
Durham E-Theses

Approximate Methods For Otherwise Intractable

Problems

RICHARDS, KIERAN,FRASER

How to cite:

RICHARDS, KIERAN,FRASER (2023) Approximate Methods For Otherwise Intractable Problems,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/15233/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/15233/
 http://etheses.dur.ac.uk/15233/
http://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Approximate Methods For Otherwise

Intractable Problems

Kieran Richards

A thesis presented for the degree of

Doctor of Philosophy at Durham University

Statistics
Department of Mathematical Sciences

Durham University

United Kingdom

March 2023

Approximate Methods For Otherwise

Intractable Problems

Kieran Richards

Submitted for the degree of Doctor of Philosophy

March 2023

Abstract

Recent Monte Carlo methods have expanded the scope of the Bayesian statistical

approach. In some situations however, computational methods are often imprac-

tically burdensome. We present new methods which reduce this burden and aim

to extend the Bayesian toolkit further. This thesis is partitioned into three parts.

The �rst part builds on the Approximate Bayesian Computation (ABC) method.

Existing ABC methods often su�er from a local trapping problem which causes in-

e�cient sampling. We present a new ABC framework which overcomes this problem

and additionally allows for model selection as a by-product. We demonstrate that

this framework conducts ABC inference with an adaptive ABC kernel and extend

the framework to specify this kernel in a completely automated way. Furthermore,

the ABC part of the thesis also presents a novel methodology for multi�delity ABC.

This method constructs a computationally e�cient sampler that minimises the ap-

proximation error induced by performing early acceptance with a low �delity model.

The second part of the thesis extends the Reversible Jump Monte Carlo method.

Reversible Jump methods often su�er from poor mixing. It is possible to construct

a �bridge� of intermediate models to facilitate the model transition. However, this

scales poorly to big datasets because it requires many evaluations of the model like-

lihoods. Here we present a new method which greatly improves the scalability at

the cost of some approximation error. However, we show that under weak condi-

tions this error is well controlled and convergence is still achieved. The third part

of the thesis introduces a multi�delity spatially clustered Gaussian process model.

This model enables cheap modelling of nonstationary spatial statistical problems.

The model outperforms existing methodology which perform poorly when predicting

output at new spatial locations.

Declaration

The work in this thesis is based on research carried out under the supervision of Dr

Georgios Karagiannis within the Department of Mathematical Sciences at Durham

University. No part of this thesis has been submitted elsewhere for any degree

or quali�cation. This studentship was funded by the EPSRC Doctoral Training

Partnership.

Copyright © 2022 Kieran Richards

�The copyright of this thesis rests with the author. No quotation from it should be

published without the author's prior written consent and information derived from

it should be acknowledged.�

Acknowledgements

Firstly I would like to thank my supervisor, Dr Georgios Karagiannis for his support

and guidance throughout the course of my doctoral studies.The academic freedom

that Georgios has extended to me has enabled me to grow as a statistician and his

advice has helped shape my work.

I would also like to thank the department sta� who help ensure that the de-

partment runs smoothly and remains a welcoming environment. Particularly over

the last two years, their e�orts have been invaluable during this global pandemic.

I would particularly like to thank Pam, who has now retired but was especially

welcoming when I started my PhD.

Next, I would thank my family and friends. Their encouragement and support

has helped me to remain motivated during these years. Here I would also particularly

thank Louise, Caitlin and Eilish, for their support was particularly important during

the pandemic. Moreover I would especially thank my Mum, whose support has been

especially crucial throughout.

Dedicated to

My family, friends and teachers.

Contents

Abstract iii

Acknowledgements vii

Dedication ix

I Adaptive Approximate Bayesian Computation 1

1 Overview and context 2

1.1 Accept-reject ABC . 2

1.2 MCMC-ABC . 6

1.3 SMC ABC . 7

1.4 Model selection in the ABC setting 10

2 Stochastic Approximation Monte Carlo ABC 11

2.1 Stochastic Approximation Monte Carlo 11

2.2 The SAMCABC algorithm . 13

2.3 Population SAMCABC . 15

2.4 The Adaptive Kernel of SAMCABC 17

2.4.1 The SAMCABC kernel function 17

2.4.2 Model selection via the adaptive kernel 19

2.4.3 Bias reduction via the adaptive kernel 21

2.5 Benchmark examples . 23

2.5.1 Marginal Likelihood Estimation 24

2.5.2 Normal mixture model . 27

2.5.3 g-and-k distribution benchmark 29

2.6 A data analysis example using ebola data 32

xii Contents

3 Continuous Contour ABC 36

3.1 Optimising the acceptance rate of MCMC-ABC 36

3.2 Automatic construction of the SAMCABC partition weights 39

3.3 The Continuous Contour ABC algorithm 42

3.4 Model selection and the adaptive kernel of CCABC 46

3.5 Automatic handling of model misspeci�cation 48

3.6 Benchmark examples . 49

3.6.1 A g-and-k Numerical Example with Adaptive CCABC 50

3.6.2 An Example with Misspeci�cation 53

3.7 Revisiting the ebola model . 57

4 Multi�delity ABC 60

4.1 The multi�delity problem . 60

4.2 Early rejection MCMC-ABC . 61

4.3 Multi�delity MCMC-ABC . 63

4.4 Demonstrating the algorithm with a toy example 66

5 Conclusion 70

5.1 Adaptive Kernel ABC . 70

5.2 Multi�delity ABC . 71

II Model selection by stochastic reversible jumps 73

6 Overview and context 74

6.1 Stochastic gradient methods for big data 74

6.1.1 Stochastic Gradient Langevin Dynamics 75

6.1.2 Stochastic Gradient Hamiltonian Monte Carlo 77

6.2 Variance reduction for stochastic gradient methods 78

6.3 Bias reduction for MCMC under uncertainty 81

6.4 The reversible jump algorithm . 82

6.5 Annealed Importance Sampling RJ 83

7 Stochastically Annealed Reversible Jump 87

7.1 Preliminary results about AISRJ . 87

7.2 The Stochastically Annealed Reversible Jump algorithm 88

7.3 Theoretical Investigation . 90

7.4 Improving convergence with bias and variance reduction 92

7.4.1 Variance reduction for SARJ 93

Contents xiii

7.4.2 Bias reduction for SARJ . 96

7.5 Demonstrating convergence with a toy example 99

7.6 Using the SARJ algorithm to �t a non-stationary Gaussian process

model to real data . 104

8 Conclusion 110

8.1 Summary . 110

8.2 Future research aims . 111

III Spatially clustered Gaussian process regression 113

9 Overview and context 114

9.1 Spatially clustered modelling . 114

9.2 Multi�delity Gaussian process regression 116

9.3 Partial Parallel cokriging . 118

10 Spatially clustered multi�delity Gaussian process 120

10.1 The model . 120

10.1.1 The Statistical Model . 120

10.1.2 The Prior . 122

10.2 Computational strategy . 125

10.3 Prediction . 128

10.3.1 The model using nodes . 133

10.4 A toy example . 135

11 An application to Cape Coral stormsurge data 144

11.1 Fitting the model . 147

11.2 Fitting the model with SARJ . 149

11.3 Fitting the model with nodes . 150

12 Conclusion 153

12.1 Summary . 153

12.2 Future research aims . 154

A Proofs of ABC results 155

A.1 Results of Chapter 2 . 155

A.2 Results of Chapter 3 . 161

B Proofs of SARJ results 165

xiv Contents

Bibliography 175

Part I

Adaptive Approximate Bayesian

Computation

Chapter 1

Overview and context

1.1 Accept-reject ABC

Given data y ∈ Y and a model of the data generating processM = {f (·|θ) ; θ ∈ Θ}

we aim to make inference about the parameters of the model θ ∈ Θ. This can be

done by updating a prior π (θ) with the data through the likelihood function of the

model f (y|θ). This leads to the posterior distribution

π (θ|y) =
π (θ) f (y|θ)

π (y)
(1.1)

where π (y) =
∫
π (θ) f (y|θ) dθ is the marginal likelihood for continuous θ and is

typically intractable. Monte Carlo methods use sampling methods such as rejec-

tion sampling, importance sampling and Markov chain Monte Carlo (MCMC) to

facilitate this inference whilst avoiding the need to calculate the marginal likeli-

hood. In the last couple of decades interest has risen in likelihood free methods

that enable inference even when the likelihood function is also intractable. Likeli-

hood free inference can be performed when the likelihood function is intractable or

computationally challenging to evaluate but a generative model f (x|θ) is available,

3

from which we can simulate pseudodata x ∈ Y from the model. Synthetic likeli-

hood methods (Wood 2010) use these pseudodata to construct an approximation of

the likelihood by assuming that some vector of summary statistics S (x) follows a

multivariate normal distribution and substitute this approximation in (1.1). Altern-

atively, Approximate Bayesian Computation (ABC) methods (M. A. Beaumont, W.

Zhang and Balding 2002) compare pseudodata x to the observed data y allowing

inference to be made with the parameters used to simulate the data based on how

close the pseudodata are to the real data. In this thesis we focus on ABC methods

that fascilitate likelihood free inference.

One of the �rst ABC methods is the ABC rejection sampler. We de�ne a dis-

crepancy u = |y − x|. Consider �rst the case where the data are generated from

a discrete model. Observe that the probability of generating data given θ that ex-

actly match the observed data is precisely the likelihood function at θ. Then the

event that the generated data match the observed data can be used to accept θ

without ever evaluating the likelihood function. It follows that the algorithm shown

in Algorithm 1.1 samples exactly from the posterior distribution (1.1).

Algorithm 1.1 The exact ABC rejection sampler
Inputs: observed data y, number of iterations N
Loop over i = 1, ...,N

1. Generate θi from π (θ)

2. Generate xi from f (x|θi)

3. Calculate ui = |y − xi|

4. Accept θi if ui = 0

End Loop
Outputs: accepted parameter values θ′

In the continuous case the exact ABC rejection sampler is unusable because the

acceptance probability is determined by the probability of generating data that ex-

actly match the observed data. The probability of an exact match in the continuous

4 Chapter 1. Overview and context

case is zero and hence the exact ABC algorithm will have an acceptance rate of zero.

To address this we relax the condition that the observed and simulated data match

exactly. Instead we only require that the simulated data are `close enough' to the

observed data. To determine if the simulated data are close enough we introduce

a kernel function gε (u) on the discrepancies with kernel parameter ε > 0 which

enables a non-zero acceptance probability at small values of u. This kernel function

is speci�ed such that gε (u) ≥ 0 for all u and
∫
gε (u) du = 1 so that gε is a valid

probability density function. Furthermore, we specify gε such that u has mean 0

and �nite variance under the distribution gε (u). A common choice for this kernel is

the uniform kernel

gε (u) =

1
ε

u < ε

0 u ≥ ε

(1.2)

for ε > 0. Using a kernel function allows the acceptance probability to become

non-zero, enabling the algorithm to be used in the continuous case. However, we

are no longer sampling exactly from the true posterior but from an approximation

to the posterior

πε (θ, u|y) =
π (θ) p (u|θ) gε (u)

πε (y)
(1.3)

which we call the ABC posterior. The denominator, πε (y), is the ABC marginal

likelihood and is de�ned as

πε (y) =

∫
π (θ) p (u|θ) gε (u) dudθ (1.4)

5

Algorithm 1.2 The ABC rejection algorithm
Inputs: observed data y, kernel parameter ε, number of iterations N
Loop over i = 1, ...,N

1. Generate θi from π (θ)

2. Generate xi from f (x|θi)

3. Calculate ui = |y − xi|

4. Accept θi with probability gε (ui)

End Loop
Outputs: accepted parameter valuesθi

For large datasets Algorithm 1.2 is still impractical. The high dimensionality of

x means that the discrepancy u = |y − x| is seldom small and it can be di�cult to

make useful inference. Instead we can use summary statistics S(x) and de�ne the

discrepancy as u = |S (y)− S (x)| to describe the data as shown in Algorithm 1.3.

Compared to the full dataset, summary statistics can have much smaller dimension-

ality and allow for useful inference even on large datasets.

Algorithm 1.3 The ABC rejection algorithm with summary statistics and a general
kernel
Inputs: observed data y, kernel parameter ε, number of iterations N
Loop over i = 1, ...,N

1. Generate θi from π (θ)

2. Generate xi from f (x|θi)

3. Calculate ui = |S (y)− S (xi)|

4. Accept θi with probability gε (ui)

Outputs: accepted parameter values θi

If these summary statistics S (x) are also su�cient statistics for the model then

there is no further approximation error introduced. However, for more realistic

problems where likelihood free inference is typically applied, su�cient statistics are

not usually available. Instead we must resort to summary statistics which are not

necessarily su�cient and introduce an additional source of approximation error to

6 Chapter 1. Overview and context

the approximate model. Choosing appropriate summary statistics is one of the major

di�culties of ABC but is outside the scope of this thesis. The interested reader can

�nd suitable methods for choosing them in (Blum 2010; Nunes and Balding 2010).

When the prior π (θ) o�ers poor support for the data, rejection sampling can be

very ine�cient, requiring many simulations to obtain even a small sample from the

posterior and wasting considerable computational resources.

1.2 MCMC-ABC

A more e�cient ABC sampler than ABC rejection is the Markov Chain Monte Carlo

ABC algorithm (Marjoram et al. 2003). We incorporate ABC into the Metropolis-

Hastings algorithm by introducing a proposal distribution q (θ′|θt) which proposes a

new set of parameters θ′ given a current set of parameters θt. The full ABC MCMC

algorithm is shown in Algorithm 1.4. By making proposals locally based on the

current state of the Markov chain we aim to improve the acceptance rate of ABC

compared to ABC rejection sampling (Sisson, Fan and M. Beaumont 2018; Sisson,

Fan and Tanaka 2007). For this reason MCMC-ABC has become a popular method

in several areas of research where likelihood free sampling is important including in

ecology (M. A. Beaumont 2010; Butler et al. 2006) and epidemiology (Tanaka et al.

2006).

7

Algorithm 1.4 The ABC Metropolis-Hastings (MCMC-ABC) algorithm

Inputs: observed data y, kernel parameter ε, number of iterations N, initial para-
meter value θ1

Loop over t = 1, ...,N

1. Generate θ′ from q(θ|θt)

2. Generate x′ from f (x|θ′)

3. Calculate u′ = |S (y)− S (x′)|

4. Accept θt+1 = θ′ with probability α = min (1, RABC) with

RABC =
π (θ′) gε (u′) q (θt|θ′)
π (θt) gε (u) q (θ′|θt)

5. Otherwise θt+1 = θt

End Loop
Output: parameter values θ1, ..., θN

The MCMC-ABC algorithm achieves an improved acceptance rate compared to

ABC rejection particularly if the prior o�ers poor support for the data (Sisson,

Fan and Tanaka 2007). This is because moves can be proposed locally and hence

by introducing dependence in the generated parameters we make more informed

proposals. Nevertheless, despite the improved acceptance rate over ABC rejection

sampling MCMC-ABC can still be very ine�cient because it can su�er from a local

trapping problem. In particular, the acceptance probability of MCMC-ABC is dir-

ectly proportional to the likelihood function. This can result in very low acceptance

probabilities in regions of low likelihood if the proposal function is also poor (Sisson,

Fan and Tanaka 2007). This Markov chain becomes stuck in these regions and takes

a long time to escape, producing misleading inference.

1.3 SMC ABC

The Sequential Monte Carlo ABC (SMC-ABC) method proposed in Sisson, Fan and

Tanaka (2007) aims to circumvent the local trapping problem of MCMC-ABC. The

8 Chapter 1. Overview and context

SMC ABC method returns to the simple function (1.2) and starts with a very large

ABC tolerance. The algorithm then moves the particles through a monotonically

decreasing sequence of ABC tolerances to achieve a �nal sample of particles with a

low ABC tolerance. As shown in Algorithm 1.5 this involves weighting the samples.

We de�ne the e�ective sample size (ESS) at step t as

ESSt =

(
N∑
i=1

(
W

(i)
t

)2
)−1

where W
(i)
t is the ith particle weight and the population is of size N . We set a

threshold E such that when ESSt < E we resample the particles with replacement

to prevent degeneracy. Thus SMC-ABC can be seen as an extension of importance

sampling (Sisson, Fan and Tanaka 2007). This results in a sample of parameters

generated independently from the ABC posterior which aims to avoid the local

trapping problem that arises because of the dependence in the MCMC-ABC chain.

9

Algorithm 1.5 The SMC-ABC algorithm
Inputs: observed data y, kernel parameters ε1, ..., εK , number of SMC tolerances
K, population size N, parameters θ

(0)
1 , ..., θ

(0)
N

Loop over k = 1, ..., K
Loop over i = 1, ...,N

1. Generate θ
(k)
i from qk

(
θ|θ(k−1)

i

)
2. Generate x

(k)
i from p

(
x|θ(k)

i

)
3. Calculate u

(k)
i =

∣∣∣S (y)− S
(
x

(k)
i

)∣∣∣
4. Assign weight W

(k)
i to θ

(k)
i such that

W
(k)
i = W (k−1)

π
(
θ

(k−1)
i

)
gεk

(
u

(k−1)
i

)
q
(
θ

(k)
i |θ

(k−1)
i

)
π
(
θ

(k)
i

)
gεk

(
u

(k)
i

)
q
(
θ

(k−1)
i |θ(k)

i

)
End Loop

5. Renormalise the weights so that they sum to 1 over i = 1, ...,N

6. If ESSt < E then resample with replacement from the particles

End Loop
Output: parameter values θ

(K)
1 , ..., θ

(K)
N

Starting with a large tolerance and reducing the tolerance through a sequence of

stricter ABC posteriors allows the algorithm to achieve high acceptance rates whilst

avoiding the local trapping problem (Sisson, Fan and Tanaka 2007). However, in

Algorithm 1.5 we observe that the SMC-ABC algorithm does not keep every set

of parameters that are generated. So whilst the SMC-ABC algorithm is much less

wasteful than ABC rejection there are still many moves that are not stored but must

be wasted. Moreover, the sequence of ABC tolerances must be chosen carefully. If

the ABC tolerances decrease too fast then the sample may become degenerate as

many particles are rejected. Alternatively, if the tolerances decrease too slowly

then the SMC sampler will be slow to achieve a reasonable approximation to the

posterior and waste computational resources. Moreover, a �nal tolerance must be

determined such that the �nal sample is a reasonable approximation to the posterior.

10 Chapter 1. Overview and context

When made poorly these choices for the tolerance schedule can introduce unneces-

sary approximation error to the ABC sample. Sophisticated automatic methods to

determine the tolerance schedule (Silk, Filippi and Stumpf 2013; Simola et al. 2021)

can be used however these methods can reintroduce the local trapping issue to some

problems since if the particles are contained within local energy minima then the

automatic schedule may �nish early.

1.4 Model selection in the ABC setting

The Bayes factor BF is the ratio of the marginal likelihoods from two modelsM1 =

{f1 (·|θ) ; θ1 ∈ Θ1} andM2 = {f2 (·|θ) ; θ2 ∈ Θ2} under comparison and is often used

for model choice. Care must be taken when doing this in the ABC framework since

we cannot compute the marginal likelihood π (y|Mk) and must instead use the ABC

marginal likelihood πε (y|Mk) as an estimate. When we generate pseudodata from

the prior the ABC marginal likelihood can be estimated using the acceptance rate

of the ABC rejection sampler since this acceptance rate is an ABC estimate of the

predictive prior near the observed data. This estimator is only guaranteed to be

unbiased for the true marginal likelihood when ε = 0 and the full data are used

(Wilkinson 2013). Even when ε = 0 if summary statistics are used the ABC Bayes

factor can be biased (Robert, Cornuet et al. 2011). Even when su�cient summary

statistics are chosen for each model this bias can be present since the union of the two

sets of su�cient statistics is not necessarily su�cient for model comparison because

the summary statistics may not be su�cient for the joint model (Robert, Cornuet

et al. 2011). However, Marin et al. (2014) showed that when the expectations of the

summary statistics are asymptotically di�erent under the two models, ABC model

choice selects the true model asymptotically (Marin et al. 2014).

Chapter 2

Stochastic Approximation Monte

Carlo ABC

2.1 Stochastic Approximation Monte Carlo

In Chapter 1 we discussed how several existing ABCmethods su�er from a local trap-

ping problem which can result in poor quality ABC samples. In this chapter we aim

to address the local trapping problem by introducing ideas from the Stochastic Ap-

proximation Monte Carlo (SAMC) algorithm. The core idea of the SAMC algorithm

is to partition the sample space into subregions and then construct a Markov chain

that samples from the target distribution whilst leading to a random walk through

the subregions (Liang 2009; Liang 2014; Liang, Liu and R. Carroll 2011; Liang,

Liu and R. J. Carroll 2007). By doing this SAMC aims to ensure that all of the

subregions are visited according to desired sampling frequencies $j, and therefore

improves upon the mixing of the MCMC algorithm. Suppose we have a target dens-

ity π (θ) on a sample space Θ and let E1, E2, ..., Em be m disjoint subregions of Θ

such that Ej = {θ ∈ Θ; εj−1 < u (θ) ≤ εj} partitions the sample space by some

function u (θ) often chosen to be the energy function, U (θ) = − log (π (θ)). Finally

12 Chapter 2. Stochastic Approximation Monte Carlo ABC

we set desired sampling frequencies $1, $2, ..., $m which determine how frequently

the sampler aims to visit each subregion. Then the target SAMC density is

πSAMC (θ) =
m∑
j=1

$j

wj
π (θ) IEj (θ)

where wj =
∫
Ej
π(θ)dθ is the normalising constant of the truncated density π (θ) in

Ej and IEj is an indicator taking the value one when the sample is in the subregion

Ej and is zero otherwise. The constants wj are typically intractable so we take

a working vector φ, such that exp(φj) ∝ wj/$j which we can estimate up to a

normalising constant. The SAMC algorithm as shown in Algorithm 2.1 consists

of two stages. The �rst is the usual sampling step, and the second updates the

estimates of φ to enable the use of stochastic approximation to solve the equation

∫
H(φ, θ)πSAMC (θ|x) dθ = 0 (2.1)

where H(φ, θ) = p−$, with p a vector indicating which subregions are visited. To

ensure convergence the updating step uses a decreasing step size, γt, for the update.

This step size must satisfy

∞∑
t=1

γt =∞,
∞∑
t=1

γζt <∞

for some ζ ∈ (1, 2). In the examples throughout this thesis we use a cooling sequence

of the form

γt =
t0

max (t0, tb)

which satis�es the requirements.

13

Algorithm 2.1 The SAMC algorithm

Inputs: number of iterations N, initial parameter value θ1, subregions Ej
Loop over t = 1, ...,N

1. Sampling step

(a) Generate θ′ from the proposal density q(θ|θt)
(b) Accept θt+1 = θ′ with probability α = min (1, R) with

RABC =
π(θ′)q(θt|θ′) exp(φt,j(θt))
π(θt)q(θ′|θt) exp

(
φt,j(θ′)

)
(c) Otherwise θt+1 = θt

2. Updating step

(a) Compute pt+1 such that [pt+1]j = IEj (θt+1)

(b) Compute φt+1 = φt + γt+1(pt+1 −$)

End Loop
Output: parameter values θ1, ..., θN, estimate φN

Importantly the SAMC algorithm weights the subregions by a self-adjusting

mechanism. This self adjusting mechanism increases the probability of visiting a

di�erent subregion than the current subregion. It is precisely this self adjusting

mechanism that essentially provides immunity to the local trapping problem that

can occur in MCMC.

2.2 The SAMCABC algorithm

We propose a new algorithm called Stochastic Approximation Monte Carlo ABC

(SAMCABC) which introduces ideas from the SAMC method to the ABC frame-

work. Consider that the sample space of the MCMC-ABC is (Θ, U) and we can

write our partition as E1, E2, . . . , Em+1 where:

Ej = {(θ, x) ∈ (Θ, X) ; εj−1 < u (θ, x) ≤ εj}

14 Chapter 2. Stochastic Approximation Monte Carlo ABC

with ε0 = −∞, εm+1 =∞ and {εj; εj ∈ R, j = 1 : m} a grid for m > 0. Now wj =∫
Ej
πε(θ, u|y)dθdu are the marginal ABC likelihood truncated to the subregions Ej.

Consider the algorithm when we set u (θ′, x′) = |S (x)− S (x′)| to be the discrepancy.

By considering only the subregions up to Em this is MCMC-ABC with a kernel with

support truncated to [0, εm] with a partition over the discrepancies. We have the

SAMCABC target distribution

πSAMCABC (θ, u|x) =
m∑
j=1

$j

wj
π (θ) p (x|θ) gε (u) I (u ∈ Ej) (2.2)

achieved using the SAMCABC algorithm as shown in Algorithm 2.2.

By constructing a random walk through the subregions the SAMCABC algorithm

aims to mitigate the local trapping problem of the algorithms discussed in Chapter

1 by discouraging the chain from remaining stuck. Furthermore, by choosing $

such that the SAMC weights,
$j
wj
, are larger for smaller j, the SAMCABC can be

encouraged to focus on sampling regions with small discrepancies which are more

desirable than areas of higher discrepancy.Then SAMCABC obtains a sample which

better approximates the posterior distribution in (1.1) compared to the algorithms

discussed in Chapter 1.

15

Algorithm 2.2 The SAMC-ABC algorithm including the optional step of discarding
some of the high discrepancy samples
Inputs: observed data y, kernel parameter ε, number of iterations N, initial para-
meter value θ1, initial discrepancy u1, subregions Ej
Loop over t = 1, ...,N

1. Sampling step

(a) Generate θ′ from q(θ|θt)
(b) Generate x′ from p (x|θ′)
(c) Calculate u′ = |S (y)− S (x′)|
(d) Accept θt+1 = θ′ and ut+1 = u′ with probability α = min (1, RABC) with

RABC =
π(θ′)gε(u′)q(θt|θ′) exp(φt,j(θt,ut))
π(θt)gε(u)q(θ′|θt) exp

(
φt,j(θ′,u′)

)
(e) Otherwise θt+1 = θt and ut+1 = ut

2. Updating step

(a) Compute pt+1 such that [pt+1]j = IEj (θt+1, ut+1)

(b) Compute φt+1 = φt + γt+1(pt+1 −$)

End Loop
Output: parameter values θ1, ..., θN, discrepancies u1, ..., uN,estimate φN

2.3 Population SAMCABC

Whilst our proposed algorithm SAMCABC mitigates the local trapping problem

found in other ABC methods, it relies upon the convergence of the working vector φ

to sample from the SAMCABC target distribution (2.2). These estimates of φ can

be slow to converge when some subregions Ej have a low probability to be visited.

Here we demonstrate how convergence can be improved by introducing population

methods to the SAMCABC algorithm.

Suppose that at each iteration instead of sampling a single estimate of θ we

independently sample a population of κ estimates of θ to obtain the vector θ =

(θ1, ..., θκ). Then Liang and Wu (2013) showed that we can perform the stochastic

16 Chapter 2. Stochastic Approximation Monte Carlo ABC

approximation step to solve Equation 2.1 by instead solving the equation

∫
H(φ,θ)πSAMC (θ|x) dθ = 0

where

H(φ,θ) =
1

κ

κ∑
k=1

H(φ, θk)

From this we see that E (θ) is the same under the population algorithm as in the

single chain algorithm. The population SAMC algorithm provides a more precise

estimate of φ at each iteration and hence converges faster (Liang and Wu 2013).

We can directly apply the same result to SAMCABC and �nd that population

SAMCABC converges more quickly than single chain SAMCABC.

At iteration t of the kth chain let
(
θ

(k)
t , x

(k)
t

)
be the state of the Markov chain,

with a population size of κ then we have the population SAMC-ABC algorithm as

shown in Algorithm 2.3.

17

Algorithm 2.3 The PSAMC-ABC algorithm for a population size κ
Inputs: observed data y, kernel parameter ε, number of iterations N, number of par-
allel chains κ, initial parameter values θ1,1, ..., θ1,κ, initial discrepancies u1,1, ..., u1,κ,
subregions Ej
Loop over t = 1, ...,N

1. For k = 1, 2, . . . , κ simultaneously draw θt+1,k by:

(a) Generate θ′k q(θ|θt,k)
(b) Generate x′k p (x|θ′k)
(c) Calculate u′k = |S (y)− S (x′k)|
(d) Accept θt+1,k = θ′k and ut+1,k = u′k with probability α = min (1, RABC)

where

RABC =
π(θ′k)gε(u′k)q(θt,k|θ′k) exp

(
φ
t,j(θt,k,ut,k)

)

π(θt,k)gε(ut,k)q(θ′k|θt,k) exp

(
φ
t,j(θ′k,u′k)

)

2. Otherwise θt+1,k = θt,k and ut+1,k = ut,k

3. Updating step

(a) Compute pt+1 such that [pt+1]j = 1
κ

∑κ
k=1 IEj (θt+1,k, ut+1,k)

(b) Compute φt+1 = φt + γt+1(pt+1 −$)

End Loop
Output: parameter values θ1,1, ..., θN,κ, discrepancies u1,1, ..., uN,κ,estimate φN

2.4 The Adaptive Kernel of SAMCABC

2.4.1 The SAMCABC kernel function

The proposed algorithm SAMCABC can be interpreted as constructing an adaptive

ABC kernel to avoid the local trapping problem. The ABC kernel gε (·) serves

to weight the ABC sampler towards lower discrepancies. The SAMC weights also

serve as an adaptive mechanism to weight the sampler towards lower discrepancy

subregions. Consider the SAMC-ABC target distribution (2.2) restated here for

18 Chapter 2. Stochastic Approximation Monte Carlo ABC

convenience

πSAMCABC (θ, u|x) =
m∑
j=1

$j

wj
π (θ) p (x|θ) gε (u) I (u ∈ Ej)

We de�ne a function hε (·) such that

hε (u) =
m∑
j=1

$j

ŵj
gε (u) I (u ∈ Ej) (2.3)

and by normalising ŵj such that
∫
hε (u) du = 1 we have the following result demon-

strating that hε (·) is also a kernel function satisfying our de�nition of an ABC kernel

function given in Section 1.1. The proof of Proposition 2.4.1 can be found in Ap-

pendix A.

Proposition 2.4.1. The function hε (·) given in (2.3) is positive everywhere and

satis�es
∫
hε (u) du = 1. Furthermore a random variable u from the distribution with

probability density function hε (·) has mean 0 and �nite variance.

By rewriting the SAMC-ABC target distribution as

πSAMCABC (θ, u|x) ∝ π (θ) p (x|θ)hε (u)

we see that the �nal target distribution of SAMCABC is not the same approximation

to the posterior as targeted in the ABC algorithms described in Chapter 1. Instead

the SAMCABC algorithm targets an approximate posterior with a di�erent ABC

kernel. This new ABC kernel hε (u) is a stricter approximation than the initial �xed

ABC kernel by properly choosing {Ej} and {wj}. Thus we can see the adaptive

weights as a way of adapting the kernel function to escape local traps.

19

2.4.2 Model selection via the adaptive kernel

Consider the interpretation of ABC as discussed by Wilkinson (2013) that ABC

methods produce exact results for the wrong model. In other words, instead of

sampling from the modelM, ABC methods sample implicitly from a di�erent ap-

proximate model,Mg. The ABC marginal likelihood estimate is therefore the un-

biased estimate of the marginal likelihood of this implicit ABC model, π
(g)
ε (y). Fur-

thermore, under this interpretation the ABC Bayes factor is biased because instead

of comparing the two generative models we compare the two approximate models.

The ABC Bayes factor is therefore an unbiased Bayes factor for the comparison of

these implicit approximate models. In this context it is desireable to estimate the

marginal likelihood of the ABC model in order to perform model comparison.

The proposed SAMCABC sampler adaptively constructs the ABC kernel and

thus targets a di�erent ABC posterior given the ABC model Mh. In particular,

this means that the SAMCABC sampler also produces exact results from a wrong

model but that the implicit model is di�erent to the implicit model of standard

ABC. When using the proposed algorithms we are then faced with a choice. We

can weight the sample using the SAMC importance sampling weights to calculate

estimates from the original ABC posterior. Alternatively, we can make estimates

using the unweighted sample to obtain estimates from the ABC posterior targeted

by the SAMCABC method. When the proposed algorithm successfully targets a

posterior with lower ABC bias than the original it may be desirable to make es-

timates using the unweighted SAMCABC samples. To perform model comparison

using the new implicit modelMh we must calculate the marginal likelihood π
(h)
ε (y)

of the SAMCABC posterior. The marginal likelihood π
(h)
ε (y) can be estimated from

the proposed methods.

Our proposed algorithm provides estimates of the ABC marginal likelihood up

to a normalising constant as a byproduct. We can determine this normalising con-

20 Chapter 2. Stochastic Approximation Monte Carlo ABC

stant by comparing the estimate to an alternative estimate of the ABC marginal

likelihood. One alternative estimate can be obtained from the acceptance rate of an

ABC rejection sampler with kernel gε (Wilkinson 2013; Sisson, Fan and M. Beau-

mont 2018). Another alternative estimator of the ABC marginal likelihood is the

following importance sampling estimator which sometimes has lower variance than

the rejection sampling estimator.

π̂ε (y) =
1

n

n∑
i=1

π (θi) gε (ui)

q (θi|θ∗)
(2.4)

where the (θ′, u′) are sampled from the Metropolis-Hastings proposal function given

some �xed θ∗. The derivation of this estimator can be found in Appendix A. To

minimise the variance of the estimator we take θ∗ to be the maximum a posteriori

estimate of θ∗. The following proposition shows how the marginal likelihood can be

calculated under the SAMCABC framework and used to determine the normalising

constant of the SAMCABC weights.

Proposition 2.4.2. Consider the subregion weights $j/ŵj calculated under the

SAMC-ABC framework. We have that the ŵj are the estimated normalising con-

stants within each subregion Ej and that the subregions Ej form a partition on the

parameter space. Then it follows that the ABC marginal likelihood π
(g)
ε (y) can be

calculated as:

π(g)
ε (y) =

m∑
j=1

Cŵj

Setting
∑m

j=1Cŵj to be equal to an alternative estimate such as (2.4) gives us

the constraint required to determine an estimate of C.

Substituting our estimates wj = Ĉŵj we can now obtain an estimate of the

SAMCABC marginal likelihood π
(h)
ε (y) without any further sampling. For instance

21

using the estimator of the marginal likelihood in (2.4) we obtain

Ĉ =
n
∑m

j=1 ŵj∑n
i=1

π(θ′)gε(u′)
q(θ′|θ∗)

Proposition 2.4.3. Consider the SAMCABC adaptive kernel

hε (u) ∝
m∑
j=1

$j

wj
gε (u) IEj (u)

where
$j
wj

is the SAMC weight for subregion Ej and gε (u) is the ABC kernel. The

SAMCABC marginal likelihood π
(h)
ε (y) can be calculated as

π(h)
ε (y) =

(
m∑
j=1

$j

wj

∫
Ej

gε (u) du

)−1

Let us consider an example where we use the uniform ABC kernel which is a

popular choice in the literature. If gε (u) is the uniform ABC kernel on u ∈ [0, ε].

Then the ABC marginal likelihood, π
(g)
ε (y), and the SAMCABCmarginal likelihood,

π
(h)
ε (y), are

π(g)
ε (y) =

m∑
j=1

wj

π(h)
ε (y) =

(
1

m

m∑
j=1

$j

wj

)−1

The derivation of this marginal likelihood estimate can be found in Appendix A.

2.4.3 Bias reduction via the adaptive kernel

We discuss the conditions under which the ABC posterior targeted by our proposed

adaptive kernel method has lower bias than the original ABC posterior. To do this

we �rst consider the ABC bias. In Sisson, Fan and M. Beaumont (2018), it is shown

22 Chapter 2. Stochastic Approximation Monte Carlo ABC

that working in the univariate case the bias in the ABC likelihood up to second

order in ε can be written as

b̂(g)
ε (y|θ) =

1

2
ε2σ2

gf
′′ (y|θ) (2.5)

where σ2
g =

∫
u2g (u) du is the variance of the kernel function g (u) when gε (u) =

1
ε
g
(
u
ε

)
with u = |x− y| is the ABC kernel. Thus the bias in the likelihood is propor-

tional to the kernel variance and we should choose the desired sampling density $

such that the variance of the adaptive ABC kernel h (u) is decreased from the vari-

ance of the �xed ABC kernel g (u). In this way SAMCABC not only mitigates local

trapping in ABC but also reduces the ABC approximation error. We can do this by

choosing $ such that the sampler is encouraged to sample from subregions close to

u = 0. In particular, we can use this decrease in bias to o�set an increase in bias

introduced by using a larger maximum tolerance. Hence we can use the SAMCABC

algorithm with a higher maximum tolerance than ABC without increasing the bias.

This provides an additional mechanism through which the proposed algorithms can

avoid local trapping.

It is shown in Sisson, Fan and M. Beaumont (2018) that the point-wise bias in

the ABC posterior, a
(g)
ε (θ|y), can be written as:

a(g)
ε (θ|y) =

b
(g)
ε (y|θ) π (θ)

π
(g)
ε (y)

+ π (θ|y)

(
π (y)

π
(g)
ε (y)

− 1

)

where π (y) is the true marginal likelihood. The following proposition shows that

under certain conditions the ABC bias of the unweighted SAMCABC sample is

lower than the ABC bias of the weighted samples. The proof of Proposition 2.4.4

can be found in Appendix A.

Proposition 2.4.4. For small tolerance, ε, ABC kernel variance, σ2
g , and SAMC-

ABC kernel variance, σ2
h, where σ

2
h ≤ σ2

g we have that the point-wise posterior bias

23

of the original ABC posterior is greater in magnitude than that of the SAMCABC

posterior:

∣∣â(h)
ε (y|θ)

∣∣ ≤ ∣∣â(g)
ε (y|θ)

∣∣
with equality everywhere if and only if σ2

h = σ2
g .

By considering the ratio of the biases in the unweighted and weighted samples

we can determine the bias reduction factor in the ABC likelihood. The following

proposition demonstrates this for the widely used uniform ABC kernel. Assume

gε (u) is the uniform kernel with maximum tolerance ε. Then clearly the ABC

kernel variance is σ2
g = 1

3
.

Proposition 2.4.5. For SAMC-ABC, we have that

σ2
h =

1

3m3

m∑
j=1

$j

wj

(
j3 − (j − 1)3)

and so it follows that the bias reduction factor is:

b̂
(h)
ε (y|θ)
b̂

(g)
ε (y|θ)

=
1

m3

m∑
j=1

$j

wj

(
j3 − (j − 1)3)

Clearly when the bias reduction factor, b̂
(h)
ε (y|θ) /b̂(g)

ε (y|θ), is less than one we

have that the SAMCABC kernel has reduced bias compared to the original ABC

kernel. The proof of Proposition 2.4.5 can be found in Appendix A.

2.5 Benchmark examples

We present the use of the proposed SAMC-ABC algorithm on synthetic examples

and show that the proposed algorithm can both eliminate the local trapping problem

and reduce the ABC bias.

24 Chapter 2. Stochastic Approximation Monte Carlo ABC

2.5.1 Marginal Likelihood Estimation

We consider an exponential model with a conjugate prior distribution. We demon-

strate marginal likelihood estimation using the SAMCABC method and compare it

to the known marginal likelihood of the conjugate model. We generate 100 random

variates from the distribution

Yi ∼ Exp (λ)

with λ = 0.1 and use these as data. We calculate the su�cient statistic T (Y) =∑100
i=1 Yi = 1038.35 and note that

T (Y) ∼ Gamma (100, λ) (2.6)

We set a gamma prior

λ ∼ Gamma (α, β)

with hyperparameters α = 1 and β = 2.

Given pseudodata, X, we de�ne a uniform ABC kernel on the discrepancy

u = |T (Y)− T (X)| with support on u ∈ [0, 80]. We partition the sample space

into 5 equally spaced subregions and set linearly decreasing desired sampling fre-

quencies $ =
{

1
3
, 4

15
, 1

5
, 2

15
, 1

15

}
. The Metropolis-Hastings step generates random

walk proposals, λt+1 ∼ N (λt, 0.1
2), initialised with λ0 generated from the prior. For

the stochastic approximation step we set the stepsize equal to γt = t0
max(t0,t)

with

t0 = 10. We run the sampler for 2 × 106 iterations and discard the �rst half as

burnin.

25

l

D
en
si
ty

0.06 0.08 0.10 0.12 0.14

0
10

30

Figure 2.1: Histogram of a posterior sample of λ obtained using SAMCABC. True posterior is
overlaid as a straight line.

We observe in Figure 2.1 the posterior sample approximates the true posterior

well and is centered around the true parameter value λ = 0.1. Furthermore, we

observed no local trapping. From the SAMCABC weights we �nd

ŵ = (1.56, 2.42, 4.33, 9.78, 39.6)

which we normalise to

w = (0.0007, 0.0011, 0.0019, 0.0043, 0.0174)

using the marginal likelihood estimator (2.4). Then we can estimate the ABC mar-

ginal likelihood as

π(g)
ε (Y) =

5∑
i=1

wi = 0.0254

We note this should not be compared to the true marginal likelihood π (Y) =

3.4× 10−147 since the summary statistic was used. The summary statistic T (Y) is

su�cient for λ but is not su�cient for model comparison. However, as discussed in

26 Chapter 2. Stochastic Approximation Monte Carlo ABC

Section 1.4 ABC model selection can still select the correct model if the expecta-

tion of the summary statistic is asymptotically di�erent under the di�erent models.

Furthermore, since we know the T (Y) is Gamma distributed (2.6) we can compare

the SAMCABC estimate with the appropriate marginal probability:

π (T (Y)− ε < T (X) ≤ T (Y) + ε) = 0.0245

which is very close to the SAMCABC estimate. Moreover, we can �nd the ABC

marginal likelihood estimate for the adaptive SAMCABC kernel

π(h)
ε (y) =

(
1

5

5∑
j=1

$j

wj

)−1

= 0.0057

which is very close to the appropriate marginal mixture probability

5∑
j=1

$j

wj
π (εj−1 < |T (Y)− T (X)| ≤ εj) = 0.0051

The massive di�erence between π (y) and the ABC marginal likelihoods emphasises

why care needs to be taken when performing model comparison with ABC. Never-

theless, ABC model selection can be done using these marginal likelihoods when the

summary statistics have asymptotically di�erent expectations under the di�erent

models. Moreover, as ε decreases both ABC marginal likelihoods converge towards

the marginal likelihood of the summary statistic (2.7).

π (T (y)) =
Γ (α + n)

Γ (α) Γ (n)

βαT (Y)n−1

(β + T (Y))α+n = 0.0002 (2.7)

We observe that as ε decreases the ABC marginal likelihood decreases. Similarly,

the SAMCABC kernel has lower variance than the ABC kernel and a lower marginal

likelihood. This happens because the ABC approximation error decreases and higher

discrepancies are rejected more often. To ensure fair model comparison the same

27

ABC kernel should be used for all models.

2.5.2 Normal mixture model

We consider a bivariate Normal mixture model based on the model from Sisson,

Fan and Tanaka (2007). We demonstrate the local trapping problem of ABC which

becomes more severe as the dimension of the parameter space grows. The model

which is used generates data from the following sampling distribution:

f (x|θ) =
1

2
N (x|θ1,Σ1) +

1

2
N (x|θ2,Σ2)

where N (x|µ,Σ) is the probability density function of a N (µ,Σ) distributed random

variable and Σ1 = I and Σ2 = 0.12I are �xed and known. The long �at tails of the

resulting posterior are areas which an MCMC-ABC sampler can struggle to escape;

resulting in severe local trapping as shown in Figure 2.2.

Similarly to the univariate case of Sisson, Fan and Tanaka (2007) broad uniform

U (−10, 10) priors were used for the unknown means which both have a true value

of zero. The MCMC-ABC sampler generates independent proposals for θ1 and θ2

from θ
(t+1)
i ∼ N

(
θ

(t)
i , 0.152

)
random walks initialized at θ(0) = (0, 0). The data

set consists of a single observation at y = (0, 0) and the sampler uses a uniform

ABC kernel on u = ||x− y|| with support on u ∈ [0, 0.3]. We ran the sampler for

2× 105 iterations of which the �rst half were discarded as burn in. Our SAMCABC

algorithm divides the sample space into 10 equally spaced subregions which partition

the interval u ∈ [0, 0.3]. Further for the cooling sequence required for the stochastic

approximation step we take γt = t0
max(t0,tb)

with t0 = 100 and b = 0.7.

28 Chapter 2. Stochastic Approximation Monte Carlo ABC

(a) Marginal posterior sample of θ1 obtained us-
ing MCMC-ABC

(b) Marginal posterior sample of θ1 obtained us-
ing SAMCABC

(c) Marginal posterior sample of θ2 obtained us-
ing MCMC-ABC

(d) Marginal posterior sample of θ2 obtained us-
ing SAMCABC

Figure 2.2: In (a) and (b) we present the marginal posterior samples of θ1 obtained by MCMC-
ABC and SAMCABC respectively. Figures (c) and (d) show the corresponding marginal posterior
samples for θ2. The true marginal posteriors are overlaid in red and it is clear that MCMC-ABC
su�ers from local trapping whilst the proposed SAMCABC algorithm avoids this.

In Figure 2.2 we observe clear local trapping in the tails of the MCMC-ABC

posterior whilst the SAMCABC algorithm successfully prevents this local trapping.

We can also see that the SAMCABC algorithm successfully pushed the sampler

towards low discrepancies in Figure 2.3.

29

(a) Histogram showing the number of vis-
its to each subregion by the MCMC-ABC
sampler

(b) Histogram showing the number of visits to
each subregion by the SAMCABC sampler

Figure 2.3: Here we present the sampled discrepancies between the simulated pseudodata and the
observed data. The histogram for MCMC-ABC in (a) shows indications of local trapping around
0.15 and overall samples mostly from high discrepancy regions. The SAMC-ABC sample shown
in (b) shows the �attened discrepancy distribution that the algorithm targets to prevent local
trapping and sample more often from low discrepancy regions.

In Figure 2.3 we observe clear indications of local trapping for the MCMC-ABC

sampler somewhere in the region (0.12, 0.15). Furthermore the histograms show

that the SAMCABC sampler visited regions of low discrepancy with much higher

frequency than the MCMC-ABC sampler, reducing the bias of the ABC posterior.

2.5.3 g-and-k distribution benchmark

We consider a synthetic data set simulated from a g-and-k quantile distribution.

ABC methods are appropriate for this problem because quantile distributions have

no explicit likelihood function available but can be sampled from using the cumu-

lative distribution function (Allingham, King and Mengersen 2009; Drovandi and

Pettitt 2011). This makes ABC methods particularly well suited to performing in-

ference on these problems. The g-and-k distribution can be parameterised by the

quantile function

Qgk (p;A,B, g, k) = A+B

(
1 + c

1− exp (−gz (p))

1 + exp (−gz (p))

)(
1 + z (p)2)k z (p)

30 Chapter 2. Stochastic Approximation Monte Carlo ABC

where the parameters A, B, g, and k describe the �rst four moments, z (p) is the

pth quantile of the standard normal distribution. Finally c is a further parameter

for which the standard practice is to set to c = 0.8.

For the purposes of comparing MCMC-ABC to the proposed algorithms we gen-

erate synthetic data from a g-and-k distribution with a very long and heavy right

tail. In particular we set A = 3, B = 1, g = 2, and k = 2 and simulate 104 data

points from the distribution with these parameters.

We then attempt to �t the g-and-k model to these data by using the ABC

methods and the four robust summary statistics suggested in Drovandi and Pettitt

(2011):

Sa =L2; Sg = (L3 + L1 − 2L2) /Sb;

Sb =L3 − L1; Sk = (E7 − E5 + E3 − E1) /Sb

where Li is the ith quartile and Ej is the jth octile. These four summary statistics

are estimators of the �rst four moments of the data respectively. Then for a vector

of the summary statistics, S (x), we set u = ||S (x)− S (y)||. Finally, following

Allingham, King and Mengersen (2009) we set wide independent uniform priors on

the interval [0, 10] for each of the four parameters.

We �rst apply MCMC-ABC to the synthetic data using a uniform ABC kernel

with maximum tolerance ε = 0.3. This was run for 5 × 103 + 2 × 104 iterations of

which the �rst 5 × 103 were discarded as burn in. The SAMCABC sampler then

partitions the sample space on u into 30 evenly spaced subregions. Similarly to the

normal mixture model we take at = t0
max(t0,tb)

for the cooling sequence required for

the stochastic approximation step with t0 = 100 and b = 0.7.

For the parameters A,B, and k both of the algorithms perform similarly with

the SAMC-ABC sample being slightly more concentrated around the mean than the

MCMC-ABC samples. This re�ects the slight reduction in ABC bias achieved by

the adaptive kernel of the proposed algorithm. However for the third parameter of

the model, g, we observe in Figure 2.4 that the MCMC-ABC sampler su�ers from

31

local trapping whilst the SAMCABC sampler largely avoids this.

(a) The MCMC-ABCmarginal estimates
of g

(b) The SAMCABC marginal estimates
of g

Figure 2.4: Here we present the marginal posterior samples of the parameter g obtained using
MCMC-ABC and SAMCABC. The MCMC-ABC algorithm displays trapping in the long heavy
tail and massively oversamples this region of the parameter space. The proposed SAMCABC
algorithm avoids this and �nds the posterior mode near the true value of the parameter at g = 2.

For g the MCMC-ABC sampler becomes trapped in the long right tail of the

distribution. The MCMC-ABC sampler also fails to identify the true value of the

parameter which is g = 2 whereas the SAMCABC algorithm produces a large peak

around g = 2.

We also demonstrate population SAMCABC on the g-and-k model. For popula-

tion SAMCABC we retain the same partition and desired sampling frequency that

was used for the single chain SAMCABC sampler. The population method is run

with 10 parallel sampling chains and only for 5× 102 + 2 × 103 iterations of which

5 × 102 were discarded as burn in so that the sample size is the same as the single

chain runs.

32 Chapter 2. Stochastic Approximation Monte Carlo ABC

Figure 2.5: We present the marginal posterior samples of the parameter g obtained using the
population SAMCABC method. Using fewer iterations with several chains in parallel we �nd that
the methods still avoid oversampling the tail and hence identify the mode near the true value of
the parameter at g = 2.

In Figure 2.5 we observe that the results are very similar to the results of the

single chain SAMCABC sampler. Hence in this example by using parallel computing

architecture we can speed up the convergence of the algorithm and use less CPU

time without compromising the quality of the sample.

2.6 A data analysis example using ebola data

After the Ebola outbreak of 2014-15 there were several attempts to model the dy-

namics of Ebola transmission. We consider the model of Ponce et al. (2019) which

aims to estimate the transmission rate of Ebola using data from the outbreak of

Ebola in Liberia. These data were obtained from the Centre for Disease Control's

(CDC) website (CDC 2014) where they were collated from World Health Organiz-

ation (WHO) reports (WHO 2014). These data describe the number of cases and

deaths recorded on 25 di�erent occasions between the 5th June and the 14th Septem-

ber 2014. These dates were chosen because the epidemic curve had not yet been

altered by the interventions which occurred after the 14th September 2014 (Ebola

Response Team 2014). Hence these data can be used to estimate the pre-intervention

33

transmission rate of Ebola.

The model of Ponce et al. (2019) is a compartmental model that divides the pop-

ulation into epidemiological classes which describe the disease progression. Trans-

itions between these classes occur at exponential rates and many of these rates have

been investigated elsewhere already. We focus primarily on investigating the three

infection rates(βI ,βH ,βD) which describe how quickly infected, hospitalized and dead

Ebola victims infect new people respectively. Additionally we attempt to estimate

the proportion of asymptomatic Ebola victims δ.

To perform the uncertainty quanti�cation Ponce et al. (2019) use a deterministic

speci�cation of the model which is de�ned by a series of di�erential equations. They

assume the cases and deaths output of the model are Poisson distributed and perform

maximum likelihood estimation to determine the parameters. For δ they select the

value by trying only a few di�erent values and using AIC to select the preferred

model.

We demonstrate the advantages of using ABC for the uncertainty quanti�cation

of such a complex model. Unlike Ponce et al. (2019) we can use the stochastic

model which can be simulated from using the Gillespie algorithm (Gillespie 1977)

to obtain a closer approximation to the exact data generating process assumed

by the model. We use a slightly modi�ed Gillespie algorithm which uses tau-

leaps (Gillespie 2001; Cao, Gillespie and Petzold 2006) to greatly speed up the

simulation at the cost of some small approximation error which can be controlled

by the size of the tau-leaps. We then place priors on the parameters as follows,

βI ∼ U (0, 0.4),βH/βI ∼ U (0, 0.7),βD/βI ∼ U (0.8, 1.5),δ ∼ U (0, 0.5), where each

prior includes the estimated value from Ponce et al. (2019) and uses the infection

rate in the general population βI as a baseline. For the summary statistics we simply

used the eighth, sixteenth and twenty-fourth data points from each of the time series.

These had to be scaled and centered as they di�ered greatly in magnitude. This was

done by simulating 106 times from the prior and estimating the mean and standard

34 Chapter 2. Stochastic Approximation Monte Carlo ABC

deviation of each statistic.

For the ABC samplers we use a uniform kernel with maximum tolerance ε = 1.

We considered Metropolis updates with independent normal proposals with standard

deviations of 0.03 for βI and δ and standard deviations of 0.1 for βH/βI and βD/βI .

The MCMC-ABC and SAMCABC algorithms were run for 4 × 104 iterations of

which the �rst half were discarded as burn in.

The SAMC-ABC sampler partitions the sample space on u into 10 evenly spaced

subregions. Similarly to the normal mixture model we take the cooling sequence

required for the stochastic approximation step with t0 = 100 and b = 0.7.

The mean estimates for each of the parameters are listed in Table 2.1.

MCMC-ABC SAMCABC Ponce et al.

βI 0.338(0.255, 0.397) 0.323(0.248, 0.398) 0.319(0.309, 0.330)
βH 0.122(0.009, 0.227) 0.109(0.009, 0.213) 0.191(0.185, 0.198)
βD 0.394(0.257, 0.542) 0.369(0.254, 0.525) 0.383(0.371, 0.396)
δ 0.160(0.006, 0.394) 0.103(0.003, 0.347) 0.3

Table 2.1: Mean estimates from the MCMC-ABC and SAMCABC algorithms and their 95% cred-
ible intervals. The estimates of Ponce et al. (2019) are provided along with their 95% con�dence
intervals for comparison. There is no con�dence interval for δ because Ponce et al. (2019) determ-
ined this parameter by trying four di�erent values and choosing the one with the lowest AIC for
the model.

The main di�erences are for βH where the ABC estimates are smaller than those

of Ponce et al. (2019) and for δ where the SAMCABC estimate is also much smaller.

Note that Ponce et al. (2019) only compared δ = 0, δ = 0.15, δ = 0.3 and δ = 0.5.

35

(a) The MCMC-ABCmarginal estimates
of δ

(b) The SAMCABC marginal estimates
of δ

Figure 2.6: Marginal posterior samples for δ, the proportion of cases which were asymptomatic.
Results obtained using MCMC-ABC sample heavily from the tail and do not present a clear mode.
Conversely, results obtained using the proposed SAMC-ABC algorithm show a posterior marginal
with high density near δ = 0 and decreasing density as δ grows.

In Table 2.1 we observe that the biggest di�erence between the MCMC-ABC

and SAMCABC algorithms is found in the estimates of δ. We observe in Figure 2.6

that this is because of local trapping in the MCMC-ABC sample. It is clear that

the MCMC-ABC sampler gets trapped at higher values of δ far more often than

SAMCABC.

Chapter 3

Continuous Contour ABC

3.1 Optimising the acceptance rate of

MCMC-ABC

In MCMC-ABC many proposals may be made which are outright rejected by the

ABC kernel. In this way the acceptance ratio can be dominated by the ABC ker-

nel rather than the Metropolis Hastings proposals. As a result Adaptive MCMC

methods as in Andrieu and Thoms (2008) may not be e�ective in achieving optimal

Metropolis Hastings acceptance rates. In particular we mostly do not have control

over the simulator which we use to make proposals in the pseudomarginal space of

u = ||x− y||. Since we also then use the ABC kernel to place an upper bound on this

pseudomarginal density we can produce many proposals which have an acceptance

probability of zero.

One solution is to adapt the maximum tolerance of the ABC kernel to achieve

the desired acceptance rate as is done in the adaptive tolerance algorithm of Vihola

and Franks (2020). To generalise the algorithm introduced by Vihola and Franks

(2020) consider the Metropolis-Hastings acceptance ratio in Algorithm 1.4 restated

37

in (3.1)

R =
π (θ′) q

(
θ(t)|θ′

)
gε (u′)

π (θ(t)) q (θ′|θ(t)) gε (u(t))
(3.1)

The algorithm of Vihola and Franks (2020) adapts the kernel function gε (·) by

adjusting ε. However, this is not the only way we can adjust the kernel function.

In general we can adjust the variance of the kernel function to achieve an optimal

acceptance rate. To see how we might do this consider the proposed discrepancy,

u′, and the previously accepted discrepancy, u(t). The proposed discrepancy has

been generated from the simulator f (u|θ). In contrast the previously accepted

discrepancy, u(t), was generated from the simulator weighted towards u = 0 by the

kernel. Hence proposals where the new discrepancy is greater than the previous by

a given margin are more likely than proposals where the new discrepancy is less

than the old by the same margin. Consequently the acceptance rate is reduced by

a factor of λ = gε(u′)

gε(u(t))
more often than it is increased by the same factor.

Now as we increase the variance of the ABC kernel it begins to �atten and

the factor λ → λ∗ for all discrepancies. Here λ∗ denotes the ratio closest to 1 for

the kernel family. In particular λ = λ∗ for all discrepancies when the ABC kernel

is closest to the uniform kernel. This suggests that we can achieve the optimal

acceptance rate in a similar manner as Andrieu and Thoms (2008) where we adapt

the kernel variance instead of the proposal density, and that the algorithm in Vihola

and Franks (2020) is a special case of this adaptation where the kernel variance is

adapted by adapting the maximum tolerance parameter. This algorithm is detailed

in Algorithm 3.1 where st is some parameter of the kernel function that is directly

proportional to the kernel variance σ2
g .

38 Chapter 3. Continuous Contour ABC

Algorithm 3.1 Adaptive MCMC-ABC
Inputs: observed data y, initial kernel parameter s1, number of iterations N, initial
parameter value θ1, initial discrepancy u1, desired acceptance rate α∗

Loop over t = 1, ...,N

1. Sampling step

(a) Sample θ′ ∼ q (θ′|θt)
(b) Sample x′ ∼ f (x′|θ′)
(c) Calculate u′ = |S (y)− S (x′)|
(d) Accept (θt, ut) = (θ′, u′) with probability αt+1 = min (R, 1) with:

R =
π (θ′) q (θt|θ′) gst (u′)

π (θt) q (θ′|θt) gst (ut)

(e) Otherwise (θt+1, ut+1) = (θt, ut)

2. Stochastic approximation step

(a) Set log (st+1) = log (st) + γt (α∗ − αt+1)

End Loop
Output: parameter values θ1, ..., θN, discrepancies u1, ..., uN , kernel parameters
s1, ..., sN

The algorithm uses a stochastic approximation updating step to adjust the kernel

parameter st so that the desired acceptance rate α∗ is achieved. The adaptive

tolerance algorithm of Vihola and Franks (2020) is a special case of Algorithm 3.1

when the kernel family is chosen to be uniform and the parameter is chosen to be

the maximum tolerance. In the following sections we will extend this adaptation to

the SAMC weights of Algorithm 2.1 to couple the local trapping protections of the

adaptive kernel with the sampling bene�ts of the optimised acceptance rate.

39

3.2 Automatic construction of the SAMCABC

partition weights

The SAMC-ABC framework introduced in Chapter 2 provides other bene�ts that

we might wish to combine with the adaptation here. In particular the SAMCABC

algorithm mitigates the local trapping problem of ABC, decreases the ABC bias

compared to the base ABC kernel and provides an estimate of the marginal like-

lihood. The SAMCABC algorithm works by weighting the samples by a ratio of

the desired sampling distribution and a histogram estimate of the standard ABC

marginal. This is done by using stochastic approximation to update the partition

weights φ at each iteration as discussed in Chapter 2. By doing this we adapt-

ively construct an ABC kernel which pushes the sampler to sample from a desired

sampling distribution in the discrepancies. This enables the sampler to escape local

traps and also to push itself into low discrepancy regions which are otherwise rarely

visited.

Directly embedding Algorithm 3.1 into the SAMCABC framework results in

an algorithm which does not converge since both algorithms attempt to adapt the

kernel function with di�erent objectives. Furthermore, the SAMCABC framework

requires that the maximum tolerance ε remains �xed. Hence we should consider

kernel families which can be adapted without changing ε. For kernel functions

where this is not the case a �xed ε can be imposed by truncating the kernel density

at ε.

In the SAMCABC framework we estimate importance sampling weights of the

form $
w
. The desired sampling distribution $ is �xed and we simply update our

estimates of the marginal density w. We cannot update the ABC kernel without

destroying the SAMC estimate of this marginal since changes to the �xed ABC kernel

will require new SAMC estimates. However we can update the desired sampling

40 Chapter 3. Continuous Contour ABC

density $s (u) using some parameter s which can determine the desired sampling

probability parametrically without interacting with the SAMC updates of w. This

parameter s is proportional to the SAMCABC kernel variance. In this way we can

still update the ABC kernel to achieve an optimal Metropolis-Hastings acceptance

rate. We do this by an additional stochastic approximation updating step for the

desired sampling distribution and correct the weights accordingly. For this new

stochastic approximation step we suggest a cooling sequence of ηt = at
λ
. For the

examples in this chapter we have used λ = 50. The proposed algorithm is detailed

in Algorithm 3.2

41

Algorithm 3.2 Adaptive SAMCABC
Inputs: observed data y, initial kernel parameter s1, number of iterations N, initial
parameter value θ1, initial discrepancy u1, desired acceptance rate α

∗, subregions Ej
Loop over t = 1, ...,N

1. Sampling Step

(a) Sample θ′ ∼ q (θ′|θt)
(b) Sample x′ ∼ f (x′|θ′)
(c) Calculate u′ = |S (y)− S (x′)|
(d) Accept (θt+1, ut+1) = (θ′, u′) with probability αt+1 = min (R, 1) with:

R =
π (θ′) q (θt|θ′) gst (u′) exp

(
−φt,j(u′)

)
π (θt) q (θ′|θt) gst (ut) exp

(
−φt,j(ut)

)
(e) Otherwise (θt+1, ut+1) = (θt, ut)

2. Updating Step I

(a) Compute pt+1 = pt+1 (θt+1, ut+1) where [pt+1]j ={
1 , if (θt+1, ut+1) ∈ Ej
0 , if (θt+1, ut+1) /∈ Ej

(b) Compute φ′t+1 = φt + γt+1

(
pt+1 −$t

)
3. Updating Step II

(a) Compute log (st+1) = log (st) + ηt+1 (α∗ − αt+1)

(b) Evaluate $′t+1 (st+1) and normalise to $t+1 =
$′t+1∑
$′t+1

(c) Compute φt+1,j = φ′t+1,j + log
(

$t,j
$t+1,j

)
for j = 1, ...,m

End Loop
Output: parameter values θ1, ..., θN, estimate φN, kernel parameters s1, ..., sN

Algorithm 3.2 thus chooses the desired sampling distribution $s (u) such that

a desired acceptance rate is achieved. Simultaneously by correcting the SAMC

weights after each iteration we retain the immunity to ABC local trapping provided

by the SAMCABC framework. Note that it is important that the desired sampling

probabilities are non-zero everywhere, otherwise step 3 (c) of the algorithm fails and

the correction cannot be made. We �nd that with sensible choices for the maximum

42 Chapter 3. Continuous Contour ABC

tolerance and with slower updating steps for s relative to the SAMC weights the

algorithm can avoid the small values of s that lead to zeros in $s (u).

3.3 The Continuous Contour ABC algorithm

The adaptive SAMCABC algorithm presented in Section 3.2 combines the optimal

acceptance rate of adaptive MCMC-ABC with the local trapping mitigations of

SAMCABC. We can improve the convergence of this algorithm by introducing ideas

from Continuous Contour Monte Carlo (CCMC) (Liang 2007). To incorporate these

ideas we introduce a new algorithm Continuous Contour ABC (CCABC) which

replaces the histogram estimate of the marginal density used in SAMC with a kernel

density estimate. This enables smoother adaptive kernel updates and hence more

e�cient convergence.

Let ξ (u) be the marginal ABC density of u = ||S(x)−S(y)|| and let {zi : i = 1, ...,W}

be grid points forming a rectangle U in the space of u. Let ξ (zi) be the true marginal

density value at zi. We consider the desired sampling distribution, $ (u), similar

to the desired sampling frequencies in SAMCABC which can be speci�ed as any

density on u ∈ U and thus determines how much the sampler will �push� towards

u = 0. For any ABC discrepancy u, we write ξ̂ (u) = $(u)
ξ(u)

and evaluate ξ̂ (u) by

linear interpolation of the nearest grid points.

The CCABC algorithm consists of a sampling step and a stochastic approxim-

ation updating step. The sampling step draws M samples from a distribution that

admits a density such that

π
(t)
CCABC (θ, x|y) ∝ πABC (θ, x|y) ξ̂(t) (u)

via MCMC-ABC. Then the updating step updates ξ̂ (u) at each of the grid points

{zi : i = 1, ...,W} such that visits near the same lattice points as the new sample are

discouraged and the chain becomes more likely to sample near lattice points that are

43

further away. We follow Liang (2007) and suggest that the following sequences be

used to update the marginal density and bandwidth of the kernel density estimation

respectively:

at =
t0

max (t0, t)
, ht = min

(
aγt ,

range (u)

2 (1 + log2 (M))

)
(3.2)

Similarly to SAMCABC the sampler constructs weights using stochastic approx-

imation such that as t → ∞ the working marginal density converges almost surely

to the ratio of the true marginal density and the desired marginal density at the

grid points up to some arbitrary multiplicative constant. For the stochastic approx-

imation step, we have two cooling sequences. In addition to the cooling sequence γt

used in SAMC-ABC let ht be a positive, non-increasing sequence such that ht → 0

when t → ∞ be the sequence of bandwidths used for kernel density estimation at

iteration t.

44 Chapter 3. Continuous Contour ABC

Algorithm 3.3 CCABC
Inputs: observed data y, kernel parameter ε, number of iterations N, initial para-
meter value θ1, initial discrepancy u1

Loop over t = 1, ...,N, gridpoints zj

1. Sampling step

(a) Set θ
(0)
t = θ

(M)
t−1

Loop over r = 1, ...,M

(b) Generate θ′r from the proposal distribution q
(
θ|θ(r−1)

t

)
(c) Generate x′r from the distribution p (x|θ′r)

(a) Calculate u′r = |S (y)− S (x′r)|

(b) Accept
(
θ

(r)
t , u

(r)
t

)
= (θ′r, u

′
r) with probability α = min (R, 1) where R is

given by:

R =
π (θ′r) q

(
θ

(r−1)
t |θ′r

)
gε (u′r) ξ̂

(
u

(r−1)
t

)
π
(
θ

(r−1)
t

)
q
(
θ′r|θ

(r−1)
t

)
gε

(
u

(r−1)
t

)
ξ̂ (u′r)

(c) Otherwise
(
θ

(r)
t , u

(r)
t

)
=
(
θ

(r−1)
t , u

(r−1)
t

)
End Loop

2. Updating Step

(a) Estimate the density of the samples u
(1)
t , ..., u

(M)
t using a kernel density

estimation method and evaluate the density at the grid points

ζt (zi) =
1

M

M∑
r=1

h
− 1

2
t K

(
h
− 1

2
t

(
zi − u(r)

t

))
where K (v) is a kernel density function

(b) Normalize ζt (zi) on the grid points by setting

ζ ′t (zi) =
ζt (zi)∑W
i′=1 ζt (zi′)

(c) Update ξ̂t (zi) such that

log ξ̂t+1 (zi) = log ξ̂t (zi) + γt (ζ ′t (zi)− π′ (zi))

where π′ (zi) = π(zi)∑W
i′=1 π(zi′)

End Loop
Output: parameter values θ1, ..., θN, discrepancies u1, ..., uN,estimate ξ̂N

45

As in our SAMCABC algorithm, the CCABC algorithm avoids local trapping

by adapting the kernel function to encourage visits to poorly explored regions of the

sample space. Furthermore, the CCABC sampler improves upon the SAMCABC

sampler by constructing the weights in a continuous way. This typically results in

CCABC converging more quickly than SAMCABC because SAMCABC updates the

weights of �xed subregions by using the gain factor γt which determines how large

the updates should be. CCABC controls the updates by using not only the gain

factor but also the bandwidth sequence which allows early simulations to penalize

larger areas of the marginal density whilst later simulations only penalize smaller

localized regions.

We optimise the acceptance rate of CCABC by automatically adapting the de-

sired sampling distribution $ (u) similar to adaptive SAMCABC. This adaptation

has much more �exibility than under SAMCABC since we can specify $ (u) as

a continuous distribution. To adapt $ (u) we append the update step found in

Algorithm 3.4 to the CCABC algorithm found in Algorithm 3.3.

Algorithm 3.4 Adaptive CCABC Step
3. Updating Step II

(a) Compute log (st+1) = log (st) + ηt+1 (α∗ − αt+1)

(b) Evaluate π′t+1 (st+1) and normalise to πt+1 =
π′t+1∑
π′t+1

(c) Set ξ̂t+1 = ξ̂t+1 × πt
πt+1

The adaptive CCABC algorithm retains the bene�ts of adaptive SAMCABC,

achieving desired acceptance rates whilst mitigating local trapping and reducing the

ABC bias. Furthermore, the CCABC algorithm boasts improved convergence com-

pared to the SAMCABC algorithm because of the continuous nature of CCABC's

adaptive kernel. We note that the desired sampling distribution must be non-zero

everywhere in U otherwise the updating step in Algorithm 3.4 fails. We �nd this

failure can easily be avoided with sensible choices for the maximum tolerance and a

46 Chapter 3. Continuous Contour ABC

slower cooling sequence for s than ξ̂.

3.4 Model selection and the adaptive kernel of

CCABC

The CCABC algorithm found in Algorithm 3.3 constructs an adaptive kernel h (u)

similar to the adaptive kernel of SAMCABC. We can write this kernel as

hε (u) ∝ $ (u)

ξ̂ (u)
gε (u) (3.3)

Here we demonstrate how the adaptive kernel of CCABC can be used to determine

the marginal likelihood.

Proposition 3.4.1. Consider the marginal density kernel density estimate ξ (u)

estimated by $ (u) /ξ̂ (u) under the CCABC framework. Then it follows that the

ABC marginal likelihood π
(g)
ε (y) can be calculated as:

π(g)
ε (y) =

∫
$ (u)

Cξ̂ (u)
du

Where $ (u) is a chosen desired sampling density and ξ̂ (u) has been estimated as

a piecewise linear function up to some multiplicative constant C so this integral can

be solved analytically under sensible choices of the desired sampling density. Even

under alternate choices the integral is univariate and so cheap to solve numerically.

We can use an alternative estimate of the marginal likelihood to determine C and

use it to detemine the CCABC marginal likelihood π
(h)
ε (y).

Proposition 3.4.2. The CCABC marginal likelihood π
(h)
ε (y) can be calculated as

π(h)
ε (y) =

(∫
$ (u)

Cξ̂ (u)
gε (u) du

)−1

47

Unlike the marginal likelihood estimate of the SAMCABC algorithm, the mar-

ginal likelihood estimate from CCABC is generally not analytically tractable. How-

ever, for certain choices of ABC kernel such as the uniform ABC kernel and desired

sampling density the integral becomes much easier to evaluate. Let us consider an

example where we use the uniform ABC kernel which is a popular choice in the

literature. We will also specify the desired sampling density $ (u) to be uniform

which makes evaluation more straightforward and we have found to also be a good

choice in practice.

If gε (u) is the uniform ABC kernel on u ∈ [0, ε] and the desired sampling density

$ (u) is uniform then the ABC marginal likelihood π
(g)
ε (y) can be estimated as

π(g)
ε (y) =

1

m

m∑
i=1

log
∣∣∣ξ̂ (εi)

∣∣∣− log
∣∣∣ξ̂ (εi−1)

∣∣∣
ξ̂ (εi)− ξ̂ (εi−1)

where the εi are the gridpoints. The CCABC marginal likelihood π
(h)
ε (y) can be

estimated as

π(h)
ε (y) =

(
1

m

m∑
i=1

ξ̂ (εi) + ξ̂ (εi−1)

2

)−1

Derivations of these marginal likelihood estimates can be found in Appendix A.

Moreover, we show that the CCABC algorithm achieves ABC bias reduction un-

der similar conditions to SAMCABC. Since the CCABC kernel produces an adapt-

ive kernel (3.3) which satis�es the ABC kernel properties we have that Proposition

2.4.4 holds for CCABC. We revisit the uniform kernel example of Proposition 2.4.5

to demonstrate how this works for CCABC in practice. Hence we assume that gε (u)

is the uniform kernel with maximum tolerance ε. Clearly it follows that the variance

of this kernel density is σ2
g = 1

3
.

Proposition 3.4.3. For CCABC, we have that

σ2
h =

1

3m3

m∑
j=1

(
jξ̂

(
(j − 1) ε

m

)
− (j − 1) ξ̂

(
jε

m

))(
j3 − (j − 1)3)

48 Chapter 3. Continuous Contour ABC

and so it follows that the bias reduction factor is:

b̂
(h)
ε (y|θ)
b̂

(g)
ε (y|θ)

=
1

m3

m∑
j=1

(
jξ̂

(
(j − 1) ε

m

)
− (j − 1) ξ̂

(
jε

m

))(
j3 − (j − 1)3)

Thus when this factor is less than one we know that the CCABC posterior has

reduced ABC bias.

3.5 Automatic handling of model misspeci�cation

Both of the algorithms introduced here depend on the absence of ABC model mis-

speci�cation to converge. As described in Frazier, Robert and Rousseau (2020) we

de�ne ε∗ = min
θ

(u) to be the minimum distance between the observed data and

the simulated data under the model. If the model does not su�er from ABC mis-

speci�cation then ε∗ = 0 otherwise ε∗ takes some positive value proportional to

the severity of the ABC misspeci�cation. Under model misspeci�cation the accept-

ance rate may not change as expected when the kernel variance becomes small and

lots of weight is assigned to the region [0, ε∗] which is empty. Furthermore, under

model misspeci�cation the ABC posterior does not produce credible sets with valid

coverage properties however Frazier, Robert and Rousseau (2020) showed that the

posterior does concentrate mass on appropriate pseudo true parameter values.

If ε∗ is non zero then we want to estimate ε∗ and use a kernel which places as

little weight on the [0, ε∗] interval as possible. Here we propose a simple adaptation

to the algorithms which estimates ε̂∗ by the smallest discrepancy sampled so far

in the chain. Then as t → ∞ we have that ε̂∗ → ε∗ provided the kernel family

assigns enough weight to the [0, ε∗] interval to still encourage the sampler to explore.

Assigning appropriate weight to this region is di�cult when using the adaptive

MCMC-ABC algorithm since this must be done through appropriate kernel family

choice and the marginal density is poorly understood in the [0, ε∗] interval under

49

misspeci�cation. If too much weight is assigned then the sampler will become stuck

if it enters the region, however if too little weight is assigned the sampler may never

explore this region and additional ABC bias may be introduced.

Contrastingly the adaptive CCABC algorithm o�ers a direct solution to the

problem. Since with CCABC we do not specify the kernel directly but instead

adapt the kernel to achieve a desired sampling distribution we can more directly

a�ect the weight assigned to a region of the sampling space. In particular we can

determine the desired sampling distribution by some piecewise function that is �at

in the [0, ε∗] interval with value equal to the maximum value of the kernel in the

[ε∗, ε] interval. This results in a CCABC kernel which assigns the minimum weight

to the [0, ε∗] interval such that exploration of this interval is always encouraged and

no more. This change can be made to Step 1 of Algorithm 3.3 by adding:

1 (d) If (θ′, x′) is accepted and u′ < ε̂∗ then set ε̂∗ = u′

and by using a kernel family that adjusts for changes in ε̂∗.

In this chapter we use mixture that is uniform in [0, ε∗) and half-normal in [ε∗,∞)

$ (u) =

1√

2πs2
u ≤ ε∗

1√
2πs2

exp
(
− (u−ε∗)2

2s2

)
ε∗ < u ≤ ε

(3.4)

3.6 Benchmark examples

In this section we demonstrate the use of adaptive CCABC through some synthetic

examples. Our numerical results demonstrate that the desired acceptance rate can

be achieved by adapting the desired sampling distribution and that we can detect

model misspeci�cation by estimating ε∗. Since the ABC algorithm is a pseudomar-

ginal algorithm we target an acceptance rate of 7% throughout both examples and

the application following the results of Sherlock et al. (2015).

50 Chapter 3. Continuous Contour ABC

3.6.1 A g-and-k Numerical Example with Adaptive CCABC

We continue with the example detailed in Section 2.5.3 using the same sample size

and parameter values. We then attempt to �t the g-and-k model to these data

using the adaptive tolerance algorithm of Vihola and Franks (2020) and the adaptive

CCABC method described in this paper. We use the four robust summary statistics

suggested in Drovandi and Pettitt (2011):

Sa =L2; Sg = (L3 + L1 − 2L2) /Sb;

Sb =L3 − L1; Sk = (E7 − E5 + E3 − E1) /Sb

where Li is the ith quartile and Ej is the jth octile.

For both algorithms we use independent normal random walk proposals with

standard deviations of 0.1 for A,B, and k and a standard deviation of 1 for g. For

the adaptive CCABC algorithm we set the base ABC kernel to be uniform with a

large maximum tolerance ε = 5. This should bound the acceptance rate above the

desired value which is 0.07 for both algorithms. Finally we have 501 grid points zi

spaced evenly from z1 = 0 to z501 = 5 with desired sampling density given by:

π′s (zi) =
1√

2πs2
exp

(
− z2

i

2s2

)

and normalised to

πs (zi) =
π′s (zi)∑501
i=1 π

′
s (zi)

For the cooling sequences of the CCABC algorithm we use the cooling sequences

described in (3.2) with t0 = 1000, M = 1 and γ = 1.

We run both algorithms for a burn in period of 2× 104 iterations and then for a

further 2× 104 iterations and both algorithms converge quickly as shown in Figure

3.1b. The adaptive CCABC algorithm shown on the right converges more slowly

because the CCMC weights must also converge.

51

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000 40000

Iteration

ε

(a) The tolerance parameter of the Adaptive
Tolerance MCMC-ABC algorithm

0.0

0.5

1.0

1.5

2.0

0 10000 20000 30000 40000

Iteration

s

(b) The desired sampling parameter of the Ad-
aptive CCABC algorithm

Figure 3.1: The adaptive tolerance algorithm of Vihola and Franks (2020) shown on the left
converges to a maximum tolerance of about 0.252. The adaptive CCABC algorithm shown on
the right converges to a half normal desired sampling distribution with standard deviation of
approximately 0.212.

The adaptive CCABC algorithm appears to converge in a strange manner. First

it converges very quickly but then it deviates for a few thousand iterations before

converging again. This occurs because the sampler manages to push into a low

discrepancy region of the sample space which it had previously not visited. This

results in big updates to the CCMC weights and while the sampler is trying to ex-

plore this region the acceptance rate drops while these are updated and the adaptive

mechanism increases s to compensate. Once the weights have adjusted the desired

sampling density converges again to an appropriate value with the new weights.

The two algorithms produce quite di�erent posterior samples. The di�erence is

particularly clear in the histograms of the discrepancies which are shown in Figure

3.2.

52 Chapter 3. Continuous Contour ABC

0

5000

10000

15000

0.00 0.25 0.50 0.75 1.00
Discrepancy

F
re

q
u
en

cy

(a) The discrepancies sampled by the Adapt-
ive Tolerance MCMC-ABC algorithm

0

5000

10000

15000

0.00 0.25 0.50 0.75 1.00
Discrepancy

F
re

q
u
en

cy

(b) The discrepancies sampled by the Adapt-
ive CCABC algorithm

Figure 3.2: The adaptive tolerance algorithm of Vihola and Franks (2020) shown on the left imposes
a maximum tolerance of 0.252 and so there are not many visits to regions above this tolerance.
The adaptive CCABC algorithm shown on the right converges to a half normal desired sampling
distribution with standard deviation of approximately 0.212 which approximately matches the
sampled discrepancy distribution as expected.

There are two immediate di�erences between the two discrepancy samples. The

�rst clear di�erence is the maximum tolerance which is imposed by the adaptive

tolerance algorithm. As a result the adaptive tolerance algorithm never samples

higher discrepancy regions and instead traps itself in a region of low discrepancy. In

contrast the adaptive CCABC algorithm does not impose this maximum tolerance

and instead allows the sampler to visit higher discrepancy regions enabling the

sampler to escape local traps. The other main di�erence between the two samples

can be seen in the way the adaptive CCABC algorithm pushes the sampler towards

lower discrepancies. This reduces the ABC bias of the posterior and so despite the

adaptive CCABC sampler being allowed to visit higher discrepancies it does this

much less often than it would under a uniform kernel that allowed this. Additionally

this push means that despite spending fewer iterations in the acceptable region of

the adaptive tolerance algorithm the adaptive CCABC sampler still visited the very

lowest discrepancy regions much more often than the adaptive tolerance algorithm.

The advantages of the ACCABC algorithm are clear in histograms of all four

marginal posterior samples where the additional ABC bias of the adaptive tolerance

algorithm can be observed. However, these advantages are most clear in the histo-

53

gram of the marginal estimates of g shown in Figure 3.3 where it can be observed

that the adaptive tolerance algorithm became trapped in the long right tail.

0

1000

2000

3000

0 2 4 6 8 10
g

F
re

q
u
en

cy

(a) The posterior estimates of g obtained us-
ing the Adaptive Tolerance MCMC-ABC al-
gorithm

0

1000

2000

3000

0 2 4 6 8 10
g

F
re

q
u
en

cy

(b) The posterior estimates of g obtained us-
ing the Adaptive CCABC algorithm

Figure 3.3: The adaptive tolerance algorithm struggles to identify the posterior mode and addi-
tionally some minor local trapping can be seen in the tails. By contrast the ACCABC algorithm
identi�es a strong mode around the true value of g = 2 and explores the long right tail without
getting trapped.

There is a very clear di�erence between the two posterior estimates in Figure

(3.3) where the adaptive tolerance algorithm fails to capture the mode of the pos-

terior. Instead the adaptive tolerance sampler su�ers from some local trapping in

the long tail of the distribution. The adaptive CCABC algorithm on the other hand

successfully reduces the ABC bias through its �pushing� mechanism whilst also dis-

playing an immunity to the local trapping problem from which the other tolerance

based algorithm su�ers. These attributes enabled the sampler to identify the pos-

terior mode near the true parameter value of g = 2. Additionally the sampler was

still allowed to properly explore the tail of the posterior and did so without becoming

trapped there.

3.6.2 An Example with Misspeci�cation

We consider an example from Frazier, Robert and Rousseau (2020) where we simu-

late 100 data points from the normal mixture.

54 Chapter 3. Continuous Contour ABC

yi ∼ 0.9×N (1, 2) + 0.1×N (7, 2)

We now attempt to model this data using the g-and-k distribution. Whilst the g-

and-k distribution is highly �exible it cannot capture the bi-modal feature of the

true data generating process. While there are therefore no true parameters for the

model Frazier, Robert and Rousseau (2020) show that for the Euclidean norm the

�pseudo true� parameter values are θ∗ = (1.17, 1.50, 0.41, 0.23). Frazier, Robert and

Rousseau (2020) go on to show that several ABC algorithms, including their own

regression adjusted method, perform poorly for this example. Here we show that

our method can detect the misspeci�cation and adjust for it to perform well.

For the model we take independent uniform priors on [0, 10] for each of the para-

meters and for the Metropolis Hastings step we make independent Normal random

walk proposals with standard deviations of 0.1 for A, B, and k and a standard

deviation of 1 for g. Following Frazier, Robert and Rousseau (2020) we take the

Euclidean distance between the �rst seven octiles of the data and pseudo data to

be the discrepancy. For the adaptive CCABC algorithm we use a base ABC kernel

with maximum tolerance ε = 2 and set a grid of 201 evenly spaced lattice points

over the region [0, 5]. We set the desired sampling density as in (3.4) with p = 0.99.

Finally for the cooling sequences we use the cooling sequences described in (3.2)

with t0 = 400, M = 1 and γ = 1. We run both algorithms for a burn in period of

2× 104 iterations before running them for a further 2× 104 iterations.

Following Frazier, Robert and Rousseau (2020) we run the experiment 1000

times and record the estimates of the posterior means and standard deviations, the

2.5% and 97.5% quantiles, the average length of the credible set and the Monte

Carlo coverage of the pseudo true parameter values θ∗. In many of the experiments

the adaptive tolerance algorithm of Vihola and Franks (2020) su�ered from the

local trapping problem and a typical example of this can be found in Figure 3.4.

55

As expected none of the adaptive CCABC samples displayed the local trapping

problem.

0

2

4

6

0 5000 10000 15000 20000

Iteration

g

Figure 3.4: Typical trace plot for the samples of the g parameter using the adaptive tolerance
algorithm

For reference we provide the values recorded by Frazier, Robert and Rousseau

(2020) for their local linear regression ABC method. We have also included res-

ults using the adaptive SAMCABC algorithm detailed in Section 3.2. With some

post processing we improve the results. This can be done with the three adaptive

algorithms by applying a simple cut o� to the discrepancies. As the adaptive al-

gorithms naturally push the samples towards low discrepancies this cut o� can be set

much lower than is feasible for Accept-Reject based samples such as the regression

method proposed by Frazier, Robert and Rousseau (2020). In Table 3.1 we provide

the results of a cut o� set at ε = 0.8 and provide the results of Frazier, Robert and

Rousseau (2020) for reference.

As we see in Table 3.1 the two adaptive algorithms achieve good estimates of the

parameters after some post processing. In addition to this the two algorithms achieve

much tighter credible intervals after the cut o� has been applied whilst achieving

superior coverage properties. Moreover, the adaptive CCABC achieves much tighter

credible intervals than the adaptive tolerance algorithm, most obviously displayed

by the credible intervals for g. This is because the adaptive CCABC algorithm is

able to push the sampler towards lower discrepancies much more e�ectively than

56 Chapter 3. Continuous Contour ABC

A RegN AT SAMC CC

Mean 1.1568 1.0590 1.1058 1.0915

Std Dev 0.0027 0.2586 0.2152 0.2104

CI Length 0.0112 1.0091 0.8485 0.8358

Coverage 0.0180 0.9670 0.9630 0.9510

2.5% Quantile 1.1509 0.5475 0.6688 0.6566

97.5% Quantile 1.1621 1.5566 1.5173 1.4942

(a) Estimates for A

B RegN AT SAMC CC

Mean 1.0143 1.3418 1.3871 1.3967

Std Dev 0.0104 0.3704 0.3023 0.3019

CI Length 0.0414 1.4125 1.1805 1.1887

Coverage 0.1730 0.9910 0.9770 0.9880

2.5% Quantile 0.9940 0.6732 0.8025 0.8027

97.5% Quantile 1.0354 2.0856 1.9830 1.9914

(b) Estimates for B

g RegN AT SAMC CC

Mean 5.3310 1.2202 0.9565 0.8190

Std Dev 1.5265 1.1763 0.8391 0.7731

CI Length 6.1010 4.3954 3.0760 2.8668

Coverage 0.3380 0.9630 0.9670 0.9720

2.5% Quantile 2.4728 0.0906 0.0954 0.0972

97.5% Quantile 8.5738 4.4859 3.2101 2.9640

(c) Estimates for g

k RegN AT SAMC CC

Mean 2.1790 0.5852 0.4945 0.4838

Std Dev 0.9426 0.4241 0.3145 0.3212

CI Length 3.8949 1.5531 1.1901 1.2229

Coverage 0.5760 0.9660 0.9510 0.9530

2.5% Quantile 0.3648 0.0421 0.0552 0.0537

97.5% Quantile 4.2597 1.5952 1.2453 1.2766

(d) Estimates for k

Table 3.1: Here we have the average recorded details for 1000 simulations using the Adaptive
Tolerance(AT) algorithm and the adaptive SAMCABC(SAMC) and CCABC(CCMC) algorithms
after applying a simple cut o� at ε = 0.8. For reference we also have the local linear regres-
sion(RegN) results from Frazier, Robert and Rousseau (2020). Note the pseudo true values are
(A∗, B∗, g∗, k∗) = (1.17, 1.50, 0.41, 0.23)

57

the adaptive tolerance algorithm.

3.7 Revisiting the ebola model

We apply the Adaptive CCABC algorithm to �t the compartmental model described

in Section 2.6. For the set-up of the ACCABC we choose a large maximum tolerance

of ε = 16 as we expect discrepancies in the high dimensional data space to be

relatively large. We then set up the lattice of gridpoints as 161 evenly spaced points

from 0 to 16. For the Metropolis Hastings step we make independent Normal random

walk proposals with standard deviations of 0.05 for each of the parameters. We take

the Euclidean distance between the data and pseudo data to be the discrepancy. We

set the desired sampling density as in 3.4. Finally for the cooling sequences we use

the cooling sequences described in (3.2) with t0 = 2000, M = 1 and γ = 1. We run

the algorithm for a burn in period of 2× 104 iterations before it is run for a further

2× 104 iterations.

The mean estimates of the four parameters are provided in Table 3.2 with 95%

credible intervals. Additionally the estimates of Ponce et al. (2019) can also be found

in Table (3.2) however the intervals for these are frequentist 95% con�dence intervals.

There is no con�dence interval for the proportion of asymptomatic infections, δ, as

Ponce et al. (2019) determined this parameter by trying four di�erent values and

choosing the one with the lowest AIC value for the model.

AT CC Ponce et al. 2019

βI 0.334 (0.256, 0.397) 0.343 (0.255, 0.398) 0.319 (0.309, 0.330)
βH 0.142 (0.036, 0.232) 0.112 (0.013, 0.233) 0.191 (0.185, 0.198)
βD 0.385 (0.257, 0.537) 0.412 (0.286, 0.530) 0.383 (0.371, 0.396)
δ 0.169 (0.010, 0.395) 0.163 (0.010, 0.388) 0.3

Table 3.2: Posterior estimates of the transmission parameters and their 95% credible intervals
from both the adaptive tolerance algorithm and ACCABC. The estimates from Ponce et al. (2019)
are also provided for reference along with their 95% con�dence intervals. There is no con�dence
interval for the proportion of asymptomatic infections, δ, as Ponce et al. (2019) determined this
parameter by trying four di�erent values and choosing the one with the lowest AIC value for the
model.

58 Chapter 3. Continuous Contour ABC

The three methods produce very similar estimates for the three transmission

parameters. For the proportion of asymptomatic infections, δ, however the two ABC

methods estimate a much lower proportion than the likelihood based estimates of

Ponce et al. (2019). The model su�ers from severe misspeci�cation and the adaptive

CCABC method estimated ε∗ = 8.46. Indeed the histograms of discrepancies shown

in Figure 3.5 from both the ABC methods show a large gap between the lowest

discrepancies and zero.

0

5000

10000

15000

0 4 8 12 16
Discrepancy

F
re

q
u
en

cy

(a) The discrepancies sampled by the adapt-
ive tolerance algorithm

0

5000

10000

15000

0 4 8 12 16
Discrepancy

F
re

q
u
en

cy

(b) The discrepancies sampled by the adapt-
ive CCABC algorithm

Figure 3.5: Histograms of the discrepancies from the two algorithms. We see that the Adaptive
Tolerance algorithm enforces a sharp cut o� at ε = 11.65 while the adaptive CCABC algorithm
allowed discrepancies larger than this to ensure immunity to local trapping. The adaptive CCABC
algorithm also pushed more aggresively into lower discrepancy areas and so despite allowing larger
discrepancies it also sampled more from the lowest discrepancy regions.

This suggests that results from this model should be treated cautiously as the

method detected severe model misspeci�cation. For comparison we also simulated

20000 pseudodata sets using the simulator with the estimates of Ponce et al. (2019)

and recorded the discrepancies. These discrepancies are shown in Figure 3.6. These

discrepancies are noticeably higher than those of the two ABC methods which may

suggest that the likelihood method of Ponce et al. (2019) did not �nd estimates near

the pseudo true values. In fact the mean discrepancy was 13.2 which is noticeably

larger than the mean discrepancies of the adaptive tolerance and adaptive CCABC

algorithms which were 11.1 and 10.8 respectively.

59

Figure 3.6: Histogram of the discrepancies sampled using the parameter estimates of Ponce et al.
(2019). Note that these are almost all larger than the discrepancies sampled in the two ABC
methods. Furthermore, notice the high variance of discrepancy despite the �xed input parameters.

Also noticeable in Figure 3.6 is the high variance in discrepancy. This is surpris-

ing since all of these simulations were completed using identical parameter settings.

This perhaps suggests that for this model the data are not very informative. This

would also explain why post processing of the ABC results by imposing a cut o� at

ε = 10 resulted in estimates that were largely unchanged.

AT (Post-processed) CC (Post-processed) Ponce et al. 2019

βI 0.337 (0.257, 0.398) 0.353 (0.258, 0.399) 0.319 (0.309, 0.330)
βH 0.127 (0.022, 0.219) 0.103 (0.017, 0.233) 0.191 (0.185, 0.198)
βD 0.404 (0.256, 0.530) 0.424 (0.323, 0.510) 0.383 (0.371, 0.396)
δ 0.155 (0.013, 0.331) 0.147 (0.010, 0.379) 0.3

Table 3.3: Posterior estimates of the transmission parameters and their 95% credible intervals
from both the adaptive tolerance algorithm and the adaptive CCABC after imposing a cut-o� at
ε = 10. The estimates from Ponce et al. (2019) are also provided here for reference along with
their 95% con�dence intervals. There is no con�dence interval for the proportion of asymptomatic
infections, δ, because Ponce et al. (2019) determined this parameter by trying four di�erent values
and choosing the one with the lowest AIC value for the model.

The credible intervals observed in Table 3.3 became slightly smaller after post

processing but the di�erence is very small. This is further evidence that the data

are not informative for this model. This could perhaps be improved if the data

were collected more frequently or if data about another model compartment were

collected. In particular data about hospitalisations would likely be quite informative

here,

Chapter 4

Multi�delity ABC

4.1 The multi�delity problem

For ABC methods it is necessary to simulate pseudodata from the model many

times. In some cases we have multiple simulators available. Some of these can be

very accurate but expensive to run whilst others may be less accurate but substan-

tially cheaper. The proposed algorithm uses multiple cheap simulators to achieve

computational improvements over an ABC algorithm which uses only the expensive

simulator while still converging to the same approximate posterior distribution. This

is partially o�set by a reduction in statistical e�ciency which depends on how well

correlated the cheap simulators are to the expensive one. The algorithm also uses

a stochastic approximation step to identify which cheap simulators are correlated

best in which regions of the sample space. This allows the algorithm to minimise

the reduction in statistical e�ciency.

61

4.2 Early rejection MCMC-ABC

Partition the parameter space Θ, into subregions, T1, ..., Tk, and to each subregion

assign a vector of probabilities, exp (−φT,j) for j = 0, 1, ...,m. Where j = 0 cor-

responds to skipping the low �delity step and j = 1, ...,m corresponds to using

the jth low �delity simulator. Then at each iteration we propose a new θ, select

a low �delity simulator at random with the corresponding probability vector, and

then perform delayed acceptance MCMC with the selected low �delity simulator.

We then update the probability vector for that region based on the di�erence in

approximate likelihood ratios

H (φ, θ) =

∣∣∣∣∣∣ gε,i (u
′
lo)

gε,i

(
u

(t)
lo

) − gε,hi (u
′
hi)

gε,hi

(
u

(t)
hi

)
∣∣∣∣∣∣

using a stochastic approximation step to solve

∫
H (φ, θ) πABC (θ|x) dθ = 0

The full algorithm can be found in Algorithm 4.1.

62 Chapter 4. Multi�delity ABC

Algorithm 4.1 Early Rejection MCMC-ABC
Inputs: observed data y, kernel parameter ε, number of iterations N, initial para-
meter value θ(1), initial discrepancy u(1), subregions Tj
Loop over t = 1, ...,N

1. Sampling Step(θ′)

(a) Sample θ′ ∼ q (θ′|θt)

2. Augmentation Step

(a) Identify the subregion T of Θ which contains θ′

(b) Sample i ∼ πlofi (i|T) where i = 1, ...,m and πlofi (j|T) = exp
(
−φtT,j

)
3. Sampling Step(x′lo)

(a) Sample x′lo ∼ fi (x
′
lo|θ′)

(b) Calculate α
(t+1)
lo

(
θ′|θ(t)

)
= min (Rlo, 1) with:

Rlo =
π (θ′) q

(
θ(t)|θ′

)
gε,i (u

′
lo)

π (θ(t)) q (θ′|θ(t)) gε,i

(
u

(t)
lo

)
(c) With probability α

(t+1)
lo go to step 4. Otherwise set(

θ(t+1), x
(t+1)
lo , x

(t+1)
hi

)
=
(
θ(t), x

(t)
lo , x

(t)
hi

)
and go to the next iteration.

4. 4. Sampling Step(x′hi)

(a) Sample x′hi ∼ fhi (x
′
hi|θ′, x′lo)

(b) Calculate α
(t+1)
hi

(
θ′|θ(t)

)
= min (Rhi, 1) with:

Rhi =
π (θ′) q∗

(
θ(t)|θ′

)
gε,hi (u

′
hi)

π (θ(t)) q∗ (θ′|θ(t)) gε,hi

(
u

(t)
hi

)
(c) Set

(
θ(t+1), x

(t+1)
lo , x

(t+1)
hi

)
= (θ′, x′lo, x

′
hi) with probability α

(t+1)
hi

(
θ′|θ(t)

)
.

Otherwise set
(
θ(t+1), x

(t+1)
lo , x

(t+1)
hi

)
=
(
θ(t), x

(t)
lo , x

(t)
hi

)
5. Updating step for augmentation

(a) Calculate pt+1 =

∣∣∣∣ gε,i(u′lo)gε,i

(
u

(t)
lo

) − gε,hi(u′hi)
gε,hi

(
u

(t)
hi

)
∣∣∣∣

(b) Compute φ
(t+1)
T,i = φ

(t)
T,i + γt+1 [pt+1 − δ]i

(c) Normalise φ
(t+1)
T such that

∑m
j=1 φ

(t+1)
T,j = 1

End Loop
Output: parameter values θ(1), ..., θ(N), estimate φ(N)

63

where δ ≥ 0 is some tolerance for the di�erence in likelihood approximation and

m is the number of low �delity simulators. The obvious choice for δ is zero as this

corresponds to a perfect approximation of the high �delity simulator by the low

�delity one. However δ = 0 would always push away from using the low �delity

simulator used in the current iteration. A small non-zero tolerance enables conver-

gence to a particular low �delity simulator. Furthermore q∗
(
θ′|θ(t)

)
and r

(
θ(t)
)
are

as follows to preserve detailed balance.

q∗
(
θ′|θ(t)

)
= α

(t+1)
lo

(
θ′|θ(t)

)
q
(
θ′|θ(t)

)
+
(
1− r

(
θ(t)
))
δθ(t) (θ′)

and:

r
(
θ(t)
)

=

∫
α

(t+1)
lo

(
θ′|θ(t)

)
q
(
θ′|θ(t)

)
dθ′

and δθ(t) (θ′) denotes the Dirac mass at θ(t). As described in Robert, Casella and

Casella (1999) this preserves the detailed balance condition of the Metropolis Hast-

ings step of the algorithm. This then consequently preserves the convergence guar-

antees of the SAMC-based algorithm.

4.3 Multi�delity MCMC-ABC

Algorithm 4.2 uses Stochastic Approximation to �nd model selection probabilities

that minimise H (φ, θ) =

∣∣∣∣ gε,i(u′lo)gε,i

(
u

(t)
lo

) − gε,hi(u′hi)
gε,hi

(
u

(t)
hi

)
∣∣∣∣ > 0. This allows the algorithm to

favour the low �delity models which o�er better approximations in the early rejec-

tion step. For further computational gains it would be bene�cial to also use this

information in an early acceptance step. Unfortunately this cannot be done without

introducing some error to the posterior as we will accept samples early that would

have been rejected by the high �delity model. Nonetheless, if we perform early ac-

ceptance only when the average H (φ, θ) for the model in that region is low then we

can keep this approximation error small whilst enjoying large computational gains.

64 Chapter 4. Multi�delity ABC

In fact we can �nd an estimate ∆T,i of the average relative error in gε,hi

(
u

(t+1)
hi

)
for

model i in subregion T . Furthermore, in the case of uniform ABC kernels the aver-

age absolute error reduces to ∆T,i and gives the frequency with which gε,hi

(
u

(t+1)
hi

)
is estimated as 1 where it should be 0. The threshold η gives the frequency that

the approximation should be used given that the error is below ε. This controls the

trade o� between continuing the stochastic approximation in that region and using

the learned information to make computational savings. The parameter η should

increase to 1 asymptotically to ensure convergence. This means that asymptotic-

ally as the stochastic approximation converges and there is less uncertainty about

the expected error of the approximation we decide to use the approximation or not

deterministically using only the expected error. Note this is not a true early accept-

ance step, when the approximation is used there is still the possibility of rejection

in the high �delity accept/reject step, particularly if the acceptance probability in

the low �delity step was small. However it does remove the need to always simulate

from the expensive high �delity simulator in every acceptance step.

Algorithm 4.2 Multi�delity MCMC-ABC

Inputs: observed data y, kernel parameter ε, number of iterations N, initial

parameter value θ(1), initial discrepancy u(1), subregions Tj, early acceptance

threshold parameters ε and η

Loop over t = 1, ...,N

1. Sampling Step(θ′)

(a) Sample θ′ ∼ q (θ′|θt)

2. Augmentation Step

(a) Identify the subregion T of Θ which contains θ′

(b) Sample i ∼ πlofi (i|T) where i = 1, ...,m and πlofi (j|T) = exp
(
−φtT,j

)

65

3. Sampling Step(x′lo)

(a) Sample x′lo ∼ fi (x
′
lo|θ′)

(b) Calculate α
(t+1)
lo

(
θ′|θ(t)

)
= min (Rlo, 1) with:

Rlo =
π (θ′) q

(
θ(t)|θ′

)
gε,i (u

′
lo)

π (θ(t)) q (θ′|θ(t)) gε,i

(
u

(t)
lo

)
(c) With probability α

(t+1)
lo go to step 4 . Otherwise set

(
θ(t+1), x

(t+1)
lo , x

(t+1)
hi

)
=(

θ(t), x
(t)
lo , x

(t)
hi

)
and go to the next iteration.

4. Sampling Step(x′hi)

(a) Sample U ∼ Uniform (0, 1)

(b) If ∆T,i < ε and U < η then approximate gε,hi (u
′
hi) =

gε,i(u′lo)gε,hi
(
u

(t)
hi

)
gε,i

(
u

(t)
lo

)
(c) Otherwise sample x′hi ∼ fhi (x

′
hi|θ′, x′lo) and calculate gε,hi (u

′
hi) using x

′
hi

(d) Calculate α
(t+1)
hi

(
θ′|θ(t)

)
= min (Rhi, 1) with:

Rhi =
π (θ′) q∗

(
θ(t)|θ′

)
gε,hi (u

′
hi)

π (θ(t)) q∗ (θ′|θ(t)) gε,hi

(
u

(t)
hi

)
(e) Set

(
θ(t+1), x

(t+1)
lo , x

(t+1)
hi

)
= (θ′, x′lo, x

′
hi) with probability α

(t+1)
hi

(
θ′|θ(t)

)
.

Otherwise set
(
θ(t+1), x

(t+1)
lo , x

(t+1)
hi

)
=
(
θ(t), x

(t)
lo , x

(t)
hi

)
5. Updating step for augmentation

(a) If ∆T,i < ε and U < η go to the next iteration

(b) Calculate pt+1 =

∣∣∣∣ gε,i(u′lo)gε,i

(
u

(t)
lo

) − gε,hi(u′hi)
gε,hi

(
u

(t)
hi

)
∣∣∣∣

(c) Update ∆T,i = 1
k+1

(k∆T,i + pt+1) where k is the number of times we have

previously chosen model i in subregion T

(d) Compute φ
(t+1)
T,i = φ

(t)
T,i + γt+1 [pt+1 − δ]i

66 Chapter 4. Multi�delity ABC

(e) Normalise φ
(t+1)
T such that

∑m
j=1 φ

(t+1)
T,j = 1

End Loop

Output: parameter values θ(1), ..., θ(N), estimate φ(N)

4.4 Demonstrating the algorithm with a toy

example

We demonstrate the algorithm on a normal mixture model. For the toy example

the two normal components have known means and variances and the mixture is

strongly bimodal. Inference is to be made about the mixture parameter p. The

mixture distribution is as described in (4.1) with p = 0.5. We sample 200 data

points from the mixture and perform ABC using the Euclidean distance between the

order statistics as the discrepancy. For the prior on p we take a uniform distribution

on [0, 1].

Xhi ∼ p×N (0, 1) + (1− p)×N (5, 1) (4.1)

First we perform standard MCMC-ABC sampling using only the high �delity model

which is the true model with unknown parameter p. We use a uniform ABC kernel

with a maximum tolerance of 6. We run the sampler for a total of 2×105 iterations.

Then we run the early rejection and multi�delity ABC samplers with the two normal

components of the mixture as low �delity models

X
(1)
lo ∼ N (0, 1)

X
(2)
lo ∼ N (5, 1)

and the true model again as the high �delity model. The ABC kernels for the

two low �delity models are uniform with a maximum tolerances of 43.5. The early

67

rejection and multi�delity ABC samplers are also run for a total of 2×105 iterations

each. For the multi�delity algorithm we choose an error threshold of ε = 0.3 for the

early approximation step. Histograms of the samples are shown below in Figure 4.1

with the true posterior overlayed in red.

p

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

(a) MCMC-ABC

p

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

(b) ER-MCMC-ABC

p

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

(c) MF-MCMC-ABC

Figure 4.1: Histograms of posterior estimates of the mixture parameter using standard MCMC
ABC with the high �delity simulator (a), using early rejection MCMC-ABC (b), and using Multi-
�delity MCMC-ABC (c)

The sampling methods produce samples that match well with the true posterior,

demonstrating that the early rejection and multi�delity algorithms may sample from

the ABC posterior without introducing additional bias even with very poor low

�delity models if the low �delity models are good approximations within a region of

the parameter space. We also plot the convergence of the low �delity model selection

probabilities. We plot the probability that X
(2)
lo ∼ N (5, 1) will be used as the low

�delity model in each of the four subregions in Figure 4.2. Note that when p is small

68 Chapter 4. Multi�delity ABC

the sampler should prefer X
(2)
lo ∼ N (5, 1) and when p is large the sampler should

prefer X
(1)
lo ∼ N (0, 1).

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

P
ro
ba
bi
lit
y

(a) p ∈ [0, 0.25]

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

P
ro
ba
bi
lit
y

(b) p ∈ (0.25, 0.5]

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

P
ro
ba
bi
lit
y

(c) p ∈ (0.5, 0.75]

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

P
ro
ba
bi
lit
y

(d) p ∈ (0.75, 1]

Figure 4.2: Probability of selecting X
(2)
lo ∼ N (5, 1) as the low �delity model in each subregion at

iteration t using the early rejection algorithm

As can be seen in Figure 4.2 the early rejection sampler correctly favours X
(1)
lo ∼

N (0, 1) in the regions where p is large and favours X
(2)
lo ∼ N (5, 1) instead in the

regions where p is small. Moreover, we can see that since visits to the subregion

(0.5, 0.75] are proposed much more often this probability is updated much more

often. If there were not such a strong preference for one model in the other subregions

it is unlikely that the probabilities would have converged. Nonetheless, this is not a

problem. Algorithm 4.2 clearly gains the most e�ciency by learning in the most often

proposed subregions and these are the subregions which converge well. In Figure

(4.3) we see that the multi�delity sampler also correctly chooses X
(1)
lo ∼ N (0, 1) in

regions where p is large and X
(2)
lo ∼ N (5, 1) elsewhere.

69

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

P
ro
ba
bi
lit
y

(a) p ∈ [0, 0.25]

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

P
ro
ba
bi
lit
y

(b) p ∈ (0.25, 0.5]

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

P
ro
ba
bi
lit
y

(c) p ∈ (0.5, 0.75]

0e+00 2e+05 4e+05 6e+05 8e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

P
ro
ba
bi
lit
y

(d) p ∈ (0.75, 1]

Figure 4.3: Probability of selecting X
(2)
lo ∼ N (5, 1) as the low �delity model in each subregion at

iteration t using the early rejection algorithm

As observed in the early rejection sampler outputs the selection probability is up-

dated most often in the subregion (0.5, 0.75] where visits are proposed much more

often. In the other regions the algorithm develops a strong preference for the ap-

propriate low �delity simulator very quickly. We observe that convergence is not

impeded by the use of the early approximation step used to accept proposals without

simulating from the high �delity simulator. This suggests that the multi�delity ABC

algorithm can achieve a good approximation of the high �delity model posterior

whilst enjoying considerable computational advantages.

Chapter 5

Conclusion

5.1 Adaptive Kernel ABC

We introduced a new framework for approximate Bayesian computation which aims

to mitigate the local trapping problem whilst yielding reduced approximation bias.

This methodology uses stochastic approximation to estimate the marginal density

of the discrepancy and adapt the kernel using this estimate. We further extend

this methodology to the continuous discrepancy domain where we can introduce an

automatic method to determine the weights used in the stochastic approximation.

This automatic method additionally optimises the Metropolis-Hastings acceptance

rate and improves convergence. Moreover. we present a method which can both

detect and adapt to ABC model misspeci�cation. We demonstrate these methods

on challenging benchmark examples where we see the expected improvements over

existing methods. Furthermore, we use our proposed methods to �t a sophisticated

SEIR-type model to data from the Ebola outbreak in Liberia in 2014. We found

that our methods compare favourably to the existing methodology previously used

to �t this model. Future work within the SAMCABC and CCABC frameworks

may aim to adaptively construct the SAMC partition and CCMC grids respectively.

71

Adaptive construction of the partition or grid would enable full automation of the

method.

5.2 Multi�delity ABC

In Chapter 4 we introduced methodology to extend ABC to the multi�delity setting.

In particular our method enables the comparison of multiple competing low �delity

simulators to optimise the e�ciency whilst �tting a multi�delity model. More im-

pressively, our method can even favour di�erent low �delity simulators in di�erent

regions of the parameter space, enabling the use of more expensive approximations

in more challenging regions whilst retaining the computational bene�ts of a cheaper

approximation in regions where the cheaper approximation can su�ce. We demon-

strate our method on a benchmark example where the method correctly identi�es

the appropriate low �delity approximation to use in each subregion.

Part II

Model selection by stochastic

reversible jumps

Chapter 6

Overview and context

6.1 Stochastic gradient methods for big data

Given a large set of data x ∈ X , and a collection of modelsmk = {fk (·|θk) ; θk ∈ Θk} ∈

M indexed by k we aim to perform model selection whilst making inference about

the parameters θk ∈ Θk of each model. We assign a prior π (θk,mk) and write the

likelihood function of model mk as fk (x|θk,mk). This leads to a posterior distribu-

tion

π (θk,mk|x) ∝ π (θk,mk) f (xk|θk,mk)

where the normalising constant is typically intractable. For now we focus on meth-

ods which aim to make this inference for a �xed model m. Thus we suppress the

model index k in notation for brevity. Later in Section 6.4 we extend these methods

to the model selection problem. Several popular MCMC methods such as the Met-

ropolis Adjusted Langevin Algorithm (MALA) (Roberts and Stramer 2002) and the

Hamiltonian Monte Carlo (HMC) algorithm (Duane et al. 1987; Neal et al. 2011)

aim to improve upon the e�ciency of standard MCMC methods by exploiting the

gradient of the posterior to make informed proposals. These methods can greatly

75

improve the statistical e�ciency over other MCMC methods such as the Metropolis-

Hastings algorithm but when the size of the data becomes large these gradients can

become too computationally expensive to evaluate repeatedly. Recent advances have

introduced scalable MCMC algorithms such as the Stochastic Gradient Langevin

Dynamics (SGLD) algorithm (Welling and Teh 2011) and the Stochastic Gradient

Hamiltonian Monte Carlo (SGHMC) algorithm (T. Chen, E. Fox and Guestrin 2014)

which aim to improve the computational e�ciency of MALA and HMC respectively.

Both stochastic algorithms achieve improved computational e�ciency by evaluating

the gradient of the likelihood on only a subset of the data at each iteration to re-

duce the cost of each iteration. Moreover, by taking asymptotically decreasing step

sizes we can guarantee convergence whilst skipping the still expensive Metropolis-

Hastings accept/reject step (Welling and Teh 2011; T. Chen, E. Fox and Guestrin

2014; C. Chen, Ding and Carin 2015).

6.1.1 Stochastic Gradient Langevin Dynamics

The Stochastic Gradient Langevin Dynamics (SGLD) algorithm uses a stochastic

estimate for the gradient of the target distribution to make proposals from a discrete

time approximation of the Langevin di�usion (Welling and Teh 2011; Nemeth and

Fearnhead 2020; Y.-A. Ma, T. Chen and E. B. Fox 2015). By using an unbiased

estimate of the gradient of the log-likelihood function based on a subsample size n

which can be much smaller than the total sample size N we can greatly reduce the

computational cost of evaluating the gradient. This in turn greatly reduces the cost

of the whole algorithm since the gradient is typically the computational bottleneck

for the algorithm (Nemeth and Fearnhead 2020). To describe the algorithm let's

�rst consider the target distribution π (θ|x) that admits the form:

π (θ|x) ∝ exp (−U (θ|x))

76 Chapter 6. Overview and context

where U (θ|x) is called the energy function. For brevity we write U (θ) for the energy

function hereafter. Then we are interested in the gradient of the energy ∇U (θ). In

particular we can write

∇Û (θ) = ∇ log (π (θ)) +
N

n

∑
xi∈S

∇ log f (xi|θ) (6.1)

for the unbiased estimator of the gradient evaluated using a subsample, S, of the

data. Now we can compute the updating equation for θ(t+1) from θ(t) given stepsize,

ε(t), and hence the full SGLD algorithm is given in Algorithm 6.1.

Algorithm 6.1 Stochastic Gradient Langevin Dynamics

Input: number of iterations K, subsample size n, step sizes ε, initial parameter θ(1)

Loop over t = 1, ...,K

1. Subsample S from the data without replacement

2. Estimate ∇Û
(
θ(t)
)
using Equation 6.1

3. Draw η(t) ∼ N
(
0, ε(t)

)
4. Calculate θ(t+1) = θ(t) − ε

2
∇Û (θ) + η(t)

End Loop
Output: parameters θ(1), ..., θ(K)

Stochastic gradient methods such as SGLD can massively reduce the computa-

tional costs of the e�cient but sometimes expensive gradient based MCMC methods.

Furthermore, given an appropriately decaying step size the stochastic gradient meth-

ods still have convergence guarantees. In practice however, a decaying step size ε(t)

is not used. Instead the decay is either halted once the step size reaches some small

value or the step size is �xed at some small value ε(t) = ε for all iterations t (Welling

and Teh 2011; Nemeth and Fearnhead 2020). This trades o� some approximation

error in the Metropolis-Hastings acceptance ratio in exchange for better long term

exploration by the algorithm (Welling and Teh 2011; Nemeth and Fearnhead 2020).

By making this trade o� we no longer have guaranteed convergence to the true tar-

77

get density but instead to some approximation of it, where for a su�ciently small

step size that approximation error is considered negligible.

6.1.2 Stochastic Gradient Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) algorithm extends the Metropolis-adjusted

Langevin algorithm (MALA) by introducing auxillary momentum variables, r, to the

dynamics used to make proposals (T. Chen, E. Fox and Guestrin 2014). Together

with a mass matrix, M , which is typically set to be an identity matrix we write the

joint target distribution

π (θ, r) ∝ exp (−H (θ, r))

where H (θ, r) = U (θ)− 1
2
rTM−1r. Similarly to MALA the bottleneck of the HMC

algorithm is the evaluation of the gradient ∇H (θ, r). Thus the computational bur-

den of the algorithm can be reduced by evaluating that gradient using an unbiased

estimator as in SGLD (T. Chen, E. Fox and Guestrin 2014; Nemeth and Fearnhead

2020; Y.-A. Ma, T. Chen and E. B. Fox 2015). Then with stepsize ε(t) we have

updating equations

θ(t+1) = θ(t) + ε(t)M−1r(t−1) (6.2)

r(t+1) = r(t) − ε(t)

2
∇Û

(
θ(t+1)

)
− ε(t)

2
CM−1r(t−1) + η(t) (6.3)

where C is a user speci�ed friction matrix that reduces the impact of the noise (T.

Chen, E. Fox and Guestrin 2014; C. Chen, Ding and Carin 2015). Then using (6.2)

and (6.3) the Stochastic Gradient HMC algorithm is shown in Algorithm 6.2.

78 Chapter 6. Overview and context

Algorithm 6.2 Stochastic Gradient Hamiltonian Monte Carlo

Input: number of iterations K, subsample size n, step sizes ε, initial parameter θ(1),
friction matrix C
Loop over t = 1, ...,K

1. Subsample S from the data without replacement

2. Estimate ∇Û (θ) using Equation 6.1

3. Draw η(t) ∼ N
(
0, Cε(t)

)
4. Update θ and r using Equations 6.2 and 6.3

End Loop
Output: parameters θ(1), ..., θ(K)

Similarly to SGLD a �xed step size is often used in practice to improve the long

term exploration of the algorithm at the cost of some small approximation error (T.

Chen, E. Fox and Guestrin 2014).

6.2 Variance reduction for stochastic gradient

methods

The stochastic gradient algorithms detailed in Section 6.1 reduce the computational

burden associated with the exact Monte Carlo methods. Given appropriately de-

creasing step sizes and an unbiased estimator for the gradient the convergence of the

algorithm is still guaranteed (C. Chen, Ding and Carin 2015; T. Chen, E. Fox and

Guestrin 2014; Dubey et al. 2016). However, the estimator for the gradient often

has high variance since only a small subsample of the data is used and this can cause

poor mixing and slow convergence (Dubey et al. 2016; Li et al. 2019; Chatterji et al.

2018). To improve the mixing of the algorithm several variance reduction methods

have been proposed (Dubey et al. 2016; Chatterji et al. 2018). In this section we fo-

cus on two algorithms called Stochastic Average Gradient Accelerated (SAGA) and

Stochastic Variance Reduced Gradient (SVRG) and in particular we focus on apply-

79

ing these algorithms to SGLD. Both algorithms attempt to address the problem of

high variance by retaining information about the entire dataset between iterations.

The SAGA algorithm retains the most recently evaluated gradient at each data

point so that an estimate of the gradient across the full dataset can be used as a

control variate. To do this initialise α
(0)
i = θ(0), g

(0)
i = ∇ log (f (xi|θ)), and g(0) =∑

g
(0)
i for i = 1, ..., N . Then when we update θ(t+1) we also update α(t+1) and g

(t+1)
i

at the data points in the subset used at that iteration. The g
(t+1)
i not used at that

iteration are set as g
(t)
i . Then the estimate of the gradient given in (6.1) becomes:

∇Û (θ) = ∇ log (π (θ)) +
N

n

∑
xi∈S

(∇ log f (xi|θ)−∇ log f (xi|α))− g (6.4)

and the SAGA Langevin Dynamics (SAGA-LD) algorithm is given in Algorithm 6.3.

Algorithm 6.3 SAGA-LD

Input: number of iterations K, subsample size n, step sizes ε, initial parameter θ(1)

Loop over t = 1, ...,K

1. Subsample S from the data without replacement

2. Estimate ∇Û
(
θ(t)
)
using Equation 6.4

3. Draw η(t) ∼ N
(
0, ε(t)

)
4. Calculate θ(t+1) = θ(t) − ε

2
∇Û (θ) + η(t)

5. Set α
(t+1)
i = θ(t+1) for i such that xi ∈ S and α

(t+1)
i = α

(t)
i for i such that

xi /∈ S

6. Calculate g
(t+1)
i = ∇ log f

(
xi|α(t+1)

i

)
for i such that xi ∈ S and set g

(t+1)
i = g

(t)
i

for i such that xi /∈ S

7. Calculate g(t+1) =
∑N

i=1 g
(t+1)
i

End Loop
Output: parameters θ(1), ..., θ(K)

The SAGA-LD algorithm has a much improved convergence rate compared to

standard SGLD at the cost of high memory overhead (Dubey et al. 2016; Chatterji

80 Chapter 6. Overview and context

et al. 2018). When the dataset is very large and the memory costs of storing every

subgradient gi becomes prohibitive the SVRG Langevin Dynamics (SVRG-LD) al-

gorithm can be used instead (Dubey et al. 2016; Chatterji et al. 2018). Instead of

storing the N individual gradients like SAGA-LD does, the SVRG-LD algorithm

instead evaluates the gradient on the full dataset every m iterations and stores the

full gradient of the log likelihood, g̃, and θ̃ = θ at the full evaluation. Thus the

estimate of the gradient given in (6.1) becomes:

∇Û (θ) = ∇ log (π (θ)) +
N

n

∑
xi∈S

(
∇ log f (xi|θ)−∇ log f

(
xi|θ̃

))
− g̃ (6.5)

Thus SVRG-LD trades memory overhead for computational cost. This cost becomes

small as m becomes large(Dubey et al. 2016). However, as θ moves further away

from θ̃, g̃ becomes less useful as a control variate (Chatterji et al. 2018). Hence if

m is too large then variance reduction will not be achieved. The SVRG algorithm

is given in Algorithm 6.4.

Algorithm 6.4 SVRG-LD step

Input: number of iterations K, subsample size n, step sizes ε, initial parameter θ(1),
gradient update iteration m
Loop over t = 1, ...,K

1. If t mod m = 0 then set θ̃ = θ(t) and calculate g̃ =
∑N

i=1 log f
(
xi|θ̃

)
2. Subsample S from the data without replacement

3. Estimate ∇Û (θ) using Equation 6.5

4. Draw η(t) ∼ N
(
0, ε(t)

)
5. Calculate θ(t+1) = θ(t) − ε

2
∇Û (θ) + η(t)

End Loop
Output: parameters θ(1), ..., θ(K)

81

6.3 Bias reduction for MCMC under uncertainty

Stochastic gradient methods typically skip the Metropolis-Hastings accept-reject

step since the acceptance probability is assumed to be near one for small step sizes

and calculating the acceptance ratio requires expensive evaluation of the likelihood

on the full dataset (Welling and Teh 2011). This can result in very slow exploration

of the parameter space since ideally the step size for full gradient based MCMC

methods is large. One possible compromise that allows for larger steps is to calculate

the acceptance ratio using only the subset of the data used to estimate the gradient.

This is much cheaper than evaluating the acceptance ratio exactly but it introduces

additional bias into the algorithm via the acceptance ratio such that we no longer

converge to the target distribution.

The bias can be reduced using methods for MCMC under uncertainty. One such

method makes assumptions about the distribution of the log acceptance ratio under

the uncertainty and then attempts to estimate the bias and apply an appropriate

penalty term to the acceptance ratio (Ceperley and Dewing 1999). In particular, if

we can assume that the subsampling estimate of the log acceptance ratio is normally

distributed then by calculating the log acceptance ratio, log (r), for np di�erent

subsamples S1, ..., Snpwe can construct the following estimators:

δ =

∑np
i=1 log (ri)

np

χ2 =

∑np
i=1 (log (ri)− δ)2

np (np − 1)

for the log acceptance ratio and its variance respectively. Then the corrected ac-

ceptance probability can be constructed as

αp = min (1, exp (−δ − uB))

82 Chapter 6. Overview and context

where uB = χ2

2
+ χ4

4(np+1)
+ χ6

3(np+1)(np+3)
+... is the penalty term (Ceperley and Dewing

1999). In practice when χ2

2
is small then a penalty using only the lowest order term,

uB = χ2

2
, is su�cient to achieve very low bias.

6.4 The reversible jump algorithm

The Reversible Jump algorithm extended the scope of MCMC methods to include

transdimensional sampling problems (Green 1995). By using a technique called di-

mension matching, the reversible jump MCMC (RJ-MCMC) methodology enables

an MCMC sampler to transition between di�erent parameter spaces. This is done by

extending those spaces using auxillary variables, u, and then constructing bijective

transformations, Gk→k′ between the extended spaces. Then denoting the probability

density on the auxillary variables as ϕk→k′ (uk→k′) and the Jacobian of the trans-

formation as Jk→k′ we can write the standard RJ-MCMC update at state (θk, k) in

Algorithm 6.5.

Algorithm 6.5 RJ-MCMC step

Input: current parameter θk, current model k

1. Sample k′ ∼ q
(
k(t)
)

2. Sample uk→k′ ∼ ϕ (·)

3. Apply the transformation θk′ = Gk→k′ (θk, uk→k′)

4. Accept (θk′ , k
′) with probability α = min (rk→k′ , 1) where

rk→k′ =
π (θk′ , k

′)ϕk′→k (uk′→k) q (k′, k)

π (θk, k)ϕk→k′ (uk→k′) q (k, k′)
Jk→k′

5. Otherwise set (θk′ , k
′) = (θk, k)

Output: parameter θk′ , model k
′

In practice, choosing Gk→k′ and ϕk→k′ (uk→k′) can be di�cult, and poor choices

lead to slow mixing, with high rejection rates even between comparable model spaces.

As a result of these practical limitations, transdimensional MCMC using standard

83

RJ-MCMC is often extremely ine�cient and improving that e�ciency can be taxing

on the user.

6.5 Annealed Importance Sampling RJ

To achieve more e�cient RJ-MCMC sampling various methods have been proposed,

including the annealed importance sampling reversible jump algorithm (AISRJ)

(Karagiannis and Andrieu 2013). Let us �rst consider an idealised Metropolis-

Hastings algorithm where the model transition probabilities are known given in

Algorithm 6.6. The acceptance rate of the idealised algorithm is greater than or

equal to the the acceptance rate of any reversible jump sampler E
(
αID

)
≥ E

(
αRJ

)
.

Although this algorithm is typically unavailable since the model transition probab-

ilities are usually not known, the algorithm has guaranteed convergence under only

mild assumptions without the ine�ciency introduced in the RJ method. Hereafter

we will refer to Algorithm 6.6 as the Ideal algorithm and compare both AISRJ and

the proposed methodology in Chapter 7 to this algorithm.

Algorithm 6.6 Ideal Model Transition MH step

Input: current model k

1. Sample k′ ∼ q (·|k)

2. Accept k′ with probability α = min (rk→k′ , 1) where

rk→k′ =
π (k′) q (k′, k)

π (k) q (k, k′)

3. Otherwise set k′ = k

Output: model k′

Returning to RJ methods then, the AISRJ algorithm aims to improve upon

the e�ciency of the RJ-MCMC algorithm by implementing Annealed Importance

Sampling (Jarzynski 1997a; Jarzynski 1997b; Neal 2005) ideas in the context of

reversible jump (Karagiannis and Andrieu 2013). By incorporating these ideas

84 Chapter 6. Overview and context

into the reversible jump algorithm a `bridge' can be constructed between models

which consists of intermediate distributions which the sampler transitions through.

By using this bridge the AISRJ has a much smoother transition between mod-

els and in fact it can be shown that AISRJ converges to the Ideal algorithm as

the number of intermediate distributions T → ∞. Given intermediate densities

ρt (θk′ , uk′→k|k → k′) the AISRJ algorithm is as shown in Algorithm 6.7. The al-

gorithm used SGLD to transition between the intermediate densities to produce a

path
(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
at each iteration. This path can be used to

calculate the annealed importance sampling weight r
(0:T−1)
k→k′ and thus the acceptance

probability a
(0:T−1)
k,k′ for the transition. Throughout this thesis we consider geometric

annealing distributions such that the intermediate densities take the form

ρt (θk′ , uk′→k|k → k′) ∝ (π (θk, k)ϕk→k′ (uk→k′) Jk→k′)
(1−γt) (6.6)

× (π (θk′ , k
′)ϕk′→k (uk′→k))

γt

where γt = t
T
and our results assume that these intermediate densities are used.

Alternative choices can be made (Gelman and Meng 1998) but our results do not

hold for these alternatives which are not considered hereafter.

85

Algorithm 6.7 AISRJ step

Input: current parameter θk, current model k

1. Sample k′ ∼ q (k)

2. Set θ
(0)
k = θk and draw u

(0)
k→k′ ∼ ϕk→k′ (·)

3. Compute
(
θ

(0)
k′ , u

(0)
k′→k

)
= Gk→k′

(
θ

(0)
k , u

(0)
k→k′

)
4. Generate a path

(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
5. Compute the annealing importance weight r

(0:T−1)
k→k′ :

r
(0:T−1)
k→k′ =

π
(
θ

(T−1)
k′ , k′

)
π
(
θ

(0)
k , k

) ϕk′→k

(
u

(T−1)
k′→k

)
ϕk→k′

(
u

(T−1)
k→k′

)J−1
k′→k

(
θ

(0)
k′ , u

(0)
k′→k

)

×
T−1∏
t=1

ρt

(
θ

(t−1)
k′ , u

(t−1)
k′→k; k → k′

)
ρt

(
θ

(t)
k′ , u

(t)
k′→k; k → k′

)
6. Accept the proposed value

(
k′, θ

(T−1)
k′

)
with acceptance probability:

a
(0:T−1)
k,k′ = min

{
1,
q (k|k′)
q (k′|k)

r
(0:T−1)
k→k′

}

7. Otherwise set
(
k′, θ

(T−1)
k′

)
= (k, θk)

Output: parameter θ
(T−1)
k′ , model k′

The AISRJ algorithm has strong convergence guarantees and as T →∞ we later

show that the algorithm converges to the desireable Ideal algorithm. Furthermore,

since the `bridge' smooths the transition by adjusting the proposed parameters,

the algorithm can achieve this even with poor choices for Gk→k′ and ϕk→k′ (uk→k′)

(Karagiannis and Andrieu 2013). However, the algorithm does not scale well to

big data. For each intermediate step the likelihood must be evaluated on the full

dataset. Moreover, the transitions between intermediate steps may require further

evaluations of the log-likelihood or the gradient of the log-likelihood. Hence, as

86 Chapter 6. Overview and context

the size of the data grows large, the computational costs of AISRJ quickly become

prohibitive.

Chapter 7

Stochastically Annealed Reversible

Jump

7.1 Preliminary results about AISRJ

To address the issues of the AISRJ algorithm we will propose a stochastic anneal-

ing mechanism for the reversible jump and show that it has similar convergence

guarantees whilst being much less computationally burdensome. To facilitate this

proposal we de�ne the following Wasserstein ergodicity assumption found in Rudolf

and Schweizer (2018) which is key to many of the results in this chapter.

Assumption 1. For a transition kernel Pα we assume that there are constants

C ∈ (0,∞)and ρ ∈ (0, 1) for which:

τ (Pα) = sup
θ,θ′∈Θ,θ 6=θ′

W (P j
α (θ, ·) , P j

α (θ′, ·))
d (θ, θ′)

≤ Cρn

where W (·, ·) is the Wasserstein distance and d (·, ·) is the metric with which the

Wasserstein distance has been de�ned.

We also provide the following preliminary result regarding AISRJ given ap-

88 Chapter 7. Stochastically Annealed Reversible Jump

proximation error in the acceptance ratio of AISRJ compared to the ideal sampler

E (θ, θ′). The proof of Proposition 7.1.1 and proofs of all the other results in this

chapter can be found in Appendix B.

Proposition 7.1.1. Assume that the ideal sampler in Algorithm 6.6 satis�es the

assumption de�ned in Assumption 1. Then writing Pα for the transition kernel of

the AISRJ algorithm and Q∗ (·, ·) for the transition kernel of the proposal density of

the reversible jump step we have the following bound for the Wasserstein distance

between the jth iterations

W
(
P jα∗ (θ, ·) , P

j
α (θ, ·)

)
=
C
(
1− ρj

)
(1− ρ)

× sup
θ∈Θ

(((∫
Θ
d
(
θ, θ′

)2
Q
(
θ, dθ′

))(∫
Θ
E
(
θ, θ′

)2
Q
(
θ, dθ′

))) 1
2

)

Since the AISRJ acceptance ratio is a consistent estimator of the idealised ac-

ceptance ratio in T (Karagiannis and Andrieu 2013) it follows that this bound can

be made arbitrarily small by increasing T and thus the AISRJ algorithm converges

to the ideal algorithm in the Wasserstein distance as T grows large. Later we will

show that the proposed algorithm converges to the AISRJ algorithm in a similar

manner and hence also to the ideal.

7.2 The Stochastically Annealed Reversible Jump

algorithm

The AISRJ algorithm becomes computationally expensive as the data grows large.

Both the generation of the annealing path and the evaluation of the annealing weight

require computation of the full likelihood and/or the gradient of the likelihood.

The proposed algorithm, called Stochastically Annealed Reversible Jump (SARJ),

89

aims to reduce the computational costs of both steps. This is required to since

reducing the computational burden of only one step will result in the other becoming

a bottleneck and hence in failure to meaningfully reduce the computational costs of

the full algorithm.

To reduce the cost of the annealing path generation we can simply make each

transition using the SGLD algorithm. This allows the acceptance ratio of the trans-

ition kernels to be ignored. Furthermore, if we were to evaluate the annealing

importance weight on the full data using a path generated by SGLD we would still

converge to the ideal sampler with the bound given in Proposition 7.1.1. That is we

can reduce the costs of the path generation step without impacting the convergence

of the algorithm. However, we must also reduce the cost of computing the annealing

importance weight in order to reduce the overall cost of the algorithm. To do this

we propose to sample T subsets x(0), ..., x(T−1) each of size m from the data. Each

subset x(t) =
(
x

(t)
1 , ..., x

(t)
m

)
is sampled independently from the full data without

replacement. We construct the following stochastic annealing importance weight:

r
(0:T−1),m
k→k′ =

π
(
k′, θ

(T−1)
k′ |x(0)

)
π
(
k, θ

(0)
k |x(0)

) ϕk′→k

(
u

(T−1)
k′→k

)
ϕk→k′

(
u

(T−1)
k→k′

)J−1
k′→k

(
θ

(0)
k′ , u

(0)
k′→k

)

×
T−1∏
t=1

ρt

(
θ

(t−1)
k′ , u

(t−1)
k′→k; k → k′, x(t)

)
ρt

(
θ

(t)
k′ , u

(t)
k′→k; k → k′, x(t)

)
where each likelihood evaluation is done using only a subset of the full data. The

full algorithm is given in Algorithm 7.1.

90 Chapter 7. Stochastically Annealed Reversible Jump

Algorithm 7.1 Stochastically Annealed Reversible Jump (SARJ)

Input: current parameter θk, current model k

1. Propose model k′ with probability q (·|k)

2. Set θ
(0)
k = θk and draw u

(0)
k→k′ ∼ ϕk→k′ (duk→k′)

3. Compute
(
θ

(0)
k′ , u

(0)
k′→k

)
= Gk→k′

(
θ

(0)
k , u

(0)
k→k′

)
4. Sample T minibatches x(0), ..., x(T−1) of size m from the data

5. Generate a path
(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
where

(
θ

(t)
k′ , u

(t)
k′→k

)
is drawn

using Stochastic Gradient Langevin Dynamics

6. Compute the stochastic annealing importance weight r
(0:T−1,m)
k→k′ :

r
(0:T−1),m
k→k′ =

π
(
k′, θ

(T−1)
k′ |x(0)

)
π
(
k, θ

(0)
k |x(0)

) ϕk′→k

(
u

(T−1)
k′→k

)
ϕk→k′

(
u

(T−1)
k→k′

)J−1
k′→k

(
θ

(0)
k′ , u

(0)
k′→k

)

×
T−1∏
t=1

ρt

(
θ

(t−1)
k′ , u

(t−1)
k′→k; k → k′, x(t)

)
ρt

(
θ

(t)
k′ , u

(t)
k′→k; k → k′, x(t)

)
7. Accept the proposed value

(
k′, θ

(T−1)
k′

)
with acceptance probability:

a
(0:T−1)
k,k′ = min

{
1,
q (k|k′)
q (k′|k)

r
(0:T−1),m
k→k′

}

Output: parameter θ
(T−1)
k′ , model k′, stochastic annealing importance weight

r
(0:T−1,m)
k→k′

7.3 Theoretical Investigation

To demonstrate the convergence guarantees of the proposed algorithm let's �rst con-

sider the distribution of the log stochastic annealing importance weight, log r
(0:T−1,m)
k→k′ ,

as T grows large. The following results show that under mild conditions the log

stochastic annealing importance weight is asymptotically normally distributed. We

remind the reader that proofs of these results can be found in Appendix B.

91

Proposition 7.3.1. Given a path
(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
, a minibatch

size m < N , and that the cumulative distribution function of the likelihood is

Lipschitz continuous then the log stochastic annealing importance weight, log r
(0:T−1),m
k→k′ ,

converges in distribution to a Normal distribution N (µT , σ
2
T) as T →∞

Furthermore we have that the log stochastic annealing importance weight

log r
(0:T−1),m
k→k′ is an unbiased estimator of the full annealing importance weight.

Proposition 7.3.2. Given a path
(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
and a minibatch

size, m, then E
[
log r

(0:T−1),m
k→k′

]
= log r

(0:T−1),N
k→k′ where r

(0:T−1),m
k→k′ is the ratio achieved

with minibatch size m.

So it follows from Propositions 7.3.1 and 7.3.2 that the stochastic annealing

importance weight r
(0:T−1),m
k→k′ is also a consistent estimator of the full annealing im-

portance weight r
(0:T−1),N
k→k′ .

Corollary 7.3.3. Assume that the AISRJ sampler satis�es the Wasserstein ergodi-

city assumption (Assumption 1). Then σ2
T = Var

(
log r

(0:T−1),m
k→k′

)
→ 0 as T → ∞

and hence log r
(0:T−1),m
k→k′ is a consistent estimator of log r

(0:T−1),N
k→k′ .

We now consider the stochastic annealing importance weight, r
(0:T−1),m
k→k′ , which

is used to evaluate the Metropolis-Hastings accept-reject ratio. This estimator is

biased however the bias goes to zero as T grows large or as m grows to N .

Proposition 7.3.4. The stochastic annealed importance weight r
(0:T−1),m
k→k′ is biased.

Under the conditions of Proposition 7.3.1 this bias asymptotically tends to a factor

of e
σ2
T
2 as T grows large.

Corollary 7.3.5 follows from Proposition 7.3.4 since σ2
T → 0 as the subsample

size m or number of intermediate steps T grow large.

Corollary 7.3.5. As m→ N or T →∞ the bias in r
(0:T−1),m
k→k′ tends to zero.

92 Chapter 7. Stochastically Annealed Reversible Jump

Finally we show that the Wasserstein distance between the jth step of the SARJ

Markov chain and the jth iteration of the Ideal sampler is bounded. We do this by

showing that the distance between the stochastic and standard AISRJ algorithms

is bounded.

Proposition 7.3.6. Assume that the standard Annealed Importance Sampling re-

versible jump algorithm (Algorithm 6.7) satis�es the Wasserstein ergodicity assump-

tion (Assumption 1). Then writing Pα̃ for the transition kernel of the SARJ al-

gorithm and Q (·, ·) for the transition kernel of the proposal density we have the

following bound for the Wasserstein distance between the jth iterations

W
(
P jα (θ, ·) , P jα̃ (θ, ·)

)
≤
C
(
1− ρj

)
(1− ρ)

sup
θ∈Θ

(∫

Θ
d
(
θ, θ′

)2
Q
(
θ, dθ′

))∫
Θ

(
exp

(
σ2
T

2

)
− 1

)2

Q
(
θ, dθ′

) 1
2

The bound in Proposition 7.3.6 can be controlled by controlling σ2
T . Thus we can

make this bound arbitrarily small by increasing m or T . The following Corollary

follows by applying the triangle inequality to the results of Propositions 7.1.1 and

7.3.6.

Corollary 7.3.7. The Wasserstein distance between the jth iterations of the SARJ

algorithm and the ideal algorithm W
(
P j
α (θ, ·) , P j

α∗ (θ, ·)
)
is bounded and the can be

made smaller by increasing the number of intermediate steps, T .

Hence the SARJ algorithm converges to the ideal sampler in the Wasserstein

distance as T grows large.

7.4 Improving convergence with bias and variance

reduction

Similarly to the stochastic gradient methods discussed in Chapter 6 the introduction

of stochasticity to the AISRJ algorithm can introduce new challenges to replace the

93

computational cost of the full algorithm. Like those stochastic gradient algorithms

the convergence of SARJ may be slow if the variance of the stochastic annealing

importance weight is large. More problematically, convergence may not be guaran-

teed if there is not enough computational budget to su�ciently control the bias with

large T . In this section we present mechanisms to reduce both the variance and the

bias of the estimator alongside theoretical results demonstrating the e�ectiveness of

these methods. Proofs of these results can be found in Appendix B.

7.4.1 Variance reduction for SARJ

We introduce variance reduction to the SARJ algorithm. Unlike in Dubey et al.

(2016), and indeed in most of the stochastic gradient literature, we apply the variance

reduction to the stochastic estimate of the likelihood itself instead of to the estimates

of its gradient. This way we directly target the additional variance which a�ects the

annealing importance weights. Let's consider the variance reduced log likelihood

estimator of SAGA in (6.4) and apply the SAGA mechanism to the log likelihood

function

f̃ (x|θ) =
N

n

∑
xi∈S

(log f (xi|θ)− log f (xi|α))− g (7.1)

with g =
∑N

i=1 log f
(
xi|α(t+1)

i

)
. We show that when we replace the standard log

likelihood estimator in the SARJ algorithm with our variance reduced estimator

(7.1) as shown in Algorithm 7.2, we achieve variance reduction in the likelihood

which propogates to the stochastic annealing importance weight.

Proposition 7.4.1. Assume that the AISRJ sampler satis�es the Wasserstein er-

godicity assumption (Assumption 1). Variance reduction in f̂
(t)
k and f̂

(t)
k′ for all

t = 0, 1, ..., T − 1 implies variance reduction in r
(0:T−1),m
k→k′

The Variance Reduced SARJ algorithm (VRSARJ) shown in Algorithm 7.2 can

therefore use the variance reduced SAGA estimator of the likelihood in (7.1) to

94 Chapter 7. Stochastically Annealed Reversible Jump

reduce the variance of the annealed importance sampling weight. This reduces the

approximation error introduced by subsampling and improves the sampling output.

95

Algorithm 7.2 Variance Reduced SARJ

Input: current parameter θk, current model k

1. Propose model k′ with probability q (·|k)

2. Set θ
(0)
k = θk and draw u

(0)
k→k′ ∼ ϕk→k′ (duk→k′)

3. Compute
(
θ

(0)
k′ , u

(0)
k′→k

)
= Gk→k′

(
θ

(0)
k , u

(0)
k→k′

)
4. Sample a T minibatches x(0), ..., x(T−1) of size m from the data

5. Generate a path
(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
where

(
θ

(t)
k′ , u

(t)
k′→k

)
is drawn

using Stochastic Gradient Langevin Dynamics

6. Compute f̃k and f̃k′ for all t where

f̃
(
x(t)|θ(t)

)
=
N

n

∑
xi∈S

(
log f

(
x

(t)
i |θ(t)

)
− log f

(
x

(t)
i |α

(t)
i

))
− g(t)

i

7. Compute the stochastic annealing importance weight r
(0:T−1)
k→k′ using the variance

reduced log-likelihoods f̃k and f̃k′ of models k and k′ respectively:

r
(0:T−1)
k→k′ =

exp
(
f̂k′
(
x(0)|θ(T−1)

k′

))
π
(
θ

(0)
k′ |k

′
)
π (k′)

exp
(
f̂k

(
x(0)|θ(0)

k

))
π
(
θ

(0)
k |k

)
π (k)

×
ϕk′→k

(
u

(T−1)
k′→k

)
ϕk→k′

(
u

(0)
k→k′

) × J−1
k′→k

(
θ

(0)
k′ , u

(0)
k′→k

)

×
T−1∏
t=1

ρt

(
θ

(t−1)
k′ , u

(t−1)
k′→k; k → k′, x(t)

)
ρt

(
θ

(t)
k′ , u

(t)
k′→k; k → k′, x(t)

)
8. Accept the proposed value

(
k′, θ

(T−1)
k′

)
with acceptance probability:

a
(0:T−1)
k,k′ = min

{
1,
q (k|k′)
q (k′|k)

r
(0:T−1)
k→k′

}

9. Set α
(t+1)
i = θ(t+1) for i such that xi ∈ S and α

(t+1)
i = α

(t)
i for i such that

xi /∈ S

10. Calculate g
(t+1)
i = log f

(
xi|α(t+1)

i

)
for i such that xi ∈ S and set g

(t+1)
i = g

(t)
i

for i such that xi /∈ S

11. Calculate g(t+1) =
∑N

i=1 g
(t+1)
i

Output: parameter θ
(T−1)
k′ , model k′, stochastic annealing importance weight

r
(0:T−1,m)
k→k′

96 Chapter 7. Stochastically Annealed Reversible Jump

Furthermore, it follows from Proposition 7.4.1 that the bias in the Metropolis-

Hastings acceptance ratio is also reduced since this bias depends on the variance of

the stochastic annealing importance weight.

Proposition 7.4.2. Assume that the AISRJ sampler satis�es the Wasserstein er-

godicity assumption (Assumption 1). Then variance reduction in f̂k reduces σ
2
T and

thus since the bias in r
(0:T−1),m
k→k′ is asymptotically equal to e

σ2
T
2 there is bias reduction

in r
(0:T−1),m
k→k′

Finally since the bias in the Metropolis-Hastings acceptance probability is re-

duced by variance reduction, theWasserstein distance between the exact and stochastic

AISRJ algorithms also decreases and convergence to the ideal sampler improves.

Corollary 7.4.3. Variance reduction in f̂k results in an improved bound on the

Wasserstein distance

W
(
P jα (θ, ·) , P jα̃ (θ, ·)

)
≤
C
(
1− ρj

)
(1− ρ)

sup
θ∈Θ

(∫

Θ
d
(
θ, θ′

)2
Q
(
θ, dθ′

))∫
Θ

(
exp

(
σ2
T

2

)
− 1

)2

Q
(
θ, dθ′

) 1
2

between the exact and SARJ algorithms since σ2
T is reduced.

7.4.2 Bias reduction for SARJ

We further show in Algorithm 7.3 that the uncertainty penalty method discussed

in Section 6.3 can be applied to the SARJ algorithm to directly target the bias in

the SARJ Metropolis-Hastings acceptance ratio. By calculating n estimates of the

annealed importance sampling weight r
(0:T−1),m
k→k′ we estimate the bias in the estimator

and introduce a correction term. Moreover, we �nd an upper bound for the expected

remaining bias after the penalty has been applied and an upper bound in probability

for the remaining bias itself.

Proposition 7.4.4. Assume that the AISRJ sampler satis�es the Wasserstein er-

godicity assumption (Assumption 1). Given the uncertainty penalty of Algorithm

97

7.3 we can upper bound the expected remaining bias factor ζT,n = exp
(
σ2
T

2
− σ̂2

T,n

2

)
≤

1 +
σ4
T

4(n−1)
max

{
1,

σ2
T

2
− σ̂2

T,n

2

}
.

Note that if we consider the distribution of
σ̂2
T,n

2
under the conditions of Propos-

ition 7.3.1 we have
σ̂2
T,n

2
∼ Γ

(
n−1

2
, n−1
σ2
T

)
and we can �nd a bound K such that:

P (E [ζT,n] ≥ K) = p

for arbitrarily small p. Figure 7.1 shows that for p = 0.99 the upper bound on the

remaining bias factor ζT,n grows large as σ2
T grows large. Furthermore, Figure 7.1

shows that the rate of this growth is reduced as n grows large and the estimator of

the bias correction factor becomes more precise. The bias factor with no correction

is also shown for comparison.

Figure 7.1: The bias factor ζT,n is shown on the y axis with the variance of the annealed importance
sampling weight estimator shown on the x axis. The growth of the bias factor is shown for no
correction (red), and correction using 10 (green), 30 (blue) and 100 (black) estimates of the annealed

importance sampling weight r
(0:T−1),m
k→k′ . Note that the growth slows as n grows large.

98 Chapter 7. Stochastically Annealed Reversible Jump

Algorithm 7.3 SARJ with uncertainty penalty

Input: current parameter θk, current model k

1. Sample model k′ ∼ q (·|k)

2. Set θ
(0)
k = θk and draw u

(0)
k→k′ ∼ ϕk→k′ (duk→k′)

3. Compute
(
θ

(0)
k′ , u

(0)
k′→k

)
= Gk→k′

(
θ

(0)
k , u

(0)
k→k′

)
4. Sample a set of T minibatches

(
x(0), ..., x(T−1)

)
of size m from the data

5. Generate a path
(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
where

(
θ

(t)
k′ , u

(t)
k′→k

)
is drawn

using Stochastic Gradient Langevin Dynamics

6. Sample n more sets of T minibatches
(
x(0), ..., x(T−1)

)
of size m from the data

7. For each set of minibatches x(i), compute the stochastic annealing importance
weight r

(0:T−1,i)
k→k′ for i = 1, ..., n

r
(0:T−1,i)
k→k′ =

π
(
k′, θ

(T−1)
k′ |x(0)

)
π
(
k, θ

(0)
k |x(0)

) ϕk′→k

(
u

(T−1)
k′→k

)
ϕk→k′

(
u

(T−1)
k→k′

)J−1
k′→k

(
θ

(0)
k′ , u

(0)
k′→k

)

×
T−1∏
t=1

ρt

(
θ

(t−1)
k′ , u

(t−1)
k′→k; k → k′, x(t)

)
ρt

(
θ

(t)
k′ , u

(t)
k′→k; k → k′, x(t)

)
8. For each stochastic annealing importance weight r

(0:T−1,i)
k→k′ calculate the negat-

ive log acceptance ratio w(i):

w(i) = − log

(
q (k|k′)
q (k′|k)

r
(0:T−1,i)
k→k′

)
9. Calculate estimates of the mean, δ, and variance, σ2 of the y(i):

δ =

∑n
i=1 w

(i)

n
, σ2 =

∑n
i=1

(
w(i) − δ

)2

n (n− 1)

10. Accept the proposal with acceptance probability:

a
(0:T−1)
k→k′ = min

(
1, exp

(
−δ − σ2

2

))
Output: parameter θ

(T−1)
k′ , model k′, stochastic annealing importance weight

r
(0:T−1,m)
k→k′

99

In addition to the upper bound on the expected remaining bias factor we also

present a bound on the remaining bias factor itself, given in probability, with a

constant rate of convergence in T and also in n if the variance σ2 satis�es a minor

condition.

Proposition 7.4.5. Assume that the AISRJ sampler satis�es the Wasserstein er-

godicity assumption (Assumption 1). Given the uncertainty penalty of Algorithm

7.3 we have an upper bound for the bias factor ζT,n = exp
(
σ2
T

2
− σ̂2

T,n

2

)
. Consider

the sequence YT,n = ζT,n − 1 which describes the di�erence between the bias factor

and unbiasedness as n or T grows. Then YT,n = oP (1) in T and when a further

condition on the variance σ2
T of the annealed importance sampling weight estimator

r
(0:T−1),m
k→k′ is satis�ed then YT,n = oP (1) in n as well.

From these propositions it follows that the Wasserstein distance between the

stochastic and standard AISRJ algorithms also decreases to zero as T grows large.

Corollary 7.4.6. Assume that the AISRJ sampler satis�es the Wasserstein ergodi-

city assumption (Assumption 1). Given the uncertainty penalty of Algorithm 7.3 the

Wasserstein distanceW
(
P j
α (θ, ·) , P j

α̃ (θ, ·)
)

= op (1) in T , andW
(
P j
α (θ, ·) , P j

α̃ (θ, ·)
)

=

op (1) in n for large enough T such that the variance σ2
T of the annealed importance

sampling weight estimator r
(0:T−1),m
k→k′ satis�es σ2

T ≤ 2 log (1 + ε)

7.5 Demonstrating convergence with a toy

example

We demonstrate the performance of our algorithm against benchmark examples.

We apply the method to a model selection problem with a generalised linear model.

Consider �rst the logistic regression model with two independent variables x1 and

x2. Furthermore, consider a uniform prior on the models and weak normal priors

100 Chapter 7. Stochastically Annealed Reversible Jump

on the parameters centred at zero with standard deviations of 100. We apply the

algorithm to compare two models k1 and k2 where k2 contains x2 and k1 does not.

logit (πk1 (yi = 1|xi)) = β0 + β1x1,i;

logit (πk2 (yi = 1|xi)) = β0 + β1x1,i + β2x2,i,

To construct the arti�cial data we generate 100 simulations from model k2 with true

parameters (β0, β1, β2) = (−0.2, 4, 1).

For the reversible jump we move to model k1 from k2 by removing β2 and move to

model k2 from k1 by proposing a new parameter value β2 ∼ N (2, 1). When running

the standard reversible jump with this proposal the mixing is extremely poor with

an acceptance rate less than 0.01. Moreover, the standard reversible jump algorithm

gets stuck in model k1 despite the data having been generated from model k2. We

demonstrate that even with poorly chosen proposals the SARJ algorithm performs

well. We �nd that as T grows large and the algorithm converges to the ideal we

approach an acceptance rate of 0.3 with π (k2|y, x1, x2) = 0.80. We also apply the

exact AISRJ algorithm to compare it with the SARJ algorithm and show that the

results are comparable.

0 100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

T

A
c
c
e
p
ta

n
c
e
 R

a
te

AISRJ
SAISRJ; m = 50
SAISRJ; m = 20

(a) Acceptance Rate

0 100 200 300 400 500

0
5
0

1
5
0

2
5
0

T

In
te

g
ra

te
d
 A

u
to

c
o
rr

e
la

tio
n
 T

im
e
(I

A
T

)

AISRJ
SAISRJ; m = 50
SAISRJ; m = 20

(b) Integrated Autocorrelation Time

Figure 7.2: Acceptance rate and IAT by T for the exact AISRJ algorithm (Black); the stochastic
AISRJ algorithm using only 50% of the data (Blue) and the stochastic AISRJ algorithm using only
20% of the data (Red)

101

Now we consider simulations from a logistic regression model with 10 independ-

ent variables x1, ..., x10 and we want to use reversible jump for full variable se-

lection. We generate 100 simulations from the model with true parameters β =

(−0.2, 4, 2, 2, 0.3, 1, 0.5, 0.1, 0, 0, 0) such that the variables x8, x9 and x10 are not in-

cluded in the true model. For the reversible jump we index the models with indicator

vectors, k, describing the variable inclusion. A new model, k2, is proposed from the

current model, k1, by choosing a variable, xi, from x1, ..., x10 uniformly at random.

Then for the reversible jump step a new parameter value βi ∼ N (6, 2) is proposed.

This proposal is deliberately chosen to be poor since in more complex problems

choosing an appropriate proposal can be very di�cult. The standard reversible

jump algorithm samples have very poor mixing with an acceptance rate less than

0.005. Again we apply both the standard and stochastic AISRJ algorithms and �nd

that as T grows large the mixing improves and we achieve an acceptance rate of

about 0.04 with exact AISRJ.

0 100 200 300 400 500

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

T

A
c
c
e
p
ta

n
c
e
 R

a
te

AISRJ
SAISRJ; m = 50
SAISRJ; m = 20

(a) Acceptance Rate

0 100 200 300 400 500

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

T

In
te

g
ra

te
d
 A

u
to

c
o
rr

e
la

tio
n
 T

im
e
(I

A
T

)

AISRJ
SAISRJ; m = 50
SAISRJ; m = 20

(b) Integrated Autocorrelation Time

Figure 7.3: Acceptance rate and IAT by T for the exact AISRJ algorithm (Black); the stochastic
AISRJ algorithm using only 50% of the data (Blue) and the stochastic AISRJ algorithm using only
20% of the data (Red)

It is clear from Figure 7.3 that as T grows large, the acceptance rate and in-

tegrated autocorrelation time (IAT) of the SARJ algorithm converge to the AISRJ

algorithm. However, we also see in Figure 7.3 that for small T there are large spikes

in the acceptance rate and IAT which result from the large variance in the stochastic

102 Chapter 7. Stochastically Annealed Reversible Jump

annealed importance sampling weight r
(0:T−1),m
k→k′ of the SARJ algorithm using very

few intermediate densities, especially when only a very small proportion of the data

are used. We can further see the impact of this variance in Figure 7.4 where it can

clearly be seen that the stochastic AISRJ algorithm produces a biased estimate of

the probability mass function of the model distribution when T and m are small as

expected by Proposition 7.3.4. Furthermore, we see that as T grows large this bias

shrinks and we recover the same estimate of the probability mass function of the

model distribution as produced by exact AISRJ. This demonstrates the behaviour

expected from Proposition 7.3.6.

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(a) Exact AISRJ (T = 10)

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(b) Exact AISRJ (T = 500)

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(c) Stochastic AISRJ (T = 10,m = 20)

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(d) Stochastic AISRJ (T = 500,m = 20)

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(e) Stochastic AISRJ (T = 10,m = 50)

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(f) Stochastic AISRJ (T = 500,m = 50)

Figure 7.4: Estimated probability mass of the �ve most probable models with model indices on the
x axes and model probabilities on the y axes. The posterior model probabilities of exact AISRJ
are provided as a reference.

In Figure 7.4 we see probability mass functions of the posterior model distribu-

103

tions π (mk|x, θk). Taking the posterior of the exact AISRJ algorithm with many

intermediate steps shown in Figure 7.5a as a reference close to the ideal, we observe

in Figure 7.4 that using a very small subsample of the data can lead to considerable

bias in the posterior if a small number of intermediate steps are used. While Figure

7.4 also shows that this can be overcome with a larger number of intermediate steps

we can also demonstrate the capacity to prevent this bias using variance reduction

and uncertainty penalty based methods.

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(a) Exact AISRJ (T = 500)

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(b) Stochastic AISRJ (T = 20,m = 20)

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(c) Stochastic AISRJ with Variance
Reduction(T = 20,m = 20)

0.00

0.25

0.50

0.75

1.00

7 15 47 79 1071
Model Index

M
od

el
 P

ro
ba

bi
lit

y

(d) Stochastic AISRJ with Uncertainty
Penalty (T = 20,m = 20)

Figure 7.5: Estimated probability mass of the 5 most probable models with model indices on the
x axes and model probabilities on the y axes using Variance Reduction and Uncertainty Penalty
methods. The posterior model probabilities of exact AISRJ are provided as a reference.

In Figure 7.5 we present probability mass functions of the posterior model distri-

butions π (mk|x, θk) using the variance reduction and bias correction methods. We

further present in Figure 7.5a the model posterior π (mk|x, θk) of the exact AISRJ

algorithm with many intermediate steps shown in Figure 7.5a as a reference close to

the ideal. It can be observed that variance reduction is only partially successful in

reducing the posterior bias and achieving a posterior similar to exact AISRJ. How-

ever, the uncertainty penalty algorithm is much more successful, achieving results

that are competitive with the exact AISRJ algorithm whilst using only 20 inter-

104 Chapter 7. Stochastically Annealed Reversible Jump

mediate steps instead of 500 and also only using subsamples of 20% of the data.

Moreover, we can compare the convergence of these algorithms with exact AISRJ.

0 100 200 300 400 500

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

T

A
c
c
e

p
ta

n
c
e

 R
a
te

Standard AISRJ
VR-SAISRJ
UP-SAISRJ

(a) Acceptance Rate

0 100 200 300 400 500

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

T
In

te
g
ra

te
d

 A
u

to
c
o

rr
e
la

tio
n

 T
im

e
(I

A
T

)

Standard AISRJ
VR-SAISRJ
UP-SAISRJ

(b) Integrated Autocorrelation Time

Figure 7.6: Acceptance rate and IAT by T for the exact AISRJ algorithm (Black); the stochastic
AISRJ algorithm using only 20% of the data and variance reduction (Blue) and the stochastic
AISRJ algorithm using only 20% of the data and the uncertainty penalty (Red)

We demonstrate that the uncertainty penalty results in convergence that is very

similar to that of exact AISRJ. This is shown in Figure 7.6 where we also see that the

variance reduction algorithm continues to mix much faster than the exact AISRJ

algorithm. This is a result of the remaining bias that was not corrected by the

variance reduction.

7.6 Using the SARJ algorithm to �t a

non-stationary Gaussian process model to real

data

We apply the algorithm to �t the complex Bayesian Spatially Clustered Coe�cients

(BSCC) model (Luo, Sang and Mallick 2021a) to real oceanic data. The BSCC

model uses a minimum spanning tree T to partition the data into clusters for each

coe�cient. A priori the number of clusters is not known and so reversible jump

105

methods are used to sample from models with varying numbers of clusters. The

model described by Luo, Sang and Mallick (2021a) is a linear model but we apply

the ideas to �t a non-stationary Gaussian process to the data. This model has

challenging transitions and typically su�ers from poor mixing. We demonstrate

that our algorithm achieves much better mixing and copes well with the challenging

model jumps.

We use spatial data describing the salinity of the Atlantic ocean downloaded from

the National Oceanographic Data Center (https://www.nodc.noaa.gov/OC5/woa13/)

and presented in Figure 7.7. We take data along a single line of longitude so that we

model a two dimensional slice of the ocean. We then scale the latitude and depth

so that we have spatial coordinates in a [0, 1] × [0, 1] square. The data are clearly

nonstationary, with almost no variation in salinity at greater depths whilst having

clear structure in shallower waters.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Latitude

D
e
p
th

level

(33.5, 34.0]

(34.0, 34.5]

(34.5, 35.0]

(35.0, 35.5]

(35.5, 36.0]

(36.0, 36.5]

(36.5, 37.0]

(37.0, 37.5]

Figure 7.7: Latitude is shown along the x axis and Depth is shown on the y axis. The salinity of
the water is presented as a colour gradient with higher salinity regions in yellow and lower salinity
regions in purple.

Given output data y ∈ Y ; spatial data z ∈ Z; a mean function µ; and a cov-

ariance function Σ with parameters σ2,φ and τ 2; the model is a spatially clustered

Gaussian process written in (7.2). We write s (zi) for the cluster label of the point

zi. Two data points within the same cluster share the same mean function which

106 Chapter 7. Stochastically Annealed Reversible Jump

is constant within that cluster. Furthermore, the covariance matrix of the model is

Σ = R + τ 2I where I is the n × n identity matrix, τ 2 is a nugget parameter and

the i, jth element of R is given by Ri,j = σ2
s(zi)

exp
(
d (zi, zj) /φs(zi)

)
if s (zi) = s (zj)

and Ri,j = 0 otherwise. Thus each cluster has three parameters describing its mean

and covariance functions and there is one additional global parameter describing the

nugget variance.

yk (·) ∼ GP
(
µ (·|β) ,Σ

(
·, ·|σ2

k, φk, τ
2
))

(7.2)

We assign a normal prior on the linear coe�cients, β, with hyperparameters mean

u0 = 0 and variance v2
0 = 106. We set independent inverse gamma priors on each

of the covariance parameters σ2
k, φk, and τ

2 which each have shape and rate hyper-

parameters p = 0.5 and q = 0.5 respectively. We further set a truncated geometric

prior on the number of clusters such that

π (K = k) ∝ (1− c)k , for k = 1, ..., nS, 0 ≤ c < 1 (7.3)

This helps to regulate the model and prevent over-�tting. We use the subsampling

based estimator of the gradient which is biased for the Gaussian Process model but

has strong convergence guarantees for stochastic gradient methods (H. Chen et al.

2022).

For the reversible jump step we propose one of three possible moves. A birth

step can occur by removing an edge from the minimum spanning tree, T . This splits

one cluster into two new clusters. A death step can occur by adding a missing edge

from the complete minimum spanning tree. This merges two clusters into a single

107

cluster. The birth move is accepted with probability α = min (1, r) such that

r =
π (T ′, φ′t|yt)
π (T, φt|yt)

q (T |T ′)
q (T ′|T)

q (φ|φ′)

q (T ′|T) =qS (K)
1

ns −K

q (T |T ′) =qM (K + 1)
1

K

where qS is the probability of proposing a split, qM is the probability of proposing a

merge, andK is the number of clusters. The death move is accepted with probability

α = min (1, r−1).

Finally an adjustment step can occur which updates the minimum spanning tree

while conserving the current clusters. This enables the sampler to reach previously

unreachable con�gurations of the model. This step is accepted with probability

1. The birth and death steps are proposed with probability 0.475 each and the

adjustment step is proposed with probability 0.05. When a new cluster is made

by the birth step we propose a new mean function parameter βi ∼ N (35, 2) and

new covariance function parameters σ2
i and φi from independent inverse gamma

distributions with shape and rate parameters equal to 8.

We split the data into two halves of 2664 data points by randomly selecting half

of the spatial locations. We use one half to �t the model and the other half as test

data. To �t the model we use the SARJ algorithm with 10 intermediate steps and

a batchsize of 400 which is approximately 15% of the training data. We run 10000

iterations of the algorithm and obtain predictive values for the test data at each

iteration. We then take the MSE of the predictive errors and as shown in Figure 7.8

we �nd that this is very small everywhere. Even the largest MSEs are very small

relative to the magnitude of the predicted values.

108 Chapter 7. Stochastically Annealed Reversible Jump

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Latitude

D
e
p
th

level

(0.000, 0.005]

(0.005, 0.010]

(0.010, 0.015]

(0.015, 0.020]

(0.020, 0.025]

(0.025, 0.030]

(0.030, 0.035]

(0.035, 0.040]

(0.040, 0.045]

(0.045, 0.050]

(0.050, 0.055]

Figure 7.8: Mean Squared Error of the Predicted Values

We further consider the mixing of the algorithm by examining the predictive

performance of the model at a single location. In Figure 7.9 we see that for a small

number of intermediate steps the prediction is close to the true value but the mixing

is poor. As the number of intermediate steps increases the mixing improves greatly

as the sampler can more freely explore the model space. This is further evidenced by

improvements in the integrated autocorrelation time which is 240.8, 91.5 and 50.7

for SARJ with T = 1, 10, and 100 intermediate steps respectively.

109

(a) T = 1

(b) T = 10

(c) T = 100

Figure 7.9: Predicted salinity for a typical test point using 1, 10, and 100 intermediate densities
respectively. The true salinity is shown in green and the averaged prediction is shown in red.

For the real data example we further see impressive computational savings. The

SARJ algorithm was run in 5.667 hours, whereas the exact AISRJ algorithm took

approximately two and a half weeks to run on the same computer to achieve nearly

identical predictive accuracy.

Chapter 8

Conclusion

8.1 Summary

In this Part we proposed a stochastically annealed reversible jump(SARJ) algorithm.

The new algorithm aimed to achieve the statistical e�ciency of exact AISRJ whilst

also achieving much greater computational e�ciency for large datasets. We proved

that the algorithm achieved these aims with theoretical guarantees and then further

showed that the algorithm succeeds in practice with demonstrations of the algorithm

being applied to synthetic and real datasets. The theoretical results provided guar-

antees about the convergence of the algorithm by showing that it converges to an

ideal sampler. Furthermore, we present theoretical results showing that this con-

vergence is improved by reducing the variance of the stochastic likelihood estimate

with additional intermediate steps and/or subsamples. We continued development

of the algorithm by exploring two mechanisms which can be used in tandem to

reduce the variance and bias introduced by the stochastic estimator and improve

the algorithm further. The numerical examples presented showed the theoretical

convergence of the SARJ algorithm to the exact AISRJ algorithm with a known

example. Furthermore, we demonstrated that both the variance reduction and bias

111

reduction mechanisms reduce the variance of the stochastic likelihood estimate and

consequently the bias in the model posterior estimates. These benchmark results

demonstrate that our theoretical results are observed in practice. Finally the real

data application to the non stationary Gaussian process model yielded extremely

impressive computational savings with a runtime of less than six hours compared to

the exact algorithm's runtime of two and a half weeks. This reduction in runtime

came with little to no loss of predictive accuracy which further demonstrates the

convergence properties of the SARJ algorithm in practice.

8.2 Future research aims

In the application of the SARJ algorithm to the real data application we found that

the statistical e�ciency of the algorithm could be improved by using a strati�ed

subsampling scheme to ensure data were subsampled from each cluster of the model

instead of naïvely subsampling with a simple random sampling scheme. Future

work might examine di�erent subsampling schemes and look for theoretical results

regarding the impact of these schemes on the variance of the stochastic anneal-

ing importance weight. Another avenue for future work is the annealing schedule.

Throughout this chapter we have exclusively used the geometric schedule given by

Equation 6.6. Further work could be done to examine other annealing schedules

which might outperform the geometric schedule in practice. Theoretical results for

other schedules may be challenging and likely require direct proof of convergence

from SARJ to the ideal sampler where they break the reversibility of AISRJ.

Part III

Spatially clustered Gaussian process

regression

Chapter 9

Overview and context

9.1 Spatially clustered modelling

Given an input domain X , spatial domain S, and an output domain Y , we aim to

build a model to make inference about the relationship between inputs x ∈ X and

outputs y ∈ Y given a location s ∈ S. Gaussian process regression is a popular and

e�ective approach to making this inference.

The Gaussian process model is nonparametric and can be �exible, allowing it

to model a diverse range of problems. However, the computational cost of the

Gaussian process model can become prohibitively expensive when the dataset is

large. Moreover, the model can be challenging to use if nonstationarity is present in

the data.

Various methods exist to reduce the computational costs of Gaussian process re-

gression including tapered covariance functions (Furrer, Genton and D. Nychka 2006;

Kaufman, M. J. Schervish and D. W. Nychka 2008; Du, H. Zhang and Mandrekar

2009) and lower dimensional space process approximations (Wikle and Cressie 1999;

Cressie and Johannesson 2008). Methods also exist to tackle non stationary prob-

lems such as by using nonstationary covariance functions (Paciorek and M. Schervish

115

2003). Alternatively spatial clustering can enable nonstationary Gaussian process

modelling by splitting the space into homogenous regions. This simultaneously

reduces the computational cost by introducing natural sparsity to the covariance

model and models the nonstationarity in an easily interpretable manner. To intro-

duce spatial clustering to the Gaussian process model we aim to identify a cluster

structure in S such that two points s and s′ which share a cluster D give the same

relationship between x and y. Then the model makes inference about x and y given

a cluster D ⊂ S.

There exist many methods in the literature which can be applied to �nd such

clusters and model local relationships. These include binary treed methods which

recursively split sections of the spatial domain into two parts. Such models include

the Classi�cation and Regression Tree (CART) model (Breiman and Ihaka 1984;

Denison, Mallick and Smith 1998) popular in machine learning, the Bayesian Ad-

ditive regression tree (Chipman, George and McCulloch 2010) and treed Gaussian

processes (Gramacy and H. K. H. Lee 2008; B. Konomi et al. 2014). Binary treed

methods can function well but su�er from a restrictive assumption that the spa-

tial clusters must be rectangular in shape. An alternative approach to binary treed

methods uses Voronoi tesselations to identify clusters (Knorr-Held and Raÿer 2000).

This approach de�nes region centers such that points are included in a region de-

termined by their nearest centre. Whilst Voronoi tesselation based clustering relaxes

the restrictive assumption of binary treed methods and allows for non-rectangular

clusters, it is still required that the clusters must be convex and contiguous in space.

Recently, spatially varying coe�cients models have been proposed which use min-

imum spanning trees (MST) to cluster the spatial domain (Luo, Sang and Mallick

2021a). These methods can identify contiguous clusters in space of any arbitary

shape and massively relax the assumptions of the model relative to both binary

treed and Voronoi tesselation based methods. Nonetheless, the Bayesian Spatially

Clustered Coe�cients (BSCC) model described in the literature is underdeveloped

116 Chapter 9. Overview and context

in terms of prediction and completely lacks any method by which the model can

be extended to include new data. In this Part we introduce a method by which we

can naturally extend BSCC models to make predictions to new data whilst extend-

ing the scope of the clustering method to include multi�delity Gaussian processes.

By enabling prediction whilst extending the methodology to multi�delity Gaussian

processes we vastly expand the scope of problems to which the BSCC methodology

can be applied.

9.2 Multi�delity Gaussian process regression

Computer simulation experiments are becoming increasingly popular for perform-

ing experiments that are unfeasible to perform repeatedly otherwise. As computer

experiments become more detailed and precise however, even the computer simula-

tions can become prohibitively expensive. The Gaussian process model is a popular

choice for computer model emulation. Computer model emulation involves �tting

a cheaper to run statistical model to a limited set of computer simulator outputs

in order to use the statistical model as a cheap emulator. Oftentimes there is not

a singular computer simulator available but instead several, where some simulators

are more detailed than others and hence both more accurate and more expensive

to obtain simulations from. In these cases it is desirable to use outputs from all of

the computer models to �t the statistical emulator. This can be done with a model

framework called cokriging.

Traditional cokriging involves �tting hierarchical Gaussian processes which model

the lowest �delity computer model, and then the discrepancy between each model

and the next lowest �delity model. Consider data y ∈ Y , covariates x ∈ X , spatial

coordinates s ∈ S, and �delity levels t = 1, ...,m, this model is given in (9.1),(9.2),

117

and (9.3)

yt (·) = γt−1 (·) yt−1 (·) + δt (·) , t = 2, ...,m (9.1)

y1 (·) ∼ GP
(
µ1 (·|β1) , σ2

1R (·, ·|φ1)
)
, (9.2)

δt (·) ∼ GP
(
µt (·|βt) , σ2

tR (·, ·|φt)
)
, t = 2, ...,m (9.3)

where γt−1 (·) is a scale discrepancy between yt−1 and yt and δt (·) is a location dis-

crepancy that models local di�erences between yt−1 and yt. For ease of presentation

we consider the case of a constant scale discrepancy γt−1 (·) = γt−1. Moreover, µt

is the mean function of the Gaussian process at �delity t whilst σ2
t and φt are cor-

relation function parameters for the correlation function R at �delity level t. Many

correlation functions can be used (Williams and Rasmussen 2006), for illustration

we focus on the Matérn family of stationary correlation functions. In particular for

the examples we use the square exponential correlation function given in (9.4)

R ((x, s) , (x′, s′) |φt) = exp

(
−1

2
((x, s)− (x′, s′)) diag (φt) ((x, s)− (x′, s′))

)
(9.4)

This statistical emulator can become expensive to �t when the size of the data

grows large. Suppose the data yt is of size nt at each �delity level t. Then the cost

of �tting the model is typically dominated by the inversion of an nt × nt covariance

matrix at each level of the model. Furthermore, data augmentation is required to �t

the model when the model designs are not also hierarchically nested. For simplicity

of illustration we focus here on nested designs and note that data augmentation

can be applied to all of the methods described here and proposed later to solve

non-nested problems.

118 Chapter 9. Overview and context

9.3 Partial Parallel cokriging

By making appropriate additional assumptions about the covariance structure the

model described in (9.1),(9.2), and (9.3) can be simpli�ed further. In particular we

assume the spatial covariance structure is independent of the covariate covariance

structure. Then we can design the covariance function R, in an entirely separable

manner composed of the spatial covariance function RS and the covariate covariance

function Rx as shown in (9.5)

R (·, ·|φt) = RS (·, ·|ρt)⊗Rx (·, ·|φt) (9.5)

We can now consider the dimension of the data separately in the spatial domain

and in the input domain. Let ns be the number of spatial locations s in the data

and nx be the number of covariate combinations in the data at �delity level t. Then

at �delity level t the data yt are of size nsnx and inverting the matrix output of the

kronecker product (9.5) reduces the bottleneck step from inverting an nsnx × nsnx

to separately inverting both an ns × ns and an nx × nx matrix by the properties of

the kronecker product. This reduces the complexity of the bottleneck from O (n3
t)

to O (n3
s + n3

x) which can be considerably cheaper.

It can then further be shown that if all that is required from the emulator is the

predictive mean and predictive variance then we can further assume that the spa-

tial covariance matrix RS can be replaced with the identity matrix (Gramacy and

H. K. H. Lee 2008; P. Ma et al. 2019). That is we can assume that the computer

outputs given the covariates are independent across space without loss of accuracy

in the estimates of the predictive mean and variance. This further reduces the bot-

tleneck as it is now only necessary to invert an nx × nx matrix which is massively

cheaper than inverting the original nsnx×nsnx matrix. Unfortunately these compu-

tational gains come at a cost of restrictive assumptions that severely limit the usage

119

of the model when we are interested in uncertainty quanti�cation beyond the pre-

dictive mean and variance. In particular if we are interested in spatially in�lling the

computer model to improve the granularity of the output then the Partial Parallel

(PP) cokriging model is considerably over�tted to the spatial locations with exist-

ing data and requires ad-hoc adjustments to make even sensible predictions that

still lack uncertainty quanti�cation. In the next Chapter we propose a method that

retains the computational bene�ts of PP-cokriging whilst addressing its over�tting

issues.

Chapter 10

Spatially clustered multi�delity

Gaussian process

We propose a new cokriging model which relaxes the spatial covariance assumptions

of the PP-cokriging model and does not require that we can replace RS with the

identity matrix. The proposed model retains much of the computational savings of

PP-cokriging whilst enabling the emulator to model spatial covariance within groups

of outputs. The new model includes the fully separable model using (9.5) with no

clustering as a special case.

10.1 The model

10.1.1 The Statistical Model

To relax the assumptions of PP-cokriging we propose extending the Bayesian Spa-

tially Clustered Coe�cients (BSCC) model (Luo, Sang and Mallick 2021a) used in

Chapter 9 to the multi�delity Gaussian process model. Consider data y ∈ Y , co-

variates x ∈ X , spatial coordinates s ∈ S, and �delity levels t = 1, ...,m, and the

cokriging model given in (9.1),(9.2), and (9.3) with a separable covariance function

121

(9.5). We introduce a connected graph G with vertices at the spatial points s con-

nected by edges e ∈ E that we obtain via Delauney triangulation (D.-T. Lee and

Schachter 1980) and removing edges longer than some threshold υ0. Delauney tri-

angulation connects vertices in triangles with edges such that no vertex lies within

the circumcircle of each triangle. We then obtain an initial minimum spanning tree

T with edges ET ⊂ E from this graph by the application of Prim's algorithm (Prim

1957). Prim's algorithm builds a tree by starting at a vertex and choosing the edge

with lowest weight that connects a new vertex to the tree. It does this iteratively

until every vertex is connected and the resulting tree is a minimum spanning tree.

This minimum spanning tree will be used to induce a partition on S.

Clustering can be achieved by adding and removing edges e from ET such that

each cluster is contained within a connected subgraph Tk of T . Moreover, Tk is itself

a minimum spanning tree on the points sk contained within the kth cluster. We

assume that the spatial covariance function takes the form

Rs (s, s′|φ) = I (s = s′) (10.1)

where I (s = s′) is an indicator function. To enable computation we assume that the

covariance structure within each cluster can be modelled independently of the other

clusters. To extend the method to the multi�delity setting we further assume that

each cluster can be propogated to all of the �delity levels such that each spatial point

belongs to the same cluster regardless of the �delity level being examined. Later

this assumption will enable us to analytically intergrate out parameters to allow for

more e�cient model �tting. For a given cluster k, we can write the statistical model

122 Chapter 10. Spatially clustered multi�delity Gaussian process

as

yk,t (·) = γt−1yk,t−1 (·) + δk,t (·) (10.2)

yk,1 (·) ∼ GP
(
µ1 (·|βk,1) , σ2

k,1R (·, ·|φk,1)
)

(10.3)

δk,t (·) ∼ GP
(
µt (·|βk,t) , σ2

k,tR (·, ·|φk,t)
)

(10.4)

Furthermore, the covariance matrix R has a diagonal block structure. This can be

exploited to reduce computational costs since the main bottleneck when �tting the

model is the matrix inversion of R. In particular if n =
∑
n3
k =

∑
(nsk × nx)

3 is the

sum of the cubed cluster sizes then the bottleneck for �tting the model is reduced

to O (nS) which can be considerably cheaper than even the seperable model. This

reduction of the computational complexity is especially large if the spatial size of the

data ns, dominates the size of the data in the input domain nx, such that ns >> nx.

It also clearly follows from (10.2), (10.3), and (10.4) that the fully separable model

is a special case where every spatial point exists within the same cluster.

10.1.2 The Prior

We denote a minimum spanning tree (MST) T with weights w as T = MST (w) and

specify a prior on the edge weights w = {wij}(si,sj)∈S where wij is the weight of an

edge between points si and sj such that

wij ∼ Prij (·) (10.5)

with wij ∈ [0, 1] without loss of generality. Consider a model with a set of clusters

Tk. We can consider the edges of the underlying graph G as a union of two sets,

the within cluster edges ec ∈ Ec which connect points that share a cluster and the

between cluster edges ek ∈ Ek which need to be removed to produce the partition.

To enable the formation of clusters Tk the minimum spanning tree T must contain

123

edges from the within cluster edge set Ec such that each cluster can be contained

within a minimum spanning subtree using only these edges. Then the complete

minimum spanning tree T must include exactly k edges from the between cluster

edges Ek. These edges connect the clusters to form the MST and induce the partition

into clusters Tk when removed. Similarly we split the edge weights w into the within

cluster edge weights wc and between cluster edge weights wk. Thus assigning priors

to the edge weights such that the within cluster edge weights are smaller than

the between cluster edge weights with high probability e�ects a prior which places

large prior mass on spanning trees that admit the clusters Tk. If prior information

about the clusters is not available then we can assign independent uniform priors

to the edge weights to produce an uninformative prior on the clusters. The ability

to admit an informative prior on the clusters is a major advantage for our model.

Other clustering methods such as binary tree or Voronoi tesselation based methods

do not have the capability to include prior information about the cluster structure.

We construct the minimum spanning tree on the graph G given edge weights

w using Prim's algorithm, T = MST (w). There are alternative algorithms for

�nding the MST such as Kruskal's algorithm (Kruskal 1956) and Dijkstra's algorithm

(Dijkstra 1959). Since the MST is unique these algorithms will produce the same

tree. However, as the number of spatial locations ns becomes large, Prim's algorithm

becomes considerably faster. It should additionally be noted that for any given

spanning tree of G there exists edge weights such that Prim's algorithm produces

that spaning tree and thus this prior on the edge weights constructs a prior on the

entire space of spanning trees (Luo, Sang and Mallick 2021a). We complete the prior

on the model space M , by assigning a prior on the number of clusters K, such that

π (K = k) ∝ (1− c)k , for k = 1, ..., nS, 0 ≤ c < 1 (10.6)

where c is a hyperparameter that penalises models with a large number of clusters.

124 Chapter 10. Spatially clustered multi�delity Gaussian process

This prior can be interpreted as a geometric distribution on the number of splits

in the tree. Hence we can interpret π (K = k) as the probability that we remove k

edges before it no longer improves the model to remove more. As c becomes closer

to one the penalisation on k is strong whereas when c becomes zero the penalty

vanishes and the prior becomes uniform on the number of clusters. We assign this

prior on K independently of the prior on w to construct a prior on the full model

space.

To complete the prior we assign Normal-Inverse Gamma priors on the within

model parameters of the statistical model βk,t ∈ Rp, γk,t−1 ∈ R, σ2
k,t ∈ (0,∞) de-

scribed in (10.2),(10.3), and (10.4) such that

βk,t, γk,t−1|σ2
k,t ∼N

(
[bt, gt−1] , σ2

k,tdiag (Bt, Gt−1)
)

(10.7)

σ2
k,t ∼IG (λt, χt) (10.8)

with hyperparameters bt, gt−1, Bt, Gt−1, λt, and χt. These priors are conjugate in

the case of a nested design. Furthermore, we assign a Gamma mixture prior on the

covariance parameter φt ∈ (0,∞) such that

φk,t ∼ 0.5G (1, 10) + 0.5G (5, 2) (10.9)

for t = 1, ...,m which places positive mass on both small and large values of φk,t as

shown in Figure 10.1. This completes the model.

125

0 1 2 3 4

0
1
2
3
4
5

fk,t

D
en
si
ty

Figure 10.1: A plot of the prior density assigned to the parameter φk,t

10.2 Computational strategy

To facilitate inference we use a reversible jump MCMC sampler since the posterior

distribution is intractable. To sample each new edge weights for the Adjustment

step we follow Algorithm 10.1 which samples new weights ordered such that the

clusters are preserved.

Algorithm 10.1 Adjustment Step Edge Weight Sampling
Input: Spatial points si and sj

1. Determine the clustering of si and sj

(a) If si and sj are in the same cluster then scale the bounds of the weight
prior, w′ij ∼ Prij (·) to

[
0, 1

2

]
(b) Else if si and sj are in the di�erent clusters then scale the bounds of the

weight prior, w′ij ∼ Prij (·) to
[

1
2
, 1
]

2. Sample a new weight from the scaled prior

Output: edge weight w′ij

Following Algorithm 10.2 we sample from the marginal posterior using the RJ-

MCMC moves.

126 Chapter 10. Spatially clustered multi�delity Gaussian process

Algorithm 10.2 MCMC method for SCGP
Input: current tree, current parameters

1. With probability p = (0.475, 0.475, 0.05) perform one of the split, merge, or
adjust moves detailed below

2. Update φ using Metropolis-Hastings

Output: updated tree, updated parameters

We could further employ the SARJ method described in Chapter 7 to more

e�ciently explore the model space if necessary by constructing intermediate densities

which can be used to smooth the model transition and thus improve the e�ciency

of the reversible jump.

Consider a current state of the model given by a MST T , currently split into

subtrees Tk where the subtree Tk connects the kth cluster. We have a set of edges

Ec contained within the subtrees and separately a set of edges Er that belong to

T but are not contained within any subtree. Then at each iteration one of three

reversible jump moves is performed with probability p = (0.475, 0.475, 0.05).

Split An existing cluster k is split into two new clusters k∗ and k′ by moving one

randomly selected edge from the set Ec to the set Er. This splits the subtree

Tk into two subtrees Tk′ and Tk∗. One of the new subtrees selected at random

retains the parameters φk whilst the other new cluster has new parameters φ′

generated from the prior.

The split move is accepted with probability α = min (1, r) such that

r =
π (T ′, φ′t|yt)
π (T, φt|yt)

q (T |T ′)
q (T ′|T)

q (φ|φ′)

q (T ′|T) =qS (K)
1

ns −K

q (T |T ′) =qM (K + 1)
1

K

where qS is the probability of proposing a split and qM is the probability of proposing

127

a merge.

Merge Two existing clusters k∗ and k′ are merged into one new cluster k by moving

one randomly selected edge from the set Er to the set Ec and consequently

joining Tk∗ and Tk′. The parameters of one of the preexisting clusters are

randomly selected to be kept as the parameters for the new cluster φk

The merge move is accepted with probability α = min (1, r−1) where r−1 is equal to

the reciprocal of the acceptance ratio of the corresponding split.

Adjustment The clustering remains the same and the edge weights w are updated

by sampling a new set of edge weights w′ such that the same partition is in-

duced by the resulting minimum spanning tree T ′ using Algorithm 10.1 which

is detailed above.

The adjustment move is accepted with probability α = min (1, t) such that

t =
π (w′) q (w|w′)
π (w) q (w′|w)

where w and w′ are the unscaled edge weights. In this thesis we make proposals

independently using the prior and so the adjustment move is always accepted with

probability α = 1.

To improve the e�ciency of the reversible jump we integrate out the model

parameters βk,t, γk,t−1, and σ
2
k,t. If inference about these parameters is required we

can use a Gibb's sampler together with the conditional posteriors. We focus here

on inference about the clustering as well as predictive inference and instead target

128 Chapter 10. Spatially clustered multi�delity Gaussian process

the marginal posterior

π (T, φt|yt) ∝π (T)
K∏
k=1

π (yk,1, φk,1|T)
m∏
t=2

π (yk,t, φk,t|yk,t−1, T) , (10.10)

π (yk,t, φk,t|yk,t−1, T) =π (φk,t)

∣∣∣Âk,t (φk,t)
∣∣∣ 1

2

|Bt|
1
2 |Gt|

1
2

χλtt

π
nk,t

2

Γ
(
λt +

nk,t
2

)
Γ (λt)

× (SSEk,t (φk,t))
−λt−

nk,t
2 (10.11)

where nk is the number of data y contained within the kth cluster. Further-

more, writing ξ = (x, s) for the spatial input pair we have that SSEk,t (φk,t) =

(nk,t + 2λt − 2)σ2
k,t (φk,t) and that

Âk,t (φk,t) =
[
Lt (ξk,t; yt−1)T R−1

t (ξk,t, ξk,t|φk,t)Lt (ξk,t; yt−1)

+diag
(
B−1
t , G−1

t

)]−1
(10.12)

α̂k,t (φk,t) =Âk,t (φk,t|sk)
(
Lt (ξk,t; yt−1)T R−1

t (ξk,t, ξk,t|φk,t)

+
[
bTt B

−1
t , gTt−1G

−1
t

]T)
(10.13)

σ̂2
k,t (φk,t) =

1

2λt + nk − 2

(
2χt + yTt R

−1
t (ξk,t, ξk,t|φk,t) yt + bTt B

−1
t bt

+gTt−1G
−1
t gt−1 − α̂Tk,t (φk,t) Â

−1
k,t (φk,t) α̂k,t (φk,t)

)
(10.14)

where Lt (ξk,t; yt−1) is a matrix constructed by vertically stacking the design matrices

Hk,t, of the inputs xk,t at the spatial locations sk and appending the data yt−1 as a

�nal column vector to the matrix.

10.3 Prediction

Prediction under our model at new spatial locations is not straightforward since

there is uncertainty about the clustering of the new location. We propose a novel

approach to make predictions at unseen points which makes several weak assump-

129

tions about how these points can be included. We �rst assume that each new point

x′ is connected to exactly one cluster k. This is necessary to enable predictive infer-

ence, and also to prevent the connection of two separate clusters. To maintain the

consistency of the Bayesian model we must also assume that the existing clusters

are preserved when the new points are added. That is that the inclusion of the

new points would not cause some other points to be removed from their cluster and

adjoined to another. This amounts to the assumption of independence of irrelev-

ant alternatives, common in categorical predictive modelling and enables predictive

inference without requiring us to re�t the model.

Now consider the simple case of prediction for a single new location s′. The

new point is added to a cluster by including one of the edges that connect the

point to the graph. We write c (s′) = k to denote the assignment of point s to

cluster k. According to the model we have that each of these edges e, have uniform

weights w, with which the minimum spanning tree can be constructed. Thus to

include the new point whilst preserving the existing clusters we must include one

of the connecting edges uniformly at random. Hereafter we omit the conditional-

ity on y, s, x, φ, and T for brevity and write the posterior predictive distribution

π (y (s′, x′) |y, s, x, φ, T) as π (y (ξ′)) and the conditional predictive distribution for

each cluster π (y (s′, x′) |y, s, x, φ, T, c (s′) = k) as π (y (ξ′) |c (s′) = k). The posterior

predictive distribution can be calculated by �rst calculating the conditional pre-

dictive distributions. We then combine these to �nd the full posterior with the

probabilities of connecting the new point to each cluster such that

π (y (ξ′)) =
K∑
k=1

π (y (ξ′) |c (s′) = k) π (c (s′) = k) (10.15)

where π (c (s′) = k) is the proportion of edges connecting s′ to the kth cluster.

An example is shown in Figure 10.2 where the new point x can be connected to

one of the points {4, 5, 6, 10, 13, 14} which are close enough to have edges shorter

130 Chapter 10. Spatially clustered multi�delity Gaussian process

than the longest edge threshold υ0 and correspond to three separate clusters. Hence

we calculate the posterior conditional on assigning x to each of these three clusters

and then �nd the full posterior summing each of these conditionals multiplied by

one third.

1 2

3 4 5 6 7 8

9 10 11 12

13 14 15 16

17

x

Figure 10.2: The simple case of adding a single new data point x to one of the existing clusters for
prediction. One of the dotted edges must be added at random to connect x to a cluster.

Consider the case where we have two new data points. If these points are close

then we must consider the inclusion of the edge that connects the two new points. To

calculate the joint predictive distribution we must count the pairs of edges connecting

the new points to each pair of clusters to calculate the connection probabilities

and combine the conditional joint predictive distributions accordingly. Figure 10.3

presents an example where a pair of edges must be chosen. Clearly as the number

of new points grows enumerating all of the possible sets of new edges becomes

computationally infeasible.

131

1 2

3 4 5 6 7 8

9 10 11 12

13 14 15 16

17

x y

Figure 10.3: The case of adding a two new data points x and y to the existing clusters for prediction.
Two of the dotted edges must be added at random such that x and y are both connected to a cluster.

To avoid the computational burden of enumerating the di�erent clusterings we

propose to sample from the posterior predictive distribution by sampling the edge

weights. When �tting the model one of the updating steps updates the tree by

sampling new weights for each of the edges using Algorithm 10.1.

For the adjustment step in Algorithm 10.1 we sample weights uniformly from

(0, 0.5] for edges connecting points that are within the same cluster and uniformly

from (0.5, 1] for edges connecting points which are in separate clusters we ensure that

the resulting MST preserves the clusters. We propose an extension to Algorithm

10.1 by rescaling these weights to
(
0, 1

3

]
for edges within the same cluster,

(
1
3
, 2

3

]
for edges between clusters and then sampling weights uniformly from

(
2
3
, 1
]
for the

edges connecting the new points to the graph as shown in Algorithm 10.3.

132 Chapter 10. Spatially clustered multi�delity Gaussian process

Algorithm 10.3 Prediction Step Edge Weight Sampling
Input: Spatial points si and sj

1. Determine the clustering of si and sj

(a) If si or sj is a new point then scale the bounds of the weight prior,
w′ij ∼ Pr (·) to

[
2
3
, 1
]

(b) Else if si and sj are in the same cluster then scale the bounds of the
weight prior, w′ij ∼ Pr (·) to

[
0, 1

3

]
(c) Else if si and sj are in the di�erent clusters then scale the bounds of the

weight prior, w′ij ∼ Pr (·) to
[

1
3
, 2

3

]
2. Sample a new weight from the scaled prior

Output: edge weight w′ij

By ordering the weights such that the lowest weights are contained within clusters

and the highest weights connect the new points we similarly ensure that the new

MST T ′, preserves the existing tree whilst adding the new points in such a way that

obeys the assumptions described above. Thus by sampling L sets of edge weights

(and hence the trees) in this way we can get Monte Carlo estimates of the connection

probabilities to estimate

π (c (s′) = k) =

∑L
l=1 1 (cl (s

′) = k)

L
(10.16)

Moreover, the conditional posterior predictive distribution π (yt (ξ′) |c (s′) = k) at

the location s′ and �delity level t is a Student-T process

yt
(
s′, x′

)
|y, s, x, φ, T, k ∼ STP

(
µ∗k,t

(
x′|φk,t

)
, σ̂2

k,1R
∗
k,1

(
x′, x′′|φk,t

)
, 2λt + nk,t

)
(10.17)

where λt is one of the hyperparameters, and nk,t is the size of the data in cluster

k at �delity level t. Given observed spatial input pairs ξk,t and unobserved spatial

133

input pairs ξ′, we have that µ∗k,t and R
∗
k,1 can be calculated as

µ∗k,t (x|φk,t) =Lt (ξk,t; yt−1)
T
α̂k,t (φk,t) +Rt (ξ

′, ξk,t|φk,t)R−1t (ξk,t, ξk,t|φk,t)

×
[
yt (ξk,t)− Lt (ξk,t; yt−1)

T
α̂k,t (φk,t)

]
(10.18)

R∗k,1 (ξ
′, ξ′′|φk,t) =Rt (ξ

′, ξ′′|φk,t)−Rt (ξ
′, ξk,t|φk,t)R−1t (ξk,t, ξk,t|φk,t)RT

t (ξ′, ξk,t|φk,t)

+D (ξ′|φk,t) Âk,tD
T (ξ′′|φk,t) (10.19)

D (ξ′|φk,t) =
[
Lt (ξ

′; yt−1)−Rt (ξ
′, ξk,t|φk,t)R−1t (ξk,t, ξk,t|φk,t)Lt (ξk,t; yt−1)

]
(10.20)

Together with the Monte Carlo estimates of the assignment probabilities π (c (s′) = k)

in Equation (10.16) we can construct joint posterior predictive densities as mixtures

of Student-T processes.

10.3.1 The model using nodes

A new method has been proposed (Luo, Sang and Mallick 2021b) which extends the

BSCC model using nodes. These nodes, N , are then used to construct the clusters

by associating spatial points with the nearest node. Then the tree T can be built by

constructing edges between the nodes instead of the spatial points. Thereafter the

model can be �tted using Algorithm 10.2 where we consider the cluster membership

c (s) of a spatial point s to be the cluster membership c (N) of the nearest node

N . In Figure 10.4 we present an example of a clustering obtained using our method

with the spatial points as vertices of the graph next to an example using the nodes

method with four evenly spaced nodes as the vertices. We observe in Figure 10.4

that the placement of the nodes must be done carefully since they restrict the model

space and force the clustering of their nearest spatial points. The restriction on the

model space prevents the nodes method from achieving the con�guration of clusters

observed using the spatial points as vertices of the MST.

134 Chapter 10. Spatially clustered multi�delity Gaussian process

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
(a) Using the spatial points as the vertices of
the MST

a b

c d

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
(b) Using the nodes as the vertices of the
MST

Figure 10.4: The spatial points (white) are clustered using the Minimum spanning tree with spatial
points as vertices (left) and the nodes (red) as vertices (right).

To enable prediction the clusters can be expanded to include new points by

assigning the new points to the nearest node. This method was proposed to enable

predictions to new spatial locations with the BSCC model which previously had no

predictive method other than treating the locations of predictions as missing data

and re�tting the whole model. We note that the method using nodes can also be

extended to the Gaussian process model in the multi�delity setting however we also

propose an alternative predictive method that does not require the use of nodes.

Furthermore, it should be noticed that when each point is assigned to its nearest

node then the method is again a special case of the method described in Section

10.1; where cluster membership of groups of points is forced to match a priori. Thus

it is desireable to avoid the use of nodes since the information required to make good

node choices is not typically availabe a priori.

135

10.4 A toy example

We �rst demonstrate the clustering ability of the new algorithm on a simple example

where the functions at each spatial location are planes such that

y1 (x, s) =c1 (s) + x1 (10.21)

y2 (x, s) =c2 (s) + x1 (10.22)

where ci (s) is a constant determined by the cluster which s belongs to, taking y1 to

be low �delity and y2 to be high �delity. We generate simulated data at 100 evenly

spaced spatial locations in the spatial domain S := [0, 1]× [0, 1] partitioning S into

three true clusters such that for a given spatial location s = (s1, s2) and writing sc =

(s1 − 0.5)2 +(s2 − 0.5)2 we have that c1 (s) = 1.2+4I (sc > 0.2)+2I (0.2 ≥ sc > 0.1)

and c2 (s) = 1.2 + 2.4I (sc > 0.2) + 0.6I (0.2 ≥ sc > 0.1).

In the input domain, X , we generate 200 inputs x = (x1, x2) using Latin Hyper-

cube Sampling (LHS) (McKay, Beckman and Conover 2000) and �nally generate

the outputs y1 and y2 for each combination of s and x using (10.21) and (10.22)

respectively. At both the low and high �delity levels we split the data into a train-

ing set of 80 randomly chosen spatial locations and reserve the remaining 20 as a

validation set. We further remove the high �delity outputs at another 20 spatial

locations randomly chosen from the 80 training locations and add these outputs to

the validation set.

We complete the Bayesian model by setting priors as in Section 10.1 with hyper-

parameters c = 0.5, bt = (0, ..., 0), gt−1 = 0, B−1
t = diag (0.01, ..., 0.01), G−1

t−1 = 0.01,

and λt = χt = 0.2. We sampe from the marginal posterior using 10000 iterations of

Algorithm (10.2).

We observe from Figure 10.5a that the method correctly identi�es the clusters.

Furthermore, the method produced estimates with a predictive Root Mean Squared

136 Chapter 10. Spatially clustered multi�delity Gaussian process

Error (RMSE) of only 0.1 as it performs well with the simple example.

0.2 0.4 0.6 0.8 1.0

0.
2

0.
8

Longitude

La
tit
ud
e

(a) The points indicate observed spatial locations at the
corresponding longitude and latitude. The colours indicate
which cluster the points belong to.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
2
0.
4
0.
6
0.
8
1.
0

Predicted

O
bs
er
ve
d

(b) The observed validation data on the y-axis
against the predicted values on the x-axis.

Figure 10.5

For comparison we apply the PP-cokriging method described in Section 9.3 to

demonstrate the capability of existing methodology. As expected the PP-cokriging

method completely fails to cope with the problem and results in a predictive RMSE

of 2.35, more than 20 times greater than the predictive RMSE of the new Spatially

clustered Clustered GP method. At some spatial locations PP-cokriging fails so

badly that the predictions are not even in the vicinity of the true output such

as those observed in Figure 10.6 where the solid line indicating equality between

prediction and observation is not near any of the prediction points.

137

-3 -2 -1 0 1

-0
.6

-0
.2

0.
2

Predicted

O
bs
er
ve
d

Figure 10.6: A plot of the observed data on the y-axis against the predicted values using PP-
cokriging on the x-axis.

We now demonstrate the model on a more challenging example by adapting the

numerical example in B. A. Konomi and Karagiannis (2021) by introducing a spatial

component and clustering within the spatial domain. Consider functions

y1 (x, s) =2x1 exp
(
−x21 − x22

)
+ 0.5 exp

{
sin

((
0.9

(
x1 + 2

8
+ 0.48

)10
))}

+ c1 (s) (10.23)

y2 (x, s) =4x1 exp
(
−x21 − x22

)
+ 0.2 exp

{
sin

((
0.9

(
x1 + 2

8
+ 0.48

)10
))}

+ c2 (s) (10.24)

where ci (s) is a constant determined as in the simple example of (10.21) and (10.22).

In the input domain we again generate 200 inputs x = (x1, x2) using Latin Hyper-

cube Sampling (LHS) and �nally generate the outputs y1 and y2 for each combination

of s and x using (10.23) and (10.24) respectively. We split the data into a training set

of 80 randomly chosen spatial locations and reserve the remaining 20 as a validation

set. We further remove the high �delity outputs at another 20 spatial locations ran-

domly chosen from the 80 training locations and add these outputs to the validation

set. We complete the Bayesian model with hyperparameters c = 0.5, bt = (0, ..., 0),

gt−1 = 0, B−1
t = diag (0.01, ..., 0.01), G−1

t−1 = 0.01, and λt = χt = 0.2. We sample

from the marginal posterior with 10000 iterations of Algorithm (10.2).

As can be observed in Figure 10.7 our method correctly identi�es the clusters.

138 Chapter 10. Spatially clustered multi�delity Gaussian process

Moreover, the method performs well with a predictive RMSE of 0.28.

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Longitude

La
tit
ud
e

Figure 10.7: The points indicate observed spatial locations at the corresponding longitude and
latitude. The colours indicate which cluster the points belong to. The black lines indicate the
boundaries of the true clusters.

We observe in Figure 10.8a that the PP-cokriging model fails to emulate the

simulator to a large degree with a predictive RMSE of 2.43 which is more than 8 times

greater than the RMSE of SCGP. PP-cokriging fails because the method �ts di�erent

parameters at every spatial location. This results in severe over�tting and very poor

performance at new locations. In contrast we can observe in Figure 10.8b that SCGP

o�ers a marked improvement upon existing methods. Despite the improvement

there still remains a small portion of the bias that has not been eliminated. This is

because Gaussian process models can su�er from an identi�ability problem. Since

the GP uses both a mean function and a covariance function to make predictions it is

typically not possible to make direct inference about the mean function parameters.

Ordinarily this does not impair prediction because observed output data can be

used to calibrate predictions. When we wish to in�ll to unseen locations however,

the new spatial locations have no output data that can be used and so the model

cannot fully calibrate itself. We propose two potential remedies to this problem and

demonstrate their e�cacy.

139

-1 0 1 2 3 4

-0
.8

-0
.4

0.
0

0.
4

Predicted

O
bs
er
ve
d

(a) The PP-cokriging prediction results

0.2 0.3 0.4 0.5

-0
.2

0.
2

0.
6

1.
0

Predicted

O
bs
er
ve
d

(b) The SCGP prediction results

Figure 10.8: Plots of the observed data on the y-axis against the predicted values on the x-axis.
A straight line has been added to indicate where Observed = Predicted.

Figure 10.8 illustrates the di�erence in performance at a particular spatial loc-

ation we can further see a large di�erence in the predictive error across all spatial

locations. We observe in Figure 10.9 that our method performs well across the en-

tire spatial domain whilst the existing PP-cokriging method performs much worse

everywhere.

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Longitude

La
tit
ud
e

(a) The PP-cokriging prediction error across
space. The overall predictive RMSE is 2.43

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Longitude

La
tit
ud
e

(b) The SCGP prediction error across space.
The overall predictive RMSE is 0.28

Figure 10.9: Plots of the observed data on the y-axis against the predicted values on the x-axis.
The size of the points indicates the magnitude of the RMSE at that spatial location.

One possible remedy to calibrate the predictive model can be used if the compu-

tational budget exists to supplement the data with new simulations at the unseen

spatial locations. Existing methods such as PP-cokriging would require many new

simulations and re�tting of the model to estimate parameters for the unseen points.

In contrast because of the clustering in our model we do not need to re�t the model

140 Chapter 10. Spatially clustered multi�delity Gaussian process

and can use the existing cluster parameters. Our model merely needs the new

simulations to resolve the Gaussian Process' nonidenti�ability problem. The afore-

mentioned nonidenti�ability issue can also be resolved with very few data and so the

computational budget required to solve this problem can be minimised. Denoting

the supplemental simulations as ξ
(s)
k,t we can incorporate these into the conditional

posterior predictive distribution (10.17) such that the parameters can be calculated

as

µ∗k,t (ξ
′|φk,t) =Lt

(
ξ
(s)
k,t ; yt−1

)T
α̂k,t (φk,t) +Rt

(
ξ′, ξ

(s)
k,t |φk,t

)
R−1t

(
ξ
(s)
k,t , ξ

(s)
k,t |φk,t

)
×
[
yt

(
ξ
(s)
k,t

)
− Lt

(
ξ
(s)
k,t ; yt−1

)T
α̂k,t (φk,t)

]
(10.25)

R∗k,1 (ξ
′, ξ′′|φk,t) =Rt (ξ

′, ξ′′|φk,t)−Rt

(
ξ′, ξ

(s)
k,t |φk,t

)
R−1t

(
ξ
(s)
k,t , ξ

(s)
k,t |φk,t

)
RT

t

(
ξ′, ξ

(s)
k,t |φk,t

)
+D (ξ′|φk,t) Âk,tD

T (ξ′′|φk,t) (10.26)

D (ξ′|φk,t) =
[
Lt (ξ

′; yt−1)−Rt

(
ξ′, ξ

(s)
k,t |φk,t

)
R−1t

(
ξ
(s)
k,t , ξ

(s)
k,t |φk,t

)
Lt

(
ξ
(s)
k,t ; yt−1

)]
(10.27)

Even just a pair of simulations can improve predictions considerably as can be

seen in Figure 10.10 where a pair of supplemental inputs reduced the RMSE to 0.18.

0.2 0.4 0.6 0.8 1.0

-0
.2

0.
2

0.
6

1.
0

Predicted

O
bs
er
ve
d

Figure 10.10: A plot of the observed data on the y-axis against the predicted values on the x-axis.
A straight line has been added to indicate where Observed = Predicted.

With only a pair of simulations the predictive inference at unobserved spatial

141

locations can be massively improved since these simulations provide calibration data.

Further computational budget can be used to o�er additional supplemental data and

improve inference at unseen locations further. In this way the method can be used to

in�ll the spatial mesh with minimal new computer simulations and without needing

to re�t the emulator.

An alternative solution when the remaining computational budget does not allow

for new simulations is to interpolate the seen locations within the same cluster as the

new location and use the interpolated data to calibrate the model. Similarly to the

supplemental data we can denote the interpolated data as ξ
(s)
k,t and incorporate these

into the conditional posterior predictive distribution (10.17) using (10.25),(10.26),

and (10.27). For this toy example interpolation between the spatial locations given

the clusters can be done exactly and so because our method correctly identi�ed the

correct clusters this method outperforms the supplemental simulations and reduces

the RMSE to only 0.13 performing well as can be observed in Figure 10.11.

-0.8 -0.6 -0.4 -0.2 0.0 0.2

-0
.8

-0
.4

0.
0

0.
4

Predicted

O
bs
er
ve
d

Figure 10.11: A plot of the observed data on the y-axis against the predicted values on the x-axis.
A straight line has been added to indicate where Observed = Predicted.

In practice we would not expect interpolation to outperform supplemental data.

We additionally compare our method to the method using nodes as described in

Subsection 10.3.1. We use 12 nodes scattered uniformly across the spatial domain

142 Chapter 10. Spatially clustered multi�delity Gaussian process

to build the MST. We observe in Figure 10.12 that the model using nodes fails to

identify the correct clusters. This happens because the nodes restrict the model

space, and the true clustering no longer exists within an available model.

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Longitude

La
tit
ud
e

Figure 10.12: The points indicate observed spatial locations at the corresponding longitude and
latitude. The colours indicate which cluster the points belong to. The black lines indicate the
boundaries of the true clusters.

As we would expect the missclustering of points leads to poor predictive per-

formance at missclustered spatial points such as can be observed in Figure 10.13.

As with our SCGP method the nodes model can improve its predictive performance

with a small amount of supplemental or interpolated data. Like the SCGP method

these supplemental data can be incorporated without re�tting the model.

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

-1
.0

-0
.6

-0
.2

0.
2

Predicted

O
bs
er
ve
d

(a) The nodes model prediction results

-0.4 -0.2 0.0 0.2

-1
.0

-0
.6

-0
.2

0.
2

Predicted

O
bs
er
ve
d

(b) The nodes model prediction results using
supplemental data

Figure 10.13: A plot of the observed data on the y-axis against the predicted values on the x-axis.
A straight line has been added to indicate where Observed = Predicted.

143

While we see improvement in the results following the incorporation of supple-

mental data the nodes model is still outperformed by our SCGP model.

Chapter 11

An application to Cape Coral

stormsurge data

Computer modelling is an important component in the defence against stormsurge

�ooding caused by hurricanes. These models help to inform the required level of

�ood defences in areas that experience this stormsurge �ooding. The physical sim-

ulation models required are extremely computationally expensive, a single run can

take thousands of hours on a supercomputer. Instead of relying on the computer

model to simulate the physical process it is common to replace the simulator with

an emulator, typically in the form of a sophisticated Gaussian process model.

Standard Gaussian process models struggle with the nonstationarity that is com-

mon in these problems and so adaptations to the standard model have been pro-

posed to directly address the nonstationarity. Modelling the complete covariance

structure across both the spatial and input spaces together is normally impractical

computationally, even for single �delity models. As a compromise it is normal to

completely separate the spatial and input covariance structures, and assume that

these structures are independent of one another (Gu, Wang and Berger 2018). More

recently PP-cokriging was proposed that makes the further assumption that the

145

spatial covariance can be modelled by a diagonal matrix (P. Ma et al. 2019). This

assumption massively reduces the computational work and comes with theoretical

guarantees that if the quantities of interest are restricted to the predictive mean and

the predictive variance at already observed spatial locations then the model gives

near equivalent results to separable cokriging.

In this section we apply our new spatially clustered cokriging method described

in Chapter 10. This relaxes the assumptions of PP-cokriging whilst retaining much

of the computational bene�ts. In doing so we hope to broaden the scope of the

outputs to include the predictive mean and variance at previously unobserved spatial

locations. In particular this will enable us to upscale the mesh used at each �delity

of the model. We test our model using physical simulation data at 9284 spatial

locations that form a mesh over the Cape Coral region of Florida. The input design

is a latin hypercube in 5 dimensions of the input space with an additional input

chosen at various even spacings for each combination of parameters. These low and

high �delity physical simulated data are obtained from the Advanced Circulation

(ADCIRC) (Luettich and Westerink 2004) simulator and the ADCIRC+SWAN (J.

Dietrich et al. 2011; J Casey Dietrich et al. 2012) simulators respectively. The

ADCIRC simulator uses the �nite elements method to numerically solve a series of

equations for water levels over a grid. The ADCIRC+SWAN simulator couples the

ADCIRC simulator with the Simulating WAves Near-shore (SWAN) (Booij, Ris and

Holthuijsen 1999; Zijlema 2010) wave model which can simulate wave physics for

near-shore waves that ride atop of stormsurge waves. We present the high �delity

output across all of the spatial locations with for one of the combinations of input

parameters in Figure 11.1.

146 Chapter 11. An application to Cape Coral stormsurge data

26.4

26.5

26.6

-82.2 -82.1 -82.0 -81.9
Longitude

La
tit
ud
e

0
1
2
3
4

PSE

Figure 11.1: The output of the high �delity simulator at an input, x1. The axis show the longitude
and latitude from the data whilst higher stormsurge is shown in darker blue.

To complete the Bayesian model we assign Normal-Inverse Gamma priors on the

mean and variance parameters βt ∈ R, γt ∈ R, and σ2
t ∈ (0,∞) at each �delity level

t = 1, 2 with hyperparameters bt = (0, ..., 0), gt−1 = 0, B−1
t = diag (0.01, ..., 0.01),

G−1
t−1 = 0.01, and λt = χt = 0.2. We further specify a Gamma mixture prior on the

covariance parameter φt ∈ (0,∞) such that

φk,t ∼ 0.5G (1, 10) + 0.5G (5, 2) (11.1)

which allows for both small and large values of φk,t. Finally we set a truncated

geometric prior on the number of clusters k as described in (10.6) with c = 0.5.

We remove 284 spatial locations from the data to be used as a validation set. We

further select another 2000 at the high �delity level only which are also removed and

added to the validation set. The remaining spatial locations are used as training data

for each of the �tting and prediction methods. We will compare the methods using

the predictive root mean square error (RMSE), average length of the 95% credible

147

intervals (ALCI) on the predictive mean, the coverage of these same intervals (CVG),

and the Nash-Sutcli�e model e�ciency coe�cient (NSME) (Nash and Sutcli�e 1970)

calculated using the validation set. The Nash-Sutcli�e model e�ciency coe�cient

is a goodness-of-�t statistic that measures how well the model predicts the output

variable. The coe�cient takes values less than or equal to one. A NSME coe�cient of

one indicates that the model perfectly predicts the output data, a NSME coe�cient

of zero indicates that the model predicts the output data as accurately as the sample

mean would and values greater (less) than zero indicate that the model is a better

(worse) predictor than the model. For those model �tted using reversible jump

methods we additionally measure the acceptance rate of these jumps to evaluate

how well the sampler is mixing.

11.1 Fitting the model

We �rst �t the model using standard reversible jump methodology. We use the prior

for φk,t given in (11.1) as the dimension matching proposal and exploit the block

diagonal structure of the model to reduce the necessary computations. We run the

reversible jump sampler for 10000 iterations with a burn-in period of 1000 iterations

and evaluate the model using the prediction criteria set out above. For comparison

to the existing methodology we also �t the PP-cokriging model to the training data

and attempt to make predictions to the test set with that also. In Figure 11.2a

we observe the spatial clustering of the space at the �nal iteration of the sampling

chain. There are lots of small to medium sized clusters with the smallest clusters

typically near the boundary of the data. The large number of clusters indicates a

large degree of nonstationarity in the spatial domain. Moreover, in Figure 11.2b we

observe a trace plot of the number of clusters at each iteration and we can see that

the method quickly splits the space into clusters and then mixes well around 40-50

clusters.

148 Chapter 11. An application to Cape Coral stormsurge data

(a) The spatial clusters of the model. The axis
show the longitude and latitude from the data
whilst each cluster is represented by a di�erent
colour.

(b) A trace plot of the number of clusters.

Figure 11.2: Plots of the model output �tted with standard reversible jump

For the test metrics we �nd that our method performs well, with a RMSE that is

very low relative to the magnitude of the output. Furthermore, the credible intervals

perform exceptionally well, with coverage very close to the ideal 95%. In contrast

PP-cokriging performs abysmally when applied to new spatial locations as we would

expect. Both sets of performance metrics can be found in the Table 11.1.

PP-Cokriging Spatially Clustered cokriging

RMSE 6.09 0.044
ALCI 202.3 0.172
CVG 1 0.94
NSME -28 0.998

Runtime(hours) 11 14
RJ acceptance rate NA 0.017

Table 11.1: The performance metrics for the PP-cokriging model and our Spatially Clustered
cokriging model.

In Table 11.1 we see a vast di�erence between our proposed method and the PP-

cokriging method. The predictive metrics RMSE and NSME illustrate an extremely

large di�erence in accuracy whilst the uncertainty quanti�cation also shows remark-

able improvements both in the size of the credible intervals and in their calibration.

We can observe that our new method Spatially Clustered cokriging has successfully

broadened the scope of Stormsurge emulation and could be used to upscale the

149

emulation mesh in this and other similar problems. This is a vast improvement over

the existing methodology which is even magnitudes worse than just taking the data

mean with a Nash-Sutcli�e model e�ciency coe�cient of −28.

11.2 Fitting the model with SARJ

We can see from Table 11.1 that the reversible jump acceptance rate is very low

at only 1.7%. We will �t our model using the Stochastically Annealed Reversible

Jump (SARJ) method from Chapter 8. With 10 intermediate steps each iteration

of the algorithm takes longer to complete but proposes jumps that are much less

likely to be rejected. Hence we run only 3000 iterations of the sampling algorithm

with a burn-in period of 500 iterations and �nd that it converges much more quickly

than standard reversible jump. Furthermore, when we compare the clustering of the

SARJ �tted model in Figure 11.3a to the clustering of the standard RJ �tted model

in Figure 11.2a we can see a smaller number of larger clusters with many small

clusters around the periphary. This suggests the improved mixing of the SARJ

method enabled the merging of larger clusters in a way that is di�cult to achieve

with standard RJ.

(a) The spatial clusters determined using SARJ.
The axis show the longitude and latitude from
the data whilst each cluster is represented by a
di�erent colour.

(b) A trace plot of the number of clusters.

Figure 11.3: Plots of the model output �tted with SARJ.

When we compare the test metrics to those using reversible jump in Table 11.2

150 Chapter 11. An application to Cape Coral stormsurge data

we can observe similar predictive performance with a reversible jump acceptance

rate that is almost 4 times greater than standard reversible jump.

Spatially
Clustered GP

(RJ)

Spatially
Clustered GP

(SARJ)

Nodes
Clustered GP

RMSE 0.044 0.044 0.044
ALCI 0.172 0.136 0.133
CVG 0.94 0.89 0.88
NSME 0.998 0.998 0.998

Runtime (hours) 14 17 12
RJ acceptance rate 0.017 0.065 <0.001

Table 11.2: We observe that both our method and the alternative nodes based method have strong
predictive performance based on the RMSE and NSME metrics shown. The methods di�er in the
RJ acceptance rate where the nodes based method fails to mix properly whilst the SARJ method
improves upon the mixing rate of standard RJ.

We observe a decrease in the 95% CI coverage that we would expect to rectify

with a larger computational budget. It should be noted that both of these methods

would bene�t greatly from parallelisation which could be used to more e�ciently

use the existing budget to close that gap.

11.3 Fitting the model with nodes

We additionally �t the nodes model of Subsection 10.3.1 to the data. The locations

of the nodes can be di�cult to assign since we have no information about good node

locations a priori. We choose the nodes such that they are uniformly distributed

throughout an alpha-hull that encloses the data. The alpha-hull constructs a tight

non-convex boundary around the data so by choosing the nodes within this boundary

we can ensure that the nodes are chosen such that there are data near each node.

This ensures that the nodes both have good coverage and are contained within the

data space such that there are no `dead' nodes with no nearby points. We place

100 nodes in this way and then �t the model using standard reversible jump. We

observe in Figure 11.4a that almost all of the clusters are medium to large even at

151

the edges and have much smoother boundaries between clusters as a result of the

nearest node clustering. We can also see from Figure 11.4b that while the nodes

method splits the space into clusters very quickly it o�ers very poor mixing once

the clusters are determined. This is likely to be a result of the in�exibility in spatial

clustering within each node's space. Since two points which share a nearest node

must be clustered together the nodes method is essentially a restricted version of

the spatially clustered GP method and we would expect the performance to nearly

match as the number of nodes approaches the number of spatial locations.

(a) The spatial clusters determined using the
nodes. The axis show the longitude and latitude
from the data whilst each cluster is represented
by a di�erent colour.

(b) A trace plot of the number of clusters.

Figure 11.4: Plots of the nodes based model output �tted with standard reversible jump

In Table 11.2 we compare the performance metrics of the nodes based method

to the two spatially clustered models. We observe that in terms of RMSE the three

models are near identical whilst the quality of uncertainty quanti�cation varies.

We can see that the uncertainty quanti�cation of the nodes method mostly

matches the results of the SCGP model. Unlike the SCGP �tted model however, we

would not expect the uncertainty quanti�cation of the nodes to improve with addi-

tional computational budget because the sampler e�ectively stopped mixing once it

found a near optimal node con�guration. This trapping phenomenon is a frequent

occurence for this method and occurs because the nodes e�ectively constrain the

model space. Two spatial locations which share a nearest node must belong to the

152 Chapter 11. An application to Cape Coral stormsurge data

same cluster and so the sampler cannot explore models where those two locations

are split. Moreover, the sampler cannot even use these models as a `bridge' to es-

cape local traps. We would expect to improve the method by introducing additional

nodes and re-running the algorithm from scratch.

Chapter 12

Conclusion

12.1 Summary

We proposed a new spatially clustered Gaussian process model for handling non-

stationarity. The new model aims to cope with a large degree of spatial nonstation-

arity whilst not in�icting the computational burden of a fully separable Gaussian

process model. We further introduced a predictive process to the model that can

be easily extended to other spatially clustered models. We showed that the model

performs well, successfully modelling spatial nonstationarity in both a numerical

example and in an application to stormsurge data from the Cape Coral region of

Florida. Moreover, we demonstrated that the new model massively outperforms the

existing PP-cokriging method when it is desired to predict to unobserved spatial

locations. We further explored the model by using the SARJ algorithm that we

proposed in Chapter 8 and found that this yielded much improved mixing quality

compared to the standard reversible jump. Additionally we compared our method

to an alternative nodes based method that has been proposed and found that our

method lends itself to much better reversible jump mixing whereas the nodes based

methodology su�ers from severe local trapping problems when �tted with reversible

154 Chapter 12. Conclusion

jump.

12.2 Future research aims

Currently the model allows for nonstationarity in the spatial domain but assumes

stationarity in the the input domain. The next steps to develop the model could

involve introducing a second clustering process to this domain so that nonstationar-

ity in the data could be modelled separably in both the spatial and input domains.

This extension may introduce challenging non-identi�ability issues and will not be

straightforward. Moreover, SARJ and other sophisticated sampling schemes will be

necessary to �t such a model since the mixing of two cluster structures simultan-

eously will be both di�cult and slow.

Appendix A

Proofs of ABC results

A.1 Results of Chapter 2

Derivation of (2.4)

πε (y) =

∫
π (θ) p (u|θ) gε (u) dudθ

=

∫
π (θ) p (u|θ) gε (u)

q (θ|θ∗) p (u|θ)
q (θ|θ∗) p (u|θ)

dudθ

=

∫
π (θ) gε (u)

q (θ|θ∗)
q (θ|θ∗) p (u|θ) dudθ

≈ 1

N

N∑
i=1

π (θi) gε (ui)

q (θi|θ∗)
where θi ∼ q (θi|θ∗) , ui ∼ p (ui|θi)

Proposition 2.4.2. Consider the subregion weights $j/ŵj calculated under the

SAMC-ABC framework. We have that the ŵj are the estimated normalising con-

stants within each subregion Ej and that the subregions Ej form a partition on the

parameter space. Then it follows that the ABC marginal likelihood π
(g)
ε (y) can be

calculated as:

π(g)
ε (y) =

m∑
j=1

Cŵj

156 Appendix A

Setting
∑m

j=1Cŵj to be equal to an alternative estimate such as (2.4) gives us

the constraint required to determine an estimate of C.

Proof. Using the SAMCABC algorithm we can easily estimate the normalizing con-

stant of the ABC posterior. Consider that Cŵj =
∫ ∫

Ej
π (θ) f (x|θ) gε (||y − x||) dxdθ

and that the subregions Ej are a partition on the sample space. Then we can write

the ABC normalizing constant π
(g)
ε (y) as:

π(g)
ε (y) =

∫
Θ

∫
X
π (θ) f (x|θ) gε (||y − x||) dxdθ

=
m∑
j=1

∫ ∫
Ej

π (θ) f (x|θ) gε (||y − x||) dxdθ

=
m∑
j=1

Cŵi

(A.1)

Proposition 2.4.3. Consider the SAMCABC adaptive kernel

hε (u) ∝
m∑
j=1

$j

wj
gε (u) IEj (u)

where
$j
wj

is the SAMC weight for subregion Ej and gε (u) is the ABC kernel. The

SAMCABC marginal likelihood π
(h)
ε (y) can be calculated as

π(h)
ε (y) =

(
m∑
j=1

$j

wj

∫
Ej

gε (u) du

)−1

Proof. Consider the SAMCABC posterior:

πSAMCABC (θ, u|x) =

∑m
j=1 π (θ) f (u|θ) $j

ŵjZ
gε (u) I ((θ, u) ∈ Ej)

π
(h)
ε (y)

where Z =
∫ ∑m

j=1
$j
wj
gε (u) I (u ∈ Ej) du is a normalizing constant which ensures

that kε (u) =
∑m

j=1
$j
wjZ

gε (||y − x||) I ((θ, x) ∈ Ej) is a valid ABC kernel and π
(h)
ε (y) =∫

Θ

∫
U
∑m

j=1 π (θ) f (u|θ) $j
wjZ

gε (u) I((θ, u) ∈ Ej)dudθ is the SAMCABCmarginal like-

Appendix A 157

lihood. Then we have:

fSAMCABC (y) =

∫
Θ

∫
X

m∑
j=1

π (θ) f (x|θ) kε (||y − x||) I((θ, x) ∈ Ej)dxdθ

=
m∑
j=1

∫ ∫
Ej

π (θ) f (x|θ) kε (||y − x||) dxdθ

=
m∑
j=1

$j

wjZ

∫ ∫
Ej

π (θ) f (x|θ) gε (||y − x||) dxdθ

=
m∑
j=1

$j

wjZ
wj

=

∑m
j=1$j

Z

(A.2)

Furthermore we have that
∑m

j=1 $j = 1 and then the normalizing constant for the

SAMC-ABC posterior is:

π(h)
ε (y) =Z−1

=

(∫ m∑
j=1

$j

wj
gε (u) I (u ∈ Ej) du

)−1

=

(
m∑
j=1

$j

wj

∫
Ej

gε (u) du

)−1

(A.3)

and so we can use the estimates of the subregion normalizing constants from the

original ABC posterior to calculate the marginal likelihood of the SAMC-ABC pos-

terior.

Proposition 2.4.4. For small tolerance, ε, ABC kernel variance, σ2
g , and SAMC-

ABC kernel variance, σ2
h, where σ

2
h ≤ σ2

g we have that the point-wise posterior bias

of the original ABC posterior is greater in magnitude than that of the SAMCABC

posterior:

∣∣â(h)
ε (y|θ)

∣∣ ≤ ∣∣â(g)
ε (y|θ)

∣∣

158 Appendix A

with equality everywhere if and only if σ2
h = σ2

g .

Proof. Writing the ABC likelihood as fε (y|θ) let us consider the normalizing con-

stants:

π(g)
ε (y) =

∫
π (θ) fε (y|θ) dθ

=

∫
π (θ) f (y|θ) + bε (y|θ) π (θ) dθ

=π (y) +

∫
bε (y|θ) π (θ) dθ

Now consider the ratio of the absolute pointwise posterior bias in the ABC and

SAMC-ABC/CCABC posteriors:

∣∣∣a(g)
ε (θ|y)

∣∣∣∣∣∣a(h)
ε (θ|y)

∣∣∣ =

∣∣∣∣ b(g)ε (y|θ)π(θ)+
(
π(y)−π(g)

ε (y)
)
π(θ|y)

π
(g)
ε (y)

∣∣∣∣∣∣∣∣ b(h)
ε (y|θ)π(θ)+

(
π(y)−π(h)

ε (y)
)
π(θ|y)

π
(h)
ε (y)

∣∣∣∣
=

∣∣∣π(h)
ε (y)

∣∣∣∣∣∣π(g)
ε (y)

∣∣∣
∣∣∣b(g)
ε (y|θ) π (θ) +

(
π (y)− π(g)

ε (y)
)
π (θ|y)

∣∣∣∣∣∣b(h)
ε (y|θ) π (θ) +

(
π (y)− π(h)

ε (y)
)
π (θ|y)

∣∣∣
=
π (y) +

∫
b

(h)
ε (y|θ) π (θ) dθ

π (y) +
∫
b

(g)
ε (y|θ) π (θ) dθ

∣∣∣b(g)
ε (y|θ) π (θ)− π (θ|y)

∫
b

(g)
ε (y|θ) π (θ) dθ

∣∣∣∣∣∣b(h)
ε (y|θ) π (θ)− π (θ|y)

∫
b

(h)
ε (y|θ) π (θ) dθ

∣∣∣
and if we take the second order approximation of the bias in the likelihood and

writing k = 1
2
ε2
∫
f ′′ (y|θ) π (θ) dθ we have:

Appendix A 159

∣∣∣a(g)
ε (θ|y)

∣∣∣∣∣∣a(h)
ε (θ|y)

∣∣∣ ≈c+ σ2
hk

c+ σ2
gk

∣∣1
2
ε2σ2

gf
′′ (y|θ) π (θ)− π (θ|y)σ2

gk
∣∣∣∣1

2
ε2σ2

hf
′′ (y|θ) π (θ)− π (θ|y)σ2

hk
∣∣

=
c+ σ2

hk

c+ σ2
gk

σ2
g

σ2
h

∣∣1
2
ε2f ′′ (y|θ) π (θ)− π (θ|y) k

∣∣∣∣1
2
ε2f ′′ (y|θ) π (θ)− π (θ|y) k

∣∣
=
c+ σ2

hk

c+ σ2
gk

σ2
g

σ2
h

>
σ2
hk

σ2
gk

σ2
g

σ2
h

=1

(A.4)

As ε→ 0 both a
(g)
ε (θ|y)→ 0 and a

(h)
ε (θ|y)→ 0 however we also have from (A.4) that

as ε→ 0 and the higher order terms in bε (y|θ) become negligible then
∣∣∣a(g)
ε (θ|y)

∣∣∣ >∣∣∣a(h)
ε (θ|y)

∣∣∣.
Proposition 2.4.5. For SAMC-ABC, we have that

σ2
h =

1

3m3

m∑
j=1

$j

wj

(
j3 − (j − 1)3)

and so it follows that the bias reduction factor is:

b̂
(h)
ε (y|θ)
b̂

(g)
ε (y|θ)

=
1

m3

m∑
j=1

$j

wj

(
j3 − (j − 1)3)

Proof. Here we provides results for the commonly used uniform ABC kernel gε (u) =

1
2ε
I (|u| < ε). Then σ2

g = Var
g

(U) where gε (u) = 1
ε
g
(
u
ε

)
. Hence g (u) = 1

2
I (|u| < 1)

and σ2
A = 1

3
. We now calculate the variance of the SAMCABC, σ2

h, kernel. Consider

the SAMC-ABC kernel:

hε (u) =
1

2ε

m∑
j=1

$j

wj
I (εj−1 ≤ |u| < εj)

which with the εj evenly spaced becomes:

160 Appendix A

hε (u) =
1

2ε

m∑
j=1

$j

wj
I

(
(j − 1) ε

m
≤ |u| < jε

m

)
and hence:

h (u) =
1

2

m∑
j=1

$j

wj
I

(
(j − 1)

m
≤ |u| < j

m

)
So we then have that:

σ2
h =Var

h
(U)

=

∫ 1

−1

u2 1

2

m∑
j=1

$j

wj
I

(
(j − 1)

m
≤ |u| < j

m

)
du

=
m∑
j=1

$j

wj

(∫ − j−1
m

− j
m

u2

2
du+

∫ j
m

j−1
m

u2

2
du

)

=
m∑
j=1

$j

wj

∫ j
m

j−1
m

u2du

=
1

3m3

m∑
j=1

$j

wj

(
j3 − (j − 1)3)

Which allows us to calculate the pointwise bias reduction factor for the SAMC-ABC

likelihood which is:

b̂
(h)
ε (y|θ)
b̂

(g)
ε (y|θ)

=
σ2
h

σ2
g

=

1
3m3

∑m
j=1

$j
wj

(
j3 − (j − 1)3)

1
3

=
1

m3

m∑
j=1

$j

wj

(
j3 − (j − 1)3)

Appendix A 161

A.2 Results of Chapter 3

Proposition 3.4.2. The CCABC marginal likelihood π
(h)
ε (y) can be calculated as

π(h)
ε (y) =

(∫
$ (u)

Cξ̂ (u)
gε (u) du

)−1

Proof. Consider the CCABC algorithm. The CCABC algorithm produces an estim-

ate of the marginal distribution shown in (A.5).

ξ (u) =

∫
Θ

∫
{x:||y−x||=u}

π (θ) f (x|θ) gε (||y − x||) dxdθ (A.5)

Then the ABC marginal likelihood can be written as:

π(g)
ε (y) =

∫
U

ξ (u) du

=

∫
U

$̃ (u)

ξ̂ (u)
du

where U is the bounded region [−ε, ε] upon which we have de�ned the lattice for

the CCABC and $̃ (u) is the desired sampling distribution on U .

Proposition 3.4.2. The CCABC marginal likelihood π
(h)
ε (y) can be calculated as

π(h)
ε (y) =

(∫
$ (u)

Cξ̂ (u)
gε (u) du

)−1

Proof. Consider the CCABC posterior:

π(h)
ε (θ|y) =

1

π
(h)
ε (y)

π (θ) f (x|θ) $ (||y − x||)
ξ (||y − x||)Z

hε (||y − x||)

where Z =
∫ $(u)

ξ(u)
gε (u) du is a normalizing constant which ensures that kε (u) =

162 Appendix A

$(u)
ξ(u)Z

gε (u) is a valid ABC kernel and

π(h)
ε (y) =

∫
Θ

∫
X
π (θ) f (x|θ) $ (||y − x||)

ξ (||y − x||)Z
gε (||y − x||) dxdθ

is the CCABC marginal likelihood. Then the marginal likelihood for the CCABC

posterior can be written as:

π(h)
ε (y) =

∫
U

∫
Θ

∫
{x:||y−x||=u}

π (θ) f (x|θ) $ (u)

ξ (u)Z
hε (||y − x||) dxdθdu

=

∫
U

$ (u)

ξ (u)Z

∫
Θ

∫
{x:||y−x||=u}

π (θ) f (x|θ)hε (||y − x||) dxdθdu

=

∫
U

$ (u)

ξ (u)Z
ξ (u) du

=
1

Z

∫
U

$ (u) du

=Z−1

=

(∫
$ (u)

ξ (u)
gε (u) du

)−1

Proposition 3.4.3. For CCABC, we have that

σ2
h =

1

3m3

m∑
j=1

(
jξ̂

(
(j − 1) ε

m

)
− (j − 1) ξ̂

(
jε

m

))(
j3 − (j − 1)3)

and so it follows that the bias reduction factor is:

b̂
(h)
ε (y|θ)
b̂

(g)
ε (y|θ)

=
1

m3

m∑
j=1

(
jξ̂

(
(j − 1) ε

m

)
− (j − 1) ξ̂

(
jε

m

))(
j3 − (j − 1)3)

Proof. Consider the pointwise bias reduction factor for the CCABC likelihood with

the commonly used uniform ABC kernel gε (u) = 1
2ε
I (|u| < ε). First we consider

the CCABC kernel:

Appendix A 163

hε (u) =ξ̂ (u)
1

2ε
I (|u| < ε)

=
m∑
j=1

(
ξ̂ (εj−1)− ξ̂ (εj)

εj−1 − εj
(u− εj) + ξ̂ (εj)

)
1

2ε
I (εj−1 ≤ |u| < εj)

which with the εj evenly spaced becomes:

hε (u) =
1

2ε

m∑
j=1

 ξ̂
(

(j−1)ε
m

)
− ξ̂

(
jε
m

)
(j−1)ε

m − jε
m

(
u− jε

m

)
+ ξ̂

(
jε

m

) I

(
(j − 1) ε

m
≤ |u| < jε

m

)

=
1

2ε

m∑
j=1

(
m

(
ξ̂

(
jε

m

)
− ξ̂

(
(j − 1) ε

m

))(
u

ε
− j

m

)
+ ξ̂

(
jε

m

))
I

(
(j − 1)

m
≤
∣∣∣u
ε

∣∣∣ < j

m

)

and hence:

h (u) =
1

2

m∑
j=1

(
m

(
ξ̂

(
jε

m

)
− ξ̂

(
(j − 1) ε

m

))(
u− j

m

)
+ ξ̂

(
jε

m

))
I

(
(j − 1)

m
≤ |u| < j

m

)

So we then have that:

σ2
h =Var

h
(U)

=

∫ 1

−1
u2h (u) du

=
1

2

m∑
j=1

(
m

(
ξ̂

(
jε

m

)
− ξ̂

(
(j − 1) ε

m

))(∫ − j−1
m

− j
m

(
u3 −

j

m
u2

)
du+

∫ j
m

j−1
m

(
u3 −

j

m
u2

)
du

)
+ 2ξ̂

(
jε

m

)∫ j
m

j−1
m

u2du

)

=

m∑
j=1

((
ξ̂

(
jε

m

)
− ξ̂

(
(j − 1) ε

m

))(
j (j − 1)3 − j4

3m3

)
+ ξ̂

(
jε

m

)(
j3 − (j − 1)3

3m3

))

=
1

3m3

m∑
j=1

(
−jξ̂

(
jε

m

)
+ jξ̂

(
(j − 1) ε

m

)
+ ξ̂

(
jε

m

))(
j3 − (j − 1)3

)

=
1

3m3

m∑
j=1

(
jξ̂

(
(j − 1) ε

m

)
− (j − 1) ξ̂

(
jε

m

))(
j3 − (j − 1)3

)

Which allows us to calculate the pointwise bias reduction factor for the CCABC

likelihood which is:

164 Appendix A

b̂
(h)
ε (y|θ)
b̂

(g)
ε (y|θ)

=
σ2
h

σ2
g

=

1
3m3

∑m
j=1

(
jξ̂
(

(j−1)ε
m

)
− (j − 1) ξ̂

(
jε
m

)) (
j3 − (j − 1)3)

1
3

=
1

m3

m∑
j=1

(
jξ̂

(
(j − 1) ε

m

)
− (j − 1) ξ̂

(
jε

m

))(
j3 − (j − 1)3)

Appendix B

Proofs of SARJ results

For geometric intermediate densities, ρt, as de�ned in Equation B.1 we have the

following results:

ρt

(
θ
(t)
k′ , u

(t)
k′→k; k → k′, x(t)

)
=
(
exp

(
f̂k

(
x(t)|θ(t)k

))
π
(
θ
(t)
k |k

)
π (k)ϕk→k′

(
u
(t)
k→k′

)
J−1k′→k

(
θ
(t)
k′ , u

(t)
k′→k

))1− t
T

(B.1)

×
(
exp

(
f̂k′
(
x(t)|θ(t)k′

))
π
(
θ
(t)
k′ |k

′
)
π (k′)ϕk′→k

(
u
(t)
k′→k

)) t
T

Proposition 7.3.1. Given a path
(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
, a minibatch

size m < N , and that the cumulative distribution function of the likelihood is

Lipschitz continuous then the log stochastic annealing importance weight, log r
(0:T−1),m
k→k′ ,

converges in distribution to a Normal distribution N (µT , σ
2
T) as T →∞

Proof. Let

νt = log ρt

(
θ

(t−1)
k′ , u

(t−1)
k′→k; k → k′, x(t)

)
− log ρt

(
θ

(t)
k′ , u

(t)
k′→k; k → k′, x(t)

)
(B.2)

for t = 0, ..., T − 1 then for ηt = Tνt we can write

166 Appendix B

ST = T log r
(0:T−1),m
k→k′ =

T−1∑
t=0

ηt

and we have that ηt does not depend on T. Moreover for the given path we have

that the ηt are independent by the independence of the minibatches and so we can

write the variance of ST as:

s2
T = Var (ST) =

T−1∑
t=0

Var (ηt)

Now by the Lipschitz continuity of the CDF of the likelihood we know that each ηt is

bounded and since the expectations are �nite we have that ηt−E [ηt] is also bounded

by some constant Kt. Thus the ηt − E [ηt] are uniformly bounded by K = maxKt.

Hence we can write the following :

1

s3
T

T−1∑
t=0

E
[
|ηt − E [ηt]|3

]
≤ K

s3
T

T−1∑
t=0

E
[
(ηt − E [ηt])

2] =
Ks2

T

s3
T

=
K

sT
→ 0

as T → ∞ since sT → ∞. Clearly then the Lyapounov condition is satis�ed for

δ = 1 and therefore ST obeys a central limit theorem and converges in distribution to

a normal distribution. Consequently log r
(0:T−1),m
k→k′ = ST

T
also converges to a normal

distribution with mean and variance equal to µT =
∑T

t=1 E [ηt] and σ2
T =

s2T
T 2 =

1
T 2

∑T−1
t=0 Var (ηt) respectively.

Proposition 7.3.2. Given a path
(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
and a minibatch

size, m, then E
[
log r

(0:T−1),m
k→k′

]
= log r

(0:T−1),N
k→k′ where r

(0:T−1),m
k→k′ is the ratio achieved

with minibatch size m.

Proof. Consider ρ
(m)
t = ρt

(
θ

(t)
k′ , u

(t)
k′→k; k → k′, x(t,m)

)
the intermediate density con-

structed with a subsample of size m. Then we have that

Appendix B 167

logρ
(m)
t =

(
1−

t

T

)(
f̂

(m)
k

(
x(t,m)|θ(t)

k

)
+ log

(
π
(
θ
(t)
k |k

)
π (k)ϕk→k′

(
u

(t)
k→k′

)
J−1
k′→k

(
θ
(t)
k′ , u

(t)
k′→k

)))
+

t

T

(
f̂

(m)
k′

(
x(t,m)|θ(t)

k′

)
+ log

(
π
(
θ
(t)
k′ |k

′
)
π
(
k′
)
ϕk′→k

(
u

(t)
k′→k

))) (B.3)

Since neither of these terms depend on the subsample or on the subsample size we

denote the following expression as C for simplicity:

C =

(
1− t

T

)
log
(
π
(
θ

(t)
k |k

)
π (k)ϕk→k′

(
u

(t)
k→k′

)
J−1
k′→k

(
θ

(t)
k′ , u

(t)
k′→k

))
+
t

T
log
(
π
(
θ

(t)
k′ |k

′
)
π (k′)ϕk′→k

(
u

(t)
k′→k

))

Now the expectation of logρ
(m)
t can be written as:

E [logρmt] =E
[(

1− t

T

)
f̂

(m)
k

(
x(t,m)|θ(t)

k

)
+
t

T
f̂

(m)
k′

(
x(t,m)|θ(t)

k′

)
+ C

]
=

(
1− t

T

)
E
[
f̂

(m)
k

(
x(t,m)|θ(t)

k

)]
+
t

T
E
[
f̂

(m)
k′

(
x(t,m)|θ(t)

k′

)]
+ C

Thus since f̂
(m)
k is an unbiased estimator of f̂

(N)
k we have:

E
[
logρ

(m)
t

]
=

(
1− t

T

)
f̂

(N)
k

(
x(t,m)|θ(t)

k

)
+
t

T
f̂

(N)
k′

(
x(t,m)|θ(t)

k′

)
+ C

= log ρ
(N)
t

Now by linearity we can see that the expectation of the log ratio is unbiased:

E
[
log r

(0:T−1),m
k→k′

]
= log r

(0:T−1),N
k→k′

168 Appendix B

Proposition 7.3.4. The stochastic annealed importance weight r
(0:T−1),m
k→k′ is biased.

Under the conditions of Proposition 7.3.1 this bias asymptotically tends to a factor

of e
σ2
T
2 as T grows large.

Proof. Given Propositions 7.3.1 and 7.3.2 and as T →∞ we have that:

log r
(0:T−1),m
k→k′ ∼ N

(
µ

(m)
T , σ2

T,m

)
where log r

(0:T−1),m
k→k′ is an unbiased estimator of log r

(0:T−1),N
k→k′ . We can further write

the distribution of r
(0:T−1),m
k→k′ as:

r
(0:T−1),m
k→k′ ∼ LogNormal

(
µT , σ

2
T

)
which has mean exp

(
µT +

σ2
T

2

)
. Note now that r

(0:T−1),N
k→k′ = exp (µT) and so r

(0:T−1),m
k→k′

is biased by a factor of exp
(
σ2
T

2

)
.

Proposition 7.3.6. Assume that the standard Annealed Importance Sampling re-

versible jump algorithm (Algorithm 6.7) satis�es the Wasserstein ergodicity assump-

tion (Assumption 1). Then writing Pα̃ for the transition kernel of the SARJ al-

gorithm and Q (·, ·) for the transition kernel of the proposal density we have the

following bound for the Wasserstein distance between the jth iterations

W
(
P jα (θ, ·) , P jα̃ (θ, ·)

)
≤
C
(
1− ρj

)
(1− ρ)

sup
θ∈Θ

(∫

Θ
d
(
θ, θ′

)2
Q
(
θ, dθ′

))∫
Θ

(
exp

(
σ2
T

2

)
− 1

)2

Q
(
θ, dθ′

) 1
2

Proof. From Corollary 4.1 of Rudolf and Schweizer (2018) that the Wasserstein

distance between the jth iterations is bounded:

W
(
P j
α (θ, ·) , P j

α̃ (θ, ·)
)
≤ γC (1− ρj)

(1− ρ)

where C and ρ are the constants satisfying the Wasserstein ergodicity assumption

(Assumption 1), and

Appendix B 169

γ = sup
θ∈Θ

∫
Θ

d (θ, θ′) E (θ, θ′)Q (θ, dθ′)

where E (θ, θ′) = |α (θ, θ′)− α̃ (θ, θ′)| is the bias in the acceptance ratio. From

Proposition 7.3.4 we have that α̃ (θ, θ′) = α (θ, θ′) × exp
(
σ2
T

2

)
and so E (θ, θ′) =

α (θ, θ′)
∣∣∣1− exp

(
σ2
T

2

)∣∣∣ ≤ exp
(
σ2
T

2

)
− 1. Finally we follow Rudolf and Schweizer

(2018) and apply Cauchy-Schwartz to the integral
∫

Θ
d (θ, θ′) E (θ, θ′)Q (θ, dθ′) to

note that

γ ≤sup
θ∈Θ

(((∫
Θ

d (θ, θ′)
2
Q (θ, dθ′)

)
·
(∫

Θ

E (θ, θ′)
2
Q (θ, dθ′)

)) 1
2

)

≤sup
θ∈Θ

((∫
Θ

d (θ, θ′)
2
Q (θ, dθ′)

)
·

(∫
Θ

(
exp

(
σ2
T

2

)
− 1

)2

Q (θ, dθ′)

)) 1
2

and the bound on W

(
P j
α (θ, ·) , P j

α̃ (θ, ·)
)
follows.

Proposition 7.4.1. Assume that the AISRJ sampler satis�es the Wasserstein er-

godicity assumption (Assumption 1). Variance reduction in f̂
(t)
k and f̂

(t)
k′ for all

t = 0, 1, ..., T − 1 implies variance reduction in r
(0:T−1),m
k→k′

Proof. First let us again consider logρ
(m)
t as de�ned in Equation B.3. Writing f̂

(t)
k =

f̂
(m)
k

(
x(t,m)|θ(t)

k

)
for brevity we have that the variance of logρ̂

(m)
t can be calculated

as:

Var
(
logρ̂

(m)
t

)
=

(
1− t

T

)2

Var
(
f̂
(t)
k

)
+

(
t

T

)2

Var
(
f̂
(t)
k′

)
+

(
1− t

T

)(
t

T

)
Cov

(
f̂
(t)
k , f̂

(t)
k′

)

now recall that f̂
(m,t)
k = f

(m,t)
k + f̃ (m,t) −E

[
f̃ (m,t)

]
where f

(m,t)
k is the log likelihood

estimate without variance reduction and f̃ (m,t) is the control variate used for variance

reduction. Then from the variance reduction in f
(t)
k for both k and k′ we have:

170 Appendix B

Var
(
f̂

(t)
k

)
= Var

(
f

(t)
k

)
+ Var

(
f̃ (t)
)
− 2Cov

(
f

(t)
k , f̃ (t)

)
≤ Var

(
f

(t)
k

)

Now we look at νt and ν̂t where νt is de�ned as in Equation B.2 and ν̂t is the equival-

ent estimator using the variance reduced log likelihood. Then writing log ρ̂t
(
θ(t−1)

)
=

log ρ̂t

(
θ

(t−1)
k′ , u

(t−1)
k′→k; k → k′, x(t)

)
for brevity we have:

Var (ν̂t) =Var
(
log ρ̂t

(
θ(t−1)

)
− log ρ̂t

(
θ(t)
))

=Var
(
log ρ̂t

(
θ(t−1)

))
+Var

(
log ρ̂t

(
θ(t)
))
− Cov

(
log ρ̂t

(
θ(t−1)

)
, log ρ̂t

(
θ(t)
))

=Var
(
log ρt

(
θ(t−1)

))
+Var

(
log ρt

(
θ(t)
))
− Cov

(
log ρt

(
θ(t−1)

)
, log ρt

(
θ(t)
))

− t2 − 2Tt+ T 2

T 2
Cov

(
f
(t)
k

(
θ(t−1)

)
, f̃ (t)

)
− t2 − 2Tt+ T 2

T 2
Cov

(
f
(t)
k

(
θ(t)
)
, f̃ (t)

)
− t2

T 2
Cov

(
f
(t)
k′

(
θ(t−1)

)
, f̃ (t)

)
− t2

T 2
Cov

(
f
(t)
k′

(
θ(t)
)
, f̃ (t)

)
+

2t2 − 2Tt+ T 2

T 2
Var

(
f̃ (t)
)

≤Var (νt)− 2

(
2t2 − 2Tt+ T 2

T 2

)
Cmin +

(
2t2 − 2Tt+ T 2

T 2

)
Var

(
f̃ (t)
)

≤Var (νt)

where

Cmin = min
[
Cov

(
f̂

(t)
k

(
θ(t−1)

)
, f̃ (t)

)
,Cov

(
f̂

(t)
k

(
θ(t)
)
, f̃ (t)

)
,Cov

(
f̂

(t)
k′

(
θ(t−1)

)
, f̃ (t)

)
,Cov

(
f̂

(t)
k′

(
θ(t)
)
, f̃ (t)

)]

Then the �rst inequality follows from the positivity of 2t2−2Tt+T 2

T 2 and the last in-

equality follows from the variance reduction in both f
(t)
k and f

(t)
k′ . Now since the

ν̂t are independent given the path
(
θ

(1)
k′ , u

(1)
k′→k

)
, ...,

(
θ

(T−1)
k′ , u

(T−1)
k′→k

)
and logρ

(m)
t is

simply the sum of all the νt it clearly follows that the variance of logρ
(m)
t will also be

reduced. Finally as T →∞ we have that log r
(0:T−1),m
k→k′

D→ N (µT , σ
2
T) by Proposition

7.3.1. Note that the variance reduction leaves µT unchanged and that:

Var
(
r

(0:T−1),m
k→k′

)
=
[
exp

(
σ2
T

)
− 1
]

exp
(
2µT + σ2

T

)

Appendix B 171

Thus since the variance of the stochastic annealed importance weight is monotonic-

ally increasing in the variance of log r
(0:T−1),m
k→k′ it follows that the variance reduction

of log r
(0:T−1),m
k→k′ causes variance reduction in r

(0:T−1),m
k→k′ .

Proposition 7.4.2. Assume that the AISRJ sampler satis�es the Wasserstein er-

godicity assumption (Assumption 1). Then variance reduction in f̂k reduces σ
2
T and

thus since the bias in r
(0:T−1),m
k→k′ is asymptotically equal to e

σ2
T
2 there is bias reduction

in r
(0:T−1),m
k→k′

Proof. Consider the bias factor of Proposition 7.3.4, exp
(
σ2
T

2

)
. This factor increases

monotonically with the variance of the log ratio. Hence since we showed in Propos-

ition 7.4.1 that the Variance Reduction we apply to f̂k results in reduced variance

of the log ratio it follows that this bias factor is also reduced.

Proposition 7.4.4. Assume that the AISRJ sampler satis�es the Wasserstein er-

godicity assumption (Assumption 1). Given the uncertainty penalty of Algorithm

7.3 we can upper bound the expected remaining bias factor ζT,n = exp
(
σ2
T

2
− σ̂2

T,n

2

)
≤

1 +
σ4
T

4(n−1)
max

{
1,

σ2
T

2
− σ̂2

T,n

2

}
.

Proof. First let's write XT,n = − σ̂2
T,n

2
and consider the expectation:

E [ζT,n] =
E [exp (X)]

exp (E [X])

Then Taylor expansion of exp (X) about E [X] with mean value remainder gives us:

E [exp (X)] =E

[
eE[X] + eE[X] (X − E [X]) + ez

(X − E [X])2

2

]

=eE[X] + ez
Var (X)

2

for some z between
σ2
T

2
and

σ̂2
T,n

2
. Now recall that under the conditions of Proposition

7.3.1 σ̂2
T is the sample variance of n iid normal random variables. Hence:

172 Appendix B

E [exp (X)] =eE[X] + ez
Var

(
σ̂2
T,n

)
8

=eE[X] + ez
σ4
T

4 (n− 1)

≤eE[X] +
σ4
T

4 (n− 1)
exp (max {E [X] , X})

And �nally we have the upper bound on the expected remaining bias factor ζT,n :

E [ζT,n] =
E [exp (X)]

exp (E [X])

≤
eE[X] +

σ4
T

4(n−1)
exp (max {E [X] , X})
eE[X]

=1 +
σ4
T

4 (n− 1)
max {1, X − E [X]}

=1 +
σ4
T

4 (n− 1)
max

{
1,
σ2
T

2
−
σ̂2
T,n

2

}

Proposition 7.4.5. Assume that the AISRJ sampler satis�es the Wasserstein er-

godicity assumption (Assumption 1). Given the uncertainty penalty of Algorithm

7.3 we have an upper bound for the bias factor ζT,n = exp
(
σ2
T

2
− σ̂2

T,n

2

)
. Consider

the sequence YT,n = ζT,n − 1 which describes the di�erence between the bias factor

and unbiasedness as n or T grows. Then YT,n = oP (1) in T and when a further

condition on the variance σ2
T of the annealed importance sampling weight estimator

r
(0:T−1),m
k→k′ is satis�ed then YT,n = oP (1) in n as well.

Proof. Under the conditions of Proposition 7.3.1 we have that XT,n =
σ̂2
T,n

2
∼

Γ
(
n−1

2
, n−1
σ2
T

)
. From this it follows that the cumulative distribution function of

YT,n is given by:

Appendix B 173

FY (y) = 1− FX
(
σ2
T

2
− log (y + 1)

)
where FX is the cumulative distribution function of XT,n. Then we can write:

P (|YT,n| ≥ ε) =1− (FY (ε)− FY (−ε))

=1−
(

1− FX
(
σ2
T

2
− log (1 + ε)

)
− 1 + FX

(
σ2
T

2
− log (1− ε)

))
=1− 1

Γ
(
n−1

2

) (∫ n−1
2
−n−1

σ2
T

log(1−ε)

0

t
n−1

2
−1e−tdt

−
∫ max

{
0,n−1

2
−n−1

σ2
T

log(1+ε)

}
0

t
n−1

2
−1e−tdt

=1−

∫ n−1
2
−n−1

σ2
T

log(1−ε)

max

{
0,n−1

2
−n−1

σ2
T

log(1+ε)

} tn−1
2
−1e−tdt

∫∞
0
t
n−1

2
−1e−tdt

It is clear that as σ2
T → 0 the limits on the integral in the numerator go to 0 and

∞ respectively and so lim
σ2
T→0

P (|YT,n| ≥ ε) = 0. Hence since σ2
T → 0 as T → ∞ by

Corollary 7.3.3 we have that lim
T→∞

P (|YT,n| ≥ ε) = 0 and thus YT,n = oP (1) in T .

Now consider the behaviour of P (|YT,n| ≥ ε) as n→∞. If log(1+ε)

σ2
T

< 1
2
then the

lower limit of the integral in the numerator grows with n and lim
n→∞

P (|YT,n| ≥ ε) 6= 0.

However for large enough T we have that σ2
T ≤ 2 log (1 + ε) and thus the lower limit

is 0 since for σ2
T ≤ 2 log (1 + ε) it follows that n−1

2
− n−1

σ2
T

log (1 + ε) < 0. Then it is

clear that lim
n→∞

P (|YT,n| ≥ ε) = 0 and hence YT,n = oP (1) in n for such T .

Bibliography

Allingham, David, Robert AR King and Kerrie L Mengersen (2009).

�Bayesian estimation of quantile distributions�. In: Statistics and

Computing 19.2, pp. 189�201.

Andrieu, Christophe and Johannes Thoms (2008). �A tutorial on adaptive

MCMC�. In: Statistics and computing 18.4, pp. 343�373.

Beaumont, Mark A (2010). �Approximate Bayesian computation in evolution

and ecology�. In: Annual review of ecology, evolution, and systematics 41,

pp. 379�406.

Beaumont, Mark A, Wenyang Zhang and David J Balding (2002).

�Approximate Bayesian computation in population genetics�. In: Genetics

162.4, pp. 2025�2035.

Blum, Michael GB (2010). �Approximate Bayesian computation: A

nonparametric perspective�. In: Journal of the American Statistical

Association 105.491, pp. 1178�1187.

Booij, NRRC, Roeland C Ris and Leo H Holthuijsen (1999). �A

third-generation wave model for coastal regions: 1. Model description and

validation�. In: Journal of geophysical research: Oceans 104.C4,

pp. 7649�7666.

Breiman, Leo and Ross Ihaka (1984). Nonlinear discriminant analysis via

scaling and ACE. Department of Statistics, University of California.

176 Bibliography

Butler, A et al. (2006). A Latent Gaussian Model for Compositional Data

with Structural Zeroes (Biomathematics and Statistics Scotland,

Edinburgh). Tech. rep. technical report.

Cao, Yang, Daniel T Gillespie and Linda R Petzold (2006). �E�cient step

size selection for the tau-leaping simulation method�. In: The Journal of

chemical physics 124.4, p. 044109.

CDC (2014). CDC 2014 Ebola Outbreak in West Africa: Reported Cases

Graphs Ebola Hemorrhagic Fever.

https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/cumulative-

cases-graphs.html.

Ceperley, DM and Mark Dewing (1999). �The penalty method for random

walks with uncertain energies�. In: The Journal of chemical physics

110.20, pp. 9812�9820.

Chatterji, Niladri et al. (2018). �On the theory of variance reduction for

stochastic gradient Monte Carlo�. In: International Conference on

Machine Learning. PMLR, pp. 764�773.

Chen, Changyou, Nan Ding and Lawrence Carin (2015). �On the convergence

of stochastic gradient MCMC algorithms with high-order integrators�. In.

Chen, Hao et al. (2022). �Gaussian process parameter estimation using

mini-batch stochastic gradient descent: convergence guarantees and

empirical bene�ts�. In: The Journal of Machine Learning Research 23.1,

pp. 10298�10356.

Chen, Tianqi, Emily Fox and Carlos Guestrin (2014). �Stochastic gradient

hamiltonian monte carlo�. In: International conference on machine

learning. PMLR, pp. 1683�1691.

Chipman, Hugh A, Edward I George and Robert E McCulloch (2010).

�BART: Bayesian additive regression trees�. In: The Annals of Applied

Statistics 4.1, pp. 266�298.

Bibliography 177

Cressie, Noel and Gardar Johannesson (2008). �Fixed rank kriging for very

large spatial data sets�. In: Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 70.1, pp. 209�226.

Denison, David GT, Bani K Mallick and Adrian FM Smith (1998). �A

bayesian cart algorithm�. In: Biometrika 85.2, pp. 363�377.

Dietrich, J Casey et al. (2012). �Performance of the unstructured-mesh,

SWAN+ ADCIRC model in computing hurricane waves and surge�. In:

Journal of Scienti�c Computing 52, pp. 468�497.

Dietrich, JC et al. (2011). �Modeling hurricane waves and storm surge using

integrally-coupled, scalable computations�. In: Coastal Engineering 58.1,

pp. 45�65.

Dijkstra, Edsger W (1959). �A note on two problems in connexion with

graphs�. In: Numerische mathematik 1.1, pp. 269�271.

Drovandi, Christopher C and Anthony N Pettitt (2011). �Likelihood-free

Bayesian estimation of multivariate quantile distributions�. In:

Computational Statistics & Data Analysis 55.9, pp. 2541�2556.

Du, Juan, Hao Zhang and VS2549562 Mandrekar (2009). �Fixed-domain

asymptotic properties of tapered maximum likelihood estimators�. In: the

Annals of Statistics 37.6A, pp. 3330�3361.

Duane, Simon et al. (1987). �Hybrid monte carlo�. In: Physics letters B

195.2, pp. 216�222.

Dubey, Avinava et al. (2016). �Variance reduction in stochastic gradient

Langevin dynamics�. In: Advances in neural information processing

systems 29, p. 1154.

Ebola Response Team, WHO (2014). �Ebola virus disease in West Africa: the

�rst 9 months of the epidemic and forward projections�. In: New England

Journal of Medicine 371.16, pp. 1481�1495.

178 Bibliography

Frazier, David T, Christian P Robert and Judith Rousseau (2020). �Model

misspeci�cation in approximate Bayesian computation: consequences and

diagnostics�. In: Journal of the Royal Statistical Society: Series B

(Statistical Methodology).

Furrer, Reinhard, Marc G Genton and Douglas Nychka (2006). �Covariance

tapering for interpolation of large spatial datasets�. In: Journal of

Computational and Graphical Statistics 15.3, pp. 502�523.

Gelman, Andrew and Xiao-Li Meng (1998). �Simulating normalizing

constants: From importance sampling to bridge sampling to path

sampling�. In: Statistical science, pp. 163�185.

Gillespie, Daniel T (1977). �Exact stochastic simulation of coupled chemical

reactions�. In: The journal of physical chemistry 81.25, pp. 2340�2361.

� (2001). �Approximate accelerated stochastic simulation of chemically

reacting systems�. In: The Journal of Chemical Physics 115.4,

pp. 1716�1733.

Gramacy, Robert B and Herbert K H Lee (2008). �Bayesian treed Gaussian

process models with an application to computer modeling�. In: Journal of

the American Statistical Association 103.483, pp. 1119�1130.

Green, Peter J (1995). �Reversible jump Markov chain Monte Carlo

computation and Bayesian model determination�. In: Biometrika 82.4,

pp. 711�732.

Gu, Mengyang, Xiaojing Wang and James O Berger (2018). �Robust

Gaussian stochastic process emulation�. In: The Annals of Statistics

46.6A, pp. 3038�3066.

Jarzynski, Christopher (1997a). �Equilibrium free-energy di�erences from

nonequilibrium measurements: A master-equation approach�. In: Physical

Review E 56.5, p. 5018.

Bibliography 179

� (1997b). �Nonequilibrium equality for free energy di�erences�. In:

Physical Review Letters 78.14, p. 2690.

Karagiannis, Georgios and Christophe Andrieu (2013). �Annealed

importance sampling reversible jump MCMC algorithms�. In: Journal of

Computational and Graphical Statistics 22.3, pp. 623�648.

Kaufman, Cari G, Mark J Schervish and Douglas W Nychka (2008).

�Covariance tapering for likelihood-based estimation in large spatial data

sets�. In: Journal of the American Statistical Association 103.484,

pp. 1545�1555.

Knorr-Held, Leonhard and Günter Raÿer (2000). �Bayesian detection of

clusters and discontinuities in disease maps�. In: Biometrics 56.1,

pp. 13�21.

Konomi, Bledar et al. (2014). �Bayesian treed multivariate gaussian process

with adaptive design: Application to a carbon capture unit�. In:

Technometrics 56.2, pp. 145�158.

Konomi, Bledar A and Georgios Karagiannis (2021). �Bayesian Analysis of

Multi�delity Computer Models With Local Features and Nonnested

Experimental Designs: Application to the WRF Model�. In:

Technometrics 63.4, pp. 510�522.

Kruskal, Joseph B (1956). �On the shortest spanning subtree of a graph and

the traveling salesman problem�. In: Proceedings of the American

Mathematical society 7.1, pp. 48�50.

Lee, Der-Tsai and Bruce J Schachter (1980). �Two algorithms for

constructing a Delaunay triangulation�. In: International Journal of

Computer & Information Sciences 9.3, pp. 219�242.

Li, Zhize et al. (2019). �Stochastic gradient hamiltonian monte carlo with

variance reduction for bayesian inference�. In: Machine Learning 108.8,

pp. 1701�1727.

180 Bibliography

Liang, Faming (2007). �Continuous contour Monte Carlo for marginal

density estimation with an application to a spatial statistical model�. In:

Journal of Computational and Graphical Statistics 16.3, pp. 608�632.

� (2009). �On the use of stochastic approximation Monte Carlo for Monte

Carlo integration�. In: Statistics & Probability Letters 79.5, pp. 581�587.

� (2014). �An overview of stochastic approximation Monte Carlo�. In: Wiley

Interdisciplinary Reviews: Computational Statistics 6.4, pp. 240�254.

Liang, Faming, Chuanhai Liu and Raymond Carroll (2011). Advanced

Markov chain Monte Carlo methods: learning from past samples. Vol. 714.

John Wiley & Sons.

Liang, Faming, Chuanhai Liu and Raymond J Carroll (2007). �Stochastic

approximation in Monte Carlo computation�. In: Journal of the American

Statistical Association 102.477, pp. 305�320.

Liang, Faming and Mingqi Wu (2013). �Population SAMC vs SAMC:

Convergence and applications to gene selection problems�. In: Journal of

Biometrics & Biostatistics.

Luettich, Richard Albert and Joannes J Westerink (2004). Formulation and

numerical implementation of the 2D/3D ADCIRC �nite element model

version 44. XX. Vol. 20. R. Luettich Chapel Hill, NC, USA.

Luo, Zhao Tang, Huiyan Sang and Bani K Mallick (2021a). �A Bayesian

Contiguous Partitioning Method for Learning Clustered Latent

Variables.� In: J. Mach. Learn. Res. 22, pp. 37�1.

� (2021b). �A Nonstationary Soft Partitioned Gaussian Process Model via

Random Spanning Trees�.

Ma, Yi-An, Tianqi Chen and Emily B Fox (2015). �A complete recipe for

stochastic gradient MCMC�. In: arXiv preprint arXiv:1506.04696.

Bibliography 181

Ma, Pulong et al. (2019). �Multi�delity computer model emulation with

high-dimensional output: An application to storm surge�. In: arXiv

preprint arXiv:1909.01836.

Marin, Jean-Michel et al. (2014). �Relevant statistics for Bayesian model

choice�. In: Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 76.5, pp. 833�859.

Marjoram, Paul et al. (2003). �Markov chain Monte Carlo without

likelihoods�. In: Proceedings of the National Academy of Sciences 100.26,

pp. 15324�15328.

McKay, Michael D, Richard J Beckman and William J Conover (2000). �A

comparison of three methods for selecting values of input variables in the

analysis of output from a computer code�. In: Technometrics 42.1,

pp. 55�61.

Nash, J Eamonn and Jonh V Sutcli�e (1970). �River �ow forecasting through

conceptual models part I-A discussion of principles�. In: Journal of

hydrology 10.3, pp. 282�290.

Neal, Radford M (2005). �Taking bigger Metropolis steps by dragging fast

variables�. In: arXiv preprint math/0502099.

Neal, Radford M et al. (2011). �MCMC using Hamiltonian dynamics�. In:

Handbook of markov chain monte carlo 2.11, p. 2.

Nemeth, Christopher and Paul Fearnhead (2020). �Stochastic gradient

markov chain monte carlo�. In: Journal of the American Statistical

Association, pp. 1�18.

Nunes, Matthew A and David J Balding (2010). �On optimal selection of

summary statistics for approximate Bayesian computation�. In: Statistical

applications in genetics and molecular biology 9.1.

182 Bibliography

Paciorek, Christopher and Mark Schervish (2003). �Nonstationary covariance

functions for Gaussian process regression�. In: Advances in neural

information processing systems 16.

Ponce, Joan et al. (2019). �Assessing the e�ects of modeling the spectrum of

clinical symptoms on the dynamics and control of Ebola�. In: Journal of

theoretical biology 467, pp. 111�122.

Prim, Robert Clay (1957). �Shortest connection networks and some

generalizations�. In: The Bell System Technical Journal 36.6,

pp. 1389�1401.

Robert, Christian P, George Casella and George Casella (1999). Monte Carlo

statistical methods. Vol. 2. Springer.

Robert, Christian P, Jean-Marie Cornuet et al. (2011). �Lack of con�dence in

approximate Bayesian computation model choice�. In: Proceedings of the

National Academy of Sciences 108.37, pp. 15112�15117.

Roberts, Gareth O and Osnat Stramer (2002). �Langevin di�usions and

Metropolis-Hastings algorithms�. In: Methodology and computing in

applied probability 4.4, pp. 337�357.

Rudolf, Daniel and Nikolaus Schweizer (2018). �Perturbation theory for

Markov chains via Wasserstein distance�. In: Bernoulli 24.4A,

pp. 2610�2639.

Sherlock, Chris et al. (2015). �On the e�ciency of pseudo-marginal random

walk Metropolis algorithms�. In: The Annals of Statistics 43.1,

pp. 238�275.

Silk, Daniel, Sarah Filippi and Michael PH Stumpf (2013). �Optimizing

threshold-schedules for sequential approximate Bayesian computation:

applications to molecular systems�. In: Statistical applications in genetics

and molecular biology 12.5, pp. 603�618.

Bibliography 183

Simola, Umberto et al. (2021). �Adaptive approximate Bayesian computation

tolerance selection�. In: Bayesian analysis 16.2, pp. 397�423.

Sisson, Scott A, Yanan Fan and Mark Beaumont (2018). Handbook of

approximate Bayesian computation. Chapman and Hall/CRC.

Sisson, Scott A, Yanan Fan and Mark M Tanaka (2007). �Sequential monte

carlo without likelihoods�. In: Proceedings of the National Academy of

Sciences 104.6, pp. 1760�1765.

Tanaka, Mark M et al. (2006). �Using approximate Bayesian computation to

estimate tuberculosis transmission parameters from genotype data�. In:

Genetics 173.3, pp. 1511�1520.

Vihola, Matti and Jordan Franks (2020). �On the use of approximate

Bayesian computation Markov chain Monte Carlo with in�ated tolerance

and post-correction�. In: Biometrika 107.2, pp. 381�395.

Welling, Max and Yee W Teh (2011). �Bayesian learning via stochastic

gradient Langevin dynamics�. In: Proceedings of the 28th international

conference on machine learning (ICML-11). Citeseer, pp. 681�688.

WHO (2014). WHO, Ebola Situation Reports.

http://apps.who.int/ebola/ebola-situation-reports.

Wikle, Christopher K and Noel Cressie (1999). �A dimension-reduced

approach to space-time Kalman �ltering�. In: Biometrika 86.4,

pp. 815�829.

Wilkinson, Richard David (2013). �Approximate Bayesian computation

(ABC) gives exact results under the assumption of model error�. In:

Statistical applications in genetics and molecular biology 12.2,

pp. 129�141.

Williams, Christopher KI and Carl Edward Rasmussen (2006). Gaussian

processes for machine learning. Vol. 2. 3. MIT press Cambridge, MA.

184 Bibliography

Wood, Simon N (2010). �Statistical inference for noisy nonlinear ecological

dynamic systems�. In: Nature 466.7310, pp. 1102�1104.

Zijlema, M (2010). �Computation of wind-wave spectra in coastal waters with

SWAN on unstructured grids�. In: Coastal Engineering 57.3, pp. 267�277.

