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Abstract—This paper investigates using multiple unmanned
aerial vehicles (UAVs) to carry out routine patrolling at an
airport to enhance its perimeter security. It specifically focuses
on mission planning of the system to facilitate efficient patrolling
with consideration of local buildings and restricted airspace. The
proposed methodology includes three aspects: 1) a vision-based
set cover algorithm to construct the patrolling network, 2) an
obstructed partitioning-based clustering algorithm for recharging
station placement, and 3) a mixture integer quadratic program-
ming (MIQP) algorithm to plan routes for UAVs minimizing
the maximum idle time through out all patrolling waypoints.
The main contribution of this work is that it provides a
comprehensive mission planning solution for UAVs persistently
patrolling in a complex environment characterized by blocked
vision and restricted airspace. The proposed methodology is
evaluated through intensive simulations in the context of the
Cranfield Airport scenario.

Index Terms—unmanned aerial vehicle, patrolling, station
deployment, mission planning, obstructed environment

I. INTRODUCTION

Airport perimeter security has focused attention on the
critical importance of securing the first line of defence. The
primary principle of Perimeter security involves deferring,
detecting, and delaying intrusions, as well as intercepting
potential intruders to prevent harm to people or property [1].
To ensure effectiveness, regular patrols by security personnel
are advised for condition inspection, maintenance problem
identification (e.g., damaged fences, tampering with security
devices), and detection of individuals hiding in remote areas.
However, staff resources are constrained at airports. In this
context, autonomous aerial vehicles have emerged as a promis-
ing solution [2], which has the advantage of working round the
clock and a bird’s-eye view of the airport premises, thereby
motivating research into multi-UAV airport patrol systems.

Drones have great characteristics such as easy deployment
and cost efficiency, while their lightweight design also denotes
a very limited battery endurance. To facilitate persistent pa-
trolling, the deployment of recharging stations is motivated and
investigated on the subject of deciding the station placement
to maximize the coverage demand with the least amount of
infrastructure investment [3], [4]. Similar topics have also
been explored in terms of locating vertiports for urban air
mobility (UAM). German et al. [5] addressed the optimization

problem of identifying suitable vertiport locations for package
delivery in the San Francisco Bay area. Vertiports in terms of
air mobility transport in Florida Country is resolved utilizing
a network model [6]. Jeong et al. [7] employed the K-
means clustering algorithm considering commuters as the main
customers to decide vertiport locations for UAM operations
in Seoul city, leveraging the power of artificial intelligence
(AI). Junghyun et al. [8] further proposed a partitioning-based
K-means clustering algorithm to account for administrative
partitions. Although the literature has demonstrated the selec-
tion of vertiport locations for UAM using optimization or AI
methods, they mostly construct the optimization metric upon
geometric distances. For routine patrolling in a busy airport,
placing stations needs the extra consideration of restricted
airspace. Thus, this paper constructs a patrolling network that
incorporates airspace constraints and proposes an obstructed
clustering algorithm to identify the optimal recharging station
sites.

Routine patrol in airports requires covering a changing
environment, where all areas of the patrol space must be
visited infinitely often. It is recognized as a persistent moni-
toring (PM) mission which is repetitive in nature and last for
prolonged periods of time. A route optimization problem arises
in this context that seeks a set of routes for a group of robots to
repeatedly visit targets of interest. In terms of the performance
index, it is desirable to minimize the idleness time, which
refers to the maximum duration between consecutive visits to
any target. Hari et al. [9] discussed the PM problem with a
single drone, where the drone’s operational range between two
sequential service stops is described as a visit number k. The
optimal solution is then constructed by finding the walk of
k visits with the least revisit time and concatenating it. Reza-
zadeh et al. [10] investigated the multi-agent PM problem, with
a focus on maximizing a utility function tied to the probability
of event detection. In this work, a receding horizon sequential
greedy algorithm is proposed to generate sub-optimal solutions
with a polynomial computation cost and guaranteed bound on
optimality. It shows that finding the optimal monitoring policy
that defines the sequence of the geographical nodes for each
agent is an NP-hard problem. Another theoretical analysis for
multi-agent patrolling in [11] has indicated that if agents take a

h.binning
Text Box
© 2023 IEEE. This is the Author Accepted Manuscript issued with: Creative Commons Attribution License (CC:BY 4.0).  The final published version (version of record) is available online at DOI:10.1109/DASC58513.2023.10311218.  Please refer to any applicable publisher terms of use.

h.binning
Text Box
In: 42nd Digital Avionics Systems Conference (DASC), 1-5 October 2023, Barcelona, SpainDOI: 10.1109/DASC58513.2023.10311218



Fig. 1. Overview of the three aspects of mission planning for multi-UAV routine patrolling system.

cyclic walk over the whole graph, the optimal strategy in terms
of the shortest idleness is the solution based on solving the
corresponding Travel Salesman Problem (TSP). More recently,
AI techniques are used to solve a visibility-based multi-agent
PM problem [12]. They present a Multi-agent Graph Attention
Proximal Policy Optimization (MA-G-PPO) algorithm to learn
a policy for each agent. Information sharing between agents is
achieved via graph attention, which facilitates an effective joint
policy. Despite extensive research on multi-agent patrolling,
the patrolling problem inclusive of frequent visits to recharging
facilities has received limited attention. This is vital in the
context of multi-UAV patrolling, where the charging time of
the UAV’s battery is not negligible compared to its flight time.

Our work focuses on mission planning for routine pa-
trolling using multiple drones at airports. To achieve intensive,
continuous and efficient patrolling, we consider the mission
planning as threefold (shown in Figure 1): patrolling network
construction incorporated with local buildings and airspace re-
strictions, recharging station placement, and route optimization
for drones to minimize the maximum idle time over the graph.
Correspondingly, the three main contributions of this paper
are:

1) A vision-based patrolling network is constructed consid-
ering the obstructed airspace as a consequence of local
buildings and airspace regulations. Patrolling waypoints
are iteratively generated using the dominating set of a
discretized patrolling space. A patrol network is then
generated via the visibility graph algorithm, connecting
each pair of nodes with accessible paths.

2) Locations of recharging stations are optimized via an ob-
structed partitioning-based clustering algorithm, to min-
imize the total flight distances between station sites and
waypoints while considering the blocked airspace.

3) A MIQP model is built to generate optimal patrol walks
with the minimum travel time. Based on the MIQP model,
two routing methods to construct the patrolling route
solutions for multi-UAV systems.

The rest of the paper is organized as follows. Section II
introduces how the patrolling network is constructed, including
the selection of patrolling waypoints and the suggestion for
recharging station placing. This is followed by patrolling
route planning in Section III, where two routing methods
and a MIQP formulation to find the optimal walk are both
introduced. Section IV concludes this study and outlines a
brief plan for future research.

II. PATROLLING NETWORK

A. Patrolling Area Configuration

Fig. 2. Patrolling mission area configuration for Cranfield Airport. Green-
lined polygons indicate the local buildings and the Red-lined rectangle is the
restricted airspace of runaway. Texts next to the polygons give two examples
of obstructed airspace information.

The first thing for establishing a patrolling network is to
identify the area for drones to patrol over, which is exclusive



of restricted airspace and avoids collision with terminals and
other infrastructures. The patrol normally covers the entire
length of the perimeter fences that surrounds the airport, and
the critical areas such as the fuel storage facilities, power
substations, and air traffic towers. For Cranfield Airport, we
consider patrolling over the whole airfield and vulnerable
infrastructures including airplane hangars and communication
towers, while excluding the runway and its vicinity.

Figure 2 shows the patrolling area and obstructed airspace in
the Cranfield Airport case. The patrolling area is outlined via
black lines. The green polygons indicate local buildings and
the red area is restricted airspace for not disrupting normal
air operations. Those forbidden airspace is presented as three-
dimensional polyhedrons with coordinates and altitude limits.
Geographic features of local buildings are collected from Open
Street Map [13]. The vicinity of 50 meters close to the runway
is identified as restricted airspace.

B. Patrolling Waypoint Selection

To guard the identified region, we propose a new con-
cept called patrolling waypoint. These waypoints are used as
control points along the drone’s path, where they can hover
and conduct thorough inspections of the adjacent area. The
key point of this formulation is positioning those patrolling
waypoints, minimizing the number of points while ensuring
the complete coverage of the entire area within a limited
visible range of UAVs.

The above problem can be cast into a computational ge-
ometry problem, namely the art gallery problem, which is
originally studied by [14] and the aim is to find the smallest
number of guards necessary to lookout every point in the
interior of an n-wall art gallery room. The computational
complexity of the art gallery problem has been proved to
be NP-hard, either for inspection areas without holes or with
holes. Holes refer to obstacles that can not be set up with
guards or obstruct the line of sight.

In this work, we adopt an approximation algorithm inspired
by the work in [15] to address it. The proposed algorithm
consists of discretizing the coverage region into a finite set
of points and then solving the dominating set problem over
those points. For those shaded regions that are not covered,
the area discretization is iteratively refined until a solution
is found that achieves complete coverage from the selected
observation nodes.

Specifically, the proposed algorithm is implemented by
following four steps:

• Step 1: the patrolling area is divided into grids. Centroids
of these grids are the first instance of discretization. Cen-
troids within restricted airspace or obstacles are removed.

• Step 2: a visibility graph is established over those dis-
cretization nodes. Vertexes are connected if the straight
line connecting them does not intersect with any obstacles
and is within a certain visible range.

• Step 3: observation points (e.g., patrolling waypoints in
the context) are selected by solving the dominating set
problem of the visibility graph. A dominating set in a

Fig. 3. Four steps to generate patrolling waypoints. If there is an uncovered
area in the last coverage, shown as the red area in plot (d), one corresponding
node is added to the discretized space, and the algorithm repeatedly proceeds
from the plot (a).

graph is a subset of vertices such that every vertex in
the graph is either in the dominating set or adjacent to a
vertex in the dominating set.

• Step 4: the union of coverage areas is obtained based on
the current observation points. If the set of observation
points completely covers the mission area, a viable solu-
tion is found, and the algorithm terminates. Otherwise,
the area discretization is refined by adding one more
point for each uncovered region (e.g., its centroid), and
the algorithm proceeds from Step 2 with the updated
discretization.

Fig. 4. The patrolling waypoints generated in Cranfield Airport scenario.
Grid size in discretization is 100 meters, and the visibility range of drones is
assumed to be 300 meters



The four plots in Figure 3 illustrates one iteration of the
proposed method. For the first solution, there is an uncovered
blank area between two buildings (shown in Figure 3 (c)). This
means the current selection of patrolling points is not feasible.
Therefore, one more discretization point, i.e. the centroid of
the uncovered area, represented by the red dot in the figure 3
(d), is added to the discretization space. The process is then
repeated with the updated instance of discretization until the
patrolling area is completely covered. Patrolling waypoints for
Cranfield Airport are presented in Figure 4, where the yellow
circular areas indicate the limited vision from each patrolling
point.

C. Recharging Station Placement

This work adopts an obstructed clustering algorithm to
locate recharging stations, with additional consideration of
the restricted airspace and buildings. More specifically, we
adapt the K-means clustering algorithm to all the patrolling
waypoints generated in the previous steps and locate stations
at the centre of clusters to minimize the overall flight distance
between waypoints and stations. To find the clusters that
minimize the overall internal distances, the K-means clustering
method iteratively assigns data points to the cluster with
the nearest centroid and updates the centroids based on the
new assignment. During this process, three issues arise with
obstacles and restricted airspace: 1) the centre of the cluster
may turn out to be inaccessible, e.g., in the middle of a
building or inside of forbidden airspace; 2) every time new
clusters are identified, new centres are generated at their mean
coordination to minimize the overall distances. However, it
is not applicable for obstructed scenarios; 3) while updating
a new centre, the distances between each node and potential
cluster centres have to be recomputed. The computational cost
can become very high with a large number of vertexes and
obstacles [16].

We develop an obstructed discrete K-means clustering
algorithm to address the station deployment problem with
obstacles. The algorithm is described in Algorithm 1. Acces-
sible space is discretized into grids, each of which holds a
candidate location for stations. k cluster centres c1, ..., ck are
first randomly selected from those candidates, and nodes are
assigned to the nearest centroid according to their obstructed
distances. Then, the algorithm searches the neighbourhood of
the current centres and updates the centre if a smaller within-
cluster distance is found. The process is repeated until no new
centroid can be found.

Referring to Algorithm 1, a constant operation is to calculate
the obstructed distances between objects and centroids to
assign the object or to update the centroid. Here we use the
visibility graph algorithm to calculate the obstructed distance
in K-means clustering to address the station location prob-
lem with obstacles. All obstacles are presented as polygons.
Computing the obstructed distance follows these two steps:

• Step1: All n object points and vertices of all m polyg-
onal obstacles v(P ), P = {p1, ..., pm} are added into a
visibility graph V (v). If the edge between two nodes of

Algorithm 1 Obstructed Discrete K-means Clustering
Input: A set of n objects, number of cluster k, centroid
candidate c and clustering parameter, maxtry.
Output: A partition of the n objects into k clusters with cluster
centers, c1, ..., ck.
Method:

1: randomly select k centroid candidates to be c1, ..., ck;
2: for each object p = 1, ..., n do
3: find the nearest center o(p), and assign p to it.
4: end for
5: compute the sum of obstructed distances D;
6: let current = c1, ..., ck, currentD = D
7: while true do
8: for each centre oi = o1, ..., ok do
9: for each neighbor o(n)i of oi do

10: replace oi with o
(n)
i ;

11: compute the sum of obstructed distances D′;
12: if D′ < D then
13: centroids change to o1, ..., o

(n)
i , ..., ok;

14: distance updates D ← D′

15: end if
16: end for
17: end for
18: if current = o1, ..., ok then /*centroid unchanged*/
19: break;
20: else
21: for each object p = 1, ..., n do
22: find the nearest center o(p), and assign p to it.
23: end for
24: compute the sum of obstructed distances D;
25: let current = c1, ..., ck, currentD = D
26: end if
27: end while

the graph, e(va, vb) is visible, i.e., not intersecting any of
the obstacles. It is also added to the graph V (v, e).

• Step2: Every time the centroid oi is updated, an aug-
mented visibility graph V ′ is constructed with the new
node oi and all visible arcs connected to oi. The ob-
structed distance between the point vj and the centroid
oi is then calculated as the shortest path in the visibility
graph ShortestPathV (vj , oi).

The results for station placement with varying station num-
bers are depicted in Figure 5. Collision-free airpath to the
nearest cluster centres are also depicted.

D. Patrolling Network Construction

The patrolling network is constructed via the visibility graph
algorithms. The network includes all the vertexes (i.e., pa-
trolling waypoints and recharging stations), and air pathways
that connect those vertexes. To find the pathways between
two nodes which are not visible from each other, we add
the vertices of all obstacles including buildings and restricted
airspace into the graph and connect every two nodes if their arc
does not intersect with obstacles. With the assistance of these



Fig. 5. Station locations for different station numbers.

auxiliary waypoints, the airpath is identified by finding the
shortest path using Dijkstra’s Algorithm. It ensures the drones
will not penetrate no-fly zones or collide with obstacles.

We also compare our proposed graph-based formulation
with the commonly used grid-partitioned formulation. The
grid-partitioned formulation divides the patrolling space into
a grid of equal-sized cells. Table I summarizes the advantages
and disadvantages of each approach.

TABLE I
COMPARISONS BETWEEN GRID-BASED FORMULATION AND THE

PROPOSED NETWORK FORMULATION

Formulation
method

Advantages Disadvantages

Grid-based
formulation

easy to employ vision can be blocked with
complex obstacle bound-
aries; large state space for
route planning especially
for large mission areas;
intensive decision-making
epochs;

Proposed
formulation

trade-off between
patrolling resolution and
computational complexity
by adjusting the visibility
range; full coverage
for complex obstacle
shapes; adaptability to
unconnected areas; sparse
decision making;

time-consuming if
discretization is
overrefined

III. PATROLLING ROUTE PLANNING

A. Route Optimization Problem

Routine patrolling over an airport requires the drones to
repeatedly visit the patrolling waypoints generated in the last
section. The performance metric is to minimize the waypoints’
idle time, i.e., the maximum of the time elapsed between two
successive visits to any waypoint. Due to the limited battery
capacities, the drones have to visit the recharging nodes during
the mission to avoid battery depletion.

To facilitate the following illustration, we give the defini-
tions of walk and idle time for a set of agents k ∈ K over a
graph G = {V, E}.

Definition (Walk): A walk is defined as a sequential traver-
sal in which an agent visits the vertices. It is denoted by
W = [v0, v1, ..., vn] such that (vi, v(i+1)) ∈ E for each
0 ≤ i < n. An infinite periodic walk can be constructed by
repeating a walk infinitely.

Definition (Maximum Idle Time): The maximum idle time
is defined as the maximum revisit time over all target areas.
Formally, given a set of infinite walks W = {Wk, k ∈ K}, we
define avi as the arrival time of the ith ocurance of the walks
at vertex v, and dvi as the departure time from vertex v for the
ith visit. The idle time of vertex v on walks W is defined the
longest duration that vertex v is left unvisited, i.e.,

Idlemax(W, v) = max
i

(av(i+1) − dvi ) (1)

The patrolling route planning seeks to find a set of infinite
walks for each drone such that the maximum idle time of each
vertex is minimised. Formally, it is defined as

Problem (Minimizing the Maximum Idle Time): Given a
set of agents k ∈ K and a set of target areas v ∈ V , the
optimization problem is to find a set of walks for each agent
to minimize the maximum idle time over all target areas:

W∗ = argmin
W

max
v∈V

Idlemax(W, v) (2)

B. Methods

We adopt two routing strategies to address the multi-agent
patrolling problem: 1) partitioned patrolling, the drone only
patrols over the waypoints in its own cluster, where separated
walks are built within the clustered waypoints; 2) cyclic
patrolling, a long walk is found to cover all waypoints, and
drones are evenly deployed along the walk.

According to [11], the optimal solution of the cyclic-based
strategy is based on the shortest path of the corresponding
Travel Salesman Problem (TSP). For partition-based strategy,



Fig. 6. Two patrolling strategies for a multi-UAV system.

given the sub-graphs induced by the partition, {G1, ...GK}, the
optimal solution in terms of the worst idleness is determined
by all single-agent cyclic strategies based on the TSP of Gk.
The key operation in both methods is to seek for a walk that
visits all points of concern with the minimum travel time. For
each walk, the drone travels through the patrolling network
established in the last section.

Finding the closed path with minimum travel time is for-
mulated as the Mixed-Integer Quadratic Programming (MIQP)
problem. The objective function J have three terms: 1) the
overall travel time through the walk, 2) the overall patrolling
time over patrolling waypoints, and 3) the overall recharging
time at stations:

minJ =
∑
i,j∈N

τijxij +
∑

i∈N,j∈P
hjxij

+
∑

i∈N,j∈G′

Emax(1− cj)

r
xij

(3)

subject to: ∑
i∈N

xij = 1, ∀i ∈ P ∪G∑
i∈N

xij = 1, ∀j ∈ P ∪G∑
i∈N

xij =
∑
i∈N

xji, ∀j ∈ G′

−M(1− xij) ≤ ci − cj −
hj

Tmax
− τij

Tmax
≤M(1− xij),

∀i ∈ P, ∀j ∈ N

−M(1− xij) ≤ 1− cj −
τij

Tmax
≤M(1− xij),

∀i ∈ G′, ∀j ∈ N
cmin ≤ ci ≤ cmax, ∀i ∈ N

−M(1− xij) ≤ ti − tj + hj + τij ≤M(1− xij),

∀i ∈ N, ∀j ∈ N/n0

The notations of the MIQP problem is presented in Table
II.

TABLE II
NOTATIONS IN MIQP MODEL

Graph Notations
i, j Indexes of nodes
n0 Starting vertex of the tour
P Set of patrolling waypoints
G Set of recharging stations
G′ Set of recharging stations and it copies
N Set of all nodes, N = P ∪ G′

Model Input Parameters
τij , s Travel time from vertex i to vertex j
hi, s Patrolling time at vertex i
Tmax, s Maximum travel time
Emax, J Battery capacity
cmin,% The lower bound of state of charge
cmax,% The upper bound of state of charge
r,W Recharging rate

Decision Parameters
xij Binary variable presenting if vehicle travels from

vertex i to vertex j
ci,% State of charge when vehicle arrives at vertex i
ti, s Time variable to eliminate sub-tours

Note that station nodes are copied in the above formulation,
allowing for possible repeated visits in one walk.

C. Results

Patrolling routes are constructed based upon the patrolling
waypoints and recharging station locations generated in previ-
ous sections. CPLEX software [17] is used to solve the above
MIQP problem to find the walks with the shortest time. A
time limit of 500 seconds is imposed, so that a feasible route
is provided if the optimal solution is not found. Simulation
parameters are listed in Table III, of which drone specifications
refer to those of DJI Mavic 3.

TABLE III
SIMULATION PARAMETERS

Parameter Value (unit)
Maximum flight time, Tmax 40 min
Battery capacity, Emax 277.2 k Joules
Flight speed, v 10 m/s
Flight altitude, h 20m
Patrol time over waypoints, h 1min
Recharging rate, r 65 Watt

Cyclic route solutions are depicted in Figure 7. Four plots
present four cases in terms of different drone numbers (same
as the station number in the context). The deployment of
renewable stations follows the clustering results from the
last section. Drones are evenly distributed along the route to
minimize the idleness over the patrol network, which leads
to an approximately linear reduction in the worst idleness
of the cyclic route as the number of drones increases. The
separate time cost is presented in Table IV with respect to
edge travelling, patrolling, and charging. It can be seen that
recharging takes more than half of the total time cost. If the
UAV battery recharging rate is doubled, the maximum idle
time using 12 drones can be decreased to less than 10 minutes.



Fig. 7. Cyclic paths for different station deployments. Drones follow the blue path, and the lag time between every two consecutive drones is kept the same.
Red stars indicate the locations of stations, where drones take off and get recharged.

Fig. 8. Partition-based paths for different station deployments. Drones patrol over the observation point in their own clusters, operating separately from each
other.

TABLE IV
TIME COSTS FOR THE CYCLIC ROUTING METHOD

Station count Max idleness
(min)

Separate time cost (min)

travel time patrol
time

charge
time

2 86.10 9.01 22 55.09
5 34.35 3.57 8.8 21.98
8 21.50 2.24 5.5 13.76
12 14.92 1.71 3.67 9.54

TABLE V
TIME COSTS FOR THE PARTITION ROUTING METHOD

Station count Max idleness
(min)

Separate time cost (min)

travel time patrol
time

charge
time

2 102.16 10.17 22 57.17
5 48.32 3.82 8.8 22.43
8 29.99 2.63 5.5 14.45
12 21.51 1.66 3.67 9.47

Partition-based route solutions are depicted in Figure 8,
where the drone only patrols on the waypoints of its own

cluster. Compared to the cyclic routing strategy, the idle time
of waypoints totally depends on how many nodes its cluster
has and the distances between them. It causes a discrepancy
among clusters and longer maximum idleness than those in
cyclic routing solutions. The separate time costs are also listed
in Table V. Same as the cyclic case, the recharging time takes
the largest portion of the time consumption.

IV. CONCLUSION

This work investigated the mission planning problem for a
multi-UAV system conducting routine patrol in an obstructed
airport environment. The planning is started by establishing
a graph-based patrolling network, from which the patrolling
area is fully covered in consideration of the limited-range
and blocked vision due to buildings. Locations of recharging
facilities are then suggested to minimize the average distance
between observing waypoints and stations. Finally, patrolling
routes are generated towards the objective function to optimize
the worst idleness over all waypoints for an effective persistent
patrolling. This research work provides a framework and



a promising solution for optimizing the multi-UAV patrol
operations in complex airport environments.

For the future work, authors believe that it is desirable to
develop a dynamic route optimization algorithm to enhance
the robustness of route solutions against unexpected dynamic
events that may affect the drone execution, such as human
manipulation, the delay of patrolling, or severe weather con-
ditions. Besides, simulations of higher-fidelity and physical
flights are expected to validate and improve the proposed
algorithms in the future.
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