1

m ,−]. We also sometimes

write Sm(G∧n+1
m ,−) or C(G∧n+1

m ,−) for [G∧n+1
m , I(−)], even though G∧n+1

m is not

in Sm or C strictly speaking.

The domains and codomains of all these morphisms are compact in the derived

category D([C, Shv(A)]) according to [20, Theorem 6.2].

Let ∼C be the union of both of these classes of morphisms

∼C= A1
1 + τ

considered as a class of morphisms in [C, Shv(A)].

3.1.3 Definition. Let B be any small Shv(A)-enriched category.
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We can consider Ch([B, Shv(A)]) to be a Ch(Shv(A))-enriched category, and

denote the morphism objects by mapCh(Shv(A))(A,B) ∈ Ch(Shv(A)). These mor-

phism objects are defined on Z ∈ Smk by

mapCh(Shv(A))(A,B)(Z) := mapCh(Ab)(A ⊗
Shv

Z,B) ∈ Ch(Ab)

where mapCh(Ab) refers to morphism objects of the Ch(Ab)-enriched category

Ch([B, Shv(A)]). Given an object F ∈ Ch([B, Shv(A)]) and a class of morphisms

S in Ch([B, Shv(A)]), we say that F is enriched S-local if for every f : A→ B in

S we have a quasi-isomorphism of complexes of sheaves

mapCh(Shv(A))(B,F )→ mapCh(Shv(A))(A,F )

in Ch(Shv(A)). Furthermore say that F ∈ Ch([B, Shv(A)]) is strictly S-local if its

pointwise locally fibrant replacement F f in Ch([B, Shv(A)]) is enriched S-local.

3.1.4 Lemma. Let B be a small monoidal Shv(A)-enriched category, and S a

set of morphisms in Ch([B, Shv(A)]). Define a new set of morphisms

Ŝ := {(f ⊗
Shv

Z)[n] | n ∈ Z, Z ∈ Smk, f ∈ S}

in D([B, Shv(A)]).

Let F ∈ Ch([B, Shv(A)]) be locally fibrant, and assume that all domains and

codomains from S are cofibrant.in the local model structure. Then F is strictly S-

local in the sense of Definition 3.1.3 if and only if F is Ŝ-local in D([B, Shv(A)])

in the usual sense, i.e. if and only if for all g : C → D, g ∈ Ŝ we have an

isomorphism of abelian groups

g∗ : HomD([B,Shv(A)])(D,F )→ HomD([B,Shv(A)])(C,F ).

Proof. Suppose F is strictly S-local. Then for every f : A → B, f ∈ S we have

a quasi-isomorphism of complexes of sheaves

f ∗ : mapCh(Shv(A))(B,F )→ mapCh(Shv(A))(A,F )

in Ch(Shv(A)).
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We claim that mapCh(Shv(A))(B,F ) is locally fibrant. In fact if we have a local

trivial cofibration h : X → Y , then a diagram

X

h
��

// mapCh(Shv(A))(B,F )

��
Y //

77

0

has a lift, by adjunction if and only if

B ⊗
Shv

X

B ⊗
Shv

h

��

// F

��
B ⊗

Shv
Y //

==

0

has a lift. But since B is cofibrant, then B ⊗
Shv

h is still a trivial cofibration. Since

F is locally fibrant the map F → 0 is a local fibration, so the lift exists. Therefore

mapCh(Shv(A))(B,F ) and similarly mapCh(Shv(A))(A,F ) are locally fibrant. We see

that the quasi-isomorphism

f ∗ : mapCh(Shv(A))(B,F )→ mapCh(Shv(A))(A,F )

is sectionwise a quasi-isomorphism.

This means that for every n ∈ Z we have an isomorphism of homology

presheaves

Hn(mapCh(Shv(A))(B,F ))→ Hn(mapCh(Shv(A))(A,F )).

Therefore for every Z ∈ Smk one has

Hn(mapCh(Shv(A))(B,F ))(Z) ∼= HomD([B,Shv(A)])((B ⊗
Shv

Z)[−n], F ).

It follows that F is Ŝ-local in D([B, Shv(A)]).

Conversely, assume that F is Ŝ-local in D([B, Shv(A)]). Then for every f :

A→ B in S the map

f ∗ : mapCh(Shv(A))(B,F )→ mapCh(Shv(A))(A,F )
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is a sectionwise quasi-isomorphism, because for every n ∈ Z and Z ∈ Smk the

map

Hn(f)(Z) : Hn(mapCh(Shv(A))(B,F ))(Z)→ Hn(mapCh(Shv(A))(A,F ))(Z)

is isomorphic to the map

(f ⊗
Shv

Z)[−n]∗ : HomD([B,Shv(A)])((B ⊗
Shv

Z)[−n], F )→ HomD([B,Shv(A)])((A ⊗
Shv

Z)[−n], F )

and since (f ⊗
Shv

Z)[−n] ∈ Ŝ and F is Ŝ-local this map is an isomorphism. So F

is strictly S-local if and only if F is Ŝ-local in D([B, Shv(A)]).

We can localize the compactly generated triangulated category D([C, Shv(A)])

with respect to the family of morphisms between compact objects ∼̂C.

3.1.5 Definition. We write D([C, Shv(A)])/ ∼C for the localized compactly gen-

erated triangulated category. Furthermore we write DMA[C] for the full triangu-

lated subcategory of D([C, Shv(A)]) consisting of the strictly ∼C-local objects.

It follows from Lemma 3.1.4 that the category D([C, Shv(A)])/ ∼C is equiva-

lent to DMA[C].

3.1.6 Definition. An enriched functor F : C → Ch(Shv(A)) or F : Sm →
Ch(Shv(A)) is said to satisfy cancellation, if for every n > 0 the canonical map

F (G∧nm )→ [G∧1
m , F (G∧n+1

m )] is a local quasi-isomorphism.

Note that an enriched functor F satisfies cancellation if and only if it is en-

riched τ -local.

3.1.7 Definition. Let F ∈ Ch([C, Shv(A)]). We say that F is ∼C-fibrant if it is

pointwise locally fibrant in Ch([C, Shv(A)]) and strictly ∼C-local.

Note that F is strictly ∼C-local if and only if it is strictly A1
1-local and satisfies

cancellation.

Our first theorem is that there is a canonical equivalence of compactly gener-

ated triangulated categories

D([C, Shv(A)])/ ∼C
∼→ DMA.
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The equivalence is constructed as follows. For an enriched functor F : C →
Ch(Shv(A)) and k ∈ N define

F (G∧km ) := F (G×km )/
k+1∑
i=0

Im(F (ιi,k)).

There is an isomorphism of categories Ch([C, Shv(A)]) ∼= [C,Ch(Shv(A))] by [20,

Theorem 5.4]. For this reason we will often implicitly pass back and forth between

those categories without mentioning it.

Let SpGm
(Shv(A)) be the category of G∧1

m -spectra in Shv(A). Define

evGm : Ch([C, Shv(A)])→ SpGm
(Ch(Shv(A)))

by taking F ∈ Ch([C, Shv(A)]) (regarding it as an enriched functor F : C →
Ch(Shv(A))) to the G∧1

m -spectrum (F (G∧nm ))n∈N. We construct the structure maps

F (G∧km ) ⊗
Shv

G∧1
m → F (G∧k+1

m )

by applying the tensor-hom adjunction to

G∧1
m → [G∧nm ,G∧n+1

m ]→ [F (G∧nm ), F (G∧n+1
m )].

This functor sends quasi-isomorphisms in Ch([C, Shv(A)]) to stable motivic equiv-

alences in SpGm
(Ch(Shv(A))), so it induces a functor evGm : D([C, Shv(A)]) →

DMA. This functor can then be restricted to the full triangulated subcategory

DMA[C] ⊆ D([C, Shv(A)]). We are now in a position to formulate the following

theorem.

3.1.8 Theorem. The functor

evGm : DMA[C]→ DMA

is an equivalence of compactly generated triangulated categories. In particular

there is an equivalence

D([C, Shv(A)])/ ∼C
∼→ DMA.
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The proof of this theorem is given in Section 3.2. To state our next result we

now define some additional classes of morphisms in D([Sm, Shv(A)]). Firstly, in

Ch([Sm, Shv(A)]) let A1
1 denote the class of morphisms

Sm(U,−) ⊗
Shv

A1 → Sm(U,−)

for U ∈ Sm, and let τ denote the class of morphisms

τn : [G∧n+1
m , I(−)] ⊗

Shv
G∧1
m → [G∧nm ,−]

just like in Ch([C, Shv(A)]). By A1
2 we mean the family consisting for every

Y ∈ Smk of the morphism

Sm(Y,−)→ Sm(Y × A1,−).

The family of morphisms Nis is defined as follows. For every elementary Nis-

nevich square

U ′
β
//

α
��

X ′

γ
��

U
δ // X

in Smk, we have a square in Ch([Sm, Shv(A)])

Sm(U ′,−) Sm(X ′,−)
β∗
oo

Sm(U,−)

α∗

OO

Sm(X,−)δ∗oo

γ∗

OO

It induces a map of chain complexes p : hocofib(γ∗)→ hocofib(α∗), where hocofib

refers to the naive mapping cone chain complex. The family Nis consists of all

the morphisms p for every elementary Nisnevich square. Denote by ∼ the union

of all the four morphism sets defined above. Namely,

∼:= A1
1 + τ + A1

2 +Nis.

3.1.9 Definition. A functor F ∈ Ch([Sm, Shv(A)]) is said to satisfy Nisnevich

excision if it sends elementary Nisnevich squares in Smk to homotopy cartesian

squares in Ch(Shv(A)).

Note that we consider here covariant Nisnevich excision in the Sm-variable,

rather than contravariant Nisnevich excision in the A-variable.
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3.1.10 Lemma. Let F ∈ Ch([Sm, Shv(A)]) be a functor. Then F satisfies Nis-

nevich excision if and only if F is enriched Nis-local.

Proof. By the Ch(Shv(A))-enriched Yoneda lemma there is a natural isomorphism

in Ch(Shv(A))

F (X) ∼= mapCh(Shv(A))(Sm(X,−), F ).

So

F (U ′)
F (β)

//

F (α)
��

F (X ′)

F (γ)
��

F (U)
F (δ) // F (X)

is homotopy cartesian if and only if

mapCh(Shv(A))(Sm(U ′,−), F )
β∗∗
//

α∗∗

��

mapCh(Shv(A))(Sm(X ′,−), F )

γ∗∗

��
mapCh(Shv(A))(Sm(U,−), F ) δ∗∗ // mapCh(Shv(A))(Sm(X,−), F )

is homotopy cartesian. This is the case if and only if hocofib(α∗∗)→ hocofib(γ∗)

is a local quasi-isomorphism. The latter holds if and only if the induced mor-

phism p∗ : mapCh(Shv(A))(hocofib(α∗), F ) → mapCh(Shv(A))(hocofib(γ∗), F ) is a lo-

cal quasi-isomorphism, which means that F is enriched Nis-local.

3.1.11 Definition. Let F ∈ Ch([Sm, Shv(A)]). We say that F is ∼-fibrant if it

is pointwise locally fibrant in Ch([Sm, Shv(A)]) and strictly ∼-local.

3.1.12 Definition. Let DMA[Sm] be the full subcategory of D([Sm, Shv(A)])

of those complexes which satisfy the following properties:

1. For every U ∈ Sm, the complex of sheaves F (U) has A1-invariant cohomol-

ogy sheaves.

2. F satisfies cancellation.

3. F is covariantly A1-invariant, in the sense that F (U × A1) → F (U) is a

local quasi-isomorphism.

4. F satisfies Nisnevich excision.
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These properties are similar to the axioms (2)-(5) for special motivic Γ-spaces

defined in [25] and axioms for framed spectral functors in the sense of [24, Sec-

tion 6].

3.1.13 Proposition. The category DMA[Sm] is equal to the full subcategory of

D([Sm, Shv(A)]) of those complexes F which are strictly ∼-local. In particu-

lar, the inclusion from DMA[Sm] to D([Sm, Shv(A)]) induces an equivalence of

triangulated categories

DMA[Sm]
∼→ D([Sm, Shv(A)])/ ∼ .

Proof. The proposition follows from the following four claims:

1. A functor F is strictly A1
1-local if and only if for every U ∈ Smk, the complex

F (U) has A1-invariant cohomology sheaves.

2. A strictly A1
1-local functor F satisfies cancellation if and only if it is strictly

τ -local.

3. A functor F is covariantly A1-invariant if and only if it is strictly A1
2-local.

4. A functor F satisfies Nisnevich excision if and only if it is strictly Nis-local.

Here are the proofs for those claims.

1. F is strictly A1
1-invariant if and only if for every U ∈ Smk the canonical

map

F f (U)→ F f (U)(A1 ×−)

is a local quasi-isomorphism in Ch(Shv(A)). Since F f (U) and F f (U)(A1 ×
−) are locally fibrant in Ch(Shv(A)), it follows that the above map is a local

quasi-isomorphism if and only if it is a sectionwise quasi-isomorphism in

Ch(Psh(A)). This is the case if and only if F f has A1-invariant cohomology

presheaves in the sense that for each n ∈ Z the map

Hn(F f (U))→ Hn(F f (U)(A1 ×−)) = Hn(F f (U))(A1 ×−)

is an isomorphism in Psh(A). This means that F f (U) is motivically fibrant,

which is the case if and only if F (U) is A1-local. By [38, Theorem 6.2.7]

this is the case if and only if F (U) has A1-invariant cohomology sheaves.
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2. The Yoneda lemma implies that a functor F satisfies cancellation if and

only if it is enriched τ -local. We now claim that a strictly A1
1-local functor

F is enriched τ -local if and only if it is strictly τ -local. Let F be a strictly

A1
1-local functor, and let F f be its pointwise local fibrant replacement. For

every U ∈ Smk and n ∈ Z, consider the following diagram in Shv(A)

Hnis
n (HomCh(Shv(A))(G∧1

m , F (U))) //

��

HomShv(A)(G∧1
m , H

nis
n (F (U)))

��
Hnis
n (HomCh(Shv(A))(G∧1

m , F
f (U))) // HomShv(A)(G∧1

m , H
nis
n (F f (U)))

Since F (U) and F f (U) have A1-invariant cohomology sheaves, it follows

from [37, Lemma 4.3.11] that the two horizontal maps in the diagram are

isomorphisms. Since the canonical map F (U) → F f (U) is a local quasi-

isomorphism, the map Hnis
n (F (U)) → Hnis

n (F f (U)) is an isomorphism in

Shv(A), so the right vertical map in the above diagram is also an isomor-

phism. This implies the left vertical map in the diagram

Hnis
n (HomCh(Shv(A))(G∧1

m , F (U)))→ Hnis
n (HomCh(Shv(A))(G∧1

m , F
f (U)))

is an isomorphism in Shv(A). Hence

HomCh(Shv(A))(G∧1
m , F (U))→ HomCh(Shv(A))(G∧1

m , F
f (U))

is a local quasi-isomorphism in Ch(Shv(A)).

Now consider the diagram in Ch(Shv(A)).

F (G∧nm ) //

��

HomCh(Shv(A))(G∧1
m , F (G∧n+1

m )))

��
F f (G∧nm ) // HomCh(Shv(A))(G∧1

m , F
f (G∧n+1

m )))

The two vertical maps are local quasi-isomorphisms.

F is enriched τ -local if and only if the upper horizontal map is a local quasi-

isomorphism. This is the case if and only if the lower horizontal map is a

quasi-isomorphism, and that is true if and only if F is strictly τ -local.
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3. From the Yoneda lemma it follows that a functor F is covariantly A1-

invariant if and only if it is enriched A1
2-local. And every functor F is

enriched A1
2-local if and only if it is strictly A1

2-local, because the rela-

tion A1
2 only affects the covariant Sm-variable and is thus not affected by

pointwise local fibrant replacement. More precisely, consider the following

diagram, in which the vertical maps are local quasi-isomorphisms:

F (X × A1)

∼
��

// F (X)

∼
��

F f (X × A1) // F f (X)

.

F is enriched A1
2-local if and only if the upper morphism is a local quasi-

isomorphism, which is the case if and only if the lower morphism is a quasi-

isomorphism, which is the case if and only if F f is enriched A1
2-local, which

means that F is strictly A1
2-local.

4. By Lemma 3.1.10 a functor F satisfies Nisnevich excision if and only if it is

enriched Nis-local. Just like for A1
2, since the relation Nis only affects the

covariant argument, it is not affected by pointwise local fibrant replacement,

so that a functor F is enriched Nis-local if and only if it is strictly Nis-local.

This completes the proof.

Next, the evaluation functor

evGm : D([Sm, Shv(A)])/ ∼→ DMA

is defined as follows. We send F ∈ D([Sm, Shv(A)])/ ∼ to evGm(F ′), where

evGm : D([Sm, Shv(A)]) → DMA is the evaluation functor defined just like the

one in Theorem 3.1.8, and F ′ is a∼-fibrant replacement of F in Ch([Sm, Shv(A)]).

When evGm is restricted to the subcategory DMA[Sm], it is the naive Gm-

evaluation functor

evGm : DMA[Sm]→ DMA

that sends F to the Gm-spectrum (F (G∧km ))k>0.

For any pre-additive category B we denote by B[1/p] the pre-additive category

where all hom-sets get tensored with Z[1/p]. Explicitly, for x, y ∈ B we define

B[1/p](x, y) := B(x, y)⊗ Z[1/p].
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Another main result of this thesis is as follows.

3.1.14 Theorem. Let p be the exponential characteristic of k. After inverting p

the functor evGm is an equivalence of compactly generated triangulated categories

evGm : (D([Sm, Shv(A)])/ ∼)[1/p]
∼→ DMA[1/p].

In particular the naive Gm-evaluation functor

evGm : DMA[Sm][1/p]→ DMA[1/p]

is an equivalence of compactly generated triangulated categories.

The proof of this theorem is given at the end of Section 4.3.

3.2 Proof of Theorem 3.1.8

In this section we prove Theorem 3.1.8.

We will sometimes write C(G∧km ,−) for [G∧km , I(−)] = HomCh(Shv(A))(G∧km , I(−)).

3.2.1 Lemma. In Shv(A) we have an isomorphism

I(G×km ) ∼=
k⊕
i=0

(
k

i

)
G∧im

where
(
k
i

)
is the binomial coefficient, and

(
k
i

)
G∧im :=

(k
i)⊕

j=1

G∧im .

In particular we have an isomorphism in Ch([C, Shv(A)])

C(G×km ,−) ∼=
k⊕
i=0

(
k

i

)
C(G∧km ,−).

Proof. First note that G∧km ⊗ G∧1
m
∼= G∧k+1

m , so G∧km ∼= (G∧1
m )⊗k. Also since

the map pt
ι1,1→ G×1

m splits, the splitting lemma for abelian categories implies

I(G×1
m ) ∼= G∧1

m ⊕ I(pt). The binomial theorem, applied to the semi-ring of iso-

morphism classes of the symmetric monoidal closed category Shv(A), then yields

an isomorphism

I(G×km ) ∼= (G∧1
m ⊕ pt)⊗k ∼=

k⊕
i=0

(
k

i

)
(G∧1

m )⊗i ⊗ pt⊗k−i ∼=
k⊕
i=0

(
k

i

)
G∧im

as required.
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3.2.2 Definition. 1. We define the Suslin complex functor

C∗ : Ch(Shv(A))→ Ch(Shv(A))

by sending F• ∈ Ch(Shv(A)) and U ∈ Smk to

C∗(F•)(U) := Tot(F•(∆
•
k × U)) ∈ Ch(Ab).

Here Tot is the total complex functor and ∆n
k = Spec(k[t0, . . . , tn]/(t0 +

· · ·+ tn − 1)) is the algebraic simplex.

2. For X ∈ Smk we define the A-motive of X to be

MA(X) := C∗(I(X)) = C∗(A(−, X)nis)

in Ch(Shv(A)).

3. The enriched functor MA(X) : C → Ch(Shv(A)) defined by

MA(X)(U) := MA(X × U)

will be called the enriched A-motive of X.

4. For X ∈ Smk we define its G∧1
m -suspension spectrum Σ∞Gm

X+ ∈ DMA, by

defining it in weight n as

(Σ∞Gm
X+)(n) := G∧nm ⊗

Shv
I(X)

and equipping it with the obvious structure maps.

If F : C → Ch(Shv(A)) is an enriched functor, then we define C∗F : C →
Ch(Shv(A)) by (C∗F )(U) := C∗(F (U)). The endofunctor C∗ : Ch([C, Shv(A)])→
Ch([C, Shv(A)]) preserves pointwise local quasi-isomorphisms, because A satisfies

the strict V -property. Thus C∗ induces an endofunctor on the derived category

C∗ : D([C, Shv(A)])→ D([C, Shv(A)]).

For X ∈ Smk we have the zero inclusion map X → A1
X . Let A1

X/X ∈ Ch(Psh(A))

denote the cokernel of the induced morphism

A(−, X)→ A(−,A1
X).
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Then A1
X/X is cofibrant in Ch(Psh(A)) because it is a direct summand of the

cofibrant object A(−,A1
X). We write (A1

X/X)nis ∈ Ch(Shv(A)) for the sheafifi-

cation of A1
X/X. Let TA1

1
= 〈C(U,−) ⊗

Shv
(A1

X/X)nis | U ∈ C, X ∈ Smk〉 be the

full triangulated subcategory of D([C, Shv(A)]) that is compactly generated by

C(U,−) ⊗
Shv

(A1
X/X)nis.

3.2.3 Lemma. In D([C, Shv(A)]) we have that ker(C∗) = TA1
1
.

Proof. Consider a generator C(U,−) ⊗
Shv

(A1
X/X)nis of TA1

1
. We claim that it is in

ker(C∗). For this we need to show for every V ∈ C that C∗(C(U, V ) ⊗
Shv

(A1
X/X)nis)

is locally quasi-isomorphic to 0. Take a free resolution of C(U, V ) in Ch(Psh(A)):

· · · → F1 → F0 → C(U, V )→ 0

The presheaf A1
X/X is projective because it is a direct summand of A(−,A1

X),

and hence it is also flat by Lemma 2.2.6. Thus the following sequence is exact

· · · → F1 ⊗
Psh

A1
X/X → F0 ⊗

Psh
A1
X/X → C(U, V ) ⊗

Psh
A1
X/X → 0.

It then also follows that the sequence is exact in Ch(Psh(A)) after applying C∗

· · · → C∗(F1 ⊗
Psh

A1
X/X)→ C∗(F0 ⊗

Psh
A1
X/X)→ C∗(C(U, V ) ⊗

Psh
A1
X/X)→ 0.

Since each individual entry of this sequence is a chain complex, we can regard

it as a double complex. Let D•,• be the double complex

Dp,q :=


C∗(Fp−1 ⊗

Psh
A1
X/X)q p > 0

C∗(C(U, V ) ⊗
Psh

A1
X/X)q p = 0

0 p < 0

Then all horizontal homology groups of D•,• are zero. The double complex spec-

tral sequence

E2
p,q = Hvert,p(Hhor,q(D•,•)) =⇒ Hp+q(Tot(D•,•))

implies that Hn(Tot(D•,•)) = 0.
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One can now check that C∗(A1
X/X) is locally quasi-isomorphic to 0 similarly

to [50, Proposition 1.11(1)]. It follows that every C∗(Fq ⊗
Psh

A1
X/X) is locally quasi-

isomorphic to 0, because the Fq are free and for all Y ∈ C we have A(−, Y ) ⊗
Psh

A1
X/X

∼= A1
Y×X/Y ×X.

By mirroring the double complex D•,•, the double complex spectral sequence

for sheaves and the fact that Hn(Tot(D•,•)) = 0 imply that C∗(C(U, V ) ⊗
Psh

A1
X/X)

is locally quasi-isomorphic to 0. We argue here similarly to the proof of Lemma

2.2.21. Then C∗((C(U, V ) ⊗
Psh

A1
X/X)nis) ∼= C∗(C(U, V ) ⊗

Shv
(A1

X/X)nis) is locally

quasi-isomorphic to 0. So C(U,−) ⊗
Shv

(A1
X/X)nis is in ker(C∗), as claimed.

Since ker(C∗) is a full triangulated subcategory and TA1
1

is compactly generated

by the C(U,−) ⊗
Shv

(A1
X/X)nis it follows that TA1

1
⊆ ker(C∗).

Now show the other inclusion. Let X ∈ ker(C∗). Using [33, Section 5.6] and

[33, Proposition 4.9.1] we can construct a triangle in D([C, Shv(A)])

Y → X → LX

with Y ∈ TA1
1

and LX orthogonal to TA1
1
. Apply C∗ to the triangle to get

C∗Y → C∗X → C∗LX.

Since X, Y ∈ ker(C∗), we see that C∗X = C∗Y = 0, hence C∗LX = 0.

Since LX is orthogonal to TA1
1
, we can deduce that LX is strictly A1

1-local,

so that for all U ∈ C we have a quasi-isomorphism LX(U)(A1 × −) → LX(U)

in Ch(Shv(A)). From this property it follows that the canonical map LX(U) →
C∗LX(U) is a quasi-isomorphism in Ch(Shv(A)). Since C∗LX = 0 this implies

LX = 0 in D([C, Shv(A)]). But if LX = 0, then the map Y → X is an isomor-

phism in D([C, Shv(A)]) and then X ∈ TA1
1
. So TA1

1
= ker(C∗).

Let D([C, Shv(A)])/TA1
1

denote the quotient of D([C, Shv(A)]) by the triangu-

lated subcategory TA1
1
. By Lemma 3.1.4 D([C, Shv(A)])/TA1

1
is equivalent to the

full subcategory of D([C, Shv(A)]) consisting of strictly A1
1-local objects.

3.2.4 Lemma. Let L : D([C, Shv(A)]) → D([C, Shv(A)]) be the TA1
1
-localization

endofunctor, which is the composite of the quotient functor D([C, Shv(A)]) →
D([C, Shv(A)])/TA1

1
and the inclusion of TA1

1
-local objects D([C, Shv(A)])/TA1

1
→
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D([C, Shv(A)]). Then the functor L is naturally isomorphic to the endofunctor

C∗ : D([C, Shv(A)])→ D([C, Shv(A)]).

Proof. For every X ∈ D([C, Shv(A)]) we have an exact triangle in D([C, Shv(A)])

Y → X → LX

with Y ∈ ker(L) = TA1
1
. We can apply C∗ to this triangle to get another triangle

in D([C, Shv(A)])

C∗Y → C∗X → C∗LX.

Since Y ∈ TA1
1

and by Lemma 3.2.3 TA1
1

= ker(C∗) we know that C∗Y = 0 in

D([C, Shv(A)]). So we get an isomorphism

C∗X ∼= C∗LX

in D([C, Shv(A)]). Since the map X → LX is functorial in X ∈ D([C, Shv(A)]),

it follows that also the map C∗X → C∗LX is functorial in X. Therefore the

isomorphism C∗X ∼= C∗LX is functorial in X. Since LX is strictly A1
1-invariant

we have a natural quasi-isomorphism LX ∼= LX(A1 × −) in Ch(Shv(A)). This

then implies that for every n ∈ N we also have a natural quasi-isomorphism

LX ∼= LX(∆n
k×−). It now follows from the definition of C∗ that we have a natural

isomorphism LX ∼= C∗LX in D([C, Shv(A)]). And then we have isomorphisms

C∗X ∼= C∗LX ∼= LX

natural in X, which proves the lemma.

3.2.5 Definition. We say that a morphism f : X → Y in Ch(Shv(A)) is a

motivic equivalence if and only if f is an isomorphism in DM eff
A . Note that

f in Ch(Shv(A)) is a motivic equivalence if and only if C∗(f) is a local quasi-

isomorphism in Ch(Shv(A)).

Similarly, we say that a morphism f : X → Y in Ch([C, Shv(A)]) is a motivic

equivalence if it is an isomorphism in D([C, Shv(A)])/TA1
1
.

From the previous lemma we can deduce:

3.2.6 Corollary. A morphism f : X → Y in Ch([C, Shv(A)]) is a motivic equiva-

lence if and only if C∗(f) is a pointwise local quasi-isomorphism in Ch([C, Shv(A)]).
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3.2.7 Lemma. For every X ∈ Smk the canonical map I(X × −) → MA(X)

is a motivic equivalence in Ch([C, Shv(A)]). This means it is an isomorphism in

D([C, Shv(A)])/TA1
1
. In particular it is also an isomorphism in D([C, Shv(A)])/ ∼C

.

Proof. By Corollary 3.2.6 we just need to show for every U ∈ Smk that C∗(I(X×
U)) → C∗(MA(X × U)) is a local quasi-isomorphism in Ch(Shv(A)). From the

definition of MA we know that MA(X×U) = C∗(I(X×U)). So the above map is

equal to the canonical map C∗(I(X × U))→ C∗C∗(I(X × U)) and this is clearly

an isomorphism.

3.2.8 Lemma. The enriched motive functor MA(X) is strictly A1
1-local and

strictly τ -local. So MA(X) is an object of DMA[C].

Proof. The strict A1
1-locality follows from the A1-invariance of C∗(A(−, X)nis).

The cancellation property of A (see Definition 2.1.2) implies that MA(X × −)

satisfies cancellation. Similarly to item (2) of the proof of Proposition 3.1.13, this

implies MA(X ×−) is strictly τ -local.

The previous two lemmas together imply that MA(X) is a strictly ∼C-local

replacement of I(X ×−) in Ch([C, Shv(A)]).

3.2.9 Lemma. If f : X → Y is a local quasi-isomorphism in Ch(Shv(A)), and

X, Y ∈ Ch(Shv(A)) have A1-invariant cohomology sheaves, then the map

f∗ : HomCh(Shv(A))(G∧km , X)→ HomCh(Shv(A))(G∧km , Y )

is also a local quasi-isomorphism in Ch(Shv(A)). In particular, the functor

HomCh(Shv(A))(G∧km ,−) : Ch([C, Shv(A)])→ Ch([C, Shv(A)])

preserves pointwise local quasi-isomorphisms between strictly A1
1-local objects.

Proof. It follows from [37, Lemma 4.3.11] that for every X with A1-invariant

cohomology sheaves and for every n ∈ Z, we have a natural isomorphism

Hnis
n (HomCh(Shv(A))(G∧km , X)) ∼= HomShv(A)(G∧km , Hnis

n (X))
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in Shv(A). So if f : X → Y is a local quasi-isomorphism between objects with

A1-invariant cohomology sheaves, then we have for every n ∈ Z a commutative

diagram

Hnis
n (HomCh(Shv(A))(G∧km , X))

Hnis
n (f∗) //

∼
��

Hnis
n (HomCh(Shv(A))(G∧km , Y ))

∼
��

HomShv(A)(G∧km , Hnis
n (X))

Hnis
n (f)∗ // HomShv(A)(G∧km , Hnis

n (Y ))

in Shv(A). Since f is a local quasi-isomorphism, the lower horizontal map is an

isomorphism. Therefore the upper horizontal map is an isomorphism. Then f∗ :

HomCh(Shv(A))(G∧km , X)→ HomCh(Shv(A))(G∧km , Y ) is also a local quasi-isomorphism

in Ch(Shv(A)).

3.2.10 Lemma. The functors

HomCh(Shv(A))(G∧km ,−) : Ch(Shv(A))→ Ch(Shv(A))

and

HomCh(Shv(A))(G×km ,−) : Ch(Shv(A))→ Ch(Shv(A))

preserve motivic equivalences.

Proof. Let f : A → B be a motivic equivalence in Ch(Shv(A)). Consider the

diagram

C∗HomCh(Shv(A))(G∧km , A)
C∗(f∗)//

∼
��

C∗HomCh(Shv(A))(G∧km , B)

∼
��

HomCh(Shv(A))(G∧km , C∗A)
(C∗f)∗// HomCh(Shv(A))(G∧km , C∗B)

.

The vertical maps are isomorphisms. Since f is a motivic equivalence we know

that C∗(f) is a local equivalence. Since C∗A and C∗B have A1-invariant cohomol-

ogy sheaves it follows by Lemma 3.2.9 that the bottom horizontal map (C∗f)∗ is

a local equivalence. This implies that the upper horizontal map C∗(f∗) is a local

equivalence, and hence f∗ : HomCh(Shv(A))(G∧km , A) → HomCh(Shv(A))(G∧km , B) is a

motivic equivalence. The second claim for G×km can be deduced from the claim

for G∧km by using Lemma 3.2.1.
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Let D([C, Shv(A)])/τ denote the localization of D([C, Shv(A)]) at the family

of morphisms τ̂ . By Lemma 3.1.4 it is equivalent to the full subcategory of

D([C, Shv(A)]) of those functors which are strictly τ -local.

We will now prove some lemmas about D([C, Shv(A)])/τ , which show that

C(G∧km ,−) is a strongly dualizable object.

The model category Ch([C, Shv(A)]) can be Bousfield localized along the fam-

ily of morphisms τ̂ , where just like Lemma 3.1.4, the family τ̂ is defined as

τ̂ := {(f ⊗ Z)[n]|f ∈ τ, Z ∈ Smk, n ∈ Z}.

The homotopy category of this Bousfield localization is the derived category

D([C, Shv(A)])/τ .

3.2.11 Lemma. The left Bousfield localization of Ch([C, Shv(A)]) along τ̂ is a

monoidal model category. In particular, the category D([C, Shv(A)])/τ is closed

symmetric monoidal and its tensor product ⊗
Day

L coincides with the tensor product

in D([C, Shv(A)]).

Proof. We apply [56, Theorem B]. Cofibrant objects in Ch([C, Shv(A)]) are flat,

so the theorem is applicable. The domains and codomains of the generating

cofibrations of Ch([C, Shv(A)]) are of the form C(G×km ,−)⊗
Shv
X for k ∈ N, X ∈ Smk.

For n ∈ N, let τn be the morphism

C(G∧n+1
m ,−) ⊗

Shv
G∧1
m

τn→ C(G∧nm ,−).

We need to show that for every n,m, k ∈ N, X, Z ∈ Smk that

(τn ⊗
Shv

Z)[m] ⊗
Day

L (C(G×km ,−) ⊗
Shv

X)

is a τ̂ -local equivalence in D([C, Shv(A)]).

Since all involved objects are cofibrant we have

(τn ⊗
Shv

Z)[m] ⊗
Day

L (C(G×km ,−) ⊗
Shv

X) ∼= (τn ⊗
Shv

Z)[m] ⊗
Day

(C(G×km ,−) ⊗
Shv

X).

Also we have

(τn ⊗
Shv

Z)[m] ⊗
Day

(C(G×km ,−) ⊗
Shv

X) ∼= (τn ⊗
Day

(C(G×km ,−) ⊗
Shv

(X × Z)))[m]



60 First Reconstruction Theorem for DMA

so it suffices to show for every n, k ∈ N, X ∈ Smk that every shift of τn ⊗
Day

(C(G×km ,−) ⊗
Shv

X) is a τ̂ -local equivalence. This morphism is then equal to the

composite

(C(G∧n+1
m ,−) ⊗

Shv
G∧1
m ) ⊗

Day
(C(G×km ,−) ⊗

Shv
X) ∼= C(G∧n+1

m ×G×km ,−) ⊗
Shv

G∧1
m ⊗

Shv
X →

→ C(G∧nm ×G×km ,−) ⊗
Shv

X.

To show that it is a τ̂ -local equivalence, let F ∈ Ch([C, Shv(A)]) be a τ -fibrant

object, i.e. a functor that is locally fibrant and satisfies cancellation in the sense

that F (G∧nm ) → F (G∧n+1
m )(G∧1

m × −) is a local quasi-isomorphism. Since both

sides are locally fibrant, it is also a sectionwise quasi-isomorphism.

We now just need to show for all m ∈ Z that

HomD([C,Shv(A)])(C(G∧nm ×G×km ,−) ⊗
Shv

X,F [m])→

→ HomD([C,Shv(A)])(C(G∧n+1
m ×G×km ,−) ⊗

Shv
G∧1
m ⊗

Shv
X,F [m])

is an isomorphism in Ab.

Since F [m] is locally fibrant and C(G∧nm × G×km ,−) ⊗
Shv

X and C(G∧n+1
m ×

G×km ,−) ⊗
Shv

G∧1
m ⊗

Shv
X are cofibrant, this is isomorphic to the arrow

HomK([C,Shv(A)])(C(G∧nm ×G×km ,−) ⊗
Shv

X,F [m])→

→ HomK([C,Shv(A)])(C(G∧n+1
m ×G×km ,−) ⊗

Shv
G∧1
m ⊗

Shv
X,F [m]).

And this is isomorphic to the following arrow between homology groups

Hm(F (G∧nm ×G×km )(X))→ Hm(F (G∧n+1
m ×G×km )(X ×G∧1

m )).

So we just need to show that the following arrow is a quasi-isomorphism.

F (G∧nm ×G×km )(X)→ F (G∧n+1
m ×G×km )(X ×G∧1

m )

Lemma 3.2.1 implies F (G∧nm ×G×km ) ∼=
k⊕
i=0

(
k
i

)
F (G∧n+i

m ). We have to show that the

map
k⊕
i=0

(
k
i

)
F (G∧n+i

m )(X) →
k⊕
i=0

(
k
i

)
F (G∧n+1+i

m )(X × G∧1
m ) is a quasi-isomorphism.
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This follows from the fact that F (G∧nm ) → F (G∧n+1
m )(G∧1

m × −) is a sectionwise

quasi-isomorphism for any n ∈ Z.

3.2.12 Lemma. The enriched functor C(G∧1
m ,−) : C → Shv(A) is ⊗

Day

L-invertible

in D([C, Shv(A)])/τ and its inverse is I ⊗
Shv

G∧1
m .

Proof. The enriched functor C(G×1
m ,−) is cofibrant in Ch([C, Shv(A)]), because

it is representable. The enriched functor C(G∧1
m ,−) is a direct summand of

C(G×1
m ,−), so C(G∧1

m ,−) is also cofibrant. For every cofibrant F ∈ Ch([C, Shv(A)])

we therefore have C(G∧1
m ,−) ⊗

Day

L F ∼= C(G∧1
m ,−) ⊗

Day
F. Now let F := I ⊗

Shv
G∧1
m ,

i.e. F is the enriched functor defined by F (X) := I(X) ⊗
Shv

G∧1
m . This functor F

is cofibrant, because it is a direct summand of C(pt,−) ⊗
Shv

G×1
m .

We now show that there is an isomorphism

C(G∧1
m ,−) ⊗

Day
(I ⊗

Shv
G∧1
m ) ∼= (C(G∧1

m ,−) ⊗
Day

I) ⊗
Shv

G∧1
m .

It explicitly looks as follows. G∧1
m ⊗

Shv
− is a left adjoint, so it preserves all coends,

so

(C(G∧1
m ,−) ⊗

Day
(I ⊗

Shv
G∧1
m ))(c) =

(a,b)∈C⊗C∫
C(a× b, c) ⊗

Shv
C(G∧1

m , a) ⊗
Shv

I(b) ⊗
Shv

G∧1
m
∼=

∼= G∧1
m ⊗

Shv

(a,b)∈C⊗C∫
C(a× b, c) ⊗

Shv
C(G∧1

m , a) ⊗
Shv

I(b) ∼= G∧1
m ⊗

Shv
(C(G∧1

m ,−) ⊗
Day

I)

Now I is the monoidal unit of ⊗
Day

, so C(G∧1
m ,−) ⊗

Day
F ∼= C(G∧1

m ,−) ⊗
Shv

G∧1
m . Fi-

nally, the morphism τ gives an isomorphism C(G∧1
m ,−) ⊗

Shv
G∧1
m → I in the derived

category D([C, Shv(A)])/τ . So we ultimately get an isomorphism C(G∧1
m ,−) ⊗

Day

L

F ∼= I in D([C, Shv(A)])/τ , which shows that C(G∧1
m ,−) is invertible.

Since I ⊗
Shv

G∧1
m is invertible, we also have that I ⊗

Shv
G∧km is invertible, because

due to the isomorphism I ⊗
Shv

G∧k+1
m

∼= (I ⊗
Shv

G∧km ) ⊗
Day

(I ⊗
Shv

G∧1
m ) it is a product

of invertible objects. The inverse of I ⊗
Shv

G∧km is C(G∧km ,−). Also note that in
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every symmetric closed monoidal category, every ⊗-invertible object is strongly

dualizable. So C(G∧km ,−) is strongly dualizable in D([C, Shv(A)])/τ .

Since finite sums of strongly dualizable objects are strongly dualizable, and

since Lemma 3.2.1 says that C(G×km ,−) is a finite sum of C(G∧im ,−), we get the

following corollary.

3.2.13 Corollary. For all k ∈ N the enriched functors C(G×km ,−) and C(G∧km ,−)

are strongly dualizable in D([C, Shv(A)])/τ with duals I ⊗
Shv

G×km and I ⊗
Shv

G∧km
respectively.

The model category Ch([C, Shv(A)]) can be Bousfield localized along the fam-

ily of morphisms ∼̂C. The homotopy category of this Bousfield localization is the

derived category D([C, Shv(A)])/ ∼C.

3.2.14 Lemma. The left Bousfield localization of Ch([C, Shv(A)]) along ∼̂C is a

monoidal model category. In particular, the category D([C, Shv(A)])/ ∼C is closed

symmetric monoidal and its tensor product ⊗
Day

L coincides with the tensor product

in D([C, Shv(A)]).

Proof. Similarly to Lemma 3.2.11, we apply [56, Theorem B]. The domains

and codomains of the generating cofibrations of Ch([C, Shv(A)]) are of the form

C(G×km ,−) ⊗
Shv

X for k ∈ N, X ∈ Smk. We need to show for f in ∼̂C that all

f ⊗
Day

L C(G×km ,−) ⊗
Shv

X are ∼̂C-local equivalences. If f ∈ τ̂ , then we know this

from the proof of Lemma 3.2.11. So assume that f ∈ Â1
1, so that f is of the form

(C(U,−) ⊗
Shv

A1)⊗ Z[n]→ C(U,−)⊗ Z[n]

for some U ∈ C. Since all involved objects are cofibrant we know that

f ⊗
Day

L C(G×km ,−) ⊗
Shv

X = f ⊗
Day
C(G×km ,−) ⊗

Shv
X.

So f is isomorphic to

(C(U ×G×km ,−) ⊗
Shv

A1)⊗ (X × Z)[n]→ C(U ×G×km ,−)⊗ (X × Z)[n]

and this morphism lies again in Â1
1. In particular it is a Â1

1-local equivalence, and

therefore also a ∼̂C-local equivalence.
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3.2.15 Lemma. There is an isomorphism in D([C, Shv(A)])/ ∼C:

C(G∧km ,−) ⊗
Shv

X ∼= [G∧km ,MA(X)].

Proof. We have C(G∧km ,−) ⊗
Shv

X ∼= C(G∧km ,−) ⊗
Day

L (I ⊗
Shv

X) Since C(G∧km ,−) is

strongly dual to I ⊗
Shv

G∧km with respect to ⊗
Day

L in D([C, Shv(A)])/ ∼C we get that

C(G∧km ,−) ⊗
Day

L (I ⊗
Shv

X) ∼= HomD([C,Shv(A)])/∼C(I ⊗
Shv

G∧km , I ⊗
Shv

X).

By Lemma 3.2.8 the functor MA(X × −) is strictly ∼C-local. Since I ⊗
Shv

G∧km is

cofibrant we can therefore compute the above internal hom as

HomD([C,Shv(A)])/∼C(I ⊗
Shv

G∧km , I ⊗
Shv

X) ∼= HomD([C,Shv(A)])(I ⊗
Shv

G∧km ,MA(X ×−)).

Let MA(X × −)f be a pointwise local fibrant replacement of MA(X × −) in

Ch([C, Shv(A)]). Then MA(X × −)f is ∼C-fibrant and we have an isomorphism

in Ch([C, Shv(A)]).

HomD([C,Shv(A)])(I ⊗
Shv

G∧km ,MA(X×−)) ∼= [G∧km ,MA(X×−)f ] ∼= [G∧km ,MA(X×−)].

The last isomorphism follows from the fact that due to Lemma 3.2.9 the functor

[G∧km ,−] preserves local quasi-isomorphisms between strictly A1
1-local objects.

3.2.16 Lemma. DMA[C] is compactly generated by the set {[G∧km ,MA(X)] | k ∈
N, X ∈ Smk}.

Proof. Let us first show that [G∧km ,MA(X)] is an object of DMA[C]. By Lemma

3.2.8 the functor MA(X) is strictly A1
1-local and strictly τ -local. So if MA(X)f

is a locally fibrant replacement of MA(X), then MA(X)f is enriched A1
1-local

and satisfies cancellation. Since it is enriched A1
1-local, for every U ∈ Smk the

complex MA(X × U)f is motivically fibrant in Ch(Shv(A)). Since G∧km is cofi-

brant in Ch(Shv(A)), it follows that [G∧km ,MA(X × U)f ] is motivically fibrant in

Ch(Shv(A)). This then implies that [G∧km ,MA(X)f ] is enriched A1
1-local. Since

MA(X)f satisfies cancellation, it also follows that [G∧km ,MA(X)f ] satisfies can-

cellation.
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By Lemma 3.2.9 the functor [G∧km ,−] preserves local equivalences between

strictly A1
1-local objects. Hence it follows that [G∧km ,MA(X)f ] is a local fibrant re-

placement of [G∧km ,MA(X)]. Thus [G∧km ,MA(X)] is strictly A1
1-local and strictly

τ -local. So [G∧km ,MA(X)] is in DMA[C].
Let us now show that the objects [G∧km ,MA(X)] compactly generate DMA[C].

According to [20, Theorem 6.2] the category D([C, Shv(A)]) is a compactly gener-

ated triangulaged category, that is compactly generated by the set {C(c,−) ⊗
Shv
gi |

c ∈ C, i ∈ I}, where {gi | i ∈ I} is a set of compact generators of D(Shv(A)).

Since Shv(A) is compactly generated by sheaves of the form I(X) for X ∈
Smk, we conclude that D([C, Shv(A)]), and hence also D([C, Shv(A)])/ ∼C, are

compactly generated by the set {C(G×km ,−) ⊗
Shv

I(X) | k ∈ N, X ∈ Smk}. By

Lemma 3.2.1 the enriched functor C(G×km ,−) is a direct sum of functors of the

form C(G∧km ,−). So we conclude that {C(G∧km ,−) ⊗
Shv

I(X) | k ∈ N, X ∈ Smk}is a

set of compact generators of D([C, Shv(A)])/ ∼C.
Since {C(G∧km ,−) ⊗

Shv
I(X) | k ∈ N, X ∈ Smk} is a set of compact generators

of D([C, Shv(A)])/ ∼C we now get that by Lemma 3.2.15 that {[G∧km ,MA(X)] |
k ∈ N, X ∈ Smk} is a set of compact generators of D([C, Shv(A)])/ ∼C.

Now each functor [G∧km ,MA(X)] is in DMA[C]. We remarked in Definition

3.1.5 that the canonical map DMA[C] → D([C, Shv(A)])/ ∼C is an equivalence.

Therefore it follows that {[G∧km ,MA(X)] | k ∈ N, X ∈ Smk} is a set of compact

generators of DMA[C].

3.2.17 Lemma. For every k ∈ N and X ∈ Smk the canonical map

evGm([G∧km ,MA(X)])→ Ωk
Gm
evGm(MA(X)f )

is a levelwise local quasi-isomorphism in SpGm
(Ch(Shv(A))), where MA(X)f is a

pointwise local fibrant replacement of MA(X).

Proof. Let MA(X × −)f be a locally fibrant replacement of MA(X × −). By

Lemma 3.2.8 we know that MA(X × −)f is enriched A1
1-local and enriched τ -

local. So MA(X ×−)f is pointwise A1-invariant and satisfies cancellation. Since

MA(X × −)f is pointwise A1-invariant it follows that evGm(MA(X × −)f ) is

levelwise motivically fibrant. Since MA(X × −)f satisfies cancellation, we see

that evGm(MA(X × −)f ) is an ΩGm-spectrum. So evGm(MA(X × −)f ) is stably
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motivically fibrant in SpGm
(Ch(Shv(A))), and hence Ωk

Gm
evGm(MA(X ×−)f ) can

be computed in weight n as

Ωk
Gm
evGm(MA(X ×−)f )(n) = [G∧km ,MA(X ×G∧nm )f ].

But that is also the n-th weight of evGm([G∧km ,MA(X × −)f ]). So the canonical

map

evGm([G∧km ,MA(X ×−)])→ Ωk
Gm
evGm(MA(X ×−))

is isomorphic to

evGm([G∧km ,MA(X ×−)])→ evGm([G∧km ,MA(X ×−)f ]).

This is a levelwise local quasi-isomorphism in SpGm
(Ch(Shv(A))), because due

to Lemma 3.2.9 the functor [G∧km ,−] preserves local quasi-isomorphisms between

strictly A1
1-local objects.

To prove Theorem 3.1.8 and show that the functor evGm : DMA[C] → DMA
is an equivalence, we will use [21, Lemma 4.8], which says the following:

3.2.18 Lemma. Let A, B be compactly generated triangulated categories. Let Σ

be a set of compact generators in A. Let F : A → B be a triangulated functor

such that

1. The collection {F (X)|X ∈ Σ} is a set of compact generators in B

2. For all X, Y ∈ Σ and n ∈ Z the map

FX,Y [n] : HomA(X, Y [n])→ HomB(F (X), F (Y )[n])

is an isomorphism.

Then F is an equivalence of triangulated categories.

We are now in a position to prove the main result of this section.

Proof of Theorem 3.1.8. We use Lemma 3.2.18. Here A = DMA[C] and B =

DMA are in fact compactly generated triangulated categories. One set of compact

generators of DMA is given by {Ωk
Gm
evGm(MA(X)f )|k ∈ N, X ∈ Smk}, where

MA(X)f is a pointwise local fibrant replacement of MA(X). By Lemma 3.2.16

the set

Σ := {[G∧km ,MA(X)]|k ∈ N, X ∈ Smk}
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is a set of compact generators of DMA[C]. This is the set of compact generators

to which we want to apply Lemma 3.2.18. We now check the two conditions of

that lemma.

To show the first condition we use Lemma 3.2.17: For every A ∈ Σ we have

an isomorphism

evGm(A) = evGm([G∧km ,MA(X)])
3.2.17∼= Ωk

Gm
evGm(MA(X)f )

which is one of the compact generators of DMA. So

{evGm(A)|A ∈ Σ} = {Ωk
Gm
evGm(MA(X)f )|k ∈ N, X ∈ Smk}

which shows condition 1.

Let us now check condition 2. Take X ,Y ∈ DMA[C] and n ∈ Z. We have to

show that HomDMA[C](X ,Y [n]) ∼= HomDMA(evGm(X ), evGm(Y)[n]). Since Σ com-

pactly generates DMA[C] it suffices to show this for the case X ∈ Σ. So assume

without loss of generality that X ∈ Σ is of the form [G∧km ,MA(X)] for some

X ∈ Smk and k ∈ N. Furthermore, we may assume without loss of generality

that Y is ∼C-fibrant. So Y is pointwise motivically fibrant and satisfies cancella-

tion. Then we have with Lemma 3.2.15 that

HomDMA[C]([G∧km ,MA(X)],Y [n])
3.2.15∼= HomD([C,Shv(A)])/∼C(C(G∧km ,−)⊗

Shv
X,Y [n]) =

= HomD([C,Shv(A)])/∼C(C(G∧km ,−),HomShv(A)(I(X),Y)[n]) = Hn(Y(G∧km )(X)).

By Lemma 3.2.17 we have an isomorphism

evGm([G∧km ,MA(X)]))
3.2.17∼= Ωk

Gm
evGm(MA(X)f ).

Since Y satisfies cancellation, evGm(Y) is an ΩGm-spectrum, hence evGm(Y) ∼=
Ωk

Gm
evGm(Y)(k). Since Y is pointwise motivically fibrant, it follows that evGm(Y)

is stably motivically fibrant in DMA. Therefore,

HomDMA(evGm([G∧km ,MA(X)]), evGm(Y)[n]) ∼=
HomDMA(Ωk

Gm
evGm(MA(X)f ), evGm(Y)[n]) ∼=

HomDMA(Ωk
Gm
evGm(MA(X)f ),Ωk

Gm
evGm(Y)(k)[n]) ∼=

HomDMA(evGm(MA(X)f ), evGm(Y)(k)[n]) ∼=
HomDMA(Σ∞Gm

X+, evGm(Y)(k)[n]) ∼= Hn(Y(G∧km )(X)).
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We use here the fact that evGm(MA(X)f ) is a stably motivically fibrant replace-

ment of Σ∞Gm
X+. We have verified all the conditions of Lemma 3.2.18. So

evGm : DMA[C] → DMA is an equivalence of triangulated categories. In par-

ticular, we have a zig-zag of equivalences

D([C, Shv(A)])/ ∼C
∼← DMA[C] ∼→ DMA.

This completes the proof of Theorem 3.1.8.



Chapter 4

Second Reconstruction Theorem
for DMA

The goal of this chapter is to prove Theorem 3.1.14, which recovers DMA[1/p]

from D([Sm, Shv(A)])/ ∼ [1/p]. For this we will need several lemmas. In Section

4.1 we take a ∼-fibrant enriched functor F̂ : Sm→ Ch(Shv(A)) and extend it to

a functor F̂ : fM → Ch(Shv(A)) on the category of finitely presented motivic

spaces fM, such that F̂ sends motivic equivalences to local equivalences. See

Theorem 4.1.1. This result will be important for proving Theorem 4.2.1 from

Section 4.2, which states that for every ∼-fibrant enriched functor F : Sm →
Ch(Shv(A)) and U ∈ Sm, we have an isomorphism in DMA[1/p]:

evGm(F (U ×−)) ∼= evGm(F )⊗ L(Σ∞S1,Gm
U+).

Here L : SH(k) → DMA is the left adjoint of the forgetful functor U : DMA →
SH(k), and the construction of those two functors is recalled in Section 4.2. We

call this result the generalized Röndigs–Østvær theorem, because it is close to

the original Röndigs–Østvær theorem of [46, p. 721]. The generalized Röndigs–

Østvær theorem will be crucial for proving the Reconstruction Theorem 3.1.14

in Section 4.3.

4.1 From motivic to local equivalences

Let M be the category of motivic spaces and fM the category of finitely pre-

sented motivic spaces defined in [15]. ThenM has a motivic model structure, as

68
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defined in [15, Theorem 2.12]. The weak equivalences in this model structure are

called motivic equivalences.

Given a Ch(Shv(A))-enriched functor G : Sm → Ch(Shv(A)), we can extend

G to a (non-enriched) functor Ĝ : fM→ Ch(Shv(A)) in the following way. We

can apply G levelwise to simplicial objects to get a functor

G∆op

: ∆opSm→ ∆opCh(Shv(A)).

For a finite pointed set n+ = {0, . . . , n} and U ∈ Smk we write n+⊗U for the

n-fold coproduct
n∐
i=1

U . We first extend it to G : fM→ ∆opCh(Shv(A)) by

G(A) := colim
(∆[n]×U)+→Ac

G∆op

(∆[n]+ ⊗ U),

where Ac is a cofibrant replacement of A in fM. We then compose it with the

Dold-Kan correspondence

DK−1 : ∆opCh(Shv(A))→ Ch>0(Ch(Shv(A)))

and the total complex functor

Tot : Ch>0(Ch(Shv(A)))→ Ch(Shv(A)), Tot(X)n :=
⊕
k+l=n

Xk,l,

to obtain a functor

Ĝ : fM→ Ch(Shv(A))

Ĝ(A) := Tot(DK−1( colim
(∆[n]×U)+→Ac

G∆op

(∆[n]+ ⊗ U))). (4.1)

Note that for U ∈ Smk we have Ĝ(U+) ∼= G(U).

Throughout this section let F : Sm → Ch(Shv(A)) be an enriched func-

tor that is ∼-fibrant in Ch([Sm, Shv(A)]). This means that F is pointwise lo-

cally fibrant, satisfies Nisnevich excision in the sense of Definition 3.1.9, and

for every X ∈ Smk there are natural quasi-isomorphisms F (X × A1) → F (X),

F (G∧nm ) → [G∧1
m , F (G∧n+1

m )] in Ch(Shv(A)), and for every X,U ∈ Smk a natural

quasi-isomorphism

F (X)(U)→ F (X)(U × A1)

in Ch(Ab). By the above construction we can extend F to a functor F̂ : fM→
Ch(Shv(A)).

In this section we prove the following theorem.
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4.1.1 Theorem. F̂ sends motivic equivalences in fM to local quasi-isomorphisms

in Ch(Shv(A)).

The proof is like that of [25, Theorem 4.2] and requires several lemmas.

4.1.2 Lemma. Let H : Sm → Shv(A) be a Shv(A)-enriched functor. Then

H(∅) ∼= 0 and for all U, V ∈ Sm H(U
∐
V ) ∼= H(U) ⊕ H(V ) in Shv(A). In

particular, if G : Sm → Ch(Shv(A)) is a Ch(Shv(A))-enriched functor we have

G(∅) ∼= 0 and G(U
∐
V ) ∼= G(U)⊕G(V ) in Ch(Shv(A)).

Proof. By the Shv(A)-enriched co-Yoneda lemma we can write H as the following

co-end: for U ∈ Sm we have

H(U) ∼=
X∈Sm∫

H(X)⊗ Sm(X,U) ∼=
X∈Sm∫

H(X)⊗A(−, U)nis(X ×−).

By Definition 2.1.1 Axiom (3), we have A(−, ∅)nis = 0 and for all U, V ∈ Smk,

A(−, U
∐

V )nis
∼= A(−, U)nis ⊕A(−, V )nis.

This implies that

H(∅) ∼=
X∈Sm∫

H(X)⊗A(−, ∅)nis(X ×−) =

X∈Sm∫
H(X)⊗ 0 = 0

and for all U, V ∈ Smk,

H(U
∐

V ) ∼=
X∈Sm∫

H(X)⊗A(−, U
∐

V )nis(X ×−) ∼=

X∈Sm∫
H(X)⊗ (A(−, U)nis(X ×−)⊕A(−, V )nis(X ×−)) ∼=

(

X∈Sm∫
H(X)⊗A(−, U)nis(X ×−))⊕ (

X∈Sm∫
H(X)⊗A(−, V )nis(X ×−)) ∼=

∼= H(U)⊕H(V )

as required.
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4.1.3 Corollary. Let G : Sm→ Ch(Shv(A)) be a Ch(Shv(A))-enriched functor.

Then for every n ∈ N, U ∈ Smk the canonical map

G(n+ ⊗ U) = G(
n∐
i=1

1+ ⊗ U)→
n⊕
i=1

G(1+ ⊗ U) =
n⊕
i=1

G(U)

is an isomorphism.

Recall that ∆op Ab is monoidal with respect to the degreewise tensor product,

and Ch>0(Ab) is monoidal with respect to the usual tensor product of chain

complexes.

4.1.4 Lemma. The Dold-Kan equivalence DK−1 : ∆op Ab→ Ch>0(Ab) preserves

tensor products up to chain homotopy equivalence in the following sense. There

are maps

∇A,B : DK−1(A)⊗DK−1(B)→ DK−1(A⊗B)

∆A,B : DK−1(A⊗B)→ DK−1(A)⊗DK−1(B)

natural in A,B, such that ∆A,B ◦∇A,B = idDK−1(A)⊗DK−1(B), and there is a chain

homotopy ∇A,B ◦ ∆A,B ∼ idDK−1(A⊗B). This chain homotopy is natural in the

following sense: for all maps f : A → A′, g : B → B′ the chain homotopy

between the maps DK−1(f ⊗ g) ◦ ∇A,B ◦ ∆A,B ∼ DK−1(f ⊗ g) encoded by the

diagram

DK−1(A⊗B) ∆ //

DK−1(f⊗g)
��

DK−1(A)⊗DK−1(B) ∇ // DK−1(A⊗B)

DK−1(f⊗g)
��

DK−1(A′ ⊗B′) ∆ //

'
idDK−1(A′⊗B′)

22
DK−1(A′)⊗DK−1(B′) ∇ // DK−1(A′ ⊗B′)

is equal to the chain homotopy between the maps DK−1(f ⊗ g) ◦ ∇A,B ◦∆A,B ∼
DK−1(f ⊗ g) encoded by the diagram

DK−1(A⊗B)
∆ //

'
idDK−1(A⊗B)

33
DK−1(A)⊗DK−1(B)

∇ // DK−1(A⊗B)
DK−1(f⊗g) // DK−1(A′ ⊗B′)
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Proof. Everything except for the naturality of the chain homotopy follows from

[42]. The functor DK−1 is the normalized Moore complex, the map ∆A,B is the

Alexander-Whitney map and ∇A,B is the Eilenberg-Zilber map. In [26, page 7]

one can find explicit formulas for both of these maps, and one can also find an

explicit formula for the chain homotopy ∇A,B ⊗ ∆A,B ∼ idDK−1(A⊗B), which is

called the Shih operator in that paper. Using that explicit formula one can easily

verify the naturality of the chain homotopy.

Given a simplicial set K ∈ ∆op Set we can form the free simplicial abelian

group Z(K) ∈ ∆op Ab and then apply the Dold-Kan equivalenceDK−1 : ∆op Ab→
Ch>0(Ab) to get a chain complex which we will denote by Z[K]:

Z[K] := DK−1(Z(K)) ∈ Ch(Ab). (4.2)

The chain complex Z[K] is degreewise free. For example, with this notation Z[Sn]

is the chain complex that is Z concentrated in homological degree n.

4.1.5 Lemma. Let G : Sm → Ch(Shv(A)) be a Ch(Shv(A))-enriched functor.

For every finite simplicial set K and every A ∈ fM we have a chain homotopy

equivalence

Ĝ(K+ ∧ A)
∼→ Z[K]⊗ Ĝ(A)

in Ch(Shv(A)) which is natural in K and A. The chain homotopies here are also

also natural in K and A, just like the chain homotopy from Lemma 4.1.4.

Proof. Since Ĝ(A) depends only on the cofibrant replacement Ac of A, it suffices

to show the claim for Ac. We can write Ac as a filtered colimit of simplicial

schemes Ac = colim
i∈I

Xi for some Xi ∈ ∆opSmk, and some filtered diagram I.

Then also K+ ∧ Ac is cofibrant and we have K+ ∧ Ac = colim
i∈I

(K+ ∧ Xi). Let

G∆op
: ∆opSm → ∆opShv(A) be the functor that applies G in each simplicial

degree. It follows from Corollary 4.1.3 that for each i ∈ I we have an isomorphism

G∆op

(K+ ⊗Xi)
∼→ Z(K) ⊗G∆op

(Xi)

in ∆opCh(Shv(A)), where Z(K) ∈ ∆op Ab is the simplicial free abelian group on K

and where the tensor product on the right side is degreewise the tensor product

of Ch(Shv(A)), i.e. for each n ∈ N

(Z(K) ⊗G∆op

(Xi))n := Z(K)
n ⊗G∆op

(Xi)n ∈ Ch(Shv(A)).
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It follows from Lemma 4.1.4 that the Dold-Kan correspondence DK−1 :

∆opCh(Shv(A)) → Ch>0(Ch(Shv(A))) preserves tensor products up to chain ho-

motopy equivalence, and this chain homotopy equivalence is functorial. So the

above isomorphism then implies that we have a natural chain homotopy equiv-

alence Ĝ(K+ ∧ Xi,+) → Z[K] ⊗ Ĝ(Xi,+) in Ch(Shv(A)). Then we get a natural

chain homotopy equivalence

Ĝ(K+ ∧ Ac) = colim
i∈I

Ĝ(K+ ∧Xi,+)→ colim
i∈I

Z[K]⊗ Ĝ(Xi,+) ∼=

∼= Z[K]⊗ colim
i∈I

Ĝ(Xi,+) = Z[K]⊗ Ĝ(Ac)

in Ch(Shv(A)).

4.1.6 Corollary. Let G : Sm→ Ch(Shv(A)) be a Ch(Shv(A))-enriched functor.

Let K be a finite simplicial set, and let f : A → B be a morphism in fM such

that Ĝ(f) is a local quasi-isomorphism in Ch(Shv(A)). Then the map Ĝ(K+∧f) :

Ĝ(K+ ∧ A)→ Ĝ(K+ ∧B) is also a local quasi-isomorphism in Ch(Shv(A)).

Proof. By Lemma 4.1.5 the map Ĝ(K+ ∧ f) : Ĝ(K+ ∧A)→ Ĝ(K+ ∧B) is chain

homotopic to the map Z[K]⊗Ĝ(f) : Z[K]⊗Ĝ(A)→ Z[K]⊗Ĝ(B) in Ch(Shv(A)).

If Ĝ(f) is also a local quasi-isomorphism, then since Z[K] is degreewise flat, it

follows that Z[K] ⊗ Ĝ(f) is also a local quasi-isomorphism. So Ĝ(K+ ∧ f) is a

local quasi-isomorphism in Ch(Shv(A)).

4.1.7 Lemma. Let G : Sm → Ch(Shv(A)) be a Ch(Shv(A))-enriched functor.

Let K,L be finite simplicial sets, A ∈ fM and let e : K → L be a weak equivalence

of simplicial sets. Then Ĝ(e+ ∧ A) : Ĝ(K+ ∧ A) → Ĝ(L+ ∧ A) is a sectionwise

quasi-isomorphism in Ch(Shv(A)).

Proof. If e : K → L is a weak equivalence of simplicial sets, then it follows from

basic properties of the Dold-Kan equivalence that Z[e] : Z[K]→ Z[L] is a quasi-

isomorphism in Ch(Ab). Let C := Cone(Z[e]) ∈ Ch(Ab) be the homological

mapping cone of Z[e]. Since Z[e] is a quasi-isomorphism, we know that C is

acyclic. Since Z[K] and Z[L] are degreewise free, we know that C is degreewise

free. So 0 → C is a trivial cofibration in the projective model structure on

Ch(Ab). Since the projective model structure on Ch(Ab) satisfies the monoid

axiom, then for every D ∈ Ch(Ab) the chain complex C ⊗ D is acyclic. Since
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C ⊗ D is the mapping cone of Z[e] ⊗ D, then for every D ∈ Ch(Ab) the map

Z[e]⊗D : Z[K]⊗D → Z[L]⊗D is a quasi-isomorphism in Ch(Ab).

By Lemma 4.1.5 Ĝ(e+ ∧A) : Ĝ(K+ ∧A)→ Ĝ(L+ ∧A) is chain homotopic to

the map Z[e] ⊗ Ĝ(A) : Z[K] ⊗ Ĝ(A) → Z[L] ⊗ Ĝ(A) in Ch(Shv(A)). But this is

a sectionwise quasi-isomorphism, because for every V ∈ Smk the map

Z[e]⊗ Ĝ(A)(V ) : Z[K]⊗ Ĝ(A)(V )→ Z[L]⊗ Ĝ(A)(V )

is a quasi-isomorphism in Ch(Ab), by the above argument with D := Ĝ(A)(V ).

4.1.8 Definition. 1. A map e : A→ X in a categoryD is called a coprojection

if it is isomorphic to the coproduct inclusion A→ A
∐
Y for some Y ∈ D.

2. A map e : A → X in ∆opD is called a termwise coprojection, if for every

n ∈ N, the map in the n-th simplicial degree en : An → Xn is a coprojection

in D.

3. A pushout square in ∆opD
A

e //

��

B

��
C e′ // D

is called an elementary pushout square, if e and e′ are termwise coprojec-

tions.

Recall that throughout this section F : Sm → Ch(Shv(A)) is a ∼-fibrant

enriched functor, and that we have above constructed a non-enriched functor

F̂ : fM→ Ch(Shv(A)).

4.1.9 Lemma. F̂ takes elementary pushout squares in ∆opSm to homotopy

pushout squares in Ch(Shv(A)).

Proof. Take a pushout square in Sm, along coprojections e, e′ :

A e //

��

A
∐
X

��
B

e′ // B
∐
X
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We can apply F to get a square in Ch(Shv(A)):

F (A) //

��

F (A
∐
X)

��
F (B) // F (B

∐
X)

According to Lemma 4.1.2 this square is isomorphic to

F (A) //

��

F (A)⊕ F (X)

��
F (B) // F (B)⊕ F (X)

By taking a local cofibrant replacement F (X)c of F (X) we see that this square

is locally equivalent to

F (A) //

��

F (A)⊕ F (X)c

��
F (B) // F (B)⊕ F (X)c

This square is a homotopy pushout, because it is a strict pushout and F (A) →
F (A)⊕ F (X)c is a cofibration. So F sends pushout squares along coprojections

in Sm to homotopy pushout squares in Ch(Shv(A)).

If we have an elementary pushout square Q in ∆opSm then in every simplicial

degree it will be a pushout along coprojections. Then F (Q) will be a square

in ∆opCh(Shv(A)) that is in every simplicial degree a homotopy pushout. After

applying the Dold-Kan correspondence we will still have a degreewise homotopy

pushout, and after applying the total complex functor we obtain a single homo-

topy pushout square in Ch(Shv(A)). So F̂ (Q) is a homotopy pushout square in

Ch(Shv(A)).

The previous lemma immediately implies the following corollary.

4.1.10 Corollary. If we have an elementary pushout square in ∆opSm,

A
e //

��

B

��
C

e′ // D
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and F̂ (e) is a local quasi-isomorphism, then F̂ (e′) is a local quasi-isomorphism

in Ch(Shv(A)).

With all of these lemmas established, we can now prove the main result of

this section.

Proof of Theorem 4.1.1. Let Q be an elementary Nisnevich square of the form

U ′

��

// X ′

��
U // X

In the category of pointed simplicial Nisnevich sheaves M = Shv(Smk,∆
op Set∗)

we can factor the morphism U ′+ → X ′+ by using the mapping cylinder C :=

(U ′+ × ∆[1]+)
∐
U ′+

X ′+ to get a factorization U ′+ // // C
∼ // // X ′+ where the left

map is a cofibration and the right map is a simplicial homotopy equivalence.

We define s(Q) := U+

∐
U ′+

C. We can similarly take a mapping cylinder t(Q)

of the map s(Q) → X+ to factor it into s(Q) // // t(Q) ∼ // // X+ where the

left map is a cofibration and the right map a simplicial homotopy equivalence.

We also take the mapping cylinder CX of (A1 × X)+ → X+ to factor it as

(A1 ×X)+
// // CX

∼ // // X+ .

Let Jmot = Jproj ∪ JA1 ∪ Jnis where

Jproj = {Λr[n]+ ∧ U+ → ∆[n]+ ∧ U+ | U ∈ Smk, n > 0, 0 6 r 6 n}

JA1 = {∆[n]+ ∧ U × A1
+

∐
∂∆[n]+∧U×A1

∂∆[n]+ ∧ CU → ∆[n]+ ∧ CU | U ∈ Smk}

Jnis = {∆[n]+ ∧ s(Q)
∐

∂∆[n]+∧s(Q)

∂∆[n]+ ∧ t(Q)→ ∆[n]+ ∧ t(Q) | Q ∈ Q}

where Q is the set of elementary Nisnevich squares. We claim that F̂ sends all

morphisms in Jmot to local quasi-isomorphisms. Since Λr[n] → ∆[n] is a weak

equivalence of simplicial sets it follows by Lemma 4.1.7 that F̂ (Λr[n]+ ∧ U+) →
F̂ (∆[n]+ ∧ U+) is a local quasi-isomorphism, so F̂ sends Jproj to local quasi-

isomorphisms.
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Note that F̂ sends simplicial homotopy equivalences to chain homotopy equiv-

alences, because F̂ (∆[1]+ ⊗ Ac) is a cylinder object for F̂ (Ac). Since we have a

local quasi-isomorphism F̂ (X × A1)→ F̂ (X) and a simplicial homotopy equiva-

lence CX → X+ we have a local quasi-isomorphism F̂ (X × A1)→ F̂ (CX).

Similarly, since F satisfies Nisnevich excision we have a local quasi-isomor-

phism F̂ (s(Q)) → F̂ (t(Q)). Let f : A → B be a morphism either of the form

s(Q)→ t(Q) or (X×A1)+ → CX , and let e : K → L be a cofibration of simplicial

sets. Then e is a termwise coprojection and F̂ (f) is a local quasi-isomorphism.

Consider the diagram

K+ ∧ A //

a0

��

L+ ∧ A

a2

��
a1

��

K+ ∧B //

++

K+ ∧B
∐

K+∧A
L+ ∧ A

a3

((
L+ ∧B

Since F̂ (f) is a local quasi-isomorphism, by Lemma 4.1.6 also the maps F̂ (a0) =

F̂ (K+ ∧ f) and F̂ (a1) = F̂ (L+ ∧ f) are local quasi-isomorphisms. By Corollary

4.1.10 also F̂ (a2) is a local quasi-isomorphism. By the 2-out-of-3-property this

then implies that also F̂ (a3) is a local quasi-isomorphism. So F̂ sends all mor-

phisms from Jmot to local quasi-isomorphisms. Theorem 4.1.1 now follows by

a simple small object argument, exactly like in the proof of Theorem 4.2 from

[25].

4.2 The Generalized Röndigs–Østvær Theorem

Recall that the category of motivic spaces M = Shv(Smk,∆
op Set∗) is equipped

with a projective motivic model structure. See [15, Theorem 2.12] for details.

This model structure induces a stable motivic model structure on the category

of (S1,Gm)-bispectra of motivic spaces SpS1,Gm
(M). We also have a motivic

model structure on Ch(Shv(A)), given by taking the left Bousfield localization

of the local model structure on Ch(Shv(A)) along the motivic equivalences from

Definition 3.2.5. This motivic model structure induces a stable motivic model
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sturcture on the category of Gm-spectra of chain complexes SpGm
(Ch(Shv(A))).

The homotopy category of SpS1,Gm
(M) is SH(k). The homotopy category of

SpGm
(Ch(Shv(A))) is DMA.

There is a forgetful functor U : DMA → SH(k) with a left adjoint L :

SH(k) → DMA. It can be described as follows. The functor U is the derived

functor of the right Quillen functor

SpGm(Ch(Shv(A)))
J→ SpGm,S1(Ch>0(Shv(A)))

DK→

SpGm,S1(∆opShv(A))
U→ SpGm,S1(M).

Here J : Ch(Shv(A))→ SpS1(Ch>0(Shv(A))) is the right Quillen equivalence that

is called T in [30, Section 3]. If τ>0 : Ch(Shv(A)) → Ch>0(Shv(A)) is the good

truncation functor sending A ∈ Ch(Shv(A)) to

· · · → A2 → A1 → ker(A0

∂0
A→ A−1)

in Ch>0(Shv(A)), then J is defined onA ∈ Ch(Shv(A)) by J(A) = (τ>0(A[n]))n∈N ∈
SpS1(Ch>0(Shv(A))).

The functor DK : Ch>0(Shv(A))→ ∆opShv(A) is the Dold Kan equivalence,

whose n-simplices are given by

DK(X)n =
⊕

[n]→[k]
surjective

Xk.

U : Shv(A) → M is the functor that forgets transfers and the abelian group

structure. We define Û := U ◦DK ◦ J , so that U is the right derived functor of

Û .

We write L : SH(k) → DMA for the left adjoint of U . The adjunction

L : SH(k)� DMA : U is a monoidal adjunction, so that U is lax monoidal and

L is strong monoidal. Furthermore U is a conservative functor. This means that

if f is a morphism in DMA such that U(f) is an isomorphism in SH(k), then f

is an isomorphism in DMA.

In this section we prove the following theorem, which is reminiscient of the

Röndigs-Østvær theorem [46, Corollary 56].
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4.2.1 Theorem. Let F : Sm → Ch(Shv(A)) be an enriched functor that is

∼-fibrant in Ch([Sm, Shv(A)])/ ∼. Then for every X ∈ Smk, the canonical mor-

phism

evGm(F )⊗ L(Σ∞S1,Gm
X+)→ evGm(F (X ×−))

is an isomorphism in DMA[1/p], which is natural in X.

To prove 4.2.1 we will need several lemmas. The most important lemma we

will need is the following one from [46, Corollary 56]:

4.2.2 Lemma. Let X : fM → M be a motivic functor that sends motivic

equivalences between cofibrant objects to motivic equivalences. Let B be a strongly

dualizable object in SH(k)[1/p]. Then the canonical map of (S1,Gm)-bispectra

evS1,Gm
(X ∧B)→ evS1,Gm

(X ◦ (− ∧B))

is an isomoprhism in SH(k)[1/p].

The following theorem by Riou can be found in [34, Appendix B, Corollary

B.2].

4.2.3 Theorem. If U ∈ Smk, then Σ∞S1,Gm
U+ is strongly dualizable in SH(k)[1/p].

To apply Lemma 4.2.2 in our situation, we have to convert Ch(Shv(A))-

enriched functors into motivic functors in the sense of [15]. We will now discuss

how to do this.

We can consider the category of motivic spacesM, the category of finitely pre-

sented motivic spaces fM, the category of pointed smooth schemes Smk,+ and the

category of S1-spectra of motivic spaces SpS1(M) to all beM-enriched categories.

In theM-enriched category SpS1(M) the morphism objects MapSpS1 (M)(A,B) ∈
M, are defined for A,B ∈ SpS1(M) via an equalizer diagram, like in [29, page

101]. So we have an equalizer diagram:

MapSpS1 (M)(A,B) //
∏
n∈N

HomM(An, Bn) // //
∏
n∈N

HomM(S1 ∧ An, Bn+1) .

(4.3)

This makes SpS1(M) into an M-enriched category.
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In order to relateM-enriched categories and Ch(Shv(A))-enriched categories,

we need some lax monoidal functors betweenM and Ch(Shv(A)). We have a non-

enriched forgetful functor Û : Ch(Shv(A)) → SpS1(M), and we have a functor

ev0 : SpS1(M) → M taking the 0-th weight of a S1-spectrum. The functor

ev0 ◦ Û : Ch(Shv(A))→M has a left adjoint L :M→ Ch(Shv(A)).

4.2.4 Lemma. The functor ev0 ◦ Û : Ch(Shv(A)) → M and its left adjoint

L :M→ Ch(Shv(A)) are both lax monoidal functors.

Proof. The functor Û is the composite

Ch(Shv(A))
J→ SpS1(Ch>0(Shv(A)))

DK→ SpS1(∆op(Shv(A)))
U→ SpS1(M).

Let τ>0 : Ch(Shv(A))→ Ch>0(Shv(A)) be the good truncation functor sending

A ∈ Ch(Shv(A)) to · · · → A2 → A1 → ker(A0

∂0
A→ A−1) in Ch>0(Shv(A)). Then

the following diagram commutes

Ch(Shv(A))

τ>0 ))

J // SpS1(Ch>0(Shv(A)))

ev0

��

DK // SpS1(∆opShv(A))

ev0

��

U // SpS1(M)

ev0

��
Ch>0(Shv(A)) DK // ∆opShv(A) U //M

.

To show that ev0 ◦ Û is lax monoidal, we just have to show that U , DK and τ>0

are lax monoidal, and to show that L is lax monoidal we just have to show that

each of the left adjoints of U , DK and τ>0 respectively is lax monoidal.

The left adjoint of τ>0 is the inclusion functor Ch>0(Shv(A)) → Ch(Shv(A)).

This inclusion is obviously strong monoidal. This then implies that τ>0 is lax

monoidal. See [43, Proposition 2.1] or [32, Theorem 1.2].

The quasi-inverse of the Dold–Kan correspondence DK−1 : ∆op(Shv(A)) →
Ch>0(Shv(A)) is the normalized Moore complex functor. It has a lax monoidal

structure given by the Eilenberg–Zilber map and it has an oplax monoidal struc-

ture given by the Alexander–Whitney map. See [42] or [35, Definition 29.7]. Since

DK−1 has an oplax monoidal structure it follows from [43, Proposition 2.1] that

DK has a lax monoidal structure.

Finally, the forgetful functor U : ∆opShv(A) →M is clearly lax monoidal as

its left adjoint is strong monoidal. So ev0 ◦ Û : Ch(Shv(A)) → M and its left

adjoint L :M→ Ch(Shv(A)) are both lax monoidal functors.
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Let F : Sm → Ch(Shv(A)) be a Ch(Shv(A))-enriched functor. We want to

associate to F an M-enriched functor

FM : fM→ SpS1(M).

To do this we will first construct a M-enriched functor Smk,+ → SpS1(M)

and then Kan extend it to fM.

The M-enriched functor Smk,+ → SpS1(M) is constructed as follows. On

objects it sends X+ ∈ Smk,+ to Û(F (X)) ∈ SpS1(M). To define it on morphisms

we now need to define for each X, Y ∈ Smk a map in M:

Smk,+(X+, Y+)→ MapSpS1 (M)(ÛFX, ÛFY ).

This map is constructed in three steps. In the following construction X, Y ∈
Smk are smooth schemes. Recall that L :M→ Ch(Shv(A)) is the left adjoint of

ev0 ◦ Û : Ch(Shv(A))→M.

1. Since L :M→ Ch(Shv(A)) is lax monoidal, we have a map

LHomM(X+, Y+)→ HomCh(Shv(A))(L(X+), L(Y+))

in Ch(Shv(A)). See [40, Example 3.1] for the construction of this map. By

adjunction we get a map

HomM(X+, Y+)→ ev0ÛHomCh(Shv(A))(L(X+), L(Y+))

in M. By construction, we have an isomorphism L(X+) ∼= A(−, X)nis.

Therefore HomCh(Shv(A))(L(X+), L(Y+)) ∼= Sm(X, Y ). Also Smk,+(X+, Y+) =

HomM(X+, Y+). We therefore get a map in M.

Smk,+(X+, Y+)→ ev0ÛSm(X, Y ).

2. Since F : Sm → Ch(Shv(A)) is a Ch(Shv(A))-enriched functor we have a

map Sm(X, Y )→ HomCh(Shv(A))(FX,FY ) in Ch(Shv(A)). We thus also get

a map in M.:

ev0ÛSm(X, Y )→ ev0ÛHomCh(Shv(A))(FX,FY ).



82 Second Reconstruction Theorem for DMA

3. For every n ∈ N, and every A,B ∈ Ch(Shv(A)) the chain complex shift

functor [n] gives us an isomorphism

HomCh(Shv(A))(A,B)
∼→ HomCh(Shv(A))(A[n], B[n]).

Since ev0Û is lax monoidal, we can use [40, Example 3.1] to get a canonical

map

ev0ÛHomCh(Shv(A))(A[n], B[n])→ HomM(ev0ÛA[n], ev0ÛB[n]) =

= HomM((ÛA)n, (ÛB)n).

All these maps ev0ÛHomCh(Shv(A))(A,B)→ HomM((ÛA)n, (ÛB)n) yield a map

ev0ÛHomCh(Shv(A))(A,B)→
∏
n∈N

HomM((ÛA)n, (ÛB)n).

We want to show that it factors over MapSpS1 (M)(ÛA, ÛB). Since Û(A) is a

S1-spectrum we have for every A ∈ Ch(Shv(A)) a map

S1 ∧ ev0Û(A[n])→ ev0Û(A[n+ 1])

in M. Since Û is a functor, this map is natural in A. Using this naturality one

can check that for all A,B ∈ Ch(Shv(A)) the following diagram commutes:

ev0ÛHomCh(Shv(A))(A[n], B[n])

��

∼ // ev0ÛHomCh(Shv(A))(A[n+ 1], B[n+ 1])

��

HomM((ÛA)n, (ÛB)n)

S1∧−
��

HomM((ÛA)n+1, (ÛB)n+1)

��

HomM(S1 ∧ (ÛA)n, S
1 ∧ (ÛB)n) // HomM(S1 ∧ (ÛA)n, (ÛB)n+1)

By the equalizer universal property of MapSpS1 (M)(ÛA, ÛB) from diagram (4.3)
we get a dotted map like in the following diagram

ev0ÛHomCh(Shv(A))(A,B)

��uu
MapSpS1 (M)(ÛA, ÛB) // ∏

n∈N
HomM((ÛA)n, (ÛB)n) ////

∏
n∈N

HomM(S1 ∧ (ÛA)n, (ÛB)n+1)
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In particular, we have a map

ev0ÛHomCh(Shv(A))(FX,FY )→ MapSpS1 (M)(ÛFX, ÛFY ).

And then we have maps

Smk,+(X+, Y+)→ ev0ÛSm(X, Y )→ ev0ÛHomCh(Shv(A))(FX,FY )→
→ MapSpS1 (M)(ÛFX, ÛFY ).

By composing these three steps together we get a map

Smk,+(X, Y )→ MapSpS1 (M)(ÛFX, ÛFY )

in M. This map preserves identity morphisms and is compatible with composi-
tion, so we get an M-enriched functor Smk,+ → SpS1(M), sending X to ÛFX.

We now define FM : fM → SpS1(M) to be the M-enriched Left Kan ex-
tension of this M-enriched functor Smk,+ → SpS1(M) along the M-enriched
inclusion functor Smk,+ → fM.

Smk,+
//

��

SpS1(M)

fM
FM

99

The functor FM can be explicitly computed on A ∈ fM as

FM(A) =

X+∈Smk,+∫
Û(F (X)) ∧ HomM(X+, A).

Note that FM respects filtered colimits, because X+ ∈ Smk,+ is finitely presented
in M.

4.2.5 Lemma. Let F : Sm → Ch(Shv(A)) be a ∼-fibrant functor. For every
finitely presented motivic space A ∈ fM with cofibrant replacement Ac, we have a
natural isomorphism (Û ◦F̂ )(A) ∼= FM(Ac) in SpS1(M). Here Û : Ch(Shv(A))→
SpS1(M) is the forgetful functor and F̂ : fM→ Ch(Shv(A)) is the extension of
F defined by equation (4.1) in Section 4.1.
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Proof. If A = X+ for some X ∈ Smk we have Û(F̂ (X+)) ∼= Û(F (X)) and by the
M-enriched co-Yoneda lemma we have

Û(F (X)) ∼=

Y+∈Smk,+∫
Û(F (Y )) ∧ HomM(Y+, X+) = FM(X+).

So the claim is true for A = X+. The claim then also follows for all other objects
A in fM, because Ac is a filtered colimit of simplicial schemes, and FM respects
filtered colimits.

4.2.6 Lemma. Let F : Sm→ Ch(Shv(A)) be a pointwise locally fibrant functor,
and let A ∈ fM be a finitely presented motivic space. Then F̂ (A) is locally fibrant
in Ch(Shv(A)).

Proof. For every scheme X we know that F (X) is locally fibrant in Ch(Shv(A)).
If A is a finitely presented motivic space, then Ac is a filtered colimit of simplicial
schemes. Ac = colim

i∈I
Xi for some Xi ∈ ∆opSmk and filtered diagram I, and we

have F̂ (A) = colim
i∈I

F̂ (Xi). The fact that F is pointwise locally fibrant implies

for each i ∈ I that F̂ (Xi) is locally fibrant in Ch(Shv(A)). By Lemma 2.2.18
the model category Ch(Shv(A)) is weakly finitely generated, so it follows by [14,
Lemma 3.5] that filtered colimits of fibrant objects are fibrant. So F̂ (A) is locally
fibrant in Ch(Shv(A)).

For every n ∈ N we can take the n-th level of the functor FM : fM →
SpS1(M) to get an M-enriched motivic functor

FMn : fM→M.

The functor FMn is then a motivic functor as defined in [15].

4.2.7 Lemma. Let F : Sm→ Ch(Shv(A)) be a ∼-fibrant enriched functor. For
every n ∈ N the motivic functor FMn : fM → M sends motivic equivalences
between cofibrant objects to local equivalences.

Proof. By Theorem 4.1.1 we know that F̂ : fM → Ch(Shv(A)) sends mo-
tivic equivalences to local quasi-isomorphisms. By Lemma 4.2.6 we know that
F̂ sends all objects of fM to locally fibrant objects. With respect to the
S1-stable local model structure on SpS1(M) and the local model structure on
Ch(Shv(A)), the functor Û : Ch(Shv(A)) → SpS1(M) is a right Quillen functor,



The Generalized Röndigs–Østvær Theorem 85

so it preserves weak equivalences between fibrant objects. It then follows that
Û ◦ F̂ : fM→ SpS1(M) sends motivic equivalences to stable local equivalences
between locally fibrant S1-spectra in SpS1(M). Hence Û ◦ F̂ sends motivic equiv-
alences to levelwise local equivalences. By Lemma 4.2.5 this then means that
FM : fM → SpS1(M) sends motivic equivalences between cofibrant objects to
levelwise local equivalences in SpS1(M). So for every n ∈ N the motivic functor
FMn : fM → M sends motivic equivalences between cofibrant objects to local
equivalences.

Before proving the main theorem of this section, we need an additional lemma
about (S1, S1,Gm)-trispectra. To avoid confusion between the two S1-directions
we now introduce an extra notation. We write S1

1 for the first S1-direction and we
write S1

2 for the second S1-direction. Therefore, whenever we discuss (S1, S1,Gm)-
spectra, we deal with (S1

1 , S
1
2 ,Gm)-spectra following this notation. For every

F : Sm → Ch(Shv(A)) we consider FM : fM → SpS1
2
(M) to be a functor

landing in S1
2 -spectra.

Given a Gm-spectrum of chain complexes A ∈ SpGm
(Ch(Shv(A))) we let Z[S]�

A ∈ SpS1
1 ,Gm

(Ch(Shv(A))) refer to the (S1
1 ,Gm)-bispectrum of chain complexes

that is given in S1
1 -weight n by

(Z[S]� A)n := Z[Sn]⊗ A ∈ SpGm
(Ch(Shv(A))).

The definition of Z[Sn] is in Section 4.1, equation (4.2). It is the chain complex
that is Z concentrated in homological degree n.

The functor Û : SpGm
(Ch(Shv(A))) → SpS1

2 ,Gm
(M) can naively be extended

to a functor denoted by the same letter

Û : SpS1
1 ,Gm

(Ch(Shv(A)))→ SpS1
1 ,S

1
2 ,Gm

(M)

by applying it S1
1 -levelwise.

4.2.8 Lemma. Let F : Sm → Ch(Shv(A)) be a ∼-fibrant functor. For every
X ∈ Smk we have a natural map of (S1

1 , S
1
2 ,Gm)-trispectra

evS1
1 ,Gm

(FM(−×X))→ Û(Z[S]� evGm(F (−×X)))

in SpS1
1 ,S

1
2 ,Gm

(M). This map is a S1
1-levelwise (S1

2 ,Gm)-stable motivic equivalence.

Proof. Since we are only evaluating FM on simplicial schemes, by Lemma 4.2.5 we
just need to show that there is a S1

1 -levelwise (S1
2 ,Gm)-stable motivic equivalence

evS1
1 ,Gm

((Û ◦ F̂ )(−×X))→ Û(Z[S]� evGm(F (−×X))).

And this follows from Lemma 4.1.5.
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We are now in a position to prove the main theorem of this section.

Proof of Theorem 4.2.1. Let F : Sm→ Ch(Shv(A)) be a ∼-fibrant functor. Due
to Lemma 4.2.7 and Lemma 4.2.3 we can apply Lemma 4.2.2 to get an isomor-
phism

evS1
1 ,Gm

(FMn ) ∧ Σ∞S1,Gm
X+

∼→ evS1
1 ,Gm

(FMn (−×X))

in SH(k)[1/p]. These combine into a S1
2 -levelwise (S1

1 ,Gm)-stable motivic equiv-
alence of (S1

1 , S
1
2 ,Gm)-trispectra

evS1
1 ,Gm

(FM) ∧ Σ∞S1,Gm
X+

∼→ evS1
1 ,Gm

(FM(−×X))

in SpS1
1 ,S

1
2 ,Gm

(M)[1/p]. By Lemma 4.2.8 we have a commutative diagram

evS1
1 ,Gm

(FM) ∧ Σ∞S1,Gm
X+

∼ //

∼
��

evS1
1 ,Gm

(FM(−×X))

∼
��

Û(Z[S]� evGm(F )) ∧ Σ∞S1,Gm
X+

∼ // Û(Z[S]� evGm(F (−×X)))

where the vertical maps are S1
1 -levelwise (S1

2 ,Gm)-stable equivalences. It follows
that the bottom horizontal map is a (S1

1 , S
1
2 ,Gm)-stable equivalence. By Lemma

4.2.3 we know that Σ∞S1,Gm
X+ is strongly dualizable in SH(k)[1/p]. Since L and

U are a monoidal adjunction, we can apply [3, Lemma 4.6] to get for every n ∈ N
that

U(Z[Sn]⊗ evGm(F )) ∧ Σ∞S1,Gm
X+
∼= U(Z[Sn]⊗ evGm(F )⊗ L(Σ∞S1,Gm

X+))

in SH(k)[1/p]. These assemble into a S1
1 -levelwise (S1

2 ,Gm)-stable equivalence of
trispectra

Û(Z[S]� evGm(F )) ∧ Σ∞S1,Gm
X+ → Û(Z[S]� evGm(F )⊗ L(Σ∞S1,Gm

X+)).

We then have a commutative diagram

Û(Z[S]� evGm(F )⊗ L(Σ∞S1,Gm
X+)) // Û(Z[S]� evGm(F (−×X)))

Û(Z[S]� evGm(F )) ∧ Σ∞S1,Gm
X+

∼
OO

∼

33
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in SpS1
1 ,S

1
2 ,Gm

(M)[1/p], where the two lower maps are (S1
1 , S

1
2 ,Gm)-stable motivic

equivalences. It follows that the upper horizontal map is a (S1
1 , S

1
2 ,Gm)-stable

motivic equivalence in SpS1
1 ,S

1
2 ,Gm

(M)[1/p].

Since U : DMA[1/p] → SH(k)[1/p] is conservative, we then get a (S1
1 ,Gm)-

stable motivic equivalence

Z[S]� evGm(F )⊗ L(Σ∞S1,Gm
X+)

∼→ Z[S]� evGm(F (−×X))

in SpS1
1 ,Gm

(Ch(Shv(A)))[1/p]. Since the functor

Z[S1]⊗− : SpGm
(Ch(Shv(A)))[1/p]→ SpGm

(Ch(Shv(A)))[1/p]

is an auto-equivalence, it follows from [29, Theorem 5.1] that

Z[S]�− : SpGm
(Ch(Shv(A)))[1/p]→ SpS1

1 ,Gm
(Ch(Shv(A)))[1/p]

is a Quillen equivalence, where SpS1
1 ,Gm

(Ch(Shv(A))) is equipped with the stable

model structure of Z[S1]-spectra in SpGm
(Ch(Shv(A))). Since Z[S]�− preserves

weak equivalences between all objects from SpGm
(Ch(Shv(A)))[1/p], this then

implies that
evGm(F )⊗ L(Σ∞S1,Gm

X+)
∼→ evGm(F (−×X))

is an isomorphism in DMA[1/p].

4.3 Proof of Theorem 3.1.14

In this section we will prove Theorem 3.1.14, but we first need a few lemmas.

4.3.1 Lemma. The category D([Sm, Shv(A)])/ ∼ [1/p] is compactly generated
by the set

{[G∧nm , I(−)]⊗ Z | n ∈ N, Z ∈ Smk}.

Proof. The objects [G∧nm , I(−)] ⊗ Z are compact by [20, Theorem 6.2]. Let F ∈
D([Sm, Shv(A)])/ ∼ [1/p] be an enriched functor such that for all n ∈ N, Z ∈ Smk

HomD([Sm,Shv(A)])/∼[1/p]([G∧nm , I(−)]⊗ Z, F ) = 0.

Without loss of generality, F is ∼-fibrant. Then we get for all n ∈ N, Z ∈ Smk

that F (G∧nm )(Z) ∼= 0 in D(Ab)[1/p]. This implies that evGm(F ) ∼= 0 in DMA[1/p].
It follows Theorem 4.2.1 that for every U ∈ Smk

evGm(F (U ×−)) ∼= evGm(F )⊗ L(Σ∞S1,Gm
U+) ∼= 0
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in DMA[1/p]. Since F (U × −) is ∼-fibrant, the Gm-spectrum evGm(F (U × −))
is motivically fibrant in DMA[1/p]. Then

F (U) ∼= F (U × pt) = evGm(F (U ×−))(0) ∼= 0

in D(Shv(A))[1/p]. This means that F ∼= 0 in D([Sm, Shv(A)])/ ∼ [1/p]. So

{[G∧nm , I(−)]⊗ Z | n ∈ N, Z ∈ Smk}

is a set of compact generators for D([Sm, Shv(A)])/ ∼ [1/p].

4.3.2 Lemma. The enriched functor [G∧nm ,MA(−)] : Sm→ Ch(Shv(A)) satisfies
Nisnevich excision in the sense of Definition 3.1.9.

Proof. Take an elementary Nisnevich square:

U ′
β
//

α
��

X ′

γ
��

U
δ // X

From Definition 2.1.1 it follows that there is an exact sequence

0→ A(−, U ′)nis → A(−, U)nis ⊕A(−, X ′)nis → A(−, X)nis → 0.

SinceA is a strict V -category of correspondences, by applying C∗ we get a triangle

MA(U ′)→MA(U)⊕MA(X ′)→MA(X)

in D(Shv(A)). We can take local fibrant replacements MA(X)f of each of these
terms MA(X), and then apply Ωn

Gm
to get a triangle of locally fibrant complexes

Ωn
Gm

(MA(U ′)f )→ Ωn
Gm

(MA(U)f )⊕ Ωn
Gm

(MA(X ′)f )→ Ωn
Gm

(MA(X)f )

in D(Shv(A)). Lemma 3.2.9 says that HomCh(Shv(A))(G∧1
m ,−) : Ch(Shv(A)) →

Ch(Shv(A)) preserves local equivalences between A1-local complexes. This implies
that [G∧nm ,MA(X)] is locally equivalent to [G∧nm ,MA(X)f ] = Ωn

Gm
(MA(X)f ). So

we ultimately get a triangle

[G∧nm ,MA(U ′)]→ [G∧nm ,MA(U)]⊕ [G∧nm ,MA(X ′)]→ [G∧nm ,MA(X)]
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in D(Shv(A)). This means that

[G∧nm ,MA(U ′)]
β∗
//

α∗
��

[G∧nm ,MA(X ′)]

γ∗
��

[G∧nm ,MA(U)]
δ∗ // [G∧nm ,MA(X)]

is homotopy cartesian, so [G∧nm ,MA(−)] : Sm → Ch(Shv(A)) satisfies Nisnevich
excision.

4.3.3 Lemma. For every Z ∈ Smk the enriched functor [G∧nm ,MA(− × Z)] :
Sm→ Ch(Shv(A)) satisfies Nisnevich excision in the sense of Definition 3.1.9.

Proof. Take an elementary Nisnevich square

U ′
β
//

α
��

X ′

γ
��

U
δ // X

Then the square

U ′ × Z
β×1
//

α×1
��

X ′ × Z
γ×1
��

U × Z δ×1 // X × Z

is again an elementary Nisnevich square. The result now follows from Lemma
4.3.2.

Proof of Theorem 3.1.14. Let

TC := 〈[G×nm ,−]⊗X | n ∈ N, X ∈ Smk〉

be the full triangulated subcategory of D([Sm, Shv(A)]) that is compactly gen-
erated by [G×nm ,−] ⊗ X for all n ∈ N and X ∈ Smk. According to [21, Lemma
4.10] the composite

TC → D([Sm, Shv(A)])
res→ D([C, Shv(A)])

is an equivalence of triangulated categories, where the first map is the inclusion
map and the second map is the map restricting functors from Sm to C.
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Let ∼̂C be the set of morphisms, following the notation from Lemma 3.1.4 by

∼̂C := {(f ⊗ Z)[n] | f ∈∼C, Z ∈ Smk, n ∈ N}.

Here ∼C is defined in Section 3.1 on page 42. We can consider ∼̂C to be a set
of morphisms in TC. We write TC/ ∼C for the localization of TC along the set of
morphisms ∼̂C between compact objects.

The equivalence TC → D([C, Shv(A)]) then induces an equivalence of com-
pactly generated triangulated categories

TC/ ∼C→ D([C, Shv(A)])/ ∼C .

By Theorem 3.1.8 we have that

evGm : D([C, Shv(A)])/ ∼C→ DMA

is an equivalence of compactly generated triangulated categories. So we have an
equivalence of compactly generated triangulated categories

evGm : TC/ ∼C→ DMA.

Next, the inclusion TC → D([Sm, Shv(A)]) induces a triangulated functor

Φ : TC/ ∼C→ D([Sm, Shv(A)])/ ∼ .

We will now use Lemma 3.2.18 to show that

Φ[1/p] : TC/ ∼C [1/p]→ D([Sm, Shv(A)])/ ∼ [1/p]

is an equivalence of triangulated categories. Following the notation of Lemma
3.2.18, here A = TC/ ∼C [1/p] and B = D([Sm, Shv(A)])/ ∼ [1/p] are compactly
generated triangulated categories.

Due to Lemma 3.2.1 and the definition of TC, the set

Σ := {[G∧nm , I(−)]⊗X | n ∈ N, X ∈ Smk}

is a set of compact generators for TC/ ∼C [1/p]. This is the set of compact
generators to which we apply Lemma 3.2.18. Due to Lemma 4.3.1, the functor
Φ[1/p] sends Σ to a set of compact generators for D([Sm, Shv(A)])/ ∼ [1/p], so
the first condition of Lemma 3.2.18 is satisfied. Let us check the second condition.
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Since TC/ ∼C is equivalent to D([C, Shv(A)])/ ∼C, by Lemma 3.2.15 we have an
isomorphism

[G×nm , I(−)] ⊗
Shv

X ∼= [G×nm ,MA(X)]

in TC/ ∼C. From Lemma 4.3.3 it follows that the enriched functor [G×nm ,MA(X)] :
Sm → Ch(Shv(A)) satisfies Nisnevich excision. Similarly to Lemma 3.2.8, it is
also strictly local with respect to the relations A1

1, τ . The definitions of these
relations is in Section 3.1, page 47. Since the map MA(X × A1) → MA(X) is
an isomorphism in DM eff

A between A1-local complexes, so it is also a local quasi-
isomorphism. Since [G∧nm ,−] preserves local quasi-isomorphisms between A1-local
objects, it follows that [G×nm ,MA(X)] is strictly local with respect to A1

2. So the
enriched functor [G×nm ,MA(X)] : Sm→ Ch(Shv(A)) is strictly ∼-local. Also for
every d ∈ N the shifted functor [G×nm ,MA(X)][d] : Sm → Ch(Shv(A)) is strictly
∼-local.

The functor Φ : TC/ ∼C→ D([Sm, Shv(A)])/ ∼ is by construction fully faithful
on strictly ∼-local objects, in the sense that if A,B ∈ TC/ ∼C are strictly ∼-local
then the map

HomTC/∼C(A,B)→ HomD([Sm,Shv(A)])/∼(Φ(A),Φ(B))

is a bijection of abelian groups. In particular Φ is fully faithful on all shifts of
objects of the form [G×nm ,MA(X)], where n ∈ N, X ∈ Smk. Since the objects
[G×nm ,MA(X)] are isomorphic to the objects [G×nm , I(−)]⊗X in TC/ ∼C, it follows
that Φ is fully faithful on all shifts of objects from the set of compact generators
Σ.

This verifies the second condition from Lemma 3.2.18. It now follows that

Φ : TC/ ∼C [1/p]→ D([Sm, Shv(A)])/ ∼ [1/p]

is an equivalence of triangulated categories. Recall that by Lemma 3.1.13 we have
a canonical equivalence of triangulated categories

DMA[Sm]→ D([Sm, Shv(A)])/ ∼ .

We then have a commutative diagram

DMA[Sm][1/p] ∼ // D([Sm, Shv(A)])/ ∼ [1/p]
evGm

**
TC/ ∼C [1/p] ∼

evGm

//

∼Φ

OO

DMA[1/p]
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which shows that the evaluation functor

evGm : DMA[Sm][1/p]→ DMA[1/p]

is an equivalence of categories. This completes the proof of Theorem 3.1.14.



Chapter 5

Enriched motivic spaces

So far we have studied the category [Sm,Ch(Shv(A))] of enriched functors of
unbounded chain complexes. We are now passing to the study of the category
[Sm,∆opShv(A)] of enriched functors of simplicial sheaves.

Also from now on we will assume that the exponential characteristic p of k is
invertible in A. So A is an additive category of correspondences, that is symmet-
ric monoidal, satisfies the strict V -property, the cancellation property, and the
exponential characteristic p of k is invertible in A. Note that for any additive
category of correspondences A we can form an additive category of correspon-
dences A[1/p] in which p is invertible by tensoring all morphism groups of A with
Z[1/p].

In this chapter we introduce enriched motivic A-spaces. In Section 5.2 we
construct a model structure on the category ∆opShv(A) of simplicial Nisnevich
sheaves.

5.1 Preliminaries

We shall adhere to the following notations from [19]. Let SpS1,Gm
(k) denote the

category of symmetric (S1,Gm)-bispectra, where the Gm-direction is associated
with the pointed motivic space (Gm, 1). It is equipped with a stable motivic
model category structure. Denote by SH(k) its homotopy category. The category
SH(k) has a closed symmetric monoidal structure with monoidal unit being the
motivic sphere spectrum S. Given p > 0, the category SpS1,Gm

(k) has a further
model structure whose weak equivalences are the maps of bispectra f : X → Y
such that the induced map of bigraded Nisnevich sheaves f∗ : πA1

∗,∗(X)⊗Z[1/p]→

93
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πA1

∗,∗(Y ) ⊗ Z[1/p] is an isomorphism. In what follows we denote its homotopy
category by SH(k)[1/p]. The category SH(k)Q is defined in a similar fashion.

Recall from Section 3.1 that there is a Shv(A)-enriched category Sm, whose
objects are those of Smk, and whose morphism sheaves are defined by

Sm(X, Y ) := HomShv(A)(A(−, X)nis,A(−, Y )nis).

In Section 5.2 we will define a natural local model structure on ∆opShv(A).
Weak equivalences in this model structure are the local equivalences.

According to [9, Theorem 4.3.12], if G is a Grothendieck category with a
generatorG, then the category of simplicial objects ∆opG in G is also Grothendieck
and the set {G⊗∆[n] | n > 0} is a family of generators for ∆opG. In particular,
a family of generators for the Grothendieck category ∆opShv(A) is given by the
set

{A(−, X)nis ⊗∆[n] | X ∈ Smk, n > 0}.

Also, the category of enriched functors [Sm, Shv(A)] is Grothendieck by [1]. Its
family of generators is given by {Sm(X,−) ⊗Shv(A) A(−, Y )nis | X, Y ∈ Smk}.
Hence ∆op[Sm, Shv(A)] is Grothendieck by [9]. Its family of generators is given
by {Sm(X,−)⊗Shv(A) A(−, Y )nis ⊗∆[n] | X, Y ∈ Smk, n > 0}.

Note that ∆op[Sm, Shv(A)] and [Sm,∆opShv(A)] are equivalent, and we will
freely pass back and forth between the two.

5.1.1 Definition. An enriched motivic A-space is an object of the Grothendieck
category ∆op[Sm, Shv(A)]. Similarly to [25, Axioms 1.1], an enriched motivic
A-space X is said to be special if it satisfies the following axioms:

1. For all n > 0 and U ∈ Smk the presheaf of homotopy groups V 7−→
πn(X (U))(V ) is A1-invariant.

2. (Cancellation) Let G∧1
m denote the cokernel of the 1-section A(−, pt)nis −→

A(−,Gm)nis in Shv(A) and for n > 1 inductively define G∧n+1
m := G∧nm ⊗G∧1

m .
For all n > 0 and U ∈ Smk the canonical map

X (G∧nm × U) −→ Hom∆opShv(A)(G∧1
m ,X (G∧n+1

m × U))

is a local equivalence.

3. (A1-invariance) For all U ∈ Smk the canonical map X (U × A1) −→ X (U)
is a local equivalence.
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4. (Nisnevich excision) For every elementary Nisnevich square in Smk

U ′ //

��

V ′

��
U // V

the induced square
X (U ′) //

��

X (V ′)

��
X (U) // X (V )

is homotopy cartesian in the local model structure on ∆opShv(A).

For n > 0 and every finitely generated field extension K/k, we have the
standard algebraic n-simplex

∆n
K = Spec(K[x0, . . . , xn]/(x0 + · · ·+ xn − 1)).

For every 0 6 i 6 n we define a closed subscheme vi of ∆n
K by the equations

xj = 0 for j 6= i. We write ∆̂n
K/k for the semilocalization of the standard algebraic

n-simplex ∆n
K with closed points the vertices v0, . . . , vn ∈ ∆n

K .

5.1.2 Definition. Similarly to [25, Axioms 1.1], we say that X is very effec-
tive or satisfies Suslin’s contractibility if for every U ∈ Sm and every finitely
generated field extension K/k the diagonal of the bisimplicial abelian group

X (G∧1
m × U)(∆̂•K/k) is contractible.

Since we assume that p is invertible in A the following lemma holds.

5.1.3 Lemma. If F : A → Ab is an additive functor, then F factors over
the full subcategory of Z[1/p]-modules ModZ[1/p] ⊆ Ab. In particular the inclu-
sion functor ModZ[1/p] → Ab induces an equivalence of categories Shv(A,Ab) '
Shv(A,ModZ[1/p]).

Proof. If F : A → Ab is additive, then F is an Ab-enriched functor. By the
Ab-enriched co-Yoneda lemma we can write F as the following coend: for all
U ∈ Smk we have an isomorphism in Ab,

F (U) ∼=
X∈Smk∫

F (X)⊗A(U,X).
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Since p is invertible in A(U,X) we have a canonical isomorphism A(U,X) ∼=
A(U,X) ⊗ Z[1/p]. Since the functor − ⊗ Z[1/p] : Ab → Ab is a left adjoint, it
preserves coends, so we can compute

F (U) ∼=
X∈Smk∫

F (X)⊗A(U,X) ∼=
X∈Smk∫

F (X)⊗ (A(U,X)⊗ Z[1/p]) ∼=

Z[1/p]⊗
X∈Smk∫

F (X)⊗A(U,X) ∼= Z[1/p]⊗ F (U)

which shows that F (U) is a Z[1/p]-module.

For some of our results we will also have to make additional assumptions on
the category of correspondences A.

5.1.4 Definition. Let Fr∗(k) be the category of Voevodksy’s framed correspon-
dences (see [23, Definition 2.3]). For each V ∈ Smk let σV : V → V be the level
1 explicit framed correspondence ({0} × V,A1 × V, prA1 , prV ).

1. We say that the category of correspondences A has framed correspondences
if there is a functor Φ : Fr∗(k) → A which is the identity on objects and
which takes every σV to the identity of V .

2. We say that A satisfies the ∆̂-property if for every n > 0 and for every
finitely generated field extension K/k the diagonal of MA(G∧nm )(∆̂•K/k) is

quasi-isomorphic to 0. Here MA : Sm→ Ch(Shv(A)) is the enriched motive
functor MA(U) := C∗A(−, U)nis.

Basic examples satisfying both items are given by the categories of finite corre-
spondences Cor or Milnor–Witt correspondences C̃or.

5.2 The local model structure

In Section 2.2 we constructed a model structure on Ch(Shv(A)) that is cellular,
strongly left proper, weakly finitely generated, monoidal and satisfies the monoid
axiom. In this section we construct a model structure on Ch>0(Shv(A)) that is
cellular, strongly left proper, weakly finitely generated, monoidal, satisfies the
monoid axiom, and in which weak equivalences are local quasi-isomorphisms.
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We construct the model structure by taking the right transferred model struc-
ture along the inclusion Ch>0(Shv(A)) → Ch(Shv(A)). We then transfer the
model structure along the Dold-Kan correspondence, to get a model structure
on ∆opShv(A) that is cellular, strongly left proper, weakly finitely generated,
monoidal, satisfies the monoid axiom, and in which weak equivalences are stalk-
wise weak equivalences of simplicial sets.

Let us now start by constructing the model structure on Ch>0(Shv(A)). We
have an inclusion functor ι : Ch>0(Shv(A))→ Ch(Shv(A)). The inclusion functor
ι has a left adjoint τnaive : Ch(Shv(A)) → Ch>0(Shv(A)), called the naive trun-
cation functor. It sends · · · → A1 → A0 → A−1 → . . . to · · · → A1 → A0.
The inclusion functor ι also has a right adjoint τgood, called the good truncation
functor. It sends

· · · → A1 → A0

∂0
A→ A−1 → . . .

to · · · → A1 → ker(∂0
A). So we have τnaive a ι a τgood.

5.2.1 Lemma. The endofunctor ιτnaive : Ch(Shv(A)) → Ch(Shv(A)) preserves
cofibrations.

Proof. Since ιτnaive is a left adjoint functor, it suffices to check it on the set of
generating cofibrations

ICh(Shv(A)) = {A(−, X)nis ⊗ SnZ→ A(−, X)nis ⊗DnZ | n ∈ Z, X ∈ Smk}.

So take n ∈ Z, X ∈ Smk and consider the map

fn : A(−, X)nis ⊗ SnZ→ A(−, X)nis ⊗DnZ.

If n > 0 then ιτnaive(fn) = fn is a cofibration. If n 6 −2 then ιτnaive(fn) = 0 is a
cofibration. If n = −1 then ιτnaive(f−1) is the map 0 → A(−, X)nis ⊗ S0Z which
is a cofibration, due to the following pushout square

A(−, X)nis ⊗ S−1Z //

��

A(−, X)nis ⊗D−1Z

��
0 // A(−, X)nis ⊗ S0Z

as required.
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5.2.2 Definition. Given a model category M and an adjunction L : N �M : R,
we say that the right transferred model structure along the adjunction L a R
exists, if there exists a model structure on N , such that a morphism f is a
weak equivalence (respectively cofibration) in N if and only if L(f) is a weak
equivalence (respectively cofibration) in M .

5.2.3 Lemma. The left transferred model structure on Ch>0(Shv(A)) along the
adjunction

ι : Ch>0(Shv(A))� Ch(Shv(A)) : τgood

exists. The resulting model structure on Ch>0(Shv(A)) is cofibrantly generated.

Proof. We use [4, Theorem 2.23]. All involved categories are locally presentable,
and Ch(Shv(A)) is cofibrantly generated, so the theorem is applicable. We now
have to show that

RLP(ι−1({cofibrations})) ⊆ ι−1({weak equivalences}).

So take p : X → Y with p ∈ RLP(ι−1({cofibrations})). We want to show
that ι(p) is a weak equivalence in Ch(Shv(A)). We will show that ι(p) is a trivial
fibration, by showing that it has the right lifting property with respect to cofi-
brations. Let f : A → B be a cofibration in Ch(Shv(A)) and consider a lifting
problem

A

f
��

// ιX

ιp
��

B //

==

ιY .

By adjunction this diagram has a lift, if and only if the following diagram has a
lift

τnaiveA

τnaivef
��

// X

p

��
τnaiveB //

;;

Y .

Since p ∈ RLP(ι−1({cofibrations})), we can solve this lifting problem if τnaivef ∈
ι−1({cofibrations}). So we have to show that ιτnaivef is a cofibration. As f is a
cofibration, this follows from Lemma 5.2.1.

We now have a model structure on Ch>0(Shv(A)), in which a morphism f
is weak equivalence (respectively cofibration) if and only if ιf is a weak equiva-
lence (respectively cofibration) in Ch(Shv(A)), and a morphism is a fibration in
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Ch>0(Shv(A)) if and only if it has the right lifting property with respect to all
trivial cofibrations. Furthermore, the adjunction

ι : Ch>0(Shv(A))� Ch(Shv(A)) : τgood

is a Quillen adjunction. Since weak equivalences in Ch(Shv(A)) are the local
quasi-isomorphisms, it follows that also weak equivalences in Ch>0(Shv(A)) are
the local quasi-isomorphisms.

5.2.4 Lemma. Ch>0(Shv(A)) is a monoidal model category.

Proof. Let us verify the pushout product axiom. Let f, g be two cofibrations in
Ch>0(Shv(A)), and let f�g be their pushout-product. Since ι : Ch>0(Shv(A))→
Ch(Shv(A)) is a strong monoidal left adjoint functor, we have an isomorphism
of arrows ι(f�g) ∼= ι(f)�ι(g). As f, g are cofibrations in Ch>0(Shv(A)), we see
that ι(f), ι(g) are cofibrations in Ch(Shv(A)). Since Ch(Shv(A)) is a monoidal
model category, ι(f)�ι(g) is a cofibration in Ch(Shv(A)). So f�g is a cofibration
in Ch>0(Shv(A)). Also, if f or g is a trivial cofibration in Ch>0(Shv(A)), then
ι(f) or ι(g) is a trivial cofibration in Ch(Shv(A)). Thus ι(f)�ι(g) is a trivial
cofibration, hence f�g is a trivial cofibration. Therefore Ch>0(Shv(A)) satisfies
the pushout-product axiom.

Let us verify the unit axiom. If 1>0 is the monoidal unit of Ch>0(Shv(A)), and
1 is the monoidal unit of Ch(Shv(A)), then since ι is strong monoidal we have an
isomorphism ι1>0

∼= 1. As 1 = A(−, pt)nis is cofibrant in Ch(Shv(A)) it follows
that 1>0 is cofibrant in Ch>0(Shv(A)). This implies the unit axiom.

5.2.5 Lemma. Ch>0(Shv(A)) satisfies the monoid axiom.

Proof. Let W>0 denote the class of weak equivalences and CW>0 denote the
class of trivial cofibrations in Ch>0(Shv(A)). Let W denote the class of weak
equivalences and CW denote the class of trivial cofibrations in Ch(Shv(A)). We
need to show that

((CW>0)⊗ Ch>0(Shv(A)))− cof ⊆ W>0.

Since W>0 = ι−1(W ), this means we have to show that

ι(((CW>0)⊗ Ch>0(Shv(A)))− cof) ⊆ W.

Since ι is a strong monoidal left adjoint functor we have

ι(((CW>0)⊗ Ch>0(Shv(A)))− cof) ⊆ (ι(CW>0)⊗ Ch(Shv(A)))− cof .
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Since ι preserves trivial cofibrations we have ι(CW>0) ⊆ CW . Since Ch(Shv(A))
satisfies the monoid axiom (see Lemma 2.2.23), it follows that

(ι(CW>0)⊗ Ch(Shv(A)))− cof ⊆ (CW ⊗ Ch(Shv(A)))− cof ⊆ W.

Hence Ch>0(Shv(A)) satisfies the monoid axiom.

5.2.6 Lemma. Let ICh(Shv(A)) be a set of generating cofibrations for Ch(Shv(A)).
Then the set τnaive(ICh(Shv(A))) is a set of generating cofibrations of Ch>0(Shv(A)).
In particular, Ch>0(Shv(A)) has a set of generating cofibrations with finitely pre-
sented domains and codomains.

Proof. By Lemma 5.2.1 all morphisms from τnaive(ICh(Shv(A))) are cofibrations in
Ch>0(Shv(A)). Let f be a cofibration in Ch>0(Shv(A)). We claim that f ∈
(τnaive(ICh(Shv(A)))) − cof . Since f is a cofibration in Ch>0(Shv(A)), also ιf is a
cofibration in Ch(Shv(A)). Since ICh(Shv(A)) is a set of generating cofibrations for
Ch(Shv(A)), it follows that ιf ∈ ICh(Shv(A)) − cof . But then

f ∼= τnaiveιf ∈ τnaive(ICh(Shv(A)) − cof) ⊆ (τnaive(ICh(Shv(A))))− cof .

Therefore τnaive(ICh(Shv(A))) is a set of generating cofibrations for Ch>0(Shv(A)).
Since the set

{A(−, X)nis ⊗ SnZ→ A(−, X)nis ⊗DnZ | X ∈ Smk, n ∈ Z}

is a set of generating cofibrations with finitely presented domains and codomains
for Ch(Shv(A)), it follows that the union of {A(−, X)nis ⊗ SnZ → A(−, X)nis ⊗
DnZ | X ∈ Smk, n > 0} and {0→ A(−, X)nis ⊗ S0Z | X ∈ Smk} together form a
set of generating cofibrations with finitely presented domains and codomains of
Ch>0(Shv(A)).

Next, we want to show that Ch>0(Shv(A)) is weakly finitely generated. To
this end, we need to define a set of weakly generating trivial cofibrations J ′. For
this we need to construct a certain set of morphisms similar to Definition 2.2.3.

5.2.7 Definition. For every elementary Nisnevich square Q ∈ Q of the form

U ′
β //

α
��

X ′

γ
��

U
δ // X
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we have a square

A(−, U ′)nis
β∗ //

α∗
��

A(−, X ′)nis

γ∗
��

A(−, U)nis
δ∗ // A(−, X)nis

in Ch(Shv(A)). Take the homological mapping cyinder C of the mapA(−, U ′)nis →
A(−, X ′)nis, so that the map factors as A(−, U ′)nis → C → A(−, X ′)nis. Let
sQ := A(−, U)nis

∐
A(−,U ′)nis

C. Next take the homological mapping cylinder tQ of

the map sQ = A(−, U)nis

∐
A(−,U ′)nis

C → A(−, X)nis, so that it factors as sQ
pQ→

tQ → A(−, X)nis. The map pQ : sQ → tQ is a trivial cofibration between finitely
presented objects of Ch>0(Shv(A)).

LetQ be the set of all elementary Nisnevich squares. Define a set of morphisms
JQ := {pQ | Q ∈ Q}. Let ICh>0(Ab) be a set of generating cofibrations with
finitely presented domains and codomains for Quillen’s standard projective model
structure on Ch(Ab)>0. We define sets of morphisms in Ch>0(Shv(A))

Jproj := {0→ A(−, X)nis ⊗DnZ | X ∈ Smk, n > 0}

and
J ′ := Jproj ∪ (JQ�ICh>0(Ab)),

where JQ�ICh>0(Ab) is the set of all morphisms which are a pushout product of a
morphisms from JQ and ICh(Ab)>0

.

Note that all morphisms from ICh>0(Ab) are cofibrations and all morphisms
from Jproj and JQ are trivial cofibrations. Since Ch>0(Shv(A)) is a monoidal
model category it follows that all morphisms from J ′ are trivial cofibrations.

5.2.8 Lemma. A morphism f : A → B in Ch>0(Shv(A)) has the right lifting
property with respect to Jproj if and only if for every n > 1 the map fn : An → Bn

is sectionwise surjective.

Proof. For every n > 0, X ∈ Smk we can solve the lifting problem

0

��

// A

f
��

A(−, X)nis ⊗DnZ //

77

B

in Ch>0(Shv(A)) if and only if fn+1 : A(X)n+1 → B(X)n+1 is surjective in Ab.
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5.2.9 Lemma. For an object A in Ch>0(Shv(A)) the following are equivalent:

1. ι(A) is fibrant in Ch(Shv(A)).

2. A is fibrant in Ch>0(Shv(A)).

3. A→ 0 has the right lifting property with respect to JQ�ICh>0(Ab).

Proof. (1) =⇒ (2). If ι(A) is fibrant in Ch(Shv(A)), then A ∼= τgood(ι(A)) is
fibrant in Ch>0(Shv(A)) because τgood is a right Quillen functor.

(2) =⇒ (3). If A is fibrant in Ch>0(Shv(A)), then A→ 0 has the right lifting
property with respect to all trivial cofibrations, hence it has the right lifting
property with respect to JQ�ICh>0(Ab).

(3) =⇒ (1). Assume that A→ 0 has the right lifting property with respect to
JQ�ICh>0(Ab). We want to show that ι(A) is fibrant in Ch(Shv(A)). By Lemma
2.2.4 we have to show that A(∅) → 0 is a quasi-isomorphism, and that A sends
elementary Nisnevich squares to homotopy pullback squares. Since A is a chain
complex of sheaves, we have A(∅) = 0. Let us now show that A sends elemen-
tary Nisnevich squares to homotopy pullback squares. Let Q be an elementary
Nisnevich square. For X, Y ∈ Ch>0(Shv(A)) let HomCh>0(Shv(A))(X, Y ) be the
internal hom of Ch>0(Shv(A)) and let

mapCh(X, Y ) ∈ Ch>0(Ab)

be defined by

mapCh(X, Y ) := HomCh>0(Shv(A))(X, Y )(pt).

The square A(Q) will be a homotopy pullback square in Ch(Ab) if and only
if the map

p∗Q : mapCh(tQ, A)→ mapCh(sQ, A)

is a quasi-isomorphism in Ch>0(Ab). To show that p∗Q is a quasi-isomorphism,
it suffices to show that p∗Q is a trivial fibration in Ch>0(Ab). For that we need
to show that p∗Q has the right lifting property with respect to ICh(Ab)>0

. Now for
every map f : M → N in ICh(Ab)>0

a square

M

f

��

// mapCh(tQ, A)

p∗Q
��

N //

99

mapCh(sQ, A)
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has a lift in Ch>0(Ab) if and only if the square

tQ ⊗M
∐

sQ⊗M
sQ ⊗N

pQ�f

��

// A

��
tQ ⊗N //

88

0

has a lift in Ch>0(Shv(A)). This lift exists, because A → 0 has the right lifting
property with respect to JQ�ICh(Ab)>0

.

In what follows, let Ch(Psh(A))proj be the model category Ch(Psh(A)) with
standard projective model structure. Let Ch(Psh(A))nis be the model category
Ch(Psh(A)) with local projective model structure. See Section 2.2 for details.
Let Lnis : Ch(Psh(A)) � Ch(Shv)A : Unis be the adjunction consisting of the
sheafification and the forgetful functors.

5.2.10 Proposition. Let f : A → B be a morphism in Ch>0(Shv(A)) such that
B is fibrant and f has the right lifting property with respect to J ′. Then f is a
fibration in Ch>0(Shv(A)).

Proof. Our first claim is that A is fibrant. Since B is fibrant, by Lemma 5.2.9
B → 0 has the right lifting property with respect to JQ�ICh>0(Ab). Since f has
the right lifting property with respect to JQ�ICh>0(Ab) it follows that A→ 0 has
the right lifting property with resepct to JQ�ICh>0(Ab). Lemma 5.2.9 implies A
is fibrant.

Next, let D−1B0 ∈ Ch(Shv(A)) denote the chain complex

. . . 0→ 0→ B0
id→ B0 → 0→ . . .

that is B0 in degree 0 and −1, and which is 0 everywhere else. We claim that
D−1B0 is fibrant in Ch(Shv(A)). Indeed, the map UnisD

−1B0 → 0 is a trivial
fibration in Ch(Psh(A))proj, hence it is also a trivial fibration in Ch(Psh(A))nis.
ThereforeD−1B0 → 0 is a trivial fibration in Ch(Shv(A)), and soD−1B0 is fibrant.
Note that τgood(D−1B0) = 0 in Ch>0(Shv(A)).

In particular, ι(A)⊕D−1B0 is fibrant in Ch(Shv(A)) and we have that

τgood(ι(A)⊕D−1B0) ∼= τgood(ι(A))⊕ τgood(D−1B0) ∼= A⊕ 0 = A.
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Define g : D−1B0 → ι(B) in Ch(Shv(A)) as the map

. . . //

��

0 //

��

B0
id //

id
��

B0
//

��

0 //

��

. . .

. . . // B1
// B0

// 0 // 0 // . . .

Then ι(f) + g : ι(A)⊕D−1B0 → ι(B) is a map between fibrant objects, and
we have a commutative diagram where the horizontal maps are isomorphisms

τgood(ι(A)⊕D−1B0) ∼ //

τgood(ι(f)+g)
��

A⊕ 0

f+0

��

A

f

��
τgood(ι(B)) ∼ // B B

We want to show that f is a fibration in Ch>0(Shv(A)). Since τgood is a right
Quillen functor, we now just need to show that ι(f)+g is a fibration in Ch(Shv(A)).
For this it suffices to show that Unis(ι(f)+g) is a fibration in Ch(Psh(A))nis. Since
Unisι(A ⊕ D−1B0) and Unisι(B) are fibrant in Ch(Psh(A))nis, it suffices by [27,
Proposition 3.3.16] to show that Unis(ι(f)+g) is a fibration in Ch(Psh(A))proj. So
we have to show that the map ι(f) + g is sectionwise an epimorphism in Ch(Ab).
In degree n > 1 the map ι(f) : ι(A) → ι(B) is sectionwise surjective, because of
Lemma 5.2.8 and the fact that f satisfies the right lifting property with respect
to Jproj. In degree n 6 −1 the map ι(f) + g is sectionwise surjective, because
ι(B)n = 0. Finally, in degree n = 0 the map ι(f) + g is sectionwise surjective,
because g : D−1B0 → ι(B) is sectionwise surjective in degree 0. So Unis(ι(f) + g)
is a fibration in Ch(Psh(A))proj. Then ι(f) + g is a fibration in Ch(Shv(A)), and
then f ∼= τgood(ι(f) + g) is a fibration in Ch>0(Shv(A)).

5.2.11 Corollary. Ch>0(Shv(A)) is weakly finitely generated and J ′ is a set of
weakly generating trivial cofibrations for Ch>0(Shv(A)).

Proof. By Lemma 5.2.3 Ch>0(Shv(A)) is cofibrantly generated, so there exists
a set J of generating trivial cofibrations. Since every object in Ch>0(Shv(A))
is small, the domains and codomains from J are small. By Lemma 5.2.6 the
category Ch>0(Shv(A)) has a set of generating cofibrations with finitely presented
domains and codomains. All morphisms from J ′ are trivial cofibrations with
finitely presented domains and codomains, so Proposition 5.2.10 implies that J ′

is set of weakly generating trivial cofibrations for Ch>0(Shv(A)).
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5.2.12 Lemma. The model category Ch>0(Shv(A)) is cellular.

Proof. Due to Corollary 5.2.11 we know that Ch>0(Shv(A)) is cofibrantly gen-
erated with a set of generating cofibrations with finitely presented domains and
codomains. We now just need to show that cofibrations in Ch>0(Shv(A)) are
effective monomorphisms. If f is a cofibration in Ch>0(Shv(A)), then ι(f) is a
cofibration in Ch(Shv(A)). Then f is a monomorphism in Ch(Shv(A)) and in
Ch>0(Shv(A)). Since Ch>0(Shv(A)) is an abelian category, every monomorphism
is effective. Hence f is an effective monomorphism.

5.2.13 Lemma. The model category Ch>0(Shv(A)) is strongly left proper in the
sense of [14, Definition 4.6]

Proof. If we have a pushout square

A⊗ Z f //

g⊗Z
��

B

��
C ⊗ Z

h
// D

in Ch>0(Shv(A)) with f a weak equivalence and g : A → C a cofibration, then
the square

ι(A)⊗ ι(Z) ∼ //

ι(g)⊗ι(Z)
��

ι(A⊗ Z)
ι(f) //

ι(g⊗Z)
��

ι(B)

��
ι(C)⊗ ι(Z) ∼ // ι(C ⊗ Z)

ι(h)
// ι(D)

is a pushout square in Ch(Shv(A)). Since ι(f) is a weak equivalence, ι(g) is a
cofibration, and Ch(Shv(A)) is strongly left proper by Lemma 2.2.24, it follows
that ι(h) is a weak equivalence in Ch(Shv(A)). So h is a weak equivalence in
Ch>0(Shv(A)).

In summary, we have a model category Ch>0(Shv(A)) that is cellular, weakly
finitely generated and whose weak equivalences are the local quasi-isomorphisms.
With respect to the usual tensor product of chain complexes ⊗ it is monoidal,
strongly left proper and satisfies the monoid axiom.

We can transfer this model structure along the Dold-Kan correspondence

DK : Ch>0(Shv(A))
∼↔ ∆op(Shv(A)) : DK−1.
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So we define a model structure on ∆op(Shv(A)), where a morphism f is a weak
equivalence (respectively fibration, cofibration), if and only if DK−1(f) is a weak
equivalence (respectively fibration, cofibration) in Ch>0(Shv(A)). Then weak
equivalences in ∆opShv(A) are the stalkwise weak equivalences of simplicial sets.
Furthermore ∆opShv(A) is weakly finitely generated and cellular. From now
on, weak equivalences in ∆opShv(A) be called local equivalences, fibrations in
∆opShv(A) will be called local fibrations, and fibrant objects in ∆opShv(A) will
be called locally fibrant objects.

Let ⊗ be the degreewise tensor product of ∆opShv(A). We want to show
that ∆opShv(A) is monoidal, strongly left proper and satisfies the monoid axiom
with respect to ⊗. The Dold-Kan correspondence is unfortunately not strongly
monoidal with respect to the degreewise tensor product ⊗ on ∆opShv(A) and
the usual tensor product of chain complexes on Ch>0(Shv(A)). We define on
Ch>0(Shv(A)) the Dold-Kan twisted tensor product ⊗

DK
by

A ⊗
DK

B := DK−1(DK(A)⊗DK(B)).

Then the Dold-Kan correspondences is strongly monoidal with respect to the
degreewise tensor product ⊗ on ∆opShv(A) and the Dold-Kan twisted tensor
product ⊗

DK
on Ch>0(Shv(A)). So to show that ∆opShv(A) is monoidal, strongly

left proper and satisfies the monoid axiom with respect to ⊗, we now just need to
show that Ch>0(Shv(A)) is monoidal, strongly left proper and satisfies the monoid
axiom with respect to ⊗

DK
.

5.2.14 Lemma. Let f be a cofibration and Z an object in Ch>0(Shv(A)). Then
f ⊗
DK

Z is a monomorphism.

Proof. If f : A→ B is a cofibration in Ch>0(Shv(A)) then f is a degreewise split
monomorphism. The functor DK : Ch>0(Shv(A))→ ∆opShv(A) can be explicitly
computed in degree n > 0 by

DK(X)n =
⊕

[n]→[k]
surjective

Xk.

So DK(f) is computed as the morphism

DK(f)n =
⊕

[n]→[k]
surjective

fk :
⊕

[n]→[k]
surjective

Ak →
⊕

[n]→[k]
surjective

Bk.
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This is a direct sum of split monomorphisms. So DK(f) is a degreewise split
monomorphism in ∆opShv(A). Hence, if Z is an object in Ch>0(Shv(A)), then
the degreewise tensor product DK(f)⊗DK(Z) is again a split monomorphism
in ∆opShv(A). Since DK−1 preserves monomorphisms, this then implies that

f ⊗
DK

Z = DK−1(DK(f)⊗DK(Z))

is a monomorphism in Ch>0(Shv(A)).

5.2.15 Lemma. Ch>0(Shv(A)) satisfies the monoid axiom with respect to ⊗
DK

.

So ∆opShv(A) satisfies the monoid axiom with respect to ⊗.

Proof. Since Shv(A) is a Grothendieck category, we know that injective quasi-
isomorphisms in Ch>0(Shv(A)) are stable under pushouts and transfinite compo-
sitions. So to prove the monoid axiom we just need to show that for every trivial
cofibration f : A → B in Ch>0(Shv(A)) the morphism f ⊗

DK
Z is an injective

quasi-isomorphism. By Lemma 5.2.14 we know that it is injective. So we just
need to show that it is a weak equivalence.

By [42] we have for all X, Y ∈ Ch>0(Shv(A)) a natural chain homotopy equiv-
alence

∇ : X ⊗ Y → X ⊗
DK

Y

between the usual tensor product of chain complexes and the Dold-Kan twisted
tensor product. We then get a commutative diagram

A ⊗
DK

Z
f ⊗
DK

Z

// B ⊗
DK

Z

A⊗ Z f⊗Z //

∇
OO

B ⊗ Z
∇
OO

where vertical maps are chain homotopy equivalences, and the lower horizontal
map is a weak equivalence because Ch>0(Shv(A)) satisfies the monoid axiom with
respect to ⊗. It follows that the upper horizontal map is a weak equivalence. So
Ch>0(Shv(A)) satisfies the monoid axiom with respect to ⊗

DK
.

5.2.16 Lemma. Ch>0(Shv(A)) is strongly left proper with respect to ⊗
DK

. So

∆opShv(A) is strongly left proper with respect to ⊗.
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Proof. Since Shv(A) is a Grothendieck category, quasi-isomorphisms in the cate-
gory Ch>0(Shv(A)) are stable under pushouts along monorphisms. For any cofi-
bration f the map f ⊗

DK
Z is a monomorphism by Lemma 5.2.14. So Ch>0(Shv(A))

is strongly left proper with respect to ⊗
DK

.

5.2.17 Lemma. Ch>0(Shv(A)) is a monoidal model category with respect to ⊗
DK

.

So ∆opShv(A) is a monoidal model category with respect to ⊗.

Proof. The unit for ⊗
DK

is the chain complex Z concentrated in degree 0. That

is a cofibrant object, so Ch>0(Shv(A)) satisfies the unit axiom. Let us now
show the pushout-product axiom. The category of simplicial abelian groups
∆op Ab is monoidal and satisfies the monoid axiom with respect to the degree-
wise tensor product of chain complexes ⊗. If we define a Dold-Kan twisted
tensor product ⊗

DK
on chain complexes of abelian groups Ch>0(Ab) by X ⊗

DK
Y =

DK−1(DK(X) ⊗ DK(Y )) then Ch>0(Ab) with the standard projective model
structure and tensor product ⊗

DK
is a monoidal model category satisfying the

monoid axiom. Similarly, we can also define a Dold-Kan twisted tensor prod-
uct ⊗

DK
on chain complexes of presheaves Ch>0(Psh(A)), and it coincides with

the Day convolution product induced by the Dold-Kan twisted tensor product
on Ch>0(Ab) and the monoidal structure of A. By [20, Theorem 5.5] it fol-
lows that Ch>0(Psh(A)) with standard projective model structure and the Dold-
Kan twisted tensor product ⊗

DK
is a monoidal model category. For Ch>0(Shv(A))

the set {A(−, X)nis ⊗ SnZ → A(−, X)nis ⊗ DnZ | X ∈ Smk, n > 0} ∪ {0 →
A(−, X)nis⊗S0Z | X ∈ Smk} is a set of generating cofibrations. All these generat-
ing cofibrations are sheafifications of cofibrations from Ch>0(Psh(A)). So if f and
g are generating cofibrations in Ch>0(Psh(A)), and f�g is the pushout-product
with respect to ⊗

DK
, then we can find cofibrations f ′ and g′ in Ch>0(Psh(A)) such

that f = Lnis(f
′) and g = Lnis(g

′). Then f�g ∼= Lnis(f
′�g′), where the pushout-

product f ′�g′ in Ch>0(Psh(A)) is taken with respect to ⊗
DK

. Since Ch>0(Psh(A))

is a monoidal model category with respect to ⊗
DK

it follows that f ′�g′ is a cofibra-

tion in Ch>0(Psh(A)), and therefore f�g is a cofibration in Ch>0(Shv(A)). All
we need to show now is that a pushout-product of a cofibration with a trivial
cofibration is a weak equivalence in Ch>0(Shv(A)). So let f : A → B be a cofi-
bration and g : C → D be a trivial cofibration in Ch>0(Shv(A)). We need to
show that the pushout-product f�g with respect to ⊗

DK
is a weak equivalence in
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Ch>0(Shv(A)). Consider the diagram

A ⊗
DK

C

��

A ⊗
DK

g

// A ⊗
DK

D

��

��

B ⊗
DK

C h //

B ⊗
DK

g //

A ⊗
DK

D
∐

A ⊗
DK

C

B ⊗
DK

C

f�g

''
B ⊗

DK
D

The morphism h is a base change of A ⊗
DK

g. Since g is a trivial cofibration and

Ch>0(Shv(A)) satisfies the monoid axiom with respect to ⊗
DK

, this means that h

is a weak equivalence in Ch>0(Shv(A)). Similarly B ⊗
DK

g is a weak equivalence

in Ch>0(Shv(A)). So by 2-of-3 it follows that f�g is a weak equivalence in
Ch>0(Shv(A)). So Ch>0(Shv(A)) is a monoidal model category.

We document the above lemmas as follows.

5.2.18 Proposition. The model category ∆opShv(A) with the usual degreewise
tensor product is cellular, weakly finitely generated, monoidal, strongly left proper
and satisfies the monoid axiom.

From now on, weak equivalences in ∆opShv(A) be called local equivalences,
fibrations in ∆opShv(A) will be called local fibrations, and fibrant objects in
∆opShv(A) will be called locally fibrant objects.



Chapter 6

Relation to framed motivic
Γ-spaces

Recall that framed motivic Γ-spaces introduced in [25] model connective motivic
spectra. They are a motivic counterpart of the celebrated Segal Γ-spaces [48].

In this chapter we associate framed motivic Γ-spaces to enriched motivic A-
spaces, when the category of correspondences A has framed correspondences. In
Section 6.2 we also associate enriched functors of unbounded chain complexes to
enriched motivic A-spaces.

For every natural number n > 0 let n+ be the pointed set {0, . . . , n} where 0
is the basepoint. We write Γop for the full subcategory of the category of pointed
sets on the objects n+. Γop is equivalent to the category of finite pointed sets.
We write Γ for the opposite category of Γop. This category is equivalent to the
category called Γ in Segal’s original paper [48].

6.1 Relation to Γ-spaces

In the additive context we do not need the category Γ as a variable in contrast
to framed motivic Γ-spaces in the sense of [25]. This section is to justify this fact
(see Proposition 6.1.6). We also associate framed motivic Γ-spaces to enriched
motivic A-spaces (see Proposition 6.1.7).

Let B be an additive model category. By ΓSpcsp(B) we denote the full subcat-
egory of the functor category Fun(Γop,B) consisting of those functors X : Γop → B
such that for every n ∈ N the canonical map X (n+)→

n∏
i=1

X (1+) is a weak equiv-

110
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alence in B. This category is called the category of special Γ-spaces in B.
We have a functor EM : B → ΓSpcsp(B) given by the Eilenberg Maclane

construction EM(A)(n+) :=
n⊕
i=1

A. If f : m+ → n+ is a function between pointed

finite sets, then f is a morphism in Γop, and we define

EM(A)(f) :
m⊕
j=1

A→
n⊕
i=1

A

as follows. For 0 6 i 6 n the i-th component EM(A)(f)i :
m⊕
j=1

A → A is

EM(A)(f)i :=
∑

j∈f−1({i})
πj, where πj :

m⊕
i=1

A→ A is the j-th projection morphism.

We have another functor ev1 : ΓSpcsp(B)→ B given by ev1(X ) := X (1+).

6.1.1 Lemma. The functor ev1 : ΓSpcsp(B) → B is left adjoint to EM : B →
ΓSpcsp(B).

Proof. Given a morphism ϕ : X (1+)→ A in B, we get for every n ∈ N a morphism

X (n+)→
n⊕
i=1

X (1+)→
n⊕
i=1

A = EM(A)(n+),

which together assemble into a morphism Φ(ϕ) : X → EM(A) in ΓSpcsp(B).
Conversely, given a morphism ψ : X → EM(A) in ΓSpcsp(B), we can evaluate
it at 1+ to get a morphism Ψ(ψ) : X (1+) → EM(A)(1+) = A. For every ϕ :
X (1+) → A we have Ψ(Φ(ϕ)) = ϕ. Now take a morphism ψ : X → EM(A) in
ΓSpcsp(B). We claim that Φ(Ψ(ψ)) = ψ. Take n ∈ N and show that ψ(n+) :

X (n+) → EM(A) =
n⊕
i=1

A is equal to Φ(Ψ(ψ))(n+) : X (n+) →
n⊕
i=1

X (1+) →
n⊕
i=1

A.

By the universal property of the product
⊕

we need to take i with 0 6 i 6 n
and show that the following diagram commutes

X (n+)
ψ(n+) //

X (πi)

��

n⊕
i=1

A

πi

��
X (1+)

ψ(1+) // A

But this just follows from the naturality of ψ : X → EM(A).
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6.1.2 Definition. (1) Let B be an additive model category. A morphism f :
X → Y in ΓSpcsp(B) is called a weak equivalence if and only if for every n ∈ N
the map f(n+) : X (n+)→ Y(n+) is a weak equivalence in the model category B.
We write W for the class of weak equivalences in ΓSpcsp(B).

(2) We write Ho(ΓSpcsp(B)) for the localization of ΓSpcsp(B) with respect to
the class of weak equivalences W : Ho(ΓSpcsp(B)) := ΓSpcsp(B)[W−1].

6.1.3 Remark. (1) All isomorphisms in ΓSpcsp(B) are weak equivalences. Weak
equivalences in ΓSpcsp(B) satisfy the 2-out-of-3 property.

(2) The functors EM : B → ΓSpcsp(B) and ev1 : ΓSpcsp(B) → B preserve all
weak equivalences.

(3) It is a priori not obvious that the hom-sets of the category Ho(ΓSpcsp(B))
are small. However, Proposition 6.1.6 below implies that they are in fact small.

6.1.4 Lemma. A morphism ϕ : ev1(X ) → A is a weak equivalence in B if
and only if its adjoint morphism Φ(ϕ) : X → EM(A) is a weak equivalence in
ΓSpcsp(B).

Proof. Let ϕ : ev1(X ) → A be a weak equivalence. Take n ∈ N. Then Φ(ϕ)
evaluated at n+ is defined as the composite

X (n+)→
n⊕
i=1

X (1+)→
n⊕
i=1

A = EM(A)(n+).

The first map is a weak equivalence, because X is a special Γ-space. The second
map is a weak equivalence, because ϕ : X (1+) → A is a weak equivalence.
Therefore Φ(ϕ) : X → EM(A) is a weak equivalence.

Conversely, let ϕ : ev1(X )→ A be a map such that Φ(ϕ) is a weak equivalence
in ΓSpcsp(B). Then ϕ = Φ(ϕ)(1+) is also a weak equivalence.

The following lemma is folklore.

6.1.5 Lemma. Let C,D be categories, each equipped with a class of morphisms,
called the weak equivalences, satisfying the 2-out-of-3-property. Let Ho(C), Ho(D)
be the homotopy categories of C, D, i.e. the categories obtained by inverting the
weak equivalences. Let `C : C → Ho(C) be the localization functor of C, and
`D : D → Ho(D) be the localization functor of D. Let F,G : C → D be functors
sending weak equivalences in C to weak equivalences in D. Let τ : F → G be a
natural transformation. Then the functors F,G induce functors Ho(F ),Ho(G) :
Ho(C) → Ho(D) satisfying Ho(F ) ◦ `C = `D ◦ F , Ho(G) ◦ `C = `D ◦ G, and
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τ : F → G induces a natural transformation Ho(τ) : Ho(F ) → Ho(G) such that
for every A ∈ C, the component of Ho(τ) at A is given by Ho(τ)A = `D(τA).

The following statement informally says that Γ-spaces in an additive category
B are entirely recovered by B itself (up to homotopy).

6.1.6 Proposition. The adjunction ev1 a EM induces an equivalence of cate-
gories

Ho(ev1) : Ho(ΓSpcsp(B))
∼
� Ho(B) : Ho(EM).

Proof. Since ev1 and EM preserve weak equivalences, they induce two functors
Ho(ev1) : Ho(ΓSpcsp(B)) → Ho(B) and Ho(EM) : Ho(B) → Ho(ΓSpcsp(B))
on the homotopy categories. For the adjunction ev1 a EM there is a unit η :
IdΓSpcsp(B) → EM◦ev1. By Lemma 6.1.5, applied to F = IdΓSpcsp(B), G = EM◦ev1

and τ = η , it induces a natural transformation Ho(η) : IdHo(ΓSpcsp(B)) → Ho(EM)◦
Ho(ev1).

For every X ∈ ΓSpcsp(B) the identity morphism ev1(X ) → ev1(X ) is a weak
equivalence, so by Lemma 6.1.4 applied to A = ev1(X ), the adjunction unit map
ηX : X → EM(ev1(X )) is a weak equivalence. This implies that the natural
transformation Ho(η) is in fact a natural isomorphism of functors.

Furthermore we have a strict equality ev1 ◦ EM = IdB, which implies that
Ho(ev1) ◦ Ho(EM) = IdHo(B). So Ho(ev1) is an equivalence with pseudo-inverse
Ho(EM).

Let Fr∗(k) be the category of framed correspondences. For each V ∈ Smk

let σV : V → V be the level 1 explicit framed correspondence ({0} × V,A1 ×
V, prA1 , prV ). For the next result, assume that A has framed correspondences in
the sense of Definition 5.1.4. So there is a functor Φ : Fr∗(k) → A which takes
every σV to the identity on V . Let Mfr be the category of pointed simplicial
Nisnevich sheaves on Fr∗(k): Mfr := ∆opShv(Fr∗(k), Set∗).

Φ induces a forgetful functor UΦ : ∆opShv(A) → Mfr. The category Mfr is
enriched inM where for X, Y ∈Mfr the enriched morphism objectMfr(X, Y ) ∈
M is defined on Z ∈ Smk and [n] ∈ ∆op by

Mfr(X, Y )(Z)n := HomMfr(X, Y (Z ×∆n ×−)).

We have a monoidal adjunction LM : M � ∆opShv(A) : UM, where the right
adjoint UM is the forgetful functor. For X, Y ∈ ∆opShv(A) we have a canonical
map

UM(Hom∆opShv(A)(X, Y ))→Mfr(UΦ(X), UΦ(Y ))
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defined on Z ∈ Smk and [n] ∈ ∆op by the map

UM(Hom∆opShv(A)(X, Y ))(Z)n = Hom∆opShv(A)(X, Y (Z ×∆n ×−))
UΦ→

→ HomMfr(UΦ(X), UΦ(Y )(Z ×∆n ×−)).

Let Sm/k+ be the category of framed correspondences of level 0 as defined in [25,
Example 2.4]. Its morphism objects are defined by

Sm/k+(X, Y ) := HomM(X+, Y+).

Since LM is lax monoidal, we have for every X, Y ∈ Smk a canonical map
LM(Sm/k+(X, Y )) → Sm(X, Y ) in ∆opShv(A), which induces by adjunction
a canonical map Sm/k+(X, Y ) → UM(Sm(X, Y )) in M. For every enriched
motivic A-space X we can now define a M-enriched functor

Sm/k+ →Mfr, V 7→ UΦ(X (V )).

It acts on morphism sets via the composite

Sm/k+(X, Y )→ UM(Sm(X, Y ))→ UM(Hom∆op(Shv(A))(X (X),X (Y )))→
→Mfr(UΦ(X (X)), UΦ(X (Y ))).

With this enriched functor we can then also define a framed motivic Γ-space
EMfr(X ) in the sense of [25, Definition 3.5] by defining

EMfr(X ) : Γop × Sm/k+ →Mfr, EMfr(X )(n+, U) = UΦ(X (U))n.

6.1.7 Proposition. Suppose that A has framed correspondences in the sense of
Definition 5.1.4. For every special enriched motivic A-space X the framed motivic
Γ-space

EMfr(X ) : Γop × Sm/k+ →Mfr, EMfr(X )(n+, U) = UΦ(X (U))n,

is a very special framed motivic Γ-space in the sense of [25, Axioms 1.1].

Proof. We verify the axioms 1)-5) and 7) for very special motivic Γ-spaces from
[25, Axioms 1.1]. For Axiom 1) we need to check that EMfr(X )(0+, U) = 0,
EMfr(X )(n+, ∅) = 0 and that

EMfr(X )(n+, U)→
n∏
i=1

EMfr(X )(1+, U)
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is a local equivalence. We have that EMfr(X )(0+, U) = UΦ(X (U))0 = 0, and

EMfr(X )(n+, U) = UΦ(X (U))n →
n∏
i=1

EMfr(X )(1+, U)

is an isomorphism. According to Lemma 4.1.2 we have that X (∅) = 0. This
implies that EMfr(X )(n+, ∅) = 0, hence Axiom 1) holds. Axioms 2)-5) for motivic
Γ-spaces follow directly from axioms 1)-4) of special enriched motivic A-spaces,
except for Axiom 2) we need to check that the presheaf of stable homotopy groups

V 7→ πsnEMfr(X )(S, U)(V )

is radditive and σ-stable. The σ-stability follows from the fact that Φ : Fr∗(k)→
A sends σV to the identity. Let us now check that it is radditive. For every
U ∈ Smk, we have that X (U) is a sheaf of simplicial abelian groups. This implies
that EMfr(X )(S, U) is a sheaf of S1-spectra. So we have isomorphisms of S1-
spectra EMfr(X )(S, U)(∅) = 0 and

EMfr(X )(S, U)(V1

∐
V2) ∼= EMfr(X )(S, U)(V1)× EMfr(X )(S, U)(V2).

Since stable homotopy groups πsn preserve products and zero objects, we get that

V 7→ πsnEMfr(X )(S, U)(V )

is radditive. Axiom 7) follows from the fact that X lands in sheaves of abelian
groups.

6.1.8 Lemma. Suppose that A has framed correspondences in the sense of Def-
inition 5.1.4. Let X be an enriched motivic A-space and let EMfr(X ) be its
associated framed motivic Γ-space from Proposition 6.1.7. Then X is very effec-
tive in the sense of Definition 5.1.2 if and only if EMfr(X ) is very effective in
the sense of [25, Axioms 1.1].

Proof. This follows from the definitions of effectiveness for X and EMfr(X ).

6.2 Enriched functors of chain complexes

In the previous section we associated framed motivic Γ-spaces to enriched mo-
tivic A-spaces. In this section we associate Ch(Shv(A))-enriched functors in
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[Sm,Ch(Shv(A))] to enriched motivic A-spaces. There is a canonical isomor-
phism of categories Ch([Sm, Shv(A)]) ∼= [Sm,Ch(Shv(A))] constructed in [20].
Likewise, there is a canonical isomorphism of categories ∆op([Sm, Shv(A)]) ∼=
[Sm,∆op(Shv(A))]. In what follows we shall freely use these isomorphisms.

6.2.1 Definition. Let X be an special enriched motivic A-space and let

DK−1 : ∆op[Sm, Shv(A)]→ Ch>0([Sm, Shv(A)])

be the normalized Moore complex functor from the Dold-Kan correspondence.
Denote by Λ the composite functor

∆op[Sm, Shv(A)]
DK−1

−−−→ Ch>0([Sm, Shv(A)])→ Ch([Sm, Shv(A)]).

6.2.2 Proposition. Let X ∈ ∆op[Sm, Shv(A)] be an enriched motivic A-space.
Then X is special if and only if Λ(X ) is in DMA[Sm], where the latter category
is defined in Section 3.1.

Proof. Four axioms defining special enriched motivic A-spaces correspond to four
properties of functors in DMA[Sm]. More precisely, the following four properties
are true.

(1) X satisfies axiom (1) of special enriched motivic A-spaces if and only if
for every U ∈ Smk the complex of sheaves Λ(X )(U) has A1-invariant cohomology
sheaves.

(2) X satisfies the cancellation axiom (2) if and only if Λ(X ) satisfies cancel-
lation in the sense of Definition 3.1.6.

(3) X satisfies the A1-invariance axiom (3) if and only if Λ(X ) is covari-
antly A1-invariant in the sense that Λ(X )(U × A1) → Λ(X )(U) is a local quasi-
isomorphism.

(4) X satisfies the Nisnevich excision axiom (4) if and only if Λ(X ) satis-
fies Nisnevich excision in the sense of Definition 3.1.9. Here the functor DK−1 :
∆opShv(A)→ Ch>0(Shv(A)) preserves homotopy cartesian squares for the follow-
ing reason: Since DK−1 preserves all weak equivalences, it is naturally weakly
equivalent to its right derived functor RDK−1, and by [2, Proposition 4.10] the
right derived functor RDK−1 preserves all homotopy limits, including homotopy
pullback squares.



Chapter 7

Reconstructing SH(k)>0,Q

Based on the material and techniques developed in the previous chapters, we
prove four reconstruction theorems in this chapter. Firstly we prove Theorem
7.3.3 and Theorem 7.3.11 which recover DMA,>0 and DM eff

A,>0 from special en-
riched motivic A-spaces. Secondly we prove Theorem 7.4.2 and Theorem 7.4.4
which recover SH(k)>,Q and SHveff(k)Q from rational special enriched motivic
A-spaces.

7.1 The Röndigs–Østvær Theorem for enriched

motivic spaces

Throughout this section X is a pointwise locally fibrant special enriched motivic
A-space.

7.1.1 Definition. We can extend X to an enriched functor

EM(X ) : Γop × Sm→ ∆opShv(A) (n+, U) 7→ X (U)n.

We can take the (S1,Gm)-evaluation of EM(X ) to get a motivic bispectrum
evS1,Gm

(EM(X )) ∈ SH(k). We define the bispectrum associated to X to be
this bispectrum evS1,Gm

(X ) := evS1,Gm
(EM(X )). If A has framed correspon-

dences, then evS1,Gm
(X ) is also the evaluation of the framed motivic Γ-space

EMfr(X ) from Proposition 6.1.7. Then by [25, Section 2.7] the bispectrum
evS1,Gm

(X ) = evS1,Gm
(EMfr(X )) is a framed bispectrum in the sense of [24,

Definition 2.1]. In this case we say that evS1,Gm
(X ) is the framed bispectrum

associated to X .

117
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In this section we prove the following theorem extending Röndigs–Østvær’s
Theorem [46].

7.1.2 Theorem. For every U ∈ Smk we have a natural isomorphism

evS1,Gm
(X ) ∧ Σ∞S1,Gm

U+
∼→ evS1,Gm

(X (U ×−))

in SH(k)[1/p], where p is the exponential characteristic of k.

To prove it we will need a few lemmas. For a finite pointed set n+ = {0, . . . , n}
and U ∈ Smk let n+⊗U be the n-fold coproduct

n∐
i=1

U . Let fM be the category of

finitely presented motivic spaces in the sense of [15]. Given an enriched motivic
A-space X we can define an extended functor X̂ : fM→ ∆opShv(A) by

X̂ (A)n := colim
(∆[m]×U)+→Ac

X (∆[m]n,+ ⊗ U)n

where Ac is a cofibrant replacement of A in fM. We have for all U ∈ Sm
that X̂ (U) ∼= X (U) in ∆opShv(A). Let evS1,Gm

(X̂ ) be the (S1,Gm)-evaluation

bispectrum of the extended functor X̂ : fM→ ∆opShv(A).

7.1.3 Lemma. We have a canonical isomorphism of motivic (S1,Gm)-bispectra
evS1,Gm

(X̂ ) ∼= evS1,Gm
(X ) between the (S1,Gm)-evaluation of the extended functor

X̂ , and the bispectrum associated with X in the sense of Definition 7.1.1.

Proof. By Lemma 4.1.2 we have for all U, V ∈ Smk an isomorphism X (U
∐
V ) ∼=

X (U) ⊕ X (V ) in ∆opShv(A). This implies that we have for all U ∈ Smk, n > 0

an isomorphism X (n+⊗U) ∼=
n⊕
i=1

X (U) = EM(X )(n+, U) in ∆opShv(A). We then

compute for A ∈ fM that

X̂ (A)n = colim
(∆[k]×U)+→Ac

X (∆[k]n,+ ⊗ U)n ∼= colim
(∆[k]×U)+→Ac

EM(X )(∆[k]n,+, U)n.

So X̂ naturally extends EM(X ) from Γop × Sm/k+ to fM. This then implies
that

evS1,Gm
(X̂ ) ∼= evS1,Gm

(EM(X )) = evS1,Gm
(X )

as required.
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Proof of Theorem 7.1.2. Using Definition 6.2.1 we can associate to X an enriched
functor Λ(X ) : Sm → Ch(Shv(A)). By Proposition 6.2.2 the functor Λ(X ) is in
DMA[Sm]. By Proposition 3.1.13 this implies that Λ(X ) is strictly ∼-local in
the sense of 3.1.3. Since X is pointwise locally fibrant, it follows that Λ(X ) is
∼-fibrant in the sense of Definition 3.1.11.

Using Section 4.2 we can associate to Λ(X ) an M-enriched functor Λ(X )M :
fM→ SpS1(M). We can take the 0-th level of this functor to get a motivic func-
tor Λ(X )M0 : fM→M. By Lemma 4.2.7 the motivic functor Λ(X )M0 preserves
motivic equivalences between cofibrant objects. By [34, Appendix B, Corollary
B.2] the suspension bispectrum Σ∞S1,Gm

U+ is strongly dualizable in SH(k)[1/p].
From Lemma 4.2.2 it follows that we have an isomorphism

evS1,Gm
(Λ(X )M0 ) ∧ Σ∞S1,Gm

U+
∼= evS1,Gm

(Λ(X )M0 (U ×−))

in SH(k)[1/p]. To prove the theorem, we now just need to show that there is a
natural isomorphism

evS1,Gm
(Λ(X )M0 )→ evS1,Gm

(X )

in SH(k). For this we need some intermediate steps. Firstly, by Lemma 7.1.3 we
have an isomorphism

evS1,Gm
(X̂ )→ evS1,Gm

(X ).

So we now just need to find an isomorphism

evS1,Gm
(Λ(X )M0 )→ evS1,Gm

(X̂ )

in SH(k).
In what follows, we let

DK−1 : ∆opShv(A)→ Ch>0(Shv(A))

be the Dold-Kan equivalence, i.e. the normalized Moore complex functor, for the
Grothendieck category Shv(A). We let

DK−1
Ch(Shv(A)) : ∆opCh(Shv(A))→ Ch>0(Ch(Shv(A)))

be the Dold-Kan correspondence for the Grothendieck category Ch(Shv(A)). And
we let

DK−1
double : ∆op∆opShv(A)→ Ch>0(Ch>0(Shv(A)))
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be the Dold-Kan correspondence applied twice, so that it takes bisimplicial ob-
jects to double complexes.

Using Section 4.1, equation (4.1) we can extend Λ(X ) to a functor

Λ̂(X ) : fM→ Ch(Shv(A)),

Λ̂(X )(A) := Tot(DK−1
Ch(Shv(A))( colim

(∆[k]×U)+→Ac
Λ(X )∆op

(∆[k]+ ⊗ U))).

Now for every A ∈ fM we have a natural quasi-isomorphism

DK−1(X̂ (A))→ Λ̂(X )(A)

in Ch(Shv(A)) for the following reason: X̂ (A) is the diagonal of the bisimplicial
sheaf

colim
(∆[m]×U)+→Ac

X (∆[m]+ ⊗ U).

By [8, page 37, equation 24], or [12, Theorem 2.9], for every bisimplicial object
S ∈ ∆op∆opShv(A) there is a quasi-isomorphism

DK−1(diag(S))→ Tot(DK−1
double(S))

in Ch>0(Shv(A)). So for every A ∈ fM there is a quasi-isomorphism

DK−1(X̂ (A))→ Tot(DK−1
double( colim

(∆[m]×U)+→Ac
X (∆[m]+ ⊗ U))) ∼=

∼= Tot(DK−1
Ch(Shv(A))( colim

(∆[m]×U)+→Ac
DK−1(X (∆[m]+ ⊗ U)))) ∼= Λ̂(X )(A).

By construction Λ̂(X ) lands in Ch>0(Shv(A)), so we can take the functor

DK ◦ Λ̂(X ) : fM→ ∆opShv(A)

and form the naive (S1,Gm)-evaluation bispectrum

evS1,Gm
(DK ◦ Λ̂(X )) ∈ SH(k).

The above quasi-isomorphism, then induces an isomorphism

evS1,Gm
(DK ◦ Λ̂(X ))→ evS1,Gm

(X̂ )
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in SH(k). So to prove the theorem we now just need an isomorphism

evS1,Gm
(Λ(X )M0 )→ evS1,Gm

(DK ◦ Λ̂(X ))

in SH(k).
By Lemma 4.2.5, for every A ∈ fM with cofibrant replacement Ac we have

an isomorphism

Û ◦ Λ̂(X )(A)→ Λ(X )M(Ac)

in SpS1(M), where Û : Ch(Shv(A)) → SpS1(M) is the canonical functor defined
in Section 4.2. Let ev0 : SpS1(M) → M be the functor taking the 0-th level of
a S1-spectrum. So Λ(X )M0 = ev0 ◦ Λ(X )M. By the proof of Lemma 4.2.4, the
functor ev0 ◦ Û is isomorphic to the composite

Ch(Shv(A))
τ>0→ Ch>0(Shv(A))

DK→ ∆opShv(A)
U→M,

where τ>0 is the good truncation functor and U is the forgetful functor. Since

Λ̂(X ) lands in Ch>0(Shv(A)), it does not get changed by truncation. So we get
that

ev0 ◦ Û ◦ Λ̂(X ) ∼= U ◦DK ◦ Λ̂(X ).

So for every A ∈ fM we have a natural isomorphism

(U ◦DK ◦ Λ̂(X ))(A)→ Λ(X )M0 (Ac)

in M. Since S1 and Gm are cofibrant in fM, we get an isomorphism

evS1,Gm
(Λ(X )M0 )→ evS1,Gm

(DK ◦ Λ̂(X ))

in SH(k), as claimed.
Putting it all together, we get a commutative diagram

evS1,Gm
(Λ(X )M0 ) ∧ Σ∞S1,Gm

U+
∼ //

∼
��

evS1,Gm
(Λ(X )M0 (U ×−))

∼
��

evS1,Gm
(DK ◦ Λ̂(X )) ∧ Σ∞S1,Gm

U+
//

∼
��

evS1,Gm
(DK ◦ Λ̂(X )(U ×−))

∼
��

evS1,Gm
(X̂ ) ∧ Σ∞S1,Gm

U+
//

∼
��

evS1,Gm
(X̂ (U ×−))

∼
��

evS1,Gm
(X ) ∧ Σ∞S1,Gm

U+
// evS1,Gm

(X (U ×−))
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in which all the vertical maps and the top horizontal map are isomorphisms in
SH(k)[1/p]. It follows that the bottom horizontal map is also an isomorphism in
SH(k)[1/p]. This completes the proof.

7.2 A motivic model structure for enriched mo-

tivic A-spaces

In Section 5.2 we showed that ∆opShv(A) with the degreewise tensor product
⊗ has a model structure that is cellular, weakly finitely generated, monoidal,
strongly left proper and satisfies the monoid axiom (see Proposition 5.2.18). We
can apply [14, Theorem 4.2] to this model structure to get a weakly finitely
generated model structure on the category of enriched functors [Sm,∆opShv(A)]
in which the weak equivalences, respectively fibrations, are the Sm-pointwise
local equivalences, respectively Sm-pointwise local fibrations. We call this the
local model structure on [Sm,∆opShv(A)]. By [14, Theorem 4.4] the local model
structure on [Sm,∆opShv(A)] is monoidal with the usual Day convolution prod-
uct. By [14, Corollary 4.8] the local model structure on [Sm,∆opShv(A)] is left
proper. Since [Sm,∆opShv(A)] is weakly finitely generated, and all cofibrations in
∆opShv(A) are monomorphisms, it follows that [Sm,∆opShv(A)] is cellular. Note
that for every U ∈ Smk the representable functor Sm(U,−) ∼= Sm(U,−) ⊗ pt is
cofibrant in [Sm,∆opShv(A)].

In this section we define another model structure on [Sm,∆opShv(A)] such
that the fibrant objects are the pointwise locally fibrant special enriched motivic
A-spaces.

7.2.1 Definition. Similarly to Section 3.1 we define four families of morphisms
in [Sm,∆opShv(A)].

1. We let A1
1 be the family of morphisms consisting of

Sm(U,−)⊗ A1 → Sm(U,−)

for every U ∈ Smk.

2. We let τ be the family of morphisms consisting of the evaluation map

Sm(G∧n+1
m × U,−)⊗G∧1

m → Sm(G∧nm × U,−)

for every n > 0 and U ∈ Smk.
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3. We let A1
2 be the family of morphisms consisting of

Sm(U,−)→ Sm(U × A1,−)

for every U ∈ Smk.

4. We let Nis be the following family of morphisms: For every elementary
Nisnevich square Q of the form

U ′
β //

α
��

X ′

γ
��

X
δ
// X

in Smk we have a square

Sm(U ′,−) Sm(X ′,−)
β∗oo

Sm(U,−)

α∗

OO

Sm(X,−)
δ∗
oo

γ∗

OO

in [Sm,∆opShv(A)], which induces a map on homotopy fibers

pQ : hofib(γ∗)→ hofib(α∗).

We let Nis be the family of morphisms consisting of pQ for every elementary
Nisnevich square Q.

Finally, we let ∼ denote the union of all these four classes of morphisms.

∼:= A1
1 + τ + A1

2 +Nis.

7.2.2 Definition. For X, Y ∈ [Sm,∆opShv(A)] let

map∆opShv(A)(X, Y ) ∈ ∆opShv(A)

be the simplicial sheaf of morphisms from X to Y . It is defined by taking the
internal hom Hom[Sm,∆opShv(A)](X, Y ) and evaluating it at the point pt ∈ Sm.

map∆opShv(A)(X, Y ) := Hom[Sm,∆opShv(A)](X, Y )(pt).
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For U ∈ Smk and n > 0 we have

map∆opShv(A)(X, Y )(U)n = Hom[Sm,∆opShv(A)](X ⊗ U ⊗∆[n], Y )

in Ab.
Similarly to Definition 3.1.3, given a class of morphisms S in [Sm,∆opShv(A)]

and an object X ∈ [Sm,∆opShv(A)] with pointwise locally fibrant replacement
Xf we say that X is strictly S-local if for every s : A → B with s ∈ S the
morphism

s∗ : map∆opShv(A)(B,Xf )→ map∆opShv(A)(B,Xf )

is a local quasi-isomorphism of sheaves.

7.2.3 Lemma. A enriched motivic A-space X : Sm → Shv(A) is special if and
only if it is strictly ∼-local.

Proof. By Lemma 6.2.2 we know that X is special if and only if Λ(X ) lies in
DMA[Sm]. By Proposition 3.1.13 this is the case if and only if Λ(X ) is strictly
∼-local in the sense of Definition 3.1.3, and this is the case if and only if X is
strictly ∼-local in the sense of Definition 7.2.2.

7.2.4 Definition. Given a class of morphisms S in [Sm,∆opShv(A)], we write Ŝ
for the class of morphisms

Ŝ := {s⊗ Z | s ∈ S, Z ∈ Smk}.

We define the enriched motivic model structure on [Sm,∆opShv(A)] to be the
left Bousfield localization of the local model structure on [Sm,∆opShv(A)] with
respect to the class of morphisms ∼̂. This model category will be denoted by
[Sm,∆opShv(A)]mot.

7.2.5 Lemma. Let S be a class of morphisms with cofibrant domains and co-
domains in [Sm,∆opShv(A)]. Then an object F ∈ [Sm,∆opShv(A)] is strictly

S-local if and only if its local fibrant replacement F f is Ŝ-local in the usual model
category theoretic sense of [27, Definition 3.1.4].

Proof. Let F f be a pointwise locally fibrant replacement of F . For every s : A→
B, s ∈ Ŝ let sc : Ac → Bc be a cofibrant replacement of s. This means we have a
commutative square

Ac

��

sc // Bc

��
A

s // B
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such that the vertical maps are trivial fibrations, Ac and Bc are cofibrant and sc

is a cofibration.
Note that for every s ∈ Ŝ the domain A and codomain B are already cofibrant,

but s is not neccessarily a cofibration.
For X, Y ∈ [Sm,∆opShv(A)] let map∆op Set(X, Y ) ∈ ∆op Set denote the non-

derived simplicial mapping space. It can be defined by

map∆op Sets(X, Y ) := Hom[Sm,∆opShv(A)](X, Y )(pt)(pt).

Now F f is Ŝ-local in the usual model category theoretic sense if and only if
for every s ∈ Ŝ the map

sc,∗ : map∆op Sets(Bc, F f )→ map∆op Sets(Ac, F f )

is a weak equivalence. We have a commutative square

map∆op Set(B,F f ) s∗ //

��

map∆op Set(A,F f )

��
map∆op Set(Bc, F f ) sc,∗ // map∆op Set(Ac, F f )

Since the functor map∆op Sets(−, F f ) sends trivial cofibrations to trivial fibra-
tions, it follows by Ken Brown’s lemma [28, Lemma 1.1.12], that the functor
map∆op Sets(−, F f ) sends weak equivalences between cofibrant objects to weak
equivalences. Since the maps Ac → A and Bc → B are weak equivalences
between cofibrant objects, it follows that the vertical maps in the above com-
mutative diagram are weak equivalences. Therefore F f is Ŝ-local if and only if
for every s ∈ Ŝ the map

s∗ : map∆op Sets(B,F f )→ map∆op Sets(A,F f )

is a weak equivalence. Every s ∈ Ŝ is of the form t ⊗ Z for some Z ∈ Smk and
t : C → D with t ∈ S. We have a commutative diagram in which the vertical
maps are isomorphisms:

map∆op Sets(D ⊗ Z, F f )
(t⊗Z)∗ //

∼
��

map∆op Sets(C ⊗ Z, F f )

∼
��

map∆opShv(A)(D,F f )(Z) t∗ // map∆opShv(A)(C,F f )(Z)
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So F f is Ŝ-local if and only if for every t : C → D, t ∈ S the map

t∗ : map∆opShv(A)(D,F f )→ map∆opShv(A)(C,F f )

is a sectionwise weak equivalence in ∆opShv(A). Since C, D are cofibrant and F f

is locally fibrant, the domain and codomain of t∗ are fibrant. So t∗ is a sectionwise
weak equivalence if and only if it is a local weak equivalence. Therefore F f is
Ŝ-local if and only if F is strictly S-local.

So the fibrant objects of [Sm,∆opShv(A)]mot are the pointwise locally fibrant
special enriched motivic A-spaces.

7.2.6 Definition. Let D([Sm,∆opShv(A)]) be the homotopy category of the
category [Sm,∆opShv(A)] with respect to the pointwise local model structure.
Define SpcA[Sm] as the full subcategory of D([Sm,∆opShv(A)]) consisting of
special enriched motivic A-spaces.

We document above lemmas as follows.

7.2.7 Theorem. The category SpcA[Sm] is equivalent to the homotopy category
of the model category [Sm,∆opShv(A)]mot. The fibrant objects of the model cate-
gory [Sm,∆opShv(A)]mot are the pointwise locally fibrant special enriched motivic
A-spaces.

The preceding theorem is also reminiscent of Bousfield–Friedlander’s theo-
rem [5] stating that fibrant objects in the model category of classical Γ-spaces are
given by very special Γ-spaces.

7.3 Reconstructing DM eff
A,>0

7.3.1 Definition. For U ∈ Smk define MGm
A (U) ∈ DMA by

MGm
A (U) := (MA(U ×G∧nm ))n>0,

where MA(X) := C∗A(−, X)nis is the A-motive of X. We call MGm
A (U) the big

A-motive of U .

Let U : DMA → SH(k) be the forgetful functor, and let L : SH(k)→ DMA
be its left adjoint.
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7.3.2 Lemma. The natural morphism

L(Σ∞S1,Gm
U+)→MGm

A (U)

is an isomorphism in DMA.

Proof. In weight n this morphism is the motivic equivalence

A(−, U)nis → C∗A(−, U)nis = MA(U).

So the map L(Σ∞S1,Gm
U+) → MGm

A (U) is a levelwise motivic equivalence, and
therefore an isomorphism in DMA.

Let DMA,>0 be the full subcategory of DMA consisting of those Gm-spectra
of chain complexes which are connective chain complexes in each weight. Note
that by construction, for every U ∈ Smk we have MGm

A (U) ∈ DMA,>0.

7.3.3 Theorem. The naive Gm-evaluation functor is an equivalence of categories

evGm : SpcA[Sm]→ DMA,>0.

Proof. Since the exponential characteristic p of k is invertible in A, it follows
from 3.1.14 that the naive Gm-evaluation functor is an equivalence of categories

evGm : DMA[Sm]→ DMA.

Here DMA[Sm] consists of those enriched functors F : Sm→ Ch(Shv(A)) which
satisfy contravariant A1-invariance, cancellation, covariant A1-invariance and Nis-
nevich excision (see 3.1 for details).

Let DMA[Sm]>0 be the full subcategory of DMA[Sm] on those functors
F : Sm → Ch(Shv(A)) which factor over Ch>0(Shv(A)). The equivalence evGm

restricts to a fully faithful functor on connective chain complexes

evGm,>0 : DMA[Sm]>0 → DMA,>0.

The functor evGm : SpcA[Sm] → DMA,>0 of the theorem will factor through
evGm,>0. We claim that this restricted Gm-evaluation functor evGm,>0 is an equiv-
alence. Since it is fully faithful we only need to show essential surjectivity.

Take F ∈ DMA,>0. Since evGm is essentially surjective on non-connective
chain complexes, there exists G ∈ DMA[Sm] such that evGm(G) ∼= F . Let

τ>0 : Ch([Sm, Shv(A)])→ Ch>0([Sm, Shv(A)])
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be the good truncation functor for chain complexes of the Grothendieck category
of enriched functors [Sm, Shv(A)]. Also denote by τ>0 : SpGm

(Ch(Shv(A))) →
SpGm

(Ch>0(Shv(A))) the good truncation functor of Ch(Shv(A)) applied in each
weight. Consider the commutative diagram

evGm(τ>0(G))

��

// τ>0(F )

∼
��

evGm(G) ∼ // F

We know the bottom horizontal map and the right vertical map are isomorphisms
in DMA. We claim that τ>0(G)→ G is an isomorphism in D([Sm, Shv(A)]). For
this it suffices to show that for every U ∈ Smk the negative homology sheaves of
G(U) are zero. We have a chain of isomorphisms in D(Shv(A))

G(U) ∼= G(U × pt) = evGm(G(U ×−))(0)

By Theorem 4.2.1 we have isomorphisms in DMA

evGm(G(U ×−)) ∼= evGm(G) ∧MGm
A (U) ∼= F ∧MGm

A (U).

Since DMA,>0 is closed under the smash product of DMA, we have that F ∧
MGm
A (U) ∈ DMA,>0. Therefore G(U) = evGm(G(U × −))(0) has vanishing neg-

ative homology sheaves. So τ>0(G)→ G is an isomorphism in D([Sm, Shv(A)]),
and then it follows that the composite map

evGm(τ>0(G))→ evGm(G)→ F

is an isomorphism in DMA. So

evGm,>0 : DMA[Sm]>0 → DMA,>0

is essentially surjective, and hence an equivalence.
Let D([Sm,Ch>0(Shv(A))]) be the homotopy category of [Sm,Ch>0(Shv(A))]

with respect to the local model structure. The Dold-Kan correspondence induces
an equivalence of categories Λ : D([Sm,∆opShv(A)]) → D([Sm,Ch>0(Shv(A))]).
From Proposition 6.2.2 it now follows that we have a commutative diagram

D([Sm,∆opShv(A)]) Λ // D([Sm,Ch>0(Shv(A))])

SpcA[Sm]

OO

// DMA[Sm]>0

OO



Reconstructing DM eff
A,>0 129

where the vertical maps are the inclusion maps. Proposition 6.2.2 implies that
the bottom horizontal arrow is essentially surjective. Since the the vertical maps
and the top horizontal map are also fully faithful, we know that the bottom
horizontal map is fully faithful, so it is an equivalence of categories. So we get an
equivalence of categories evGm : SpcA[Sm]→ DMA,>0 as was to be shown.

From now on assume that A has framed correspondences in the sense of
Definition 5.1.4.

7.3.4 Proposition. Let X be a special enriched motivic A-space with associated
framed bispectrum evS1,Gm

(X ) ∈ SH(k)frnis as in Definition 7.1.1. Then the framed
bispectrum evS1,Gm

(X ) is effective, in the sense of [24, Definition 3.5] if and only
if X is very effective, in the sense of Definition 5.1.2.

Proof. Suppose that X is very effective. By Lemma 6.1.8 the enriched motivic
A-space X is very effective if and only if the associated framed motivic Γ-space
EM(X ) is very effective. If EM(X ) is very effective, then this clearly implies that
the framed bispectrum evS1,Gm

(X ), from Definition 7.1.1, is very effective in the
sense of [24, Definition 3.5].

Now let us prove the other direction. Assume that evS1,Gm
(X ) is very effective

in the sense of [24, Definition 3.5]. Then for every n > 0 the diagonal of the

bisimplicial abelian group X (G∧nm )(∆̂•K/k) is contractible.
We need to show that X satisfies Suslin’s contractibility, i.e. that for every

U ∈ Sm, the diagonal of X (G∧1
m × U)(∆̂•K/k) is contractible. So take U ∈ Sm.

Then the functor X (U × −) : Sm → ∆opShv(A) is again a special enriched
motivic A-space, so we can form the framed bispectrum evS1,Gm

(X (U ×−)). Let
evS1,Gm

(X (U×−))f be a levelwise local fibrant replacement of evS1,Gm
(X (U×−)).

From [24, Lemma 2.8] it follows that evS1,Gm
(X (U ×−))f is motivically fibrant.

By Theorem 7.1.2 we have an isomorphism

evS1,Gm
(X ) ∧ Σ∞S1,Gm

U+
∼= evS1,Gm

(X (U ×−))

in SH(k)[1/p]. So after inverting p, the bispectrum evS1,Gm
(X (U × −))f is a

motivically fibrant replacement of evS1,Gm
(X ) ∧ Σ∞S1,Gm

U+.
Since both evS1,Gm

(X ) and Σ∞S1,Gm
U+ are very effective, this implies that

evS1,Gm
(X (U ×−))f is very effective in SH(k)[1/p].

From Lemma 5.1.3 it now follows that evS1,Gm
(X (U × −))f is very effective

when regarded as an object in SH(k). With [24, Lemma 3.2] it follows that the

diagonal of X (G∧1
m ×U)(∆̂•K/k) is contractible, so X satisfies Suslin’s contractibil-

ity.
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The proof of Proposition 7.3.4 also implies the following corollary.

7.3.5 Corollary. Let X be a special enriched motivic A-space. Then X is very
effective in the sense of Defintion 5.1.2 if and only if for every n > 1 the diagonal
of X (G∧nm )(∆̂•K/k) is contractible.

Let U : DMA → SH(k) be the canonical forgetful functor, and let L :
SH(k) → DMA be its left adjoint. Let DM eff

A be the full triangulated sub-
category of DMA compactly generated by the set {MGm

A (U) | U ∈ Smk}. See
7.3.1 for the definition of MGm

A (U). Recall that SHeff(k) is the full subcategory
of SH(k) generated by the suspension bispectra Σ∞S1,Gm

U+ for U ∈ Smk.

7.3.6 Lemma. Let C and D be triangulated categories, and let F : C → D be
a triangulated functor. Assume that F preserves small coproducts. Let SC be a
full triangulated subcategory of C compactly generated by a set ΣC. Let SD be a
full triangulated subcategory of D closed under small coproducts. Assume that for
every A ∈ ΣC we have F (A) ∈ SD. Then for every A ∈ SC we have F (A) ∈ SD.
In particular F restricts to a triangulated functor F : SC → SD.

Proof. Consider the full subcategory F−1(SD) in C consisting of all those objects
A ∈ C for which F (A) ∈ SD. We need to show that SC ⊆ F−1(SD). Since
ΣC ⊆ F−1(SD), it suffices due to [44, Theorem 2.1] to show that the subcat-
egory F−1(SD) is a triangulated subcategory closed under triangles and small
coproducts in C.

If we have a triangle X → Y → Z → ΣX in C with X, Y ∈ F−1(SD), then

F (X)→ F (Y )→ F (Z)→ ΣF (X)

is a triangle in D with F (X), F (Y ) ∈ SD. Since SD is closed under triangles it
follows that F (Z) ∈ SD, so Z ∈ F−1(SD), so F−1(SD) is closed under triangles.
Since F preserves small coproducts and SD is closed under small coproducts, it
follows that F−1(SD) is closed under small coproducts. Therefore F−1(SD) is
closed under triangles and small coproducts. We get that SC ⊆ F−1(SD), which
proves the lemma.

7.3.7 Lemma. If X ∈ SHeff(k), then L(X) ∈ DM eff
A . So the functor L :

SH(k)→ DMA restricts to a functor

Leff : SHeff(k)→ DM eff
A .
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Proof. By Lemma 7.3.2 we have L(Σ∞S1,Gm
U+) ∼= MGm

A (U) ∈ DM eff
A . Since the

Σ∞S1,Gm
U+ compactly generate SHeff(k) the result now follows from Lemma 7.3.6.

7.3.8 Lemma. The triangulated functor U : DMA → SH(k) preserves small
coproducts.

Proof. Let I be a set, and {Ai | i ∈ I} a family of objects. We want to show that
the canonical morphism ∐

i∈I

U(Ai)→ U(
∐
i∈I

Ai)

is an isomorphism in SH(k). The triangulated category SH(k) is compactly
generated by the set ΣSH(k) := {Σ∞S1,Gm

U+ ∧ G∧nm | U ∈ Smk, n ∈ Z}. Thus to
show that the above morphism is an isomorphism, it suffices to show that for all
G ∈ ΣSH(k) that the map

HomSH(k)(G,
∐
i∈I

U(Ai))→ HomSH(k)(G,U(
∐
i∈I

Ai))

is an isomorphism of abelian groups.
The objects Σ∞S1,Gm

U+∧G∧nm are compact in SH(k), and also each L(Σ∞S1,Gm
U+∧

G∧nm ) is compact in DMA. So for all G ∈ ΣSH(k) we get a chain of bijections

HomSH(k)(G,
∐
i∈I

U(Ai)) ∼=
∐
i∈I

HomSH(k)(G,U(Ai)) ∼=
∐
i∈I

HomSH(k)(L(G), Ai) ∼=

∼= HomSH(k)(L(G),
∐
i∈I

Ai) ∼= HomSH(k)(G,U(
∐
i∈I

Ai)).

Therefore ∐
i∈I

U(Ai)→ U(
∐
i∈I

Ai)

is an isomorphism in SH(k), and U preserves small coproducts.

7.3.9 Lemma. Assume that A satisfies the ∆̂-property in the sense of Definition
5.1.4. Then for all X ∈ DMA we have X ∈ DM eff

A if and only if U(X) ∈
SHeff(k).

Proof. Our first claim is that U(MGm
A (U)) ∈ SHeff(k) for every U ∈ Smk.
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Let 1A ∈ DMA be the monoidal unit. Then

U(MGm
A (U)) ∼= U(MGm

A (U) ∧ 1A).

We can regard SHeff(k)[1/p] as a full subcategory of SHeff(k). From Lemma 5.1.3
it follows that the adjunction U : DMA � SH(k) : L restricts to an adjunction

U : DMA � SH(k)[1/p] : L.

By [34, Appendix B, Corollary B.2] the suspension spectrum ΣS1,Gm
U+ is strongly

dualizable in SH(k)[1/p]. So we can apply [3, Lemma 4.6] to get an isomorphism

U(MGm
A (U) ∧ 1A) ∼= U(L(Σ∞S1,Gm

U+) ∧ 1A) ∼= ΣS1,Gm
U+ ∧ U(1A)

in SH(k)[1/p]. Now ΣS1,Gm
U+ is effective, and SHeff(k) is closed under the ∧

product, so to show that U(MGm
A (U)) ∈ SHeff(k) , we now just need to show

that U(1A) ∈ SHeff(k). The bispectrum U(1A) is isomorphic to the bispectrum
MGm
A (pt) = (MA(G∧jm ))j>0. By construction, the latter bispectrum is a framed

bispectrum in the sense of [24], because A has framed correspondences. Since A
also has the ∆̂-property, the bispectrum MGm

A (pt) is effective in the sence of [24,
Definition 3.5]. And by [24, Theorem 3.6] this implies that U(1A) ∈ SHeff(k). So
we now have for every U ∈ Smk that U(MGm

A (U)) ∈ SHeff(k).
Due to Lemma 7.3.8 we can now apply Lemma 7.3.6 to get for every E ∈

DM eff
A that U(E) ∈ SHeff(k) (This argument is similar to an argument used in

the proof of [3, Corollary 5.4]). So the functor U : DMA → SH(k) restricts to
a functor U eff : DM eff

A → SHeff(k). This shows one direction of the lemma. Let
us now show the other direction of the lemma. According to Lemma 7.3.7 the
functor L : SH(k) → DMA restricts to a functor Leff : SHeff(k) → DM eff

A . The
functor Leff is left adjoint to U eff .

By [53, Remark 2.1] the inclusion functors ι : DM eff
A → DMA and ι :

SHeff(k) → SH(k) have right adjoints r0 : DMA → DM eff
A and r0 : SH(k) →

SHeff(k).
The following diagrams commute:

DM eff
A

ι

��

SHeff(k)Leff
oo

ι
��

DM eff
A

ι

��

Ueff
// SHeff(k)

ι
��

DMA SH(k)Loo DMA
U // SH(k)
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From the commutativity of the left diagram it follows by adjunction that also the
following diagram commutes:

DM eff
A

Ueff
// SHeff(k)

DMA

r0

OO

U // SH(k)

r0

OO

Take X ∈ DMA such that U(X) ∈ SHeff(k). We need to show that X ∈ DM eff
A .

Since U(X) ∈ SHeff(k) the counit ε of the adjunction ι : SHeff(k)� SH(k) : r0

is an isomorphism at U(X). So εU(X) : ι(r0(U(X)))
∼→ U(X) is an isomorphism

in SH(k). By the commutativity of the above diagram this implies that the
composite

U(ι(r0(X))) = ι(U eff(r0(X))) ∼= ι(r0(U(X)))
∼→ U(X)

is an isomorphism in SH(k). But this composite is equal to U(εX) where εX :
ι(r0(X)) → X is the counit map of the adjunction ι : DM eff

A � DMA : r0.
Now the forgetful functor U : DMA → SH(k) is conservative, so if U(εX) is an
isomorphism in SH(k), then also εX is an isomorphism in DMA. But this then
implies that X lies in DM eff

A , which proves the lemma.

We have an evaluation functor

evGm : Ch([Sm, Shv(A)])→ SpGm
(Ch(Shv(A))).

For X ∈ [Sm,∆opShv(A)] we define evGm(X ) := evGm(Λ(X )).

7.3.10 Lemma. For X ∈ SpcA[Sm] we have a canonical isomorphism in SH(k)

U(evGm(X ))
∼−→ evS1,Gm

(X ).

Proof. Let ZSn
be the reduced free simplicial abelian group on the pointed sim-

plicial set Sn. The bispectrum evS1,Gm
(X ) = evS1,Gm

(EM(X )) can be computed
in the (n,m)-th level as

evS1,Gm
(X )[n](m) = ZSn ⊗X (G∧mm )

in M. The bispectrum U(evGm(X )) = U(evGm(Λ(X ))) can be computed in the
(n,m)-th level as

U(evGm(X ))[n](m) = DK(DK−1(X )(G∧mm )[m])
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in M. We claim that there is a natural homotopy equivalence

DK(DK−1(X )(G∧mm )[m])→ ZSn ⊗X (G∧mm )

inM. The chain complex DK−1(ZSn
) is Z in degree n and 0 in all other degrees.

It follows for every chain complex A that A[n] ∼= A ⊗ DK−1(ZSn
). According

to [42] the Dold-Kan correspondence preserves tensor products up to homotopy
equivalence. We then get a homotopy equivalence

DK(Λ(X )(G∧mm )[m]) ∼= DK(DK−1(X )(G∧mm )⊗DK−1(ZSn

))→
DK(DK−1(X (G∧mm )⊗ ZSn

)) ∼= X (G∧mm )⊗ ZSn

.

These maps assemble together into an isomorphism U(evGm(X ))
∼−→ evS1,Gm

(X )
in SH(k).

Let Spcveff
A [Sm] be the full subcategory of SpcA[Sm] consisting of the very

effective special enriched motivic A-spaces. By definition it is then also full sub-
category of D([Sm,∆opShv(A)]) consisting of the very effective special enriched
motivic A-spaces.

7.3.11 Theorem. Assume that A satisfies the ∆̂-property in the sense of Def-
inition 5.1.4. Then the naive Gm-evaluation functor induces an equivalence of
categories

evGm : Spcveff
A [Sm]→ DM eff

A,>0.

Proof. By Theorem 7.3.3 we have an equivalence

evGm : SpcA[Sm]→ DMA,>0.

So we just need to show for X ∈ SpcA[Sm] that X ∈ Spcveff
A [Sm] if and only if

evGm(X ) ∈ DM eff
A,>0. By Proposition 7.3.4 we know that X ∈ Spcveff

A [Sm] if and

only if evS1,Gm
(X ) ∈ SHfr

nis(k) is effective. By [24, Theorem 3.6] this is the case
if and only if evS1,Gm

(X ) lies in SHeff(k). By Lemma 7.3.10 we have a canonical
isomorphism

evS1,Gm
(X ) ∼= U(evGm(X ))

in SH(k). So evS1,Gm
(X ) ∈ SHeff(k) if and only if U(evGm(X )) ∈ SHeff(k) and

by Lemma 7.3.9 this is the case if and only if evGm(X ) ∈ DM eff
A , which proves

the theorem.
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7.4 Reconstructing SHveff(k)Q

In this section we apply the techniques and results from the previous sections
to give new models for the stable motivic homotopy category of effective and
very effective motivic bispectra with rational coefficients. It also requires the
reconstruction theorem by [19] and the theory Milnor-Witt correspondences [3,
6, 7, 11, 16, 17].

Let C̃or be the category of finite Milnor-Witt correspondences in the sense of
[7]. Then C̃or is a strict V -category of correspondences satisfying the cancellation
property (See [16] for details). Furthermore it has framed correspondences by [11].

It also satisfies the ∆̂-property by [3].
Denote by SH(k)Q the category of motivic bispectra E whose sheaves of

stable motivic homotopy groups πA1

∗,∗(E) are sheaves of rational vector spaces. The
category SH(k)Q is also called the rational stable motivic homotopy category. It is
the homotopy category of a stable model structure in which weak equivalences are
those morphisms of bispectra f : E → E ′ for which πA1

∗,∗(f)⊗Q is an isomorphism.
Let SH(k)Q,>0 be the full subcategory of SH(k)Q on the connective objects.
Here a bispectrum object X ∈ SH(k)Q with rational stable A1-homotopy groups
πA1

p,q(X)⊗Q is called connective, if πA1

p,q(X)⊗Q ∼= 0 for all p < q.
Throughout this section we assume the base field k to be perfect of charac-

teristic different from 2. The assumption on the characteristic is typical when
working with finite Milnor–Witt correspondences. A theorem of Garkusha [19,
Theorem 5.5] states that the forgetful functor U : DMC̃or,Q → SH(k)Q is an
equivalence of categories. This theorem was actually proven under the assump-
tion that k is also infinite. The latter assumption is redundant due to [13, A.27]
saying that the main result of [22] about strict invariance for Nisnevich sheaves
with framed transfers is also true for finite fields.

7.4.1 Definition. We define SpcC̃or,Q[Sm], respectively DMC̃or,Q,>0 to be the
category SpcA[Sm], respectively DMA,>0, associated to the category of corre-

spondences A = C̃or⊗Q. We call SpcC̃or,Q[Sm] the category of rational enriched

motivic C̃or-spaces.

The following theorem says that the special rational enriched motivic C̃or-
spaces recover SH(k)Q,>0.

7.4.2 Theorem. The (S1,Gm)-evaluation functor is an equivalence of categories

evS1,Gm
: SpcC̃or,Q[Sm]→ SH(k)Q,>0.
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Proof. By Theorem 7.3.3 the Gm-evalulation functor is an equivalence of cate-
gories

evGm : SpcC̃or,Q[Sm]→ DMC̃or,Q,>0.

By [19, Theorem 5.5] the forgetful functor U : DMC̃or,Q → SH(k)Q is an equiva-
lence of categories, and this implies that the forgetful functor U : DMC̃or,Q,>0 →
SH(k)Q,>0 is an equivalence of categories. So by Lemma 7.3.10 the (S1,Gm)-
evaluation functor

evS1,Gm
: SpcC̃or,Q[Sm]→ SH(k)Q,>0

is an equivalence of categories.

Let SHveff(k)Q be the full subcategory of SH(k)Q on the very effective bispec-
tra. Here an object X ∈ SH(k)Q is said to be very effective if it is both effective
and connective:

SHveff(k)Q = SHeff(k)Q ∩ SH(k)Q,>0.

7.4.3 Definition. We define Spcveff
C̃or,Q[Sm], respectively DM eff

C̃or,Q,>0
, to be the

category Spcveff
A [Sm], respectively DM eff

A,>0, associated to the category of corre-

spondences A = C̃or ⊗ Q. We call Spcveff
C̃or,Q[Sm] the category of very effective

rational enriched motivic C̃or-spaces.

We finish with the following result stating that very effective rational enriched
motivic C̃or-spaces recover SHveff(k)Q.

7.4.4 Theorem. The (S1,Gm)-evaluation functor is an equivalence of categories

evS1,Gm
: Spcveff

C̃or,Q[Sm]→ SHveff(k)Q.

Proof. By Theorem 7.4.2 the (S1,Gm)-evaluation functor is an equivalence of
categories

evS1,Gm
: SpcC̃or,Q[Sm]→ SH(k)Q,>0.

We want to show that it restricts to an equivalence of categories

evS1,Gm
: Spcveff

C̃or,Q[Sm]→ SHveff(k)Q.

For this we just need to show that a special enriched motivic A-space X is very
effective if and only if evS1,Gm

(X ) is very effective in SH(k).
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According to Proposition 7.3.4 the special enriched motivic A-space X is very
effective if and only if the framed bispectrum evS1,Gm

(X ) is effective in SH(k)frnis.
By [24, Theorem 3.6] this is the case if and only if evS1,Gm

(X ) is effective in
SH(k). This concludes the proof of the theorem.

We conclude this project with the following remarks. This project provides
new models for Voevodsky’s fundamental categories of big motives DMA, DMA,>0

and DM eff
A,>0 as well as for the categories SH(k)Q,>0 and SHveff(k)Q. In the future

we expect the techniques developed in this project to be applicable to non-linear
categories of motives. Other applications are expected in equivariant motivic
homotopy theory. Our approach also demonstrates the importance of enriched
categories in motivic homotopy theory.
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