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Human working memory is associated with significant modulations in oscillatory brain
activity. However, the functional role of brain rhythms at different frequencies is still debated.
Modulations in thebeta frequency range (15–40Hz) are especially difficult to interpret because
they could be artifactually produced by (more prominent) oscillations in lower frequencies
that show non-sinusoidal properties. In this study, we investigate beta oscillations during
working memory while controlling for the possible influence of lower frequency rhythms.
We collected electroencephalography (EEG) data in 27 participants who performed a spatial
working-memory task with two levels of cognitive load. In order to rule out the possibility that
observed beta activity was affected by non-sinusoidalities of lower frequency rhythms, we
developed an algorithm that detects transient beta oscillations that donot coincidewithmore
prominent lower frequency rhythms in time and space. Using this algorithm, we show that
the amplitude and duration of beta bursts decrease with memory load and during memory
manipulation, while their peak frequency and rate increase. Together, our results show that
human beta rhythms are functionally modulated during working memory and that these
changes cannot be attributed to lower frequency rhythms with non-sinusoidal properties.
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1. INTRODUCTION

Working memory refers to the capacity of
holding and manipulating information, which
is fundamental for any type of goal-directed
behavior (Baddeley, 2010; G. A.Miller et al., 1960).
In order to study the behavioral and neural
correlates of working memory in humans, a
wide variety of working-memory tasks have
been developed (Repovš & Baddeley, 2006).
Working-memory tasks usually involve a delay
or maintenance period in which information
(typically in a specific sensory modality) is tran-
siently kept in mind in the absence of exter-
nal stimulation. Some working-memory tasks
also allow studying the effect of memory load
(i.e., number of items to be remembered) and
memory manipulation (i.e., the modification
of memory items in addition to their mainte-
nance). The combination of these tasks with
neuroimaging and electrophysiological tech-
niques has allowed the identification of distinct
brain mechanisms supporting working mem-
ory (D’Esposito & Postle, 2015; E. K. Miller et al.,
2018).

Previous research in humans has shown that
working memory is associated with significant
modulations in oscillatory activity (Pavlov &
Kotchoubey, 2020b). Oscillatory activity, as
measured with the Electroencephalogram
(EEG), originates from the summed activity
of pyramidal neurons arranged perpendicular
to the scalp (Cohen, 2017), and is thought
to reflect local excitability and long-range
communication (Klimesch et al., 2007).
Previous work on the role of brain oscillations in
workingmemory hasmostly focused on frontal
theta (~4–8 Hz) and posterior alpha (~8–14 Hz)
oscillations, which form the most prominent
rhythms in the human EEG (Klimesch, 1999).
Modulations in the beta range have received
considerably less attention in workingmemory
EEG research, with the few studies reporting
beta power modulations highly inconsistent
regarding the direction and topography of
such effects (Pavlov & Kotchoubey, 2020b).

In addition, while changes in alpha and
theta center frequency have shown to be
functionally relevant (Angelakis et al., 2004;
Rodriguez-Larios & Alaerts, 2019), frequency
modulations in the beta range have not yet
been investigated in the context of human
working memory.

The detection of beta oscillations in EEG/MEG
signals is not trivial. Relative to oscillations in
lower frequencies, beta oscillations are less
sustained (Sherman et al., 2016) and have lower
amplitudes (Pfurtscheller &Cooper, 1975).More-
over, changes in the beta range can be artifac-
tually produced by (more prominent) lower fre-
quency oscillations with non-sinusoidal prop-
erties (Schaworonkow, 2023; Schaworonkow &
Nikulin, 2019). Non-sinusoidal rhythms show a
peak in the frequency spectrum at their main
(actual) frequency and additional peaks at fre-
quencies approximating their harmonics. Two
well-known examples are the somatosensory
mu rhythm, with a main peak around 10 Hz
and a second harmonic around 20 Hz (Kulh-
man, 1978); and the frontal sawtooth theta
rhythm, with a main peak around 6 Hz and
a third harmonic around 18 Hz (Onton et al.,
2005). Consequently, if beta rhythms co-occur
in time and space with (more prominent) lower
frequency rhythms, we cannot rule out the
possibility that they are artifactually caused
by non-sinusoidalities of the lower frequency
rhythm. Since this is not typically controlled
for in spectral analysis, previous literature on
the role of beta in working memory is hard to
interpret. In fact, the most recent review on the
EEG/MEG correlates of working memory con-
cludes that (at least part of) the reported beta
modulations are likely to reflect an artifactual
harmonic of lower frequency rhythms (Pavlov
& Kotchoubey, 2020b).

In this study, we assessed whether beta oscilla-
tions are significantly modulated during work-
ing memory. For that purpose, we recorded
96-electrode EEG while participants (N = 31)
performed a working-memory task in which
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they had to remember and manipulate the

spatial location of visual stimuli. In order to rule

out the possibility that modulations in the beta

range reflect non-sinusoidal rhythms in lower

frequencies, we developed an algorithm that

detects beta oscillatory events that do not co-

occur in time and space with more prominent

oscillatory events in lower frequencies. We ex-

tracted four beta burst parameters (amplitude,

duration, frequency and rate) and assessed

their modulation in relation to memory reten-

tion, cognitive load, memory manipulation and

behavioral performance.

2. MATERIALS AND METHODS

2.1 Participants

Sample size was estimated based on our pre-

vious study (Rodriguez-Larios et al., 2022), in

which we reported condition-related modula-

tions in behavior during a working-memory

task with effect sizes between 0.51 and 0.59

(Cohen’s d). Assuming similar effect sizes, our

sample size calculation ranged between 25

and 33 participants. We collected data from 31

participants, taking into account that approxi-

mately 10%of EEGdatawould be discardeddue

to uncorrectable artifacts.

Thirty-one healthy adult participants (13 male)

took part in the experiment. The mean age

was 32.5 years (SD = 8.5). Participants reported

normal or corrected-to-normal vision and no

history of neurologic or psychiatric diagnosis.

Informed consent procedure and study de-

sign were approved by the Institutional Review

Board (IRB) of the New York State Psychiatric

Institute (Nr. 8001). Participants were compen-

sated for their participation (at 25 USD per

hour). Since 4 participants were excluded from

the analysis due to uncorrectable EEG artifacts

or technical problems during data acquisition,

our final sample size was 27.

2.2 Design and Task

Participants performed a visual
working-memory task while EEG was recorded
(see Figure 1A). First a fixation cross was
presented for 1 s. Then, participants were
presented with one (or three) angles in a circle.
Following a delay period of 3 s, a cue was
presented for 1 s. The cue was either ‘stay’,
meaning that the correct answer was the
presented angle, or ‘switch’, indicating that
the correct answer was the opposite angle.
After the instruction, a response mapping
diagram was shown, indicating which button
number (1 to 8) corresponded to which angle.
This response map was randomized in each
trial. After each response, participants received
feedback based on their answer (a green circle
for correct answers and a red circle for incorrect
answers). Participants performed four blocks of
48 trials in approximately 1 hour (192 trials per
participant).

2.3 EEG Acquisition

96-electrode scalp EEG was collected using
the BrainVision actiCAP system (Brain Products
GmbH, Munich, Germany) with a sampling rate
of 500 Hz. Electrodes were labeled accord-
ing to the international 10-20 system and the
reference electrode during the recording was
Cz. Amplification and digitalization of the EEG
signal was done through an actiCHamp DC
amplifier (Brain Products GmbH, Munich, Ger-
many) linked to BrainVision Recorder software
(version 2.1, Brain Products GmbH,Munich, Ger-
many). Vertical (VEOG) and horizontal (HEOG)
eye movements were recorded by placing ad-
ditional bipolar electrodes above and below the
left eye (VEOG) andnext to the left and right eye
(HEOG). In addition, electrocardiogram (ECG)
was also recorded using bipolar electrodes.

2.4 EEG Preprocessing

Pre-processing was performed in MATLAB
R2021a using custom scripts and functions
from EEGLAB (Delorme & Makeig, 2004) and
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Figure 1
Spatial Working Memory Task and Behavioral Performance. (A) Participants were asked to
remember the angle of one or three visual stimuli (Load 1 or Load 3). Based on the
subsequent instruction, they had to report the presented angle (Stay) or its opposite
(Switch) using a computer keyboard. The color in the figure codes for the correct answer in
this exemplary trial when the instruction was ‘Stay’ (orange; answer 8) and ‘Switch’ (green;
answer 4). (B) Participants showed significantly lower accuracy and higher response times
in the condition Load 3 Switch relative to the other three conditions (Load 1 Stay, Load 1
Switch, Load 3 Stay). On each boxplot, the central red line indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers.

Fieldtrip (Oostenveld et al., 2011) toolboxes.
Data were first resampled to 250 Hz and
filtered between 1 and 40 Hz. Noisy electrodes
were automatically detected (EEGLAB function
clean_channels) and interpolated. Ameanof 9.7
channels (SD = 6.5) were interpolated. EEG data
were re-referenced to the common average
and independent component analysis (runica
algorithm) was performed. An automatic
component rejection algorithm (Iclabel) was
employed to discard components associated
with muscle activity, eye movements, heart

activity or channel noise (threshold = 0.8;

see Pion-Tonachini et al. (2019)). In addition,

components with an absolute correlation with

HEOG, VEOG or ECG channels higher than 0.8

were discarded. The mean number of rejected

components was 18.1 (SD = 5.7). Furthermore,

Artifact Subspace Reconstruction (ASR) was

employed to correct for abrupt noise with a

cutoff value of 20 SD (Chang et al., 2020).
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Figure 2
Beta Burst Detection Algorithm and Topography of Beta Burst Parameters. (A)
Time-frequency representation of a trial. The estimate of aperiodic activity (in grey) was used
as power threshold to detect beta bursts. (B) Depiction of the time-frequency
representation of the same trial after subtraction of the estimate of 1/f aperiodic activity (left
panel), and frequency spectra of two exemplary beta bursts (right panels). In order to rule
out the possibility that detected beta bursts are caused by the non-sinusoidal properties of
lower frequency rhythms, only bursts that show amaximum spectral peak in the beta range
were selected. An example of a selected burst is depicted in green and an example of a
rejected burst is depicted in red. (C) Topographical representation of each of the extracted
burst parameters (frequency, amplitude, rate and duration) across participants and
conditions. Color indicates the average value per electrode.

2.5 Beta Burst Detection Algorithm

Single trial EEG data (3 second windows) were
transformed to the time-frequency domain us-
ing 6-cycles Morlet wavelets (as implemented
in the matlab function BOSC_tf) (Whitten et
al., 2011). In order to avoid edge artifacts (Tor-
rence & Compo, 1998), we excluded timepoints
corresponding to epoch boundaries (3 cycles
of each Morlet wavelet, which is equivalent

to the first and last 70-200 ms). No temporal

smoothing was used, the frequency resolution

was 1 Hz, and the analyzed band ranged from

1 to 40 Hz. Amplitude at each frequency was

extracted from the real component of the

convolution between the EEG signal and the

family of wavelets. We used an estimate of

1/f aperiodic activity as amplitude threshold

to detect oscillatory bursts (see Figure 2A).
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Aperiodic activity was estimated per electrode

and participant by fitting a straight line in

log–log space to the average EEG frequency

spectrum after excluding frequencies forming

the maximum peak (Caplan et al., 2015; Goyal

et al., 2020; Kosciessa et al., 2020). Oscillatory

bursts were defined as time points in which

the amplitude at a specific frequency exceeded

the estimate of aperiodic activity for at least

a cycle. In order to rule out the possibility

that the detected oscillatory bursts artifactually

originated from broadband changes or from

a different rhythm at another frequency, only

oscillatory bursts that formed the peakwith the

greatest prominence of the 1/f-subtracted fre-

quency spectrumwere selected (seeFigure 2B).

Using this algorithm, four burst parameters

were estimated for the beta range (15-40 Hz):

i) amplitude: mean prominence of the peaks

of the detected bursts after subtracting ape-

riodic activity, ii) duration: mean number of

cycles of detected oscillatory bursts, iii) rate:

mean number of oscillatory bursts, and iv)

frequency: mean peak frequency of detected

oscillatory bursts (see Figure 2C, for topogra-

phy of each of the extracted parameters when

averaging across conditions and participants).

The MATLAB code of the beta burst algorithm

and supplementary figures can be accessed

here: https://osf.io/fkhnb/?view_only=13d1c0ac7

6574be6a1ba7f300fdd98e

2.6 Statistical Analysis

For the behavioral analysis, a two-way

repeated-measures ANOVA and post-hoc

t-tests were performed with the JASP

software (Love et al., 2019). Cognitive load

(3 items vs 1 item) and memory manipulation

(switch vs stay instructions) were defined

as factors. This analysis was performed for

accuracy and reaction times separately. The

effect size was estimated with eta squared

(η2) and Bonferroni correction was applied for

multiple comparisons.

For the EEG data, a cluster-based permutation
statistical test (Maris & Oostenveld, 2007) was
used to assess condition-related differences in
eachbeta burst parameter. This test controls for
the type I error rate arising frommultiple com-
parisons using a non-parametric Montecarlo
randomization and taking into account the
dependency of the data. First, cluster-level test
statistics are estimated in the original data and
in 1,000 permutations of the data. Cluster-level
test-statistics are defined as the sumof t-values
with the same sign across adjacent electrodes
that are above a specified threshold (i.e., 97.5th
quantile of a t-distribution). Then, the cluster-
level statistics from the original data were eval-
uatedusing the referencedistribution obtained
by taking the maximum cluster t-value of each
permutation. Cluster-correctedp-values arede-
fined as the proportion of random partitions
whose cluster-level test statistic exceeded the
oneobtained in the observeddata. Significance
level for the cluster permutation test was set
to 0.025 (corresponding to a false alarm rate
of 0.05 in a two-sided test). Paired-samples
t-test was chosen as the first-level statistic
to compare experimental conditions (Delay vs
Fixation, Load 3 vs Load 1 and Switch vs Stay),
and the Pearson correlation coefficient was
chosen to assess correlations between each of
the beta bursts parameters and performance
(reaction time and accuracy). The effect size
was estimated for each significant cluster with
Cohen’s d.

In order to assess the frequency-specificity
of the results in each beta burst parameter,
we performed the same statistical tests in a
frequency-resolved manner. For each experi-
mental condition, we averaged the output of
the beta burst algorithm (amplitude, duration
and rate) across electrodes forming previously
identified significant clusters. Then, we com-
pared conditions at each frequency (15-40Hz in
steps of 1 Hz) using paired samples t-tests. The
obtained p-values were corrected for multiple
comparisons using the False Discovery Rate
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method (FDR) (Benjamini & Hochberg, 1995).

3. RESULTS

3.1 Behavioral Performance

Repeated measures ANOVA on accuracy re-
vealed a significant main effect of cognitive
load (F(1,26) = 14.05; p < .001; η2= 0.23), a sig-
nificant main effect of memory manipulation
(F(1,26) = 11.34; p < 0.001; η2= 0.048) and a
significant cognitive load by memory manipu-
lation interaction (F(1,26) = 16.44; p < .001; η2=
0.070). Post-hoc t-tests showed that cognitive
load only affected accuracy in the memory
manipulation condition (lower accuracy in Load
3 Switch relative to Load 1 Switch; t(26) = 5.17;
pbonf < .001) while memory manipulation only
affected accuracy when load was high (lower
accuracy in Load 3 Switch relative to Load 3
Stay; t(26) = 5.24; pbonf < .001). In addition, par-
ticipants showed significantly less accuracy in
high loadwithmemorymanipulation condition
(Load 3 Switch) relative to the low load without
memory manipulation condition (Load 1 Stay;
t(26) = 4.86; pbonf < .001; see Figure 1B, left
panel for descriptives of accuracy per condition
using boxplots, showing significant differences
between conditions with asterisks).

Similarly, repeated measures ANOVA on reac-
tion time revealed a significant main effect
of cognitive load (F(1,26) = 13.15; p = .001; η2=
0.11), a significant main effect of memory ma-
nipulation (F(1,26) = 79.27; p < .001; η2= 0.24)
and a significant cognitive load by memory
manipulation interaction (F(1,26) = 98.82; p <
.001; η2= 0.26). Post-hoc t-tests showed that
cognitive load only affected response times
in the memory manipulation condition (lower
reaction time in Load 3 Switch relative to Load
1 Switch; t(26) = -8.02; pbonf < .001) while mem-
ory manipulation only affected response times
when load was high (lower reaction time in
Load 3 Switch relative to Load 3 Stay; t(26)
= -13.29; pbonf < .001). Participants also showed
significantly higher response times in high load

with memory manipulation condition (Load 3
Switch) relative to the low loadwithoutmemory
manipulation condition (Load 1 Stay; t(26) =
-7.66; pbonf < .001; see Figure 1B, right panel
for descriptives of reaction time per condition
using boxplots, showing significant differences
between conditions with asterisks).

3.2 Beta Burst Modulations With Memory
Retention

Contrasting the first delay window with the
fixation window, we assessed beta burst mod-
ulations associatedwithmemory retention and
found a significant decrease in beta burst am-
plitude (tcluster = -341.30; pcluster< .001; d = 0.40;
see Figure 3A, for the topographical distribution
of t-values and the descriptives per condition
across significant electrodes), a significant de-
crease in beta burst duration (tcluster = -35.82;
pcluster= .002;d = 0.40; Figure 3B) and significant
increase in beta burst frequency (tcluster =
87.56; pcluster= .002; d = 0.33; Figure 3C). The
topographical distribution of significant mod-
ulations was widespread for burst amplitude
and burst frequency. On the other hand, the
effect on burst duration was limited to centro-
parietal electrodes. No significant differences
were found for beta burst rate (pcluster> .05;
Figure 3D). The average frequency spectra of
beta bursts in each condition across electrodes
are depicted in Figure 3E.

3.3 Beta Burst Modulations With Cognitive
Load

Next, we contrasted beta burst parameters
across load conditions. Cognitive load was as-
sociated with a significant decrease in beta
burst amplitude (tcluster = -176.49; pcluster< 0.001;
d = 0.32; see Figure 4A for the topographical
distribution of t-values and the descriptives per
condition across significant electrodes), a sig-
nificant decrease in beta burst duration (tcluster
= -248.39; pcluster< .001; d = 0.67; Figure 4B),
a significant increase in beta burst frequency
(tcluster= 165.20; pcluster< .001; d = 0.36; Figure 4C)
and a significant increase in beta burst rate
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Figure 3
Changes in Beta Burst Parameters During Memory Retention. (A-D) The left panel depicts
the topographical distribution of t-values for the comparison Delay 1 vs Fixation for each
beta burst parameter. Asterisks indicate significant clusters at p < 0.025. The right panel
shows individual values (in grey) and boxplots of significant clusters per condition. When no
significant clusters are present, boxplots depict the average across electrodes. On each
boxplot, the central red line indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme
data points not considered outliers. (E)Mean frequency spectrum of detected beta bursts
per condition. For visualization purposes, the 1/f corrected spectra of the detected beta
bursts were averaged within conditions and across electrodes after z-scoring over the
frequency dimension. Shaded areas reflect variability across subjects (standard error). (F)
Mean waveform shape of detected beta bursts. For visualization purposes, the time course
of the detected beta bursts was averaged across conditions and across electrodes after they
were aligned to their maximum peak (timepoint 0). Shaded areas reflect standard error
across subjects.

(tcluster = 87.56; pcluster= .008; d = 0.19; Figure 4D).
The topographical distribution of significant
modulations was widespread for burst ampli-
tude, duration and frequency, while effects
on beta burst rates were more constrained
to central electrodes. The average frequency
spectra of beta bursts in each condition across
electrodes are depicted in Figure 4E.

3.4 Beta Burst Modulations Associated With
Memory Manipulation

In order to assess the effect of memory ma-
nipulation on beta burst parameters, we con-

trasted switch and stay conditions during the
second memory delay. Memory manipulation
was associated with a significant decrease in
beta burst amplitude (tcluster = 75.41; pcluster=
.002; d = 0.18; see Figure 5A, for the topo-
graphical distribution of t-values and the de-
scriptives per condition across significant elec-
trodes), a significant decrease in beta burst
duration (tcluster= -103.00; pcluster< .001; d = 0.40;
Figure 5B), a significant increase in beta burst
frequency (tcluster = 29.55; pcluster< .001; d = 0.30;
Figure 5C) and a significant increase in beta
burst rate (tcluster= 52.30; pcluster= .006; d = 0.11;
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Figure 4
Changes in Beta Burst Parameters Associated W ith Memory Load. (A-D) The left panel
depicts the topographical distribution of t-values for the comparison Load 3 vs Load 1 for
each beta burst parameter. Asterisks indicate significant clusters at p < 0.025. The right
panel shows individual values (in grey) and boxplots of significant clusters per condition. On
each boxplot ,the central red line indicates the median, and the bottom and top edges of
the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers. (E)Mean frequency spectrum of detected beta
bursts per condition. For visualization purposes, the 1/f corrected spectra of the detected
beta bursts were averaged within conditions and across electrodes after z-scoring over the
frequency dimension. Shaded areas reflect variability across subjects (standard error). (F)
Mean waveform shape of detected beta bursts. For visualization purposes, the time course
of the detected beta bursts was averaged across conditions and across electrodes after they
were aligned to their maximum peak (timepoint 0). Shaded areas reflect standard error
across subjects.

Figure 5D). The topographical distribution of

significant modulations was centro-parietal for

burst amplitude, widespread for burst duration

and limited to posterior electrodes for burst fre-

quency and burst rate. The average frequency

spectra of beta bursts in each condition across

electrodes are depicted in Figure 5E.

3.5 Relation Between Beta Bursts and
Interindividual Differences in
Performance

Finally, we asked whether beta burst param-
eters correlated with working-memory perfor-
mance. Note that this analysis was performed
across conditions (i.e., averaging beta burst
parameters and performance across all trials).
No significant clusters were identified when
assessing the relationship between accuracy
and each of the four beta burst parameters
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Figure 5
Changes in Beta Burst Parameters Associated With Memory Manipulation. (A-D) The left
panel depicts the topographical distribution of t-values for the comparison of conditions
Switch and Stay for each beta burst parameter. Asterisks indicate significant clusters at p <
0.025. The right panel shows individual values (in grey) and boxplots of significant clusters
per condition. On each boxplot, the central red line indicates the median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers. (E)Mean frequency
spectrum of detected beta bursts per condition. For visualization purposes, the 1/f corrected
spectra of the detected beta bursts were averaged within conditions and across electrodes
after z-scoring over the frequency dimension. Shaded areas reflect variability across subjects
(standard error). (F)Mean waveform shape of detected beta bursts. For visualization
purposes, the time course of the detected beta bursts was averaged across conditions and
across electrodes after they were aligned to their maximum peak (timepoint 0). Shaded
areas reflect standard error across subjects.

during the first or second memory delay (all

pcluster> .05). When assessing interindividual

differences in response times,we founda signif-

icant positive cluster for beta burst rate during

the first delay (tcluster = 34.90; pcluster = .02;

mean r-value = 0.47). However, further analysis

suggested that this correlation was driven by

outliers in the data (see Supplementary Figure

5). No significant clusterswere identified for the

remaining beta burst parameters (all pcluster >

.05).

3.6 Exploring the Frequency Specificity of
Beta Bursts Modulations

The definition of the beta frequency range

varies across studies (Spitzer & Haegens, 2017),

which could lead to misinterpretation of our

results. For this reason, we performed addi-

tional analyses to assess the frequency speci-

ficity of our results. In short, we performed the

same statistical tests as above in a frequency-

resolved manner after averaging across elec-

trodes forming significant clusters.
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This exploratory analysis revealed that memory
load andmemorymanipulation effects in burst
amplitude and duration were more prominent
in the lower beta band (<20 Hz), while changes
in beta burst rates tended to appear in the
upper beta band (>20 Hz; see Supplementary
Figures 2 & 3). In contrast, modulations during
memory delay (relative to fixation) in burst am-
plitude and duration were present in most of
the beta frequency range (see Supplementary
Figures 1 & 4).

3.7 Assessing Potential Condition-Related
Modulations in the Temporal Dynamics of
Beta Bursts

Timing is an important aspect of oscillatory
activity that is not normally quantified through
a burst detection approach. In this way, it is
possible that beta bursts occurred in different
time periods of the trial in different conditions.
To assess this possibility, we quantified the
beginning of each beta burst (timing relative
to stimulus presentation) and compare their
‘mean start time’ betweenconditions. This anal-
ysis showed that, in posterior electrodes, beta
bursts during the memory delay tended to
occur earlier in the trial relative to the fixation
period (tcluster = -72.25; pcluster = .009; d = 0.40;
Supplementary Figure 5). On the other hand,
no significant differences for the memory load
or memory manipulation effects (pcluster > .05)
and no significant correlations between burst
timing and performance were found (pcluster >
.05).

3.8 Controlling for Potential Changes in
“Non-Genuine” Beta Bursts

Since we define “genuine” beta bursts as those
oscillatory bursts in the beta range that are not
accompanied bymore pronounced oscillations
in lower frequencies, it is possible that the
reported modulations are driven by changes
in the number of lower frequency bursts. For
example, the reported increase in “genuine”
beta burst rates with memory load and mem-
ory manipulation could have emerged from

a decrease in the number of alpha or theta
bursts (as this would result in a relative in-
crease in the number of beta bursts that
are not accompanied by a lower-frequency
rhythm). In order to rule out this possibil-
ity, we assessed condition-related modulations
in beta bursts that co-occurred with a more
prominent lower-frequency rhythm (i.e., “non-
genuine” beta bursts). Crucially, this analysis
showed no significant memory load or mem-
orymanipulation effects in “non-genuine” beta
burst rates (see Supplementary Figure 6B-C).
Therefore, the reported increases in the rate of
“genuine” beta bursts duringmemory load and
memory manipulation cannot be explained by
decreases in the rate of “non-genuine” beta
bursts that co-occurred with lower frequency
rhythms.

Interestingly, these control analyses also
revealed that unlike “genuine” beta bursts,
“non-genuine” beta bursts (i.e., those
co-occurring with a more prominent
lower-frequency rhythm) increased their
rate during delay relative to fixation (see
Supplementary Figure 6A). The increase
in the number of “non-genuine” beta
bursts during the memory delay should
be interpreted with caution as they could
originate from non-sinusoidalities of lower
frequency oscillations. In fact, a visual
inspection of the spectrum and waveform
shape of “non-genuine” beta bursts suggests
that they reflect alpha activity (~8–14 Hz; see
Supplementary Figure 6D-E).

4. DISCUSSION

Here, we investigated the functional relevance
of beta oscillations in human workingmemory.
We collected 96-electrode EEG data while par-
ticipants performed a spatial working-memory
task. Critically, we controlled for the possible
influenceof lower frequency rhythmswithnon-
sinusoidal properties on beta-band dynamics.
Specifically, we developed an algorithm that
detects oscillatory bursts in the beta range that
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do not co-occur in time or space with more
prominent rhythms in lower frequencies. Our
results show significant modulations in several
beta burst parameters during memory reten-
tion and manipulation. Both memory load and
memory manipulation were associated with
decreased beta burst amplitude, decreased
beta burst duration, increased beta burst rate
and increased beta burst peak frequency. In
addition, we found that only beta burst rate
showeda significant relationwithperformance:
participantswith slower response times tended
to have a higher rate of beta bursts during
thememory delay. Together, these results show
that beta oscillations that cannot be attributed
to non-sinusoidal properties of lower frequency
rhythms are significantly modulated during
working memory and predict performance.

Previous literature on the role of beta oscil-
lations in human working memory focused
almost exclusively on amplitude modulations,
with seemingly contradictory results (Pavlov &
Kotchoubey, 2020b).Memory load andmemory
manipulation have been associated with both
increases (Chen & Huang, 2016; Deiber et al.,
2007; Tallon-Baudry et al., 1998) and decreases
in beta amplitude (Erickson et al., 2019; Nasrawi
& Van Ede, 2022; Pavlov & Kotchoubey, 2020a;
Proskovec et al., 2018). There are two main dif-
ficulties that make these previous results hard
to interpret. First, given the burst-like nature
of beta oscillations (Jones, 2016; Van Ede et al.,
2018), changes in amplitude as estimated with
conventional analyses could be confounded
by changes in other parameters such as rate
or duration of beta bursts (Donoghue et al.,
2022). Secondly, putative modulations in beta
amplitude could also be produced artifactually
due to changes in a lower frequency rhythm
with non-sinusoidal properties (Cole & Voytek,
2017; Schaworonkow & Nikulin, 2019). Here, we
control for the influence of these two factors
when estimating beta amplitude, and show
that beta decreases with cognitive load and
during memory manipulation. Thus, our beta

burst algorithm might help reconcile previ-
ous results if applied to other data sets (see
Methods for access to the analysis code). By
controlling for the possible influence of lower
frequency rhythms and separating the con-
tribution of different beta burst parameters,
we can robustly assess whether previous in-
consistencies in the literature are due to the
analytical approach and/or to other factors such
as the modality or difficulty of the adopted
working-memory task.

The here reported modulations in the ampli-
tude and frequency of beta oscillations can
be interpreted as changes in cortical excitabil-
ity. On the one hand, the amplitude of os-
cillations in the alpha/beta range in humans
has been associated with decreased broad-
band high frequency activity (BHA) (Iemi et al.,
2022), which is thought to provide a measure
of local neuronal excitability (Leszczyński et
al., 2020; Ray & Maunsell, 2011). On the other
hand, modelling work suggests that increases
in the peak frequency of neural oscillations are
accompanied by increases in spiking activity of
individual neurons (Mierau et al., 2017). In light
of these studies, a decrease in beta amplitude
and increase in beta frequency with memory
load and during memory manipulation might
be interpreted as a general increase in the
excitability of task-relevant cortical areas. The
topographical differences between load and
manipulation effects (i.e., manipulation effects
are more posterior; see Figures 4–5) could then
be due to the recruitment of different areas for
these two cognitive operations (Jablonska et al.,
2020; Veltman et al., 2003).

Based on our results and previous theoretical
accounts (Jensen & Mazaheri, 2010; Klimesch
et al., 2007; Spitzer & Haegens, 2017), we spec-
ulate that “sustained” (i.e., long duration and
low rate) and “transient” (i.e., short duration
and high rate) oscillatory activity might re-
flect different neural processes. We propose
that while sustained oscillations reflect func-
tional inhibition, transient bursts are a cause
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(or consequence) (Schneider et al., 2021) of a
set of task-relevant neural populations being
(re)activated (Spitzer & Haegens, 2017), with the
specific frequency of oscillatory activity related
to the size of the neural populations being “in-
hibited” or “reactivated” (i.e., lower frequencies
for bigger networks) (Stein & Sarnthein, 2000).
Theta oscillations are an intuitive example of
this dual role of neural oscillations in humans,
as they appear in the transition to sleep in
a more sustained manner (putatively reflect-
ing cortical inhibition) (Canales-Johnson et al.,
2020; Strijkstra et al., 2003) and transiently dur-
ing working-memory tasks in prefrontal areas
(which are known to be task-relevant) (Müller &
Knight, 2006). This tentative view might recon-
cile the seeming discrepancy between reports
of beta dynamics that suggest an “inhibitory”
role, and those that seem to reflect the forma-
tion of neural ensembles (Spitzer & Haegens,
2017). Together, we hypothesize that the here
reported decreases in duration and increases
in rate of beta bursts during working-memory
retention andmanipulation are reflective of the
transient reactivationof content-specificneural
circuits. Although there is some evidence for
this function of beta bursts from recordings in
monkeys (Buschman et al., 2012; Rassi et al.,
2022), the analysis of human intracranial EEG
data that includes the simultaneous recording
of both local field potentials and spiking activity
is necessary to fully assess our predictions.

From the four extracted beta burst parameters,
only rate (i.e., the mean number of bursts)
was significantly associatedwith interindividual
differences in performance. However, further
analysis revealed that this correlation might
have been driven by outliers in the data. In
this regard, a bigger sample size with greater
interindividual variability in performance will
be needed to robustly assess the relationship
between beta bursts and interindividual differ-
ences in working-memory performance.

Finally, it is important to underline that several
algorithms to detect oscillatory bursts have

been proposed (Bonaiuto et al., 2021; Neymotin
et al., 2022; Seymour et al., 2022; Shin et al.,
2017; Whitten et al., 2011), and that each of them
offers specific advantages. An important factor
for the precise detection of oscillatory bursts
is the definition of an amplitude threshold. In
line with a recently developed algorithm (Szul
et al., 2022), we here use the estimate of ape-
riodic activity as a power threshold, instead of
a global threshold of beta amplitude (Bonaiuto
et al., 2021; Sherman et al., 2016; Shin et al.,
2017). This strategy was adopted to also detect
low-amplitude oscillatory bursts, which might
be of functional relevance (Schürmann & Başar,
2001). In this regard, note that the algorithm
developed here specifically aimed to control for
the influence of non-sinusoidal low-frequency
rhythms on beta oscillations (Schaworonkow,
2023; Schaworonkow & Nikulin, 2019), because,
to our knowledge, this factor was not taken
into account in previously proposed algorithms.
However, other algorithms offer other features,
such as thedetection of rhythms that change in
instantaneous frequency (Neymotin et al., 2022;
Szul et al., 2022), whichmightmake themmore
adequate for other research questions.

5. AUTHOR CONTRIBUTIONS

JRL and SH designed the research. JRL per-
formed the research and analyzed the data. JRL
and SH wrote the paper.

6. FUNDING SOURCES

This work was supported by NWO Vidi grant
016.Vidi.185.137 and NIH grant R01-MH123679.

7. CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

• Angelakis, E., Lubar, J. F., Stathopoulou, S., &
Kounios, J. (2004). Peak alpha frequency: An
electroencephalographic measure of cogni-
tive preparedness. Clinical Neurophysiology,

advances.in/psychology 13



Genuine beta bursts in human working memory Rodriguez-Larios & Haegens, 2023

115(4), 887–897. https://doi.org/10.1016/j.clinph
.2003.11.034

• Baddeley, A. (2010). Working memory. Cur-
rent Biology, 20(4), R136–R140. https://doi
.org/10.1016/j.cub.2009.12.014

• Benjamini, Y., & Hochberg, Y. (1995). Con-
trolling the false discovery rate: A practical
and powerful approach to multiple testing.
Journal of theRoyal Statistical Society: Series
B (Methodological), 57(1), 289–300. https://doi
.org/10.1111/j.2517-6161.1995.tb02031.x

• Bonaiuto, J. J., Little, S., Neymotin, S. A.,
Jones, S. R., Barnes, G. R., & Bestmann, S.
(2021). Laminar dynamics of high amplitude
beta bursts in human motor cortex. Neu-
roImage, 242, 118479. https://doi.org/10.1016/
J.NEUROIMAGE.2021.118479

• Buschman, T. J., Denovellis, E. L., Diogo, C.,
Bullock, D., & Miller, E. K. (2012). Synchronous
oscillatory neural ensembles for rules in the
prefrontal cortex. Neuron, 76(4), 838–846.
https://doi.org/10.1016/j.neuron.2012.09.029

• Canales-Johnson, A., Beerendonk, L.,
Blain, S., Kitaoka, S., Ezquerro-Nassar, A.,
Nuiten, S., Fahrenfort, J., Van Gaal, S.,
& Bekinschtein, T. A. (2020). Decreased
alertness reconfigures cognitive control
networks. The Journal of Neurscience,
40(37), 7142–7154. https://doi.org/10.1523/
JNEUROSCI.0343-20.2020

• Caplan, J. B., Bottomley, M., Kang, P., &
Dixon, R. A. (2015). Distinguishing rhyth-
mic from non-rhythmic brain activity during
rest in healthy neurocognitive aging. Neu-
roImage, 112, 341–352. https://doi.org/10.1016/
J.NEUROIMAGE.2015.03.001

• Chang, C. Y., Hsu, S. H., Pion-Tonachini, L., &
Jung, T. P. (2020). Evaluation of artifact sub-
space reconstruction for automatic artifact
components removal in multi-channel EEG
recordings. IEEE Transactions onBiomedical
Engineering, 67(4), 1114–1121. https://doi.org/10
.1109/TBME.2019.2930186

• Chen, Y., & Huang, X. (2016). Modulation of
alpha and beta oscillations during an n-back
task with varying temporal memory load.

Frontiers in Psychology, 6, 2031. https://doi
.org/10.3389/FPSYG.2015.02031

• Cohen, M. X. (2017). Where does EEG come
from and what does it mean? Trends in Neu-
rosciences, 40(4), 208–218. https://doi.org/10
.1016/j.tins.2017.02.004

• Cole, S., & Voytek, B. (2017). Brain oscilla-
tions and the importanceofwaveformshape.
Trends in Cognitive Sciences, 21(2), 137–149.
https://doi.org/10.1016/j.tics.2016.12.008

• Deiber, M. P., Missonnier, P., Bertrand, O.,
Gold, G., Fazio-Costa, L., Ibañez, V., & Gian-
nakopoulos, P. (2007). Distinction between
perceptual and attentional processing in
working memory tasks: A study of phase-
locked and induced oscillatory brain dynam-
ics. Journal of Cognitive Neuroscience, 19(1),
158–172. https://doi.org/10.1162/JOCN.2007.19.1
.158

• Delorme, A., & Makeig, S. (2004). EEGLAB: an
open sorce toolbox for analysis of single-trail
EEG dynamics including independent com-
ponent anlaysis. Journal of Neuroscience
Methods, 134, 9–21. https://doi.org/10.1016/j
.jneumeth.2003.10.009

• D’Esposito, M. D., & Postle, B. R. (2015). The
cognitive neuroscience of working memory.
Annual Review of Psychology, 66, 115–142.
https://doi.org/10.1146/annurev-psych-010814
-015031

• Donoghue, T., Schaworonkow, N., & Voytek, B.
(2022). Methodological considerations for
studying neural oscillations. European Jour-
nal of Neuroscience, 55(11-12), 3502–3527.
https://doi.org/10.1111/EJN.15361

• Erickson, M. A., Smith, D., Albrecht, M. A.,
& Silverstein, S. (2019). Alpha-band desyn-
chronization reflects memory-specific pro-
cesses during visual change detection. Psy-
chophysiology, 56(11), e13442. https://doi.org/
10.1111/psyp.13442

• Goyal, A., Miller, J., Qasim, S. E., Watrous, A. J.,
Zhang, H., Stein, J. M., Inman, C. S., Gross, R. E.,
Willie, J. T., Lega, B., Lin, J. J., Sharan, A.,Wu, C.,
Sperling, M. R., Sheth, S. A., Mckhann, G. M.,
Smith, E. H., Schevon, C., & Jacobs, J. (2020).

advances.in/psychology 14

https://doi.org/10.1016/j.clinph.2003.11.034
https://doi.org/10.1016/j.clinph.2003.11.034
https://doi.org/10.1016/j.cub.2009.12.014
https://doi.org/10.1016/j.cub.2009.12.014
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/J.NEUROIMAGE.2021.118479
https://doi.org/10.1016/J.NEUROIMAGE.2021.118479
https://doi.org/10.1016/j.neuron.2012.09.029
https://doi.org/10.1523/JNEUROSCI.0343-20.2020
https://doi.org/10.1523/JNEUROSCI.0343-20.2020
https://doi.org/10.1016/J.NEUROIMAGE.2015.03.001
https://doi.org/10.1016/J.NEUROIMAGE.2015.03.001
https://doi.org/10.1109/TBME.2019.2930186
https://doi.org/10.1109/TBME.2019.2930186
https://doi.org/10.3389/FPSYG.2015.02031
https://doi.org/10.3389/FPSYG.2015.02031
https://doi.org/10.1016/j.tins.2017.02.004
https://doi.org/10.1016/j.tins.2017.02.004
https://doi.org/10.1016/j.tics.2016.12.008
https://doi.org/10.1162/JOCN.2007.19.1.158
https://doi.org/10.1162/JOCN.2007.19.1.158
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1111/EJN.15361
https://doi.org/10.1111/psyp.13442
https://doi.org/10.1111/psyp.13442


Genuine beta bursts in human working memory Rodriguez-Larios & Haegens, 2023

Functionally distinct high and low theta os-
cillations in the human hippocampus. Na-
ture Communications, 11(1), 1–10. https://doi
.org/10.1038/s41467-020-15670-6

• Iemi, L., Gwilliams, L., Samaha, J., Auksz-
tulewicz, R., Cycowicz, Y. M., King, J. R.,
Nikulin, V. V., Thesen, T., Doyle, W., Devin-
sky, O., Schroeder, C. E., Melloni, L., & Hae-
gens, S. (2022). Ongoing neural oscillations
influence behavior and sensory representa-
tions by suppressing neuronal excitability.
NeuroImage, 247, 118746. https://doi.org/10
.1016/J.NEUROIMAGE.2021.118746

• Jablonska, K., Piotrowska, M., Bednarek, H.,
Szymaszek, A., Marchewka, A., Wypych, M., &
Szelag, E. (2020). Maintenance vs. manipula-
tion in auditory verbal working memory in
the elderly: New insights based on temporal
dynamics of information processing in the
millisecond time range. Frontiers in Aging
Neuroscience, 12, 194. https://doi.org/10.3389/
fnagi.2020.00194

• Jensen, O., & Mazaheri, A. (2010). Shaping
functional architecture by oscillatory alpha
activity: Gating by inhibition. Frontiers in Hu-
man Neuroscience, 4, 186. https://doi.org/10
.3389/fnhum.2010.00186

• Jones, S. R. (2016).When brain rhythms aren’t
‘rhythmic’: Implication for their mechanisms
and meaning. Current Opinion in Neurobi-
ology,40, 72–80. https://doi.org/10.1016/j.conb
.2016.06.010

• Klimesch, W. (1999). EEG alpha and theta
oscillations reflect cognitive and memory
performance: a reviewandanalysis.BrainRe-
search Reviews, 29, 169–195. https://doi.org/10
.1016/S0165-0173(98)00056-3

• Klimesch, W., Sauseng, P., & Hanslmayr, S.
(2007). EEG alpha oscillations: The
inhibition-timing hypothesis. Brain
Research, 53, 63–88. https://doi.org/10.1016/
j.brainresrev.2006.06.003

• Kosciessa, J. Q., Grandy, T. H., Garrett, D. D., &
Werkle-Bergner, M. (2020). Single-trial char-
acterization of neural rhythms: Potential and
challenges. NeuroImage, 206, 116331. https://

doi.org/10.1016/j.neuroimage.2019.116331
• Kulhman, W. N. (1978). Functional topogra-

phy of the human mu rhythm. Electroen-
cephalography and Clinical Neurophysiol-
ogy, 44, 83–93. https://doi.org/10.1016/0013
-4694(78)90107-4

• Leszczyński, M., Barczak, A., Kajikawa, Y., Ul-
bert, I., Falchier, A. Y., Tal, I., Haegens, S., Mel-
loni, L., Knight, R. T., & Schroeder, C. E. (2020).
Dissociation of broadband high-frequency
activity and neuronal firing in the neocortex.
Science Advances, 6(33), 977–989. https://doi
.org/10.1126/sciadv.abb0977

• Love, J., Selker, R., Marsman, M., Jamil, T.,
Dropmann, D., Verhagen, J., Ly, A.,
Gronau, Q. F., Šmíra, M., Epskamp, S.,
Matzke, D., Wild, A., Knight, P., Rouder, J. N.,
Morey, R. D., & Wagenmakers, E. J. (2019).
JASP: Graphical statistical software for
common statistical designs. Journal of
Statistical Software, 88(1), 1–17. https://
doi.org/10.18637/JSS.V088.I02

• Maris, E., & Oostenveld, R. (2007). Non-
parametric statistical testing of EEG- and
MEG-data. Journal of Neuroscience Meth-
ods, 164(1), 177–190. https://doi.org/10.1016/J
.JNEUMETH.2007.03.024

• Mierau, A., Klimesch,W., & Lefebvre, M. (2017).
Review state-dependent alpha peak fre-
quency shifts: experimental evidence, poten-
tialmechanisms and functional implications.
Neuroscience, 360, 146–154. https://doi.org/10
.1016/j.neuroscience.2017.07.037

• Miller, E. K., Lundqvist, M., & Bastos, A. M.
(2018). Working Memory 2.0. Neuron, 100(2),
463–475. https://doi.org/10.1016/j.neuron.2018
.09.023

• Miller, G. A., Galanter, E., & Pribram, K. H.
(1960). Plans and the structure of behavior.
Henry Holt and Co. https://doi.org/10.1037/
10039-000

• Müller, N. G., & Knight, R. T. (2006). The func-
tional neuroanatomy of working memory:
Contributions of human brain lesion studies.
Neuroscience, 139(1), 51–58. https://doi.org/10
.1016/J.NEUROSCIENCE.2005.09.018

advances.in/psychology 15

https://doi.org/10.1038/s41467-020-15670-6
https://doi.org/10.1038/s41467-020-15670-6
https://doi.org/10.1016/J.NEUROIMAGE.2021.118746
https://doi.org/10.1016/J.NEUROIMAGE.2021.118746
https://doi.org/10.3389/fnagi.2020.00194
https://doi.org/10.3389/fnagi.2020.00194
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.1016/j.conb.2016.06.010
https://doi.org/10.1016/j.conb.2016.06.010
https://doi.org/10.1016/S0165-0173(98)00056-3
https://doi.org/10.1016/S0165-0173(98)00056-3
https://doi.org/10.1016/j.brainresrev.2006.06.003
https://doi.org/10.1016/j.brainresrev.2006.06.003
https://doi.org/10.1016/j.neuroimage.2019.116331
https://doi.org/10.1016/j.neuroimage.2019.116331
https://doi.org/10.1016/0013-4694(78)90107-4
https://doi.org/10.1016/0013-4694(78)90107-4
https://doi.org/10.1126/sciadv.abb0977
https://doi.org/10.1126/sciadv.abb0977
https://doi.org/10.18637/JSS.V088.I02
https://doi.org/10.18637/JSS.V088.I02
https://doi.org/10.1016/J.JNEUMETH.2007.03.024
https://doi.org/10.1016/J.JNEUMETH.2007.03.024
https://doi.org/10.1016/j.neuroscience.2017.07.037
https://doi.org/10.1016/j.neuroscience.2017.07.037
https://doi.org/10.1016/j.neuron.2018.09.023
https://doi.org/10.1016/j.neuron.2018.09.023
https://doi.org/10.1037/10039-000
https://doi.org/10.1037/10039-000
https://doi.org/10.1016/J.NEUROSCIENCE.2005.09.018
https://doi.org/10.1016/J.NEUROSCIENCE.2005.09.018


Genuine beta bursts in human working memory Rodriguez-Larios & Haegens, 2023

• Nasrawi, R., & Van Ede, F. (2022). Planning
the potential future during multi-item visual
working memory. Journal of Cognitive Neu-
roscience, 34(8), 1534–1546. https://doi.org/10
.1162/JOCN_A_01875

• Neymotin, S. A., Tal, I., Barczak, A.,
O’connell, M. N., Mcginnis, T., Markowitz, N.,
Espinal, E., Griffith, E., Anwar, H.,
Dura-Bernal, S., Schroeder, C. E.,
Lytton, W. W., Jones, S. R., Bickel, S., &
Lakatos, P. (2022). Detecting spontaneous
neural oscillation events in primate auditory
cortex. ENeuro, 9(4). https://doi.org/10.1523/
ENEURO.0281-21.2022

• Onton, J., Delorme, A., & Makeig, S. (2005).
Frontal midline EEG dynamics during work-
ing memory. NeuroImage, 341–356. https://
doi.org/10.1016/j.neuroimage.2005.04.014

• Oostenveld, R., Fries, P., Maris, E., & Schoffe-
len, J. M. (2011). FieldTrip: Open source soft-
ware for advanced analysis of MEG, EEG, and
invasive electrophysiological data.Computa-
tional Intelligence and Neuroscience, 2011,
156869. https://doi.org/10.1155/2011/156869

• Pavlov, Y. G., & Kotchoubey, B. (2020a). The
electrophysiological underpinnings of vari-
ation in verbal working memory capacity.
Scientific Reports, 10(1), 1–9. https://doi.org/10
.1038/s41598-020-72940-5

• Pavlov, Y. G., & Kotchoubey, B. (2020b). Oscil-
latory brain activity and maintenance of ver-
bal and visualworkingmemory: A systematic
review. Psychophysiology. https://doi.org/10
.1111/psyp.13735

• Pfurtscheller, G., & Cooper, R. (1975). Fre-
quency dependence of the transmission of
the EEG from cortex to scalp. Electroen-
cephalography and Clinical Neurophysiol-
ogy, 38(1), 93–96. https://doi.org/10.1016/0013
-4694(75)90215-1

• Pion-Tonachini, L., Kreutz-Delgado, K., &
Makeig, S. (2019). ICLabel: An automated
electroencephalographic independent
component classifier, dataset, and website.
NeuroImage, 198, 181–197. https://doi.org/
10.1016/j.neuroimage.2019.05.026

• Proskovec, A. L., Wiesman, A. I., Heinrichs-
Graham, E., & Wilson, T. W. (2018). Beta os-
cillatory dynamics in the prefrontal and su-
perior temporal cortices predict spatial work-
ing memory performance. Scientific Re-
ports, 8(1), 1–13. https://doi.org/10.1038/s41598
-018-26863-x

• Rassi, E., Lin, M., Zhang, Y., Emmerzaal, J.,
& Haegens, S. (2022). Beta band rhythms
influence reaction times. Biorxiv. https://doi
.org/10.1101/2022.11.03.515019

• Ray, S., & Maunsell, J. H. R. (2011). Different
origins of gamma rhythm and high-gamma
activity in macaque visual cortex. PLOS Bi-
ology, 9(4), e1000610. https://doi.org/10.1038/
s41467-023-38675-3

• Repovš, G., & Baddeley, A. (2006). The multi-
component model of working memory: Ex-
plorations in experimental cognitive psychol-
ogy.Neuroscience, 139(1), 5–21. https://doi.org/
10.1016/j.neuroscience.2005.12.061

• Rodriguez-Larios, J., & Alaerts, K. (2019). Track-
ing transient changes in the neural fre-
quency architecture: harmonic relationships
between theta and alpha peaks facilitate
cognitive performance. The Journal of Neu-
roscience, 39(32), 6291–6298. https://doi.org/
10.1523/JNEUROSCI.2919-18.2019

• Rodriguez-Larios, J., Elshafei, A., Wiehe, M.,
& Haegens, S. (2022). Visual working mem-
ory recruits two functionally distinct alpha
rhythms in posterior cortex. ENeuro, 9(5).
https://doi.org/10.1523/ENEURO.0159-22.2022

• Schaworonkow, N. (2023). Overcoming har-
monic hurdles : genuine beta-band rhythms
vs . contributions of alpha-band waveform
shape. Imaging Neuroscience, 1, 1–8. https://
doi.org/10.1162/imag_a_00018

• Schaworonkow, N., & Nikulin, V. V. (2019). Spa-
tial neuronal synchronization and the wave-
form of oscillations: Implications for EEG and
MEG. PLOS Computational Biology, 15(5),
e1007055. https://doi.org/10.1371/journal.pcbi
.1007055

• Schneider, M., Broggini, A. C., Dann, B.,
Tzanou, A., Uran, C., Sheshadri, S., Scher-

advances.in/psychology 16

https://doi.org/10.1162/JOCN_A_01875
https://doi.org/10.1162/JOCN_A_01875
https://doi.org/10.1523/ENEURO.0281-21.2022
https://doi.org/10.1523/ENEURO.0281-21.2022
https://doi.org/10.1016/j.neuroimage.2005.04.014
https://doi.org/10.1016/j.neuroimage.2005.04.014
https://doi.org/10.1155/2011/156869
https://doi.org/10.1038/s41598-020-72940-5
https://doi.org/10.1038/s41598-020-72940-5
https://doi.org/10.1111/psyp.13735
https://doi.org/10.1111/psyp.13735
https://doi.org/10.1016/0013-4694(75)90215-1
https://doi.org/10.1016/0013-4694(75)90215-1
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1038/s41598-018-26863-x
https://doi.org/10.1038/s41598-018-26863-x
https://doi.org/10.1101/2022.11.03.515019
https://doi.org/10.1101/2022.11.03.515019
https://doi.org/10.1038/s41467-023-38675-3
https://doi.org/10.1038/s41467-023-38675-3
https://doi.org/10.1016/j.neuroscience.2005.12.061
https://doi.org/10.1016/j.neuroscience.2005.12.061
https://doi.org/10.1523/JNEUROSCI.2919-18.2019
https://doi.org/10.1523/JNEUROSCI.2919-18.2019
https://doi.org/10.1523/ENEURO.0159-22.2022
https://doi.org/10.1162/imag_a_00018
https://doi.org/10.1162/imag_a_00018
https://doi.org/10.1371/journal.pcbi.1007055
https://doi.org/10.1371/journal.pcbi.1007055


Genuine beta bursts in human working memory Rodriguez-Larios & Haegens, 2023

berger, H., & Vinck, M. (2021). A mechanism
for inter-areal coherence through communi-
cation based on connectivity and oscillatory
power. Neuron, 0(0). https://doi.org/10.1016/J
.NEURON.2021.09.037

• Schürmann, M., & Başar, E. (2001). Functional
aspects of alpha oscillations in the EEG.
International Journal of Psychophysiology,
39(2-3), 151–158. https://doi.org/10.1016/S0167
-8760(00)00138-0

• Seymour, R. A., Alexander, N., & Maguire, E. A.
(2022). Robust estimation of 1/f activity
improves oscillatory burst detection.BioRxiv,
2022.03.24.485674. https://doi.org/10.1101/
2022.03.24.485674

• Sherman, M. A., Lee, S., Law, R., Haegens, S.,
Thorn, C. A., Hämäläinen, M. S., Moore, C. I.,
& Jones, S. R. (2016). Neural mechanisms
of transient neocortical beta rhythms: Con-
verging evidence from humans, computa-
tional modeling, monkeys, and mice. Pro-
ceedings of the National Academy of Sci-
ences, 113(33), E4885–E4894. https://doi.org/
10.1073/PNAS.1604135113

• Shin, H., Law, R., Tsutsui, S., Moore, C. I., &
Jones, S. R. (2017). The rate of transient beta
frequency events predicts behavior across
tasks and species. ELife, 6. https://doi.org/10
.7554/ELIFE.29086

• Spitzer, B., & Haegens, S. (2017). Beyond the
status quo: A role for beta oscillations in
endogenous content (RE)activation. Society
for Neuroscience, 4(4). https://doi.org/10.1523/
ENEURO.0170-17.2017

• Stein, A. V., & Sarnthein, J. (2000). Different
frequencies for different scales of cortical
integration: From local gamma to long
range alpha/theta synchronization.
International Journal of Psychophysiology,
38(3), 301–313. https://doi.org/10.1016/
S0167-8760(00)00172-0

• Strijkstra, A. M., Beersma, D. G. M., Drayer, B.,
Halbesma, N., & Daan, S. (2003). Subjective
sleepiness correlates negatively with global

alpha (8-12 Hz) and positively with central
frontal theta (4-8 Hz) frequencies in the hu-
man resting awake electroencephalogram.
Neuroscience Letters, 340(1), 17–20. https://
doi.org/10.1016/S0304-3940(03)00033-8

• Szul, M. J., Papadopoulos, S., Alavizadeh, S.,
Daligaut, S., Schwartz, D., Mattout, J.,
Bonaiuto, J. J., Cognitives, S., Jeannerod, M.,
Umr, C., Claude, U., Lyon, B., Lyon, U., &
De. (2022). Diverse beta burst waveform
motifs characterize movement-related
cortical dynamics. Progress in Neurobiology,
228, 102490. https://doi.org/10.1016/
j.pneurobio.2023.102490

• Tallon-Baudry, C., Bertrand, O., Peronnet, F.,
& Pernier, J. (1998). Induced γ-band activ-
ity during the delay of a visual short-term
memory task in humans. Journal of Neuro-
science, 18(11), 4244–4254. https://doi.org/10
.1523/JNEUROSCI.18-11-04244.1998

• Torrence, C., & Compo, G. P. (1998). A prac-
tical guide to wavelet analysis. Bulletin of
the American Meteorological Society, 79(1),
61–78. https://doi.org/10.1175/1520-0477(1998)
079

• Van Ede, F., Quinn, A. J.,Woolrich, M.W., & No-
bre, A. C. (2018). Neural oscillations: Sustained
rhythms or transient burst-events? Trends in
Neurosciences, 41(7), 415–417. https://doi.org/
10.1016/j.tins.2018.04.004

• Veltman, D. J., Rombouts, S. A. R. B., &
Dolan, R. J. (2003). Maintenance versus
manipulation in verbal working memory
revisited: an fMRI study. NeuroImage,
18(2), 247–256. https://doi.org/10.1016/
S1053-8119(02)00049-6

• Whitten, T. A., Hughes, A. M., Dickson, C. T.,
& Caplan, J. B. (2011). A better oscillation
detection method robustly extracts EEG
rhythms across brain state changes: The hu-
man alpha rhythm as a test case. NeuroIm-
age, 54(2), 860–874. https://doi.org/10.1016/j
.neuroimage.2010.08.064

advances.in/psychology 17

https://doi.org/10.1016/J.NEURON.2021.09.037
https://doi.org/10.1016/J.NEURON.2021.09.037
https://doi.org/10.1016/S0167-8760(00)00138-0
https://doi.org/10.1016/S0167-8760(00)00138-0
https://doi.org/10.1101/2022.03.24.485674
https://doi.org/10.1101/2022.03.24.485674
https://doi.org/10.1073/PNAS.1604135113
https://doi.org/10.1073/PNAS.1604135113
https://doi.org/10.7554/ELIFE.29086
https://doi.org/10.7554/ELIFE.29086
https://doi.org/10.1523/ENEURO.0170-17.2017
https://doi.org/10.1523/ENEURO.0170-17.2017
https://doi.org/10.1016/S0167-8760(00)00172-0
https://doi.org/10.1016/S0167-8760(00)00172-0
https://doi.org/10.1016/S0304-3940(03)00033-8
https://doi.org/10.1016/S0304-3940(03)00033-8
https://doi.org/10.1016/j.pneurobio.2023.102490
https://doi.org/10.1016/j.pneurobio.2023.102490
https://doi.org/10.1523/JNEUROSCI.18-11-04244.1998
https://doi.org/10.1523/JNEUROSCI.18-11-04244.1998
https://doi.org/10.1175/1520-0477(1998)079
https://doi.org/10.1175/1520-0477(1998)079
https://doi.org/10.1016/j.tins.2018.04.004
https://doi.org/10.1016/j.tins.2018.04.004
https://doi.org/10.1016/S1053-8119(02)00049-6
https://doi.org/10.1016/S1053-8119(02)00049-6
https://doi.org/10.1016/j.neuroimage.2010.08.064
https://doi.org/10.1016/j.neuroimage.2010.08.064

	Introduction
	Materials and Methods
	Participants
	Design and Task
	EEG Acquisition 
	EEG Preprocessing
	Beta Burst Detection Algorithm
	Statistical Analysis

	Results
	Behavioral Performance
	Beta Burst Modulations With Memory Retention
	Beta Burst Modulations With Cognitive Load
	Beta Burst Modulations Associated With Memory Manipulation
	Relation Between Beta Bursts and Interindividual Differences in Performance
	Exploring the Frequency Specificity of Beta Bursts Modulations
	Assessing Potential Condition-Related Modulations in the Temporal Dynamics of Beta Bursts
	Controlling for Potential Changes in ``Non-Genuine'' Beta Bursts 

	Discussion
	Author Contributions
	Funding Sources
	Conflicts of Interest

